
An Operational Semantics of

Event Loop Concurrency in AmbientTalk

Tom Van Cutsem∗ Christophe Scholliers† Dries Harnie
Wolfgang De Meuter

Software Languages Lab - Vrije Universiteit Brussel
Technical Report VUB-SOFT-TR-12-04

Abstract

We present an operational semantics of a key subset of the AmbientTalk program-
ming language, AT-Lite. The subset focuses on its support for asynchronous, event-
driven programming. AmbientTalk is a concurrent and distributed language that im-
plements the so-called communicating event loops model.

1 Introduction

AmbientTalk is an actor-based programming language, designed specifically for a new class
of computer networks, so-called mobile ad hoc networks [9]. These are networks populated
by mostly mobile devices that communicate peer-to-peer using wireless communication
technology, such as WiFi or Bluetooth. Thanks to the emergence of smartphone plat-
forms such as iOS and Android, such networks have become omnipresent, and in this light
AmbientTalk can best be summarized as a scripting language for mobile peer-to-peer apps.

In the next section, we give a brief overview of AmbientTalk, paying special atten-
tion to its concurrent and distributed programming model, which is founded on actors.
Subsequently, we present an operational semantics for a key subset of AmbientTalk.

Availability An open-source interpreter for AmbientTalk is available at http://ambienttalk.
googlecode.com. The interpreter is written in Java and runs on any Java 1.4-compliant
or later JVM. A version for Android-powered phones is available. An executable ver-
sion of the operational semantics described in this paper in PLT Redex is available from
http://soft.vub.ac.be/~cfscholl/AT-Redex-Model.zip.
∗Tom Van Cutsem is a Postdoctoral Fellow of the Research Foundation, Flanders (FWO).
†Christophe Scholliers is funded by a doctoral scholarship of the Institute for the Promotion through

Science and Technology in Flanders (IWT-Vlaanderen).

1

2 Communicating Event Loops

In AmbientTalk, concurrency is spawned by actors: one AmbientTalk virtual machine
may host multiple actors which execute concurrently. AmbientTalk’s concurrency model is
based on the communicating event loops model of the E programming language [6], which
is itself an adaptation of the well-known actor model [1]. The E language combines actors
and objects into a unified concurrency model. Unlike previous actor languages such as
Act1 [5], ABCL [10] and Actalk [2], actors are not represented simply as “active objects”,
but rather as vats or containers, encapsulating a set of regular objects.

Thus, actors are not represented as active objects, but rather as a collection of plain
objects that share a single event loop. That event loop has a single message queue, con-
taining messages addressed to its objects. The event loop perpetually takes a message
from the message queue and invokes the corresponding method of the object denoted as
the receiver of the message. This method is then run to completion. Processing a single
asynchronous message to completion in this way is called a turn. Turns are the basic unit
of “event interleaving” in AmbientTalk: incoming messages are processed fully before any
other message gets to affect the actor’s heap. In event-loop frameworks, this is sometimes
called run-to-completion semantics, since every event is fully processed before processing
the next.

In summary, messages are processed serially and to completion to avoid low-level race
conditions on the mutable state of the contained objects. In AmbientTalk, each object is
said to be owned by exactly one actor. Only an object’s owning actor may directly execute
one of its methods. Objects owned by the same actor may communicate using standard,
sequential message passing or using asynchronous message passing. AmbientTalk borrows
from the E language the syntactic distinction between sequential message sends (expressed
as o.m()) and asynchronous message sends (expressed as o<-m()). It is possible for objects
owned by one actor to refer directly to individual objects owned by another actor. Such
references that span different actors are named far references (the terminology stems from
E [6]) and only allow asynchronous access to the referenced object. Any messages sent via
a far reference to an object are enqueued in the message queue of the owner of the object
and processed by the owner itself.

Figure 1 illustrates AmbientTalk actors as communicating event loops. The dotted lines
represent the event loop processes of the actors which perpetually take messages from their
message queue and synchronously execute the corresponding methods on the actor’s owned
objects. An event loop process never “escapes” its actor boundary. When communication
with an object in another actor is required, a message is sent asynchronously via a far
reference to the object. For example, when A sends a message to B, the message is enqueued
in the message queue of B’s actor which eventually processes it.

Asynchronous messages can be sent between objects owned by the same actor (via a
local reference) or by different actors (via a far reference). AmbientTalk features special

2

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Figure 1: AmbientTalk actors as event loops

objects called isolates that are passed by copy when parameter-passed between actors.
AmbientTalk’s concurrency model avoids low-level data races and deadlocks by design.

It avoids low-level races because actors can only directly operate on their own objects. It
avoids deadlocks because there is no blocking operation: both message sending and message
reception are fully asynchronous. Unlike Erlang, AmbientTalk and E do not allow an actor
to block and wait for messages to arrive in the middle of a turn.

2.1 Example: a Simple Echo Service

Listing 1 describes the code for a simple echo service, showcasing some of AmbientTalk’s
language features. The echo service object simply accepts any incoming string and returns
it immediately to the sender.

Listing 1: Definition of a Simple Echo Service
// the singleton echo service object
def service := object: {

def echo(str) {
system.println(”Received: ”+str);
str // return value is the same string
}
}

// define the type of the service (on the server)
deftype EchoService;

// advertise the service in the network
def pub := export: service as: EchoService;

The code in listing 1 defines a singleton echo service object service, and subsequently
advertises this service in the local ad hoc network. Service discovery operates by means
of a simple publish/subscribe mechanism. Once an object is exported, the AmbientTalk
VM takes care of broadcasting an advertisement to nearby listening VMs. Actors running
on other AmbientTalk VMs can get notified of these advertisements via a subscription
mechanism. On the client-side, a typical interaction with such an echo service is shown in
listing 2.

3

Listing 2: A Simple Client Interaction
// define the type of the service (on the client)
deftype EchoService;

// discover the service
when: EchoService discovered: { |echoService|

system.println(”Discovered an echo service”);

// send an asynchronous message to the service
def replyFuture := echoService<−echo(”test message”)@TwoWay;
// the following call does not block the actor:
when: replyFuture becomes: { |reply|

// react to the incoming reply
system.println(”Reply: ” + reply);
}
}

The client actor interacts with the echo service in a fully asynchronous and event-driven
way: it first registers a callback to be triggered when an echo service was discovered by the
underlying AmbientTalk VM. When this event occurs, the client sends an asynchronous
echo message, and awaits the reply.

The @TwoWay annotation signifies that the echo message should immediately return a
future for the return value of the method. Futures are placeholders for asynchronously
computed values. In AmbientTalk, as in E, an actor cannot suspend on a future until
it is resolved. Instead, one can await the resolution of a future in a non-blocking way by
posting a callback using the construct when: future becomes: callback. The callback
is scheduled for execution in the actor, when the future is resolved. The single argument
to the callback, reply in the above example, is then bound to the value with which the
future is resolved. This design ensures that the actor remains responsive to other incoming
messages while awaiting the value of a future.

3 Operational Semantics

Our exposition of the semantics of a subset of AmbientTalk, named AT-Lite, is based
primarily on that of the Cobox model [8]. Coboxes feature a similar runtime model, but
differ on important points such as the ability to execute multiple coroutines inside a single
actor, and the ability to block (suspend) on a future. Our notion of futures as presented
here is different from the notion of futures as presented in the Cobox model.

Our operational semantics models objects, isolates (pass-by-copy objects), actors as
event loops, non-blocking futures, asynchronous message sending and the semantics of inter-
actor parameter-passing. In Section 3.3 we extend AT-Lite with the necessary primitives
for service discovery, enabling objects in different actors to discover one another as shown
in the previous example.

4

3.1 Syntax

K ∈ Configuration ::= A Configurations
a ∈ A ⊆ Actor ::= A〈ιa, O,Q, e〉 Actors

Object ::= O〈ιo, t, F,M〉 Objects
Future ::= F〈ιf , Q, v〉 Futures

Resolver ::= R〈ιr, ιf 〉 Resolvers
m ∈ Message ::= M〈v,m, v〉 Messages
Q ∈ Queue ::= m Queues

M ⊆ Method ::= m(x){e} Methods
F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ε Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References
t ∈ Tag ::= o | i Object tags

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιo ∈ ObjectId, ιa ∈ ActorId
ιf ∈ FutureId ⊂ ObjectId
ιr ∈ ResolverId ⊂ ObjectId

Figure 2: Semantic entities of AT-Lite.

Figure 3.1 lists the different semantic entities of AT-Lite. Caligraphic letters like F
andM are used as “constructors” to distinguish the different semantic entities syntactically.
Actors, futures, resolvers and objects each have a distinct address or identity, denoted ιa,
ιf , ιr and ιo respectively.

Configurations are sets of concurrently executing actors. Each actor is an event loop
consisting of an identity ιa, a heap O denoting the set of objects, futures and resolvers
owned by the actor, a queue Q containing a sequence of messages to process in the future,
and the expression e that the actor is currently executing.

Objects consist of an identity ιo, a tag t and a set of fields F and methods M . The
tag t is used to distinguish objects from so-called isolate objects, with t = o denoting
an object and t = I denoting an isolate. Isolates differ from regular objects in that they
are parameter-passed by-copy rather than by-reference in inter-actor message sends, but
otherwise behave the same.

AT-Lite supports futures, which are first-class objects that are placeholders for a
value that is asynchronously awaited. Futures consist of an identity ιf , a queue of pending
messages Q and a resolved value v. A future is initially unresolved, in which case its resolved
value v is set to a unique empty value ε. While the future is unresolved, any messages sent

5

to the future are queued up in Q. When the future becomes resolved, all messages in Q
are forwarded to the resolved value v and the queue is emptied.

A resolver object denotes the right to assign a value to its unique paired future. Re-
solvers consist of an identity ιr and the identity of their paired future ιf . The resolver is
the only means through which a future can be resolved with a value. Our notion of future-
resolver pairs descends directly from E’s promise-resolver pairs [6], which are themselves
inspired by logic variables in concurrent constraint programming [7].

Messages are triplets consisting of a receiver value v, a method name m and a se-
quence of argument values v. They denote asynchronous messages that are enqueued in
the message queue of actors or futures.

All object references consist of a global component ιa that identifies the actor owning
the referenced value, and a local component ιo, ιf or ιr. The local component indicates
that the reference refers to either an object, a resolver or a future. We define FutureId
and ResolverId to be a subset of ObjectId such that a reference to a future or a resolver
is also a valid object reference. As such, ιa.ιo can refer to either an object, a resolver or a
future, but ιa.ιf can refer only to a future.

Syntax AT-Lite features both object-oriented and functional elements. The functional
elements descend directly from the λ-calculus. Anonymous functions are denoted by λx.e.
Variable lookup in AT-Lite is lexically scoped. Local variables can be introduced via
let x = e in e.

AT-Lite is also an imperative classless object-oriented language. It features object
and isolate literal expressions to define fresh, anonymous objects. Objects consist of a
set of fields and methods. Fields may be accessed and updated. Methods can be invoked
either synchronously via e.m(e) or asynchronously via e← m(e).

In the context of a method, the pseudovariable this refers to the enclosing object or
literal. this cannot be used as a parameter name in methods or redefined using let.

New actors can be spawned using the actor literal expression. This creates a new
object with the given fields and methods in a fresh actor that executes in parallel. Actor
and isolate literals may not refer to lexically enclosing variables, apart from the this-
pseudovariable. That is, they must have FV (e) ⊆ {this} for all field initialiser and method
body expressions e. Isolates and actors are literally “isolated” from their surrounding
lexical scope, making them self-contained.

New futures can be created explicitly using the expression let xf , xr = future in e. This
binds a fresh future to the variable xf and a fresh, paired resolver object to xr. A resolver
object denotes the right to assign a value to its paired future. The expression resolve xr e
resolves the future xf via its paired resolver xr with the value of e. The value of a future xf
can be awaited using the expression when(xf → x){e}. When the future becomes resolved
with a value v, the expression e is evaluated with x bound to v.

AT-Lite supports two forms of asynchronous message passing. Expressions of the form
e ← m(e) denote one-way asynchronous message sends that do not return a useful value.

6

If a return value is expected, the expression e ←f m(e) denotes a two-way asynchronous
message send that immediately returns a future for the result of invoking the method m.

Syntactic Sugar Functions are defined as objects with a single method called apply.
The substitution [xthis/this]e is necessary to ensure that within function bodies nested
inside object methods, the this-pseudovariable remains bound to the original enclosing
object, and not to the object representing the function. Function application e(e) is desug-
ared into invoking an object’s apply method.

A two-way message send e ←f m(e) is syntactic sugar for a simple one-way message
send that carries a fresh resolver object xr, added as a hidden last argument. The message
m is marked mf such that the recipient actor can decode the argument list, knowing it will
have to pass the result of the method invocation to xr. The two-way message send itself
evaluates to the future xf corresponding to the passed resolver xr.

The expression when(e → x){e′} is used to await the value of a future. It is syntactic
sugar for registering a “listener” function with the future. The expression as a whole
returns a dependent future xf that will become resolved with the expression e′ when the
future denoted by e eventually resolves.

The expression resolve e e′ is used to resolve a future with a value, where e must reduce
to a resolver and e′ to any value. If e′ reduces to a non-future value, the listener function
xl will be called with x bound to the value of e′. If e′ reduces to a future value, the listener
function will be called later, with x bound to the resolved value of the future. Thus, this
definition ensures that futures can only be truly resolved with non-future values.

The desugaring of “when” and “resolve” make use of special messages named resolveµ
and registerµ. The µ (for “meta”) suffix identifies these messages as special meta-level
messages that should be interpreted differently by actors. A regular AT-Lite program
cannot fabricate these messages other than via the “when” and “resolve” expressions.

Evaluation Contexts and Runtime Expressions We use evaluation contexts [4] to
indicate what subexpressions of an expression should be fully reduced before the compound
expression itself can be further reduced. e� denotes an expression with a “hole”. Each
appearance of e� indicates a subexpression with a possible hole. The intent is for the hole
to identify the next subexpression to reduce in a compound expression.

Our reduction rules operate on “runtime expressions”, which are simply all expressions
including references r, as a subexpression may reduce to a reference before being reduced
further.

7

Syntax

e ∈ E ⊆ Expr ::= this | x | null | e ; e | λx.e | e(e) | let x = e in e | e.f | e.f := e

| e.m(e) | actor{f := e,m(x){e}} | object{f := e,m(x){e}}
| isolate{f := e,m(x){e}} | let xf , xr = future in e | resolve e e
| e← m(e) | e←f m(e) | when(e→ x){e}

x, xf , xr ∈ VarName, f ∈ FieldName,m ∈MethodName

Syntactic Sugar

e ; e′ def= let x = e in e′ x /∈ FV(e′)

λx.e
def= let xthis = this in object { xthis /∈ FV(e)

apply(x){[xthis/this]e}
}

e(e) def= e.apply(e)

e←f m(e) def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e)
e← mf (e · xr) ; xf

when(e→ x){e′} def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e′)
let xl = λx.(xr.resolveµ(e′)) in xl /∈ FV(e)
e← registerµ(xl) ; xf

resolve e e′ def= let xr = e in xr /∈ FV(e′)
let xl = λx.(xr ← resolveµ(x)) in xl /∈ FV(e′)
e′ ← registerµ(xl)

Evaluation Contexts and Runtime Syntax

e� ::= � | let x = e� in e | e�.f | e�.f := e | v.f := e� | e�.m(e) | v.m(v, e�, e)
| e� ← m(e) | v ← m(v, e�, e)

e ::= . . . | r

8

Substitution Rules

[v/x]x′ = x′ [v/x]m(x){e} = m(x){e} if x ∈ x
[v/x]x = v [v/x]m(x){e} = m(x){[v/x]e} if x /∈ x

[v/x]e.f = ([v/x]e).f [v/x]e.f := e = ([v/x]e).f := [v/x]e
[v/x]null = null [v/x]e.m(e) = [v/x]e.m([v/x]e)

[v/x]r = r [v/x]e← m(e) = [v/x]e← m([v/x]e)

[v/x]let x′ = e in e = let x′ = [v/x]e in [v/x]e
[v/x]let x = e in e = let x = [v/x]e in e

[v/x]actor{f := e,m(x){e}} = actor{f := e,m(x){e}}
[v/x]isolate{f := e,m(x){e}} = isolate{f := e,m(x){e}}
[v/x]object{f := e,m(x){e}} = object{f := [v/x]e, [v/x]m(x){e}} if x 6= this

[v/this]object{f := e,m(x){e}} = object{f := e,m(x){e}}
[v/x]let xf , xr = future in e = let xf , xr = future in [v/x]e
[v/x]let x, xr = future in e = let x, xr = future in e
[v/x]let xf , x = future in e = let xf , x = future in e

Figure 3: Substitution rules: x denotes a variable name or the pseudovariable this.

3.2 Reduction Rules

Notation Actor heaps O are sets of objects, resolvers and futures. To lookup and extract
values from a set O, we use the notation O = O′ ·∪{o}. This splits the set O into a singleton
set containing the desired object o and the disjoint set O′ = O\{o}. The notation Q = Q′·m
deconstructs a sequence Q into a subsequence Q′ and the last element m. In AT-Lite,
queues are sequences of messages and are processed right-to-left, meaning that the last
message in the sequence is the first to be processed. We denote both the empty set and
the empty sequence using ∅. The notation e�[e] indicates that the expression e is part of a
compound expression e�, and should be reduced first before the compound expression can
be reduced further.

Actor-local reductions Actors operate by perpetually taking the next message from
their message queue, transforming the message into an appropriate expression to evaluate,
and then evaluate (reduce) this expression to a value. When the expression is fully reduced,

9

the next message is processed. As discussed previously, the process of reducing such a
single expression to a value is called a turn. It is not possible to suspend a turn and start
processing a next message in the middle of a reduction.

If no actor-local reduction rule is applicable to further reduce a reducible expression,
this signifies an error in the program. The only valid state in which an actor cannot be
further reduced is when its message queue is empty, and its current expression is fully
reduced to a value. The actor then sits idle until it receives a new message.

We now summarize the actor-local reduction rules in Figure 3.2:

• let: a “let”-expression simply substitutes the value of x for v in e according to the
substitution rules outlined in Figure 3.1.

• new-object, new-isolate: these rules are identical except for the tag of the fresh
object, which is set to o for objects and i for isolates. The effect of evaluating an
object or literal expression is the addition of a new object to the actor’s heap. The
fields of the new object are initialised to null. The literal expression reduces to
a sequence of field update expressions. The this pseudovariable within these field
update expressions refers to the new object. The last expression in the reduced
sequence is a reference r to the new object.

• invoke: a method invocation simply looks up the method m in the receiver object
and reduces the method body expression e with appropriate values for the parameters
x and the pseudovariable this. It is only possible to invoke a method on a local object
(the receiver’s global component ιa must match that of the current actor).

• field-access, field-update: a field update modifies the actor’s heap such that it
contains an object with the same address but with an updated set of fields. Again,
field access and field update apply only to local objects.

• make-future: a new future-resolver pair is created such that the future has an
empty queue and is unresolved (its value is ε), and the resolver contains the future’s
identity ιf . The expression e is further reduced with xf and xr bound to references
to the new future and resolver respectively.

• local-asynchronous-send: an asynchronous message sent to a local object (i.e.
an object owned by the same actor as the sender) simply appends a new message
to the end of the actor’s own message queue. The message send itself immediately
reduces to null.

• process-message: this rule describes the processing of incoming asynchronous mes-
sages directed at local objects or resolvers (but not futures). A new message can be
processed only if two conditions are satisfied: the actor’s queue Q is not empty, and
its current expression cannot be reduced any further (the expression is a value v).
The auxiliary function process distinguishes between:

10

– a regular message m (or the meta-level message resolveµ), which is processed by
invoking the corresponding method on the receiver object.

– a two-way message mf , as generated by the desugaring of e ←f m(e). Such a
message is processed by invoking the corresponding method on the receiver ob-
ject, and by sending the result of the invocation to the “hidden” last parameter
r which denotes a resolver object.

– a meta-level message registerµ, which indicates the registration of a listener
function v, to be applied to the value of a resolved future. Since process is only
invoked on non-future values ιa.ιo, the listener function v is asynchronously
applied to ιa.ιo directly.

• process-msg-to-future: this rule describes the processing of incoming asynchronous
messages directed at local futures. The processing of the message depends on the
state of the recipient future, as determined by the auxiliary function store. This
function returns a tuple (m, e) where m denotes either a message or the empty se-
quence, and e denotes either an asynchronous message send or null. The message
m is then appended to the future’s queue, and the actor will continue reducing the
expression e. store determines whether to store or forward the message m, depending
on the state of the future and the type of message:

– If the future is unresolved (its value is still ε), the message is enqueued and must
not be forwarded yet (e is null).

– If the future is resolved and the message name m is not registerµ, the message
need not be enqueued (m is ∅), but is rather immediately forwarded to the
resolved value v.

– If the future is resolved and the message is registerµ, which indicates a request to
register a listener function ιa.ιo with the future, the function is asynchronously
applied to the resolved value v. This request need not be enqueued (m is ∅).

• resolve: this rule describes the reduction of the meta-level message resolveµ, as
used in the desugaring of the “when” and “resolve” expressions. This message can
only be reduced when directed at a resolver object ιr whose paired future ιf is still
unresolved (its value is still ε). The paired future is updated such that it is resolved
with the value v, and its queue is emptied. The messages previously stored in its
queue Q′ are forwarded, as described by the auxiliary function fwd. This function
generates a sequence of message sends as follows:

– If the queue is empty, no more messages need to be forwarded and the expression
reduces to null.

– If the queue contains a normal message m (or a meta-level message resolveµ),
that message is forwarded to v.

11

– If the queue contains a meta-level message registerµ, indicating the request to
notify the listener function ιa.ιo when the future becomes resolved, the function
is asynchronously applied with the future’s resolved value v.

Actor-global reductions We summarize the actor-global reduction rules in Figure 3.2:

• new-actor: when an actor ιa reduces an actor literal expression, a new actor ιa′
is added to the configuration. The new actor’s heap consists of a single new object
ιo whose fields and methods are described by the literal expression. As in the rule
for new-object, the object’s fields are initialized to null. The new actor has an
empty queue and will, as its first action, initialize the fields of its only object. The
actor literal expression itself reduces to a far reference to the new object, allowing
the creating actor to communicate further with the newly spawned actor.

• far-asynchronous-send: this rule describes the reduction of an asynchronous mes-
sage send expression directed at a far reference, i.e. a reference whose global com-
ponent ιa′ differs from that of the current actor ιa. A new message is appended to
the queue of the recipient actor ιa′ . The arguments v of the message send expression
are parameter-passed as described by the auxiliary function pass. This function, de-
scribed further below, returns a set O′′ of copied isolate objects that must be added
to the recipient’s heap and an updated sequence of values v′ with updated addresses
referring to the copied isolates, if any. As in the local-asynchronous-send rule,
the message send expression itself evaluates to null.

• congruence: this rule simply connects the local reduction rules to the global re-
duction rules.

An AT-Lite program e is reduced in an initial configuration containing a single “main”
actor Kinit = {A〈ιa, ∅, ∅, [null/this]e〉}. At top-level, the this-pseudovariable is bound to
null.

Parameter-passing rules The auxiliary function pass(ιa, O, v, ι′a) describes the rules
for parameter-passing the values v from actor ιa to actor ι′a, where O is the heap of the
originating actor ιa.

The parameter-passing rules for AT-Lite values are simple: objects are passed by far
reference, isolates are passed by copy, and null is passed by value. When an isolate is
passed by copy, all of its constituent field values are recursively parameter-passed as well.

The auxiliary function reach(O, v) returns the set of all isolate objects reachable in
O starting from the root values v. The first two cases define the stop-conditions of this

12

(let)

A〈ιa, O,Q, e�[let x = v in e]〉
→a A〈ιa, O,Q, e�[[v/x]e]〉

(new-object)

ιo fresh
o = O〈ιo,o, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[object{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/this]e; r]〉

(new-isolate)

ιo fresh
o = O〈ιo, i, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[isolate{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/this]e; r]〉

(invoke)

O〈ιo, t, F,M〉 ∈ O
r = ιa.ιo m(x){e} ∈M
A〈ιa, O,Q, e�[r.m(v)]〉

→a A〈ιa, O,Q, e�[[r/this][v/x]e]〉

(field-access)

O〈ιo, t, F,M〉 ∈ O f := v ∈ F
A〈ιa, O,Q, e�[ιa.ιo.f]〉
→a A〈ιa, O,Q, e�[v]〉

(field-update)

O = O′ ·∪{O〈ιo, t, F ·∪{f := v′},M〉}
O′′ = O′ ∪ {O〈ιo, t, F ∪ {f := v},M〉}

A〈ιa, O,Q, e�[ιa.ιo.f := v]〉
→a A〈ιa, O′′, Q, e�[v]〉

(make-future)

ιf , ιr fresh
O′ = O ∪ {F〈ιf , ∅, ε〉,R〈ιr, ιf 〉}

A〈ιa, O,Q, e�[let xf , xr = future in e]〉
→a A〈ιa, O′, Q, e�[[ιa.ιf/xf][ιa.ιr/xr]e]〉

(local-asynchronous-send)

A〈ιa, O,Q, e�[ιa.ιo ← m(v)]〉
→a A〈ιa, O,M〈ιa.ιo,m, v〉 ·Q, e�[null]〉

(process-message)

ιo /∈ FutureId
e = process(ιa.ιo,m, v)

A〈ιa, O,Q · M〈ιa.ιo,m, v〉, v〉
→a A〈ιa, O,Q, e〉

(process-msg-to-future)

O = O′ ·∪{F〈ιf , Q′, v′〉}
(m, e) = store(m, v, v′)

A〈ιa, O,Q · M〈ιa.ιf ,m, v〉, v〉
→a A〈ιa, O′ ∪ {F〈ιf ,m ·Q′, v′〉}, Q, e〉

(resolve)

R〈ιr, ιf 〉 ∈ O O = O′ ·∪{F〈ιf , Q′, ε〉} v 6= ιa′ .ιf ′

A〈ιa, O,Q, e�[ιa.ιr.resolveµ(v)]〉
→a A〈ιa, O′ ∪ {F〈ιf , ∅, v〉}, Q, e�[fwd(v,Q′)]〉

Figure 4: Actor-local reduction rules.
13

(new-actor)

ιa′ , ιo fresh r = ιa′ .ιo a′ = A〈ιa′ ,O〈ιo,o, f := null,m(x){e′}〉, ∅, r.f := [r/this]e〉
K ·∪A〈ιa, O,Q, e�[actor{f := e,m(x){e′}}]〉 →k K ∪ A〈ιa, O,Q, e�[r]〉 ∪ a′

(far-asynchronous-send)

K = K ′ ·∪A〈ιa′ , O′, Q′, e′〉 (O′′, v′) = pass(ιa, O, v, ιa′) Q′′ =M〈ιa′ .ιo,m, v′〉 ·Q′

K ·∪A〈ιa, O,Q, e�[ιa′ .ιo ← m(v)]〉 →k K
′ ∪ A〈ιa, O,Q, e�[null]〉 ∪ A〈ιa′ , O′ ∪O′′, Q′′, e′〉

(congruence)

a→a a
′

K ·∪ {a} →k K ∪ {a′}

Figure 5: Actor-global reduction rules.

traversal. In the third case, an isolate object o is encountered and added to the result.
All of o’s field values are added to the set of roots, and o itself is removed from the set
of objects to consider, so that it is never visited twice. The fourth rule skips all other
values and applies when v is null, a far reference ιa′ .ιo′ , an object that was already visited
(v = ιa.ιo, ιo /∈ O) or a non-isolate object (v = ιa.ιo,O〈ιo,o, F,M〉 ∈ O).

The mapping σ simply defines fresh identities for each isolate in O′. The function pass
then returns the set of isolates O′σ which is simply the set O′ with all isolates renamed
according to σ. The function σv replaces references to parameter-passed isolates with
references to the fresh copies, and is the identity function for all other values.

3.3 Service Discovery

We now extend AT-Lite with the primitives necessary to describe “service discovery”,
i.e. the ability for objects in different actors to discover one another by means of a
publish/subscribe-style mechanism.

We extend AT-Lite actors with a set of exported objects E and a set of import listeners
I. We extend values to include types θ. Objects can be exported, and callbacks can be
registered, under different types. When the types match, the callback is invoked with the
exported object.

We extend the AT-Lite syntax with a means to export objects (exportee), a means to
register callbacks for discovery (discover e e) and the syntactic sugar whenDiscovered(e→
x){e′} to more closely resemble the AmbientTalk when: type discovered: callback

14

Auxiliary functions and predicates

reach(∅, v)
def
= ∅

reach(O, ∅) def
= ∅

reach(O ·∪o, v · ιa.ιo)
def
= reach(O, v · v′) ∪ {o} if o = O〈ιo, i, f := v′,M〉

reach(O, v · v)
def
= reach(O, v) otherwise

pass(ιa, O, v, ι′a)
def
= (O′σ, σv v)

whereO′ = reach(O, v)
σ = {ιo 7→ ι′o | O〈ιo, t, F,M〉 ∈ O′, ι′o fresh }
O′σ = {O〈σ(ιo), i, f := σv(v),M〉 | O〈ιo, i, f := v,M〉 ∈ O′}

σv(v) =
{
ι′a.ι
′
o if v = ιa.ιo, ιo 7→ ι′o ∈ σ

v otherwise

store(m, v, ε)
def
= (M〈ε,m, v〉,null)

store(m, v, v)
def
= (∅, v ← m(v)) m 6= registerµ, v 6= ε

store(m, ιa.ιo, v)
def
= (∅, ιa.ιo ← apply(v)) m = registerµ, v 6= ε

fwd(v, ∅) def
= null

fwd(v,Q · M〈ε,m, v〉) def
= v ← m(v) ; fwd(v,Q) m 6= registerµ

fwd(v,Q · M〈ε,m, ιa.ιo〉)
def
= ιa.ιo ← apply(v) ; fwd(v,Q) m = registerµ

process(ιa.ιo,m, v)
def
= ιa.ιo.m(v) m 6= mf ,m 6= registerµ

process(ιa.ιo,mf , v · r)
def
= r ← resolveµ(ιa.ιo.m(v))

process(ιa.ιo, registerµ, v)
def
= v ← apply(ιa.ιo)

construct.
Figure 3.3 lists the additional reduction rules for service discovery:

• publish: to reduce an export expression, the first argument must be reduced to a

15

Extensions for Service Discovery

Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,E, I, e〉

v ∈ Value ::= . . . | θ

Syntax
e ::= . . . | export e e | discover e e | whenDiscovered(e→ x){e}

Evaluation Contexts
e� ::= . . . | export e� e | export v e� | discover e� e | discover v e�

Syntactic Sugar

whenDiscovered(e→ x){e′} def= discover e (λx.e′)

(publish)

(O′, v′) = pass(ιa, O, ιa′ .ιo, ιa)
A〈ιa, O,Q,E, I, e�[export θ ιa′ .ιo]〉

→a A〈ιa, O,Q,E ∪ (O′, v′, θ), I, e�[null]〉

(subscribe)

A〈ιa, O,Q,E, I, e�[discover θ ιa.ιo)]〉
→a A〈ιa, O,Q,E, I ∪ (ιa.ιo, θ), e�[null]〉

(Match)

A〈ιa′ , O′, Q′, E′ ·∪(O′′, v, θ), I ′, e′〉 ∈ K
(O′′′, v′) = pass(ιa′ , O′′, v, ιa) Q′′ =M〈ιa.ιo, apply, v′〉 ·Q

K ·∪A〈ιa, O,Q,E, I ·∪(ιa.ιo, θ), e〉 →k K ∪ A〈ιa, O ∪O′′′, Q′′, E, I, e〉

Figure 6: Reduction rules for service discovery

type θ and the second argument must be reduced to a reference (which may be a
far reference). The effect of reducing an export expression is that the actor’s set of
exported objects E is extended to include the exported object and type. An exported
object is parameter-passed as if it were included in an inter-actor message. Hence, if
the object is an isolate, a copy of the isolate is made at the time it is exported.

16

• subscribe: to reduce a discover expression, the first argument must be reduced
to a type θ and the second argument must be reduced to an object reference. The
effect of reducing a discover expression is that the actor’s set of import listeners I
is extended to include the local callback, and the type.

• match: this rule is applicable when a configuration of actors contains both an actor
ιa′ that exports an object under a type θ, and a different actor ιa that has registered a
listener under the same type θ. The effect of service discovery is that an asynchronous
apply message will be sent to the registered listener object in ιa. The listener is
simultaneously removed from the import set of its actor so that it can be notified at
most once. The exported object v is parameter-passed again, this time to copy it
from the publication actor ιa′ to the subscription actor ιa.

3.4 Robust time-decoupled message transmission

In the calculus presented above, actors are assumed to be permanently connected to all
other actors. The real world, however, shows that devices almost always reside in sepa-
rate networks and only occasionally meet to exchange messages. In this extension to the
calculus, we introduce networks which completely isolate their actors from other networks
but still allow full communication between actors in the same network. Each network has
a unique identifier.

Isolating actors from other actors introduces a problem: how can they communicate?
Over time actors will move about and join another network, opening up new message
transmission opportunities. We formalize this by splitting the message-sending process
into two parts: message creation and message transmission. Whenever an actor executes
the ← operator, the message is created and stored in a message outbox (called Qout), to
be transmitted at a later stage. This is called time-decoupled message transmission [3], as
actors don’t have to be connected to each other to create asynchronous messages.

We represent an actor’s outbox Qout as a function that, for each remote actor ιa ∈
ActorId, stores all outgoing messages addressed to objects owned by ιa. The outgoing
messages are represented as an ordered sequence of envelopes l. An envelope is simply
a message m combined with all isolate objects Om passed as arguments to that message.
These objects will have to be passed together with the message upon transmission.

In the reduction rules, we replace asynchonous message sends (far-asynchronous-
send) by rules for message creation (create-message) and message transmission (transmit-
message).

Figure 7 lists the additional reduction rules for time-decoupled message transmission:

• create-message: This rule creates a new envelope and appends it to Qout(ιa′), i.e.
the list of outgoing messages addressed at actor ιa′ . This rule is actor-local, so it is
applicable regardless of whether the recipient actor is currently in the same network.

17

Extensions for time-decoupled message transmission

Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,Qout, n, e〉
Qout ∈ Outbox ::= ιa 7→ l
l ∈ Envelope ::= (m, O)

n ∈ NetworkId

(far-asynchronous-send)

This rule is removed.

(create-message)

(Om, v′) = pass(ιa, O, v, ιa′) m =M〈ιa′ .ιo,m, v′〉
l = Qout(ιa′) Q′out = Qout[ιa′ 7→ (m, Om) · l]

A〈ιa, O,Q,Qout, n, e�[ιa′ .ιo ← m(v)]〉 →a A〈ιa, O,Q,Q′out, n, e�[null]〉

(transmit-message)

Qout(ιa′) = l · (m, Om) K = K ′ ·∪A〈ιa′ , O′, Q′, Q′out, n, e′〉
K ·∪A〈ιa, O,Q,Qout, n, e〉 →k

K ′ ∪ A〈ιa, O,Q,Qout[ιa′ 7→ l], n, e〉 ∪ A〈ιa′ , O′ ∪Om,m ·Q′, Q′out, n, e′〉

(mobility)

n 6= n′

K ·∪A〈ιa, O,Q,Qout, n, e〉 →k K ∪ A〈ιa, O,Q,Qout, n′, e〉

Figure 7: Reduction rules for time-decoupled message transmission

• transmit-message: This rule is applicable whenever an actor is in the same network
as an actor for which it has undelivered messages. If this is the case, the last (i.e.
eldest) of these undelivered messages is removed from the sender actor’s outbox and
appended to the destination actor’s inbound message queue.

• mobility: This rule describes that actors can switch between networks. Application

18

of this rule is entirely involuntary, i.e. actors do not themselves choose to move, they
are moved around by the system or environment. The precondition ensures that
actors do not move to the same network (a no-op).

Time-decoupled messaging weakens the guarantees AT-Lite gives about message or-
dering. Assume the following scenario: actor A sends a message to actor C at time tA
and an actor B sends a message to the same actor C at a later time tB (so tA < tB).
Previously, actor C would process the message from A first, then the message from B.
With time-decoupling, the ordering depends not on the time of message creation, but of
message transmission. The ordering of messages between any specific pair of actors is still
maintained, as messages are still transmitted in a FIFO manner between individual actors.

A further extension could modify the mobility rule to trigger when:disconnected:
handlers for far references pointing to actors in the old network n. It could then also trigger
when:reconnected: handlers for far references pointing to actors in the new network n′.

4 Conclusion

We have presented an operational semantics for a key subset of the AmbientTalk program-
ming language. The operational semantics provides a formal account of AmbientTalk actors
as communicating event loops, objects, isolates, futures, asynchronous message sends, ser-
vice discovery and time-decoupled message transmission. To the best of our knowledge,
this is the first formal account of an actor language built on the communicating event loops
model with non-blocking futures.

References

[1] Gul Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[2] J.-P. Briot. From objects to actors: study of a limited symbiosis in smalltalk-80. In
Proceedings of the 1988 ACM SIGPLAN workshop on Object-based concurrent pro-
gramming, pages 69–72, New York, NY, USA, 1988. ACM Press.

[3] P. Th. Eugster, Pascal A. Felber, R. Guerraoui, and A.Kermarrec. The many faces of
publish/subscribe. ACM Computing Survey, 35(2):114–131, 2003.

[4] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theor. Comput. Sci., 103(2):235–271, 1992.

[5] Henry Lieberman. Concurrent object-oriented programming in ACT 1. In
A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Programming, pages
9–36. MIT Press, 1987.

19

[6] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Programming
in E as plan coordination. In Symposium on Trustworthy Global Computing, volume
3705 of LNCS, pages 195–229. Springer, April 2005.

[7] Vijay A. Saraswat. Concurrent constraint programming. MIT Press, Cambridge, MA,
USA, 1993.

[8] Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: generalizing active objects to concur-
rent components. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 275–299, Berlin, Heidelberg, 2010. Springer-Verlag.

[9] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and Wolf-
gang De Meuter. Ambienttalk: object-oriented event-driven programming in mobile
ad hoc networks. In Inter. Conf. of the Chilean Computer Science Society (SCCC),
pages 3–12. IEEE Computer Society, 2007.

[10] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented con-
current programming in ABCL/1. In Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 258–268. ACM Press, 1986.

20

