
Constructing Customized Interpreters from
Reusable Evaluators using Game

Stijn Timbermont, Coen De Roover, and Theo D’Hondt

Vrije Universiteit Brussel
{stimberm, cderoove, tjdhondt}@vub.ac.be

Abstract. Separation of concerns is difficult to achieve in the implemen-
tation of a programming language interpreter. We argue that evaluator
concerns (i.e., those implementing the operational semantics of the lan-
guage) are, in particular, difficult to separate from the runtime concerns
(e.g., memory and stack management) that support them. This precludes
the former from being reused and limits variability in the latter.
In this paper, we present the Game environment for composing cus-
tomized interpreters from a reusable evaluator and different variants of
its supporting runtime. To this end, Game offers a language for spec-
ifying the evaluator according to the generic programming methodol-
ogy. Through a transformation into defunctionalized monadic style, the
Game toolchain generates a generic abstract machine in which the se-
quencing of low-level interpretational steps is parameterized. Given a
suitable instantiation of these parameters for a particular runtime, the
toolchain is able to inject the runtime into the generic abstract machine
such that a complete interpreter is generated.
To validate our approach, we port the prototypical Scheme evaluator to
Game and compose the resulting generic abstract machine with several
runtimes that vary in their automatic memory management as well as
their stack discipline.

1 Introduction

In the implementation of an interpreter for a programming language, one can
distinguish evaluator concerns from the runtime concerns that support them.
The evaluator concerns implement the operational semantics of the language,
often assuming computational resources are unbounded. The supporting runtime
concerns maintain this illusion on a physical machine through data structures
and algorithms for memory and stack management.

There is great variation among an interpreter’s runtime support, of which we
identify the following sources:

– The first source of variation is the evaluator itself. Different language fea-
tures require different kinds of runtime support. For instance, closures require
the ability to capture an environment and keep it alive for an indeterminate
period of time. Likewise, exception handling requires the ability to skip com-
putations after an error occurred and to proceed with the exception handler.

These features affect the implementation of environments and of the execu-
tion stack respectively.

– The second source of variation is the host platform. If the host platform is
a high-level language, it will also have a supporting runtime that can be
reused. For instance, when implementing a garbage collected language in
another garbage collected language. The bigger the mismatch between the
host platform and the evaluator, however, the more effort is required from
the supporting runtime. This is, for instance, the case when implementing a
language with first-class continuations in C.

– The non-functional requirements of the interpreter represent the third source
of variation. The supporting runtime must not only satisfy the needs of the
evaluator, it must also do so in a manner that meets efficiency requirements
(e.g., memory usage and power consumption). This leads to many trade-offs,
which are influenced by the idiosyncrasies of the host platform as well as the
expected usage of the interpreter (i.e., the kinds of programs it will run).

On par with the operational semantics of the language, the evaluator should
not be affected by variation in runtime support. However, the practice of inter-
preter development does not reflect this. In the implementation of an interpreter,
evaluator concerns are difficult to separate from the runtime concerns that sup-
port them. This precludes the former from being reused and limits variability in
the latter. The contributions of this paper are as follows:

– Using the case of automatic memory management, we illustrate that the
choice for a particular runtime has a severe impact on the structure of the
evaluator (Section 2).

– We introduce the notion of a generic abstract machine (Section 3.2), an
abstract machine [5] that anticipates the supporting runtime without com-
mitting to any details using generic programming techniques. A generic ab-
stract machine corresponds to the evaluator in an intermediate form called
defunctionalized monadic style.

– We present the Game environment (Section 3), consisting of a language and
a toolchain centered around the notion of a generic abstract machine. Using
the Game programming language, the developer of the evaluator decides on
the interface between the evaluator and the runtime —thus enabling reuse
of the evaluator. Using the Game toolchain, the developer of the supporting
runtime can inject a concrete runtime variant in the evaluator —giving rise to
a customized interpreter. Our proof-of-concept implementation of the Game
toolchain generates this interpreter in a subset of R6RS Scheme. This subset
is sufficiently low-level for targeting C to be realistic.

– We validate our approach by implementing the prototypical Scheme eval-
uator from SICP [1] in Game (Section 3.1) and instantiating the result-
ing generic abstract machine with several runtimes (Section 4). These run-
times vary in their memory management (e.g., a non-moving mark-and-
sweep versus a moving stop-and-copy GC) and in their stack discipline (e.g.,
reusing the host stack versus managing an explicit stack). The generated

interpreters are, together with the Game prototype, publicly available at
http://soft.vub.ac.be/~stimberm/game/sc12/.

2 Motivating Example: the Impact of Automatic Memory
Management on the Structure of an Evaluator

This section illustrates the impact of runtime support on the structure of the
evaluator. Their interaction inhibits reusing the evaluator in other interpreters.

Consider adding automatic memory management to the prototypical evalua-
tor for Scheme depicted in Figure 1. The evaluator corresponds to the one from
Section 4.1 of SICP [1], implemented in Game (cf. Section 3.1). For the purpose
of this section, Game has the same syntax and semantics as regular Scheme.

Garbage collectors (GCs) use reachability as a heuristic to determine whether
an object on the heap can be reclaimed. It is the evaluator’s responsability to
hand the GC all heap objects that are a priori reachable. Objects that cannot
be reached from these root pointers can no longer be accessed from the program
and are therefore safe to reclaim. Root pointer treatment comprises the main
source of interaction between an evaluator and a GC.

Varying an interpreter’s GC strategy may require varying the treatment of
root pointers in the interpreter’s evaluator. Some GC algorithms move objects
around to avoid fragmentation. All pointers to a particular object must be up-
dated to reflect the new location of the object. Concretely, the evaluator should
not use the pointers stored in local variables after every point in its execution
where GC may have occurred.

The consequences of errors in the treatment of root pointers are severe. If the
evaluator neglects to communicate a root pointer to the GC, the object referred
to by the root pointer may be reclaimed. If the evaluator subsequently derefer-
ences this pointer again, the resulting behavior is unpredictable. The memory
chunk may have been cleared, or it may have been reused to store another object.
After a moving GC, a neglected root pointer may even point in the middle of
some other object. Such bugs are difficult to diagnose. Their occurrence depends
on the state of the entire heap and on the arbitrary moment GC occurs.

Restructuring the SICP Evaluator for Garbage Collection As the GC expects to
be handed a set of root pointers, we have to restructure the entire SICP evaluator
such that it can construct this set at all places where a GC might occur. Consider
the list-of-values function depicted on line 35 of Figure 1. It returns a list that
contains the values to which the expressions exps evaluate one by one in the
environment env. As evaluating an individual expression may trigger a GC, there
is a risk of dangling pointers within this function. We will adapt its code such
that root pointers are preserved for a non-moving and a moving GC respectively.

Adaptation 1: non-moving GC In Figure 2a, recursive evaluations within the
function have been made explicit. In this version, it is clear that variable first

may contain a root pointer to an object on the heap, which must be preserved

1 (define (eval exp env)
2 (cond ((self -evaluating? exp) exp)
3 ((variable? exp) (lookup -variable -value exp env))
4 ((quoted? exp) (text -of-quotation exp))
5 ((assignment? exp) (eval -assignment exp env))
6 ((definition? exp) (eval -definition exp env))
7 ((if? exp) (eval -if exp env))
8 ((lambda? exp)
9 (make -procedure (lambda -parameters exp)

10 (lambda -body exp)
11 env))
12 ((begin? exp)
13 (eval -sequence (begin -actions exp) env))
14 ((cond? exp) (eval (cond ->if exp) env))
15 ((application? exp)
16 (apply (eval (operator exp) env)
17 (list -of-values (operands exp) env)))
18 (else
19 (error "Unknown expression type -- EVAL" exp))))

21 (define (apply procedure arguments)
22 (cond ((primitive -procedure? procedure)
23 (apply -primitive -procedure procedure arguments))
24 ((compound -procedure? procedure)
25 (eval -sequence
26 (procedure -body procedure)
27 (extend -environment
28 (procedure -parameters procedure)
29 arguments
30 (procedure -environment procedure))))
31 (else
32 (error
33 "Unknown procedure type -- APPLY" procedure))))

35 (define (list -of-values exps env)
36 (if (no -operands? exps)
37 null
38 (cons (eval (first -operand exps) env)
39 (list -of-values (rest -operands exps) env))))

41 (define (eval -assignment exp env)
42 (set -variable -value! (assignment -variable exp)
43 (eval (assignment -value exp) env)
44 env)
45 ok-symbol)

47 (define (eval -definition exp env)
48 (define -variable! (definition -variable exp)
49 (eval (definition -value exp) env)
50 env)
51 ok-symbol)

53 (define (eval -if exp env)
54 (if (true? (eval (if-predicate exp) env))
55 (eval (if-consequent exp) env)
56 (eval (if-alternative exp) env)))

58 (define (eval -sequence exps env)
59 (if (last -exp? exps)
60 (eval (first -exp exps) env)
61 (begin (eval (first -exp exps) env)
62 (eval -sequence (rest -exps exps) env))))

Fig. 1: The prototypical Scheme evaluator from Section 4.1 of SICP [1]

(define (list -of-values exps env)
(if (no -operands? exps)

null
(let ((first (eval (first -operand exps) env))

(rest (list -of-values (rest -operands exps) env)))
(cons first rest))))

(a) with explicit names for subcomputations

(define (list -of-values exps env)
(if (no -operands? exps)

null
(begin (register -nm exps)

(register -nm env)
(define first (eval (first -operand exps) env))
(register -nm first)
(define rest (list -of -values (rest -operands exps) env))
(unregister -nm 3)
(cons first rest))))

(b) with root registration for a non-moving GC

(define (list -of-values exps env)
(if (no -operands? exps)

null
(begin (register -m exps)

(register -m env)
(define first (eval (first -operand exps) env))
(define exps2 (unregister -m))
(define env2 (unregister -m))
(register -m first)
(define rest (list -of -values (rest -operands exps2) env2))
(define first2 (unregister -m))
(cons first2 rest))))

(c) with root registration for moving GC

Fig. 2: Adaptations of list-of-values

across subsequent evaluations triggered by the recursive call to list-of-values.
Variables exps and env may also contain root pointers as expressions and envi-
ronments can be stored on the heap. Figure 2b depicts function list-of-values as
adapted to a particular non-moving GC. Root pointers are registered with the
GC through register-nm and are subsequently unregistered through unregister-nm.
These functions behave in a LIFO manner. The parameter to unregister-nm indi-
cates that 3 pointers must be discarded from the root set. Note that rest does not
have to be registered as it is passed to cons without any interleaved evaluation.

Adaptation 2: moving GC A moving GC further complicates the treatment of
root pointers. If a local variable contains a root pointer prior to a potential GC,
merely registering that root pointer no longer suffices. The GC may move the
object around on the heap and render the pointer stored in the local variable
invalid. This problem can be solved by having the GC provide the new root
locations to the evaluator, which must then refrain from using the old pointers.
Figure 2c depicts function list-of-values as adapted to such a moving GC. Root
pointers are registered with the GC through register-m. In turn, the GC provides
the updated root pointer through a corresponding call to unregister-m. Again,

these functions behave in a LIFO manner. Note that a root pointer stored in a
local variable is never used again after a recursive evaluation.

The two adaptations show that composing the SICP evaluator with a cus-
tom GC has a structural impact on the evaluator. Furthermore, the details of
the restructuring depends on the chosen GC strategy, which means that it is
also not possible to prepare the evaluator for GC once and for all. Instead, the
evaluator must be adapted for each variation of memory management. This lack
of separation of concerns hinders reuse of the evaluator and evolution of the
interpreter as a whole.

3 Overview of Game

The novel notion of a generic abstract machine is key to our approach to con-
structing customized interpreters from a reusable evaluator and different variants
of a supporting runtime. A generic abstract machine corresponds to a recursive
evaluator implemented using generic programming techniques such that a run-
time is anticipated but not yet committed to, transformed into a low-level form
that lends itself better to injecting a concrete runtime. To support this approach,
we developed Game; the Generic Abstract Machine Environment. Using Game,
constructing an interpreter entails four different activities: one for the evalua-
tor developer, another for the runtime developer and two that are left to the
toolchain. Before discussing these activities in detail, we briefly outline their key
aspects using Figure 3. Figure 3a clarifies the interdependencies of the different
kinds of artifacts that are involved in these activities and indicates whether they
are generated or have to be provided by one of the developers. Figure 3b depicts
how these artifacts flow throughout the environment.

gen-eval.g

IDependencies.g

calls

IBind.g

generic
evaluator

supporting
runtimes

interpreter.rkt

deps.g

bind.g

runtime.rkt

calls (FFI)

gam.g

calls

calls

calls

calls (FFI)

(a) Artifacts

interpreter.rkt

G
am

e\i

IDependencies.g

bind.g

deps.g

gen-eval.g

G
am

e\t

G
am

e\c

IBind.g

gam.g

(b) Toolchain

Fig. 3: Overview of Game

Developing a generic evaluator (evaluator developer) Game offers the generic
programming language Game\l for implementing an evaluator in a high-

level, recursive functional style. Most importantly, this evaluator does not
have to adhere to the specifics that would be dictated by the choice for
a particular supporting runtime (e.g., the root pointer treatment protocols
discussed in Section 2). The evaluator’s own dependencies on the runtime
(i.e., operations that must be provided by every runtime it will be composed
with) are specified through interface declarations. In Figure 3a, gen-eval.g and
IDependencies.g correspond to the generic evaluator and the interface declara-
tion of its dependencies respectively. Note that both artifacts are the sole
responsibility of the evaluator developer.

Deriving a generic abstract machine (Game) Given such a generic eval-
uator, Game’s transformation engine Game\t transforms it into an abstract
machine —inspired by the work on defunctionalized interpreters [4,2]. The
actual transformation inserts hooks that make every computational step in
the generic evaluator explicit and programmable. As these hooks are de-
clared through an interface, we call the result a generic abstract machine.
The transformation requires type information computed for Game\l input
by a type inferencer called Game\i. In Figure 3a, gam.g and IBind.g correspond
to the generic abstract machine and the interface for the hooks respectively.
Note that the generic abstract machine inherits the dependencies of the origi-
nal evaluator, hence the arrow from gam.g to IDependencies.g. Figure 3b indicates
that gam.g is produced from gen-eval.g by Game\t.

Instantiating the generic abstract machine (runtime developer) It is now
up to the runtime developer to inject a concrete runtime into the generic
abstract machine that was generated above. This will yield a customized
interpreter expressed in Game\l. Note that the runtime developer does not
have to analyze the generic abstract machine itself, but only has to imple-
ment the interface dependencies of the machine. In other words, gam.g can
be considered a black box. In Figure 3a, deps.g implements the interface of
the evaluator dependencies declared in IDependencies.g; bind.g implements the
interfaces for the additional dependencies of the generic abstract machine
declared in IBind.g. Both implementations import runtime functionality from
runtime.rkt using a simple Foreign-Function Interface. Developing these three
files is the sole responsibility of the runtime developer.

Generating an executable interpreter (Game) The final activity entails
compiling the Game\l interpreter constructed above to the host platform.
In this case, Game’s compiler Game\c targets R6RS Scheme, in particu-
lar Racket1. Game\c performs simple optimizations, converts polymorphic
into monomorphic code and removes the overhead introduced by the generic
programming. Furthermore, the generated code does not use Scheme’s more
advanced features such as dynamic typing, long-lived closures, first-class con-
tinuations or tail-call elimination in such a way that C code generation would
be unfeasible. Figure 3b illustrates how Game\c compiles the generated
interpreter.rkt together with runtime.rkt into a final executable interpreter.

1 http://racket-lang.org/

(define (true? x)
(not (eq? x false_sv)))

(define (self -evaluating? exp)
(cond ((number? exp) true)

((string? exp) true)
(else false)))

(define (tagged -list? exp tag)
(if (pair? exp)

(eq? (car exp) tag)
false))

(define (lambda? exp)
(tagged -list? exp lambda -symbol))

(define (lambda -parameters exp)
(cadr exp))

(define (lambda -body exp)
(cddr exp))

(a) Fragment of the helper functions
implemented in Game\l

(type -function (SV) *)

(interface (Scheme)
(ok -symbol (tf SV))
...
(true_sv (tf SV))
(false_sv (tf SV))
...
(pair? (-> ((tf SV)) (effect) Bool))
(number? (-> ((tf SV)) (effect) Bool))
...

(car (-> ((tf SV)) (effect IO) (tf SV)))
...
(cons (-> ((tf SV) (tf SV))

(effect IO GC)
(tf SV)))

...)

(b) Interface for the required dependencies of
the SICP evaluator

Fig. 4: Supporting functions for the SICP evaluator

3.1 Developing a Generic Evaluator
Figure 1 depicts the prototypical Scheme evaluator from SICP [1] implemented
in Game\l. Other than substituting ok-symbol for the Scheme symbol ’ok, the code
is identical to the original. The evaluator relies on various helper functions, such
as variable? and lambda? for testing whether an expression is of a certain type, and
lookup-variable-value and extend-environment for manipulating environments. Some of
these helper functions can also be implemented in Game\l itself (see Figure 4a).
However, at some point the evaluator requires functions such as number? and car

which are not available in Game\l. Enumerating these functions as required
dependencies renders the evaluator generic.

Figure 4b depicts an extract from the Game\l declaration of the required
dependencies for the generic SICP evaluator, using an interface (akin to a Haskell
type class). Note that the required dependencies are explicitly typed. We intro-
duce a single type SV for typing Scheme values as Scheme is dynamically typed.
Because the concrete type depends on the runtime the evaluator is instantiated
with, we define SV as a type function [16], without any arguments. The * indicates
the kind of SV. Types can use this type function using (tf SV). For example, the
type for ok-symbol is simply (tf SV), because symbols are regular Scheme values.
The type for the function pair? is (-> ((tf SV)) (effect) Bool), where -> is a type
constructor with three arguments; first a list of types for the parameters of the
function; third the result type of the function; second the side-effects of the
function. Section 3.2 explains the crucial role these effect annotations play.

3.2 Deriving a Generic Abstract Machine
As illustrated in Section 2, the original SICP evaluator has to be restructured be-
fore it can be composed with a custom GC. Furthermore, there are variations in
the details of the restructuring for a moving and a non-moving GC. Game intro-
duces defunctionalized monadic style to capture the essence of this restructuring
and to abstract over the details. As its name suggests, defunctionalized monadic

style derives from monadic style, which generalizes continuation-passing style.
Computations are explicitly sequenced, using higher-order functions to represent
continuations. Defunctionalized monadic style turns these continuations into ex-
plicit data structures, such that the transfer of data between sequenced compu-
tations also becomes explicit. Therefore, an evaluator written in defunctionalized
monadic style has a more low-level structure than a recursive evaluator.

Figure 5 depicts function list-of-values (cf. Figure 1) in defunctionalized monadic
style. The essential construct in defunctionalized monadic style is special opera-
tor >>> (pronounced bind). It explicitly sequences two computations, of which the
first is passed as the first argument. The second and third parameters represent
the second computation. The second parameter is a reference to a continua-
tion function, a top-level function that receives the result of the evaluation. The
third argument lists all additional data that should be preserved because it is
still needed in the continuation function. The continuation function receives two
arguments: first the preserved data, then the result of the evaluation. In the ex-
ample of list-of-values, the first expression in exps is evaluated, but both exps and
env are preserved for later, when they are needed in the continuation function
cnt-list-of-values-1. This is achieved by passing the tuple (* exps env) as third argu-
ment to >>>. That continuation function cnt-list-of-values-1 uses pattern matching,
a Game\l feature, on its first argument to retrieve exps and env again. The sec-
ond argument first is the result of evaluating the first operand. The body of
cnt-list-of-values-1 uses >>> again to sequence the evaluation of the rest of the ar-
guments with cnt-list-of-values-2. This time, only first must be preserved. Finally,
cnt-list-of-values-2 simply combines the results using cons.

An evaluator expressed in defunctionalized monadic style has the structure of
an abstract machine [5], and is better suited for composition with a supporting
runtime. Using Game, abstract machines do not have to be developed by hand.
Instead, Game derives them from evaluators by transforming the latter to de-
functionalized monadic style. This transformation is referred to as Game\t and
follows the work of defunctionalized interpreters [4,2], which in turn goes back
to the seminal work on definitional interpreters [13]. The essence of their deriva-
tion is CPS transformation followed by defunctionalization, yielding first-order,
tail-recursive evaluators, which are equivalent to well-known abstract machines.
Game\t works similarly, but adapts the original in two ways: first, Game\t

(define (list -of-values exps env)
(if (no -operands? exps)

null
(>>> (eval (first -operand exps) env)

cnt -list -of-values -1
(* exps env))))

(define (cnt -list -of-values -1 (* exps env) first)
(>>> (list -of-values (rest -operands exps) env)

cnt -list -of-values -2
(* first)))

(define (cnt -list -of-values -2 (* first) rest)
(cons first rest))

Fig. 5: The function list-of-values in defunctionalized monadic style

(defmacro (>>> e k frame)
(bind (lambda () e) k frame))

(interface (Frame (frm *) (t *) (res *))
(bind (forall ((e !*) (ke !*))

(-> ((-> () e t)
(-> (frm t) ke res)
frm)

(effect IO e ke)
res))))

Fig. 6: Declaration of >>> and bind

generates a generic abstract machine, and second, Game\t works automatically,
whereas in [13,2], the derivation is performed by hand. These two adaptations
are further discussed in the following two paragraphs, respectively.

Generic abstract machines A generic abstract machine is expressed in defunc-
tionalized monadic style, where the semantics of >>> is customizable, that is, >>>

is a hook in the abstract machine, used to inject the supporting runtime (see
Section 3.3). This is achieved by using generic programming, in the same way
that the evaluator dependencies are treated. However, >>> is not a regular func-
tion because it should not execute its first argument immediately; instead, we
define >>> as a macro in terms of a function bind, by wrapping the first argument
to >>> in a thunk, as shown in Figure 6. The function bind is overloaded on the
types of the frame, the value produced by the thunk and the final result of the
continuation. The type of bind is polymorphic in the effects of the higher-order
arguments, hence the effect variables e and ke with kind !*.

Automatic derivation It is not necessary to transform every function call in
the evaluator to defunctionalized monadic style. Helper functions such as number?

and car do not trigger a GC, so introducing a >>> construct would be overkill.
Therefore, Game\t applies the transformation selectively: only computations
that potentially trigger a GC are transformed into defunctionalized monadic
style. To distinguish between computations that may trigger a GC and those
who do not, Game\t uses information derived from a type and effect system in
the style of [18]. Effect annotations are useful to track properties such as “may
trigger a GC” because they propagate through the evaluator: a function that
calls another function which potentially triggers a GC inherits this property.
Using Game, there is no need to manually annotate an evaluator with effects.
Instead, Game\i performs type and effect inference which derives the required
information from unannotated code. However, the declaration of the dependen-
cies must explicitly declared their type as they cannot be “guessed” by Game\i.
Figure 4b shows some of the type annotations. Function types not only specify
the types of the arguments and result, but also the effect of the function. An
effect (effect ...) denotes the union of elementary effects. For example, (effect)

denotes the empty effect and (effect IO) the singleton effect, where IO indicates
general side effects such as accessing and modifying heap-allocated memory. The
type of cons is special: the effect of the function is (effect IO GC), which means that

(type -decl RV () *)
(foreign -import "pair?" r_pair?

(-> (RV) (effect) RV))
(foreign -import "number ?" r_number?

(-> (RV) (effect) RV))
...
(foreign -import "car" r_car

(-> (SV) (effect IO) SV))
(foreign -import "cdr" r_cdr

(-> (SV) (effect IO) SV))
...
(define (bindR thunk k frame)

(k frame (thunk)))

(a) FFI imports and definitions

(axiom () () (~ (tf SV) RV))
(axiom () ()

(? Scheme)
(mkScheme ...

r_pair?
r_number?
...
r_car
r_cdr
...))

(axiom ((frm *)) ()
(? (Frame frm RV RV))

(mkFrame bindR))

(b) Instantiation with axiom

Fig. 7: Default instantiation of the SICP generic abstract machine

cons may produce both the general effect IO and the effect GC. This annotation is
propagated through the evaluator and is used by the transformation to distin-
guish between functions that may trigger a GC and those who do not.

These two adaptations, with the combination of Game\i with Game\t, forms
the basis for the automatic derivation of generic abstract machines from evalua-
tors. The type annotation for cons in Figure 4b indicates that invocations of cons

are a source of GC. This information is propagated through the unannotated
evaluator, such that Game\i assigns the following type to eval.
(forall () (Scheme)

(-> ((tf SV) (tf SV)) (effect IO GC) (tf SV)))

The effect annotation (effect IO GC) indicates that eval may trigger a GC. The type
constraint Scheme accounts for the required dependencies used in the evaluator.
Subsequently, Game\l introduces >>> only for those computations that include
GC in their effect. This is reflected in the following new type of eval.
(forall () (Scheme

(Frame (*) (tf SV) (tf SV))
(Frame (* (tf SV)) (tf SV) (tf SV))
(Frame (* (tf SV) (tf SV)) (tf SV) (tf SV)))

(-> ((tf SV) (tf SV)) (effect IO GC) (tf SV)))

The three Frame constraints arise because >>> is overloaded on the type of the frame
(via bind). For example, the constraint (Frame (* (tf SV) (tf SV)) (tf SV) (tf SV)) in-
dicates that at some point a >>> construct is used to preserve two Scheme values.

3.3 Instantiation of Generic Abstract Machines

In this section we illustrate how we can instantiate a generic abstract machine
by providing implementations for both the required dependencies of the original
evaluator and the additional dependencies introduced by the derivation of the
generic abstract machine. In this section we only give a “default” instantiation
to explain the mechanism in Game. The more interesting instantiations for GC
are given in Section 4.

Figure 7 gives the Game\l code that instantiates the generic machine pro-
duced by Game\t. As the type of eval indicates, this instantiation must satisfy
four constraints, one Scheme constraint and three Frame constraints. In Figure 7a,

we use a Foreign-Function Interface (FFI) to import the appropriate functions
from the underlying platform, in this case the R6RS Scheme implementation of
PLT Racket. We also introduce a single type RV denoting a Racket value. In Fig-
ure 7b, we use axiom constructs (akin to Haskell’s type class instances) to actually
instantiate the generic abstract machine by satisfying its dependencies. The type
function SV is instantiated with RV and the Scheme constraint with the imported
functions. The three Frame constraints are all instantiated with bindR, which sim-
ply executes thunk and passes the resulting value along with the frame to the
continuation. Note that this implementation introduces no supporting runtime,
and simply reintroduces the recursion that was made explicit by Game\t. The
axiom declaration for Frame is polymorphic in the type of the frame, which is why
there is only one.

4 Evaluation

To evaluate Game we instantiate the generic abstract machine derived from the
SICP evaluator with several runtimes, which vary in their memory management
and stack discipline. Concretely, we give three instantiations: one for a non-
moving mark-and-sweep and another for a moving stop-and-copy GC which both
rely on the recursion stack of the underlying platform (Racket); and finally an
instantiation for a custom stack, using trampolining. We stress again that all
three instantiations reuse the original evaluator from Figure 1.

Instantiation for a non-moving mark-and-sweep GC For this instantiation, the
implementation for cons, imported via the FFI in Figure 7a, is not the standard
Racket cons, but a custom implementation which uses a mark-and-sweep GC. The
code for the instantiation itself is shown in Figure 8b. Figure 8a defines helper
functions for the registration of root pointers in frames, which ultimately rely
on register-nm and unregister-nm which were also used in Section 2. These functions
are part of the mark-and-sweep memory manager and are also imported using
the FFI. In Figure 8b, bindNonMovGC satisfies the Frame constraints, by registering
the roots in the frame before executing thunk, then unregistering the correspond-
ing number of roots and finally proceeding with the continuation function. The
axiom for Frame is again polymorphic, by referring to the NMRoots interface, because
bindNonMovGC is defined for every frame that supports register-roots-nm.

Instantiation for a moving stop-and-copy GC For a moving GC, the instantiation
with bindNonMovGC in Figure 8b is not suitable, because the continuation function
receives the old frame, whose root pointers may be invalidated if a moving GC
occurs in the course of executing thunk. Figure 9 shows an adapted instantiation.
The roots are treated differently, using the function register-m and unregister-m,
which work in a LIFO manner (see Section 2). The function bindMovGC in Figure 9b
registers to roots before executing the thunk and then unregistering them again,
which gives the update frame frame2, which is then passed to k. Note that the
original frame is not used after registering it.

(interface (NMRoots (t *))
(register -roots -nm

(-> (t) (effect IO) Int)))

(foreign -import "register -nm" register -nm
(-> (RV) (effect IO) Unit))

(foreign -import "unregister -nm" unregister -nm
(-> (Int) (effect IO) Unit))

(define (register0 (*)) 0)
(define (register1 (* val))

(register -nm val)
1)

(define (register2 (* val1 val2))
(register -nm val1)
(register -nm val2)
2)

(a) Non-moving root registration

(define (bindNonMovGC thunk frame k)
(let* ((cnt (register -roots -nm frame))

(val (thunk)))
(unregister -nm cnt))
(k frame val))

(axiom ((frm *)) ((? (NMRoots frm)))
(? (Frame frm RV RV))

(mkNMRoots bindNonMovGC))
(axiom () () (? (NMRoots (*)))

(mkNMRoots register0))
(axiom () () (? (NMRoots (* RV)))

(mkNMRoots register1))
(axiom () () (? (NMRoots (* RV RV)))

(mkNMRoots register2))

(b) Instantiation

Fig. 8: Instantiation for a non-moving mark-and-sweep GC

Instantiation for an explicit stack Figure 10 shows an instantiation which main-
tains an explicit recursion stack instead of reusing the host stack. The definition
of bindStack in Figure 10b pushes both the continuation and the frame on the
stack and simply returns the value of executing the thunk. The function engine

defines a loop which pops the top continuation of the stack and executes it until
the stack is empty. The continuation pushed on the stack in bindStack is not the
original k. Instead, it is wrapped in a lambda such that it pops its own frame from
the stack, as the layout of the frame may vary across continuation functions.
Note however that k is a reference to a top-level function and that the lambda

expression does not capture other local variables. This means that if Game\c
inlines bindStack, the lambda can be lifted, such that again only top-level function
pointers are required from the host platform. The functions push0, pop0, . . . , are
similar to the register functions of the previous instantiation, but instead they
ultimately rely on push-rv and pop-rv. This instantiation effectively converts the
evaluator into trampolined style [7]. Therefore, this instantiation would be a
good starting point for extending the interpreter with first-class continuations.

Discussion All three instantiations2 successfully compile to Racket and correctly
execute a small Scheme program. In particular, the GC instantiations do not suf-
fer from dangling or corrupt pointers after a GC. Manual instantiations would
require three rewrites of the SICP evaluator, whereas by using Game, the eval-
uator can be reused as is. However, Game also has a number of limitations.
First of all, an instantiation of a generic abstract machine consists of a single
monolithic entity, which must be composed manually by the runtime developer.
For example, code that does not go through the Game toolchain still has to
track roots itself. Second, the evaluator is treated as a single entity, with little
support for modularization, especially compared to modular interpreters using
monad transformers [11,17]. However, we believe both of these concerns to be
2 The full code of the generated interpreters can also be found on http://soft.vub.
ac.be/~stimberm/game/sc12/.

(interface (MRoots (t *))
(register -roots -m

(-> (t) (effect IO) Unit))
(unregister -roots -m

(-> () (effect IO) t)))

(foreign -import "register -m" register -m
(-> (RV) (effect IO) Unit))

(foreign -import "unregister -m" unregister -m
(-> () (effect IO) RV))

(define (register0 (*)) unit)
(define (unregister0) (*))
(define (register1 (* val))

(register -m val))
(define (unregister1)

(* (unregister -m)))
(define (register2 (* val1 val2))

(register -m val1)
(register -m val2))

(define (unregister2)
(let* ((val2 (unregister -m))

(val1 (unregister -m)))
(* val1 val2)))

(a) Moving root registration

(define (bindMovGC thunk frame k)
(register -roots -m frame)
(let* ((val (thunk))

(frame2 (unregister -roots -m)))
(k frame2 val)))

(axiom ((frm *)) ((? (MRoots frm)))
(? (Frame frm RV RV))

(mkFrame bindMovGC))
(axiom () () (? (MRoots (*)))

(mkMRoots register0 unregister0))
(axiom () () (? (MRoots (* RV)))

(mkMRoots register1 unregister1))
(axiom () () (? (MRoots (* RV RV)))

(mkMRoots register2 unregister2))

(b) Instantiation

Fig. 9: Instantiation for a moving stop-and-copy GC

orthogonal to the original goal of Game, which is to separate concerns between
and not whitin the evaluator and the runtime.

5 Related Work

In the context of modularity in interpreters, monads and monad transform-
ers proved to be a very useful abstraction technique [11,17]. The notion of
defunctionalized monadic style incorporates the abstraction power of monadic
style. Furthermore, both approaches share the use of type classes to express
the monadic operators and vary their behavior. However, the work on monadic
interpreters focussed on modularization of individual language constructs, with-
out considering the supporting runtime. Game on the other hand, specifically
considers the supporting runtime, and its relation with the evaluator as a whole.

PyPy [14] is both a toolchain for implementing virtual machines in RPython
(a restricted subset of Python) and a meta-circular implementation of Python
(in RPython). PyPy translates virtual machines written in RPython to C, and in
the process also injects required runtime functionality. PyPy supports variations
of the memory management strategy: the default translation uses a conservative
GC but it is also possible to choose a mark-and-sweep GC. However, in PyPy,
the GC must be specified in relation to RPython, whereas Game allows the GC
to be tailored towards the implemented evaluator.

The combination of transformation into continuation-passing style and de-
functionalization (transforming the continuations into data structures) was in-
troduced in [13] and extensively used to relate evaluators and abstract machines
[2,4], but also to restructure programs for the Web [8]. Game builds on this

(foreign -import "push -rv" push -rv
(-> (RV) (effect IO) Unit))

(foreign -import "pop -rv" pop -rv
(-> () (effect IO) RV))

(foreign -import "pushCnt" pushCnt
(forall ((ke !*))

(-> ((-> (RV) ke RV))
(effect IO)
Unit)))

(foreign -import "popCnt" popCnt
(-> () (effect IO) (-> (RV)

(effect IO)
RV)))

(foreign -import "stack -empty ?"
stack -empty?

(-> () (effect IO) Bool))

(a) Pushing and popping values and con-
tinuation functions

(define (bindStack thunk frame k)
(push frame)
(pushCnt (lambda (val) (k (pop) val)))
(thunk))

(define (engine val)
(if (stack -empty?)

val
(engine ((popCnt) val))))

(axiom ((frm *)) ((? (Stack frm)))
(? (Frame frm RV RV))

(mkFrame bindStack))
(axiom () () (? (Stack (*)))

(mkStack push0 pop0))
(axiom () () (? (Stack (* RV)))

(mkStack push1 pop1))
(axiom () () (? (Stack (* RV RV)))

(mkStack push2 pop2))

(b) Instantiation

Fig. 10: Instantiation for an explicit stack

work and automates the transformation, using a type and effect system to apply
it selectively. A similar idea is also used in [12], which introduces a selective
CPS transformation to implement non-local control flow constructs, and is also
used to implement delimited continuations in Scala [15]. It has however not been
used in the work on defunctionalized interpreters [4], where instead the trans-
formation was applied manually. Furthermore, Game goes beyond the level of
the abstract machine, by instantiating it with a supporting runtime, yielding an
customized and executable interpreter.

6 Conclusions and future work

We presented Game, an environment consisting of a programming language and
toolchain for constructing customized interpreters. Using Game, a reusable eval-
uator is converted into a generic abstract machine, which is subsequently instan-
tiated with a runtime, giving rise to a customized interpreter. Our experiments
demonstrate that the high-level SICP evaluator can be reused in three different
interpreters, of which the runtime varies in memory management (a non-moving
mark-and-sweep versus a moving stop-and-copy GC) and in the stack discipline
(managing an explicit stack).

We are currently investigating how to apply Game to other runtime varia-
tions, such as tail-call optimization [9], first-class continuations [3], the structure
of the interpreter loop [6], and support for implicit parallelization using continu-
ators [10]. The results for GC strengthen our confidence that these concerns can
also be injected in high-level evaluators.

References

1. H. Abelson, G. J. Sussman, and with J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd edition, 1996.

2. Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Proc. of the 5th ACM
SIGPLAN intl. conf. on Principles and practice of declaritive programming, PPDP
’03, pages 8–19, New York, NY, USA, 2003. ACM.

3. W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation strategies for
first-class continuations. Higher Order Symbol. Comput., 12:7–45, April 1999.

4. Olivier Danvy. Defunctionalized interpreters for programming languages. In Proc.
of the 13th ACM SIGPLAN intl. conf. on Functional programming, ICFP ’08, pages
131–142, New York, NY, USA, 2008. ACM.

5. Stephan Diehl and Peter Sestoft. Abstract machines for programming language
implementation. Future Gener. Comput. Syst., 16:739–751, May 2000.

6. M. Anton Ertl and David Gregg. The structure and performance of efficient inter-
preters. Journal of Instruction-Level Parallelism, 5:1–25, November 2003.

7. Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In
Proc. of the fourth ACM SIGPLAN intl. conf. on Functional programming, ICFP
’99, pages 18–27, New York, NY, USA, 1999. ACM.

8. Paul Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Automatically restructuring programs for the web. In Proc. of the
16th IEEE intl. conf. on Automated software engineering, ASE ’01, pages 211–,
Washington, DC, USA, 2001. IEEE Computer Society.

9. Chris Hanson. Efficient stack allocation for tail-recursive languages. In Proc. of the
1990 ACM conf. on LISP and functional programming, LFP ’90, pages 106–118,
New York, NY, USA, 1990. ACM.

10. Charlotte Herzeel and Pascal Costanza. Dynamic parallelization of recursive code:
part 1: managing control flow interactions with the continuator. In Proc. of the
ACM intl. conf. on Object oriented programming systems languages and applica-
tions, OOPSLA ’10, pages 377–396, New York, NY, USA, 2010. ACM.

11. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proc. of the 22nd ACM SIGPLAN-SIGACT symp. on Principles of programming
languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM.

12. Lasse R. Nielsen. A selective cps transformation. Electr. Notes Theor. Comput.
Sci., 45:311–331, 2001.

13. John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proc. of the ACM annual conf. - Volume 2, ACM ’72, pages 717–740,
New York, NY, USA, 1972. ACM.

14. Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine construc-
tion. In Companion to the 21st ACM SIGPLAN symp. on Object-oriented pro-
gramming systems, languages, and applications, OOPSLA ’06, pages 944–953, New
York, NY, USA, 2006. ACM.

15. Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymor-
phic delimited continuations by a type-directed selective cps-transform. In Proc. of
the 14th ACM SIGPLAN intl. conf. on Functional programming, ICFP ’09, pages
317–328, New York, NY, USA, 2009. ACM.

16. T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type checking
with open type functions. In Proc. of the 13th ACM SIGPLAN intl. conf. on
Functional programming, ICFP ’08, pages 51–62, New York, NY, USA, 2008. ACM.

17. Mark Snyder, Nicolas Frisby, Garrin Kimmell, and Perry Alexander. Writing com-
posable software with interpreterlib. In Proc. of the 8th Intl. Conf. on Software
Composition, SC ’09, pages 160–176, Berlin, Heidelberg, 2009. Springer-Verlag.

18. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Inf. Com-
put., 111:245–296, June 1994.

