
Parallel Actor Monitors:
Disentangling Task-Level Parallelism from Data

Partitioning in the Actor Model.

Christophe Scholliers a,1,∗, Éric Tanterb,2, Wolfgang De Meutera

a Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, Belgium
b PLEIAD Laboratory, DCC University of Chile, Avenida Blanco Encalada 2120, Santiago, Chile

Abstract

While the actor model of concurrency is well appreciated for its ease of use, its
scalability is often criticized. Indeed, the fact that execution within an actor is
sequential prevents certain actor systems to take advantage of multicore architec-
tures. In order to combine scalability and ease of use, we propose Parallel Actor
Monitors (PAM), as a means to relax the sequentiality of intra-actor activity in
a structured and controlled way. A PAM is a modular, reusable scheduler that
permits to introduce intra-actor parallelism in a local and abstract manner. PAM
allows the stepwise refinement of local parallelism within a system on a per-actor
basis, without having to deal with low-level synchronization details and locks.
We present the general model of PAM and its instantiation in the AmbientTalk
language. Benchmarks confirm the expected performance gain.

Keywords: Actors, Concurrency, Monitors, Efficiency

1. Introduction

The actor model of concurrency [1] is well recognized for the benefits it brings
for building concurrent systems. Actors are strongly encapsulated entities that

∗Corresponding author
Email addresses: cfscholl@vub.ac.be (Christophe Scholliers),

etanter@dcc.uchile.cl (Éric Tanter), wdmeuter@vub.ac.be (Wolfgang De Meuter)
1Funded by a doctoral scholarship of the Institute for the Promotion through Science and Tech-

nology in Flanders (IWT-Vlaanderen).
2Partially funded by FONDECYT Project 1110051..

1

communicate with each other by means of asynchronous message passing. Data
races are prevented by design in an actor system because data cannot be shared
between actors, and actors process messages sequentially. However, these strong
guarantees come at a cost: efficiency.

The overall parallelization obtained in an actor system stems from the parallel
execution of multiple actors. Upon the reception of a message, an actor executes
a task which can only manipulate data local to the actor. Therefore, either data
is encapsulated in an actor and only one task can manipulate that data or the data
is distributed over multiple actors in order to exploit parallelism. Because of the
strong data-task entanglement in the actor model, the actor programmer is forced
to partition her data in order to exploit parallelism. In general, the structure and
choice of algorithms strongly depend on the structure of the underlying data [2].
When each actor possesses a partitioning of the data, global operations over the
data must be implemented by a well defined protocol between those actors. These
protocols have to be carefully encoded to guarantee properties like sequentiality
and consistency, important properties that can be taken for granted within a single
actor. The actor programmer needs to encode these properties manually as a side
effect of trying to exploit parallelism. The implementation of global data opera-
tions is low-level, error-prone, and potentially inefficient. Moreover, restructuring
large amounts of data at runtime by transferring the data from one actor to another,
involves high overheads. In conclusion, data-task entanglement ensures important
properties at a local level but at the same time forces the programmer to partition
her data when trying to implement data-level coarse grained parallelism [3]. The
partitioning of data in order to exploit parallelism leads to complex and inefficient
code for global operations when coordination is required between the actors that
encapsulate the partitioned data.

Let us further illustrate the problem by means of an example. Consider a
group of actors, of which one is a dictionary actor. The other actors are clients
of the dictionary: one actor does updates (writer), while the others only consult
the dictionary (readers). The implementation of the dictionary with actors is easy
because the programmer does not need to be concerned with data races: reads and
writes to the dictionary are ensured to be executed in mutual exclusion. The pro-
grammer is sure that no other actor could have a reference to the data encapsulated
in the dictionary actor. The asynchronous nature of the actor model also brings
distribution transparency as the dictionary code is independent from the physical
location of the actors.

However, when the number of readers increases the resulting application per-
forms badly precisely because of the benefits of serial execution of requests to

2

the dictionary actor: there are no means to process read-only messages in parallel
and thus the dictionary actor becomes the bottleneck. In order to scale the dictio-
nary, the programmer is thus forced to partition his data over a group of dictionary
actors, for example one per letter. As explained, this introduces accidental com-
plexity for global operations over the dictionary. A pervious simple operation,
such as counting all the words in the dictionary ending at “ing”, has to be imple-
mented by a protocol, e.g. block all actors that hold parts of the dictionary, ask
them to perform this operation on their local data and wait for their answer, and
finally release the actors.

The problems of data-task entanglement within the actor model has been ac-
knowledged by many of the current actor implementations as many implementa-
tions compromise the strong encapsulation properties for efficiency [4]. However,
such solutions are both unsafe and ad-hoc as we show in the next section. In
order to disentangle task-level parallelism from data partitioning in a structured
and high-level manner we propose the use of parallel actor monitors (PAM). In
essence, a PAM is a scheduler that expresses a coordination strategy for the par-
allel execution of messages within a single actor. Since with a PAM, messages
can be processed in parallel within the same actor, the programmer is no longer
forced to partition her data in order to exploit parallelism.

There are four main contributions in applying the PAM model in order to solve
the problems of data-task entanglement introduced by traditional actor systems.

1. Efficiency. A PAM makes it possible to take advantage of parallel compu-
tation for improved scalability. Benchmarks of our prototype implementa-
tions suggest speedups that are almost linear to the number of processors
available (Section 8).

2. Modularity. A PAM is a modular, reusable scheduler that can be parame-
terized and plugged into an actor to introduce intra-actor parallelism without
modification of the original code. This allows generic well-defined schedul-
ing strategies to be implemented in libraries and reused as needed. By using
a PAM programmers can separate the coordination concern from the rest of
the code.

3. Locality. Binding a PAM to an actor only affects the parallel execution
of messages inside that single actor. The scheduling strategy applied by
one actor is completely transparent to other actors. This is because a PAM
preserves the strong encapsulation boundaries between actors.

4. Abstraction. A PAM is expressed at the same level of abstraction as actors:
the scheduling strategy realized by a PAM is defined in terms of a message

3

queue, messages, and granting permissions to execute. A PAM programmer
does not refer explicitly to threads and locks. It is the underlying PAM
system that takes responsibility to hide the complexity of allocating and
handling threads and locks for the programmer.

The next section gives an overview of the closest related work and shows why
current approaches are not sufficient. Section 3 presents our parallel actor mon-
itors in a general way, independent of a particular realization. Section 5 then
overviews how our implementation of PAM on top of AmbientTalk is used to ex-
press canonical examples as well as a more complex coordination strategy. Sec-
tion 8 evaluates PAM against current actor systems, and provides an assessment
of the implementation through a set of benchmarks. Section 9 concludes.

2. Related Work

When ABCL [5] introduced state in the previously functional actor model one
of the major design decisions for synchronization was the following:

“One at a time: An object always performs a single sequence of ac-
tions in response to a single acceptable message. It does not execute
more than one sequence of actions at the same time.”

Since then it has been one of the main rules in stateful actor languages such as
Erlang [6], Akka and Scala [7], Kilim [8], ProActive [9], E [10], Salsa [11] and
AmbientTalk [12]. In all these languages execution of parallel messages within
a single actor is disallowed by construction, e.g. every actor has only one thread
of control and data cannot be shared between actors. As seen before, this leads
to scalability issues when resources have to be shared among a number of actors.
With this wild growth of actor languages it is not surprising that we are not the
first ones to observe that the actor model is too strict [13]. There a number of
alternatives used in actor-based systems to overcome this limitation.

First, actor languages that are built on top of a thread-based concurrency sys-
tem can allow an “escape” to the implementing substrate. For instance, Ambi-
entTalk [12] supports symbiosis with Java [14], which can be used to take advan-
tage of multi-threading as provided by the Java language. However, such a back-
door reintroduces the traditional concurrency problems and forces the program-
mer to think in two different paradigms (actor model and thread based model).

Another approach is to introduce heterogeneity in the system by allowing ac-
tors to coexist with non-encapsulated, shared data structures. This is the case

4

for instance in the ProActive actor-based middleware for Java [9]. In ProActive
“naked” data structures can be created, which actors can access freely, concur-
rently. Avoiding data races is then done by suggesting client actors to request
access to the shared resources through a coordinator actor 3.

A major issue with this approach is that the model does not enforce clients to
use a coordinator actor: nothing prevents an actor to access the shared data struc-
ture directly, thereby compromising thread safety. Readers and writers themselves
have to notify the coordinator when they are finished using the shared resource; of
course, failing to do so results in faulty programs. The introduction of shared data
violates both locality and modularity, because the use of shared data influences
the whole program; it basically reintroduces the traditional difficulties associated
with threads and locks. Similar to Proactive, in Scala Actors, Kilim, JavAct and
Jetlang a message can carry objects which are passed by reference instead of by
copy, thus introducing shared state between the actors [4].

JCoBox [15] and Creol [16] introduce a generalization of active objects which
enables cooperative multi-tasking within an active object. This is opposed to PAM
which provides full preemptive threads inside an actor. This means that to enable
parallelism in JCoBox or Creol the body of the active object has to be modified,
whereas this is not necessary in PAM.

Finally, Akka and Scala [7] provide a from of software transactional memory
which allows transactions to be spawned over multiple actors. The use of this
system requires intrusive changes inside the body of the actors involved. For
example, only transactional references are captured by the system. In contrast A
PAM is modular abstraction that can be plugged into an actor to introduce intra-
actor parallelism without modification of the original code.

Next to actor-based systems other related work deals with the coordination
and synchronization of messages in object-oriented systems. Join methods [17]
are defined by a set of method fragments and their body is only executed when
all method fragments are invoked. Implementation of Join methods can be found
in C# [18] and Join Java [19]. Synchronizers [20] is a declarative modular syn-
chronization mechanism to coordinate the access to one or a group of objects by
enabling and disabling groups of method invocations. We come back to synchro-
nizers and show their implementation in PAM in Section 5.

In summary, while the actor model has proven to be an appropriate mecha-
nism for concurrent and distributed applications current approaches to deal with

3Example code can be found on http://proactive.inria.fr/index.php?page=reader writers

5

intra-actor parallelism are both ad-hoc and unsafe. As a solution we present PAM,
an abstraction which allows programmers to modularize their intra-actor coordi-
nation code in a local and abstract manner.

3. Parallel Actor Monitor

A parallel actor monitor, PAM, is a low-cost, thread-less scheduler controlling
parallel execution of messages within an actor. In many actor systems, an ac-
tor encapsulates a number of passive objects, accessed from other actors through
asynchronous method calls. A PAM is therefore a passive object that controls the
synchronization aspect of objects living within an actor, whose functional code is
not tangled with the synchronization concern.

It is our objective to bring the benefits of the model of parallel object monitors
(POM) [21] to actor programming. It is therefore unsurprising that the operational
description and guarantees of a parallel actor monitors closely resemble those
of POM. POM is formulated in a thread-based, synchronous world: PAM is its
adaptation to an actor-based, purely asynchronous message-passing model.

3.1. Operational Description
A PAM is a monitor with a schedule method responsible for specifying how

messages in an actor queue should be scheduled, possibly in parallel. A PAM also
defines a leave method that is executed by each thread once it has executed a mes-
sage. These methods are essential to the proposed abstraction, making it possible
to reuse functional code as it is, adding necessary synchronization constraints ex-
ternally. An actor system that supports PAM allows the definition of schedulers
and the binding of schedulers to actors.

Figure 1 illustrates the operation of a PAM in more detail. The figure displays
an actor runtime system hosting a single actor and its associated PAM, as well
as a thread pool, responsible for allocating threads to the processing of messages.
Several actors and their PAMs can live within the runtime system but at any mo-
ment in time a PAM can only be bound to one actor. When an asynchronous call
is performed on an object hosted by an actor (1), it is put in the actor queue as a
message object (2). Messages remain in the queue until the scheduling method (3)
grants them permission to execute (4).

The scheduling method can trigger the execution of several messages. All
selected messages are then free to execute in parallel with free access to the ac-
tor (5), each task runs in a thread allocated by the thread pool of the runtime
system. Note that, if allowed by the scheduler, new messages can be dispatched

6

before a first batch of selected messages has completed. In contrast to the tradi-
tional actor model, where messages are executed sequentially [5], a PAM enables
the parallel execution of multiple messages.

leave(msg)(2)
schedule()

(4)

ThreadPool
(5)

(7) Asynchronous call

(1)

(3)

Object

Thread executing
a message

Message (6)

PAM

Actor

Runtime

Thread

execute(msg)
Message (blocked)

Inbox

Figure 1: Operational sketch of PAM

Finally, when a thread has finished the execution of its associated message (6),
the thread calls the leave method of the PAM (7). To run the leave method, a
thread may have to wait for the scheduler monitor to be free (a PAM is a monitor):
invocations of the scheduling and leaving methods are always safely executed,
in mutual exclusion. A thread about to leave the monitor will first execute the
scheduling method again in case the inbox of the actor is not empty. The fact
that a thread spends some time scheduling requests for other threads (recall that
the scheduler itself is a passive object) allows for a more efficient scheduling by
avoiding unnecessary thread context switches.

One of the main operational differences between PAM and POM is a direct
consequence of the underlying paradigm. In POM there are several threads in
the system which are being coordinated by the POM while a PAM coordinates
messages. Moreover in PAM, the thread of the caller actor cannot be reused, as
done in POM, because this would block the caller and violate the asynchronous
nature of the model.

3.2. PAM at runtime
To further illustrate the working of a PAM, let us consider an actor whose

PAM implements a simple join pattern coordination: when both a message a and
a message b have been received by the actor, both can proceed in parallel. Other-
wise, the messages are left in the queue. Figure 2 shows a thread diagram of the

7

scenario. A thread diagram pictures the execution of threads according to time by
picturing the call stack, and showing when a thread is active (solid line) or blocked
waiting (dotted line). The diagram shows two threads T1 and T2 (from the thread-
pool), initially idle, available for the activity of the considered actor. The state of
the actor queue is initially empty.

received b()

schedule()

leave()

schedule() received a()

schedule()

leave()

(1)

(2)

(4)

(5)

(6)

T1 T2

a b

schedule()(3)

execute(b)

ba

execute(a)

Figure 2: A simple join pattern coordinated by a PAM. (underlined method calls are performed in
mutual exclusion within the scheduler)

When a message a is received in the queue, T1 runs the schedule method (1).
Since there is no message b in the queue, nothing happens, T1 remains idle (2).
When a message b is received, T1 runs again the schedule method (3). This
time, both messages a and b are found in the queue, so they are both dispatched
in parallel. First a is dispatched, then b. T1 finishes the execution of the schedule
method, while T2 starts processing the b message. Then, both T1 and T2 are
executing, in parallel, their respective messages (4). When T1 finishes processing
a, T1 calls the leave and then the schedule method, in mutual exclusion (5).
Meanwhile, T2 also finishes processing its message but has to wait until the PAM
is free in order to execute both methods itself (6). Note that the schedule method
is only called at this point if there are pending messages in the queue.

3.3. PAM Guarantees
An actor system supporting PAM should support the following guarantees to

the programmers.

8

1. An asynchronous message sent to an object encapsulated by an actor that
is bound to a PAM is guaranteed to be scheduled by this PAM.

2. The schedule and leave methods of a PAM are guaranteed to be executed in
mutual exclusion within the PAM, but in parallel with the messages being
executed.

3. The schedule method is guaranteed to be executed if a message may be
scheduled and guaranteed not to be executed when there are no pending
messages.

4. When the schedule method instructs the execution of a message, the message
is executed in parallel with the PAM or as soon as the schedule method is
finished.

5. When a message has been processed, it is guaranteed that the leave method
is called once. Afterwards, the schedule method is only called when the
inbox of the PAM is not empty.

4. AmbientTalk PAM

In this section, we first give a short overview of AmbientTalk, the language
that we extended with the PAM coordination mechanism. Second, we show the
implementation of PAM in AmbientTalk from the programmer’s point of view.

4.1. AmbientTalk in a Nutshell
AmbientTalk [12] is an actor language with an event loop concurrency model

adopted from E [10]. In this model, actors are represented as containers of regu-
lar objects encapsulating a single thread of execution (an event loop) which per-
petually take a message from their message queue and invoke the corresponding
method of the object denoted as the receiver of the message. The method is then
run to completion denoting a turn. A turn is executed atomically, e.g. an actor
cannot be suspended or blocked while processing a message. Only an object’s
owning actor can directly execute one of its methods. Communication with an
object in another actor happens asynchronously by means of far references: ob-
ject references that span different actors. In AmbientTalk asynchronous method
invocations are indicated by the arrow operator. For example, O<-m() denotes an
asynchronous message m to an object O. Upon reception this message is enqueued
in the message queue of the actor owning the object O, which eventually processes
it in an atomic turn.

9

scheduler: codeblock executeAll(F) executeOldestLetter(F)
executeYoungest (F) executeAllOlderThan(F) executeAllYoungerThan(F)
executeOlderThan(Fa, Fb) executeYoungerThan(Fa, Fb)
executeLetter(L) listIncomingLetters() Category()
bindScheduler: S on: A tagMethod: M with: Ctag on: O contains(F)

Table 1: PAM API

4.2. AmbientTalk PAM API
We extended AmbientTalk in order to allow intra-actor parallelism accord-

ing to the PAM model presented in the previous sections. The core API of PAM
(Table 1) supports abstractions to create and bind a PAM to an actor as well as to
coordinate the asynchronous messages sent to an actor. A PAM is created by using
the scheduler: constructor function, which expects a block of code that imple-
ments a scheduling strategy. Every scheduler in AmbientTalk has to implement at
least a schedule and a leave method. The scheduler constructor returns a pas-
sive object (the PAM), which can be bound to an actor using the bindScheduler
construct. After a PAM has been bound to an actor all asynchronous messages
sent to this actor are scheduled by the PAM.

Inside the body of the scheduler, the programmer can examine the inbox of
the actor, which contains letters. Access to the inbox is granted by using
listIncomingLetters(), which returns the list of letters in the inbox of the
actor. A letter contains a message and a receiver. The receiver is the (passive)
object that lives inside the actor to which the message was sent. It is possible
to execute a single letter or a group of letters. To start the execution of a single
letter, the programmer can apply the executeLetter method to a specific letter.
Most PAM abstractions however, expect a filter, an object that implements a pred-
icate method pass that expects a letter as an argument. The return value of the
predicate method pass indicates that the letter passed as an argument should be
executed or not. For example executeAll initiates the execution of all letters in
the inbox that pass the filter F. Similarly, to execute only the youngest or old-
est letter that passes a filter the programmer can apply the executeYoungest or
executeOldest function respectively.

The executeOlderThan function expects two filters and starts the execution
of all the messages that pass filter Fa, only if they are older than the first letter
that passed Fb. Functions from the API which can only execute one letter return
a boolean indicating that a matching letter was executed or not. All the other
methods, which can potentially instruct the execution of multiple letters, return an

10

integer indicating the number of letters they triggered for execution.

4.3. Binding and Reuse
A PAM is a passive object that defines a scheduling strategy. Upon creation

it is unbound and does not schedule any message. To be effective, a PAM must
be bound to an actor with bindScheduler. After binding a PAM to a specific
actor, all the guarantees listed in section 3.3 hold. For a scheduler to be reusable it
has to abstract over the actual message names in order to coordinate the access to
the actor. Programmers define PAM in abstract terms by making use of message
categories, also found in POM. Message categories are constructed by calling
the Category constructor which creates a category C with its unique category
tag Ctag. The set of messages belonging to a category is specified by tagging
methods with tagMethod. A message M belongs to a message category C when
it is targeted to invoke a method which is tagged with the category tag Ctag. For
programmers convenience a method category is also a filter. A message category
can be used as a filter that only passes letters that contain a message belonging to
the message category. By making use of message categories, a reader-writer PAM
works not only with a dictionaries whose methods have specific names, but can
also be used by actors encapsulating other data structures. The use of categories
is further illustrated in the following section.

5. Canonical examples

To illustrate the use of a PAM, we first give the implementation of two clas-
sical schedulers and how to bind them to actors in a program. The first exam-
ple is purely didactic, since it re-introduces sequentiality within an actor: a stan-
dard mutual exclusion scheduler. The second example is the classical multiple-
reader/single-writer scheduler. Although these examples are easy these two prob-
lems clearly show the typical use of PAM. Because PAM is a reincarnation of
POM within actors, it allows the implementation of advanced coordination mech-
anisms, like guards [22] and chords [18, 21]. In this paper we show the PAM
implementation of a coordination abstraction called Synchronizers [20].

11

def mutex() { scheduler: {

def working := false;

def schedule() {

if : !(working) then: {

working := executeOldestLetter();

};

};

def leave(letter) { working := false; };

};

};

Listing 1: Mutual exclusion PAM

def dictionaryActor := actor: {

def dictionary := object: {

def put() { ... };

def get() { ... };

}

}

bindScheduler: mutex() on: dictionaryActor;

Listing 2: PAM Binding

5.1. Mutual Exclusion
In this section we show how the normal mutual exclusion behavior of tra-

ditional actor systems can be implemented in PAM. Note that this is purely for
didactical reasons as mutual exclusion is the default behavior of an actor when no
PAM is bound to it. The implementation of such a PAM is shown in Listing 1.
The mutual exclusion PAM is created by means of the mutex constructor function
which returns a new mutex PAM when applied.

The PAM implements the methods schedule and leave providing mutual ex-
clusion guarantees to the actor. The PAM has one instance variable working, ini-
tialized to false to keep track of whether a message is currently being executed.
The schedule method only triggers the execution of a message if there are no
executing messages already. If so, it executes the oldest letter in the inbox, if any.
Its state is updated to the result of invoking executeOldestLetter, which indi-
cates if a message was actually triggered or not. The leave method changes the
state of the scheduler accordingly after a message has been processed. Finally the
scheduler is instantiated and bound to the dictionary actor by the bindScheduler
method as shown in Listing 2.

Note that the definition of the scheduler is simple and does not deal with low-
level synchronization and notification details. This is in contrast with conventional
monitors where one has to explicitly notify waiting threads. In PAM the under-
lying system guarantees that after the leave method, the schedule method is auto-
matically invoked if there are waiting letters. Also, note that the actor definition
did not suffer any intrusive change.

5.2. Parallel dispatch
The reader-writer scheduler for coordinating the parallel access to a shared

data structure is shown in Listing 3. Like before, RWSched is a constructor func-
tion that, when applied, returns a fresh scheduler. The scheduler defines two
method categories, readers (R) and writers (W). In order to keep track of how

12

many readers and writers are executing, the scheduler maintains two variables
writing (boolean) and readers (integer). When the scheduler is executing a
write letter, no further message can be processed in parallel. In case the sched-
uler is not executing a write letter, the scheduling method triggers the parallel
execution of all the read letters that are older than the oldest write letter, if any,
using executeAllOlderThan. This call returns the number of dispatched read-
ers, used to update the readers state. If there were no reader letters to process
(older than the oldest writer), the scheduler dispatches the oldest writer using
executeOldest . This method returns true if the processing of a letter was ac-
tually dispatched, false otherwise. Note that this scheduler uses a fair strategy but
could easily be modified to give priority to writers. Finally, the leave method
updates its state according to which message has finished executing, by either de-
creasing the number of readers, or turning the writer flag to false. To do so it
makes use of the dispatch construct which re-uses the message category filters
in order to decide which code block to execute.
def RWSched() { scheduler: {

def R := Category();

def W := Category();

def writing := false;

def readers := 0;

def schedule() {

if : !(writing) then: {

def executing :=

super.executeAllOlderThan(R,W);
readers := readers + executing;

if : (readers == 0) then: {

writing := super.executeOldest(W);
};

};

};

def leave(letter) {

dispatch: letter as:
[[R, { readers := readers - 1 }],

[W, { writing := false }]];

};

};};

Listing 3: Schedule and Leave methods of the Reader/Writer PAM

annotateMethod: ‘get with: RWSched.R on: dictionary;

annotateMethod: ‘put with: RWSched.W on: dictionary;

bindScheduler: RWSched() on: dictionaryActor;

Listing 4: Instantiating and binding of a PAM to an actor.

In order to use this scheduler with a dictionary actor, one should just annotate
the methods of the dictionary with the appropriate categories, and then instantiate
and bind the scheduler to the Actor (Listing 4).

13

5.3. Fair Dining Philosophers
An example where the coordination of multiple objects is essential is the clas-

sical Dining Philosophers. In this example there are a number of philosophers
which can only do one of two things at a time: eat or think. They are seated
around a round table with a fork on their left-hand side and on their right-hand
side. In order to eat a philosopher needs to obtain two forks.

In our implementation a philosopher is represented by an object which sends
eat messages to a table actor. The scheduler which can coordinates the eat mes-
sages sent to the table in order to obtain the forks is shown in listing 5. The
scheduler does not only allow the correct execution of the philosophers but it also
prevents starvation by implementing a fair scheduling strategy e.g. the philoso-
pher who has asked for a fork first gets it first. In order to ensure a fair scheduling
strategy, every time a philosopher tries to get two forks but either both or one of
them are unavailable these forks are reserved. Reserved forks cannot be handed
out to other philosophers as that would potentially lead to starvation.

The scheduler keeps track of which forks are handed out by keeping an array
of busy forks which are initialized to be all false when the scheduler is created.
Similarly, reserved forks are kept in a table called reserved which is local to the
schedule method e.g. the elements in the table are initialized to false every time
the schedule method is called.
def philosopherScheduler := scheduler: {

def busy[5] {false};

def schedule() {

def reserved[5] {false};

def letters := super.listIncomingLetters();
foreach: { |letter|

def philosopher := letter.receiver();

def id1 := philosopher.id;

def id2 := (id1%5)+1;

if :(!busy[id1]&!busy[id2]&!reserved[id1]&!reserved[id2]) then: {

busy[id1], busy[id2] := true;

super.executeLetter(letter);
} else: {

reserved[id1],reserved[id2] := true;

};

} in: letters;

};

def leave(letter) {

def philosopher := letter.receiver();

def id1 := philosopher.id;

def id2 := (id1%5)+1;

busy[id1], busy[id2] := false;;

};

};

Listing 5: Dining Philosophers Example

14

In the schedule method the list of pending letters is obtained with listIncoming-
Letters and traversed in decreasing age (messages that were sent longer ago are
listed first). Then the philosopher where the message is sent to (the receiver of
the letter) is extracted from the letter. Each philosopher has an instance variable
id. With this id the forks needed by this particular philosopher can be looked up.
When both forks for a philosopher are free permission is granted to the philoso-
pher to take both. The scheduler records that those forks are now taken by the
philosopher by setting the corresponding booleans in the busy table. Otherwise,
the requested forks are flagged as reserved in order to ensure a fair scheduling
strategy. Because the list is ordered by decreasing age, the scheduler ensures that
the philosopher which is waiting the longest for his forks will get his forks first.
Finally in the leave method the forks of the philosopher which has stopped eating
are set to free. This example shows that PAM’s can be used for a wide range of
complex coordination strategies. In the next section we show how to implement a
full fledged synchronization mechanism called synchronizers.

5.4. Synchronizers
A related coordination abstraction, called synchronizers, invented by Frølund

and Agha offers a declarative mechanism to deal with multi-object coordination
for thread based systems [20]. As an actor can encapsulate multiple passive ob-
jects, a PAM can be used to coordinate the access to this group of objects. In
this section we show that the features of synchronizers can easily be expressed in
PAM to coordinate the messages sent to the objects encapsulated by an actor. The
three main synchronization abstractions defined by synchronizers are: update to
update the state of the synchronizer, disable to disallow the execution of cer-
tain methods (in a guard-like manner), and atomic to trigger several methods in
parallel in an atomic manner.

To illustrate the use of these constructs consider Listing 6, which shows an
example synchronizer. The aim of this synchronizer is to restrict the total amount
of simultaneous requests on two objects adm1 and adm2. To do so the synchronizer
keeps track of the amount of simultaneous requests performed on those objects
with the prev integer variable. Every time the method request is called either on
adm1 or adm2 the prev value is incremented. Similarly when the method release

is called on one of the objects the prev is decreased. This is implemented in
the synchronizer with the when: MethodPattern update: Codeblock construct.
This construct registers the CodeBlock to be executed whenever a method that
matches the MethodPattern is executed. Finally, requests to both objects are

15

disabled when prev equals or exceeds max with the when: Predicate disable:

MethodPattern construct.
def collectiveBound(adm1, adm2, max) { synchronizer: {

def prev := 0;

when: ((MethodCall: ‘request on: adm1) or (MethodCall: ‘request on: adm2)) update: {

prev := prev + 1;

};

when: ((MethodCall: ‘release on: adm1) or (MethodCall: ‘release on: adm2)) update: {

prev := prev - 1;

};

when: { prev >= max } disable:
((MethodCall: ‘request on: adm1) or (MethodCall: ‘request on: adm2));

}; };

Listing 6: Synchronizer example from [20] with a PAM

The implementation of these registration constructs is shown in Listing 7. The
update and disable constructs (Lines 6–7) keep track of their registrations in the
updateTable and disableTable respectively (Lines 1–2). The executeUpdates
method performs the actual invocation block given a letter that matches one of its
registrations (Line 10). The isDisabled(letter) function returns a boolean
indicating whether the given letter is currently disabled (Line 11). Similar to the
when:update: and when:disable: construction the atomic: construction adds
the method patterns to the atomicTable (Line 8). The executeAtomic method
goes over the atomicTable and checks for each group of method patterns whether
the inbox has a matching message for each of these patterns (Lines 13–18). If this
is the case all these messages are executed in parallel and the executing variable is
updated to keep track of the amount of messages which are being executed (Lines
15-16).

The implementation of the schedule and leave methods of the PAM is shown in
Listing 8. The execution of individual messages should be prevented when the ac-
tor is executing a group of atomic messages. Similarly starting the execution of a
group of atomic messages should be prevented when there are currently executing
individual messages in the actor. In order to keep track of which kind of mes-
sages and how many are executing the scheduler maintains two variables, atomic
and executing, which respectively indicate the execution of a group of atomic
messages and the number of currently executing messages. When the schedule
method is called the scheduler makes sure that it is not executing an atomic block.
If this is not the case the scheduler stops in order to prevent the execution of con-
current messages during the execution of an atomic block, otherwise the scheduler
proceeds. When there are no currently executing messages (indicated by the ex-
ecuting variable) and the scheduler can start the execution of an atomic block the

16

1 def updateTable := [];

2 def disableTable := [default: {false}];

3 def atomicTable := [];

4 def executing := 0;

5
6 def when: pattern update: block { updateTable := updateTable + [[pattern, block]] }

7 def when: block disable: pattern { disableTable := [[pattern, lambda]] + disableTable; }

8 def atomic: patterns { atomicTable := atomicTable + [patterns] }

9
10 def executeUpdates(letter) { dispatch: letter as: updateTable; }

11 def isDisabled(letter) { dispatch: letter as: disableTable; }

12 def executeAtomic() {

13 atomicTable.each: { |MethodPatterns|

14 if : containsAll(MethodPatterns) then: {

15 executing := executeAll(MethodPatterns);

16 return true;

17 }

18 }

19 return false;

20 }

Listing 7: Synchronizers registration constructs implemented in AmbientTalk

variable atomic is changed accordingly. Otherwise the scheduler walks over the
mailbox of incoming letters and executes all the letters which are not disabled. For
each letter which is not disabled the scheduler starts it’s execution, updates the ex-
ecuting variable by incrementing it by one and executes all the updates. The leave
method of the scheduler decrements the executing variable by one for each leav-
ing letter and sets the atomic variable to false when the executing counter equals
0. Synchronizers offer the programmer a declarative mechanism for coordinating
multiple objects, however they are more limited than our PAM abstraction: fair-
ness cannot be specified at the application level; history-based strategies must be
manually constructed; and finally, although synchronizers encapsulate coordina-
tion, their usage has to be explicit in the application, requiring intrusive changes
to the existing code. Also, synchronizers explicitly reference method names: their
reuse potential is therefore more limited than PAM, where the method categories
allow for more abstraction.

6. AmbientTalk Implementation

Parallel Actor Monitors are implemented in AmbientTalk using reflection.
AmbientTalk is a prototype-based actor language with a strong reflective layer.
This reflective layer has been implemented by the design principles of so called
mirrors. A mirror is a special kind of object that encapsulates a number of op-

17

1 def schedule() {

2 if : !atomic then: {

3 if : (executing == 0 & executeAtomic()) then: {

4 atomic := true;

5 } else: {

6 listIncomingLetters().each: { |letter|

7 if : ((!isDisabled(letter)).and: { !inAtomic(letter) }) then: {

8 executeUpdates(letter);

9 executing := executing + 1;

10 super.executeLetter(letter);};};};};};
11
12 def leave() {

13 executing := executing - 1;

14 if : (executing == 0) then: { atomic := false}

15 };

Listing 8: Schedule method for implementing Synchronizers with PAM

erations which are called by the underlying implementation in order to allow a
program to alter the default semantics of a particular feature of the system. The
specific order and time when these meta operations are invoked are described in
the meta object protocol. For example, in AmbientTalk the message meta-object
protocol describes that the receive method of a mirror is called every time an
asynchronous message is sent to the base level object of that mirror. Mirrors
where proposed by Bracha and Ungar [23] in order to provide structural intro-
spection and intercession. The AmbientTalk model has extended the concept of
mirrors in order to also perform behavioral intercession [24]. Mirrors in the Am-
bientTalk model can be created in the base level and attached to an actor or an
object upon creation time. From there on the meta-object protocol will be applied
to the newly attached mirror. PAM has been implemented as an extension of this
existing mirror based reflective layer.

The second part of the implementation consists of a global thread-pool which
is used for the execution of the letters. This has the advantage that we can avoid
the startup times for each thread after the initialization of the thread-pool. One of
the key points of our implementation is that a PAM is a thread-less scheduler. By
re-using the threads in the thread-pool for scheduling we can avoid unnecessary
thread-switches opposed to a strategy where the scheduler is a thread on its own.

7. UrbiFlock a Use Case for PAM

The AmbientTalk language has been primarily designed to ease the develop-
ment of so called Ambient Applications running on mobile phones. The com-
munication in these applications is conducted in a peer to peer fashion without

18

Figure 3: Screenshot of the UrbiFlock UI to add a new nearby badminton flock.

any infrastructure such as a centralized server. UrbiFlock [25, 26] is a frame-
work implemented on top of AmbientTalk for the development of a brand new
kind of application which enables social networking on the move. Central in the
UrbiFlock framework is the concept of a Flock, users can group friends in differ-
ent categories (Flocks). Flocks differentiate themselves from normal user groups
as the content of a Flock is automatically updated in order to reflect contextual
changes in the environment. For example a user can define a Flock of all nearby
users who like badminton. A screenshot of how an end user can define this flock is
shown in figure 3. From then on the badminton flock will be periodically updated
in order to reflect the changes in context. For example when users move in and
out of communication range.

Because in Ambient Applications the computation of such a Flock is nec-
essarily conducted on the mobile phone itself (we cannot rely on a centralized
server) the derivation of which user belongs to which flock has to be computed
efficiently. However, as seen in the introduction using the actor model adopted in
AmbientTalk forces the programmer to adopt a sequential execution. Recent ad-
vances in mobile computing have lead to the development of mobile phones which
have multicore processors4. While actor applications such as UrbiFlock will cer-
tainly benefit from these new architectures, the use of the actor model itself will
prevent the parallel execution of matching multiple users at the same time.

4http://tinyurl.com/38pkzd4

19

Therefore, we have applied the techniques developed in PAM in order to speed
up the matching phase. As we do not have access to these new multicore mobile
phones we have extracted the matching phase of a Flock and conducted our ex-
periments on a dual core laptop. The derivation of the Flock that we have bench-
marked computes all the persons who’s partner is also in the neighborhood. This
means that whenever a new person appears and exchanges his profile the con-
tent of the Flock has to be recomputed. In our test we have benchmarked the

Figure 4: Speedup for the flock derivation by using a PAM.

behavior of a person with three hundred friends in his friend list entering a large
hall. The benchmark starts when the new content of the Flock is computed and
ends when all the couples have been found. We have benchmarked the derivation
of this Flock both for a serial execution and parallel execution (enabled by the
reader-writer pam shown in listing 1). The x-axis consists of the number of peo-
ple joining the flock. For a serial execution we already notice that the derivation
time of the couples flock will take over a second. Note that these computations are
conducted on an Intel Core 2 Duo with a processor speed of 1.8 GHz running Mac
OS X (10.5.8) and thus that the expected derivation times on a mobile phone will
take more time. By plugging in the reader–writer PAM we see that we can obtain
a two times speedup in almost all the cases. With hundred people the speedup
is already 1.88 and at four hundred this speedup increases to 1.96. In the next
section we give more details about the conducted micro benchmarks.

8. Evaluation

In this section an evaluation of the contributions of using PAM over current
practices is shown, for each contribution a discussion of the advantages and dis-
advantages of current practices is given. An overview of our evaluation is shown
in figure 2.

20

Figure 5: Processing time for the dictionary in
the AmbientTalk implementation.

Figure 6: Processing time for the dictionary in
the Scala implementation.

8.1. Efficiency
A PAM makes it possible to take advantage of parallel computation for im-

proved scalability. Benchmarks of our prototype implementations suggest speedups
that are almost linear to the number of processors available. In Figure 5 micro-
benchmarks show both the overhead of using a mutual exclusion scheduler PAM
(Listing 1) compared to plain AmbientTalk and the possible speedup when using
the reader-writer PAM scheduler (Listing 3).

The results depicted were obtained on an Intel Core 2 Duo with a processor
speed of 1.8 GHz running Mac OS X (10.5.8). We measured the processing time
of reading one hundred items from a dictionary actor5 of varying size. These
results show the low overhead of PAM (< 6%) and the expected speedup (1.9x for
the 32K and 150K dictionary), taking almost full advantage of the 2 cores.

In figure 6, the same dictionary example implemented in Scala [7] is shown.
Four different situations are benchmarked in this test. The first benchmark Scala,
measures the situation where one client sends hundred read messages to a dictio-
nary actor. In the second benchmark Scala Coordinator, a coordinator actor
is placed between the client and the dictionary actor. This coordinator simply
forwards the messages to a single dictionary actor. This is similar to the situa-
tion of a serial PAM implementation. As expected there is only a small overhead.
The Scala Replication benchmark measures the performance where the coor-
dinator actor forwards the read messages to a group of worker actors which all
receive a replica of the dictionary. This simulates the situation where a complex
data-structure can not be partitioned over a number of workers and thus needs to
be replicated in order to speed up reads. As can be seen, only in the situation of

5The dictionary is implemented as an association list of key value pairs.

21

a dictionary of size 32K a reasonable speedup is achieved (1.6). When the dic-
tionary becomes bigger (150K) the performance degrades to a 1.14 speedup. In
the final benchmark the workers all receive an equal part of the dictionary and
the messages are perfectly balanced over the dictionaries. Only in this case, sim-
ilar speedups as with the PAM reader-writer PAM scheduler could be achieved.
Because these speedups could only be achieved under perfectly partitioned and
balanced dictionaries Table 2 indicates a +/- sign for the traditional actor model.

When using a shared data structure, transactors or when making use of a thread
library within the actor, similar speedups can be achieved. However, all these
approaches fail to do so in a structured way as shown in the next sections.

8.2. Modularity
A PAM is a modular, reusable scheduler that can be parameterized and plugged

into an actor to introduce intra-actor parallelism without modification of the origi-
nal code. With approaches that allow shared data structures to be introduced, pro-
grammers need to adjust the code with a locking strategy or introduce a special
coordinator actor which governs the access to the shared data structure. Clearly
the use of a thread library through symbioses requires intrusive changes to the
code. In the Scala example, modularity is not preserved as the worker actors can
not be encapsulated in the coordinator actor and possibly leak to other parts of the
program. Further, the code to create the clients needs to be adjusted in order to
pass the coordinator actor instead of a concrete dictionary actor. With transactors,
the body of the actor has to be adjusted in order to spawn new transactions and
only transactional references are capture by the transaction system.

8.3. Locality
Binding a PAM to an actor only affects the parallel execution of messages

inside that single actor. Introducing shared data structures has an impact on the
whole actor program, failing to request access to the coordinator actor will lead
to errors. In the implementation of the dictionary example in Scala locality is
an issue because direct access to one of the worker actors can potentially affect
the whole program. Transactors are not limited to a single actor and thus can
potentially affect the behavior of other actors, as this is very unlikely to happen
accidentally the table shows a (-/+).

8.4. Abstraction
A PAM is expressed at the same level of abstraction as actors: the scheduling

strategy realized by a PAM is defined in terms of a message queue, messages, and

22

System Efficiency Modularity Locality Abstraction
Trad. Actors -/+ - - +

Transactors + - -/+ -
Symbiosis + - + -
Shared Data + - - -
PAM + + + +

Table 2: Comparison of the core contributions of PAM against current state of the art.

granting permissions to execute. With the exception of the traditional actor model
all other solutions require the programmer to think in a different paradigm.

9. Conclusion

In order to address data-task entanglement resulting from the strict restrictions
of the actor model, we have proposed the model of Parallel Actor Monitors. Us-
ing PAM, there can be intra-actor parallelism, thereby leading to better scalability
by making it possible for a single actor to take advantage of the parallelism of-
fered by the underlying hardware. PAM offers a particularly attractive alternative
to introduce parallelism inside actors, because it does so in a modular, local, and
abstract manner: modular, because a PAM is a reusable scheduler, specified sep-
arately; local, because only the internal activity of an actor is affected by using
a PAM; abstract, because the scheduler is expressed in terms of (categories of)
messages, queues and granting permission to execute. Benchmarks on dual and
oct core machines confirm the expected speedups.

References

[1] G. Agha, Actors: a Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, 1986.

[2] O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare (Eds.), Structured programming,
Academic Press Ltd., London, UK, UK, 1972.

[3] R. Diaconescu, Object based concurrency for data parallel applications: Pro-
grammability and effectiveness, Ph.D. thesis, Norwegian University of Sci-
ence and Technology, Department of Computer and Information Science
(2002).

23

[4] R. K. Karmani, A. Shali, G. Agha, Actor frameworks for the jvm platform:
a comparative analysis, in: Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, PPPJ ’09, ACM, 2009,
pp. 11–20.

[5] A. Yonezawa (Ed.), ABCL: An Object-Oriented Concurrent System, Com-
puter Systems Series. MIT Press, 1990.

[6] J. Armstrong, R. Virding, C. Wikström, M. Williams, Concurrent Program-
ming in ERLANG, Prentice Hall, 1996.

[7] P. Haller, M. Odersky, Actors that unify threads and events, in: Proc. of
the 9th inter. conf. on Coordination models and languages, COORDINA-
TION’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 171–190.

[8] S. Srinivasan, A. Mycroft, Kilim: Isolation-typed actors for java, in: Pro-
ceedings of the 22nd European conference on Object-Oriented Program-
ming, ECOOP ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 104–128.

[9] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici,
Grid Computing: Software Environments and Tools, Springer-Verlag, 2006,
Ch. Programming, Deploying, Composing, for the Grid.

[10] M. Stiegler., The E language in a walnut,
www.skyhunter.com/marcs/ewalnut.html.

[11] C. Varela, G. Agha, Programming dynamically reconfigurable open systems
with SALSA, ACM SIGPLAN Notices. OOPSLA’2001 36 (12) (2001) 20–
34.

[12] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, W. De Meuter,
Ambient-oriented Programming in Ambienttalk, in: D. Thomas (Ed.),
ECOOP, Vol. 4067, Springer, 2006, pp. 230–254.

[13] R. Hickey, Message passing and actors, Clojure online documentation,
http://clojure.org/state.
URL http://clojure.org/state

[14] J. Gosling, B. Joy, G. Steele, The Java Language Specification, GOTOP In-
formation Inc., 1996.
URL citeseer.ist.psu.edu/gosling96java.html

[15] J. Schäfer, A. Poetzsch-Heffter, Jcobox: generalizing active objects to con-
current components, in: Proc. of the 24th European conf. on Object-oriented

24

programming, ECOOP’10, 2010, pp. 275–299.

[16] E. B. Johnsen, J. C. Blanchette, M. Kyas, O. Owe, Intra-object versus inter-
object: Concurrency and reasoning in creol, Electron. Notes Theor. Comput.
Sci. 243 (2009) 89–103.

[17] C. Fournet, G. Gonthier, The reflexive cham and the join-calculus, in: POPL
’96, ACM, New York, NY, USA, 1996, pp. 372–385.

[18] N. Benton, L. Cardelli, C. Fournet, Modern concurrency abstractions for c#,
ACM Trans. Program. Lang. Syst. 26 (5) (2004) 769–804.

[19] G. S. Itzstein, M. Jasiunas, On implementing high level concurrency in java,
in: In Proceedings of the Eighth Asia-Pacific Computer Systems Architec-
ture Conference, Springer, 2003, pp. 151–165.

[20] S. Frølund, G. Agha, A language framework for multi-object coordination,
in: ECOOP ’93, Springer-Verlag, London, UK, 1993, pp. 346–360.

[21] D. Caromel, L. Mateu, G. Pothier, É. Tanter, Parallel object monitors, Con-
currency and Computation—Prac. and Exp. 20 (12) (2008) 1387–1417.

[22] E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation
of programs, Communications of the ACM 18 (8) (1975) 453–457.

[23] G. Bracha, D. Ungar, Mirrors: Design principles for meta-level facilities of
object-oriented programming languages, in: Proceedings of the 19th annual
Conference on Object-Oriented Programming, Systems, Languages and Ap-
plications, 2004, pp. 331–343.

[24] S. Mostinckx, T. Van Cutsem, S. Timbermont, E. Gonzalez Boix, E. Tanter,
W. De Meuter, Mirror-based reflection in ambienttalk, Softw. Pract. Exper.
39 (7) (2009) 661–699.

[25] A. Carreton, D. Harnie, E. Boix, C. Scholliers, T. Van Cutsem,
W. De Meuter, Urbiflock: An experiment in dynamic group management
in Pervasive social applications, in: Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 2010 8th IEEE International Con-
ference on, IEEE, 2010, pp. 250–255.

[26] E. Gonzalez Boix, A. Carreton, C. Scholliers, T. Van Cutsem, W. De Meuter,
T. D’Hondt, Flocks: Enabling dynamic group interactions in mobile so-
cial networking applications, in: 26th Symposium On Applied Computing
(SAC) Track on Mobile Computing and Applications (MCA), 2011.

25

