
Context Petri Nets
Definition and Manipulation

Nicolás Cardozo1,2, Sebastián González1, Kim Mens1, and Theo D’Hondt2

1 ICTEAM Institute, Université catholique de Louvain
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium

{nicolas.cardozo, s.gonzalez, kim.mens}@uclouvain.be
2 Software Languages Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
tjdhondt@vub.ac.be

Abstract. Context-oriented programming languages provide dedicated
programming abstractions to define behavioral adaptations and means to
recompose them dynamically according to sensed context changes. Ad-
ditionally, some of these languages have proposed abstractions to explic-
itly define dependency relations between adaptations. Such dependency
relations enable programmers to specify allowed and disallowed interac-
tions between behavioral adaptations at a high abstraction level. In this
paper, we explore Petri nets as an underlying formalism to model context-
dependent adaptations and their dependencies. Petri nets offer a precise
notation and semantics for behavioral adaptations and the dependency
relations between them. Even more, Petri nets can be used as an underly-
ing representation to manage dependency relations, and activations and
deactivations of behavioral adaptations at runtime. We illustrate the ideas
through the context-oriented programming language Subjective-C.

1 Introduction

Current computing platforms consist of highly interconnected computers with
access to rich context information. Applications developed with context in mind
can leverage the full potential of these platforms by adapting their behavior
dynamically according to sensed context changes. To support the development
of such applications, the Context-Oriented Programming (COP) paradigm has
emerged to allow the definition, composition, and management of context-
dependent behavioral adaptations at run time.

In COP languages, the dynamic composition and management of context-
dependent adaptations has proven to be a challenging task. Systems must be
able to ensure that the addition and removal of behavioral adaptations, re-
spect the expected application behavior. Different approaches have been pro-
posed to ensure such consistency by defining dependency relations among adap-
tations [8,10,14]. These dependencies constrain adaptation interaction by condi-
tioning the activation and deactivation of adaptations at a high abstraction level
that is well-suited to programmers.

Unfortunately, existing approaches often define such adaptation dependen-
cies and their interaction informally, obscuring their semantics, and making it
difficult to discover the subtleties of dependency interactions.

In this paper we argue that Petri nets, and more specifically the use of re-
active Petri nets with inhibitor arcs and static priorities, are well suited for the
formal expression of application adaptation dynamics. This Petri net model is
called context Petri nets (CoPN). High-level adaptation dependencies can be
mapped naturally to a corresponding CoPN, in which places represent adapta-
tions, and transitions represent the constraints for activation and deactivation
of those adaptations. The CoPN model and formalism thus constitutes a middle
ground that bridges the gap between the high-level specification of adaptations
and their dependencies as specified by the programmer, and the corresponding
implementation that handles the actual activation and deactivation of adapta-
tions.

The proposed formalism contributes to the design and implementation of
COP languages and applications, because the definition and interpretation of
adaptation dependencies becomes precise and straightforward. The execution
flow of the CoPN model naturally corresponds to the activation dynamics of
adaptations. This provides a concrete view of the application’s state and dy-
namic evolution at any point in time. The state, interaction and constraints of
adaptations are fully expressed within the CoPN, which needs not be comple-
mented with extra information or rules describing its semantics. The verification
of activation and deactivation of adaptations is eased because both, the events,
and their availability to be triggered are explicitly expressed in the CoPN model.
Since all needed information for verification is directly available, the CoPN can
even be used at run-time to deal with the adaptation dynamics of the applica-
tion.

The remainder of this paper is organized as follows. Using a motivating ex-
ample, Section 2 briefly illustrates the COP paradigm, through the Subjective-C
language, and the need for expressing dependencies between different context-
specific behavioral adaptations. Section 3 provides an overview of how adapta-
tion dependencies are defined by Subjective-C. Section 4 introduces basic Petri
net concepts, as a lead to Section 5, which shows the CoPN definition and for-
malization. Section 6 describes how the context Petri net model is introduced
and used in Subjective-C. Section 7 discusses alternative approaches to model
and manage context-dependent adaptations. The paper is rounded off with
future work and conclusions in Sections 8 and 9.

2 Context-Oriented Programming

Context-Oriented Programming [9] allows software systems to be modularized
into behavioral variations that can be activated and deactivated at run-time.
Each variation represents a behavioral adaptation that depends on specific
properties of the surrounding environment, such as device battery level, user
preferences and geographical location. COP languages provide constructs for

the definition of such adapted behavior, and for its dynamic activation and
deactivation according to detected changes. Behavior adaptations are activated
dynamically when deemed more appropriate to the new context than the cur-
rently active behavior.

Various COP languages have been proposed, either as extensions of exist-
ing languages such as CLOS, Smalltalk and Java [17], or as entirely new lan-
guages [15]. Some of these refer to behavioral adaptations as layers and others as
contexts, but throughout this paper we stick to the term adaptation to denote the
general notion of behavioral adaptation in any of its manifestations. Whereas
the ideas presented in this paper apply to most COP languages, we illustrate
them through Subjective-C [14], a COP extension of Objective-C.

2.1 General COP Architecture

@contexts Unavailable
-(void) receive:(Call)call{
 //forward to answer machine
}

@contexts Emergency
-(void) receive:(Call)call{
 //answer promptly
}

@contexts VideoCall
-(void) receive:(call)call{
 //answer with video enabled
}

Discovery Management and Active Context Behavior

Time of day

User mode

Battery level

Camera
availability

Z47[! 0nGu! nGVR V<! 47Y7R47Rn VR7]

; G@r e7p1OV(GM7 YDVR7 47Y7R47R0{ @e! YD

Unavailable

VideoCall

High
Battery

Front
Camera

Default
Context

Emergency

Emergency+Unavailable

Fig. 1: COP system architecture and interaction.

The envisioned architecture for COP systems that we use as starting point
consists of three basic modules3, illustrated in Fig. 1.
Context discovery module Gathers information about the execution environ-
ment of the application, including data such as battery level, user settings,
presence of other devices and geographical location. The module then assigns a
semantic meaning to the discovered information. For example, it may interpret
a battery level below a certain threshold to be a LowBattery context.
Context management module Manages the different possible behavioral adap-
tations taking into account their dependency relations, and orchestrates their
composition, according to their appropriateness for the surrounding environ-
ment in which the application executes.
Active context module Keeps track of the currently active adaptations at any
point during program execution. In the context graph shown in Fig. 1, active
adaptations are highlighted in black. Different behavioral adaptations can be
simultaneously active.
Application behavior module Defines the behavior for each of the different
behavioral adaptations. The third column of Fig. 1 shows a Subjective-C exam-
ple of the definition of different behavioral adaptations when a phone call is

3 Even though there are four modules, for conciseness, the context management module
and active context module are represented together in the figure.

received (forwarding to an answering machine, answering with video enabled,
and so on).

2.2 Motivating Example: Phone Call Handling

To illustrate run-time software adaptation, consider the common example of
call reception behavior for a mobile phone. The core functionality of the phone
consists in advertising incoming calls with a ringtone, and providing a hold
mode for simultaneous calls. This core functionality can be enhanced with
behavioral adaptations that are deployed according to the context of execution.

The LowBattery adaptation is activated whenever the battery level of the
phone drops below a predefined level. The activation of LowBattery provokes
the activation of Ignore mode, to save battery by ignoring calls not coming
from VIP contacts. The Ignore mode can also be activated manually by users.
A DoNotDisturb adaptation is activated whenever it is detected that the phone
should be silent 4 and its advertising method is set to vibrate instead of ringing.
This adaptation may be further refined by the Redirect adaptation in which
calls should be forwarded to another number, for example when in a meeting.
The Unavailable adaptation forwards calls received at inconvenient times, for
example at night, to the phone’s answering machine. A VideoCall adaptation
allows to have video calls on phones with a FrontCamera but only when the
battery level is sufficiently high. The Emergency adaptation allows to receive
calls promptly regardless of other applicable situations. Additionally, the com-
bination of some of these adaptations may require special treatment, such as
the combination of Emergency and Unavailable, since one adaptation allows
for urgent calls whereas the other transfers all calls to the answering machine.
This dedicated behavior can be specified in a combined adaptation.

2.3 Subjective-C

Let us now take a closer look at how this motivating example could be im-
plemented in a COP language like Subjective-C. The third column of Fig. 1
already illustrates how to define behavioral adaptations: essentially they are
regular Objective-C methods with a special @contexts annotation that indi-
cates in presence of which contexts is the method appropriate. Snippet 1 shows
the adapted behavior for receiving a call, in the cases of Unavailability and
Redirection.

In this subsection we will focus on the language abstractions needed to
manage the definition and consistent interaction of adaptations in Subjective-
C. A detailed explanation of the different context-oriented language constructs
and their implementation can be found in the seminal Subjective-C paper [14].

To deal with unexpected or contradicting behavior rising from the com-
bination of adaptations, Subjective-C allows to express dependency relations

4 How the phone would detect that it is in a context where silent mode is preferred is
the responsibility of the context discovery module and out of the scope of this paper.

@contexts Unavailable
-(void) receive:(Call*) call{
//Forward to answer machine

}

@contexts Redirect
-(void) receive:(Call*) call{
//Redirect to secretary

}

Snippet 1: Behavioral adaptations for the receive method.

SCContext *lowBattery = @context(@"LowBattery");
SCContext *ignore = @context(@"Ignore");
[contextManager addWeakInclusionFrom:lowBattery to:ignore];

Snippet 2: Weak inclusion dependency relation declaration

between adaptations. Such dependency relations can be defined programmati-
cally by means of dedicated language constructs as shown in Snippet 4. Each of
these dependencies, as will be detailed later, imposes constraints on the activa-
tion and deactivation of adaptations. The weak inclusion dependency relation
between LowBattery and Ignore exemplified in Snippet 4 causes the Ignore
adaptation to be activated as a consequence of the activation of LowBattery.5

A dependency graph is used as an intuitive and compact representation of
adaptations and their dependencies. To concisely define such adaptation de-
pendencies, Subjective-C is complemented with a domain-specific Context Dec-
laration Language (CDL). Fig. 2 shows the dependency graph (left) and its cor-
responding CDL (right) for the mobile phone example. Both the dependency
graph and native Subjective-C constructs such as those of Snippet 4 are gener-
ated from the declared contexts and dependency relations.

Ignore

Emergency

DoNotDisturb

Unavailable

FrontCameraVideoCall

Redirect
LowBattery

HighBattery
Emergency+Unavailable

OffHook

Emergency+OffHook

default context

LowBattery -> Ignore

VideoCall =< HighBattery

LowBattery >< HighBattery

VideoCall => FrontCamera

Redirect -> DoNot Disturb

Redirect >< Ignore

Redirect >< Unavailable

Ignore >< Unavailable

Fig. 2: Mobile phone dependency graph

The rectangle enclosing the dependency graph in Fig. 2, represents the core
behavior of the application, to which we refer to as the default context. The
decorated arcs represent the currently existing types of dependency relations

5 The inclusion is “weak” in that changes to the target of the dependency, in this case
Ignore, do not affect the state of the source, LowBattery.

[receiveCall: phone]; // phone rings
@activate(ignore) //explicit activation of ignore mode
// Ignore COUNT = 1
[receiveCall: phone]; // call ignored
//phone battery is low, triggering @activate(lowBattery)
//request which in turn triggers @activate(ignore)
// LowBattery COUNT = 1 - Ignore COUNT = 2
[receiveCall: phone]; //call still ignored
@deactivate(ignore); //explicit deactivation of ignore mode
// LowBattery COUNT = 1 - Ignore COUNT = 1
[receiveCall: phone]; //call still ignored
//phone battery is high, triggering @deactivate(lowBattery)
//which in turn triggers @deactivate(ignore)
// LowBattery COUNT = 0 - Ignore COUNT = 0
[receiveCall: phone]; // phone rings

Snippet 3: Keeping track of active adaptations with activation counters

between adaptations. Edges ending with empty triangles (–.) represent weak
inclusions, full triangles (–I) represent strong inclusions, inverse full triangles
(–J) represent requirement relations, and edges with squares on both sides
(�–�) represent exclusions. The meaning of these different types of dependen-
cies will be explained in detail in Section 3.

Fig. 2 also contains simple arrows (→) to represent composition depen-
dencies. Such dependencies denote behavioral adaptations that combine two
previously defined adaptations. Intuitively, the composed adaptation is avail-
able if and only if all of its components are available. The actual semantics of
this composition dependency will be presented in Section 5.

To verify whether it is possible to activate an adaptation,6 the constraints
imposed by the dependencies must be satisfied. Take for example the activa-
tion of the Unavailable adaptation in Fig. 2. Each of the dependent adap-
tations must be checked. In order to activate Unavailable both Ignore and
Redirect must be inactive. In case the Emergency adaptation is already active,
the Emergency+Unavailable adaptation must be activated. This verification
process needs to be repeated for each of the adaptations that are implicitly ac-
tivated as a consequence of activating the Unavailable adaptation, and thus
may propagate throughout the entire graph.

As illustrated in this verification process, activation of an adaptation may
trigger the automatic activation of other adaptations as a consequence of the
defined dependency relations. For example, in the weak inclusion dependency
defined in Snippet 4, the activation of LowBatterywill automatically trigger the
activation of Ignore.

To handle these kind of situations, the notion of activation counters was intro-
duced [13]. Activation counters work much like the retain/release mechanism

6 Throughout the paper we refer to the activation case, although the whole discussion
applies to the deactivation case as well.

of memory management systems based on reference counting. Snippet 3 illus-
trates the idea. Essentially, when an adaptation is activated directly or indirectly,
its activation counter is incremented by 1, and when it is deactivated, the acti-
vation counter is decremented by 1. Only when the activation counter becomes
zero the adaptation is considered inactive. Snippet 3 shows how the activation
counter mechanism maintains the expected behavior throughout interleaved
(direct or indirect) activation and deactivation of adaptations.

Having introduced the Subjective-C language and the different kinds of
dependency relations between adaptations, Section 3 takes a closer look at these
different kinds of dependency relations.

3 Adaptation Dependencies

This section presents in more detail the different adaptation dependencies orig-
inally introduced in Subjective-C. The presentation of dependencies given in
this section in term of events, predicates and rules already constitutes an im-
provement that makes more precise the original definition of dependencies in
Subjective-C. This updated definition of dependencies is the basis from which
we develop the formal semantics in terms of context Petri nets in Section 5.

To define the semantics of the different dependencies, two auxiliary events
and a predicate are introduced. The events act(..) and deact(..) express the acti-
vation and deactivation of an adaptation, whereas the isAct(..) predicate checks
whether an adaptation is active. We use the notation E1 ⇒ E2 to express that
the event E1 automatically triggers E2. The notation C

R expresses the fact that a
rule (or event) R can be triggered only when condition C is valid. For example
¬isAct(A1)
deact(A2) means that A2 can be deactivated only when A1 is inactive. In addi-

tion, rules with deactivation events will always assume implicitly adaptations
to be deactivated are in fact active, since it does not make sense to deactivate an
already inactive adaptation.

For each dependency follows a specification providing, a description of its
purpose, notation and intuitive semantics.
Weak inclusion Weak inclusion represents a dependency relation where the
activation (deactivation) of the source adaptation automatically triggers the
activation (deactivation) of the target adaptation. However, the dependency is
weak in the sense that the target adaptation can still be activated or deactivated
independently of the source adaptation.

LowBattery Ignore

Fig. 3: Weak inclusion dependency

A typical example of a weak inclusion dependency is given in Fig. 3. When
the battery level of the phone is low, the LowBattery adaptation is turned on.
This activation will automatically turn on the Ignore adaptation in order to
save battery. Similarly, if the phone is charged and the LowBattery adaptation is

turned off, the Ignore adaptation is not needed anymore, and is also turned off,
leaving the default call advertisement behavior. The LowBattery adaptation is
said to weakly include theIgnore adaptation. The inclusion dependency is weak
in the sense that the Ignore adaptation can be turned on and off independently
of the LowBattery adaptation. For example, if the LowBattery adaptation is
activated, Ignorewill be turned on, but if the user wants to receive all incoming
calls, he could turn off the Ignore adaptation, regardless of the battery level.
Table 1 shows a rule-based semantics definition of the weak inclusion depen-
dency relation. As explained before, whenever the LowBattery adaptation is
activated, the Ignore adaptation should be activated too. Likewise, deactivation
of the LowBattery adaptation triggers deactivation of the Ignore adaptation.
The Ignore adaptation may be activated or deactivated independently.

act(LowBattery)⇒ act(Ignore) act(Ignore)
deact(LowBattery)⇒ deact(Ignore) deact(Ignore)

Table 1: Weak inclusion dependency semantics

Strong inclusion Strong inclusion represents a dependency relation where,
similarly to weak inclusions, the activation (deactivation) of the source adapta-
tion automatically triggers the activation (deactivation) of the target adaptation.
In this case however, the inclusion is said to be strong because the deactivation
of the target adaptation automatically triggers the deactivation of the source
adaptation. However, the target adaptation can still be activated independently
of the source adaptation. These rules are summarized in Table 2.

VideoCall FrontCamera

Fig. 4: Strong inclusion dependency

A typical example of a strong inclusion dependency is given in Fig. 4. When
a video call request is received, the VideoCall adaptation is activated, which
will automatically activate FrontCamera. When the VideoCall adaptation is
deactivated, the FrontCamera adaptation is deactivated automatically, since the
camera was being used for the call. Similarly, if the FrontCamera is turned off,
the VideoCall is automatically turned off and the phone immediately reverts to
its default behavior. However, users may activate the FrontCamera adaptation
independently of VideoCall, for example to take photos.

act(VideoCall)⇒ act(FrontCamera) act(FrontCamera)
deact(VideoCall)⇒ deact(FrontCamera)

deact(FrontCamera)⇒ deact(VideoCall) ¬isAct(VideoCall)

deact(FrontCamera)

Table 2: Strong inclusion dependency relation semantics

Two observations can be made at this point. Firstly, comparing Table 1 and
Table 2, the dependency is indeed stronger since the rules are the same except

for the fourth rule (deactivating the target adaptation) which was split in two
separate cases: when the source adaptation is not active but the target one is,
then the target adaptation can be deactivated freely; if, on the other hand, the
two adaptations are active then they are deactivated together7.
Secondly, shortcomings of the intuitive semantics become apparent. What hap-
pens when the adaptations are active multiple times and one of them is de-
activated once? Questions like these generate subtle rules that can easily be
overlooked, hence motivating the need for a more detailed semantics.
Exclusion The exclusion dependency relation constraints two adaptations so
that they cannot be active at the same time. However, both adaptations may be
simultaneously inactive.

adaptation can be deactivated freely; if, on the other hand, the two adaptations
are active then they are deactivated together7.
Secondly, shortcomings of the intuitive semantics become apparent. What hap-
pens when an adaptation is activated multiple times? Questions like these gen-
erate subtle rules that can easily be overlooked, hence motivating the need for
a more detailed semantics.
Exclusion The exclusion dependency relation constraints two adaptations so
that they cannot be active at the same time. However, both adaptations may be
simultaneously inactive.

HighBattery LowBattery

Fig. 5: Exclusion dependency relation

A typical example of a mutual exclusion dependency is given in Fig. 5. The two
adaptations HighBattery and LowBattery are not allowed to be active at the
same time, representing the fact that the physical battery cannot simultaneously
have a high and a low charge level. If the HighBattery adaptation is to be
activated, then the LowBattery adaptation must be deactivated first, and vice
versa. Table 3 shows the intuitive semantics for the exclusion dependency.

¬isAct(LowBattery)

act(HighBattery)

¬isAct(HighBattery)

act(LowBattery)

deact(HighBattery) deact(LowBattery)

Table 3: Exclusion dependency semantics
Requirement This dependency represents the situation in which the activation
of the source adaptation is possible only if the target adaptation is already
active. This restriction implies that the deactivation of the target adaptation
automatically triggers the deactivation of the source adaptation.

VideoCall HighBattery

Fig. 6: Requirement dependency

Fig. 6 shows a typical example of the requirement dependency. The VideoCall
adaptation (source) requires the HighBattery adaptation (target) to be active,
since processing the video for a call is power consuming. This means that, if the
HighBattery adaptation is turned off, the VideoCall adaptation is automat-
ically deactivated because the image processing would drain the phone’s bat-
tery. However, the two adaptations are not tightly related, as activation of the
HighBattery adaptation is independent of the VideoCall one, and deactivation
of the VideoCall adaptation is independent of the HighBattery adaptation.
Table 4 shows the rule-based semantics of the requirement dependency.
7 For the rule deact(FrontCamera) ⇒ deact(VideoCall), remember that we assume

all adaptations involved in the rule to be active. Without this assumption the rule
would have needed to be written as: isAct(VideoCall)∧isAct(FrontCamera)

deact(FrontCamera)⇒deact(VideoCall)

Fig. 5: Exclusion dependency relation

A typical example of a mutual exclusion dependency is given in Fig. 5. The two
adaptations HighBattery and LowBattery are not allowed to be active at the
same time, representing the fact that the physical battery cannot simultaneously
have a high and a low charge level. If the HighBattery adaptation is to be
activated, then the LowBattery adaptation must be deactivated first, and vice
versa. Table 3 shows the intuitive semantics for the exclusion dependency.

¬isAct(LowBattery)
act(HighBattery)

¬isAct(HighBattery)
act(LowBattery)

deact(HighBattery) deact(LowBattery)

Table 3: Exclusion dependency semantics

Requirement This dependency represents the situation in which the activation
of the source adaptation is possible only if the target adaptation is already
active. This restriction implies that the deactivation of the target adaptation
automatically triggers the deactivation of the source adaptation.

VideoCall HighBattery

Fig. 6: Requirement dependency

Fig. 6 shows a typical example of the requirement dependency. The VideoCall
adaptation (source) requires the HighBattery adaptation (target) to be active,
since processing the video for a call is power consuming. This means that, if the
HighBattery adaptation is turned off, the VideoCall adaptation is automati-
cally deactivated. However, the two adaptations are not tightly related, as acti-
vation of the HighBattery adaptation is independent of the VideoCall one, and

7 For the rule deact(FrontCamera) ⇒ deact(VideoCall), remember that we assume all
adaptations involved in the rule to be active. Without this assumption the rule would
have needed to be written as: isAct(VideoCall)∧isAct(FrontCamera)

deact(FrontCamera)⇒deact(VideoCall)

deactivation of the VideoCall adaptation is independent of the HighBattery
adaptation. Table 4 shows the rule-based semantics of the requirement depen-
dency.

isAct(HighBattery)
act(VideoCall)

act(HighBattery)

¬isAct(VideoCall)

deact(HighBattery)
deact(VideoCall)

deact(HighBattery)⇒ deact(VideoCall)

Table 4: Requirement dependency semantics

A detailed definition of these dependencies, as well as that of a new com-
position dependency not introduced previously by Subjective-C, is given in
Section 5 based on the Petri nets formalism. The formalism is briefly explained
in Section 4.

A detailed definition of this dependency, as well as that of a new composition
dependency not introduced previously by Subjective-C, is given in Section 5
based on the Petri nets formalism, which is briefly explained in Section 4.

4 Petri Nets

Before diving into the detailed definition of adaptation dependencies, this sec-
tion presents the basic Petri net concepts and an extension that we use for our
model. As explained later on, the use of Petri nets to model run-time adaptation
in context-oriented programs is driven by the natural mapping of adaptation
dependency graphs to Petri nets, as well as the ability of Petri nets to describe
the dynamic execution of a system.

Petri nets have been used extensively to describe the information control
flow of non-deterministic, concurrent systems. This makes such formalism suit-
able to model dynamic context changes and interactions between multiple con-
texts [23]. They provide an abstract means to model system components, and
the flow of information between components. Intuitively, a Petri net provides a
representation of the states of a system, possible actions over these states, and a
specification of when actions can take place.

4.1 Basic Petri Nets

Petri nets are directed bipartite graphs, with places and transitions as disjoint
node sets. Formally [23], a Petri net is a quadruple P =< P,T, f ,m0 > where P is
a finite set of places, T is a finite set of transitions, f : (P× T)∪ (T × P) −→ Z+ is
the flow function, and m0 : P −→ Z+ is the initial marking function.

The flow function defines the number of arcs between a place and a tran-
sition, and vice versa. There cannot be any arcs between two places or two
transitions. A marking assigns tokens to places. Intuitively, the tokens described

by the initial marking start to flow through the network according to the arcs de-
scribed by the flow function, yielding a new marking in every step. The marking
function allows for multiple tokens to be assigned to a single place.

Fig. 7 shows an example of a simple Petri net where P = {p1, p2}, T = {t1, t2, t3},
m0(p1) = 2, m0(p2) = 0 and the flow function f is defined by the table in the lower
part of Fig. 7. The first argument of the function is shown on the rows and the
second on the columns. For example, for row t2 and column p2, f (t2, p2) = 2,
meaning that there are 2 edges from transition t2 to place p2.

p1
t1 p2

t2

t3

f t1 t2 t3 p1 p2

p1 0 1 0 - -
p2 0 0 1 - -

t1 - - - 1 0
t2 - - - 1 2
t3 - - - 0 0

Fig. 7: Basic Petri net with its flow function f

Places usually represent conditions or states of a system, like “battery is
low”. A state is valid (active) if there is at least one token in the respective
place. Transitions usually represent events or actions to be performed on states.
Transitions modify the state of a system by the transition of tokens from one
place to another after firing the transition. A transition t is enabled (can fire) if
all its input places •t = {p ∈ P | f (p, t) > 0} contain at least f (p, t) tokens. As many
as f (t, p) tokens will flow to each output place t• = {p ∈ P | f (t, p) > 0}. Since
many transitions may be enabled at any given time, any of them can be fired,
making Petri nets non-deterministic models.

Triggering a transition modifies the marking function mi to a new marking
mi+1. In the example of Fig. 7, firing transition t2 will yield a new marking m1,
from m0, where m1(p1) = 2, m1(p2) = 2.

Transitions like t1 with no input places are called sources; they are always
enabled. Transitions like t3 with no output places are called sinks; tokens are
removed from the net after their firing.

In the following we present some extensions to the basic Petri net model,
needed for the development of our formal model (cf. Section 5).

4.2 Priority Systems

Priority systems [24] provide a means to explicitly express the absence of tokens
in a place. Priorities are introduced in Petri nets by adding zero-testing or inhibitor
arcs. Inhibitor arcs, decorated as circle-ended edges ((), are given by a flow

function f◦ : P × T→ {0, 1}. There can be maximum one inhibitor arc between a
place and a transition.

p1

t1

p3 p4
t2 t3

p2

Fig. 8: Petri net with inhibitor arcs

To account for inhibitor arcs the transition firing rules need to be modified.
A transition t is said to be enabled if and only if, as before, all of its input places
from regular arcs are marked with at least f (p, t) tokens, and all of its input
places from inhibitor arcs {p ∈ P | f◦(p, t) = 1} are not marked. Fig. 8 shows an
example of a Petri net with one inhibitor arc f◦(p2, t3) = 1. In this Petri net, the
enabling of transitions t2 and t3 depends on the marking of p2. Only if p2 is
marked can t2 be enabled; on the other hand, t3 can be enabled only if p2 is not
marked. Because of this, t2 is said to have priority over t3.

4.3 Static Priorities

Static priorities are introduced in Petri nets to fix a firing order over transitions
[1,2]. Priorities are given by a function ρ : T → Z+ decorating transitions with
a weight denoting their firing order. Transitions with a higher priority are fired
before transitions with a lower priority. An example of a Petri net with static
priorities is shown in Fig. 9. Priorities are shown as small numbers decorating
the transitions.

p1

p2

t1
1

t2

2

p3 t3

2

Fig. 9: Petri net with static priorities

The transition firing rules need to be modified to take into account this
new restriction. A transition t is enabled if its input places from normal arcs
contain at least f (p, t) tokens, its input places from inhibitor arcs are empty,
and no other transition in the Petri net with a higher priority is enabled. If two
transitions with the same priority are enabled at the same time, they are fired
non-deterministically.

In the example of Fig. 9 any of t2, or t3 can fire. t1 cannot fire because it
has lower priority than both t2 and t3, which are enabled. Only after t2 has fire
twice and t3 three times (regardless of the order in which they fired), t1 becomes
enabled and can fire.

4.4 Reactive Petri Nets

Reactive Petri nets [12] are introduced to allow the automatic firing of tran-
sitions once they are enabled. Such behavior is desired in systems that, as in
COP, must react automatically as a consequence of changes in the surrounding
environment.

Reactive Petri nets split the set of transitions into two sets T = Te ∪ Ti,
modifying the firing semantics. External transitions (Te) are fired with the regular
may fire semantics of Petri nets. That is, if a transition is enabled it may fire.
External transitions can be seen as to fire as a consequence of an external input
source. Internal transitions (Ti) are fired with a must fire semantics. That is, if an
internal transition is enabled it must fire. Internal transitions can be seen as to
process internal actions of the system.

t0

p0

p1

t1

t2

p2

p3

t3

t4

p4

p5

t5

p6

Fig. 10: Reactive Petri net

Fig. 10 shows an example of a reactive Petri net. In the figure, external
transitions are represented in white, and internal transitions are represented in
black. Transitions t2, t3 and t5 are fired as soon as they become enabled.

Reactive Petri nets introduce the notion of net stability. A reactive Petri net is
said to be stable if none of its internal transitions is enabled. From this condition
it can be seen that in order to have an stable reactive Petri net, all enabled internal
transitions must fire before any external transition does. A formal definition of
net stability and the equivalence between reactive Petri nets and simple Petri
nets is provided in the seminal work on reactive Petri nets [12].

5 Context Petri Nets Runtime Model and Semantics of COP
Systems

Having introduced Petri nets, this section presents our formalism for the defi-
nition and run-time representation of context-dependent adaptations and their
dependencies. The section focuses on the specification of the CoPN formal-
ism and its precise semantics to define COP systems, in particular adaptations,
dependency relations and the composition of different adaptations.

The CoPN model corresponding to the dependency graph for the mobile
phone application of Fig. 2 can become quite complex as the number of adapta-
tions, and the dependency relations between them increases. The model is rather
intended to serve as a precise runtime model that unambiguously specifies the

underlying semantics of the dependency graph of Fig. 2, and to represent the
current state of the system, and the allowed activations and deactivations at any
point during the system execution.

The remainder of this section gives a formalization for CoPNs. A discussion
of the benefits of using CoPN as a formal notation and eventually as an execution
model follows in Section 7.

5.1 Context Petri Nets definition

This section presents the formal definition of CoPN and maps its elements onto
the different COP concepts.8

Definition 1. A context Petri net is defined as a reactive Petri net, with inhibitor arcs
and static priorities P =< P,T, f , f◦, ρ,m0 >. Additionally we differentiate between
two disjoint sets of places, context and temporary places, such that P = Pc ∪ Pt.

Definition 2. An adaptation is a particular CoPN defined by the structure in Fig. 11
for which Pc is a singleton set. The set of single context CoPNs is denoted as S. Hence a
particular context is sub-indexed by the name of the contextCIgnore, where CIgnore ∈ S.

Pr.Ignore
req(Ignore) act(Ignore)

Ignore

req(¬Ignore)
Pr.¬Ignore

deac(Ignore)

¬Ignore
cl(¬Ignore)

Fig. 11: CoPN CIgnore for a single context Ignore

Places in CoPN are used to capture the state of adaptations. An adaptation is
defined in terms of four places as depicted in Fig. 11.

– Context places Pc (solid border circles in Fig. 11) are used to represent the
different adaptations in the system.

– Temporary places Pt (dashed border circles in Fig. 11) are introduced to express
temporary (preparatory and cleanup) states for an adaptation, easing the
consistency verification and composition processes. The temporary places
of a CoPN are used for the processing of: a request to activate an adap-
tation, a request to deactivate an adaptation, or to flag an adaptation is
already deactivated. The usefulness of temporary places is evidenced for
the composition of CoPNs which is explained in Section 6.1.

Activation and deactivation of an adaptation does not occur immediately, but
needs to be requested first and processed carefully, since the request may be
denied if the activation or deactivation would violate constraints imposed by
other adaptations.

8 A full implementation of the CoPN runtime model for the context-oriented language
Subjective-C is available for download at:http://released.info.ucl.ac.be/Tools/
Context-PetriNets.

http://released.info.ucl.ac.be/Tools/Context-PetriNets
http://released.info.ucl.ac.be/Tools/Context-PetriNets

Given that adaptations can be activated multiple times, the flag place ensures
that adaptations are deactivated only once per deactivation request. For exam-
ple, if an adaptation reifies a service that is acquired from multiple sources, and
one of the service providers is disconnected but the other ones remain active.
Given an adaptation Ignore, as in Fig. 11, its corresponding CoPN CIgnore, is
realized by: Pc = {Ignore} and Pt = {Pr.Ignore, Pr.¬Ignore,¬A} with exactly
3 places, representing respectively, preparation for activation, preparation for
deactivation, and the already deactivated flag.9

Transitions represent actions that can be taken on the state of a system. In the
case of CoPN, these actions correspond to adaptation activations and deactiva-
tions. Transitions are divided into three mutually disjoint sets: Te,Ti and Tc.

– External transitions Te (white squares in Fig. 11) are used to request an adapta-
tion activation or deactivation in response to some change in the surround-
ing environment. Their priority is given by: ρ(te) = 0,∀te ∈ Te

– Internal transitions Ti (black squares in Fig. 11) deal with the constrains
imposed by other adaptations, as we will see in Section 3. Internal transitions
trigger the actual activation or deactivation of adaptations. Their priority is
given by: ρ(ti) = 2,∀ti ∈ Ti

– Internal-cleaning transitions Tc (gray squares in Fig. 11) are a particular kind
of internal transitions which are used to clean the already deactivated flag
(¬A), after all other internal transitions have been fired. Their priority is
given by: ρ(tc) = 1,∀tc ∈ Tc

Fig. 11 shows the priority for each of the transitions. In the remainder of this
paper priorities will be omitted from figures, as these can be deduced from the
color of transitions.
Tokens represent context activations as they reside in places. Depending on
in which place a token is, this represents the state of an adaptations, active
or inactive. In Fig. 11 the context Ignore is active if the place labeled Ignore
contains a token, preparing for activation if place Pr.Ignore contains a token,
preparing for deactivation if place Pr.¬Ignore contains a token, and already
deactivated if place ¬Ignore contains a token.
Inhibitor arcs provide the possibility to verify the absence of tokens in a place.
Inhibitors are used to model dependency relations, for example to express that
a context can only be activated if some other context is not active.

Generally, a COP system is composed of multiple adaptations (e.g. instances
of Fig. 11). A particular adaptation can depend on many other adaptations. First,
we formalize different possible dependency relations between adaptations. The
definition of the composition operator for CoPN is given in Section 6.1.

5.2 Mapping Dependencies to Petri Nets

Using the mapping scheme presented in Section 5.1, this section presents the
corresponding CoPN definition for each of the dependency relations. These def-

9 In CoPNs, labels serve only as a visual decoration to identify places and transitions.
Labels have no semantic purpose in the model.

initions are based on the mapping given in Section 5.1, and use the examples
given in Section 3.

Taking advantage of the fine grained definition of adaptations previously
given, dependency relations can be defined in terms of CoPNs. Dependency
relations are defined as a set of constraints describing the interaction between
two adaptations. Such constraints are expressed as clauses that must be satisfied
by the CoPN.

Definition 3 (Relation constraints). A constraint on a CoPNP =< P,T, f , f◦, ρ,m0 >
is defined as a clause of the form:

Q t ∈ T such that B1(t) : B2(t)

where Q is a quantifier over the transitions T, B1 is a condition over such transitions and
B2 is a condition over the flow functions f or f◦ that must follow whenever condition
B1 holds.

Take as example the following clauses used to describe part of the CoPN
in Fig. 11: ∀t ∈ T then • t , φ ∨ t• , φ (all transitions have predecessors
or successors) and ∃t ∈ T such that t• = φ (There is a transition that has no
successors).

Definition 4 (Dependency relation). Given two adaptations C1,C2 ∈ S, a depen-
dency relation R(C1,C2) between the two adaptations, is defined as a CoPN P where
C1,C2 ∈ P and P satisfies all constraints in the set CR of constraints for the relation.
The set of dependency relations is denoted as R.

Definition 5 (Satisfiability). We say that a CoPN P satisfies a set of constraints C ,
denoted as P |= C , if and only if ∀c ∈ C the transitions t in P validate the constraint.

Satisfiability in CoPN is verified programmatically by going over all c ∈ C
and verifying if the constraint is valid for the transitions in the CoPN. As it will
be seen in Section 6.1, this process takes place every time adaptations are added
to the system by means of composition.

Currently, CoPN supports the 4 dependency relations described in Section 3,
however, other relations could be defined in a similar fashion. In the following
definitions the constraints can be visually identified by the arcs going from
one adaptation to another, and the transitions that lie in between them. The
set C of constraints that must be fulfilled and the corresponding CoPN visual
representation.

The visual representation given in the following definitions contains double
arcs. These are not a new kind of Petri net element, they are just a visual synthesis
to make the model less cluttered. A double arc between a place p and a transition
t is the synthesis of the arcs (p, t) and (t, p) in f .

Each dependency relation is presented with an intuitive example showing
when such dependency relation could be used, and the way the adaptations in-
teract when they are activated. Dependency relations between two adaptations
are usually defined based on the domain information of the application. Their

interaction whenever an adaptation is activated or deactivated in CoPN (i.e. the
flow of tokens), is explained in Section 5.3.

The CoPN defined by each of the dependency relations is of the form P =<
P,T, f , f◦, ρ,m0 >.

Weak inclusion (L–�I) The conditions that must be satisfied by a weak inclu-
sion are:

CW : ∃t ∈ T such that L,Pr.¬I ∈ •t and (I, t) ∈ f◦
∀t ∈ T such that L ∈ t • and I < •t then (t,Pr.I) ∈ f
∀t ∈ T such that L ∈ •t and (I, t) < f◦ then (t,Pr.¬I) ∈ f
∀t ∈ T such that L ∈ •t and (I, t) < f◦ then (I, t), (t, I) ∈ f

Pr.Lreq(L) act(L)

deac(L)

L

req(¬L)

Pr.¬L

deac(L)

¬L
cl(¬L)

Pr.I
req(I) act(I)

I
req(¬I)

Pr.¬I
deac(I)

¬I
cl(¬I)

Fig. 12: Weak inclusion dependency relation CoPN definition

Fig. 12 shows the corresponding CoPN for a weak inclusion. Triggering the
act(L) transition, activates the LowBattery (L) adaptation and request the acti-
vation for the Ignore (I) one. There are two possible transitions to deactivate
the LowBattery adaptation because, as suggested in the intuitive semantics
of Table 1, the deactivation of LowBattery must trigger the deactivation of
Ignore. This can be seen by the rightmost transition labeled deac(L). However,
the Ignore adaptation may be freely activated and deactivated. Therefore, it
should be possible to deactivate the LowBattery adaptation (leftmost deac(L)
transition) even when Ignore is inactive (does not contain any tokens). The in-
hibitor arc accounts for the case in which Ignore is already inactive. Such cases
expressed with inhibitor arcs are easy to miss when expressing the semantics
informally in words or in rules using predicates, as was done in Section 3. The
advantage of expressing the semantics formally in terms of CoPNs is the explicit
statement of all possible cases in a concise way. Having specified the semantics
more formally, it is apparent that there is a rule missing in Table 1 to cover the

deactivation of LowBatterywhen Ignore is inactive, ¬isAct(Ignore)
deact(LowBattery)

.

Strong inclusion (V–I F) The conditions that must be satisfied by a strong
inclusion are:

CS : ∃t ∈ T such that (Pr.¬V, t), (t,¬V), (¬V, t) ∈ f
∃t ∈ T such that (Pr.F, t), (t,¬F), (¬F, t) ∈ f
∃t ∈ T such that F,Pr.¬F ∈ •t and (V, t) ∈ f◦
∀t ∈ T such that ¬V ∈ t • and ¬V < •t then (¬V, t) ∈ f◦
∀t ∈ T such that ¬F ∈ t • and ¬F < •t then (¬F, t) ∈ f◦
∀t ∈ T such that V ∈ t • and V < •t then (t,Pr.F) ∈ f
∀t ∈ T such that V ∈ •t and V < t • then (t,Pr.¬F) ∈ f
∀t ∈ T such that F ∈ •t and (V, t) < f◦ then (t,Pr.¬V) ∈ f
∀t ∈ T such that F ∈ •t and (V, t) < f◦ then (V, t), (t,V) ∈ f

Pr.Vreq(V) act(V)

deac(F)

V

req(¬V)

Pr.¬V

deac(V)

¬V
cl(¬V)

deac(V)

Pr.F
req(F) act(F)

F
req(¬F)

Pr.¬F
deac(F)

¬F
cl(¬F)

deac(F)

Fig. 13: Strong inclusion dependency relation CoPN definition

The strong inclusion corresponding CoPN is shown in Fig. 13. The difference
with the weak inclusion comes from the deactivation of the FrontCamera (F)
adaptation Now, the deactivation of the FrontCamera requests the deactivation
of the VideoCall. Additionally, the FrontCamera may be activated and deacti-
vated independently from the VideoCall adaptation. An inhibitor is placed to
allow deactivation of the FrontCamerawhen the VideoCall adaptation has not
been activated.
Exclusion (L �–� H) The conditions that must be satisfied by an exclusion are:

CE : ∀t ∈ T such that L ∈ t • then (H, t) ∈ f◦
∀t ∈ T such that H ∈ t • then (L, t) ∈ f◦

The exclusion CoPN is shown in Fig. 14. Here, the activation of the two adap-
tations HighBattery (H) and LowBattery (L) are restricted by inhibitor arcs
coming from the other adaptation. The activations are only enabled if the other
place is not marked.

Pr.L

req(L) act(L)

act(H)

L

req(¬L)
Pr.¬L

deac(L)

¬L
cl(¬L)

Pr.H

req(H)
H

req(¬H) Pr.¬H

deac(H)

¬H
cl(¬H)

Fig. 14: Exclusion dependency relation CoPN definition

Requirement (V–�H) The conditions that must be satisfied by a requirement
are:

CR : ∃t ∈ T such that (Pr.¬V, t), (t,¬V), (¬V, t) ∈ f
∃t ∈ T such that H,Pr.¬H ∈ •t and (V, t) ∈ f◦
∃t ∈ T such that V,Pr.¬V ∈ •t, (H, t) ∈ f◦

and (¬V, t), (t,¬V), (t,Pr.¬V) ∈ f
∀t ∈ T such that ¬V ∈ t • and ¬V < •t then (¬V, t) ∈ f◦
∀t ∈ T such that V ∈ t • and V < •t then (H, t), (t,H) ∈ f
∀t ∈ T such that H ∈ •t and V < •t then (t,Pr.¬V) ∈ f

Pr.H

req(H) act(H)

deac(V)

H req(¬H) Pr.¬H

deac(H)
¬H

cl(¬H)

deac(H)

Pr.V

req(V) act(V)
V

req(¬V)
Pr.¬V

deac(V)

¬V
cl(¬V)

deac(V)

Fig. 15: Requirement dependency relation CoPN definition

The leftmost transitions of the diagram show the independent deactivation and
activation of theHighBattery (H) adaptation. The inhibitor from theVideoCall
(V) adaptation to the deact(H) is required for the deactivation of the HighBattery
adaptation when VideoCall is inactive. If VideoCall would be active, then
deactivation of HighBattery would also deactivate the VideoCall adaptation
(rightmost bottom transition). Note that the activation of VideoCall is not a
source transition, but it has the HighBattery place as an input, precisely to
express the condition that the VideoCall requires HighBattery. The transition
has an arc going back to the HighBatteryplace, because otherwise the activation

count for HighBatterywould decrease when activating VideoCall. Finally, the
deactivation of VideoCall can take place independently.

5.3 Adaptation (de)Activation Semantics

Adaptations can be dynamically activated and deactivated as a consequence
of changes in the system’s execution environment. CoPN semantics is used to
ensure a consistent system behavior when adaptations are activated (via the
constraints imposed by the dependency relations). A consistent state is always
ensured during the execution of the system when using CoPN.

Definition 6. A CoPN P is said to be in a consistent state if, after all internal
transitions have fired, there is no temporary place which is marked.

The state in a CoPN can only be modified by means of an adaptation activa-
tion or deactivation. Whenever any of these actions is triggered in the system
for a particular adaptation, the corresponding external transition is fired in the
CoPN. More specifically, when adaptation Ignore is activated, the transition la-
beled req(Ignore) is fired; when adaptation Ignore is deactivated, the transition
req(¬Ignore) is fired.

Consider the state of a COP system as a triplet< P, Σ,m > given by its CoPN
P, a queue Σ of internal transitions to be fired, and the current marking of the
system m. Two auxiliary predicate functions are used to describe the activation
dynamics of the system. Predicate marked(p) tells if place p is marked. Predicate
enabled(t) tells if a transition t is enabled. The functionaction(context-name)
is used to represent a request for an adaptation (de)activation given its name.
The function process(·) is used to process the first element of the queue Σ
(process a transition t, or to check if the queue is empty). Adaptation activation
and deactivation dynamics are expressed by the following rules.
external transition firing, action(context-name):

m′ = m0 ∪ {p ∈ P | marked(p)}, Σ = φ

< P, Σ,m0 >→ < [m0/m′]P, Σ . {t ∈ T|enabled(t)},m0 >
(1)

Actions are evaluated only when the queue Σ is empty. After the external tran-
sition associated with the context is fired, the marking of the CoPN is modified,
possibly enabling internal transitions. Such transitions are appended (.) to the
end of the queue.
internal transition firing, process(t):

m ∈ P, m′ = m ∪ {p ∈ P | marked(p)}, Σ , φ, Σ′ = Σ \ {t}
< P, Σ,m0 >→ < [m/m′]P, Σ′ . {t′ ∈ T | enabled(t′)},m0 >

(2)

If the queue Σ is not empty, processing one of its elements i.e., firing the internal
transition at the beginning of the queue, yields a new marking of the CoPN.
The new marking possibly enables some internal transitions. Such transitions
are appended to the end of the queue.

Evaluation termination, process(·):

m ∈ P, {p ∈ Pt | marked(p)} , φ
< P, φ,m0 >→ < [m/m0]P, φ,m0 >

(3)

m ∈ P, {p ∈ Pt | marked(p)} = φ

< P, φ,m0 >→ < P, φ, [m0/m] >
(4)

If there are no internal transitions in the queue Σ to be processed (Σ = φ), two
outcomes are possible. The first case, when there are temporary places marked
in the CoPN, in which all changes to the CoPN are reverted by restating its
initial marking. The second case, when none of the temporary places is marked,
in which the current marking of the system is replaced by the new marking of
the CoPN.

Theorem 1. Let P be a CoPN in a consistent state. Any activation or deactivation
action σ, of an adaptation C in P leaves the system in a consistent state.

Proof. Firing of σ modifies the marking m of P. Using reduction Reduction
rule (1), we know that an external transition firing always marks at least one
temporary place. When temporary places are marked we have two cases:
If no internal transition is enabled after the external transition firing, that is
Σ = φ, Reduction rule (3) is applied. This sets back P to its original marking m.
As no change was produced in P by action σ. We know by hypothesis that P is
in a consistent state.
If on the contrary, there are internal transitions to be fired, Reduction rule (2)
can be applied as many times as needed until the queue Σ is empty. Reduction
rule (2) modifies marking of P to a marking m′. At this point, one of the two
reduction rules (3) or (4) can by applied.
case 1: There is a marked temporary place.
This case follows similarly as when there are no internal transition to fired,
retrieving the CoPN to its original marking m and to a consistent state.
case 2: No temporary place is marked.
Applying Reduction rule (4) the marking of P is updated to marking m′. As
there are no temporary places marked in P. Then by Definition 6, P is in a
consistent state. ut

Note from Theorem 1 that if a (de)activation σ leads to an inconsistent state
—that is, it leads to Reduction rule (3), then, action σ is oblivious to the system
and the CoPN is set back to its initial state. Whenever an adaptation activation
or deactivation is disregarded because it leads to an inconsistent state, the cause
of the inconsistency is signaled to the user.

Example 1. To demonstrate the dynamics of adaptation activation and deactiva-
tion in CoPN, consider the sequence

σ = {activate(Be), activate(Br), deactivate(Be)}

for the CoPN shown in Fig. 4.
Once the @activate(Be) and @activate(Br) have been executed, the mark-

ing m of the CoPN is m(Br) = 1 and m(Be) = 2 as illustrated in Fig. 4. The call to
@deactivate(Be) triggers the enabled external transition req(¬Be) yielding a
new marking m1 where m1(Be) = 2, m1(Br) = 1 and m1(Pr.¬Be) = 1. For this mark-
ing the only enabled internal transition is the deactivation transition deac(Be)
between places Pr.¬Be and ¬Be. Triggering of such transition (since it must
happen) yields a marking m2 where m2(Pr.¬Be) = 0, m2(Be) = 1, m2(¬Be) = 1,
m2(Pr.¬Br) = 1, and m2(Br) = 1. Note that the only enabled transitions are
cl(¬Be), and the deac(Br) between Pr.¬Br and ¬Br. Transition cl(¬Be) cannot be
fired just yet, since it is enabled but it has a lower priority than the other enabled
transitions —the latter must fire first. Firing of deac(Br) yields the marking m3
where m3(¬Br) = 1, m3(Pr.¬Be) = 1, m3(Be) = 1 and m3(¬Be) = 1. Now the
enabled internal transitions are the leftmost deac(Be), cl(¬Br) and cl(¬Be). Firing
deac(Be) does not enable any other transition since it is a sink transition. The
yielded marking is m4 where m4(Be) = 1, m4(¬Br) = 1 and m4(¬Be) = 1. Transi-
tions cl(¬Br) and cl(¬Be) have the same priority, and the order in which they fire
yields the same result. Once they have both fire none of the internal transitions
is enabled and hence the CoPN has reached a consistent state with final marking
m5(Be) = 1.

6 Context Petri Net Implementation

This section explores the implementation of the underlying Petri net model to
manage activation and deactivation of behavioral adaptations. The implemen-
tation provides an extensible library supporting Petri nets with inhibitor arcs in
Objective-C. The library takes inspiration from the ideas of the Petri Net Ker-
nel,10 and the snakes toolkit [25] and serves as the runtime execution model for
the management of context-aware applications in Subjective-C.

Adaptation declaration ::= '@context('context-name [,bound]')'
Adaptation activation ::= '@activate('context-name')'
Adaptation deactivation ::= '@deactivate('context-name')'
Dependency relations declaration ::=

'['(addExclusionFrom:to: | addStrongInclusionFrom:to:
addRequirementTo:of: | addWeakInclusionFrom:to:)

(context-name, context-name) ']'
bound :: = NUMBER

Table 5: Subjective-C method syntax to interact with CoPNs

Table 5 shows the language constructs for the creation and execution of
CoPNs. A adaptation declaration automatically generates an adaptation structure
as that of Fig. 11. The maximum number of times an adaptation can be activated

10 See http://www2.informatik.hu-berlin.de/top/pnk/

http://www2.informatik.hu-berlin.de/top/pnk/

1 SCContext *lb = @context(@"LowBattery");
2 SCContext *hb = @context(@"HighBattery");
3 [contextManager addExclusionFrom: lb to: hb];
4 @activate(LowBattery);
5 @activate(HighBattery);

Snippet 4: Exclusion dependency declaration

can be defined by a bound. Contexts activation and deactivation, generate the
firing of the external transitions associated with and activation and deactiva-
tion, respectively, req(Ignore) and req(¬Ignore) in Fig. 11. Finally, a dependency
relation declaration specifies the different interactions between two adaptations.
Examples of these are given in Section 3.

Behavioral adaptations are defined in Subjective-C as annotated methods.
Snippet 1 shows the definition of two behavioral adaptations of the receive
method, defined respectively for the Ignore and Redirect adaptations.

Snippet 4 shows the definition for the LowBattery and HighBattery adap-
tations of the mobile phone. Lines 1 and 2 generate a CoPN as the one in Fig. 11.
The exclusion dependency defined between the two adaptations in Line 3 yields
the CoPN shown in Fig. 5. Line 4 is the activation of the LowBattery adapta-
tion which (when successful) installs the behavior adaptations associated to it,
the receive method for the Ignore adaptation in Snippet 1. This adaptation
activation retrieves the trace of internal transitions fired to the user. Due to the
LowBattery adaptation, being active, activation of the HighBattery adaptation
in Line 5, is denied. The cause of the problem is retrieved to the user.

6.1 Composing Context Petri Nets

In the general case, composing Petri nets is a challenging task [5, Chapter 4].
However, for CoPN we take an algorithmic approach that composes different
existing dependencies into a unified Petri net.

A COP system generally comprises multiple adaptations. A particular adap-
tation may have dependency relations with many other adaptations. In order to
create the underlying CoPN for the complete system, all of the adaptations in
the system and their dependency relations must be composed. We present the
composition operator for CoPNs, which given two CoPNs, generates another
one.

Definition 7. A COP system C consisting of adaptations
C1, . . . ,Cn is defined as a CoPNP =< P,T, f , f◦, ρ,m0 > obtained from the composition
of all the adaptations defined in the system, and by possibly adding extra transitions
and arcs.

Definition 8. The composition operator ◦ : S × S → C is defined between two adap-
tations C1,C2 ∈ S as ◦(C1,C2) 7→ P, where C1 =< P1,T1, f1, f◦1, ρ1,m01 > and
C2 =< P2,T2, f2, f◦2, ρ2,m02 > are CoPNs, and
P =< P,T, f , f◦, ρ,m0 >. P is the combination of these CoPNs by the union of their

places and transitions, whenever these correspond to each other. Two places (transitions)
are said to correspond if their labels, inputs and outputs are the same. P = ◦(C1,C2) is
such that: P = P1 ∪ P2, T = T1 ∪ T2, m0 = m01 ∪m02, ρ = ρ1 ∪ ρ2 and

f (x, y) =

 f1(x, y) if x, y ∈ C1

f2(x, y) if x, y ∈ C2

f◦(p, t) =

 f◦1(p, t) if p ∈ P1 and t ∈ T1

f◦2(p, t) if p ∈ P2 and t ∈ T2

Note that whenever two adaptations are composed, the composition yields
one of two cases. The first case is when the two adaptations are different, hence
the composition yields a CoPN where there is no arc connecting the adaptations.
The second case, is when the two adaptations are the same. In this case the
composition yields a CoPN for one of the adaptations.

A more interesting case is when more complex CoPNs are composed. We
first consider the case of composing two CoPN, each representing a dependency
relation. In such a case, the resulting CoPN must comply to the constraints
imposed by both dependency relations.

The definition of the composition operator is extended to compose depen-
dency relations. That is, the operator now takes two of dependency relations as
arguments instead of a pair of adaptations. Two dependency relations may be
composed if and only if they share a common adaptation. If they do not share
an adaptation the composition is trivial.

Definition 9. The composition operator ◦ : R ×R → C is defined for two dependency
relations R1(C1,C) and R2(C,C2) where ◦(R1,R2) 7→ P. The composition of two de-
pendency relations takes place in two steps: 1. First common adaptations are composed
as in Definition 8 (if any) 2. Ensuring that P satisfies the constraints imposed by both
relations P |= CR1 ∧ CR2 as explained in Section 3.

Note that the composition operator is defined for any two dependency re-
lations. The order in which the adaptations appear in the relation (source or
target) is not important for the composition.

Example 2. Let us take a mobile phone application that allows the reception of
video calls. The application provider wants to ensure that video calls use the
front camera of the phone, which motivates having two adaptations Video (V)
and FrontCamera (F). A strong inclusion relation S(V, F) is defined between the
two adaptations (V–IF). Further, as receiving video calls is power consuming,
the video call functionality should only be available if the battery is sufficiently
high, which can be modeled through a HighBattery (H) adaptation. A re-
quirement relation R(V, H) is defined between the two adaptations (V –�H). The
CoPN,P = ◦(S,R) obtained by the composition of the two dependency relations
is shown in Fig. 16.

Pr.Hb

req(Hb) act(Hb)

deac(V)

Hb req(¬Hb) Pr.¬Hb

deac(Hb)
¬Hb cl(¬Hb)

deac(Hb)

Pr.V

req(V) act(V)

deac(F)

V req(¬V)

Pr.¬V deac(V)

¬V cl(¬V)

deac(V)

Pr.Freq(F) act(F) F req(¬F) Pr.¬F deac(F)

¬F cl(¬F)

deac(F)

Fig. 16: Composition of a strong inclusion and a requirement dependency rela-
tion.

Based on the constraints specified by the set CS and in particular the seventh
clause in Definition 5.2, where every transition deactivating the source adap-
tation must deactivate the target adaptation, the dashed arc (deac(V),Pr.¬F) is
added to P in Fig. 16.11 All other arcs and transitions come from the CoPNs for
S(V, F) and R(V, H).

Let P be a CoPN defined by the adaptations Ci where i ∈ I and I is an
index set. Let C be an adaptation not in P such that there is a dependency
relation R1(C,Ci) for Ci ∈ P. In order to compose dependency relation R1 into P
it is sufficient to take any other relation R2 such that R2(Ci,C j) exists for some
C j ∈ P. Let P′ be the CoPN obtained by extending P with R1 —that is, the
result of the composition ◦(R1,R2). Composing the relations R1 and R2 does not
ensure that all constraints imposed by all dependency relations are satisfied
by P′. Using Definition 9, it can be ensured that P′ |= CR2 ∧ CR1 . However, to
ensure that all of the pre-exiting constrains are still satisfied, we use the process
explained in Section 3 for all such constrains and the ones introduced by relation
R1 in the new CoPN —that is, ensure that P′ |= (

∧
I CRi) ∧ CR1 is satisfied.

The fact that adaptation activations and deactivations can only be requested
through temporary places means that a adaptation only interacts with the adap-
tations immediately related to it. If dependency relations are transitive (e.g.
weak inclusion) then the request for activation takes place for the adaptations

11 Here the arc is dashed as a mean to easily identify it. This convention has no especial
semantic meaning in the CoPN.

immediately related to the adaptation being activated, which then forward such
requests to their immediate related adaptations and so on. For example, in the
chain A–� B–� C, of weak inclusions, activation of adaptation A request acti-
vation of adaptation B, and activation of adaptation B request the activation of
adaptation C. If an adaptation D is composed with C (C–� D), when A is activated
the responsibility of activating D is delegated to C (as it is its immediate relation).

If temporary places would not exist, then the composition of an adaptation
would affect the CoPN globally, forcing the addition of transitions and arcs
to many adaptations that are not immediately related to the adaptation being
composed. In the chain of weak inclusions, for example, arcs would have to be
added between A and B, C, and D.

Theorem 2. The ◦ operator is idempotent, associative and commutative.

Proof. These properties follow trivially from the idempotence, associativity and
commutativity properties of the ∧ operator.

In principle it is always possible to compose two CoPNs. However, compo-
sition of adaptations does not always yield a coherent CoPN with respect to its
behavior. For example, composing two strong inclusion dependency relations
(A–IB) and (B–IA), yields a CoPN with an infinite loop between the activation
transition of adaptation B and the activation transition of adaptation A. The iden-
tification of such incoherent or erroneous CoPN behavior is part of our future
work. A discussion on how these problems can be addressed is discussed in the
following section.

7 Alternative Approaches

This section overviews related modeling approaches. A comparison is presented
in terms of three criteria that are relevant in the case of dynamically adaptable
systems: expressiveness, run-time capabilities, and analysis and verification
tools. In the light of these criteria, the following sections present firstly the
model that inspired our adaptation dependency relations; secondly, alternative
state transition models; and thirdly, a number of related formalisms that have
been used to define software systems. The final section presents a discussion,
guided by the aforementioned criteria, which puts in perspective our choice of
Petri nets.

7.1 Feature-Oriented Development and Feature Interaction

The dependency relations presented in this paper are inspired on those defined
in feature diagrams [20]. Dependencies are normally used to declare interac-
tions between different features or behavioral variation modules in software
product lines [6]. Feature interaction [?] is concerned with the identification of
inconsistencies that may rise from the activation and interaction of different fea-
ture modules, based on the defined dependencies between them. In the general

case, feature interaction is a complicated problem, and it becomes even harder
when addressed for dynamic settings. Recent approaches address the dynamic
feature interaction problem by the upfront definition of policy rules between
features that may interact at run time [22,10]. Whenever a feature is included at
run time in the run time [10]. Whenever a feature is included at run time in the
program, the policies are verified. In case there is an interaction problem, the
associated corrective process defined by the policy is applied. This approach has
as main drawback that policies and resolution rules need to be predefined, and
they therefore cannot cover all possible interactions of the system. Verification
of policies and conflict resolution are costly operations, which are unsuitable
for dynamically adapting systems.

7.2 State Diagrams

Automata [18] and statecharts [21] are graph-based models used to describe
system behavior based on their possible states, and the set of actions to be taken
for each state. Automata and state charts are normally used to verify system
properties, such as program termination. Among the properties provided by
these diagrams, the most prominent is the available operations: automata can
be easily merged, intersected and composed in a parallel manner. However, at a
particular moment of execution, the system focuses only on one particular state,
this means that the state needs to associate all possible actions in the system to
that particular state. For the particular case of context-aware systems, actions
such as context activations can be triggered non-deterministically based on the
surrounding environment of execution. This would mean to have all possible
activations incident to every state of the automata, making it cluttered and
difficult to manage.

7.3 Process Algebra, Coalgebra and Modal Logics

Different mathematical formalisms have also been used to model and procure
formal reasoning analysis about software systems. Process algebra [16] is used
to model concurrent processes, providing high-level abstractions for operations
between processes such as parallel composition, communication, replication,
and synchronization. Modal logics [3] have been used to represent necessity and
possibility conditions about system properties. Modal logics are mostly used to
express temporal conditions, but they also can be used to express conditions
like termination of programs in the case of propositional dynamic logic. Coal-
gebra, and in particular coalgebraic specification [19], has been used to express
the dynamic behavior of systems. Typically, coalgebras specified state-based
systems, where the state is considered as a black box and dynamic behavior is
reasoned upon in terms of invariance and bisimilarity. Modal operators have
also been introduced in coalgebraic specifications as invariants to reason about
future states in safety and progress formulas.

These three formal methods on their own are used as an abstract model
to prove consistency or decidability properties about the systems they model.

However, concrete models based on the formalisms can be defined for each
of them. Examples of these concrete models are: abstract state machines [4],
algebraic petri nets [11], alternating automata[28] or computational tree logic [7].
Regardless of the implementation model, verification and analysis of system
properties is often done offline by means of model checking techniques.

7.4 Model Checking

Model checking is an analysis and verification technique that is transversal
to all the approaches presented above (including Petri nets). All approaches
can benefit from offline model checking to prove some of the system proper-
ties. Model checking techniques include, abstract interpretation, partial order
reduction, or automated theorem proving. Here we discuss the SAT, which is
commonly used to decide over system properties defined by a (set of) logic
formula(s) [26]. Based on the semantic definitions of dependencies described
in Section 5, formulas describing the activation and deactivation of adaptations
could be generated. Each (de)activation would be verified by the SAT solver,
and if it were satisfiable, then the adaptation could be (de) activated. In order
for the verification to take place, it would be necessary to provide the state of
the system (usually done with an automata), which could greatly increase the
number of formulas needed.

7.5 Discussion

Now, we turn to the criteria defined at the beginning of this section to evaluate
each of the approaches.

Feature models express the different dependency rules between features, and
their interaction much in the sense it is done for context-oriented systems. How-
ever, these interactions are normally managed offline, which is not desirable to
deal with dynamic adaptations at runtime, even then, a complete run of a SAT
solver, or the verification of interaction resolution policies for each adaptation
(de)activation can be very costly for the runtime execution of a system.

Petri nets, in some cases have an equivalent automata representation [5].
Representing systems with automata is particularly useful because of their de-
cidability results, used to verify properties about the systems they model. How-
ever, runtime verification of automata can be cumbersome, because most of the
analysis is intended to be done offline. Another contra not to use automata (or
one of its similar models) as an execution model for context-aware systems, is
that, in such model all possible transitions between states must be considered,
which would make the automata too cluttered and difficult to manage. Addi-
tionally, coding the activation counter property, presented in Section 2 would
need to be done by an extra extension of the automata model.

Formal methods, such as coalgebras or modal logics can also provide an
effective formalization for context-aware systems. However, being theoretical
models they cannot be use for the runtime representation of the system, or to

effectively verify adaptations (de)activation, that is, without undergoing com-
plicated (model) checks, or additionally having to generated corresponding
automata structures, making them ill suited.

To conclude this discussion we argue that the Petri net model presented in
the paper successfully capture a direct view of state (active adaptations) and
dynamic properties (adaptation (de)activations) of a system. Moreover, it can
effectively be used as an execution model. As compared to other approaches,
Petri nets seem as a natural and good fit for the kind of dynamic systems
envisioned by COP.

8 Future Work

The purpose of CoPN is to provide a sound semantics for COP systems, and to
ensure consistency of such systems. CoPN gives a sound concurrency semantics
to COP systems. Furthermore, it is possible to prove that, using this semantics,
context activations and deactivations maintain system consistency.

We state that the verification of adaptation activation and deactivation be-
comes more lightweight in CoPNs. This statement is motivated by the activa-
tion process, as adaptation change their state lively —that is, without going
first through all adaptations checking if the changes are possible. However, a
full benchmark study on the efficiency of our CoPN model with respect to the
existing Subjective-C implementation is still future work.

As mentioned in Section 6.1, CoPN composition can yield incoherences
or erroneous behavior. Such errors must be identified whenever CoPNs are
composed. Petri nets can be used for this purpose. Standard Petri net analysis
techniques allow to reason about a system’s behavior [23]. Such properties
could be used to identify interaction between contexts, the properties that could
be used in the context of COP systems comprise: 1. reachability, which could
be used to identify if is possible to have a particular configuration of active
contexts (i.e., marking), 2. liveness, which could verify if a context can ever be
activated or not 3. persistency, which could spot isolated contexts in the Petri net,
and 4. deadlocks, which could identify contexts that due to a configuration can
never be active again. These analysis can give upfront information about errors
or redundancies in the system. the CoPN model contains inhibitor arcs and
is (in principle) unbound which make these properties undecidable. However,
restrictions to bound contexts and simplifications on the use of inhibitor arcs
could be made in order to analyze such properties [27]. An study of which of the
properties can be successfully verified for CoPN is part of our ongoing work.

A Petri net is said to be bounded (or k-bounded) if there is an integer k
such that every place in the net can contain maximum k tokens. Bounded Petri
nets are used to express that a resource is scarce. Although a bound could
be imposed for some adaptations, in principle adaptations can be activated
multiple times, making CoPNs unbound. Boundedness is an important property
because it makes it possible to verify other properties such as reachability.
Bounds could be defined in CoPN to allow the verification of such properties

within those bounds. The current implementation of CoPN already allows us
to define bounds for adaptation activation. The analysis on how to properly
choose such a bound is future work.

Reachability is used to verify if certain markings could ever occur in a Petri
net given the initial marking. In the context of COP, such property could be
used to identify if a particular configuration of active contexts (i.e. marking) is
possible, given the current state of the system (i.e. initial marking). Reachability
verification is usually undecidable for Petri nets with inhibitor arcs. However,
there are special cases in which it is possible to verify reachability in such Petri
nets [27]. The study of whether or not CoPN complies with these conditions,
and the development of the reachability verification algorithm, is part of our
ongoing work.

Another ongoing task is the verification of liveness (in its stronger version).
Liveness means that no matter the marking of a Petri net, it is always possible
to eventually fire all of its transitions. In the context of COP, this could be used
to verify if context activations (transition firings) can ever take place. That is, if
a context can ever be activated or deactivated given the initial system state.

9 Conclusions

Management of highly dynamic adaptations as proposed by Context-Oriented
Programming (COP) has proven a challenging task. The composition of adap-
tations may lead to unexpected or contradictory behavior if not dealt with
carefully. To avoid these problems, different modeling techniques have been
proposed. These techniques share the commonality of encoding constraints be-
tween adaptations by means of dependency relations, thereby forming what we
call dependency graphs. Although dependency graphs constitute a useful first
step towards the specification of adaptation dynamics in COP systems, they are
not entirely satisfactory, specially because they lack a precise semantics.

With the objective of providing a more precise and concrete formalism for the
expression of dependencies between adaptations, we propose the context Petri
nets execution model. We show how to map the adaptations and dependencies
of a high-level dependency graph as places and transitions in a context Petri
nets (CoPN). In doing so, the semantic constraints imposed by the dependencies
in the original model become more precise. Furthermore, since a CoPN provide a
concrete and live representation of context-aware systems, it is a suitable model
represent evolution of adaptations at runtime. To allow the dynamic activation,
deactivation, and composition of adaptations, the constraints imposed by their
relations must be verified. In dependency graphs this computation can have a
considerable computation cost, but in CoPN the verification of dependencies
between adaptations is more lightweight, since it boils down to checking the
input places of transitions.

For the advantages they bring in the modeling of adaptation dynamics,
context Petri nets seem to be a convenient formalism both for modeling and
run-time representation of adaptations and their constraints in COP systems.

References

1. Bause, F.: On the analysis of petri nets with static priorities. In: Acta Informatica.
vol. 33, pp. 669 – 685 (1996)

2. Best, E., Koutny, M.: Petri net semantics of priority systems. Theoretical Computer
Science 96, 175–215 (April 1992), http://dx.doi.org/10.1016/0304-3975(92)
90184-H

3. Blalckburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

4. Borger, E., Stark, R.: Abstract State Machines. Springer-Verlag (2003)
5. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, pp. 225 –

273. Discrete event dynamic systems, Kluwer Academic Publishers (2007)
6. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for variability

transformation at run time. In: Proceedings of the International Software Product
Line Conference. pp. 61–70. Carnegie Mellon University, Pittsburgh, PA, USA (2009)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8, 244–263 (April 1986)

8. Costanza, P., D’Hondt, T.: Feature descriptions for context-oriented programming. In:
Thiel, S., Pohl, K. (eds.) 12th International Software Product Line Conference, Second
Volume (Workshops). pp. 9–14. Lero Int. Science Centre, University of Limerick,
Ireland (2008)

9. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented programming:
an overview of ContextL. In: Proceedings of the Dynamic Languages Symposium.
pp. 1–10. ACM Press (Oct 2005), collocated with OOPSLA’05

10. Desmet, B., Vallejos, J., Costanza, P., De Meuter, W., D’Hondt, T.: Context-oriented
domain analysis. In: Modeling and Using Context. pp. 178–191. Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidelberg (2007)

11. Dimitrovici, C., Hummert, U., Petrucci, L.: Semantics, composition and net properties
of algebraic high-level nets. In: Rozenberg, G. (ed.) Advances in Petri Nets 1991,
Lecture Notes in Computer Science, vol. 524, pp. 93–117. Springer Berlin / Heidelberg
(1991)

12. Eshuis, R., Dehnert, J.: Reactive petri nets for workflow modeling. In: Application
and Theory of Petri Nets 2003. pp. 296–315. Springer (2003)

13. González, S.: Programming in Ambience: Gearing Up for Dynamic Adaptation to
Context. Ph.D. thesis, Université catholique de Louvain (Oct 2008), http://hdl.
handle.net/2078.1/19684, coll. EPL 211/2008. Promoted by Prof. Kim Mens

14. González, S., Cardozo, N., Mens, K., Cádiz, A., Libbrecht, J.C., Goffaux, J.: Subjective-
C: Bringing context to mobile platform programming. In: Proceedings of the Interna-
tional Conference on Software Language Engineering. Lecture Notes in Computer
Science, vol. 6563, pp. 246–265. Springer-Verlag (2011)

15. González, S., Mens, K., Heymans, P.: Highly dynamic behaviour adaptability through
prototypes with subjective multimethods. In: Proceedings of the Dynamic Languages
Symposium. pp. 77–88. ACM Press, New York, NY, USA (Oct 2007), collocated with
OOPSLA’07

16. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge, Mass. (1988)
17. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Journal

of Object Technology 7(3), 125–151 (March–April 2008)
18. Hopcroft, J.E., Ullman, J.: Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley (1979)

http://dx.doi.org/10.1016/0304-3975(92)90184-H
http://dx.doi.org/10.1016/0304-3975(92)90184-H
http://hdl.handle.net/2078.1/19684
http://hdl.handle.net/2078.1/19684

19. Jacobs, B.: Exercises in coalgebraic specification. In: Algebraic and Coalgebraic Meth-
ods in the Mathematics of Program Construction. pp. 237–280 (2000)

20. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Carnegie-
Mellon University Software Engineering Institute (Nov 1990)

21. Latella, D., Majzik, I., Massink, M.: Towards a formal operational semantics of uml
statechart diagrams. In: Proceedings of the Third International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS). pp. 465–. Kluwer,
B.V., Deventer, The Netherlands (1999)

22. Liu, Y., Meier, R.: Resource-aware contracts for addressing feature interaction in
dynamic adaptive systems. Autonomic and Autonomous Systems, International
Conference on 0, 346–350 (2009)

23. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE
77(4), 541 – 580 (April 1989)

24. Peterson, J.L.: Petri nets*. In: Computing Surveys. vol. 9, pp. 223 – 252. ACM (Septem-
ber 1977)

25. Pommereau, F.: Quickly prototyping petri nets tools with snakes. Petri net newsletter
pp. 1–18 (October 2008)

26. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in sat based formal
verification. Journal on Software Tools for Technology Transfer 7(2), 156 – 173 (2005)

27. Reinhardt, K.: Reachability in petri nets with inhibitor arcs. Electronic Notes in
Theoretical Computer Science 223, 239–264 (2008)

28. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propo-
sitional mu-calculus. Information and Computation 81(3), 249 – 264 (1989)

	Context Petri Nets

