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Abstract—The need to identify source code that exhibits
particular characteristics is essential to program comprehension.
In this paper we introduce ARABICA, a tool for querying Java
code using UML class and sequence diagrams. Our use of
UML diagrams avoids the need for developers to familiarize
themselves with yet another language. In contrast to tools that
rely on dedicated query languages, ARABICA encodes querying
semantics in a dedicated, minimal UML profile. Stereotyped class
and sequence diagrams, characterizing structural and behavioral
properties respectively, are translated into logic program queries.
Using examples from the JHotDraw framework, we illustrate
the utility of ARABICA in validating design invariants, finding
design pattern implementations and exploring extension points.
We present a pre/post-test quasi experiment as a preliminary
assessment of our approach.

I. INTRODUCTION

Code querying is an important activity in program under-
standing. The ability to answer questions about the code base
of a system is useful whenever developers are confronted with
an unknown system, prior to making changes to an existing
system, or when determining whether idioms and coding
conventions have been adhered to. However, most Integrated
Developments Environments (e.g., Eclipse) provide developers
only limited support for asking questions about their code and
having them answered. The code querying functionality of
mainstream IDE:s is restricted to answering predefined queries
such as finding the method declaration that corresponds to
a method invocation, or computing the hierarchy in which a
class resides. Support for formulating and answering custom,
complex or composite queries is limited or plain lacking.

More advanced code querying functionality is provided by
certain extensions to IDEs or third-party tools that allow the
developer to formulate custom queries. Nevertheless, query
tools that model the code as a stream of characters (i.e., grep-
like tools) suffer from a lack of expressive power. Others re-
quire developers to learn a query language with foreign syntax
and semantics (e.g., ASTLog [3], LePUS [9]). These languages
seldom allow developers to retrieve complex structures (e.g.,
design pattern implementations) with straightforward queries.

To address these concerns regarding custom code querying
tools, we introduce ARABICA as a graphical tool —embedded
in the Eclipse IDE— that uses UML diagrams as queries for
querying Java code. The goal of ARABICA is to provide an
expressive query tool that allows developers to describe both
structural and behavioral characteristics of the code they search
for using a familiar language. Moreover, ARABICA’s graphical
nature aims at easing the description of complex structures.

To this end, ARABICA extends the UML meta-model with
a minimal profile composed of seven stereotypes that allow
developers to use class and sequence diagrams as templates to
search for code. The stereotypes mark UML model elements
as variables in a query, or extend the semantics of relations to
express transitivity or absence.

Using model-to-text tools, class as well as sequence dia-
grams are translated into a SOUL [6] query that is executed
to find the solutions to the original UML query. ARABICA
gains its expressive power from this SOUL back-end, which
includes the ability to reason over the structure and behavior
of a program by consulting the static analyses computed by
Soor [23].

The remainder of this paper is structured as follows. First,
we motivate the need for specialized querying tools like ARA-
BICA through three examples taken from the JHotDraw code
base. Section III discusses ARABICA by first explaining the
syntax and semantics of the SOUL program query language,
then introducing ARABICA’s extensions to the UML meta-
model and finally discussing how UML entities can be inter-
preted as queries by illustrating their transformation into SOUL
queries. Having explained the functioning of our approach,
we revisit the three motivating examples in Section IV, where
we show the UML class and sequence diagrams that serve
as queries for their solution. Section V presents a preliminary
study into the usability of ARABICA, by means of a pretest-
posttest quasi-experiment with 11 participants which reveals
a positive attitude towards our tool in general, and class
diagrams as a means to describe the structural qualities of a
query in particular. Finally, Section VI presents related work,
and we conclude in Section VIL.

II. MOTIVATING EXAMPLE

We illustrate the need for a code querying tool like ARA-
BICA using three examples from JHotDraw!. JHotDraw is a
two-dimensional graphics framework for structured drawing
editors that is written in Java. The framework is meant
to showcase the utility of design patterns in constructing
extensible frameworks. As with any framework, developers
must gain a thorough understanding of its structure and design
invariants before they can make use of it. We consider three
examples of queries that developers could formulate over
the code base of JHotDraw: how figures are implemented,
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whether tools are correctly implemented with regards to design
invariants, or what instances of a particular design pattern (e.g.,
a Composite) can be found in the framework.

A. Implementation of Concrete Figures

Figures are key to the JHotDraw framework. When con-
structing a graphical editor, developers need to implement
classes that represent the editor’s specific figures. Fig-
ures in JHotDraw are implemented as subclasses of the
AbstractFigure class. As a novice developer is con-
fronted with this task, looking at how existing figures are im-
plemented can provide insight. Nevertheless, finding suitable
examples might be difficult, for example, JHotDraw figures
can be further specialized into connection figures. Thus, in
order to find examples, the developer must find all the concrete
subclasses of AbstractFigure that do not implement the
interface ConnectionFigure.

B. Correct Activation of Tools

Figures in JHotDraw are constructed and manipulated
through Tools. Tools act as a modifier of the mouse be-
haviour on the drawing: all mouse events are forwarded to
the active tool. As such, tools can be activated or deactivated
through methods defined on the Tool interface. Developers
can define their own tools by extending the AbstractTool
class and overriding its methods to implement the addi-
tional functionality. When doing so, developers must take
care to respect the design invariants of the framework.
One such design invariant, that is described in the docu-
mentation of AbstractTool, is that subclasses overriding
the AbstractTool#activate () method must, in their
body, delegate to super.activate (). JHotDraw develop-
ers might therefore wish to verify the correctness of their im-
plementation by formulating a code query that identifies viola-
tions of this design invariant. This query would take the form:
which classes extending AbstractTool and overriding the
activate () method do not call super.activate?

C. Composite Pattern
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Fig. 1. Structural characteristics of the Composite pattern

As JHotDraw employs design patterns heavily, developers
using the framework must acquaint themselves with their im-
plementation. In particular, complex figures use the Composite
design pattern, delegating operations such as the calculation of

the bounding box (i.e., the minimum rectangle that encloses
the figure) to each of the components of the figure. This
calculation is defined by the displayBox () method of
the AbstractFigure class. The developer can find this,
and other uses of the Composite pattern by formulating a
query that describes the structural (Figure 1) and behav-
ioral (e.g., the delegation of Composite.operation () to
Component .operation () characteristics of the pattern.

Although IDEs such as Eclipse provide primitive support
for code querying, this support is insufficient to express
queries such as the ones required in the three examples
above. Without a specialized querying tool, the developer, for
example seeking concrete figures, must ask the IDE to show all
subclasses of AbstractFigure and then search manually
for concrete ones, and then filter out those that implement
ConnectedFigure.

III. ARABICA

ARABICA is a tool for querying Java code that uses UML
models as queries. In ARABICA, UML class and sequence di-
agrams specify respectively the structural (i.e., classes, fields,
methods and their relations) and the behavioral characteristics
(i.e., messages sent between methods) of the sought after code.

For UML models to be used as code queries, it is necessary
to extend the UML meta-model. To this end, ARABICA
provides a UML profile that defines a number of stereotypes.
Figure 3 depicts the ArabicaProfile that contains seven
concrete stereotypes extending relationships, named elements,
operations, properties and comments with the information
required to use them as queries.

As a tool, ARABICA extends the Barista framework [6] for
querying Java code using the SOUL program query language.
We reuse Barista’s Query Result View to enable developers
to obtain solutions to a query either one at the time or all
at once. From this view, it is also possible to inspect the
solutions to a query and navigate to the corresponding points
in the code. This integration with Barista also allows us to
schedule ARABICA queries to be run in the background every
time a particular Java project is built. We embedded the editors
provided by TOPCASED? in Barista’s query editor as depicted
in Figure 2. TOPCASED is a fully featured UML modeling
environment, based on Eclipse’s Modeling Framework, that
provides graphical editors for class and sequence diagrams.
However, any UML editor that produces models conforming to
the EMF implementation of the UML meta-model can be used.
ARABICA translates such a UML model into a corresponding
SOUL query that is evaluated against the program under
investigation.

ARABICA, BARISTA and the SOUL tool suite are freely
available and can be downloaded from: http://soft.vub.ac.be/
SOUL/download-soul/

In the following sections, we recapitulate the syntax and
semantics of the SOUL program query language before in-
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Fig. 2. ARABICA’s query editor

troducing ARABICA’s ArabicaProfile and its translation
from UML diagrams to a SOUL query.

A. SouL

SouL [6] is a logic-based language for querying Eclipse
Java projects. A SOUL query consists of conditions that quan-
tify over the project’s AST nodes. These conditions express
the characteristics of the sought after code. We will briefly
describe the syntax and semantics of the kind of conditions
that ARABICA relies on. The following query consists of three
conditions:

if ?class isClassDeclaration,
?class extends: ?super,

?super classDeclarationHasName: {.xException}

SOUL queries start with the keyword i f. Logic variables are
preceded by a question mark. SOUL’s syntax for predicates
closely resembles the one of Smalltalk, similar to a message
that is sent to the first argument of the predicate. For each sub-
class of ASTNode (e.g., ClassDeclaration), SOUL pro-
vides a unary predicate that quantifies over the AST nodes of
that kind (isClassDeclaration:/1). Thus, the variable
?class in the first condition ranges over all class declaration
nodes. Binary predicates quantify over the relations between
two AST nodes. For instance, binary predicate extends: /2
quantifies over all classes and the super class they extend
directly. The second condition therefore binds ?super to
the direct super class of ?class. In the third condition, the
regular expression{ . xException} substitutes for the name
of this super class. Under SOUL’s unification procedure, this
condition succeeds for names that match the regular expres-
sion. SOUL features several extensions to Prolog’s unification

procedure that are specific to the domain of code querying [5],
[6]. Apart from these extensions, SOUL finds solutions to
a query in the same manner as Prolog (i.e., through SLD-
resolution [10]). The solutions to the above query therefore
consist of all classes ?class such that the name of their
super class ?super ends in Exception.

ARABICA also relies on conditions that use SOUL’s tem-
plate terms and negation predicate not /n. They are illustrated
by the following query. Its solutions comprise a class ?class
that is instantiated by an instance creation expression ?exp,
even though all of its field member declarations are static:

if ?class classDeclarationHasName: ?className,
jtExpression (?exp) {new ?className(?argList)},
not (jtClassDeclaration(?class) {
class ?className {
’member := [?modList ?type ?fieldName;]
}
}l
not ( ?member isStatic))

The query consists of three conditions. The first condition
uses binary predicate classDeclarationHasName: /2
to bind ?className to the name of a class ?class. The
second condition uses a template term that consists of a functor
(i.e., JtExpression) followed by an argument (i.e., ?exp)
and a code excerpt that is demarcated by braces. The functor
of the template term identifies the grammar rule adhered to by
the code excerpt. This grammar describes the concrete syntax
of Java, extended with logic variables and a minimum of non-
Java syntax. Used as a condition, a template term succeeds if
the term’s argument unifies with an AST node that matches the
code excerpt. Variables within the excerpt are unified with the
corresponding children of the match. As a result, the second
condition quantifies over all expressions ?exp that instantiate
a class named ?className using arguments ?argList.

SOUL’s negation predicate not/n implements Prolog’s
negation as failure. The predicate succeeds if the query com-
posed of its arguments does not have any solutions. The third
condition above therefore succeeds if ?class does not have
a field declaration ?member that is not static. The template
term illustrates some of the non-Java syntax that can be used
within code excerpts. Operator := unifies the logic variable
on its left-hand side (i.e., ?member) with the AST node that
matches the code within square brackets on its right-hand side
(i.e., a field declaration).

Note that SOUL does not match AST nodes with template
terms in a strict, syntactic manner. Indeed, classes with nothing
but a single field declaration are rare. Instead, SOUL lends
template terms an example-driven semantics [5]. A matching
AST node has to exhibit all characteristics exemplified by
the template (i.e., the field declaration), but is allowed to
exhibit additional ones (e.g., a method declaration). Moreover,
the matching process recognizes implicit (i.e., implied by the
semantics of Java) implementation variants of the exemplified
characteristics. To this end, SOUL’s aforementioned domain-
specific unification extensions consult whole-program analyses
computed by the SOOT [23] Java optimization framework.



For instance, a semantic analysis allows the bindings for
each occurrence of ?className to deviate syntactically
(e.g., a fully qualified and an unqualified name in the second
and third condition respectively), as long as they denote
the same class declaration ?class. The bindings for vari-
able occurrences that substitute for expressions are, simi-
larly, allowed to differ syntactically (e.g., this.field and
this.getField()) as long as they may evaluate to the
same object at run-time according to a points-to analysis.
The latter is relied upon by the SOUL queries that ARABICA
generates for UML sequence diagrams (cf. Section III-C).

B. UML Extensions

The Arabica UML profile extends the semantics of UML
models such that they can be used as specifications of a code
query. To this end, ArabicaProfile defines a minimal set
of stereotypes (depicted in Figure 3), divided in three groups:
SOUL-constraints, Relationships and Variables.

1) SoUL-Constraints: First of all, ArabicaProfile ex-
tends the Comment meta-class of the UML meta-model with
a «Soul» stereotype. This enables including comments in
a UML diagram that represent a regular SOUL condition.
Comments with the stereotype «Template» can be included
in a UML class diagram to specify the structure of a property
or an operation through a code template. To this end, the meta-
classes for Operation and Property are extended with
a stereotype «Templated» that has a property template
linking the operation or property to its corresponding code
template. In a similar manner, «Soul» comments can be
attached to relations, variables of templated operations, as
specified in the profile by the «SOULConstraint» abstract
stereotype.

2) Variables: Users of ARABICA have be able to specify
which parts of a UML diagram represent logic variables. To
this end, ArabicaProfile extends the NamedElement
UML meta-class. NamedElements represent all elements
that carry a name (e.g., classes, interfaces, operations and mes-
sages). The «vVariable» stereotype is applied to elements
defined as sub-types of NamedElement such that they might
act as variables in a query.

To facilitate specifying queries, ARABICA includes the
convention that all elements in a class or sequence diagram
whose name starts with the character ‘?’ are to be treated as
if they carried the «Variable» stereotype, this follows the
SOUL manner of specifying logic variables.

3) Relationships: Finally, ArabicaProfile provides
stereotypes «Not» and «Transitive» to adapt the seman-
tics of relations. Both stereotypes extend the Relationship
meta-class. This meta-class represents all structural relations
in UML models such as inheritance and association relations
between classes. Stereotyping a relation with «Not» specifies
that the relation should not be present in the queried code,
whereas stereotyping a relation with «Transitive» spec-
ifies that the related elements must be transitively reachable.

<<metaclass>>
Comment

<<stereotype>> <<stereotype>>
Template Soul
=<<stereotype>>

SOULConstraint
+ constraint : Soul[0..1]

=<metaclass>>
NamedElement

<<metaclass>>
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<<stereotype>>
<<stereotype>> Variable
SRelation
<<metaclass>>]| [<<metaclass>>

Operation Property

<<stereotype>> | |[<<stereotype>> <<stereotype>>

Transitive Not Templated
+template : Template
Fig. 3. Arabica UML Profile

C. Translation to SOUL

Through a translation into SOUL queries, we specify ARA-
BICA’s query semantics for UML models on which the
ArabicaProfile is applied. ARABICA produces a SOUL
query from such a model using the ACCELEO® model-to-text
transformation engine. Table I depicts the SOUL queries that
correspond to selected entities from UML class and sequence
diagrams.

ARABICA translates a UML model by recursively visiting
its packages. First, the individual classes from the class dia-
gram are translated together with their relationships. Next, the
collaborations defined in the sequence diagrams are translated.

1) Class Diagram Queries: The first row of Table I il-
lustrates the translation scheme for classes. Each class in a
class diagram is translated into a jtClassDeclaration
template term that binds Java class declaration AST nodes
to the logic variable ?ADecl. The name of the variable is
obtained by appending Decl to the name of the class. A
similar naming convention is used to capture the declaration
nodes from fields and methods within the class.

Inheritance relations between classes and interfaces
are translated into a condition that requires either the
isSubTypeOf:/2 or the extends: /2 predicate to hold
for the corresponding type declaration variables, depending
on whether the inheritance relation is transitive or direct. This
is illustrated by the second row in Table I. Had the «Not»
been applied to either of the inheritance relations in row two,
its effect would have been to surround the resulting SOUL
conditions with the not /n predicate.

The only association type currently supported in ARABICA
is directed simple associations such as the ones depicted in
the third row of Table I. Such an association is translated

3http://www.eclipse.org/acceleo/



differently depending on the cardinality of its second side.
If the second side has a cardinality of one (e.g., the one
labeled ?b in Table I), then the association is translated as
a field in the template for the owning class.* If the cardinality
of the association is unbounded (e.g., the one labeled ?bs
in Table I), the generated field is required to be a sub-
type of java.util.Collection. Note that the generated
conditions do not ensure that this collection will actually carry
objects of type B. However, future incarnations of ARABICA
could incorporate other implementations of such associations
(e.g., array-based ones).

Rows four and five of Table I illustrate that UML comments
containing SOUL code are inserted directly in the generated
query.

2) Sequence Diagram Queries: Sequence diagrams are
translated in a two-step process. First, each lifeline is translated
into a jtExpression template term that binds the name of
the lifeline (?b in the last row of Table I) to its correspond-
ing instance creation expression. The idea is to capture the
expression that gives birth to the lifeline and subsequently
unify this expression with the receiver of each method in-
vocation directed towards the lifeline —thus differentiating
between different lifelines of the same type. SOUL’s domain-
specific unification procedure (cf. Section III-A) unifies two
syntactically differing expressions (i.e., an instance creation
expression and the receiver of a method invocation) if they
may evaluate to the same object at run-time according to
a points-to analysis computed by SOOT [23]. If ARABICA
detects that SOOT has not been run for the queried project, no
such jtExpressions are generated.

Next, a jtMethodDeclaration template term is gener-
ated for each message targeted at a lifeline. The name of this
method corresponds to the name of the incoming message.
For every outgoing message in the activation block, a method
invocation is added to the body of this template term. SOUL’s
example-driven matching of template terms (cf. Section III-A)
allows method declaration AST node ?operationDecl to
match multiple of such jtMethodDeclaration templates
that each contain one or more of its statements.

Note that variables ?operationDecl and ?method
already occurred in the first and fourth row of Table 1. They
effectively link the sequence and class diagrams of the UML
model together. As a result, the depicted sequence diagram
specifies an interaction between the classes A and ?class of
the class diagram.

IV. MOTIVATING EXAMPLE REVISITED

Having explained the implementation of ARABICA, we now
turn back to the three use cases sketched in Section II, showing
for each one its implementation as a UML query. To give
an idea of the running time for each query, Table II lists
the number of milliseconds taken by ARABICA to provide
all results, the number of results, and the time to reach the

4For readability purposes we have omitted the capturing of the field
declarations.

UML Entity SOUL conditions
jtClassDeclaration (?ADecl) {
= public class A{
?fooDecl := [B foo;]
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TABLE I
SUMMARY OF THE TRANSLATIONS FROM SELECTED UML ENTITIES TO
SouL

first solution when run against JHotDraw version 5.1. It is
important to note that these times are not a full evaluation of
the performance of our approach, which remains the subject
of future work.

[ Query | One Result [ All Results [ # of results |
Example 1 232 3702 21
Example 2 90 199 2
Example 3 41353 516752 24

TABLE II

RUNNING TIME FOR THE QUERIES, ALL TIMINGS ARE GIVEN IN Ms.

A. Implementation of concrete figures

Figure 4 illustrates how the query “Find all the con-
crete subclasses of AbstractFigure which do not im-
plement the interface ConnectionFigure.” can be ex-
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Fig. 4. Query to find implementations of Figures which are not Connection-
Figures

pressed in ARABICA. The stereotypes «Transitive» and
«Not» are used to find a ?figure which is a sub-class
of AbstractFigure and not of ConnectionFigure.
A SoUL comment has been added to the class diagram to
restrict ?figure to concrete classes. This is needed be-
cause both an abstract and a concrete class can match the
corresponding jtClassDeclaration template term under
SouL’s example-driven matching (i.e., what is not specified
in a template term, cannot constrain its matches).

B. Correct Activation of Tools

AbstractTool

<<Trangitive=>

?subTool

<<Templated=>>+ activate()

<<Template>>
![super.activate();]

Fig. 5. Query to find violations to the design invariant: activate of sub-tools
must delegate to super

The UML class diagram depicted in Figure 5 corresponds
to the query “which classes extending AbstractTool
and overriding the activate () method do not call
super.activate?”. It can be used to have ARABICA find
violations of the design invariant that governs the correct
activation of tools in JHotDraw. The UML query specifies the
implementation of faulty activate () methods by means of
a template associated with the operation in the ?subTool.

C. Composite Pattern

Figure 6 depicts an ARABICA UML query that looks for
implementations of the composite pattern. The query consists
of two parts: a class diagram specifying the structure of the
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? 0
retlypeop + Poperation () : ?retTypeOp

<<Transitive>>/d

?leaf

7component
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7C posite

+ Poperation() : 7retTypeOp

+ Poperation() : ?retTypeOp

(a) Structural query of Composite Pattern
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|

(b) Behavioral query of Composite Pattern

Fig. 6. Arabica query to find uses of the Composite Pattern in JHotDraw

pattern, and a sequence diagram denoting that classes imple-
menting the role of a composite must delegate an operation to
leaf classes.

The class diagram (Figure 6(a)) closely resembles the
prototypical implementation presented in Figure 1. Classes
?leaf and ?composite indirectly extend a ?component
class, and override its abstract ?operation. The query
associates ?composite classes with ?component classes
by means of a ?children variable. An auxiliary class
named ?ret TypeOp has been added to the diagram to serve
as the return type for the ?operation. Auxiliary classes,
marked as such by a «Auxiliary» stereotype taken from
the standard profile offered by TOPCASED, do not appear in
the solutions to the UML query. To this end, ARABICA does
not translate them into jtClassDeclaration terms.

The sequence diagram (Figure 6(b)) specifies the behavioral
properties of the pattern. The diagram states that when-
ever an instance ?c of ?composite receives a message
?operation, it must delegate this message to an instance
21 of the class matched as ?Ieaf (within its implementation
of the method).

With this query, we were able to find that the
displayBox () :Rectangle method in the hierarchy of
AbstractFigure does in fact implement a Composite
pattern (in which StandardDrawing takes the role of the
composite class).

V. PRELIMINARY STUDY OF USABILITY OF ARABICA

To assess the feasibility of querying source code using
UML class and sequence diagrams, we performed a pre-
experimental user study with 11 participants. As this kind of
study is a quasi-experiment, as opposed to a full scientific
experiment, it does not allow us to make any founded claims
regarding the usability of ARABICA. However, it does provide



insights into how potential users of ARABICA perceive and
value the various features of the query tool. In literature, such
studies have been successfully applied for providing an initial
assessment of program comprehension tools [17].

A. Study design

The study is conceived as a pretest-posttest quasi-
experiment. This experiment consists of a pretest that quanti-
fies the expectations of a participant regarding program query
tools before being introduced to ARABICA. After having used
the tool, participants are required to fill out a posttest that
measures their perception of the tool. By comparing the results
of the pretest and the posttest, we can quantify how exposure
to ARABICA influenced the participants’ perception of UML-
based queries, and which of ARABICA’s features were deemed
useful by the participants. To this end, we measured the
following properties:

« Value of graphical query languages: Do graphical query

languages provide any added value?

o Ease of understanding: Are the UML-based queries

easy to understand?

o Class diagrams: Do class diagrams provide a suitable

means to express structural characteristics?

o Sequence diagrams: Do sequence diagrams provide a

suitable means to express behavioral characteristics?

Each participant of the study was invited for a session that
took between 30 and 45 minutes in total. At the start of this
session, the participants were asked to fill out the pretest. This
pretest consisted of 20 statements that, next to measuring the
properties mentioned above, enquired about the participant’s
background knowledge. The participants scored each of the
statements on a 5-point Likert scale.

Afterwards, the participants received a short demonstration
of the features of Arabica. Following this demonstration, the
participants were asked to use ARABICA to identify all incor-
rect activations of tools in JHotDraw (the example discussed
in Section II-B). To do this, they were handed a step-by-step
tutorial that guided them throughout the process of formulating
the query and verifying its results. Once they were finished
with this task, they were asked to fill out a posttest consisting
of 19 statements. These statements measured the perception of
the participants of the task executed during the session, their
evaluation of the use of UML class and sequence diagrams
as a means to query source code, and their valuation of the
different features of ARABICA.

Due to space limitations, we are not able to include the
pretest and posttest in this paper. Both questionnaires, all the
material offered to the participants, the script followed by the
test conductor, as well as the 11 filled out pre/posttests is
available on-line’.

B. Farticipants profile

The 11 participants of our user study are all experienced
computer researchers with various backgrounds. 7 of the

Shttp://soft.vub.ac.be/ICPC2012/

Fig. 7. Boxplot of the background of the participants. (A) Development
experience (B) Java experience (C) Eclipse experience (D) Knowledge UML
(E) Understand class diagrams (F) Understand sequence diagrams.

participants hold a Masters degree and the remaining 4 a PhD.
During the pretest we enquired them about their knowledge of
development in general, Java, the use of Eclipse, and UML.
Figure 7 provides a summary of this enquiry. As can be
seen in boxplot (A), all of the participants rate themselves as
experienced developers. With the exception of one participant,
all of the participants have some experience with Java (B)
and Eclipse (C); with a median of 4, most participants have
indicated to be proficient with both Java and Eclipse. As
for their knowledge of UML, all but one of the participants
consider themselves to only have limited knowledge of UML.
This is however contrasted with their perception of the un-
derstandability of UML class and sequence diagrams. All
participants find both kinds of diagrams relatively easy to
understand.

C. Observations

1) Pretest-posttest: Figure 8 provides an overview of re-
sults of the pretest and posttest. Overall, ARABICA was well-
received by the participants. As can be seen in Figure 8(a),
most participants were positive with respect to the use of a
graphical query language. Only two of the participants did not
find the use of a graphical query language to have any added
value. However, we can observe that the perception of the
value of graphical query languages has improved considerably
in the posttest. A similar observation can be made for the ease
of understanding (Figure 8(b)). In the pretest, the participants
expressed their reservations regarding the understandability
of graphical queries. Despite this negative appreciation of
such queries expressed in the pretest, the posttest revealed
that the participants found ARABICA’s queries to be easy to
understand.

As for the use of UML class and sequence diagrams
as a means to query source code, the difference between
the pretest and posttest is not as large. Most participants
agreed that class diagrams are a suitable means to express
structural characteristics. Using sequence diagrams to express
behavioral characteristics was not well-received: the majority
of the participants did not find them useful. If we compare
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Fig. 8.
participants that selected each point.

the average appreciation of using sequence diagrams between
the pretest and the posttest, we see that the exposure to
our tool did not have an impact. This was also confirmed
in our discussions with the participants: they expressed the
fear that using sequence diagrams would not scale beyond
simple examples. Consequently, we consider it future work
to identify other kinds of diagrams that allow expressing
behavioral characteristics in an intuitive and scalable fashion.

Fig. 9. Appreciation of the features of ARABICA. (A) Use of the
«Transitive» stereotype (B) Query result view (C) One by one access to
results (D) Navigation link to code.

2) Features of ARABICA: The posttest also included state-
ments regarding the usefulness of some of the features of
ARABICA. Figure 9 presents, by means of boxplots, a sum-
mary of the participants’ evaluation of these features. UML
diagrams do not provide a means to express that relationships
between entities can be transitive (e.g., extending directly
or indirectly from a class). To provide support for char-
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acterizing such relationships ARABICA makes use of the
«Transitive» stereotype. While we were not certain that
users would find this approach intuitive, Figure 9(A) illustrates
that all participants of the study valued it. Similarly, the
participants unanimously rated the fact that the source code
corresponding to the results of a query can be navigated
directly from ARABICA as a very useful feature (boxplot (D)).

Regarding the effectiveness of the representation of the
results of queries, the opinions of the participants were di-
vided (boxplot (B)). Currently, ARABICA presents a query’s
results in either a tabled or a tree view. Interviews with the
participants revealed that this representation could be made
more intuitive by adopting a representation similar to that
of Eclipse’s search functionality that shows the results of a
query grouped according to the package and class structure
of the system under investigation. Finally, ARABICA provides
functionality to compute the solutions to a query one-by-
one. This feature was added such that for queries that are
computationally intensive, it is possible to retrieve individual
results instead of having to wait until all solutions were
computed. As can be seen in boxplot (C), the participants of
the study did not find this feature useful. One of the comments
received from the participants was that they would prefer to
be able to execute the query in the background and get results
as they are computed.

D. Threats to validity

As mentioned above, our pre-experimental study does not
allow us to make any generalizable claims regarding the
usability of ARABICA. Nevertheless, the user study does allow
us to observe how potential users perceived our tool. The
validity of these observations is however subject to a number



of threats to validity.

One risk associated with our study is that the tutorial
executed by our participants is overly simplistic or does not
align to a realistic usage scenario of ARABICA. To assess
this risk, our posttest included a number of statements that
measured the participants’ view on the performed task. While
the participants did not assess the task as being too difficult,
in general they did not find it overly simplistic. More than
half of the participants agreed with the statement that the task
was similar to queries they need answered during their day-
to-day development activities. Given that we wanted to keep
the amount of time necessary to execute the task manageable,
the risk exists that the task does not capture the complexity
associated with real-life queries.

Another risk lies within the composition of our group of par-
ticipants: as all participants are computer science researchers
they might not form a representative sample of software
developers in general. Furthermore, they might be inclined to
favor experimental tools, thereby rating ARABICA higher than
they actually value it. First, despite that all participants are
researchers, their background knowledge varies significantly:
while all participants rate themselves as expert developers,
they have different levels of experience with Eclipse, Java
and UML. Therefore, we believe our user group not to be
strictly homogeneous. Second, to mitigate the risk of an overly
positive evaluation of ARABICA, we stressed the fact that we
were expecting the participants to answer honestly, as this
would otherwise void their contribution to the user study.

VI. RELATED WORK

a) Textual program query languages: A wide range of
program querying languages can be found in literature. These
languages offer a textual specification language to express
structural or behavioral characteristics of a program, and
identify locations in the code that exhibit these characteristics.
For example, languages based on graph rewrite rules [18],
logic formulas [1]-[3], [7], [14], [20], [26], and constraint
programming [13] have been proposed to express structural
characteristics. In order to express behavioral characteristics,
we find approaches based on reachability queries [8], [24],
[25], temporal logic formulas [15], state machines [11], and
logic formulas [12], [16] that reason over the results of data
flow and control flow analyses. Related to these approaches
is also our previous work on SOUL [6]. This query language
— that lies at the basis of ARABICA— offers a logic-based and
example-based specification language for expressing structural
and behavioral characteristics.

ARABICA is complementary to the above, textual ap-
proaches: by using UML class and sequence diagrams, it
offers developers a graphical means for expressing program
queries. Furthermore, ARABICA offers the full capabilities of
such dedicated program query languages since it allows for
embedding SOUL queries and code templates within the visual
queries.

b) Visual program query languages: Within the database
community, the use of visual languages to query databases

has been well-established. Examples of these approaches are
Query-By-Example [27], DOODLE [4] and PSQL [21]. While
visual languages are not as common-spread in the domain of
program querying, there exist a number of approaches that
are closely related to ARABICA. In what follows we give an
overview of these approaches.

LePUS [9] is a visual, formal specification language based
on first-order predicate logic. Diagrams made using LePUS
(called Codecharts) can be used to model and visualize object-
oriented software systems. By means of tool support, it is
possible to extract such Codecharts from existing Java source
code, as well as to verify the validity of a Codechart with
respect to the source code. While it is not one of the main
goals of the approach, this last feature of LePUS allows it to
be used to query source code.

Reiss presents MURAL [19], a simple visual language
(equivalent to relational algebra) for querying over multiple
data sources. A MURAL query consists of a number of entities
(represented as boxes) and relationships between these entities
(arrows between the boxes). Each entity comprises a set of
fields that represent the domain that is being queried; relation-
ships are expressed in terms of these fields. MURAL offers
special constructs for restricting the entities and relationships
of a query, along with support for composing queries and
calculating transitive closures. While not limited to the domain
of program querying, MURAL can be used to query code.

The main difference between these approaches and ARA-
BICA lies in the visual notation that is being used: while
both LePUS and MURAL offers their own, minimal visual
vocabulary, our approach employs the well-known UML class
and sequence diagrams as a visual notation for specifying
queries. While all of these visual notations offer limited
expressivity, ARABICA circumvents this limitation by allowing
regular SOUL queries to be integrated with the visual notation.
Furthermore, the fact that ARABICA queries are valid UML
models results in that our approach is agnostic of the editors
and tools that are used to create and manipulate queries.

Within the context of model-driven software engineering,
Stein et al. [22] have proposed Join Point Designation Dia-
grams (JPDDs) as an alternative to OCL for querying UML
models. JPDDs is a visual language that, similar to ARABICA,
uses the extension facilities of UML for augmenting UML
with a number of operators that enable its use as a query
language. While ARABICA’s notation as a consequence shares
a number of similarities with JPDDs, both approaches differ
fundamentally as JPDDs are aimed for querying UML models,
while ARABICA queries the source code of programs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced ARABICA, a tool for
querying Java code using UML class and sequence diagrams.
ARABICA provides a profile that extends entities from UML
class and sequence diagrams such that they can be used to
respectively specify structural and behavioral characteristics
of sought-after code. Stereotyped diagrams are translated into
logic queries expressed in the SOUL program query language.



The main advantage of our tool is that it offers developers
a familiar, graphical language that allows for the expression
of complex queries that yet remain easy to understand. By
relying on UML we spare developers from having to learn
a new language — in contrast to other program query ap-
proaches. To illustrate the use of ARABICA, we presented three
examples taken from the implementation of the JHotDraw
framework: implementation of figures, correct activation of
tools and the implementation of the Composite design pattern.
A preliminary evaluation of our tool was done by means of
a pretest-posttest quasi-experiment with 11 participants. This
evaluation revealed an overall positive attitude towards our
tool. Participants found the use of UML class diagrams a
suitable means to express structural characteristics. However,
the participants were less receptive to the use of sequence
diagrams to describe behavioral characteristics.

In future work, we plan to evaluate alternative UML dia-
grams for specifying such behavioral characteristics, starting
by the investigation of activity and interaction diagrams.
Furthermore, expanding on the positive evaluation of class
diagrams as a means to query structure, we will explore
means to express architectural characteristics using higher-
level diagrams (such as packages and components). At a
technical level, our tool suffers from a number of limitations,
which was also confirmed by the user study. Amongst them,
we plan to improve the representation of query results by
integrating them with the Eclipse search engine and provide
support to execute queries in the background. As mentioned
in Section ITI-C1, ARABICA currently expects associations
between classes to be implemented using Collections. We
will diversify the implementations that ARABICA recognizes
in future work. Finally, we will follow up on the preliminary
evaluation of ARABICA by performing a controlled experiment
with students.
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