
Refactoring in the Presence of Annotations
Carlos Noguera, Andy Kellens, Coen De Roover, Viviane Jonckers

Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Email: {cnoguera,akellens,cderoove,vejoncke}@vub.ac.be

Abstract—Current-day programming languages include con-
structs to embed meta-data in a program’s source code in
the form of annotations. More than mere documentation, these
annotations are used in modern frameworks to map source-
level entities to domain-specific ones. A common example being
the Hibernate Object-Relational Mapping framework that relies
on annotations to declare persistence configurations. While the
presence of annotations extends the base semantics of the
language, it also imposes restrictions on the annotated program.
In this paper we consider the manner in which annotations
affect automated refactorings, and in particular how they break
the behavior preservation of these refactorings. As refactorings,
during their condition checking phase, ignore the annotation’s
restrictions they can no longer guarantee the preservation of the
domain-specific mappings. To address this problem, we propose
to make the restrictions of the annotations explicit, and use
them to steer the refactoring process. A prototype extension of
the Eclipse IDE’s refactoring engine is used to demonstrate our
approach on three annotation libraries: Java Persistence API,
AspectJ5 and Simple XML serialization.

Index Terms—Refactoring, Annotations, Tool support.

I. INTRODUCTION

Many current-day programming languages provide con-
structs that allow developers to augment their source code
with meta data. Well-known examples of such constructs are
pragmas in Smalltalk, attributes in C#, and annotations in Java.
Various libraries and frameworks have adopted these meta data
facilities as a means to embed configuration parameters in the
source code. For example, Hibernate is a well-known Java
framework, implementing the Java Persistence API (JPA), for
persisting objects to a relational database. By means of a set of
annotations, users of Hibernate can declare how source-code
entities such as classes and fields are mapped onto database
tables. Likewise, the JUnit testing framework employs anno-
tations as a means to specify and configure test methods. As
a final example, consider the AspectJ programming language,
where developers can adopt an annotation-based style in which
pointcuts and advices are configured by means of embedding
meta data in the source code. This use of meta data has
resulted in that annotations no longer solely serve as a form of
documentation but become an integral part of the behavioral
specification of the system.

Annotated programs, by virtue of the interpretation of these
annotations, extend the base language semantics. A class sport-
ing Hibernate’s @Table annotation is behaviorally different
from one sporting AspectJ’s @Aspect annotation. These

semantic changes vary depending on the set of annotations
used in an application. This has an impact on the assumptions
software engineering tools – and automated refactorings in
particular – make on the source code. Automated refactor-
ings [1] are an integral part of the tools of the trade of modern
software developers. They are source code transformations
that allow the developer to modify the application, to ease
the introduction of a change or to improve its design quality,
without affecting its semantics. When dealing with annotated
programs, if the refactoring transformation is to remain be-
havior preserving, it must take into account the behavioral
specification induced by the presence of the annotation.

This behavioral specification implies a number of assump-
tions on the placement and use of the annotations in the
source code. First, annotation libraries potentially impose a
requirement that the annotated source code needs to respect in
order for the declared configuration to be valid. For example,
the Java Persistence API (JPA) requires that all classes that
are annotated with the @Entity annotation have a public
or protected constructor without any arguments, and are not
declared final. Second, these libraries make a number of
assumptions regarding the domain and mapping that they
express. As an example, consider a class that is mapped using
the @Table annotation of JPA onto a database. The use of
this annotation implies that there exists a table in the database
named after the argument of the annotation, or if such an
argument is not provided, the name of the class. However,
both kinds of assumptions are not explicitly stated in the source
code, existing only in documentation or specification files. As
a result, there is little support for preventing these assumptions
from being violated when altering or refactoring the system.

Within literature we can find numerous approaches [2]–[6]
that aid developers in ensuring that, after the source code has
been changed, the configuration expressed by means of the
annotations is still valid. However, none of these approaches
provides support for documenting the domain assumptions im-
plied by the annotation libraries. As a consequence, seemingly
safe modifications to the source code – such as the application
of refactorings – can result in a valid, albeit different mapping,
thereby introducing errors in the behavior of the system.

In this paper we tackle this problem by providing an
approach that allows developers of annotation libraries to
document, through annotation specifications, the domain de-
pendencies that their annotations introduce. By integrating
this specification with the refactoring engine of Eclipse, we
are able to make Eclipse’s refactorings annotation-aware:978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

when a refactoring is applied to the annotated source code,
our approach is able to warn developers about changes that
potentially break the mapping expressed by the annotations,
which would otherwise go unnoticed.

II. PROBLEM DESCRIPTION

We illustrate the problem of refactoring annotated code
through an example. This example consists of a simple Java
system that uses the Java Persistence API (JPA) [7] to specify
an object-relational mapping. Various implementations of this
API exist, such as Hibernate1 and OpenJPA2. The JPA defines
a number of annotations that can be used to describe such a
mapping. For example, the @Table annotation allows devel-
opers to define the name of the table to which the class will
persist by an annotation element name. The JPA specification
allows the developer to leave the name of the table unspecified
in which case the table’s name property will take as a default
value the name of the entity. The @Entity annotation for
specifying that a class is a persistent entity follows a similar
scheme for defining the name of the entity: the @Entity
annotation defines an element name which defaults to the
name of the class it annotates.

@Entity(name = "Customer")
@Table(name = "CUST", schema = "records")
class CustomerEntity{...}

@Entity
@Table
class Product{ ... }

@Entity
class Order{ ... }

Fig. 1. Different mapping specifications for entity classes defined in the JPA.

Figure 1 shows the code of three entity classes,
CustomerEntity, Product and Order. The
CustomerEntity class is mapped to a table called
CUST as defined by the name property on its @Table
annotation. The second class, Product uses the default
values for both the name of the entity and table, and is thus
mapped to a table called Product. Finally the Order class,
although it does not carry explicitly a @Table annotation,
will be mapped to a table called Order since the JPA
specification states that “if no @Table annotation is specified
for an @Entity class, the default values for the @Table
annotation apply.”

Now let us study what the impact is of refactoring the source
code of this example. Applying a rename refactoring to change
the name of the CustomerEntity class to just Customer
will succeed and will not change the mapping of the entity
class to the database: the values of the class will still be
persisted and retrieved from the table called CUST. However,
applying a similar rename refactoring to rename Product
to Item will in fact affect the mapping to the database,

1http://www.hibernate.org
2http://openjpa.apache.org

since instances of the class will no longer persist to a table
Product but will be persisted to table Item. Depending
on the configuration of the underlying implementation of the
JPA spec, the change of mapping might result in an error
(no table named Item exists), or a change to the database
schema (a new table Item is created and new instances
persisted there). In either case, the rename refactoring is no
longer behavior preserving in the presence of annotations.
The problem is further compounded in the case of a rename
refactoring applied to the Order entity class, since even the
@Table annotation is implicit.

If refactorings are to remain behavior preserving in the
presence of annotations, they must respect the (implicit) as-
sumptions these annotations make over the code in which
they are placed. Before providing a more in-depth analysis
of this problem in Section IV and introducing our approach
(Section V), we take a look at related work and position
ourselves with respect to the state-of-the-art.

III. RELATED WORK

a) Refactoring of multi-language applications: Nowa-
days, software systems are seldom implemented using a sin-
gle programming language. Multi-language refactoring entails
that, when refactoring artifacts that belong to one language,
entities in another language used in the same system might
also have to be altered. The problem of annotation-aware
refactoring can be considered to be a specific instance of
refactoring of multi-language applications, with regular Java
as one language and the configuration expressed by means of
annotations as another. Coupled transformations [8] appear to
be suitable technique to implement such multi-language refac-
torings. Such transformations – when applied to an artifact
expressed in one language – also transform dependent artifacts
expressed in other languages. Note however that this technique
does not guarantee that the transformed program is behavior
preserving.

As a concrete example of multi-language refactoring, con-
sider the work of Schink et al. [9]. Similar to the example
presented in Section II, they have observed that refactoring
Java source code with embedded JPA annotations that de-
scribe an object-relational mapping can result in that, after
refactoring, this object-relational mapping is invalided. For
the specific combination of Java, SQL and Hibernate their
approach implements augmented versions of the “Push Down
Method” and “Rename Method” refactorings that – under
well-defined conditions – transform both the Java program and
the dependent data in the database in order for both artifacts
to remain consistent. The approach we present in this paper
is more modest in its goals: we do not aim at transforming
dependent artifacts, but rather to warn developers about non-
behavior preserving refactorings. However, the approach we
present in this paper is refactoring agnostic, and can be
parametrized to support several annotation libraries.

b) Verifying implicit assumptions of annotation libraries:
We are not the first to tackle the problems that arise when
the implicit assumptions that govern the use of annotations

are violated. There exists a number of approaches that aim at
documenting and validating these implicit assumptions.

The ADC tool proposed by Cepa et al. [4] provides
support for validating the dependencies between .NET cus-
tom attributes. By means of meta-attributes, the ‘requires’
and ‘excludes’ dependencies between these attributes can be
documented; the tool provides support for validating these
documented dependencies.

XIRC by Eichberg et al. [5] is an approach for validating
annotation constraints in Java programs. This approach repre-
sents a program as an XML document; annotation constraints
are expressed by means of XPath queries.

AVal [6] consists of a set of meta-annotations that allow
for documenting both the dependencies between annotations,
as well as how these annotations should be used within
the annotated source code. Follow-up work [10] allows for
documenting additional constraints by means of OCL queries
over a meta-model of the source code.

Tilevich and Song [3] present meta-data invariants: an
approach for documenting the naming and typing relationships
between source code and annotations. To this end, their
approach offers a declarative domain-specific language named
MIL. This language offers annotation library developers a set
of pattern-based constructs to characterize source-code entities
and express the meta-data invariants governing these source-
code entities. Furthermore, their approach provides support for
automatically inferring such meta-data invariants from third-
party applications [11].

In previous work we have introduced Smart Annotations [2].
Smart Annotations provide annotation library developers a
means to augment meta-definitions with the constraints that
govern the use of these annotations. These constraints are
expressed using the logic program query language SOUL [12].

The above approaches share the common goal of aiding
users of annotation libraries in verifying that the mapping
declared by the annotations is valid. In other words, they warn
developers about source code entities that are incorrectly an-
notated, or where particular annotations are missing. However
these approaches do not allow detecting whether, when the
source code is being refactored, that the mapping declared by
the use of annotations is preserved. Song et al. [11] propose
to prevent this problem by enforcing the naming conventions
that encode the mapping defined by the annotations. This
however severely limits the flexibility offered by the annotation
libraries. The work presented in this paper complements the
above approaches by focussing on preserving the domain
mapping expressed by annotations when refactoring code.

IV. REFACTORING IN THE PRESENCE OF ANNOTATIONS

As illustrated in Section II, most refactoring tools are
oblivious to the semantics that are introduced through the use
of annotation libraries, and consider annotations to be part of
the signature of a method, or the definition of a field or class.
For example, when applying a “Move field” refactoring in the
Eclipse IDE to an annotated field, the annotation is moved
along with the field. Conversely, if a developer applies the

“Extract method” refactoring on a piece of code belonging
to an annotated method, the annotation is left in place (and
not added to the newly extracted method). Such behavior is
clearly not always desirable, as we have shown above. As each
annotation library implies its own set of assumptions regarding
the annotated code, there does not exist a one-size-fits-all
solution for making refactorings annotation-aware. Instead,
we propose an approach that makes the hidden assumptions
made by annotation libraries explicit, and incorporates this
information in the refactoring process.

Before introducing our approach, we take a brief look at
what it means for a refactoring of annotated source code to be
behavior preserving, and discuss the problem introduced by
implicit configurations of annotation libraries.

A. Behavior Preservation

An important property of automatic refactorings is that
they are behavior preserving: while refactorings change the
structure of a program, they do not have an impact on the
observable behavior of the program. As we have discussed
earlier, the use of annotations as a means to configure frame-
works potentially voids the behavior preservation guarantees
of refactorings.

In order for a refactoring to take the semantics introduced by
the use of annotations into account, it needs to preserve two
properties of the annotated code: First, the refactoring must
ensure that the mapping expressed by the annotations is still
valid after the program has been transformed. In other words,
the refactoring must take into account whether the transformed
source code is still correctly annotated – according to the
assumptions made by the annotation library. Second, refactor-
ings must not have any impact on the actual domain mapping
expressed by the annotations. The semantics associated with
an annotation library place a number of dependencies on
resources external to the source code. For example, in the case
of JPA, the mapping presumes the existence of a particular
set of database tables and columns onto which classes and
fields are mapped. In order for the refactoring to be behavior
preserving, it should depend on the same external resources
– both before and after it has been applied. Applied to JPA,
this means the refactoring should not have an impact on which
database tables and columns the source code is mapped.

The problem of ensuring that the mapping is valid has been
studied extensively in literature, both by ourselves as well as
by others (see Section III). In the remainder of this paper
we focus on the problem of maintaining the domain mapping
introduced by the use of annotations. In particular, we present
how, by translating the problem of behavior preservation
into dependency preservation, and by providing support for
declaring and validating these dependencies, we are able to
render automated refactorings annotation-aware.

B. Implicit Configuration

Many annotation libraries make use of the principle of
“configuration by omission”. This entails that, in order to map
a domain-specific concept onto the source code, the developer

is not required to explicitly provide the complete mapping.
Rather, the library will implicitly assume the presence of other
constituents of the mapping based on the annotations provided
by the developer. We can distinguish between two kinds of
such implicitly assumed configurations:

• Implicit default values: Parameters of a domain-
mapping are often specified using the attributes of anno-
tations. Consider for example the @Table annotation of
JPA that has a member value called name corresponding
to the database table onto which the annotated class is
mapped. To ease configuration, annotation libraries often
provide an implicit default value for the argument of
an annotation, if no such value was provided for the
developer. In many cases, this default value is directly
linked to the source code entity that is annotated. For
example, if no argument is passed to the @Table annota-
tion, JPA will take the name of the @Entity annotation
accompanying it as the name of the database table onto
which the class is mapped.

• Implicit annotations: Furthermore, annotation libraries
can introduce implicit annotations into the source code.
Based on the annotations provided by the developer, the
framework assumes the presence of other annotations,
even if they have not been declared explicitly by the
developer in the source code. Yet again, we consider
JPA’s @Table annotation as an example. If a developer
annotates a class with this @Table, the library will
implicitly assume that all non-transient fields of the
class carry the @Column annotation, with as an implicit
default value (indicating the column name) the name of
the field.

While implicit configurations ease the use of annotation
libraries, they increase the complexity of rendering automated
refactorings annotation-aware. To circumvent this problem our
approach – presented in the next Section – not only documents
how the use of annotations creates a mapping between domain-
specific concepts and source code, but also provides a means
to explicitly express the implicit configurations assumed by
the annotation library.

V. ANNOTATION-AWARE REFACTORING

In order for an IDE’s refactoring engine to correctly handle
annotated code, it must first be made aware of the semantics it
must preserve. Our approach hinges on annotation specifica-
tion files written by the annotation framework developer. An
annotation specification denotes the dependencies on domain-
specific concepts that are imposed by the set of annotations
used by the framework. This specification is divided into two
parts: the default values specification and the invariant depen-
dencies. The former specifies the (implicit) default values of
annotations defined by the framework, while the latter specifies
which are the annotation values that represent dependencies on
domain-concepts that should remain invariant upon refactor-
ing. These invariant dependencies are the cornerstone of our
approach, and are used by the refactoring engine to ensure
behavior preservation.

Normally, refactoring engines assert whether a particular
refactoring transformation will be behavior preserving by
evaluating a number of preconditions. These preconditions
depend both on the refactoring to apply and on its parameters
(e.g., a rename refactoring is parametrized by the source code
entity and its new name). If the preconditions are satisfied,
then the transformation is performed, and otherwise an error
is reported to the user.

While it would be possible to augment the refactoring
preconditions with the annotation behavior specifications, we
have decided instead to implement the annotation behavior
preservation as post-conditions. The use of post-condition
dependency checking in refactoring has already been pro-
posed [13] to simplify the implementations of refactorings,
although it has not been applied to the problem of annotated
code. Since we express the problem of behavior preservation of
annotated code as a dependency preservation problem, a post-
condition that checks whether the dependencies were main-
tained by the refactoring transformation is more natural than
trying to a priori predict whether the refactoring will affect
said dependencies. When applying a refactoring, in addition to
the refactoring’s original pre-conditions, our tool determines
the dependencies on domain concepts that are assumed by the
annotations. Then, the refactoring is simulated and the new
dependencies are determined and compared to those obtained
in the previous step. Any discrepancy between the two sets of
dependencies implies that the refactoring violated an invariant
dependency, and therefore cannot be applied. This approach
of post-condition checking has the benefit of being refactoring
agnostic since we do not care what the refactoring actually
does, but only that dependencies were maintained.

To express the annotation specification we use the
SOUL [12] program query language. SOUL is a logic program-
ming language, tailored towards reasoning over source code.
Using this language, annotation framework developers specify
default values through predicates, and invariants through logic
queries over the source code of the application that is being
refactored.

In the following subsections, we detail how default values
and invariant dependencies are specified and used to restrict
the refactoring of annotated code. We also present a prototype
tool integrated into the Eclipse refactoring engine. Section VI
demonstrates for three annotation frameworks how our ap-
proach can be used to make the refactoring of annotated code
behavior preserving.

A. Defining Default Annotations and Values

The implicit default values specification takes two forms:
alternative definitions for the predicates that bind source
code entities to annotations (answering whether a code el-
ement carries an annotation), and alternative definitions for
those that bind annotations to their member-value pairs
(answering what is the value of a particular annotation).
SOUL defines predicates to assert the presence of an an-
notation on a particular code element through the bi-
nary XXXDeclarationHas:/2 predicate where XXX can

be either class, field or method. Thus, the query
if ?class classDeclarationHas: {Table} will
provide solutions binding the logic variable ?class to each
class that carries the annotation @Table. For instance, for the
classes of Figure 1, ?class would be bound to the classes
CustomerEntity and Product but not to Order, as it
does not carry the @Table annotation.

The underlying idea of how to encode default values in
our approach is to augment SOUL predicates so that when
applied to a target system, they find both annotated code
and implicitly annotated code. To this end, the annotation
framework developer (or someone with deep understanding
of the annotation framework) writes alternative definitions for
the predicates that identify annotations and annotation element
values.

"Entity annotation implies Table"
?class classDeclarationHas: {Table} if

?class classDeclarationHasNoExplicit: {Table},
?class classDeclarationHas: {Entity}

"Default name of Entity is simple name of Class"
?class classDeclarationHas: {Entity} with: {name}

value: ?value if
?class classDeclarationHas: {Entity}

without: {name},
?class classDeclarationHasName: ?value

Fig. 2. Default definition for the presence of @Table and the default value
for the name of an @Entity.

For example, a developer wishing to encode the fact
that, in the JPA, the presence of the @Entity annota-
tion on a class implies a @Table annotation with de-
fault values would provide an alternative definition for the
classDeclarationHas:/2 predicate like the one shown
in Figure 2. When a query finding all classes that have the
@Table annotation is evaluated, this predicate will first check
that the class has no actual @Table annotation, and then
check if the class carries a @Entity annotation.

In a similar manner, when encoding the rule that
states that the default name of an Entity is the sim-
ple name of the class that carries it, an annotation
framework developer can write an alternative definition
for the classDeclarationHas:with:value:/3 pred-
icate. This predicate binds class declarations to their anno-
tations and corresponding member-value pairs. In Figure 2
the second predicate states that when retrieving the name of
an @Entity annotation, this name must be the name of the
class, as bound by the classDeclarationHasName:/3
predicate on the last line if the annotation has no name member
declared in the source code. By including these two predicate
definitions in SOUL, the query
if ?class classDeclarationHas: {Table}

with: {name} value: ?name

when applied to the code in Figure 1 will produce solutions
for all three classes: binding ?class to CustomerEntity
and Product and Order, and ?name to CUST, Product
and Order respectively.

B. Defining Invariant Dependencies

Having expressed the default annotations through alternative
predicates, the developer can now express the dependencies
that must be respected by the refactoring. Dependencies are
represented by queries that rely on the alternative predicates
defined in the previous step. Each query identifies which bind-
ings (representing domain concepts) should remain invariant
by means of the isInvariant/1 keyword. The refactoring
engine then runs all registered invariant queries before the
refactoring, and stores the bindings for variables that are
marked as invariant. The invariant queries are then applied
again to the simulated result of the refactoring, checking that
the bindings for the invariant variables are the same. If this is
not the case, an error is presented to the user. Such an error
message communicates the bindings for the violated invariants
both before and after the refactoring, as well as the message
between quotes at the beginning of the query. To provide
additional context to the error, the annotation framework
developer can include in the invariant query the source code
element on which the error occurred. These context variables
are to be marked with a isContext/1 keyword.

In our running example of the JPA @Table annotation,
the mapping to a particular database table is directed by the
name attribute of the annotation that corresponds to the name
of a database table. For the transformation to be behavior
preserving, the value of this attribute must remain invariant
in the refactored code. Figure 3 shows the invariant query
(called “Table mapping changed”) that states that for classes
(?class) that carry the @Table annotation, the name of
the mapped table (?name) must be invariant. The annotated
class ?class is passed as the context of a potential violation.
This query illustrates how it is possible to state that values of
annotations must be preserved.

"Table mapping changed"
if ?class classDeclarationHas: {Table} with: {name}

value: ?name,
?name isInvariant,
?class isContext

"Mapping between Tables and Columns Changed"
if ?class classDeclarationHas: {Table} with: {name}

value: ?tname,
?class classDeclarationDeclaresField: ?field,
?field fieldDeclarationHas: {Column} with: {name}

value: ?cname,
tableColumn(?tname,?cname) isInvariant,
?field isContext

Fig. 3. Invariant specification for the name attribute in @Table annotations.

Note that our approach also allows expressing that relation-
ships between values must be preserved. This is illustrated
by the second query, named “Mapping between Tables and
Columns changed”, in Figure 3. This query specifies that
the relationship between the mapping of a class to a table
and the mapping of its fields to the table’s columns must
remain invariant after a refactoring. In other words, after
the refactoring, the fields belonging to the class should be
mapped to the same columns of the same table as before the

Fig. 4. Annotation refactoring support integrated with the Eclipse refactoring engine. Rename of entity class breaks implicit @Table annotation.

refactoring. The query reads as follows: for a class mapped
to a table with name ?tname, every field (?field) that
is mapped to column named ?cname, should maintain the
relation tableColumn(?tname,?cname) as an invariant.
If not, then the error must be reported with the ?field source
code element as its context.

C. Implementation

We have implemented our approach as an extension to the
Eclipse refactoring engine by means of a refactoring partic-
ipant plugin called AnnoRefactoring. The AnnoRefactoring
plugin relies on our Barista [14] tool suite to perform the
queries and assert the predicates that make up an annotation li-
brary’s specification. Developers wishing to use an annotation
library in their application must first load the corresponding
annotation specification files into the AnnoRefactoring plugin.
Once this is done, the Eclipse refactoring engine will invoke
the AnnoRefactoring plugin to check whether the refactoring
will break the behavior of annotations present in the source
code. Figure 4 shows a screenshot of the message produced
by the Eclipse refactoring engine. In this screenshot, we have
tried to rename a class annotated with @Entity. As this
refactoring would break one of the annotation’s invariants –
in this case the mapping to a table induced by an implicit
@Table annotation, it is flagged as a warning.

It is important to note that in order to integrate our approach
with the Eclipse refactoring engine, we had to extend the
engine itself to allow for post-condition checking. By default,
Eclipse’s Language Toolkit (LTK) that provides the actual
implementation of refactorings only allows refactoring partici-
pants to contribute preconditions to the refactoring process. We
implemented the post-condition checking feature by leveraging
the preview changes feature that the toolkit already provides
to simulate the effect of a refactoring. Thus, the expected
results of a refactoring are retrieved from this preview, and

fed to the participants that contribute post-condition checks.
In this manner, the AnnoRefactoring plugin has access to the
source code of the application before and after the refactoring.
The plugin then runs the invariant queries over the original
source code, and over the results of the simulated refactoring.
Bindings for variables marked as isInvariant in the
queries are kept in two sets (one for the original code, one for
the refactored one). The sets are then compared, and bindings
only present in the original set are reported as “OLD” and
bindings only present in the refactored one are reported as
“NEW”. This can be seen in the screenshot in Figure 4 where
the original name of the table is marked as “OLD” where as
the one resulting from the refactoring is marked as “NEW”.

VI. EXAMPLE ANNOTATION SPECIFICATIONS

To illustrate our approach, we present annotation specifica-
tions for three annotation libraries: the @Entity, @Table
and @Column annotations defined in the Java Persistence
API, the @Pointcut annotation defined in AspectJ 5 and
the @Element annotation defined in the Simple XML map-
ping library. Our motivation for choosing these libraries and
particular annotations is two-fold. First, these annotations
induce dependencies on external resources and allow us to
demonstrate our handling of complex default values. Second,
as the annotations are extracted from industrial, well-known
frameworks, we believe that they are representative of the kind
of situations that developers encounter on a day-to-day basis.

A. Entity, Table and Column from JEE

We first consider three annotations defined in the Java Per-
sistence API (JPA) [7]: @Entity, @Table and @Column.
Together, these three annotations form the backbone of persis-
tence configuration in JEE. An entity is a lightweight persistent
domain object in the business application, normally defined
by placing an @Entity annotation on a class. Each entity

Implicit annotations and values
Default name for entity is name of class ?class classDeclarationHas: {Entity} with: {name} value: ?value

if ?class classDeclarationHas: {Entity},
?class classDeclarationHas: {Entity} without: {name},
?class classDeclarationHasName: ?value

Default name for Table is name of Entity ?class classDeclarationHas: {Table} with: {name} value: ?value
if ?class classDeclarationHas: {Table},

?class classDeclarationHas: {Table} without: {name},
?class classDeclarationHas: {Entity} with: {name}
value: ?value

Default name of Column is Field ?field fieldDeclarationHas: {Column} with: {name} value: ?value
if ?field fieldDeclarationHas: {Column},

?field fieldDeclarationHas: {Column} without: {name},
?field fieldDeclarationHasName: ?value

Entity implies Table ?class classDeclarationHas: {Table}
if ?class classDeclarationHasNoExplicit: {Table},

?class classDeclarationHas: {Entity}
Table implies Column ?field fieldDeclarationHas: {Column}

if ?field fieldDeclarationHasNoExplicit: {Column},
?class classDeclarationDeclaresField: ?field,
?class classDeclarationHas: {Table}

Invariant dependencies
Entity mapping if ?c classDeclarationHas: {Entity} with: {name} value: ?name,

?name isInvariant, ?c isContext
Table mapping if ?c classDeclarationHas: {Table} with: {name} value: ?value,

?value isInvariant, ?c isContext
Column mapping if ?field fieldDeclarationHas: {Column} with: {name}

value: ?value,
?value isInvariant, ?field isContext

Table to column relation if ?class classDeclarationHas: {Table} with: {name}
value: ?tname,

?class classDeclarationDeclaresField: ?field,
?field fieldDeclarationHas: {Column} with: {name}

value: ?cname,
tableColumn(?tname,?cname) isInvariant, ?field isContext

TABLE I
ANNOTATION SPECIFICATION FOR THE REFACTORING OF THE @ENTITY , @TABLE AND @COLUMN ANNOTATIONS DEFINED IN THE JPA.

class is persisted as directed by a @Table annotation, which
specifies the primary table for the annotated entity through
the annotation element name. In a similar manner, fields of
entity classes are mapped to columns of the primary table
through a @Column annotation that specifies as its name
element the column name for the annotated field. In addition to
field-based mapping, the JPA specification supports property-
based mapping, in which case the @Column annotations are
placed on the property’s accessor (getter method). For this
example we consider field-based mapping only. However, the
annotation specification for the property-based style would be
very similar. In order to make the use of JPA annotations
on an application convenient, the JPA specification follows a
configuration by omission scheme in which default values for
annotation elements take care of the most common usages. In
the case of the @Entity and @Column annotations’ name
element, the default value is the name of the source code entity
on which they are placed (unqualified name of the class, and
name of the column respectively). For the @Table name,
the default value is the name of the associated @Entity.
Similarly, an implicit @Table annotation is defined on classes
sporting the @Entity and @Column annotations on the
classes carrying a (possibly implicit) @Table.

Table I shows the annotation specification for the three

JPA annotations: the first five rows show the default an-
notations and values, whereas the last four show the in-
variants. The first three rows cover the cases for im-
plicit name attributes of @Entity, @Table and @Column
annotations by providing alternative definitions for the
classDeclarationHas:with:value/3 predicate. The
fourth and fifth rows express the implicit annotations induced
by the presence of @Entity and @Table on a class. The
“Entity implies Table” predicate states that a class declaration
has an implicit @Table annotation if the class declaration
does not have the annotation explicitly, and it has an @Entity
annotation. The “Table implies Column” predicate states that
a field has a @Column if the field does not have an explicit
@Column and the class that declares the field is annotated
with @Table. Four invariants are defined in Table I: “Entity
mapping” checks that the name of an entity is not affected by a
refactoring, as the name of an entity is used in queries; “Table
mapping” and “Column mapping” check that the mapping of
the entity class to the database table and columns remains
invariant; and finally the “Table to column” relation checks
that fields mapped to a column are consistent with the class
to table mappings.

By loading this annotation specification in our prototype
tool, refactorings that affect the names of classes or fields, or

Invariant dependencies
Pointcut name changed if ?m methodDeclarationHas: {Pointcut},

?m methodDeclarationHasName: ?name,
?name isInvariant, ?m isContext

TABLE II
ANNOTATION SPECIFICATION FOR THE REFACTORING OF THE @POINTCUT ANNOTATION DEFINED IN ASPECTJ5

move fields to other classes will be prevented of changing the
mapping of entity classes to a database.

B. Pointcuts and Advice of AspectJ5

In version 5, the aspect-oriented language AspectJ [15]
introduced a new style to define aspects based on annotations.
In this annotation-driven style3, aspects are defined as Java
classes carrying annotations that map Java source code ele-
ments to AspectJ ones. An AspectJ aspect is mapped to a class
carrying the @Aspect annotation, and pointcuts and advice
are mapped to methods annotated with @Pointcut and either
@Before, @After or @Around. The AspectJ weaver then
loads the aspect classes and instruments the application’s code
according to its annotations, so that the correct advice is
executed either before, after or around the methods specified in
the pointcuts. This means that there is a dependency between
the advice and the pointcuts. Pointcuts take their name from
the name of the method on which the @Pointcut annotation
is placed. This name is then used to bind an advice to one or
more pointcuts. While this dependency is similar to the one
between a @Column’s name and the name of the field it is
placed, AspectJ5’s @Pointcut annotation does not define a
name element. This implies that the name of a @Pointcut
is always implicit, and changing the name of methods carrying
the @Pointcut annotation will surely render any advice
that refers to them faulty. Table II depicts the annotation
specification for the @Pointcut annotation in AspectJ. This
specification is composed of a single invariant dependency,
stating that the name of methods carrying the @Pointcut
annotation must remain invariant.

C. Simple XML serialization

As a final example, we present the annotation specification
for the @Element annotation defined in the Simple XML
serialization and configuration framework4. Simple allows
developers to serialize Java objects to XML by relying on
annotations to specify the schema of the resulting XML file,
thus doing away with the need for a mapping configuration
required by other XML serialization libraries for Java.

Simple defines annotations to express that a class will serve
as the root of the XML document (@Root) and annotations to
specify how the fields and properties of the class map to either
attributes (@Attribute) or elements @Element of the
XML document. Like the JPA, Simple allows configuration by
omission: the developer is not required to explicitly annotate
each field or property of the class with @Element. However,

3http://www.eclipse.org/aspectj/doc/released/adk15notebook
4http://simple.sourceforge.net/

in contrast to the JPA, Simple requires the developer to
explicitly declare that default values should apply for a class by
means of the @Default annotation. This annotation takes a
parameter stating whether the @Element annotations should
be implicitly applied to fields (DefaultType.FIELD) or to
properties (DefaultType.PROPERTY).

Each field or method annotated with @Element will be
mapped to a corresponding XML element with the name
defined by the annotation’s name. If name is not specified,
the @Element takes the name from the annotated element.

Table III shows the annotation specification for the
@Element annotation. It defines four implicit annotations
and values, two stating that a @Default annotation induces
implicit @Element annotations on fields or properties (two
first rows). In the case of default elements for fields, the speci-
fication of the first row states that a field carries an @Element
annotation if the field is not annotated as @Transient
and the class that defines the field is itself annotated with
a @Default annotation that has DefaultType.FIELD as
parameter. The specification for default elements properties is
similar, except that we first check that the method on which
the implicit @Element is placed complies with the accessor
naming convention by verifying that its name matches the
regular expression {get.*}.

The following two rows of the table specify
the implicit name of the @Element annota-
tions through an alternative definition for the
XXXDeclarationHas:with:value:/3 predicate.
In the case of @Element annotations, a special predicate
isPropertyForName:/2 is used to extract the property’s
name from the accessor method by stripping the prefix “get”
from the method’s name and converting the remaining string
to lowercase. Finally, in the two last rows of Table III,
two invariants to protect the mapping of fields/properties to
elements are expressed. The invariant queries have a similar
form stating that the name of @Element must remain
invariant, be it (implicitly) placed on a field or method.

VII. DISCUSSION AND FUTURE WORK

In this section we discuss the advantages and limitations of
our approach, along with how we propose to overcome these
limitations in future work.

Refactoring-agnostic approach.: Our approach offers the
advantage that it is agnostic to the specifics and implementa-
tion of the refactorings that can be applied to the annotated
system. As we treat behavior preservation of annotated code
as a problem of preserving dependencies on domain concepts
and that the conditions to validate a refactoring are checked

Implicit annotations and values
@Default(FIELD) implies Element ?field fieldDeclarationHas: Element

if not(?field fieldDeclarationHas:{Transient}),
?class classDeclarationDeclaresField: ?field,
?class classDeclarationHas:{Default} with: {value}
value: {DefaultType.FIELD}

@Default(PROPERTY) implies Element ?method methodDeclarationHas: {Element}
if ?method methodDeclarationHasName: {get.*}

not(?method methodDeclarationHas:{Transient}),
?class typeDeclarationDeclares: ?method,
?class classDeclarationHas:{Default} with: {value}
value: {DefaultType.PROPERTY}

Default element name is name of field ?field fieldDeclarationHas: Element with: name value: ?val
if ?field fieldDeclarationHas: Element,
?field fieldDeclarationHas: Element without: name,
?field fieldDeclarationHasName: ?val

Default name of Element is name of property ?method methodDeclarationHas: Element with: name value: ?val
if ?method methodDeclarationHas: Element,

?method methodDeclarationHas: Element without: name,
?method isPropertyForName: ?val

Invariant dependencies
Element mapping changed if ?field fieldDeclarationHas:{Element} with:{name}

value: ?name,
?name isInvariant, ?field isContext

Element mapping changed if ?meth methodDeclarationHas:{Element}
with: {name} value: ?name,

?name isInvariant, ?meth isContext

TABLE III
ANNOTATION SPECIFICATION FOR THE REFACTORING OF THE @ELEMENT ANNOTATION DEFINED IN SIMPLE.

as post-conditions, we do not require annotation library de-
velopers to specify the interaction between each refactoring
and the assumptions made by the annotations. As a result,
our approach is rather light-weight: in order to make a wide
variety of automated refactorings annotation-aware, developers
only need to document the dependencies of their annotation
libraries on domain-specific concepts.

No need to model the semantics of the annotation library.:
Note that our approach does not require a full-fledged, explicit
model of the semantics of an annotation library in order to
detect refactorings that would not be behavior preserving. For
example, in order to support JPA, we do not need to model the
database structure onto which an application is mapped, nor
how this mapping is realized by a concrete implementation
of JPA. Instead, our annotation specification consists only of
the implicit annotations that are assumed by the annotation
library, and a declaration of which tables and columns in the
database the source code is mapped onto. As demonstrated in
Section VI, providing such an annotation specification for a
library requires only a minimal effort.

Support for implicit annotations and implicit annotation
members.: Our approach provides support for the implicit
annotations and annotation members that are often assumed by
annotation libraries. As a result, we do limit our approach to
annotated programs that provide an explicit configuration, but
also support “configuration by omission”, which is a common
feature of annotation libraries. Such support is achieved by
documenting both the domain dependencies and the implicit
configuration of a set of annotations. To this end, we offer a
single specification language that is based on the SOUL logic
program query language.

Broader applicability.: While this paper focuses on refac-
toring in the presence of annotations, our approach is not
limited to this problem domain. Our approach can be useful
to prevent refactorings from altering the observable behavior
when using other technologies that introduce a dependency
on external entities. For example, many popular JEE frame-
works such as Struts, Spring, and so on rely on the use of
XML descriptors in order to configure the framework. This
introduces dependencies between entities in the source code
on the one hand and references to these entities within the
XML documents on the other. As another example, consider
frameworks such as JUnit that rely on naming conventions
for configuration. Within JUnit, all methods on a test class
prefixed with ‘test’ will be considered unit tests. It is clear
that applying a simple rename refactoring to such methods
can result in that they are no longer detected as test methods.
In other words, there exists an implicit dependency between
the test methods and the naming convention that identifies
these methods. In future work, we plan to tailor our approach
to express the dependencies between the source code and
any external concepts as described above in order to prevent
refactorings from altering the implied semantics.

Only support for domain dependencies.: The approach
presented in this paper only focusses on one facet of the
problem of refactoring annotated code, namely dependency
preservation. While we feel that many issues present in the
refactoring of annotated code result from the dependencies that
these annotations impose on domain-specific concepts, this is
not necessarily true for all available annotation libraries. As
we already discussed above, refactoring of annotated code can
potentially break the semantics expressed by the annotation

by no longer resulting in a piece of code that – according
to the assumptions imposed by the annotation library – is still
correctly annotated. These kinds of violations are however not
detected by the approach presented here.

Our previous work on Smart Annotations [2] complements
the work presented in this paper in that it enables developers
to document and verify the structural assumptions implied by
annotation libraries. By means of SOUL queries, developers
can describe the structural constraints that dictate where in the
source code annotations should apply, and which structural
properties annotated source code entities should exhibit. In
future work, we will integrate these Smart Annotations with
our AnnoRefactoring plugin, such that our tool can warn
developers about both structural and dependency violations.
However, such an integration might not suffice to identify the
violation of any kind of semantics introduced by annotations.
While we are not aware of annotation libraries that introduce
assumptions other than structural requirements and dependen-
cies on domain-specific concepts, further study of annotation
libraries is required.

Correctness of annotation specifications.: Our approach
reports all dependency violations that could result from a
refactoring by leveraging annotation specifications. These an-
notation specifications, that express the implicit annotations,
implicit member values and dependency invariants of an
annotation library, are expected to be provided by developers
of the annotation library, or by expert users of such a library.
Therefore, we cannot make any guarantees that this annotation
specification is complete and correct, and that our tool will
therefore warn about the correct set of dependency violations.

Restriction of refactorings.: Our AnnoRefactoring plugin
makes refactorings annotation-aware by warning developers
about transformations that would result in changes to the
external behavior of a system. We achieve this by imposing
additional (post-)conditions for the refactoring to be appli-
cable. While this effectively aids in preventing refactorings
from resulting in erratic behavior, it restricts the situations in
which the refactoring can be applied. In future work we plan
to overcome this limitation by associating each violation of a
domain dependency with a compensating transformation of the
annotation. For example, consider a class annotated with the
JPA @Table annotation. If the annotation does not provide
the name of the mapped database table as an explicit value,
renaming this class would result in our approach warning the
developer that the refactoring breaks the semantics induced by
the annotation. By providing a compensating transformation,
we could add the explicit value – corresponding to the name
of the table – to the annotation.

VIII. SUMMARY

In this paper we have presented the problem of refactoring
in the presence of annotations. Many libraries and frameworks
use annotations to embed configuration parameters in source
code. By means of an example taken from JPA, we have
illustrated that the semantics that this use of annotations
introduces can result in that refactorings are no longer behavior

preserving. As one of the underlying causes of this problem,
we have identified that such annotations introduce dependen-
cies on external domain-specific concepts. By documenting
these dependencies using SOUL, the approach presented in this
paper allows developers to be warned about violations of do-
main dependencies introduced by the use of annotations when
attempting to apply a refactoring. To support our approach, we
have provided a proof-of-concept implementation in the form
of the AnnoRefactoring Eclipse plugin. We have illustrated the
applicability of our approach using three annotation libraries,
namely JPA, AspectJ5 and Simple XML.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[2] A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and T. D’Hondt,
“Co-evolving annotations and source code through smart annotations,” in
Proceedings of the 14th European Conference on Software Maintenance
and Re-engineering (CSMR10), 2010.

[3] E. Tilevich and M. Song, “Reusable enterprise metadata with pattern-
based structural expressions,” in International Conference on Aspect-
Oriented Software Development (AOSD), 2010, pp. 25–36.

[4] V. Cepa and M. Mezini, “Declaring and enforcing dependencies be-
tween.NET custom attributes,” in Generative Programming and Com-
ponent Engineering: Third International Conference, GPCE 2004,, ser.
Lecture Notes in Computer Science, G. Karsai and E. Visser, Eds., vol.
3286. Springer, 2004, pp. 283–297.

[5] M. Eichberg, T. Schäfer, and M. Mezini, “Using Annotations to Check
Structural Properties of Classes.” in Fundamental Approaches to Soft-
ware Engineering, 8th International Conference, ser. Lecture Notes in
Computer Science, M. Cerioli, Ed., vol. 3442. Edinburgh, Scotland:
Springer, 2005, pp. 237–252.

[6] C. Noguera and R. Pawlak, “AVal: an extensible attribute-oriented
programming validator for java,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. Volume 19 Issue 4, pp. 253 –
275, Jul. 2007.

[7] L. D. Michel and M. Keith, Enterprise JavaBeans, Version 3.0, Sun
Microsystems, May 2006, jSR-220.

[8] A. Cunha and J. Visser, “Strongly typed rewriting for coupled software
transformation,” Electronic Notes in Theoretical Computer Science, vol.
174, no. 1, pp. 17–34, 2007.

[9] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel, “Hurdles in
multi-language refactoring of hibernate applications,” in International
Conference on Software And Data Technologies (ICSOFT), 2011, pp.
129–134.

[10] C. Noguera and L. Duchien, “Annotation framework validation using
domain models,” in ECMDA-FA, ser. Lecture Notes in Computer Sci-
ence, I. Schieferdecker and A. Hartman, Eds., vol. 5095. Springer,
2008, pp. 48–62.

[11] M. Song and E. Tilevich, “Metadata invariants: Checking and inferring
metadata coding conventions,” in International Conference on Software
Engineering (ICSE), 2012.

[12] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The soul tool
suite for querying programs in symbiosis with eclipse,” in International
Conference on the Principles and Practices of Programming in Java
(PPPJ), 2011, pp. 71–80.

[13] M. Schaefer and O. de Moor, “Specifying and implementing
refactorings,” in Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, ser.
OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 286–301.
[Online]. Available: http://doi.acm.org/10.1145/1869459.1869485

[14] C. Noguera, C. De Roover, A. Kellens, and V. Jonckers, “Program query-
ing with a SOUL: The barista tool suite,” in International Conference
on Software Maintenance (ICSM), 2011, tool demo.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
world, “An overview of AspectJ,” in European Conference on Object-
Oriented Programming (ECOOP), ser. LNCS. Springer Verlag, 2001,
pp. 327–355.

