
Automated Assessment
of Correctness of Recommendation Systems

Angela Lozano
Université catholique de Louvain

Louvvain-La-Neuve, Belgium
angela.lozano@uclouvain.be

Andy Kellens
Vrije Universiteit Brussel

Brussels, Belgium
akellens@vub.ac.be

Kim Mens
Université catholique de Louvain

Louvvain-La-Neuve, Belgium
kim.mens@uclouvain.be

Abstract—Using a concrete example, this position paper
makes a case for evaluating the correctness of software recom-
mendation systems in an automated way, prior to conducting
user studies, in order to assess the validity of the results and
ideal configuration of the system to be evaluated.

I. CONTEXT

Recommendation systems have many acclaimed advan-
tages such as promoting reuse by reducing the effort required
to use third party code, increasing awareness of design
decisions, providing code completion hints, and pointing out
incorrect or incomplete code.

This paper relates our experience in evaluating
Mendel [1]1, a recommendation system to support
developers when extending or reusing object-oriented
applications. In general, recommendation systems can
be evaluated with respect to their usefulness, usability,
or correctness. The usefulness of a recommendation tool
is the degree to which it reduces the effort needed to
perform certain development tasks, and is usually evaluated
by asking developers to use the recommendation system
while performing a certain task, and later discussing their
opinions on the recommendations provided. Usability
expresses how easy to use the recommendation tool is, and
is usually evaluated via observational studies, sometimes
accompanied by questionnaires. Finally, correctness
evaluates how trustworthy a system is by measuring the
degree to which the recommendations it proposes are correct
(precision), as well as the amount of correct information it
recommends (recall).

II. ISSUES EVALUATING RECOMMENDATION SYSTEMS

While user studies are most suited to assess the quality of
recommendation systems, they are notoriously expensive to
conduct. In addition to the difficulty of defining a realistic,
non-biased empirical experiment, a major difficulty lies
in finding a sufficiently large and representative set of
developers that can serve as test subjects. These developers
need to be willing to spend time learning to use the system,
to answer questionnaires or interviews, and to participate in

1http://soft.vub.ac.be/mendel

controlled experiments. Achieving such a level of commit-
ment, especially in an industrial context, is challenging and
usually requires prior proof of the merits of the tool.

In this paper we take the stance that providing prior
insights on the correctness of a recommendation system, is
required to gain sufficient confidence in the system before
initiating a user study. The correctness of such a system can
be expressed in terms of precision, recall, and f-measure2.
While the success of a recommendation system depends on
more than its correctness, correctness does play a crucial
role. Recommendation systems with low precision present
their users with a potentially large list of recommendations
of which only a small subset are correct or useful. Systems
with low recall might be of limited use, as they omit
important recommendations.

It is our experience that assessing correctness of a recom-
mendation system can often be done (semi-)automatically,
without requiring costly user studies. By comparing the
recommendations provided by the system with a kind of
“gold standard”, it is possible to measure precision, recall
and f-measure. For example, recommendation systems that
aid developers in using a certain API may consider the
potentially large corpus of existing applications that use that
API as the gold standard. However, such a gold standard
can also be defined for other kinds of recommendation
systems, such as our Mendel tool which aims at completing
and improving consistency of a certain code base. In the
remainder of this paper we present Mendel, our approach
for evaluating correctness of Mendel automatically, and we
discuss our experiences with this evaluation strategy.

III. MENDEL

Mendel [1] is a recommendation system for completing
object-oriented code bases during maintenance and exten-
sion tasks. Given a user’s current browsing context, the
tool proposes structural properties (e.g., relevant classes,
messages to send, use of super calls, or particular source
code templates) that may be missing from the class or
method browsed. Mendel starts from the assumption that

2i.e., the overall balance between precision and recall



entities belonging to a same class hierarchy are likely to
exhibit similar properties. It relies on a genetic metaphor:
based on the class hierarchy to which a source-code entity
belongs, the tool defines the “family” of a method as all
implementors of that method’s signature within sibling or
niece classes. It then computes the traits (i.e. structural
characteristics) of the entities of that family and reports on
traits exhibited by most of the entities in the family, but not
by the entity itself.

A. Evaluating Mendel

When developing Mendel we experimented with various
definitions of “family” of source-code entities, different
thresholds and different sets of structural properties taken
into account by our approach. Initially we performed a
qualitative evaluation of each configuration of the tool,
by manually investigating the output to find interesting
recommendations.

Our qualitative evaluation revealed that Mendel did not
behave satisfactorily under all configurations. This discour-
aged us from attempting a user study right away: we were
not certain which configuration of the tool would be most
suitable, and wanted to avoid to have to repeat a costly user
study multiple times. To overcome this problem, eventually
we decided to automatically simulate the use of Mendel to
test and compare various configurations of the tool. Below,
we discuss how this automated simulation was implemented.

B. Automated simulation to evaluate Mendel

The idea behind our experimental set-up is to take the
source code of a program, remove the implementation of a
particular source-code entity, and then check whether or not
Mendel’s suggestions align with the original properties of
that entity. In other words, we use the existing source-code
as gold standard for the evaluation of the recommendation
system, as has been proposed by various authors. Further-
more, this experimental set-up lies close to the intended
usage scenario of Mendel, where a developer is performing
a maintenance or extension task in which a new entity is
added to the system, and where Mendel aids the developer
in completing this new entity.

We implemented a small tool to fully automate this
evaluation process:

1) As input, it takes the source code of a software system.
2) For each class and method in that system, it computes

and stores the traits (i.e. structural characteristics)
exhibited by those source-code entities.

3) It iterates over all source-code entities in the system:
a) For a class, all of its methods are removed; for

a method, its method body is removed.
b) Mendel is used to suggest missing traits.
c) These recommended traits are compared with the

original traits of the entity.

d) The original implementation of the entity is
restored.

4) Finally, it generates a report summarizing the results
of the validation. This report then serves as input for
further analysis of the data.

IV. DISCUSSION

As mentioned above, the lack of knowledge regarding
which configuration of Mendel would perform best made
us opt for an automated means to evaluate our approach.
The main advantage of this strategy was that it allowed
us to iteratively refine our approach: we were able to
experiment with various configurations of Mendel, and for
each configuration we were able to automatically compare
and evaluate its correctness in an objective manner.

In addition to this advantage, we observed that a pure
qualitative evaluation of our approach could be deceiving.
Prior to applying our automated evaluation to each different
configuration of Mendel, we verified manually whether the
configuration yielded expected results for particular contexts.
As such, we originally dismissed various configurations
where an initial assessment of the recommendations pro-
duced by Mendel appeared to be disappointing. In a later
stage, we automatically experimented with a broad range
of configurations of the tool. We noticed that a number of
configuration that were dismissed earlier by hand, actually
performed rather well when applied to an entire system.

As such, only considering a small subset of the system
in our manual investigations of the results skewed our
qualitative-only evaluation. Note that it was precisely the
fact that our evaluation could be automated which allowed
us to experiment with Mendel on a larger scale than would
be possible with a mere qualitative analysis or user study.

Finally, as a caveat on our automated evaluation approach,
we can mention that using the latest version of the code as
gold standard, may provide pessimistic results of the correct-
ness of the tool. Recommendations that do not align with
the current version of the source code could be considered
incorrect, even though they might indicate an interesting
missing property of the source code. However, we would
need a user evaluation to assess to what extent the latest
version of the code diverges from the developer’s view on
the usefulness of the recommendations.

ACKNOWLEDGMENT

This research is supported by the IAP Program of the Belgian
State. Angela Lozano is funded as a post-doc researcher on a
Belgian FNRS-FRFC project.

REFERENCES

[1] A. Lozano, A. Kellens, and K. Mens, “Mendel: Source code
recommendation based on a genetic metaphor,” in Int’l Conf.
on Automated Software Engineering (ASE), 2011, pp. 384–387.


