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We describe in detail the new reflection API of the upcoming Javascript standard. The most prominent
feature of this new API is its support for creating proxies: virtual objects that behave as regular objects, but
whose entire “meta-object protocol” is implemented in Javascript itself. Next to a detailed description of the
API, we describe a more general set of design principles that helped steer the API’s design, and which should
be applicable to similar APIs for other languages. We also describe access control abstractions implemented
in the new API, and provide an operational semantics of an extension of the untyped λ-calculus featuring
proxies.
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1. INTRODUCTION
We introduce the upcoming reflection API for Javascript, in which dynamic proxies
play a major role. Proxies have a wide array of use cases [Eugster 2006]. Two general
cases can be distinguished depending on whether the proxy is proxying another object
within the same address space:

Generic wrappers. Proxies that wrap other objects in the same address space. Ex-
ample uses include access control wrappers (e.g. revokable references), higher-order
contracts [Findler and Felleisen 2002], profiling, taint tracking, etc.
Virtual objects. Proxies that emulate other objects, without the emulated objects
having to be present in the same address space. Examples include remote object
proxies (emulate objects in other address spaces), persistent objects (emulate objects
stored in databases), transparent futures (emulate objects not yet computed), lazily
instantiated objects, test mock-ups, etc.

In previous work [Van Cutsem and Miller 2010], we designed a Javascript Proxy API
that was centered around virtual objects, driven primarily by the use case of virtualiz-
ing the Document Object Model (DOM), the interface between Javascript scripts and
the browser environment. This work directly builds upon that work, but updates and
extends it as follows:

(1) Our previous API disallowed proxies to emulate objects with strong invariants (e.g.
objects purporting to contain immutable properties). In this work, we introduce an
updated API that overcomes these limitations. Interestingly, it does so by focussing
the API on the generic wrappers use case, rather than the virtual objects use case.
However, virtual objects can still be implemented in our updated API, just like
generic wrappers could be implemented using our previous API.

(2) We describe a technique called invariant enforcement that enables Proxy APIs
based on wrapping existing objects to uphold any language-specific invariants of
the wrapped object. The principles behind invariant enforcement should be gener-
ally applicable to languages other than Javascript.

(3) We provide an operational semantics of an extension of the untyped lambda calcu-
lus including proxies, inspired by a subset of Javascript.

(4) This paper provides a more complete and more up-to-date description of the
Javascript Proxy API and its current status.
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The contributions of this paper are first, a detailed description of the new standard
reflection API for the upcoming edition of Javascript (Section 4), second, the enumera-
tion of the important design principles that helped guide our API, and which are appli-
cable to message-based object-oriented reflection APIs in general (Section 5), third, a
description of concrete access control wrappers implemented using our API (Section 7)
and fourth, an operational semantics of the key aspects of our Proxy API (Section 8).

2. REFLECTION TERMINOLOGY
A metaobject protocol (MOP) [Kiczales et al. 1991] is an object-oriented framework
that describes the behavior of an object-oriented system. It is a term most commonly
associated with reflective object-oriented programming languages. It is customary for
a MOP to represent language operations defined on objects as method invocations on
their meta-objects. Throughout the rest of this paper, we use the general term oper-
ation to denote mechanisms such as message sending, field access and assignment,
defining a method, performing an instanceof operation, and so on.

According to Kiczales et. al [Kiczales et al. 1991] a MOP supports introspection if
it enables reflective read-only access to the structure of an object. It supports self-
modification if it is possible to modify this structure. Finally, it supports intercession
if it enables programmers to redefine the semantics of operations on specific objects.
Introspection is typically supported by all reflection APIs. Self-modification is more
exceptional, and reflection APIs with extensive support for intercession are rare in
well-known languages, the CLOS MOP being a notable exception (see Section 10.6).

We will use the term intercession API to refer to any API that enables the creation
of new base-level objects with custom meta-level behavior.

3. JAVASCRIPT
Javascript is a scripting language whose language runtime is often embedded within
a larger execution environment. By far the most common execution environment for
Javascript is the web browser. While the full Javascript language as we know it today
has a lot of accidental complexity as a side-effect of a complex evolutionary process,
at its core it is a fairly simple dynamic language with first-class lexical closures and a
concise object literal notation that makes it easy to create one-off anonymous objects.
This simple core is what Crockford refers to as “the good parts” [Crockford 2008].

The standardized version of the Javascript language is named ECMAScript. The
Proxy API described in this paper was designed based on the latest standard of the
language, ECMAScript 5 [ECMA International 2009]. Because ECMAScript 5 adds a
number of important features to the language that have heavily influenced our Proxy
API, we briefly summarize the new features relevant to our discussion in the following
section.

3.1. ECMAScript 5
ECMAScript 5 defines a new object-manipulation API that provides more fine-grained
control over the nature of object properties [ECMA International 2009]. In Javascript,
objects are records of properties mapping names (strings) to values. A simple two-
dimensional diagonal point can be defined as:

var point = {
x : 5 ,
get y ( ) { return this . x ; } ,
toString : function ( ) { return ’ ( ’ + x+ ’ , ’+y + ’ ) ’ ] ; }

} ;
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ECMAScript 5 distinguishes between two kinds of properties. Here, x is a data prop-
erty, mapping a name to a value directly. y is an accessor property, mapping a name to
a “getter” and/or a “setter” function. The expression point.y implicitly calls the getter
function.

ECMAScript 5 further associates with each property a set of attributes. Attributes
are meta-data that describe whether the property is writable (can be assigned to),
enumerable (whether it appears in for-in loops) or configurable (whether the property
can be deleted and whether its attributes can be modified1). A non-configurable, non-
writable data property is in essence a constant binding. The following code snippet
shows how these attributes can be inspected and defined:

var pd = Object . getOwnPropertyDescriptor ( point , ’x ’ ) ;
/ / pd = {
/ / value : 5 ,
/ / w r i t a b l e : t rue ,
/ / enumerable : t rue ,
/ / con f i gu rab le : t r ue
/ / }
Object . defineProperty ( point , ’z ’ , {

get : function ( ) { return this . x ; } ,
enumerable : false ,
configurable : true

} ) ;

The pd object and the third argument to defineProperty are called property descrip-
tors. These are objects that describe properties of objects. Data property descriptors
declare a value and a writable property, while accessor property descriptors declare a
get and/or a set property.

The Object.create function can be used to generate new objects based on a set of
property descriptors directly. Its first argument specifies the prototype of the object to
be created (Javascript uses object-based inheritance, further discussed in Section 4.3).
Its second argument is an object mapping property names to property descriptors. We
could have also defined the point object explicitly as:

var point = Object . create ( Object . prototype , {
x : { value : 5 ,enumerable : true , writable : true , configurable : true } ,
y : { get : function ( ) { return this . x ; } , enumerable : true , . . . } ,
toString : { value : function ( ) { . . . } , enumerable : true , . . . }

} ) ;

ECMAScript 5 supports the creation of tamper-proof objects that can protect them-
selves from modifications by client objects. Objects can be made non-extensible, sealed
or frozen. By default, Javascript objects are extensible collections of properties. How-
ever, a non-extensible object cannot be extended with new properties. A sealed object is
a non-extensible object whose own (non-inherited) properties are all non-configurable.
Finally, a frozen object is a sealed object whose own data properties are all non-
writable. The call Object.freeze(obj) freezes the object obj, effectively making the
structure of obj (but not obj’s property values) immutable. Section 5.2 details how
tamper-proof objects have influenced the design of our intercession API.

3.2. Reflection in Javascript
Javascript has built-in support for introspection and self-modification. These features
are provided as part of the language, rather than through a distinct metaobject proto-
col. This is largely because Javascript objects are represented as flexible records map-

1With the exception that a non-configurable, writable data property can still be made non-writable.
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ping strings to values. Property names can be computed at runtime and their value can
be retrieved using array indexing notation. The following code snippet demonstrates
introspection and self-modification:

var o = { x : 5 , m : function ( a ) { . . . } } ;
/ / i n t r o s p e c t i o n :
o [ ” x ” ] / / computed proper ty access
”x ” in o / / p roper ty lookup
for ( prop in o ) { . . . } / / p roper ty enumeration
o [ ” m ” ] . apply (o , [ 4 2 ] ) / / r e f l e c t i v e method c a l l
/ / s e l f−m o d i f i c a t i o n :
o [ ” x ” ] = 6 / / computed proper ty assignment
o . z = 7 / / add a proper ty
delete o . z / / remove a proper ty

The new property descriptor API discussed in the previous section provides for more
fine-grained introspection and self-modification of Javascript objects, as it additionally
reveals the property attributes.

3.3. Intercession in Javascript
The current Javascript standard has no support for intercession. It is not possible
to intercept an object’s property access, how it responds to the in-operator, for-in
loops and so on. Mozilla’s Spidermonkey engine has long included a non-standard way
of intercepting method calls based on Smalltalk’s doesNotUnderstand: method (see
Section 10.1). In Spidermonkey, the equivalent method is named noSuchMethod . For
example, a proxy that can generically forward all received messages to a target object
o is created as follows:

function makeProxy ( target ) {
return {

__noSuchMethod__ : function ( name , args ) {
return target [ name ] . apply ( target , args ) ;

}
} ;

}

Throughout the rest of this paper, we will refer to methods that intercept language-
level operations as traps, a term borrowed from the Operating Systems community.
Methods such as noSuchMethod and doesNotUnderstand: are traps because they
intercept method calls.

The problem with doesNotUnderstand: and derivatives is that the trap is not strat-
ified: it is defined in the same name space as the rest of the application code. The
only way in which a trap is distinguished from a regular method is by its name. This
violation of stratification can lead to confusion:

— Say an object intentionally defines the trap to intercept invocations. Since the trap
is part of the object’s interface, its clients can accidentally invoke the trap as if
it were an application-level method. This confuses meta-level code, since the call
“originated” from the base-level.

— Say an object accidentally defines an application-level method whose name matches
that of the trap. The VM will then incidentally invoke the application method as if
it were a trap. This confuses the base-level code, since the call “originated” from the
meta-level.

Without stratification, the intercession API pollutes the application’s namespace. We
conjecture that this lack of stratification has not posed a significant problem in practice
because systems such as Smalltalk and Spidermonkey define only one such special
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method. But the approach does not scale. If we were to introduce additional such traps
to intercept not only method invocation, but also property access, assignment, lookup,
enumeration, etc. the number of “reserved method names” on objects would quickly
grow out of control.

From this and the previous section, it is clear that Javascript is an extremely
dynamic language in which a number of core language features (computed prop-
erty access, for-in loops) would actually be classified as reflective features in other
languages. The tight, mostly unstratified, interweaving of core and reflective fea-
tures is one motivation for introducing a more principled, stratified reflection API in
Javascript.

Since Javascript has multiple operations defined on objects (e.g. property assign-
ment and enumeration via for-in loops) and since noSuchMethod is only able to in-
tercept one of these (method invocation), there is currently no mechanism in Javascript
to create fully transparent wrappers. For instance, enumerating the properties of a
proxy generated by the makeProxy function above would enumerate the properties of
the empty proxy object, rather than those of its target object. As we describe next, a
more faithful wrapping or emulation of objects is sometimes necessary.

3.4. Javascript Host Objects
Another motivator for the introduction of scriptable proxies in Javascript is the ex-
istence of so-called host objects. Host objects are objects implemented by the host
platform (for instance, the browser). To ordinary Javascript objects, these host objects
(mostly) behave like any other Javascript object. Most core browser APIs, such as the
Document Object Model (DOM), are composed almost entirely out of such host objects.
Typically, interaction with a host object leads to changes in the host platform (e.g. a
reflow or repaint of the HTML document).

Since host objects are entirely provided by the host platform, and mostly imple-
mented in a language other than Javascript, host objects have the freedom to behave
arbitrarily differently from regular objects. For instance, over time, browser APIs like
the DOM have exposed a number of host objects to Javascript code with behavior
that cannot normally be expressed by Javascript objects. The problem here is that
Javascript libraries cannot faithfully emulate or wrap such host objects.

Reasons for emulating these host objects range from implementing libraries that
want to augment, or fix issues with, existing host objects, all the way to libraries that
want to fully virtualize host environment APIs such as the DOM. The Proxy API dis-
cussed in the next section enables such virtualization.Indeed, the dom.js library, un-
der active development, has the goal of fully virtualizing the DOM using our Proxy
API [Gal and Flanagan 2011].

4. JAVASCRIPT PROXIES
As a general example of the kind of use cases that proxies enable, consider revokable
references. Say an object Alice wants to hand out to Bob a reference to Carol. Carol
could represent a precious resource, and for that reason Alice may want to limit the
lifetime of the reference she hands out to Bob, which she may not fully trust. In other
words, Alice wants to have the ability to revoke Bob’s access to Carol. Once revoked,
Bob’s reference to Carol becomes useless.

One can implement this pattern of access control by wrapping Carol in a forward-
ing proxy that can be made to stop forwarding. This is also known as the caretaker
pattern [Redell 1974]. Without proxies, the programmer is forced to write a distinct
caretaker for each kind of object that should be wrapped. Proxies enable the program-
mer to abstract from the details of the wrapped object’s protocol and instead write a
generic caretaker. Using such a generic caretaker abstraction, Alice can write:

Technical Report VUB-SOFT-TR-12-03. Manuscript under submission.



A:6 T. Van Cutsem and M. S. Miller

var carol = { . . . } ;
/ / ca re taker i s a tup l e c o n s i s t i n g o f a proxy reference , and a revoke f u n c t i o n
var caretaker = makeCaretaker ( carol ) ;
/ / ca re taker . r e f i s a proxy f o r caro l , which a l i c e can give to bob :
bob . use ( caretaker . ref ) ;
/ / l a t e r , a l i c e can revoke bob ’ s access . . .
caretaker . revoke ( ) ;
/ / ca re taker . r e f i s now useless

A key point is that as long as the caretaker is not revoked, Bob can use the proxy
for Carol as if it were the real Carol. There is no need for Bob to change the way he
interacts with Carol. Indeed, in the Proxy API we are about to present, if Bob has no
other direct reference to Carol, and as long as the reference is not revoked by Alice,
Bob is not even able to tell that caretaker.ref is only a proxy for Carol.

In Section 7.1 we show an implementation of the makeCaretaker function using the
Proxy API discussed below.

4.1. The Proxy API
We now describe our Proxy API for Javascript. This API is slated for inclusion in the
next ECMAScript standard2.

Our Proxy API supports intercession by means of distinct proxy objects. The behavior
of a proxy object is controlled by a separate handler object. The methods of the han-
dler object are traps that are called whenever a corresponding operation is applied to
the proxy object. Handlers are effectively “meta-objects” and their interface effectively
defines a “metaobject protocol”. A proxy object is created as follows:

var proxy = Proxy ( target , handler ) ;

Here, target is an existing Javascript object that is going to be wrapped by the
newborn proxy. handler is an object that may implement a particular meta-level API.
Figure 1 depicts the relationship between these objects.

targetproxy

handler

proxy.x

meta-level

base-level

'x' in proxy
delete proxy.x

handler.get(target,'x',proxy)
handler.has(target,'x')
handler.delete(target,'x')

Fig. 1. Relationship between proxy, target and handler.

Table I lists those base-level operations applicable to objects that can be trapped
by handlers. The distinction between fundamental and derived traps is explained in
Section 6.1. Some operations come in different flavors, depending on whether they are
expected to only look at the target’s “own” properties or whether they should also take
into account properties inherited from the target’s prototype.

An intercepted operation mostly simply triggers the corresponding trap and returns
its result. The enumerate trap must return an array of strings representing the enu-
merable property names of the proxy. The corresponding for-in loop is then driven by

2A draft specification is available at http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies.

Technical Report VUB-SOFT-TR-12-03. Manuscript under submission.



On the design of the ECMAScript Reflection API A:7

Table I. Operations reified on p = Proxy(t,h)

Operation Triggered by Reified as
Fundamental traps
Descriptor lookup Object.getOwnPropertyDescriptor(p,name) h.getOwnPropertyDescriptor(t,name)

Descriptor definition Object.defineProperty(p,name,pd) h.defineProperty(t,name,pd)
Own property listing Object.getOwnPropertyNames(p) h.getOwnPropertyNames(t)
Property deletion delete p[name] h.deleteProperty(t,name)
Preventing extensions Object.preventExtensions(p) h.preventExtensions(t)
Function application p(...args) h.apply(t,undefined,args)
Derived traps
Property query name in p h.has(t,name)
Own property query ({}).hasOwnProperty.call(p,name) h.hasOwn(t,name)
Property lookup p[name] h.get(t,name,p)
Property assignment p[name] = val h.set(t,name,val,p)
Property enumeration for (var name in p) {} h.enumerate(t)
Own property enum. Object.keys(p) h.keys(t)
Sealing Object.seal(p) h.seal(t)
Freezing Object.freeze(p) h.freeze(t)
Object construction new p(...args) h.construct(t,args)

iterating over this array. Because Javascript methods are just functions, a method in-
vocation proxy.m(a,b) is reified as a property access handler.get(target,"m",proxy)
that is expected to return a function. That function is immediately applied to the ar-
guments [a,b] with its this-pseudovariable bound to proxy.

All traps in the above API are optional. If a handler does not define a trap, the
proxy will forward the intercepted operation to its target unmodified. For instance, if
handler does not define a get trap, then proxy["x"] is equivalent to target["x"].

The distinction between proxy objects and regular objects ensures that non-proxy
objects (which we expect make up the vast majority of objects in a typical heap) do not
pay the runtime costs associated with intercession (cf. Section 9). Finally, the refer-
ences that a proxy holds to its target and handler are immutable and inaccessible to
clients of the proxy.

As an illustration of our API, consider a proxy wrapper that simply wants to log all
property assignments performed on its wrapped target object, but otherwise does not
want to change the behavior of the wrapped object:

function makeChangeLogger ( target , log ) {
return Proxy ( target , {

set : function ( target , name , value , receiver ) {
var success = Reflect . set ( target , name , value , receiver ) ;
i f ( success ) {

log ( ’ property ’+name+ ’ on ’+target+ ’ set to ’+value ) ;
}
return success ;

}
} ) ;

}

The Reflect.set method forwards the intercepted property assignment operation
to the target object, returning whether or not the property was updated successfully.
The Reflect object is discussed in more detail in Section 4.4.

4.2. Functions
In Javascript, functions are objects. However, they differ from non-function objects in
a number of ways. In particular, functions support two operations not applicable to
objects: function application and object construction. Construction is performed using
the new operator: if F is a function, new F() creates a new object o whose prototype
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object is F.prototype. F is then applied, with its this-pseudovariable bound to o, so
that it can initialize the new object. Think of functions used in this manner as playing
the role of constructors in class-based languages.

The apply and construct traps are only enabled when the wrapped target is itself a
function. If this is not the case, calling proxy(...args) or new proxy(...args) results
in an error, just like when trying to apply or construct a non-function value3. The
following code snippet illustrates the interaction between functions and proxies. It
defines a proxy p that wraps a function f and acts as a simple contract, enforcing that
a) the function is only called with numbers and b) it is never used as a constructor.

var f = function (a , b ) { return a+b ; } ;
var h = {

apply : function ( target , receiver , args ) {
args . forEach ( function ( arg ) { assert ( Number ( arg ) === arg ) ; } ) ;
return Reflect . apply ( target , receiver , args ) ;

} ,
construct : function ( target , args ) {

throw new Error ( ” not a constructor ” ) ;
}

} ;
var p = Proxy (f , h ) ;
f ( 1 , 2 ) ; / / r e tu rns 3
p ( 1 , 2 ) ; / / c a l l s h . apply ( f , undefined , [ 1 , 2 ] ) , r e tu rns 3
p ( ’ a ’ , ’ b ’ ) ; / / c a l l s h . apply ( f , undefined , [ ’ a ’ , ’ b ’ ] ) , throws except ion
new p ( 1 , 2 ) ; / / c a l l s h . cons t ruc t ( f , [ 1 , 2 ] ) , throws except ion
p . x / / get t r ap missing , d e f a u l t s to f . x , r e tu rns undef ined
var o = { m : p } ;
o . m ( 1 , 2 ) ; / / c a l l s h . apply ( f , o , [ 1 , 2 ] ) , r e tu rns 3

The apply trap receives as its second argument the value to use for the this-
pseudovariable. When a function is applied without a receiver, as in the expression
p(1,2), this parameter is set to undefined. When a function is stored as a property of
an object and invoked as a method, as in the expression o.m(1,2), this parameter is
set to the receiver object o.

4.3. Interaction with Prototype Inheritance
Javascript features object-based inheritance: every object has a prototype link that
designates the object in which lookup should proceed, if a particular property is not
found in the object itself. Any object may serve as a prototype for other objects. Proxies
may thus also become the prototype of other objects.

Four of the operations outlined in Table I may climb the prototype chain: property
query (has), property lookup (get), property assignment (set) and property enumera-
tion (enumerate). When any of these operations hits a proxy while climbing a prototype
chain, the ascent is stopped and control is transferred to the corresponding proxy trap.

The third parameter of the get and set traps identifies the initial receiver of the
property access or assignment4. If the proxy itself was the initial receiver of the prop-
erty access or assignment, this parameter will be the proxy itself. Otherwise, it refers
to a “child” that inherits (directly or indirectly) from the proxy:

var proxy = Proxy ( target , handler ) ;
/ / c h i l d i s an empty ob jec t i n h e r i t i n g from proxy

3The ...arg notation is new syntax in the next version of ECMAScript, used to turn the elements of an
array into actual arguments (when used at a call site), or to bind rest parameters (when used in formal
parameter lists).
4These traps need access to that initial receiver to correctly bind the this-pseudovariable in inherited ac-
cessor properties.
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var child = Object . create ( proxy ) ;
proxy [ name ] ; / / t r i g g e r s handler . get ( ta rge t , name, proxy )
child [ name ] ; / / t r i g g e r s handler . get ( ta rge t , name, c h i l d )
proxy [ name ] = 1 ; / / t r i g g e r s handler . se t ( ta rge t , name,1 , proxy )
child [ name ] = 1 ; / / t r i g g e r s handler . se t ( ta rge t , name,1 , c h i l d )

The ability to inherit from a proxy is often useful, e.g. to be able to intercept only
missing properties: if child would define a property name, the proxy’s get or set trap
will not be triggered for that property. Only when a property does not exist in child is
the proxy triggered.

4.4. Reflect: the dual of the Proxy API
When writing a Proxy handler, one is often interested in augmenting the default behav-
ior of the target object in response to an intercepted operation. As such, a generic mech-
anism is needed by which the implementor of a handler trap can “forward” the inter-
cepted operation to its target. Typical use cases coincide with what would be expressed
as “before”, “after” and “around” advice in aspect-oriented programming [Kiczales and
Hilsdale 2001], or in CLOS using method combinations [Paepcke 1993].

The Proxy API provides a distinct Reflect object5 which defines, for each trap in the
Proxy API, a method with the same name and arguments. When invoked, the method
applies the intercepted operation to its first parameter.

The Reflect object is the dual of a Proxy handler object: a proxy handler can uni-
formly intercept operations on an object, while the Reflect object can uniformly per-
form these operations on an object. The following code snippet illustrates this duality
for the property query operation:

var proxy = Proxy ( target , handler ) ;
name in proxy / / equ i va len t to : handler . has ( ta rge t , name)
Reflect . has ( target , name ) / / equ i va len t to : name i n t a r g e t
Reflect . has ( proxy , name ) / / equ i va len t to : name i n proxy

/ / and thus to : handler . has ( ta rge t , name)

The makeChangeLogger example in Section 4.1 made use of Reflect.set to forward
property assignment to the wrapped target object. We will make further use of the
Reflect object in Sections 6.2 and 7.

5. DESIGN PRINCIPLES
In this section, we describe the main design principles that helped shape the Proxy API
discussed in the previous section. These principles have merit and applicability beyond
the particulars of our ECMAScript API, and should be applicable to any object-oriented
intercession API built around proxies.

5.1. Stratification
Bracha and Ungar [Bracha and Ungar 2004] introduce the principle of stratification
for mirror-based architectures. The principle states that meta-level facilities should
be separated from base-level functionality. Bracha and Ungar focus mostly on strat-
ification in the context of introspection and self-modification. In this paper we focus
on the application of this principle to intercession. Mirrors are further discussed in
Section 10.4.

The distinction between a proxy and its handler object enforces stratification of
the traps. Traps are not defined as part of the (application-level) interface of the

5In the ECMAScript standard, this object will instead be defined as a module, but this detail is irrelevant
here and one can think of the Reflect object as a first-class representation of the module.
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proxy object, but as part of the interface of the handler. For instance, the prop-
erty access proxy.has will not trigger the proxy’s corresponding has trap. Instead, it
will correctly trigger handler.get(target,"has",proxy). Likewise, proxy.get triggers
handler.get(target,"get",proxy). Traps can only be invoked as methods on a proxy’s
handler, not on the proxy itself. This enforces stratification (the meta-level traps should
not interfere with base-level method names). Thus, proxies continue to work correctly
if an application (by accident or by design) uses the names get, set, has, etc.

Separating handler and proxy into separate objects has other benefits. The handler
has its own prototype chain which is completely independent from that of its proxy. A
single handler may also handle multiple proxies. Indeed, all handler traps are param-
eterized with the target to operate on, so that a shared handler can distinguish the
different targets of its proxies. The handler can even be a proxy itself (we illustrate
this in Section 6.2).

The principle of stratification when applied to proxies can be summarized as follows:
Stratification: by defining a proxy’s traps on a separate handler object, the proxy’s

application-level interface remains cleanly separated from its meta-level interface.

5.2. Invariant Enforcement
Recall from section 3.2 that ECMAScript 5 enables the creation of tamper-proof ob-
jects. A tamper-proof object provides useful invariants that programmers can rely
upon. When designing a Proxy API, care should be taken that proxies do not inad-
vertently break these invariants. ECMAScript 5 provides two important invariants:

Non-configurability. The attributes of a non-configurable property of an object can-
not change over time. In particular, a non-writable, non-configurable data property
is effectively a “constant” property. Also, a non-configurable property cannot be
deleted.
Non-extensibility. Once an object obj is made non-extensible by a call to
Object.preventExtensions(obj), Object.seal(obj) or Object.freeze(obj), new
properties can no longer be added to it.

For example, the call Object.freeze(obj) makes obj non-extensible, makes all of
its properties non-configurable and all data properties non-writable. The programmer
can now make assumptions about the behavior of obj based on the above invariants
(for instance, caching the value of obj’s data properties without requiring cache invali-
dation). If obj is a proxy, it should not be able to violate these assumptions. Invariants
are important for humans to reason about code, critical for security, and useful for
compilers and virtual machines.

In our earlier Proxy API design, we found that the easiest way to accomplish in-
variant enforcement was to simply never allow a proxy to emulate an object with the
above invariants [Van Cutsem and Miller 2010]. However, this severely restricted the
applicability of proxies. For instance, it precluded proxies from emulating host objects
with non-configurable properties.

The reason why our previous Proxy API could not enforce invariants was that its
API was designed to primarily implement virtual objects. These proxies did not directly
wrap an existing target object, so it was not clear what invariants, if any, would need to
be enforced on the virtual object. In our revised design, a proxy always wraps a known
target object. Thus, the proxy can inspect its target to check its invariants (i.e. which
properties are non-configurable, and whether or not the object is non-extensible). As
such, whenever the handler intercepts an operation and produces a result, the proxy
can verify whether the result is acceptable for the intercepted operation, given the
target’s invariants. If it is, the proxy reveals the result to clients. If not, it throws an
exception, thereby notifying clients that the handler was about to violate an invariant.
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As a concrete example of such invariant enforcement, consider the deleteProperty
trap. Assume a property foo is deleted from a proxy object p = Proxy(t,h), by eval-
uating delete p.foo. This triggers the h.deleteProperty(t,"foo") trap, which must
return a boolean indicating whether the property was successfully deleted. After the
proxy invokes the trap, it checks whether the handler returned true, which indicates
a successful deletion. If so, it checks whether the foo property is declared as a non-
configurable property of t. If it is, the proxy throws an exception. If the property is
configurable or does not exist, or if the handler returned false, the outcome of the
operation is reported to the client.

Our invariant enforcement mechanism for proxies hinges on the fact that the target
object, which is queried for its invariants by the proxy, cannot lie about what invariants
it upholds. We sketch an informal proof by induction on the target of a proxy.

First, we note that the chain of proxy-target links must be a finite, non-cyclic list:
the target of a proxy must already exist before the proxy is created. It is not possible
to initialize the target of a newborn proxy to that proxy itself.

In the base case, a proxy’s target is a regular non-proxy object. Non-proxy objects by
definition uphold language invariants, so the proxy can faithfully query the target for
its invariants. Hence, the handler will not be able to violate reported invariants.

For the inductive step, consider a proxy a whose target is itself a proxy b. By the
induction hypothesis, b cannot violate the invariants of its own target, so that a can
faithfully query b for its invariants. Hence, a’s handler will not be able to violate b’s
reported invariants.

The essence of the invariant enforcement mechanism can be summed up as follows:
Invariant Enforcement: to ensure that language invariants of a wrapped object

cannot be violated by a proxy, have the proxy verify the results of its handler against
the invariants of its target. This enables a reflection API to support intercession on
objects with invariants, without weakening those invariants.

5.3. Selective Interception
As the previous Section illustrates, a proxy-based intercession API introduces a trade-
off between what operations can be intercepted by proxy handlers on the one hand,
versus what operations have a reliable outcome from the language runtime and the
programmer’s point of view. Invariant enforcement upholds certain language invari-
ants, but for some operations even invariant enforcement would not be sufficient. Here,
we consider reasons to prevent a proxy from intercepting certain operations entirely.
The first is to preserve the stability of some operations, the second is to prevent unex-
pected interleaved execution of code.

5.3.1. Stable Operations. Some operations may be so critical that proxies should never
be able to influence their outcome. One such operation is identity comparison. In
Javascript, the expression a === b determines whether a and b refer to identical ob-
jects. The === operator comes with a number of implicit guarantees: it is commutative,
transitive, symmetric and stable (it always reports the same answer given the same
arguments). Furthermore, testing a and b for equality should not grant a access to b or
vice versa. For all these reasons, our Proxy API does not allow proxy handlers to trap
===. Proxies cannot influence the outcome of this operation.

Stability is important for other operations as well. To uphold stability, the operation
should not trap to a proxy handler, since a handler would be able to return different
results over time. We describe three ways in which an operation can remain stable
when applied to a proxy.
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First, an operation may simply operate on proxies the same way it operates on non-
proxies. The === operator remains stable on proxies in this way, since it uses the proxy’s
own distinct object identity.

Second, the stable outcome of an operation can be passed as a parameter to the
Proxy constructor, when the proxy is created. The operation then simply returns this
stable value directly as the result of the operation, without trapping the handler. Our
previous design made use of this approach [Van Cutsem and Miller 2010].

Third, a stable operation can bypass a proxy and instead be performed on the proxy’s
target. If the operation is stable on regular, non-proxy objects, it will also be stable on
proxies (the proof is analogous to our inductive proof of invariant enforcement). Our
API has several examples of this kind:

— The built-in ECMAScript function Object.getPrototypeOf(obj) returns the proto-
type of the object obj. In standard ECMAScript, since the prototype link of an object
is immutable, this is a stable operation. When obj is a proxy, its target’s prototype
link is returned instead. The proxy handler is not consulted.

— The ECMAScript operators typeof obj and obj instanceof aFunction are classifi-
cation operators that cannot be intercepted by proxies. A proxy is classified the same
way its target would be classified.

— The built-in ECMAScript function Object.isExtensible(obj) returns whether or
not the object obj is extensible. An invariant is that once Object.isExtensible(obj)
returns false, it should forever after return false (i.e. non-extensibility is a stable
state). When obj is a proxy, the extensibility of the proxy’s target is checked in-
stead. Thus, a proxy cannot claim to be non-extensible at one point, and claim to be
extensible at a later point in time.

5.3.2. Interleaved Execution. When designing a Proxy API, one has to take into account
the fact that every intercepted language operation may trigger the execution of arbi-
trary code (in the handler trap). Since a Proxy API enables programmers to intercept
what look like primitive operations, code can now be executed in places unexpected by
the programmer or even the language runtime itself.

For example, in the absence of proxies (and host objects), the expression name in
obj does not trigger any Javascript code. Since in is a primitive operation, the evalu-
ation of this expression occurs entirely within the language runtime, without it ever
having to execute non-native code. Proxies may change these assumptions, requiring
programmers to think carefully about what invariants may be implicitly violated by
proxies.

In the particular case of our Javascript Proxy API, the possibility of new interleaved
code paths was not considered as critical for two reasons. First, browsers already pro-
vide host objects that may execute code in unexpected places. Second, most intercepted
operations could in general already trigger arbitrary code (for instance, a property ac-
cess obj.x could implicitly invoke an accessor property). Proxies do enable new code
paths in the case of the new, in and delete operators and for-in loops.

5.3.3. Summary. It is hard to make general claims about what operations can or can-
not be intercepted by Proxy APIs. It is a design decision that depends on the particulars
of the system at hand. The point that we want to make is that such a tradeoff exists.
This brings us to the following principle:

Selective interception: for each operation applicable to objects, consider carefully
whether a Proxy API should be able to intercept the operation. For stable operations
in particular, consider bypassing the proxy handler to guarantee stability of the result.
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5.4. Transparent Virtualization and Handler Encapsulation
An important design point for a Proxy API is whether or not to introduce an opera-
tion that can test whether an object is a proxy. For instance, should the API provide
a Reflect.isProxy(obj) operation that exposes the true nature of obj? We decided
against introducing such a general test since first, it would directly break transparent
virtualization (i.e. the ability to substitute a concrete API with a virtual one without
affecting clients) and second, the invariant enforcement mechanism makes it unneces-
sary for clients to protect themselves against proxies in general, taking away a major
incentive to be able to discriminate proxies.

While we consider a general isProxy test to be a bad idea, an application-specific
test is often useful. An application may want to test whether an object is a particular
kind of proxy, typically generated by the application itself. An application could im-
plement such a test without support from the Proxy API by, e.g. registering all of its
created proxies in a set, and then testing whether the object is in the set. The main
drawback of this approach is the potential for memory leaks. Luckily, the next edi-
tion of ECMAScript will provide just the right abstraction to mitigate this, called a
WeakMap:
function MyProxyFactory ( ) {

var proxies = new WeakMap ( ) ;
return {

create : function ( target , handler ) {
var proxy = Proxy ( target , handler ) ;
proxies . set ( proxy , true ) ;
return proxy ;

} ,
isProxy : function ( proxy ) {

return proxies . get ( proxy ) | | false ;
}

} ;
}

A WeakMap is like a non-enumerable, object-identity hashtable that weakly references
its keys, with the additional property that it avoids a crucial memory leak when cyclic
references exist from values stored in the table back to the keys. Its implementation is
based on Ephemerons [Hayes 1997]. Essentially, the WeakMap enables one to retain an
identity-based mapping without introducing memory leaks.

The above pattern captures how an application might introduce a custom proxy
factory that supports an application-specific isProxy test. This test reliably identifies
proxies created by the application’s specific factory.

We can pose a similar design question for the encapsulation of proxy handlers: is it
a good idea to provide a generally applicable Reflect.getHandlerOf(proxy) operation
that returns the handler of a proxy? Again, we decided against such an operation since
it directly breaks handler encapsulation. In our API, given a reference to a proxy,
one cannot gain direct access to the proxy’s handler. If a handler can be encapsulated
behind its proxy, one can ensure that its traps are only ever invoked by manipulating
its corresponding proxy, and the trap arguments will always be of a correct type.

Here, again, while a general getHandlerOf operation is potentially harmful, an
application-specific variant is often useful. The general technique to accomplish it is
the same as for the isProxy test shown above: the create method can simply register
a mapping from proxy to handler, rather than to true. A getHandlerOf operation then
simply queries the proxies WeakMap for the handler. To summarize:

A Proxy API can support transparent virtualization if it provides no general
mechanism to detect whether an object is a proxy. It can support handler encap-
sulation if it provides no general mechanism to access the handler of a proxy.
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6. VIRTUAL OBJECTS AND VIRTUAL HANDLERS
The Proxy API discussed thus far assumes that a proxy always usefully wraps a target
object. This need not be the case for all use cases of proxies. A second major use case for
proxies is the implementation of virtual objects, that is, objects that are not necessarily
backed by a non-proxy object in the same address space. A prominent example of such
objects in Javascript are the host objects discussed in Section 3.4. Proxies can be used
to implement virtual host objects in Javascript itself. Other use cases of virtual objects
include proxies for objects persisted in a database and remote object proxies to support
distributed programming.

6.1. Virtual Objects
To create a virtual object using our Proxy API, it suffices to create a proxy with a
dummy (perhaps empty) target object, and to have the handler ignore that target ob-
ject. There are a couple of caveats though:

(1) The invariant enforcement mechanism discussed in Section 5.2 will not allow the
handler to expose non-configurable properties or emulate a non-extensible object,
unless the dummy object stores the exposed non-configurable properties or is itself
non-extensible.

(2) To properly emulate the object and fully ignore the target object, the handler object
must now implement all the traps. Recall that when missing, the default imple-
mentation of a trap is to forward the intercepted operation to the target object. For
virtual objects, this default behavior is undesirable and should be overridden.

6.1.1. VirtualHandler. To mitigate the second issue, our API provides a VirtualHandler
prototype. Virtual object handlers can inherit from this prototype to acquire a full im-
plementation of the handler API. However, since proxies implementing virtual objects
cannot default to forwarding to their target object anymore, the VirtualHandler must
resort to a different default implementation of the handler API.

As shown in Table I, our handler API defines 15 traps in total, each intercepting
a different Javascript operation applied to a proxy. However, some traps intercept an
operation that can be expressed in terms of other operations. We refer to such traps as
derived traps, since their implementation may be derived from other, more fundamen-
tal traps.

The VirtualHandler treats all fundamental traps as abstract methods: their default
implementation simply throws an exception. The intent is for programmers to override
each fundamental trap with a meaningful interpretation for their own virtual object
abstraction. The utility of the VirtualHandler lies in its implementation of all the
derived traps. For each of the 9 derived traps, the VirtualHandler implements these
derived operations as template methods in terms of the fundamental traps. The net
result is that a handler inheriting from a VirtualHandler need only implement the 6
fundamental traps, rather than all 15 traps.

For example, the default implementation of the hasOwn derived trap is as follows,
based on the fact that for a regular object obj, a property name is an own property
of obj if and only if Object.getOwnPropertyDescriptor(obj,name) does not return
undefined:

VirtualHandler . hasOwn = function ( target , name ) {
var desc = this . getOwnPropertyDescriptor ( target , name ) ;
return desc !== undefined ;

}
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This default implementation does not depend on the target object, instead defining
the semantics of hasOwn in terms of a call to the getOwnPropertyDescriptor method,
which may be overridden. The other derived traps are defined in a similar way6.

When dealing with derived traps, one should consider:

Efficiency. The default implementation of derived traps is often less efficient than
a direct implementation. The fundamental traps invoked as part of the imple-
mentation of a derived trap perform object allocations that can often be avoided
with a more direct implementation. For example, the derived hasOwn trap calls
getOwnPropertyDescriptor, which may allocate a property descriptor, only to sub-
sequently compare it against undefined. A virtual object handler is free to override
the default derived traps to provide a more efficient implementation.
Consistency. If a derived trap is overridden, care should be taken that its behavior
matches that of its dependent fundamental traps. For example, if a virtual object
handler overrides both the hasOwn and the getOwnPropertyDescriptor traps, these
traps may return mutually inconsistent results: the hasOwn trap could return true
while getOwnPropertyDescriptor could return undefined. It is up to the implemen-
tor of a virtual object abstraction to define “well-behaved” handlers that uphold the
consistency between fundamental and derived traps.

6.2. Proxies as Handlers
A common pattern in proxy handlers is to perform a check to decide whether or not the
intercepted operation can be forwarded to the target object. Since there are 15 different
operations that proxy handlers can intercept, a straightforward implementation would
have to duplicate the pattern of access checking and forwarding in each trap. It is not
trivial to make abstraction of this pattern, because each operation has to be intercepted
and forwarded differently.

Ideally, if all operations could be uniformly funnelled through a single trap, the han-
dler would only have to perform the access check once, in the single trap. Such funnel-
ing of all operations through a single trap can be achieved by implementing the proxy
handler itself as a proxy. In meta-programming terms, this corresponds to shifting to
the meta-meta-level. The code below demonstrates this:

var mh = {
get : function ( dummyTarget , trapName ) {

/ / code here i s run before every opera t ion i n te r cep ted by p ,
/ / e . g . access c o n t r o l checks . To proceed , r e t u r n a forward ing method
return Reflect [ trapName ] ;

}
} ) ;
var dummy = {} ;
var bh = Proxy ( dummy , mh ) ;
var p = Proxy (t , bh ) ;

Figure 2 depicts how meta-level shifting works. The proxy p is the proxy object with
which other regular application objects directly interact. That proxy’s handler is the
base handler bh. The crucial point is that the base handler bh is itself a proxy. The
handler of bh is a meta handler mh.

Note that all operations performed on p are intercepted by mh’s single get trap. This
pattern works because we carefully designed the API such that proxies exclusively

6While the VirtualHandler can be fully expressed in Javascript itself, we opted to make it part of the
standard, to plan for language growth. If a future edition of the language introduces a new derived operation,
the VirtualHandler can provide a default implementation for it. Proxy code written for a previous edition,
using the built-in VirtualHandler, will then support the new derived operation without modification.
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interact with their associated handler by performing a property access to lookup a
trap, and then invoke it if it exists. Proxies never assign traps, enumerate traps or
query their handler for the presence of a trap. Because of this uniformity, if the base
handler bh is only used in its role as the handler for a proxy p, property access is the
only operation that will be performed on bh, and the meta handler mh only needs to
implement the get trap.

meta-meta-level

meta-level

base-level

p.foo
p.foo = 42
'foo' in p

p

bh

mh

dummy
target

t

bh.get(t,'foo',p)
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Fig. 2. Meta-level shift using a proxy as a handler

Another way to explain why this funneling works is as follows. At the base-level,
programs may perform multiple operations on Javascript objects (e.g. property lookup,
assignment, enumeration, . . . ). At the meta-level (that is: in the Proxy API), all of these
operations are reified uniformly as method invocations on handlers. Therefore, at the
meta-level, the only operation performed on meta-level objects (handlers) is property
access, and meta-meta-level objects (meta handlers) only need to handle this single
operation in their protocol.

If one shifts an extra level upwards to funnel all operations through a single trap of
a meta-level handler, one must also shift an extra level downwards if these operations
must eventually be applied to a base-level object. This can be accomplished by selecting
the appropriate generic forwarding method from the Reflect object. The forwarding
method then translates the intercepted operation back into a base-level operation on
the target object.

Naturally, one can further shift meta-levels at the meta-meta-level. The API allows
an arbitrary number of such meta-level shifts. This brings up the question of infinite
meta-regress. Such an infinite regress is avoided as long as a handler is eventually
implemented as a concrete Javascript object, rather than as yet another proxy.

To summarize, this section reveals two additional design principles of Proxy APIs:
Meta-level shifting: a Proxy API supports meta-level shifting if a proxy handler

can itself be a proxy.
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Meta-level funneling: the interaction between a proxy and its handler determines
the API of the meta-meta-level. If the proxy only uses the handler to lookup traps,
then the meta-meta-level API collapses to a single trap through which all meta-level
operations are funnelled.

In Section 8 we formally show that meta-level funneling correctly forwards each in-
tercepted operation to the target object. A practical application of meta-level funneling
is given in the next Section.

7. ACCESS CONTROL WRAPPERS
Now that our reflection API has been introduced in detail, we can turn to more concrete
applications of the API. In this section, we will focus on implementing generic object
wrappers that implement a form of access control. The following section describes the
implementation of a simple revokable reference wrapper around a single object. Sub-
sequently in Section 7.2 we show how this abstraction can be generalized to support
the transitive wrapping of entire object graphs.

7.1. Revokable Object References
Recall the caretaker pattern described in Section 4. This abstraction enabled Alice to
wrap a precious resource Carol in a revokable reference (a proxy), pass that proxy to
Bob, and hold on to a revoke() function that allowed her to later revoke Bob’s access to
Carol. Below is an implementation of this abstraction using our Proxy API:

function makeCaretaker ( target ) {
var enabled = true ;
return {

ref : Proxy ( target , {
get : function ( . . . args ) {

i f ( ! enabled ) { throw new Error ( ” revoked ” ) ; }
return Reflect . get ( . . . args ) ;

} ,
has : function ( . . . args ) {

i f ( ! enabled ) { throw new Error ( ” revoked ” ) ; }
return Reflect . has ( . . . args ) ;

} ,
/ / . . . and so on f o r a l l o ther t raps

} ) ,
revoke : function ( ) { enabled = false ; }

} ;
}

Note the repetitive pattern in the caretaker proxy’s traps. As discussed in Sec-
tion 6.2, this is a pattern that can itself be abstracted by shifting meta-levels once
more. If the caretaker’s handler is itself a proxy, the meta-level handler can funnel all
meta-level operations through a single get trap:

function makeCaretaker ( target ) {
var enabled = true ;
var baseHandler = Proxy ({} , {

get : function ( dummyTarget , trapName ) {
i f ( ! enabled ) { throw new Error ( ” revoked ” ) ; }
return Reflect [ trapName ] ;

}
} ) ;
return {

ref : Proxy ( target , baseHandler ) ,
revoke : function ( ) { enabled = false ; }

} ;
}
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A limitation of the above caretaker abstraction is that objects exchanged via the
caretaker are themselves not recursively wrapped in a revocable reference. For ex-
ample, if Carol defines a method that returns this, she exposes a direct reference to
herself to Bob, circumventing Alice’s caretaker. This is an instance of the two-body
problem [Eugster 2006], the fact that wrappers may be “leaky” because the wrapping
proxy and the wrapped object are distinct entities. The abstraction discussed in the
following section addresses this issue.

7.2. Membranes
A membrane is an extension of a caretaker that transitively imposes revocability on
all references exchanged via the membrane [Miller 2006]. One use case of membranes
lies in the composition of code from untrusted third parties on a single web page (so-
called “mash-ups”). Assuming the code is written in a safe subset of Javascript, such
as Caja [Miller et al. 2008], loading the untrusted code inside such a membrane can
fully isolate scripts from one another and from their container page. Revoking the
membrane around such a script renders it instantly powerless.

The following example demonstrates the transitive effect of a membrane. The prefix
wet identifies objects initially inside of the membrane, while dry identifies revokable
references outside of the membrane designating wet objects.

var wetA = { x : 1 } ;
var wetB = { a : wetA } ;
var membrane = makeMembrane ( wetB ) ;
var dryB = membrane . ref ; / / a proxy f o r wetB
var dryA = dryB . a ;
dryA . x / / r e tu rns 1 , p r i m i t i v e s are not wrapped
membrane . revoke ( ) ; / / revokes a l l dry re ferences at once
dryB . a / / e r r o r : revoked
dryA . x / / e r r o r : revoked

The interface of a membrane is the same as that of a caretaker. Its implementation
is shown below. A membrane consists of one or more wrappers. Every such wrapper is
created by a call to the wrap function. All wrappers belonging to the same membrane
share a single enabled variable. Assigning the variable to false instantaneously re-
vokes all of the membrane’s wrappers.

The baseHandler handler of each wrapper proxy is itself a proxy that implements
just the get trap (meta-level funneling). This trap returns a function, to be invoked by
the wrapper proxy as a trap. If the membrane is not revoked, this function generically
performs the intercepted operation on the target via the Reflect[trapName] method,
with appropriate wrapping of arguments and return values that cross the membrane.
Arguments cross the membrane in one direction, returned values or thrown exceptions
in the other direction.

The wrapper proxy wraps a dummyTarget rather than the original target. If the tar-
get to be wrapped is a function, the dummyTarget should itself be a function. Otherwise,
as explained in Section 4.2, the apply and construct traps would not be enabled on the
wrapper proxy. If the target to be wrapped is not a function, the dummyTarget inherits
from a wrapped version of the original target’s prototype. Why is this substitution of
the real target for a dummy target needed? As explained in Section 5.3.1, to guarantee
stability, the built-in function Object.getPrototypeOf(p), when applied to a proxy p,
reveals the prototype of p’s target without consulting p’s handler. Had we passed the
original target as the target of the membrane wrapper proxy, Object.getPrototypeOf
would leak the unwrapped prototype. Using the substitution, it reveals dummyTarget’s
prototype, which is a wrapped version of the real target’s prototype.
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function makeMembrane ( initTarget ) {
var enabled = true ;
function wrap ( target ) {

/ / p r i m i t i v e s prov ide only i r r e v o c a b l e knowledge , no need to wrap them
i f ( isPrimitive ( target ) ) { return target ; }
var baseHandler = Proxy ({} , {

get : function ( ignoreTarget , trapName ) {
i f ( ! enabled ) {throw new Error ( ” revoked ” ) ; }
return function ( dummyTarget , . . . args ) {

try {
return wrap ( Reflect [ trapName ] ( target , . . . args . map ( wrap ) ) ) ;

} catch ( e ) { throw wrap ( e ) ; }
}

}
} ) ;

var dummyTarget = ( typeof target === ” function ” ) ?
function ( ) {} :
Object . create ( wrap ( Object . getPrototypeOf ( target ) ) ) ;

return Proxy ( dummyTarget , baseHandler ) ;
}
return {

ref : wrap ( initTarget ) ,
revoke : function ( ) { enabled = false ; }

} ;
}

The above code represents a minimal but working implementation of the membrane
pattern. This minimal implementation has a number of issues that more complete
implementations can and should address:

Invariant-preserving Membranes. Since the target of the wrapper proxies is only
a surrogate, empty dummyTarget, the invariant enforcement mechanism described in
Section 5.2 will prevent the membrane from accurately exposing certain invariants.
For instance, since the empty dummy target does not itself define non-configurable
properties, the membrane proxy cannot expose non-configurable properties of the ac-
tual target. If it does, the invariant enforcement mechanism will throw an exception
instead, since it cannot guarantee, by simple inspection of the empty dummy target,
that the property is indeed non-configurable. This can be amended by having the mem-
brane proxy store non-configurable target properties on the dummy target right before
exposing them. In general, the handler has to keep the dummy object “in sync” with
the real target object.

Identity-preserving Membranes. Regarding object identity, there are two issues with
the above membrane code. First, no distinction is made between the opposite direc-
tions in which an object can cross a membrane. Hence, passing a dry object through
the membrane in the opposite direction does not turn it into the original wet ob-
ject. Second, the wrappers are not cached, so if an object is passed through the same
membrane twice, clients will receive two distinct wrappers dry1 and dry2, such that
dry1 !== dry2, even though both denote the same wet object. These limitations can be
addressed by having the membrane maintain two WeakMaps.

The first WeakMap maps wet objects to dry wrappers and wet wrappers to dry ob-
jects. The second maps dry wrappers to wet objects and dry objects to wet wrappers,
respectively. The mapping from objects to wrappers ensures that only one canonical
wrapper is created per object. The reverse mapping allows wrappers to be unwrapped
when they cross the membrane in the opposite direction. Upon revocation, an identity-
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preserving membrane would drop all references to these WeakMaps, making all of
their content potentially garbage-collectable. This fact, combined with the garbage-
collection properties of WeakMaps, ensures that membranes cannot generate memory
leaks, even if there exist cycles among wet and dry objects.

Implementations of both invariant- and identity-preserving membranes are avail-
able via our es-lab.googlecode.com project.

8. OPERATIONAL SEMANTICS
We now present an extension of the untyped λ-calculus with records, record-
inheritance and proxies, named JS-PROXY. Our calculus is inspired by the λproxy cal-
culus of Austin et al. [Austin et al. 2011], which models proxies representing virtual
values (see Section 10.2).

The JS-PROXY calculus models the essential subset of our Javascript proxies API.
The language modelled by the calculus includes functions, records, inheritance be-
tween records and a typeof operator inspired by Javascript’s typeof operator. Records
can have mutable and immutable properties. An immutable property corresponds to a
non-configurable, non-writable data property in Javascript. The isConst r s operator
can be used to test whether the property s of a record r is immutable.

In the JS-PROXY calculus, proxies can intercept property lookup (get trap), prop-
erty assignment (set trap) and function application (apply trap). The calculus models
the interception of these operations and additionally the interaction between prox-
ies and object-based inheritance (Section 4.3), the invariant enforcement mechanism
(Section 5.2) and selective interception of the typeof and isConst operations (Sec-
tion 5.3). JS-PROXY supports transparent virtualization and handler encapsulation
(Section 5.4). We also revisit the Reflect API (Section 4.4) and meta-level shifting and
funneling (Section 6.2) in the JS-PROXY calculus.

Records are represented as tuples (f, r) where f is a partial function from strings
to property descriptors representing the record’s own properties and r is the object’s
prototype. A property descriptor in JS-PROXY is simply a tuple (v, b) where v denotes
the property value and b is a boolean indicating whether the property is constant (im-
mutable).

The rules [GET], [GETPROTO] and [GETMISSING] together implement record lookup.
Record lookup proceeds up the prototype hierarchy until a null prototype is encoun-
tered. If the property is not found, null is returned. Record update does not proceed
up the prototype hierarchy7. Note that the [SET] rule only allows updates to mutable
properties. It is an error to update an immutable property. If a record is updated with
a non-existent property, the property is added to the record.

The isConst operator returns the mutability flag for own properties. Non-existent
properties are always reported as mutable8. The typeof operator returns a string that
classifies a value as either a function, a record or a constant.

The rules [FWDAPPLYPROXY], [FWDGETPROXY] and [FWDSETPROXY] implement
the default forwarding behavior of proxies: if a trap for the intercepted operation does
not exist on the handler object h, the intercepted operation is performed unmodified
on the target object t.

The next four rules describe the intercepting behavior of proxies when a proper trap
w is defined on the handler. According to rule [APPLYPROXY], when a proxy is applied,

7In actual Javascript, property update does climb the prototype chain, to trigger potentially inherited acces-
sor properties.
8Note that record update can be used to override an immutable inherited property with a new mutable
own property. This is not the case in ECMAScript 5, but remains a topic of ongoing discussion within the
committee.
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The JS-PROXY calculus

Syntax

e ::= Expressions
x variable
c constants
λx.e abstraction
e e application
{e : e, e = e}� e record creation
e[e] record lookup
e[e] := e record update
proxy e e proxy creation
typeof e type test
isConst e e mutability test

c ::= s | null | true | false Constants

Syntactic Sugar

e.x
def= e["x"]

e.x := e′
def= e["x"] := e′

x : e def= "x" : e
x = e

def= "x" = e

{e : e, e = e} def= {e : e, e = e}� null
e ; e′ def= (λx.e′) e x /∈ FV (e′)
e e′ e′′

def= (e e′) e′′

its handler’s apply trap w is applied to the target and the original argument. This rule
is only allowed if the proxy wraps a function (either directly or indirectly).

The [GETPROXY] rule is only applicable when intercepting non-constant properties.
The rule [CONSTGETPROXY] enforces the invariant that the value of an immutable
property cannot change. The value v returned by applying the get trap w must be the
same as the value v returned by t[s]. The rule [SETPROXY] only enables record update
for non-constant properties. It also only allows execution to proceed if applying the set
trap w returns true. If the set trap returns false or another value, evaluation is stuck
(in the actual Javascript API, an exception would be thrown instead).

The [ISCONSTPROXY] and [TYPEOFPROXY] rules, finally, show that the proxy han-
dler is unable to intercept these operations. This property enables us to safely depend
on the outcome of these operators to enforce the invariants in the conditions of the
other rules.

The Reflect API introduced in Section 4.4 can be expressed in the JS-PROXY calculus
as follows:
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JS-PROXY SEMANTICS

Runtime Syntax

h ::= a | proxy t h Records
t ::= h | λx.e Proxy targets
r ::= null | h References
v, w ::= c | t Values
e ::= . . . | a Expressions with addresses
D ::= Value × Boolean Descriptors
H ::= Address →p (String →p Descriptor)× Reference Heaps
E ::= • e | v • | {s : v, s : •, s : e, s = e}� e Evaluation context frames

| {s : v, s = v, s = •, s = e}� e | {s : v, s = v}� •
| proxy • e | proxy v • | • [e] | v[•] | • [e] := e
| v[•] := e | v[w] := • | typeof •
| isConst • e | isConst v •

Evaluation Rules

H, {s : v, s = v}� r → H[a := (f, r)], a f(s) =


(v, false) if s : v ∈ s : v
(v, true) if s = v ∈ s = v

[ALLOC]

a /∈ dom(H)
H, (λx.e) v → H, e[x := v] [APPLY]

H, a[s] → H, v H(a) = (f, r), f(s) = (v, b) [GET]
H, a[s] → H, r[s] H(a) = (f, r), s /∈ dom(f), r 6= null [GETPROTO]
H, a[s] → H, null H(a) = (f, null), s /∈ dom(f) [GETMISSING]

H, a[s] := v → H[a := (f ′, r)], v H(a) = (f, r), f ′ = f [s := (v, true)] [SET]
f(s) 6= (w, false)

H, isConst a s → H, b H(a) = (f, r), f(s) = (v, b) [ISCONST]
H, isConst a s → H, false H(a) = (f, r), s /∈ dom(f) [ISCONSTFALSE]

H, typeof (λx.e) → H, "function" [TYPEOFFUN]
H, typeof a → H, "record" [TYPEOFREC]
H, typeof c → H, "constant" [TYPEOFCST]

H, (proxy t h) v → H′, t v if H,h.apply→∗ H′, null [FWDAPPLYPROXY]
H, (proxy t h)[s] → H′, t[s] if H,h.get→∗ H′,null [FWDGETPROXY]

H, (proxy t h)[s] := v → H′, t[s] := v if H,h.set→∗ H′, null [FWDSETPROXY]

H, (proxy t h) v → H′, w t v if H,h.apply→∗ H′, w and w 6= null [APPLYPROXY]
andH′, typeof t→∗ H′, "function"

H, (proxy t h)[s] → H′, w t s if H,h.get→∗ H′, w and w 6= null [GETPROXY]
andH′, isConst t s→∗ H′, false

H, (proxy t h)[s] → H′′′, v if H,h.get→∗ H′, w and w 6= null [CONSTGETPROXY]
andH′, isConst t s→∗ H′, true
andH′, w t s→∗ H′′, v
andH′′, t[s]→∗ H′′′, v

H, (proxy t h)[s] := v → H′′, v if H,h.set→∗ H′, w and w 6= null [SETPROXY]
andH′, isConst t s→∗ H′, false
andH′, w t s v →∗ H′′, true

H, isConst (proxy t h) s → H, isConst t s [ISCONSTPROXY]
H, typeof (proxy t h) → H, typeof t [TYPEOFPROXY]

H,E[e] → H′, E[e′] if H, e→ H′, e′ [CONTEXT]
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Reflect def=
{apply = λxt.λxv.(xt xv),

get = λxt.λxs.(xt[xs]),
set = λxt.λxs.λxv.(xt[xs] := xv; true)}

The Reflect record has a function-valued property for each of the three proxy traps,
and performs the intercepted operation on the target object. We now use this definition
of Reflect to demonstrate the meta-level shifting and funneling technique introduced
in Section 6.2. We do so by showing that all three interceptable operations (function
application, record lookup and update), when applied to an identity proxy implemented
using meta-level shifting, are equivalent to applying the intercepted operation to the
proxy’s underlying target. The identity proxy IdProxy is defined as follows:

IdProxy def= λxt.(proxy xt (proxy {} {get = λxt.λxs.(Reflect[xs]) }))
(IdProxy t) is an identity proxy for t. We now show that function application of an

identity proxy is equivalent to function application of the underlying target value, i.e.
that H, (IdProxy t)v →∗ t v, assuming function application of t is valid. Thus, assuming
H, typeof t→ H, "function", then:

H, (IdProxy t) v
→ H, (proxy t (proxy {} {get = λxt.λxs.(Reflect[xs]) })) v IdProxy, [APPLY]
→ H, (proxy {} {get = λxt.λxs.(Reflect[xs]) }).apply t v [APPLYPROXY]
→ H, ({get = λxt.λxs.(Reflect[xs]) }.get {} "apply") t v [GETPROXY]
→ H, ((λxt.λxs.(Reflect[xs])) {} "apply") t v [GET]
→ H, (Reflect["apply"]) t v [APPLY], [APPLY]
→ H, (λxt.λxv.(xt xv)) t v Reflect, [GET]
→ H, t v [APPLY], [APPLY]

Similarly, it can be shown that H, (IdProxy t)[s] →∗ H, t[s] and H, (IdProxy t)[s] :=
v →∗ H, t[s] := v (only if t[s] := v is well-defined, i.e. if H, isConst t s → H, false). Thus,
all operations interceptable by proxies, when applied to (IdProxy t), are equivalent to
applying the operation directly to t. This shows that meta-level shifting and funneling
behave as expected.

9. PROTOTYPE IMPLEMENTATION
At the time of this writing, our earlier Proxy API for Javascript [Van Cutsem and
Miller 2010] is available in Mozilla Firefox 8. It is also available on Google’s v8
Javascript engine. The API as discussed here is not yet available. However, we have
implemented a Javascript wrapper library that implements the Proxy API as discussed
in this paper on top of the older API. Using this library, all of the examples from this
paper can be readily executed in Firefox 8. The wrapper library can be downloaded
from es-lab.googlecode.com.

In previous work we have reported on micro-benchmarks of the existing prototype
implementations [Van Cutsem and Miller 2010]. The most important conclusion to be
drawn from these micro-benchmarks is that proxies introduce no measurable over-
head for regular non-proxy objects. In other words, the additional code required for
proxies to intercept does not interfere with the fast path of modern VMs. Naturally, a
language operation intercepted by a proxy does introduce overhead. The existing proto-
type implementations do not yet support built-in invariant enforcement (Section 5.2).
We therefore refrain from posting premature micro-benchmark results that could be
misleading.
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In the particular case of access control wrappers such as caretakers and membranes,
proxies are expected to be only introduced between the boundaries of larger subsys-
tems. As long as proxies are not used at a very fine-grained level, the overhead of
these abstractions should not be problematic.

10. RELATED WORK
10.1. OO Intercession APIs
In this section we describe a variety of message-based, object-oriented intercession
APIs, and briefly compare and contrast them with our Javascript Proxy API. We do
not claim that our survey is exhaustive, but we believe the most representative inter-
cession APIs are covered.

Java The Java 1.3 java.lang.reflect.Proxy API is a major precedent to our
Javascript proxy API. Java’s dynamic proxies can be used to intercept invocations on
instances of interface types:

InvocationHandler h = new InvocationHandler ( ) {
Object invoke ( Object pxy , Method m , Object [ ] args ) { . . . }

} ;
Foo proxy = ( Foo ) Proxy . newProxyInstance ( classldr , new Class [ ] { Foo . class } , h ) ;
proxy . bar (a , b ) ; / / t r i g g e r s h . invoke ( proxy , barMethod , new Object [ ] { a , b} )

Here, proxy implements the Foo interface. h is an object that implements a single
invoke method. Method invocations on proxy trigger the h.invoke method.

The major points of difference between Java proxies and Javascript proxies are first
that Java proxies can only intercept a single operation – method invocation. There are
no other meta-level operations to trap. For instance, since interfaces cannot declare
fields, proxies do not need to intercept field access. Second, Java proxies do not neces-
sarily wrap a target object. Third, Java proxies have no need for the elaborate invari-
ant enforcement mechanism required in Javascript proxies. The only invariant to be
maintained by Java proxies is that the runtime type of the return value of the invoke
method must be compatible with the static return type of the intercepted method.

The Java Proxy API can only construct proxies for interface types, not class types. As
a result, proxies cannot be used in any situation where code is typed using class types
rather than interface types, limiting their general applicability. Eugster [Eugster 2006]
describes how to extend the Java Proxy API to work uniformly with instances of non-
interface classes. Next to the usual InvocationHandler, proxies for class types have an
additional AccessHandler to trap field access.

AmbientTalk The design of Javascript proxies was influenced by AmbientTalk mi-
rages [Mostinckx et al. 2007]. AmbientTalk is a distributed dynamic language, with a
mirror-based reflection API. AmbientTalk enables intercession through mirages, which
are proxy-like objects controlled explicitly by a separate mirror object:

def mirage := object : { . . . } mirroredBy : ( mirror : {
def invoke ( receiver , message ) { . . . } ;
def addSlot ( slot ) { . . . } ;
def removeSlot ( slot ) { . . . } ;
. . .

} ) ;

The mirror is to the mirage what the proxy handler is to a Javascript proxy. Like
Javascript proxy handlers, mirrors define an extensive set of traps, enabling near-
complete control over the mirage. Unlike our Proxy API, a mirage need not wrap an
existing target object.

E is a secure, distributed dynamic language [Miller et al. 2005]. In E, every value
is an object, but there are two kinds of object references: near and eventual refer-
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ences. Similarly, there are two message passing operators: immediate call (o.m(), a
synchronous method invocation) and eventual send (o<-m(), an asynchronous mes-
sage send). Both operations are allowed on near references, but eventual references
carry only asynchronous messages. Because of this distinction, E has two separate
intercession APIs: one for objects and one for references.

E has a proxy-based API to represent user-defined eventual references [Miller and
Reid 2009]:
def handler {

to handleSend ( verb : String , args : List ) { . . . }
to handleSendOnly ( verb : String , args : List ) { . . . }
to handleOptSealedDispatch ( brand ) { . . . }

}
def proxy := makeProxy ( handler , slot , state ) ;

This API is very similar to the one for Javascript proxies. The proxy represents an
eventual reference, and any asynchronous send proxy<-m() either triggers the han-
dler’s handleSend or handleSendOnly trap, depending on whether the sender expects a
return value.

The handleOptSealedDispatch trap is part of E’s trademarking system and is beyond
the scope of this paper. The slot argument to makeProxy can be used to turn the proxy
reference into a resolved reference. Once a reference is resolved, the proxy is bypassed
and the handler no longer consulted. The state argument to makeProxy determines the
state of the reference. The details are outside the scope of this paper, but by passing
this parameter to the makeProxy function at construction time, the eventual reference
proxy can determine its state without having to consult the handler, thus guaranteeing
that the state of a reference remains stable.

E has a distinct intercession API for objects. A non-methodical object is an empty
object with no methods. Instead, its implementation consists of a single match clause
that encodes an explicit message dispatch:
def obj match [ verb , args ] {

# handle the message generically
}

The variable obj is bound to a new object whose dispatch logic, if any, is explicitly en-
coded in the match clause. An immediate call obj.m(x) will trigger this clause, binding
verb to "m" and args to a list [x].

Finally, it is worth noting that AmbientTalk inherits from E the distinction between
near and eventual references and the distinction between immediate call and eventual
send. Unlike E, AmbientTalk has only one intercession API (mirages), but a mirage can
represent both objects and eventual references, depending on how the handler imple-
ments its traps (immediate calls and eventual sends each trigger a separate trap).

Smalltalk Smalltalk-80 popularized generic message dispatch via its
doesNotUnderstand: mechanism. Briefly, if standard method lookup does not
find a method corresponding to a message, the Smalltalk VM instead sends the
message doesNotUnderstand: msg to the original receiver object. Here, msg is an object
containing the message’s selector and arguments. The default behavior of this method,
inherited from Object is to throw an exception.

The doesNotUnderstand: trap is not stratified. It occupies the same namespace
as application-level methods. This lack of stratification did lead Smalltalk program-
mers to look for alternative interception mechanisms. Foote and Johnson describe
a particular extension to ParcPlace Smalltalk called a dispatching class: “Whenever
an object belonging to a class designated as a dispatching class (using a bit in the
class object’s header) is sent a message, that object is instead sent dispatchMessage:
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aMessage.” [Foote and Johnson 1989]. Instances of dispatching classes are effectively
proxies, the dispatchMessage: method acting as the sole trap of an implicit handler.

Ducasse [Ducasse 1999] gives an overview of the various message passing control
techniques in Smalltalk. He concludes that doesNotUnderstand: is not always the most
appropriate mechanism. Rather, he stresses the usefulness of method wrappers. This
approach was elaborated by Brant et. al [Brant et al. 1998]. In this approach, rather
than changing the method lookup, the method objects returned by the lookup algorithm
are modified. This is possible because Smalltalk methods and method dictionaries are
accessible from within the language. The method wrapper approach is in many ways
similar to CLOS method combinations, enabling before/after/around augmentation of
existing methods. As their name suggests, they are great for wrapping existing meth-
ods, but they seem less suitable to implement virtual objects and thus only support
part of the use cases covered by doesNotUnderstand:.

Summary We refer to prior work [Van Cutsem and Miller 2010] for a survey on how
the OO intercession APIs discussed in this section relate to the design principles put
forward in Section 5.

10.2. Virtual Values
Eugster [Eugster 2006] introduced the term uniform proxies to denote an object model
in which objects of all types can be proxified. Our Proxy API does not in itself support
uniform proxies, since one can only proxify objects (including functions and arrays),
while Javascript additionally has primitive values (numbers, strings, . . . ).

Starting from our initial Proxy API [Van Cutsem and Miller 2010], Austin et al.
have recently introduced a complementary Proxy API for virtualizing primitive val-
ues [Austin et al. 2011]. They focus on creating proxies for objects normally thought
of as primitive values, such as numbers and strings. They highlight various use cases,
such as new numeric types, delayed evaluation, taint tracking, contracts, revokable
membranes and units of measure.

Like our proxies, virtual values are proxies with a separate handler. The handler for
a virtual value provides a different set of traps. A virtual value can intercept unary and
binary operators applied to it, being used as a condition in an if-test, record access and
update, and being used as a record index. An important difference between our API
and the virtual values API is that the latter does provide a general isProxy primitive,
deliberately breaking transparent virtualization. The reason is to enable programs to
be able to defend themselves against malicious virtual values, such as mutable strings
in a language that otherwise only has immutable strings. Virtual values have no in-
variant enforcement mechanism.

10.3. Chaperones and Impersonators
Chaperones and impersonators are a recent addition to Racket [Strickland et al. 2012].
Chaperones and impersonators are both kinds of proxies. The important difference is
that chaperones can only further constrain the behavior of the object that it wraps.
When a chaperone intercepts an operation, it must either raise an exception, return
the same result that the wrapped target object would return, or return a chaperone
of the target object’s result. Impersonators, on the other hand, are free to change the
value returned from intercepted operations.

In Racket, impersonators can only wrap mutable data types, while chaperones can
wrap both mutable and immutable data types. Chaperones and impersonators form
the run-time support for Racket’s contract system on higher-order, stateful values.

There is an interesting correspondence between chaperones and impersonators and
our Proxy API. The kind of checks that a chaperone must perform are similar to the
invariant enforcement mechanism outlined in Section 5.2. Because of this invariant
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enforcement mechanism, a Javascript proxy that wraps a frozen object (that is, a non-
extensible object with only non-configurable properties) is constrained like a chaper-
one9. Conversely, as long as the wrapped object is fully mutable (i.e. extensible without
any non-configurable properties), our Javascript proxies are like impersonators and
may modify the result of operations.

10.4. Mirrors
This work is related to Bracha and Ungar’s work on mirrors, which revolves around
similar design principles for meta-level architectures [Bracha and Ungar 2004]. The
principles of stratification and handler encapsulation as stated in this paper are re-
lated to the corresponding principles for mirror-based architectures, but with a focus
on how they apply to intercession rather than to introspection.

Mirror-based architectures strive to decouple base-level from meta-level code. Tra-
ditional reflection APIs usually define access to the reflective interface of an object as
part of that object’s own interface. A prominent example is the getClass() method
defined on java.lang.Object. The result is a tight coupling between the base-level ob-
ject and its meta-level representation (in the case of Java the resulting Class object).
Just like mirrors form a stratified introspection API as compared to Java’s unstrati-
fied getClass() method, proxies as discussed here form a stratified intercession API
as compared to Javascript’s unstratified noSuchMethod trap.

Most mirror-based architectures support introspection and self-modification, but
they have limited support for intercession. To the best of our knowledge, AmbientTalk’s
meta-level architecture based on mirages (Section 10.1) was the first to reconcile mir-
rors with support for intercession.

10.5. Partial Behavioral Reflection
Partial Behavioral Reflection (PBH) [Tanter et al. 2003] is a framework that describes
the spatiotemporal extent of reification. Reflex is an intercession API for Java, based
on bytecode rewriting, that supports PBH. Reflex enables the definition of meta-objects
for Java objects. A single meta-object can control multiple base-level objects. The spa-
tial scope of meta-objects is delimited using three concepts: entity selection enables
a meta-object to specify what objects it will control (e.g. all instances of a class, or
only a particular instance of a class). Operation selection determines what particular
operations of the affected objects are reified (e.g. only field access). Intra-operation se-
lection enables reification to occur only if the operation satisfies further conditions (e.g.
only reify calls to the foo method). Finally, temporal selection controls the time during
which a meta-object is active.

Reflex differs from our Proxy API in that it enables the creation of meta-objects that
can act upon objects not explicitly declared as proxies. Nevertheless, some aspects
of our proxy API can be understood in terms of PBH. Proxies induce a static form
of entity selection: operations on proxy objects are reified, operations on non-proxy
objects are not. Proxies may support temporal selection. For example, our earlier Proxy
API included a mechanism by which proxies could be switched off, such that they no
longer reified operations [Van Cutsem and Miller 2010]. Finally, proxies enable a static
form of operation selection: some operations on proxies (e.g. typeof) are never reified,
whereas others such as property access are always reified.

One could characterize Reflex as a meta-intercession API: using Reflex, one can de-
fine many different specific intercession APIs, each with its own settings for entity,
operation and temporal selection.

9It is actually more constrained, since a chaperone is allowed to return a chaperone for the original value,
while our Javascript proxies are not allowed to return a proxy for the value of a non-configurable property.
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10.6. CLOS
The Common Lisp Object System (CLOS) has an extensive MOP [Kiczales et al. 1991].
Because CLOS is function-oriented as opposed to a message-oriented, it is difficult to
transpose the design principles described in this paper to CLOS. In CLOS, computation
proceeds mainly through generic function invocation, as opposed to sending messages
to objects. The dispatch mechanism of generic functions can be modified via the MOP.
However, if one simply wants to wrap existing methods, CLOS offers a method com-
bination protocol that can be used to insert behavior before, after or around existing
methods without modifying the protocol.

11. CONCLUSION
We have reported on the design of the new reflection API of the upcoming ECMAScript
standard. Its most prominent feature is the ability to create proxies that are able to
intercept a variety of base-level language operations. Proxies are a fundamental new
building block that enable a variety of use cases, from generic wrapper abstractions
such as membranes and higher-order contracts on mutable objects, to virtual object
abstractions and the virtualization of entire Javascript host environment APIs. Com-
pared to existing solutions, the Proxy API is properly stratified, with a clean separation
between base-level proxy objects and meta-level handler objects.

In developing this Proxy API, great care has been taken to uphold the non-
configurability and non-extensibility invariants of ECMAScript 5. Via a mechanism
we call invariant enforcement, proxies are allowed to intercept invariant-sensitive op-
erations, but without being able to subvert the invariants. This ensures that proxies
cannot become an instrument of attackers to confuse code relying on such invariants.

While our design here focussed mostly on the particulars of ECMAScript, we did call
out a number of design principles that are applicable to proxy-based intercession APIs
in general. In summary, these are:

Stratification. Traps are defined on a handler object separate from the proxy.
Invariant enforcement. Invariant-sensitive operations can be safely intercepted by
proxies if the invariants can be enforced through run-time checks.
Selective interception. To uphold the properties of some operations, they are better
not trapped by proxies altogether.
Transparent virtualization. By default, proxies can’t be distinguished from regular
objects.
Handler encapsulation. By default, a proxy encapsulates its handler.
Meta-level shifting. A proxy handler can itself be a proxy.
Meta-level funneling. Proxies interact with their handlers via a restricted set of
operations (ideally just one).

Our hope is that the identification of these principles may help steer the design of
similar reflection APIs for other languages.
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