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Abstract

Advances in wireless sensing and actuation technology allow embedding significant amounts of application logic
inside wireless sensor networks. Such active WSN applications are more autonomous, but are significantly more
complex to implement. Event-based middleware lends itself to implementing these applications. It offers developers
fine-grained control over how an individual node interacts with the other nodes of the network. However, this control
comes at the cost of event handlers which lack composability and violate software engineering principles such as
separation of concerns. In this paper, we present CrimeSPOT as a domain-specific language for programing WSN
applications on top of event-driven middleware. Its node-centric features enable programming a node’s interactions
through declarative rules rather than event handlers. Its network-centric features support reusing code within and
among WSN applications. Unique to CrimeSPOT is its support for associating application-specific semantics with
events that carry sensor readings. These preclude transposing existing approaches that address the shortcomings of
event-based middleware to the domain of wireless sensor networks. We provide a comprehensive overview of the
language and the implementation of its accompanying runtime. The latter comprises several extensions to the Rete
forward chaining algorithm. We evaluate the expressiveness of the language and the overhead of its runtime using
small, but representative active WSN applications.
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1. Introduction

Event-driven middleware enables the nodes of a wireless sensor network (WSN) application to communicate over
a decentralized event bus. The middleware relieves developers from intricate concerns such as resource management
and volatile connections. Even with these concerns out of the way, a node’s communication with other nodes is often
difficult to program. Different events need to be reacted to differently at run-time. This usually implies some form
of dispatching over each event that is received. Reacting to a sequence of events implies keeping track of how many
events of the sequence have already occurred. Without adequate middleware support for these problems, developers
have to resort to ad-hoc solutions in event handlers. However, such solutions have been shown to violate a range of
software engineering principles [18]. A node’s event handler, for instance, cannot simply be composed with another
to have it react to an additional event sequence. While these problems plague other event-driven architectures as well,
existing solutions do not readily translate to WSNs. Next to messages concerned with application logic, events carry
sensor readings that have to be handled as such. Small fluctuations in the payload of successive events might not
warrant a reaction. When a node disconnects, on the other hand, some of the state changes it induced in other nodes
might have to be undone as well. Not only will ad-hoc solutions lead to code duplication, they will also require a
considerable amount of bookkeeping.
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Figure 1: Motivating example: a WSN application for festival tents.

FR1 The HumiditySensor and TemperatureSensor have to publish
their sensor readings at set intervals.

FR2 The HumiditySensor, TemperatureSensor and
HeatingController have to publish their online presence
and location at set intervals.

FR3 The HeatingController has to adjust its associated heater ac-
cording to a received adjustHeating event.

FR4 The ComfortLevelMonitor has to compute a tent’s heating
level based on a received temperatureReading event and pub-
lish this level in an adjustHeating event.

FR5 The ComfortLevelMonitor has to control the heating for each
tent individually by sending adjustHeating events only to the
HeatingControllers in the tent to be heated.

FR6 The ComfortLevelMonitor has to relate received
humidityReading and temperatureReading events that
originate from the same tent and use them to compute and log
that tent’s comfort level.

FR7 The ComfortLevelMonitor has to make sure that only the most
recent sensor readings from a certain tent are used for comput-
ing the heating- and comfort levels.

FR8 The HeatingController has to make sure that its associated
heater won’t keep heating when the ComfortLevelMonitor
fails or gets disconnected from the WSN.

Figure 2: Functional requirements for the example.

2. Motivating Example

Figure 1 further illustrates the problems identified above. An event-based WSN application has been deployed
to control the heaters in several festival tents. A HeatingController, TemperatureSensor and HumiditySensor node
is deployed in each tent. As a malevolent attendee might bring these nodes offline or move them between tents,
they are fitted with a GPS sensor that is used to communicate their location (FR2). All nodes communicate over a
decentralized event bus. Outgoing arrows depict events published by a node, while incoming arrows depict events a
node is subscribed to. Each TemperatureSensor and HumiditySensor node continuously publishes temperatureReading

and humidityReading events on the event bus. HeatingController nodes subscribe to adjustHeating events. Upon
receiving an adjustHeating event, they adjust the setting of the heater they are associated with. Such events are
published by the ComfortLevelMonitor which decides when and by how much each heater needs to be adjusted based
on the temperatureReading events it receives. This node also logs the comfort levels in each festival tent over time. To
this end, it combines the data carried by temperatureReading events with those carried by humidityReading events. Note
that a single ComfortLevelMonitor node monitors and controls the comfort levels in all tents. Care must therefore
be taken not to combine temperatureReading and humidityReading events that originate from different tents. Figure 2
summarizes the functional requirements for our motivating example.

2.1. Reacting to Events using Event Handlers
The first three requirements amount to invoking application logic or publishing a new event whenever a node

receives an event. Most event-based middleware supports implementing such reactions in a node’s event handler
(e.g., a method receiveEvent(Event) invoked by the middleware). To implement (FR3), for instance, the event handler
of HeatingController merely has to read out the payload of each received adjustHeating event and adjust its heater
accordingly. No other reactions to such an event are required, nor are there any other events the node is subscribed to.

The event handler of the ComfortLevelMonitor, in contrast, has to dispatch over online, humidityReading and
temperatureReading events of which the latter requires multiple reactions. Not only must an adjustHeating event be
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published (FR4), but a comfort level has to be computed as well from the temperatureReading and a previously or yet
to be received humidityReading (FR6). This typically entails storing received events in memory such that they can
be consulted and related with other events later on. Relating events usually involves matching their payloads and/or
information about their origin. For instance, the payload of online events relates node identifiers with tent identifiers
(i.e., which node resides in which tent). Stored online events can therefore be used to determine which tent an event
originated from. This is necessary to ensure that comfort levels are computed using events that originate from the
same tent (FR6).

Without adequate language or middleware support for the aforementioned event dispatching, storage and match-
ing, developers have to resort to ad-hoc implementations. These are error-prone and bound to be duplicated over the
event handlers of multiple nodes. Furthermore, a node’s event handler cannot easily be composed with another to
have it react to an additional event.

2.2. Semantics of Events that Carry Sensor Readings

While the above problems plague other event-driven applications as well, existing solutions (e.g., complex event
processing) do not readily translate to WSNs. The semantics of events that carry sensor readings differs significantly
from those that are intended to steer application logic.

First of all, one can wonder how long a received event remains valid (i.e., still warrants being reacted to later on).
The temperatureReading and humidityReading events might not be published at the same interval. Storing either until
the corresponding event is received, might lead to comfort levels being computed from stale information (FR4). One
might therefore want to associate an expiration time with events that carry sensor readings —in contrast to events that
are concerned with distributed application logic.

Furthermore, multiple temperature sensors can be deployed in the same tent. Small fluctuations in the payload of
successive temperatureReading events might therefore not warrant a reaction (FR3) every time one is received. The
comfort levels logged by ComfortLevelMonitor should, on the other hand, always be computed from the most recently
received sensor readings (FR7). Likewise, a newly received online event immediately invalidates the information
carried by older ones. All of these issues concern the subsumption of an older event by a newer one.

Finally, previous reactions to expired or subsumed events might even have to be compensated for. For instance,
the HeatingController should reset its associated heater if no adjustHeating event has been received for some time.
This way, it can avoid overheating a tent when the ComfortLevelMonitor fails or gets disconnected (FR8). In general,
compensating for expired events entails tracking the causality between events and the reactions they triggered over
the WSN.

Even with the aforementioned event dispatching, storage and matching supported by the middleware or pro-
gramming language, implementing event expiration, subsumption and compensation still involves a fair amount of
bookkeeping. In this paper, we present CrimeSPOT as a language that is explicitly designed to minimize the acciden-
tal complexity that is inherent to programming WSN applications using event-based middleware. CrimeSPOT enables
developers to focus on the application’s essential complexity instead.

3. Overview of the Approach

CrimeSPOT is a domain-specific programming language to be used on top of event-based middleware for wireless
sensor networks. From the node-centric perspective, it enables programming the interactions of a node with other
nodes on the network through declarative rules rather than event handlers. Each rule specifies how the node should
react to a particular sequence of events. This way, developers are relieved from having to dispatch explicitly over
each received event and having to track how many events of an event sequence have already been received. More
importantly, interactions can be composed by enumerating the rules that govern them. From the network-centric
perspective, CrimeSPOT enables developers to specify which rules are to govern which nodes of the network. Through
macro-programming facilities, the resulting configurations of nodes and rules can be reused across WSN applications.

Tailored towards WSNs, CrimeSPOT explicitly supports associating application-specific semantics to events that
carry sensor readings. This includes determining which network events correspond to a sensor reading, but also when
a sensor reading expires, when a sensor reading subsumes a previous one and when and how often a new reading
warrants triggering an interaction rule. In addition, CrimeSPOT tracks causality relations between the events a node
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receives and the ones it publishes. This allows determining whether, which and how nodes are affected when a sensor
reading is subsumed or expires.

Figure 5 and Figure 6 depict the CrimeSPOT implementation of the motivating example. Without delving into
details, the interaction rule on lines 7–9 of Figure 5 specifies that a temperatureReading should be published to all
network nodes periodically. Section 4 and Section 5 discuss the CrimeSPOT features it relies on from the node-
centric and network-centric perspective respectively. We will discuss its accompanying runtime first.

3.1. Architecture of the CrimeSPOT Runtime
An instance of the CrimeSPOT runtime has to be instantiated on every network node of which the interactions are

to be governed by CrimeSPOT rules. Figure 3 depicts the layered architecture of this runtime. The middleware bridge
in the infrastructure layer binds the runtime to the underlying event-based middleware. It contains middleware-specific
functionality to transfer events from and to the decentralized event bus.

The reification engine in the reification layer reifies the events that are received from other nodes as facts and
stores them in a fact base. This enables the natural use of pattern matching in rules to relate stored events through
their payload or origin. Section 3.3 discusses how the reification engine can be tailored to the specifics of a WSN
application by storing declarations in its configuration base. Among others, an expiration time can be associated with
a fact that reifies an event.

Next to the aforementioned fact base, the inference layer contains a rule base. As soon as an interaction rule
has been added to the rule base, it intervenes in how the node processes the events received on the event bus. To
this end, the inference engine re-evaluates the fact base against the rule base whenever the former changes —at least,
conceptually. Section 3.2 discusses how the inference engine evaluates interaction rules incrementally.

Interaction rules consist of a body and a head separated by the neck symbol “<-” (cf. lines 7–9 of Figure 5). In
general, the body of a rule consists of conditions that correspond to events that have been received and stored as facts.
They therefore express which events must have been received in order for the rule to be activated. The head of most
rules consists of a fact. Whenever such a rule is activated, the inference engine adds the fact in its head to a fact base.
Meta-data (i.e., everything between @[. . .] such as the to(MAC=*) on line 7) determines whether the fact is added to
the fact base of the local node or to those of the other nodes on the network. Application logic can also be invoked
when a rule is activated. The head of such rules consists of a reference to a field (e.g., this.adjustHeater on line
29 of Figure 5), the value of which will be sent a message activated(CSVariableBindings) upon rule activation. The
corresponding method can be used to implement application logic (e.g., adjust heater).

Note that an activated rule can become deactivated in a successive evaluation of the rule base against the fact
base. This is the case as soon as one of its conditions is no longer satisfied. For instance, because the matching fact
expired and was removed from the fact base. The inference engine will undo all reactions to a rule’s activation upon
its deactivation. For rules with a fact in their head, this fact will be removed from all fact bases it was added to. For
rules with a field reference in their head, a message deactivated(CSVariableBinding) will be sent to the value of the
field upon their deactivation. The corresponding method can be used to implement compensating application logic
(e.g., reset heater). Section 3.2 discusses how the inference engine tracks the causality between rule bodies and heads.

3.2. Inference Engine of the CrimeSPOT Runtime
The inference engine of the CrimeSPOT runtime evaluates the rule base against the fact base whenever the latter

changes. To this end, the engine uses forward chaining as its inference strategy. Working from the body of a rule to its
head, forward chaining derives all conclusions that follow from a fact base. Backward chaining, in contrast, gathers
facts supporting a given conclusion —working from the head of a rule to its body. Backward chaining is goal-driven
whereas forward chaining is data-driven. The latter lends itself to an incremental evaluation of the rule base against
the fact base. Incremental evaluation is essential in our setting, as the fact base is updated frequently (e.g., whenever
an event is received).

The Rete algorithm [9] is an incremental forward chainer that sacrifices memory for speed. The algorithm stores
intermediate derivations and combines them with a newly added fact to derive the additional conclusions that follow
from the augmented fact base. This way, not all conclusions have to be re-derived from scratch whenever a fact is
added to the fact base. In past work, we extended the Rete algorithm into the distributed truth maintenance system
Crime [22]. Crime explicitly tracks the causal links between facts and conclusions, including distributed ones. This al-
lows computing the conclusions that no longer follow from a reduced fact base. Being able to react to such invalidated
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Figure 3: Architectural overview of the CrimeSPOT runtime.

conclusions is vital to the way CrimeSPOT reconciles the transient nature of events with the persistent nature of facts;
through customizable event reification and fact expiration. These features require CrimeSPOT-specific extensions to
the Rete algorithm, which are detailed in Section 7.

3.3. Reification Engine of the CrimeSPOT Runtime
The reification engine of the CrimeSPOT runtime reifies transient events as persistent facts. As mentioned before,

its behavior can be tailored completely to the specifics of a WSN application through declarations. These declarations
control which and how events are to be reified as facts, when the resulting facts expire and which older facts are
subsumed by a new fact.

Figure 4 illustrates the reification process. Each incoming event is reified as a fact first. If the event wraps a
fact, reifying the event is trivial (i.e., the fact has to be unwrapped from the event). This is the case for facts that
have been published through CrimeSPOT rules. Otherwise, the incoming event must have originated from a node
that does not run the CrimeSPOT runtime on top of the WSN middleware. This is typically the case for resource-
constrained nodes that only publish events with sensor information. When such an event is received, the reification
engine consults declarations of the form “mapping <fact> <=> <event>”. Lines 39–40 of Figure 6 depict an example of
such a declaration.1 It specifies that a middleware event of type 101 with a single Integer payload is to be reified as a
temperatureReading fact with a single attribute named Celsius. The occurrences of variable ?temp ensure that the value
of the fact’s attribute corresponds to the payload of the event.

Next, the reification engine consults the declarations of the form “drop <fact> [provided <conditions>]”. These
determine whether the newly created fact should be added to the fact base. This might not be the case if existing facts
subsume the newly created fact. If the fact doesn’t have to be dropped, the engine consults the declarations of the form
“incoming <newfact> subsumes <oldfact> [provided <conditions>]”. These determine which facts have to be removed
from the fact base because they are subsumed by the newly created fact. Only then, the new fact is added to the fact
base.

Consider the declaration on line 27 of Figure 5. It specifies that a new adjustHeatingLevel fact subsumes all other
facts of the same type. As a result, the fact base of the HeatingController node will always contain the most recently
received fact. The declaration on lines 5–6 of Figure 6 specifies that an online fact subsumes other online facts that
were received from the same network node. To this end, variable ?m substitutes for the MAC-address of the node that
published the new fact (in the from meta-data on line 5) as well as for the MAC-address of the node that published the
older fact (in the from meta-data on line 6). Note that a different variable substitutes for the value of the Tent-attribute
of both facts. Indeed, nothing precludes a node from being moved.

1Note that this particular declaration could be omitted from the motivating example as temperatureReading facts are already published by a
CrimeSPOT node (i.e., lines 7–9 of Figure 5).
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Figure 4: The reification engine of the CrimeSPOT runtime.

1. TemperatureSensor,	  HumiditySensor,	  HeatingController	  {
2. 	  	  	  	  publishPresenceEvery($onlineInterval).
3. }
4.
5. TemperatureSensor	  {
6. 	  	  	  	  temperatureMapping($readingInterval).
7. 	  	  	  	  temperatureReading(Celsius=?temp)@[to(MAC=*),
8. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  factExpires($readingInterval)]	  
9. 	  	  	  	  	  	  <-‐	  ?temp	  is	  this.getTemperature()@[renewEvery($readingInterval)].
10. }
11.
12. TemperatureSensor.java	  {
13. 	  	  	  	  private	  CSValue	  getTemperature()	  {	  return	  ...	  }
14. }
15.
16. HumiditySensor	  {
17. 	  	  	  	  humidityMapping($readingInterval).	  	  	  
18. 	  	  	  	  humidityReading(Percent=?p)@[to(MAC=*),
19. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  factExpires($readingInterval)]
20. 	  	  	  	  	  <-‐	  ?p	  is	  this.getHumidity()@[renewEvery($readingInterval)]	  	  	  	  	  
21. }

22. HumiditySensor.java	  {
23. 	  	  	  	  private	  CSValue	  getHumidity()	  {	  return	  ...	  }
24. }
25. 	  
26. HeatingController	  {
27. 	  	  	  	  incoming	  adjustHeating(Level=?new)	  subsumes	  adjustHeating(Level=?old).
28.
29. 	  	  	  	  this.adjustHeater
30. 	  	  	  	  	  	  <-‐	  adjustHeating(Level=?h).
31. }
32.
33. HeatingController.java	  {
34. 	  	  private	  CSAction	  adjustHeater	  =	  new	  CSAction()	  {
35. 	  	  	  	  	  public	  void	  activated(CSVariableBindings	  bindings)	  {	  //adjust	  heating	  }
36. 	  	  	  	  	  public	  void	  deactivate(CSVariableBindings	  bindings)	  {	  //reset	  heating	  }
37. 	  	  };	  	  
38. }

Figure 5: CrimeSPOT code for the TemperatureSensor, HumiditySensor and HeatingController nodes in the motivating example.

4. Node-centric CrimeSPOT Features

The preceding sections introduced the runtime that supports the CrimeSPOT language. Here, we introduce the
node-centric features of this programming language. These enable programming the interactions of a node with others
through declarative rules rather than the predominant event handlers. Figure 7 depicts the grammar of all node-centric
CrimeSPOT features. We will focus on the features that are required to understand the CrimeSPOT implementation
of the motivating example. First, we discuss the activation and deactivation of rules in more detail.

4.1. Rule Activation and Deactivation
The body of a CrimeSPOT rule corresponds to a conjunction of conditions. Each condition has to be satisfied

in order for the rule to be activated. A condition is satisfied if a matching fact exists in the node’s fact base. Facts
consist of a functor, a sequence of named attributes and optional meta-data. The = symbol separates the name of each
attribute from its value. Meta-data is demarcated by a @[. . .] construct. Among others, the fact-like declarations within
this construct record information about the fact’s origin. For instance, the fact base of the ComfortLevelMonitor node
contains facts of the following form:

temperatureReading(Celsius=27)

@[factExpires(Seconds=600),from(MAC=1234:1234:1234:1234)]

The syntax for conditions is similar to the one of facts, except that a logic variable (i.e., an identifier starting with
a question mark) can substitute for the concrete value of a named attribute. For a condition to be satisfied, there has
to be a fact that matches the condition under a variable substitution (i.e., a mapping of variables to the values they are
bound to). Note that a fact can match a condition with less attributes and meta-data. The fact only has to exhibit the
attributes and meta-data that are specified in the condition. This is why CrimeSPOT uses named attributes.

The bindings for each occurrence of a variable have to be consistent across the head and the body of a rule.
One rule activation therefore corresponds to a particular substitution for its variables. If the fact base contains three
matching temperatureReading facts, for instance, the rule is activated three times with a corresponding binding for
?temp:

6



29. *.java&{
30. &&&&private-CSValue-getTentBasedOnGPSReading()-{-return-...-}
31. }
32.
33. *&{
34. ----
35. ----defvar-$readingInterval:-Seconds=600.
36. ----defvar-$onlineInterval:-Seconds=3600.
37.
38. ----defmacro-temperatureMapping():
39. --------mapping-temperatureReading(Celsius=?temp)@[factExpires($readingInterval)]-
40. -----<=>-Event_101(Integer=?temp).
41. --------
42. ----defmacro-humidityMapping():
43. --------mapping-humidityReading(Percent=?h)@[factExpires($readingInterval)]-
44. -----<=>-Event_102(Integer=?h).
45.
46. ----defmacro-publishPresenceEvery($time):
47. -------online(Tent=?tnt,Node=$NAME)@[to(MAC=*),factExpires($time)]--
48. ----------<_-?tnt-is-this.getTentBasedOnGPSReading()@[renewEvery($time)].
49. --------
50. ----defmacro-subsumesOlderFromSameTent($reading,$type):
51. -------incoming-$reading($type=?new)@[from(MAC=?mac)]
52. -------subsumes-$reading($type=?old)@[from(MAC=?othermac)]
53. -------provided-online(Tent=?tnt)@[from(MAC=?mac)],-
54. ----------------online(Tent=?tnt)@[from(MAC=?othermac)].
55. }

1. ComfortLevelMonitor&{&
2. ----temperatureMapping($readingInterval).
3. ----humidityMapping($readingInterval).
4.
5. ----incoming-online(Tent=?tnt,Node=?n)@[from(MAC=?m)]
6. ----subsumes-online(Tent=?otnt,Node=?n)@[from(MAC=?m)].-
7.
8. ----subsumesOlderFromSameTent(humidityReading,Percent).
9. ----subsumesOlderFromSameTent(temperatureReading,Celsius).
10. ------------
11. ----this.logComfortLevel
12. ------<_-humidityReading(Percent=?h)@[from(MAC=?hm)],
13. ---------online(Tent=?tnt)@[from(MAC=?hm)],
14. ---------temperatureReading(Celsius=?t)@[from(MAC=?tm)],
15. ---------online(Tent=?tnt)@[from(MAC=?tm)].
16. ----
17. ----adjustHeating(Level=?heatingLevel)@[to(MAC=?hcm),
18. ----------------------------------------factExpires($readingInterval)]
19. ------<_-temperatureReading(Celsius=?t)@[from(MAC=?tm)],
20. ---------online(Tent=?tnt)@[from(MAC=?tm)],
21. ---------?heatingLevel-is-this.computeHeatingLevel((Number)?t),
22. ---------online(Node=HeatingController,Tent=?tnt)@[from(MAC=?hcm)].
23. }
24.
25. ComfortLevelMonitor.java&{
26. &&&private-CSValue-computeHeatingLevel(Number-t)-{-return-...-}
27. ---private-CSACtion-logComfortLevel-=-new-CSAction()-{-...-}-
28. }

Figure 6: CrimeSPOT code for the ComfortLevelMonitor (left) and code that is shared by all nodes in the motivating example (right).

temperature(Celsius=?temp)

<- temperatureReading(Celsius=?temp).

The fact base will therefore be extended with three new temperature facts. As soon as a new temperatureReading

fact is added to fact base, the rule is activated anew with another variable substitution that results in a new temperature

fact. Conversely, as soon as a temperatureReading fact is removed from the fact base, the rule will be deactivated for the
corresponding variable substitution. As a result, one of the temperature facts produced by this rule will be removed.

4.2. Relating Facts
As illustrated by the motivating example, WSN nodes often have to store and relate the events they receive.

Through multiple occurrences of a variable in a rule’s body, CrimeSPOT supports relating facts that reify received
events based on their content as well as their origin. Consider the interaction rule of the ComfortLevelMonitor on
lines 11-15 of Figure 6. The first two conditions succeed if both a humidityReading and an online fact are stored in
the fact base. However, variable ?hm requires these facts to have originated from the same network node. Within the
meta-data of each condition, the variable substitutes for the MAC address the fact was published from. As a result,
variable ?tnt will be bound to the tent from which the humidityReading originated. This is an example of origin-based
relating of facts. The last two conditions use another occurrence of this variable to find a temperatureReading from the
same tent. This is an example of content-based relating of facts.

The same technique can be used to link the head of a rule to its body. This is illustrated by the rule on lines 17–22
of Figure 6. The occurrences of ?hcm ensure that an adjustHeatingLevel fact is added to the fact base of the particular
heating controller in the tent from which the temperature reading originated. By default, facts are only added to
the local fact base. This behavior is changed by the to(MAC=?hcm) declaration in the fact’s meta-data. Likewise, a
to(MAC=*) declaration will add the fact to all fact bases. If the underlying middleware does not support such unicasts,
the infrastructure layer of our runtime will simulate them through broad-casts that are filtered at the receiver side.

Both rules have multiple conditions in their body. Note that there merely has to be a matching fact in the fact
base for each condition. A rule does not by itself specify an order in which the corresponding events must have
been received. This is appropriate as sensor readings arrive non-deterministically. The aforementioned subsumption
declarations ensure that only the most recent sensor readings are stored for each tent. Otherwise, the first rule would be
activated multiple times: once for each combination of humidity and temperature readings that are stored. In general,
an interaction rule cannot be understood in isolation from the declarations that configure the reification engine.

4.3. Error Handling
Some form of error handling might be in order when a match cannot be found for a condition. To this end, a

matchEvery declaration can be added to the meta-data of the condition. Whenever a match hasn’t been found in the
specified amount of time, a timedOut fact will be added to the local fact base. The condition in the following rule
expects a new matching fact at least every minute:
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hnode-centrici ::= hfacti | hrulei | hdeclarationi
hfacti ::= hidentifieri([hattributei(,hattributei)*])[@[hmeta-datumi(,hmeta-datumi)*]]
hattributei ::= hidentifierihrelopi(hvaluei|hvariablei)
hrelopi ::= = | != | <= | >= | < | >
hvariablei ::= ?hidentifieri
hvaluei ::= hlisti | hbooleani | hnumberi | hstringi | hmac-addressi
hval-or-vari ::= hvaluei|hvariablei
hlisti ::= [] | [hval-or-vari(,hval-or-vari)*]
hmeta-datumi ::= to(MAC=(hmac-addressi|hvariablei)|*)

| factExpires(Seconds=hnumberi)
| from(MAC=(hmac-addressi|hvariablei)|this.MAC)
| matchExpires(Seconds=hnumberi)
| matchEvery(Seconds=hnumberi)

hrulei ::= hheadi <- hbodyi
hheadi ::= hfacti | hreferencei
hreferencei ::= this.hidentifieri
hbodyi ::= hconditioni(,hconditioni)*
hconditioni ::= hfacti | hextra-logicali
hextra-logicali ::= hval-or-vari is hinvocationi[@[hinv-optioni]]

| findall(hval-or-vari,[hbodyi],hval-or-vari)
| length(hval-or-vari,hval-or-vari)
| not hconditioni
| hval-or-varihrelopihval-or-vari

hinvocationi ::= this.hidentifieri([hval-or-vari(,hval-or-vari)*])

hinv-optioni ::= evalEvery(Seconds=hnumberi)
| renewEvery(Seconds=hnumberi)

hdeclarationi ::= mapping hfacti <=> hfacti
| incoming hfacti subsumes hfacti [provided hbodyi]
| drop hfacti [provided hbodyi]

1

Figure 7: Grammar of node-centric CrimeSPOT.

hnetwork-centrici ::= (hquantified-blocki)*
hquantified-blocki ::= hcrimespot-quantifieri { (hcrimespot-codei. )* }

| hmiddleware-quantifieri { (hmiddleware-codei)* }

hmiddleware-quantifieri ::= *.java | hidentifieri.java (, hidentifieri.java)*
hcrimespot-quantifieri ::= * | hidentifieri (, hidentifieri)*
hcrimespot-codei ::= hnode-centrici

| defvar hmacro-vari:hmacro-val-or-vari
| defmacro hidentifieri(hmacro-vari(,hmacro-vari)*)
| hidentifieri(hmacro-val-or-vari(,hmacro-val-or-vari)*)
| import hpath-to-filei

hmacro-vari ::= $hidentifieri
hmacro-val-or-vari ::= hmacro-vari | htexti

2

Figure 8: Grammar of network-centric CrimeSPOT.

gotReadingFrom(MAC=?mac)

<- temperatureReading(Celsius=?)@[from(MAC=?mac),

matchEvery(Seconds=60)].

Whenever such a fact has not arrived one minute after the last one, the following timedOut fact will be asserted:

timedOut(Head=gotReadingFrom_1,Condition=temperatureReading).

The inference engine will activate the error handling rule with the corresponding timedOut condition in its body. As
soon as a match is found for the condition that timed out, the timedOut fact will be removed from the fact base.
Consequentially, the error handling rule will be deactivated as well.

4.4. Match Expiration

CrimeSPOT supports a matchExpires declaration among the meta-data of a condition. Any fact that matches such
a condition will only match the condition for the specified amount of time. The following condition therefore only
matches temperature readings that have been in the fact base for no more than 10 seconds:

temperatureReading(Celsius=?temp)@[matchExpires(Seconds=10)]

Note that the expiration of the match does not imply the expiration of the matched fact.

4.5. Invoking Application Logic

Application logic can be invoked from within the body or from the head of an interaction rule. Although other
ports are possible, our run-time currently expects the underlying middleware to be executed on the Squawk VM [26].
A node’s application logic therefore has to be implemented in this Java variant. The next section will discuss network-
centric features of CrimeSPOT that enable specifying interaction rules and application logic in a uniform manner.

As discussed before, rules can have a reference to a field in their head (e.g., this.adjustHeater on line 29 of
Figure 5). When such a rule is activated, the inference engine sends a message activated(CSVariableBindings) to the
value of this field. The bindings for the variables in the rule’s body are given as an argument. The corresponding
Java method is to implement the application logic. Conversely, the message deactivated(CSVariableBinding) is sent
to the value of the field upon the rule’s deactivation. The corresponding method can compensate for the other. This is
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particularly useful for error handling rules that were activated because of timeouts. Among others, state changes can
be undone.

Java methods can also be invoked from within the body of a rule. To this end, CrimeSPOT supports conditions of
the form “<variable> is <invocation>”. Such a condition binds the variable on its left-hand side to the result of the
invocation on the right-hand side. Usually, is-conditions have either a renewEvery or an evalEvery declaration among
their meta-data. Both schedule the method to be invoked at set intervals. The former declaration invalidates previous
matches for the condition, thus causing a deactivation of the rule in which it resides. The latter declaration gives rise
to multiple matches for the is-condition, each with a different binding for the variable on the left-hand side. This can
be useful to store a log of sensor readings in a node’s fact base, but is memory-intensive.

The rule on lines 7–9 of Figure 5 uses an is-condition with a renewEvery declaration. As a result, method
getTemperature is invoked periodically. Note that the temperatureReading facts published by this rule are declared
to expire after the same interval. This is an optimization that allows the TemperatureSensor node to forego ordering
all other nodes to remove a temperatureReading every time the rule is deactivated. Instead, the fact will have been
removed already because it expired.

4.6. Negation, Aggregation and Relational Operators

As our inference engine extends Crime [22] with domain-specific features, CrimeSPOT inherits the latter’s support
for negation (i.e., not), aggregation (i.e., findall) and relational operators (e.g, >). For instance, the following condition
has a match (without any variable bindings) for as long as the fact base contains no adjustHeating fact:

not adjustHeating(Level=?l)

Relational operators are supported as well. The following conditions have a match for as long as there are at least
two temperature readings such that one reading is higher than the other:

temperatureReading(Celsius=?t1),

temperatureReading(Celsius=?t2),

?t1 > ?t2

The above relational operator was used as a condition on its own. Relational operators can also be used within a
condition to express a relational on an attribute of a matching fact. For instance, if the value of the second Celsius

attribute is irrelevant, the above condition can be rewritten as follows

temperatureReading(Celsius=?t1),

temperatureReading(Celsius<?t1)

Finally, the findall operator can be used to gather values in a list. CrimeSPOT demarcates lists by square brackets
[ and ]. The findall operator takes three arguments. At any time, the operator has a match that binds its last argument
to a list that corresponds to the values of its first argument (i.e., a variable) across all matches for its second argument
(i.e., a list of conditions). Conceptually, these conditions are re-evaluated whenever the fact base changes. The
following conditions have a match for as long as at least three smoke facts exist in the fact base:

findall(?m,

[smoke()@[from(MAC=?m)]],

?alarmingSensors),

length(?alarmingSensors, ?l),

?l >= 3

5. The Network-centric CrimeSPOT Features

Having discussed the node-centric features of the CrimeSPOT programming language, we shift our focus to its
network-centric features. Their grammar is depicted in Figure 8. Used to specify which rules and application logic
are to govern the behavior of which nodes, these features provide a holistic view of the WSN application as a whole.
In this view, it is immediately apparent which nodes communicate with each other and how often. Macro definition
and application provides an indispensable means to abstract and reuse code within and among WSN applications.
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The resulting network-centric applications, such as the one depicted in Figure 5 and Figure 6, are compiled into
node-level code that is tailored to each individual WSN node. The underlying event-driven middleware is the com-
pilation target. Section 6 discusses the compilation process in more detail. The resulting code can be deployed as is
through the middleware’s over-the-air deployment facilities. It includes a CrimeSPOT runtime of which the rule base
and configuration base have been populated.

5.1. Quantified Code Blocks

A CrimeSPOT file consists of blocks of code for each node required by the WSN application. Two kinds of
blocks can be distinguished. The first kind groups node-centric CrimeSPOT code such as interaction rules and the
declarations that configure the reification engine. These are demarcated by braces preceded by a quantifier. This
quantifier specifies the WSN node for which the code is intended. For instance, lines 5–10 of Figure 5 group all the
code for the TemperatureSensor node.

The second kind of blocks groups code that implements application logic in the language supported by the un-
derlying middleware. They are similar to the other blocks, except that their quantifiers are suffixed with .java. Our
prototype expects the underlying middleware to be executed on the Squawk VM [26]. Application logic therefore has
to be implemented in this Java variant. For instance, lines 12–14 of Figure 5 group all the application logic required
by the TemperatureSensor node.

When a code block is to be shared by multiple WSN nodes, it suffices to use an enumeration of their names as the
quantifier. This is illustrated by the first line of Figure 5. Furthermore, a *-wildcard can be used for blocks that are to
be shared by all WSN nodes. This is illustrated by the blocks on the right-hand side of Figure 6.

5.2. Macros and Macro Variables

CrimeSPOT supports macro variables within code blocks. Such variables are prefixed by a $-sign and are either
predefined or defined by the developer within the scope of a particular code block. Macro variables substitute for
a textual value at compile-time. They do not exist anymore at run-time. The predefined macro variable $NAME can
be used wherever the name of a node is expected. This is useful when quantifying over multiple nodes. Line 47 of
Figure 6 uses this macro variable to pass the name of a node as an attribute of the online facts it publishes. Line 35
of Figure 6 has the $readingInterval macro variable substitute for the Seconds=600 attribute. To ensure all sensor
nodes publish their readings at the same interval, this variable is defined in the scope of a block that is quantified by
the *-wildcard. Among others, the variable is referred to by the TemperatureSensor on lines 7–9 of Figure 5. Used in
this manner, macro variables ensure that a WSN application is easier to reconfigure.

Procedure-like macros can also be defined. For instance, lines 50–54 of Figure 6 define the macro
subsumesOlderFromSameTent($,$). It substitutes for a subsumption declaration specifying that a fact of type $reading

with an attribute named $type subsumes all older $reading facts that are received from a node in the same tent. This
macro is applied with the required arguments on lines 8–9 of the same figure. Likewise, the publishPresenceEvery($)

macro defined on lines 46–48 is applied for all sensor nodes on line 2 of Figure 5. Macros enable reuse of quantified
code blocks within and across WSN applications.

6. Instantiating CrimeSPOT on top of the LooCi Event-Based Middleware

We instantiated CrimeSPOT on top of the LooCi [14] event-based middleware for the Squawk VM [26] (i.e.,
SunSPOT motes). As LooCI advocates the use of loosely coupled components for programming WSN nodes, all of
our code blocks are actually compiled to components rather than plain Java classes. The advantage of loosely coupled
components is that they can be replaced at run-time. In addition, the middleware takes care of over-the-air deployment
and the routing of events over a decentralized event bus. We inherit all characteristics regarding memory footprint and
event dissemination from this middleware. The resulting CrimeSPOT instance is freely available online [6].

As mentioned above, network-centric CrimeSPOT code is compiled into node-specific code. This code includes
a CrimeSPOT runtime and code that will populate the runtime’s rule base and configuration base. Figure 9 illustrates
the phases in this compilation process:
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Figure 9: Compiling network-centric CrimeSPOT code to the LooCi event-driven middleware.

• First, the network-centric code is parsed to extract the quantified code blocks for every component. In case a
block quantified over multiple components, its contents will be joined with the code of these components. The
code from any imported libraries is included as well.

• Next, every component is processed individually. Macros and macro variables are expanded. A run-time
dispatcher method is generated for the methods that can be invoked from within a component’s interaction
rules. This precludes the need for Java reflection, which is limited on the Squawk VM [26]. Java statements are
generated that will populate the CrimeSPOT runtime that resides within each component. The generated and
user-specified Java code is merged into a full-fledged LooCi component.

• Finally, the compiler produces a JAR file for every component. These JAR files can be readily deployed on
WSN nodes using LooCi’s over-the-air deployment facilities [14].

7. Domain-specific Extensions to the Crime Inference Engine

Section 3.2 introduced Crime [22] as the foundation of CrimeSPOT’s inference engine. Before detailing how
Crime can be extended with domain-specific features such as expiration and subsumption of reified events, we briefly
outline its particular implementation of the Rete incremental forward chaining algorithm [9].

7.1. The Rete Algorithm as Implemented by Crime
Rete-based inference engines represent their rule base as a directed acyclic graph of computational nodes. The

algorithm [9] propagates tokens, which encapsulate a set of facts, from the network’s root to a terminal node. Such
a path corresponds to a rule activation. Intermediate nodes may remember the tokens that pass through. These
memories are at the basis of the algorithm’s incremental nature. Figure 10 depicts the Rete network that corresponds
to the following rule:

temperatureInTentNamed(Celsius=?temp,Node=?name)

<- temperature(Celsius=?temp)@[from(MAC=?mac)],

online(Tent=?tnt)@[from(MAC=?mac)],

tentNamed(Tent=?tnt,Name=?name).

The upper and bottom part of the network are called the α-network and the β-network respectively. The former consists
solely of filter nodes (depicted as triangles), while the latter consists of join nodes (depicted as rounded rectangles)
and production nodes (depicted as rectangles). Tokens are depicted as the set of facts they encapsulate, demarcated
by < and >. As evidenced by the nodes’ memories, some tokens have already been propagated through the network.

A token passes through a filter node if it satisfies the node’s constraints. The α-network connects two such
filter nodes for every condition in the body of a rule. The first filter node verifies whether the token encapsulates
a single fact of which the functor agrees with the functor of the condition. The second filter node verifies whether
the named attributes of the encapsulated fact agree with those of the condition. This entails verifying whether the
attributes are present and whether the bindings for all occurrences of the same variable in the condition agree. A token
encapsulating the fact temperature(Fahrenheit=50) would therefore pass through the first filter node for the temperature

condition above, but not through the second.
Rules share the filter nodes for a common condition. As illustrated by memories T1 and T2 in Figure 10, Crime

remembers the tokens that make it through a filter node. While not strictly necessary, these memories preclude the
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Figure 10: Rete network for a single rule that asserts temperatureInTent facts.

need to re-filter the entire fact base when the rule base is extended at run-time with a rule that shares existing filter
nodes.

Every join node in the β-network has two parent nodes. Whenever one parent propagates a token, the join node will
attempt to join this token with every token in the memory of its other parent. For a pair of tokens to be joinable, their
variable bindings have to unify. For instance, when the <temperature(Celsius=30)@[from(MAC=m1)]> token is propagated
from T2 (i.e., the memory that corresponds to matches for condition temperature(Celsius=?temp)@[from(MAC=?mac)])
to the leftmost join node in Figure 10, it will be joined with every token from O2 (i.e., the memory that corresponds
to matches for condition online(Tent=?tnt)@[from(MAC=?mac)]) that has variable ?mac bound to m1. This is only the case
for the <online(Tent=1))@[from(MAC=m1)]> token from O2. Note that every pair of joinable tokens is merged into a
single token, cached in the memory of the join node and further propagated through the network.

If a token reaches a production node in the β-network, a match has been found for every condition in a rule. As
a result, the rule is activated for this token. For instance, whenever the production node at the bottom of Figure 10
receives a token, it will assert a temperatureInTentNamed(Celsius=?temp,Node=?name) fact instantiated with the token’s
variable bindings.

Crime implements fact retraction by propagating a negative token through the network. The network’s nodes
do not remember the negative tokens that pass through. Instead, they remove any positive token from their mem-
ories that corresponds to the passing negative one. When a negative token reaches a production node, a rule has
lost a match for the corresponding positive token (cf. Section 3.1). For the example rule, this entails retracting a
temperatureInTentNamed fact from the fact base.

An agenda of operations sequentializes network accesses. The agenda is processed in a first-in first-out order.
For instance, the aforementioned asserting or retracting of a fact constitutes an operation. When processed, it will
encapsulate the fact in a positive or negative token and hand this token to the root node of the network. This particular
operation is, among others, added to the agenda whenever a new event is received and whenever a token reaches a
production node.
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7.2. Time-related Extensions to the Crime Inference Engine

We discuss the implementation of fact expiration, match expiration and match verification first. To support these
time-related CrimeSPOT features, we introduce a timer that can be used to schedule various manipulations of the
aforementioned agenda (i.e., addition or removal of particular operations).

Upon the assertion of a fact that carries a factExpires declaration in its meta-data (cf. Section 3.3), an agenda
operation is scheduled with the timer to retract this fact after the specified amount of time has passed. Note that such
a fact may be retracted before it expires (e.g., if the rule it originated from lost a match). In this case, we instruct the
timer to unschedule the retraction activation.

To support matchEvery declarations among the meta-data of conditions (cf. Section 4.3), we extend the filter nodes
of the Rete network with filter actions. Whenever a filter node receives a token that satisfies its constraints, it will
not only store and forward this token, but it will also invoke all of its actions with this token. Such a filter action is
added to the second filter node of every condition that carries a matchEvery declaration. Upon initialization, a timed-
out operation is scheduled to be added to the agenda after the specified amount of time has passed. Processing this
timed-out operation asserts a timedOut fact for the condition (cf. Section 4.3). This fact is retracted by the node’s filter
action whenever it is invoked with a positive token (i.e., whenever the condition obtains a match) within the required
time limit. Regardless of whether it was invoked timely, the filter action also reschedule the timed-out operation with
the timer.

We add another filter action to the second filter node of every condition that carries a matchExpires declaration
among its meta-data (cf. Section 4.4). Whenever this filter action is invoked with a positive token, it schedules a
token insertion operation to be added to the agenda after the specified amount of time. This operation propagates a
negative version2 of the positive token through the network, causing the corresponding match to expire. Whenever the
aforementioned filter action is invoked with a negative token, it will unschedule the token insertion operation. This is
because a condition can lose a match before it expired according to its matchExpires declaration (e.g., when a fact is
retracted).

7.3. Invocation-related Extensions to the Crime Inference Engine

Finally, CrimeSPOT supports invoking application logic from within the body of a rule through invocation con-
ditions of the form “<variable> is <invocation>” (cf. Section 4.5). To this end, we extend the network of Crime’s
inference engine with a new kind of node: invocation nodes. Invocation nodes without a parent correspond to the first
condition in a rule. Other invocation nodes do have a parent. We discuss these two cases separately.

7.3.1. Invocation Nodes without a Parent
An invocation node without a parent behaves similarly to a filter node. It filters the results of method invocations

and only allows those results to pass that unify with the expression on the left-hand side of the is-keyword. Unlike a
filter node, however, such invocation nodes are not connected to the root node of the Rete network. This is because a
parent-less invocation node is independent of the fact base. As soon as the node is initialized, it will invoke its method.
If the result unifies with the left-hand side of the condition, the result is encapsulated in a token that is remembered
and passed to the child of the invocation node.

For invocation conditions with a renewEvery or an evalEvery declaration among their meta-data, the method has to
be invoked multiple times. In this case, an invocation operation will be scheduled with the timer (cf. Section 7.2) to
be added to the agenda at the specified interval (e.g., every 10 seconds). Such an operation will trigger the invocation
node. Adorned with an evalEvery declaration, the invocation node will just repeat the same behavior when it is
triggered. Adorned with a renewEvery declaration, the invocation node will first remove the stored token from its
memory and pass the negated version to its child node (i.e., to invalidate the previous match for the condition) before
repeating the aforementioned behavior.

2In Rete-terms, a match for a condition corresponds to the insertion of a positive token in the conditions second filter node, while the invalidation
of a match corresponds to the insertion of a negative token.
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Figure 11: Rete network for a drop declaration as implemented by the reification engine of CrimeSPOT.

7.3.2. Invocation Nodes with a Parent
Invocation nodes with a parent are triggered as soon as their parent passes a token. If a positive token is passed, the

node will use this token to invoke its method (i.e., to extract values for the variables that were given as arguments to
the method) and to verify whether the result unifies with the left-hand side of the is-keyword. If successful, the node
will merge the token from its parent with the invocation result. The resulting token is stored in the node’s memory
and propagated to the child node.

If a negative token is passed, the node should invalidate a previously propagated invocation result rather than
re-invoke its method. To this end, the node will search its memory for the token that encapsulates the result of the
invocation that was performed using the positive version of the negative token. This invocation result is removed from
the node’s memory and a negated version is propagated to the child node.

In case the invocation condition specified a scheduling option, the invocation node has to invoke its method
multiple times for every positive token it is passed. Therefore, for every such token, an invocation operation is
scheduled with the timer (cf. Section 7.2) to be added to the agenda at the specified interval. It behaves similarly to
the previous invocation operations, except that it triggers the corresponding invocation node using the token that was
passed to the node. When a negative token reaches the invocation node, the operation that corresponds to the positive
token is unscheduled.

7.4. Reification-related Extensions to the Crime Inference Engine
The reification engine of the CrimeSPOT runtime (cf. Section 3.3) reifies events as facts following the process

depicted in Figure 4. We implement this process by adding three operations to the agenda of the Rete-network (cf.
Section 7.1) after an event has been reified as a fact: one for verifying whether the new fact should be dropped, one
for retracting all facts that are subsumed by the new fact, and one for asserting the new fact into the fact base. As the
latter is straightforward, we discuss the implementation of the drop and subsumption operations.

7.4.1. Drop Operations
The drop operation will, when processed, encapsulate the new fact in a token that is passed to the root note of a

special-purpose Rete-network. Figure 11 depicts the network that corresponds to the following drop declaration:

drop temperature(Celsius=?n)@[from(MAC=?m)] provided refuseTemp(From=?m)

The conditions of the drop declaration (i.e., everything after provided) are transformed like the conditions of a rule
and added to the Rete-network of the inference engine (cf. Section 7.1). The incoming fact of the drop declaration
(i.e., everything between drop and provided) is transformed as a condition as well, but added to the Rete-network of
the reification engine.
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Figure 12: Rete network for a subsumption declaration as implemented by the reification engine of CrimeSPOT.

Note that the nodes in the reification network differ from those in the inference network. First of all, the filter and
join nodes do not have to remember any tokens. Furthermore, the join node only has to join the newly inserted token
from its reification parent with the tokens from its inference parent. As soon as one pair of tokens has been joined
successfully, the node stops the joining process and propagates the merged token immediately.

Consider receiving a new temperature(Celsius=-1)@[from(MAC=m2)] fact. The drop operation will encap-
sulate this fact in a token and pass it to the root node of the drop network of the reification en-
gine. There, the token will pass through the first two filter nodes and reach the join node where
it will be joined successfully with token <refuseTemp(From=m2)> from memory R2. As a result, a
<refuseTemp(From=m2),temperature(Celsius=-1)@[from(MAC=m2)]> token will be passed to the production node. The
latter immediately removes two operations from the agenda: the one that would have retracted all subsumed facts and
the one that would have asserted the new fact. As the new fact is to be dropped, these operations should no longer
be processed. Had the token not reached the production node, these operations would have been processed one after
another as soon as token propagation was complete.

7.4.2. Subsumption Operations
The drop operation will, when processed, encapsulate the fact it was created for in a token and pass this token to the

root of a special-purpose Rete network. Figure 12 depicts the network that corresponds to the following subsumption
declaration:

incoming temperature(Celsius=?new)@[from(MAC=?m)]

subsumes temperature(Celsius=?old)@[from(MAC=?otherm)]

provided online(Tent=?tnt)@[from(MAC=?otherm)],

online(Tent=?tnt)@[from(MAC=?m)]

The conditions of this declaration (i.e., everything after provided) are first merged with the specification of the fact
that is to be subsumed (i.e., everything between subsumes and provided). The result is transformed like the conditions
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1. *	  {
2. 	  	  	  	  defvar	  $detectionInterval:	  Seconds=60.
3. 	  	  	  	  defvar	  $alarmThreshold:	  2.
4. }
5.
6. Controller	  {
7. 	  	  	  	  mySensor(MAC=MAC1).
8. 	  	  	  	  mySensor(MAC=MAC2).
9. 	  	  	  	  	  
10. 	  	  	  	  itsController()@[to(MAC=?sensorMAC)]	  
11. 	  	  	  	  	  	  <-‐	  mySensor(MAC=?sensorMAC).
12. 	  	  	  
13. 	  	  	  	  this.respond
14. 	  	  	  	  	  	  <-‐	  findall(?m,	  
15. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [smoke()@[from(MAC=?m)]],
16. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?alarmingSensors),
17. 	  	  	  	  	  	  	  	  	  length(?alarmingSensors,?l),
18. 	  	  	  	  	  	  	  	  	  ?l	  >	  $alarmThreshold.
19. }
20.
21. Controller.java	  {
22. 	  	  private	  CSAction	  respond	  =	  new	  CSAction()	  {
23. 	  	  	  	  	  public	  void	  activated(CSVariableBindings	  bindings)	  {	  //sound	  alarm	  }
24. 	  	  	  	  	  public	  void	  deactivate(CSVariableBindings	  bindings)	  {	  //silence	  alarm	  }
25. 	  	  };	  	  
26. }
27.
28. SmokeDetector	  {
29. 	  	  	  	  smoke()@[to(MAC=?mac,factExpires($detectionInterval)]	  
30. 	  	  	  	  	  	  <-‐	  itsController()@[from(MAC=?mac)],
31. 	  	  	  	  	  	  	  	  	  true	  is	  this.smokeDetected()@[renewEvery($detectionInterval)]	  
32. }
33.
34. SmokeDetector.java	  {
35. 	  	  	  private	  CSValue	  smokeDetected()	  {	  //read	  out	  smoke	  sensor	  }
36. }

1. TemperatureSensor	  {
2. 	  	  defvar	  $publicationInterval:	  Seconds=60.
3. 	  	  
4. 	  	  temperatureReading(Celsius=?temp)@[to(MAC=*,factExpires($publicationInterval)]	  
5. 	  	  	  	  	  	  <-‐	  itsController()@[from(MAC=?mac)],
6. 	  	  	  	  	  	  	  	  	  ?temp	  is	  this.getTemperature()@[renewEvery($publicationInterval)].
7.
8. 	  	  this.alertMaxTemp
9. 	  	  	  	  	  	  <-‐	  maximumTemperature().
10. }
11.
12. TemperatureSensor.java	  {
13. 	  	  private	  CSAction	  alertMaxTemp	  =	  new	  CSAction()	  {
14. 	  	  	  	  	  public	  void	  activated(CSVariableBindings	  bindings)	  {	  //blink	  led	  }
15. 	  	  	  	  	  public	  void	  deactivate(CSVariableBindings	  bindings)	  {	  //led	  off	  }
16. 	  	  };	  	  
17. }
18.
19. AvgComputer	  {
20. 	  	  	  this.outputAverageTemp
21. 	  	  	  	  	  	  <-‐	  findall(?t,[temperatureReading(Celsius=?t)],?temps),
22. 	  	  	  	  	  	  	  	  	  ?avgTemp	  is	  this.computeAverage(?temps).	  
23.
24. 	  	  	  maximumTemperature(Celsius=?maxTemp)@[to(MAC=?m)]
25. 	  	  	  	  	  	  <-‐	  findall(?t,[temperatureReading(Celsius=?t)],?temps),
26. 	  	  	  	  	  	  	  	  	  ?maxTemp	  is	  this.computeMaximum(?temps),
27. 	  	  	  	  	  	  	  	  	  temperatureReading(Celsius=?maxTemp)@[from(MAC=?m)]
28. }
29.
30. AvgComputer.java	  {
31. 	  	  private	  CSAction	  outputAverageTemp	  =	  new	  CSAction()	  {
32. 	  	  	  	  	  public	  void	  activated(CSVariableBindings	  bindings)	  {	  //show	  on	  display	  }
33. 	  	  	  	  	  public	  void	  deactivate(CSVariableBindings	  bindings)	  {	  //erase	  display	  }
34. 	  	  };	  	  
35. 	  	  private	  CSValue	  computeAverage(CSVariableBindings	  bindings)	  {	  ...	  }
36. 	  	  private	  CSValue	  computeMaximum(CSVariableBindings	  bindings)	  {	  ...	  }	  	  
37. }

Figure 13: CrimeSPOT implementation of a WSN application for fire detection (left) and temperature monitoring (right).

in a rule and added to the Rete-network of the inference engine (cf. Section 7.1). Note that the depicted network
illustrates the sharing of nodes: both online conditions share a common filter node.

The specification of the incoming fact (i.e., everything between incoming and subsumes) is transformed like a regular
condition and added to the subsumption network of the reification engine. Most nodes in this network are identical
to the ones of the aforementioned drop network. However, the join node will attempt to join the incoming token
from its reification parent with all tokens from its inference parent. It will consequentially propagate all successfully
joined tokens to its the production node. The subsumed fact will be in the first position of any token that reaches the
production node and will be retracted from the fact base.

Consider the drop operation for a temperature(Celsius=28)@[from(MAC=m2)] fact that wasn’t dropped. When
the token that encapsulates this fact reaches the join node, it will be joined successfully with the token
<temperature(Celsius=30)@[from(MAC=m1)], online(Tent="A")@[from(MAC=m1)], online(Tent="A")@[from(MAC=m2)]>. As
a result, the following token will reach the production node:

<temperature(Celsius=30)@[from(MAC=m1)],

online(Tent="A")@[from(MAC=m1)], online(Tent="A")@[from(MAC=m2)], temperature(Celsius=28)@[from(MAC=m2)]>

The production node will immediately retract the subsumed fact (i.e., temperature(Celsius=30)@[from(MAC="m1")] in the
first position of the token) from the fact base. Note that the overhead of propagating a token through the subsumption
network of the reification engine is miminal. All intermediate results from the network of the inference engine are
cached and don’t have to be recomputed. The same goes for propagating a token through the drop network of the
reification engine.

8. Evaluation

Wireless sensor networks support a plethora of applications. Examples include scientific monitoring (e.g., moni-
toring wildlife habitats [19], zebras [16] and glaciers [20]), detecting emergency situations (e.g., detecting intrusions
[2], forest fires [12] and river floodings [15]), as well as more active ones such as controlling heating- and air condi-
tioning systems [7].

Using several small, but representative WSN applications, this section evaluates the expressiveness of CrimeSPOT
and the overhead of its accompanying runtime —instantiated on top of the LooCi [14] event-based middleware for the
Squawk VM [26] (cf. Section 6). In addition to the CrimeSPOT implementation of the motivating example depicted
in Figure 5 and Figure 6, we provide a CrimeSPOT implementation for the following applications:
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1. RangeComponent	  {
2. 	  	  	  	  defvar	  $rangeBroadcastInterval:	  Seconds=3600.
3.
4. 	  	  	  	  incoming	  sensorRange(X=?x,Y=?y,R=?r)@[from(MAC=?m)]
5. 	  	  	  	  subsumes	  sensorRange(X=?ox,Y=?oy,R=?or)@[from(MAC=?m)].	  
6.
7. 	  	  	  	  sensorRange(X=?x,Y=?y,R=?r)@[to(MAC=*),factExpires($rangeBroadcastInterval)]	  
8. 	  	  	  	  	  	  <-‐	  ?x	  is	  this.getX()@[renewEvery($rangeBroadcastInterval)],
9. 	  	  	  	  	  	  	  	  	  ?y	  is	  this.getY(),
10. 	  	  	  	  	  	  	  	  	  ?r	  is	  this.getR().
11.
12. 	  	  	  	  defmacro	  verifyPartialCoverage($verificationMethod,$factToAssert):
13. 	  	  	  	  	  	  	  $factToAssert(byMAC=?m)
14. 	  	  	  	  	  	  	  	  	  	  <-‐	  sensorRange(X=?x,Y=?y,R=?r)@[from(MAC=?m)],
15. 	  	  	  	  	  	  	  	  	  	  	  	  	  ?m	  !=	  this.MAC,
16. 	  	  	  	  	  	  	  	  	  	  	  	  	  true	  is	  this.$verificationMethod(?x,?y,?r).
17.
18. 	  	  	  	  verifyPartialCoverage(coversTopLeft,topLeftIsCovered).
19. 	  	  	  	  verifyPartialCoverage(coversTopRight,topRightIsCovered).
20. 	  	  	  	  verifyPartialCoverage(coversBottomLeft,bottomLeftIsCovered).
21. 	  	  	  	  verifyPartialCoverage(coversBottomRight,bottomRightIsCovered).
22.
23. 	  	  	  	  myRangeIsCovered(TL=?tlm,TR=?trm,BL=?blm,BR=?brm)
24. 	  	  	  	  	  	  <-‐	  topLeftIsCovered(byMAC=?tlm),
25. 	  	  	  	  	  	  	  	  	  topRightIsCovered(byMAC=?trm),
26. 	  	  	  	  	  	  	  	  	  bottomLeftIsCovered(byMAC=?blm),
27. 	  	  	  	  	  	  	  	  	  bottomRightIsCovered(byMAC=?brm).
28. 	  	  }
29.
30. RangeComponent.java	  {
31. 	  	  private	  CSValue	  coversTopLeft(Number	  x,	  Number	  y,	  Number	  r)	  {
32. 	  	  	  	  	  	  	  	  int	  myTLMinX	  =	  getXCoordinate()	  -‐	  getRadius();
33. 	  	  	  	  	  	  	  	  int	  myTLMinY	  =	  getYCoordinate();
34. 	  	  	  	  	  	  	  	  int	  myTLMaxX	  =	  getXCoordinate();
35. 	  	  	  	  	  	  	  	  int	  myTLMaxY	  =	  getYCoordinate()	  +	  getRadius();
36. 	  	  	  	  	  	  	  	  
37. 	  	  	  	  	  	  	  	  if(covers(x.getValue(),	  y.getValue(),	  r.getValue(),	  
38. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  myTLMinX,	  myTLMinY,	  myTLMaxX,	  myTLMaxY))
39. 	  	  	  	  	  	  	  	  	  	  	  	  return	  CSBooleanValue(true);
40. 	  	  	  	  	  	  	  	  else
41. 	  	  	  	  	  	  	  	  	  	  	  	  return	  CSBooleanValue(false);	  	  	  	  	  	  	  	  
42. 	  	  }	  
43. 	  	  private	  boolean	  covers(int	  x,	  int	  y,	  int	  r,	  
44. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  bbMinX,	  int	  bbMinY,	  
45. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  bbMaxX,	  int	  bbMaxY)	  {
46. 	  	  	  	  	  	  	  	  int	  obbMinX	  =	  x	  -‐	  r;
47. 	  	  	  	  	  	  	  	  int	  obbMinY	  =	  y	  -‐	  r;
48. 	  	  	  	  	  	  	  	  int	  obbMaxX	  =	  x	  +	  r;
49. 	  	  	  	  	  	  	  	  int	  obbMaxY	  =	  y	  +	  r;
50. 	  	  	  	  	  	  	  	  
51. 	  	  	  	  	  	  	  	  return	  obbMinX	  <=	  bbMinX	  &&	  obbMinY	  <=	  bbMinY	  
52. 	  	  	  	  	  	  	  	  	  	  	  	  &&	  obbMaxX	  >=	  bbMaxX	  &&	  obbMaxY	  >=	  bbMaxY;
53. 	  	  }
54. 	  	  ...
55. }

1. Logger,	  Logger.java,	  RiverMonitor.java	  {
2. 	  	  	  	  //not	  shown,	  merely	  have	  to	  invoke	  application	  logic	  
3. }
4.
5. RiverMonitor	  {
6. 	  	  	  	  defvar	  $logger:	  MACLogger.
7. 	  	  	  	  defvar	  $verifyRiverLevelInterval:	  Seconds=600.
8. 	  	  	  	  defvar	  $floodThreshold:	  20.
9. 	  	  	  	  defvar	  $verifyTheftInterval:	  Seconds=60.
10. 	  	  	  	  defvar	  $theftThreshold:	  1.
11. 	  	  	  	  	  
12. 	  	  	  	  riverLevel(L=?l)@[to(MAC=$logger),factExpires($verifyRiverLevelInterval)]	  
13. 	  	  	  	  	  	  <-‐	  ?l	  is	  this.getRiverLevel()@[renewEvery($verifyRiverLevelInterval)].
14.
15. 	  	  	  	  possibleTheft()@[to(MAC=$logger)]	  
16. 	  	  	  	  	  	  <-‐	  ?a	  is	  this.getAcceleration()@[renewEvery($verifyTheftInterval)],
17. 	  	  	  	  	  	  	  	  	  ?a	  >	  $theftThreshold.
18.
19. 	  	  	  	  this.controlSluice
20. 	  	  	  	  	  	  <-‐	  l	  is	  this.getRiverLevel()@[renewEvery($verifyRiverLevelInterval)],
21. 	  	  	  	  	  	  	  	  	  ?l	  >	  $floodThreshold.
22. }

Figure 14: CrimeSPOT implementation of a WSN application for range coverage (left) and river monitoring (right).

Fire detection using multiple SmokeDetector and multiple Controller components. The former report their sensor
readings to the controllers in their neighborhood (i.e., a sensor can report to multiple controllers) at a predefined
rate. As soon as a particular SmokeDetector has reported several (i.e., above a certain threshold) consecu-
tive smoke incidents to the same Controller, the controller sounds an alarm. The alarm is silenced when the
threshold is no longer met. The left-hand side of Figure 13 depicts the CrimeSPOT implementation of this
application.

Temperature monitoring using multiple TemperatureSensor components and a single AverageComputer compo-
nent. The latter continuously displays the average of the latest temperature readings it received from all of the
former. In addition, the former blink a led if they are currently measuring the highest temperature of all. The
right-hand side of Figure 13 depicts the CrimeSPOT implementation of this application.

Range coverage using several Range components that determine whether their node’s sensing range is covered by
other nodes in the neighborhood. The implementation supports extending existing CrimeSPOT applications
with functionality for range coverage. The left-hand side of Figure 14 depicts the CrimeSPOT implementation
of this application.

River and theft monitoring using several RiverMonitor components and a Logger component. The former monitor
river levels, control sluices and warn about possible thefts. The latter logs the reported river levels in a central-
ized manner. The right-hand side of Figure 14 depicts the CrimeSPOT implementation of this application.
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Figure 15: CrimeSPOT micro-benchmarks for performance and memory overhead.

8.1. Expressiveness of the Language

Each application required on average 2.11 components (min: 2, max: 4). The average component has about 0.22
declarations for the reification engine (min: 0, max: 4), 4.14 interaction rules (min: 3, max: 14) and 3.72 component
methods (min: 4, max:10). This is testament to the conciseness of CrimeSPOT applications. More code was required
for the motivating example of this paper due to the complexity of its functional requirements.

A substantial amount of code would be required to implement these WSN applications on top of event-based
middleware —let alone plain Java. This is already the case for much simpler applications. In order to assess this
burden on developers, we implemented the equivalent of the following CrimeSPOT toy application in Java using the
SunSPOT SDK:

* { pong(value=?x)@[to(MAC=*)] <- ping(value=?x).

ping(value=?value)@[to(MAC=*)] <- ?value is this.getLightReading()@[evalEvery(Seconds=1)]. }

The CrimeSPOT application consist of two straightforward interaction rules that are deployed on every WSN mote.
The first rule publishes a pong fact to all motes whenever a ping fact is received. The second rule continuously reads
out the mote’s light sensor and publishes a ping fact with this reading.

An equivalent Java implementation using the SunSPOT SDK is listed in Appendix A. This code is not only
verbose (about 101 lines), but it is also complex. Several low-level concerns can be discerned. Interestingly, only 3
lines of code are dedicated to application logic. A significant amount of bookkeeping is required to deal with error
handling (21 Loc), packaging the data before it can be sent over the network (12 Loc), multithreading (10 Loc), and
low-level communication primitives (9 Loc).

Note that the Java implementation does not yet store the events it receives, only dispatches over a single event type
in its event handler, and does not match the payload of its outgoing pong event to the payload of the incoming ping
event. This would require even more code. More importantly, ad-hoc implementations of such event dispatching,
storage and matching would be duplicated across the event handlers of each WSN node. The same goes for the event
expiration, subsumption and compensation required by our motivating example. Finally, the resulting event handlers
would be difficult to compose.

8.2. Overhead of the Runtime

The price to pay for the aforementioned domain-specific language support and their software engineering benefits
is reasonable. We conducted the micro-benchmarks discussed below on standard SunSPOT motes (180MHz ARM9
CPU, 512KB RAM, 4MB Flash, SQUAWK VM version RED-100104).

Memory Overhead. Our runtime requires about 460kB of ROM (i.e., 9.7% of the available flash memory). This
is to be expected as we made no conscious effort to reduce this footprint at all. There is therefore ample room for
improvement.

At run-time, every asserted fact consumes about 3kB of RAM. The amount of RAM that is consumed by a rule
depends on the complexity of the corresponding Rete network. This is illustrated by the right-most graph of Figure 15.
It depicts the maximum amount of distinct rules that can be added to the rule base of a SunSPOT mote before it runs
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out of memory. The horizontal axis indicates the number of conditions each rule contains, while the vertical axis
indicates how many rules of this type can be deployed. For example, it is possible to deploy 71 rules of which the
body consists of one condition. All rules are of the following form:

fact(A=?x, B=?y) <- c1(A=?x, B=?y), c2(A=?x, B=?y), ...

Such rules represent the worst-case situation in terms of memory consumption as no filter nodes can be reused in their
corresponding Rete networks. Note that none of our representative WSN applications required more than 6 conditions
in a rule. However, there is ample room for improvement. For instance, our implementation of the Rete network is
completely object-oriented.

Performance Overhead. It takes about 80ms on average for a received fact to be added to the local fact base. The
time it takes to react to such a fact depends on the complexity of the Rete network it has to be processed by. However,
we performed several micro-benchmarks to give an indication of the performance of our run-time. In each micro-
benchmark, we sequentially added a certain amount of facts one by one to the fact base and re-computed all of the
matches for a single rule in between each addition.

In the first benchmark, we used a rule that consists of 2 conditions of the aforementioned form. Rules of this form
stress the runtime as their conditions are highly correlated (i.e., their corresponding attributes have to be matched).
The left-most graph of Figure 15 depicts the results. The vertical axis indicates the time required to process the amount
of facts indicated on the horizontal axis. The dark line plots the time required by a naive Java implementation using
the SunSPOT SDK. This implementation stores all facts in a collection and re-computes all pairs of matching facts
after each addition (i.e., the equivalent rule consists of two conditions). Note that the Rete network outperforms the
naive Java implementation when more than 50 facts have to matched against this two-condition rule.

The graph in the middle of Figure 15 depicts the performance overhead for a similar rule of which the body
consists of twenty conditions. Although all of their corresponding attributes have to match, as before, the processing
time does not increase significantly. This is due to the Rete network’s caching of partial matches.

To conclude, the processing capabilities of the SunSPOT motes are more than adequate to support our runtime.
In this regard, these motes are situated at the high-end of the WSN market. However, we firmly believe that the
software engineering benefits brought by CrimeSPOT will outweigh the cost of such nodes as the complexity of WSN
applications increases.

9. Limitations and Future Work

Some event-driven middleware supports hierarchical relations between events. This enables an event handler to
react to an event type as well as its subtypes. The CrimeSPOT runtime does not consider such relations in its matching
of facts with the conditions of a rule (cf. Section 4). For a fact and a condition to match, their functors have to be
the same. This might lead developers to duplicate an interaction rule such that it reacts to event subtypes. In theory,
quantified code blocks of the following form could encode the hierarchical relations between middleware events:

* { superEvent(SuperAttribute=?a) <- subEvent(SuperAttribute=?a) }

Note that CrimeSPOT allows subEvent facts to exhibit more attributes than enumerated in the condition. However,
there is no means to transfer the meta-data associated with the subEvent fact in the body of the rule (e.g., fact expi-
ration or origin) to the superEvent fact in the head of the rule. We intend to address this limitation in future work.
Alternatively, we could enable developers to model the hierarchical semantics of events explicitly using ontologies
expressed in a standard semantic language such as OWL. There is already a significant body of work on incorporating
OWL in Rete-based inference engines (e.g., [8, 21]).

Another limitation of the CrimeSPOT prototype concerns its support for expressing temporal relations between
events. Currently, these have to be specified in a rather operational manner through arithmetic constraints on timing-
related meta-data of facts. We intend to investigate more declarative specification means in future work. Some of the
authors have already incorporated the past-oriented subset of metric temporal logic [13] in a Rete-based inference
engine. Similarly, Walzer et al. [29] have incorporated Allen’s operators for describing the temporal relations between
time intervals. Both approaches employ a “garbage collection” strategy that removes tokens from the Rete network
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when they can no longer contribute to matches for a temporal relation. It would be interesting to adapt these strategies
to CrimeSPOT’s provisions for fact subsumption and expiration.

In future work, we will investigate how developers can exert more control over the causality tracking that allows
reacting to rules that lose a match (e.g., when a fact expires). While desirable in most WSN situations, this tracking
does cause an overhead for facts that are extremely short-lived. Along the same lines, we intend to investigate how
more control can be offered over the order in which rules with a common body are activated. Currently, the activation
precedence of rules is determined by the order in which they are specified. Finally, CrimeSPOT does not offer facilities
for publishing a fact to the physical n-hop neighborhood of a node. Facts that have a to(MAC=*) declaration among
their meta-data are assumed to be network-wide. It would be interesting to investigate language support for changing
a fact as it traverses physical hops.

10. Related Work

We refer the reader to an excellent 2011 survey [24] for a complete overview of the state of the art in programming
wireless sensor networks. In this section, we limit our discussion to those approaches that are most closely related.
In general, each approach can be categorized as either node-centric or network-centric [27]. The overall goal of
CrimeSPOT is to bring node-centric programming of active WSNs closer to network-centric programming of passive
WSNs.

We discuss the closely related node-centric approaches first. Logical Neighborhoods [23] advocates sending
messages to logically specified groups of nodes in the network. The way in which we addressed groups of nodes is
less declarative and hence open to similar improvements. TeenyLIME [5] allows neighboring nodes to interact by
storing tuples in a shared tuple space. However, both approaches require an event handler to react to incoming events.
The rule-based language FACTS [28] comes closest to the node-centric features of CrimeSPOT. It allows nodes to
interact by exchanging facts. These facts can be reacted to through declarative rules. However, logic variables cannot
be used within these rules. As a result, a node cannot react to several related facts. In addition, facts cannot be declared
to expire. As the causality between bodies and heads is not tracked, rule deactivation cannot be reacted to either.

The network-centric features of CrimeSPOT are comparable to those introduced by ATaG [3]. ATaG advocates
specifying a WSN application in terms of tasks that have to be instantiated on particular nodes. Unlike CrimeSPOT,
ATaG employs a graphical notation and is more expressive concerning the instantiation of tasks on nodes and the
interactions between tasks. However, ATaG provides no support for programming the tasks themselves. Reactions
to incoming data still have to be implemented through an event handler. Moreover, there is no control over the
subsumption and expiration of this data.

Distributed rule-based systems have also been applied outside of the WSN domain. Most notably, to render
ambient intelligence applications aware of their context. In these settings, events typically carry context information.
Chisel [17] is a rule-based framework for Java that enables applications to adapt their behavior in response to changes
to their surroundings. Adaptations can be performed at runtime using reflection, and their functional requirements can
be controlled through meta-types. Contrary to CrimeSPOT, Chisel’s policy model does not allow for sharing of context
information with neighbors. Cocoa [1] defines context as the union of all contextual views of the entities within a well
defined distance. The ability to share contextual information between entities and react upon these in a declarative
scripting language make it a powerful framework. Contrary to CrimeSPOT it does not give a meaningful semantics to
the retraction of information. Gaia [25] is a framework for building context-aware applications. The focus of Gaia lies
in the derivation of higher-order contexts through declarative rules and machine learning techniques. Gaia enables
context clients to reason about past contexts in addition to the current one. As discussed before, our CrimeSPOT
prototype does not yet support expressing temporal relations between events.

DJess [4] (distributed Jess) is an extension of Jess [10] allowing it to be used as a lightweight middleware for
sharing contextual knowledge. The current locking mechanism of DJess is not resilient to failing nodes: if a fact is
locked by a certain process and that process dies, the fact remains locked forever. In CrimeSPOT, facts are shared by
copy and thus no locking is required. Building upon approaches such as Gaia and DJess, Garcı́a-Herranz et al. [11]
propose high-level language abstractions that enable end-users to develop ambient intelligence applications from a
network-centric perspective. It would be interesting to investigate end-user programming of active WSN applications
on top of CrimeSPOT as well.
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11. Conclusion

In this paper, we presented CrimeSPOT as a domain-specific language that minimizes the accidental complexity
inherent to programming WSN applications using event-based middleware. We carefully motivated the need for such
a language through a motivating example. This example is representative for applications in which nodes are not
only tasked with sensing, but also with reacting to sensor readings. Having introduced the runtime that supports
CrimeSPOT, we provided a comprehensive overview its node-centric and network-centric features. In addition, we
detailed the implementation of its accompanying runtime. The latter comprises several extensions to the Rete forward
chaining algorithm. Through five example applications and some illustrative micro-benchmarks, we evaluated the
expressiveness of this language and the overhead of its supporting runtime as instantiated on the LooCi [14] event-
based middleware. The resulting prototype implementation is freely available.
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Appendix A. SunSPOT SDK Implementation of the CrimeSPOT Toy Application
1 package edu.vub.soft.crime;

2 import javax.microedition.io.Connector; //SUNPSOT Specific

3 import javax.microedition.io.Datagram; //SUNPSOT Specific

4 import javax.microedition.midlet.MIDlet; //SUNPSOT Specific

5 import javax.microedition.midlet.MIDletStateChangeException; //SUNPSOT Specific

6 import com.sun.spot.io.j2me.radiogram.RadiogramConnection; //SUNPSOT Specific

7
8 class Receive extends Thread { //multithreading

9 private int port_; //communication

10 private NaiveSendReceive s_;

11
12 Receive(int port, NaiveSendReceive s) {

13 port_ = port;

14 s_ = s;

15 }

16
17 public void run() { //multithreading

18 RadiogramConnection rCon = null; //communication

19 Datagram dg = null;

20
21 try { //error handling

22 rCon = (RadiogramConnection) Connector.open("radiogram://:" + port_); //communication

23 dg = rCon.newDatagram(rCon.getMaximumLength()); //data packaging

24 } catch (Exception e) { //error handling

25 System.err.println("setUp caught " + e.getMessage());//error handling

26 }//error handling

27
28 // Main data collection loop

29 while (true) {

30 try { //error handling

31 rCon.receive(dg); //communication

32 String addr = dg.getAddress(); //data packaging

33 int val = dg.readInt(); //data packaging

34 System.out.println( "from: " + addr + " value = " + val);

35 if( val == NaiveSendReceive.PING ) { //application logic

36 s_.pong(); //application logic

37 }

38 } catch (Exception e) { //error handling

39 System.err.println("Caught " + e + " while reading sensor samples.");//error handling

40 }//error handling

41 }

42 }

43 }

44
45 public class NaiveSendReceive extends MIDlet { //SUNPSOT Specific

46 private static final int HOST_PORT = 67; //communication

47 static final int PING = 42; //data packaging

48 static final int PONG = 84; //data packaging

49 private RadiogramConnection rCon = null; //communication

50 private Datagram dg = null;//data packaging

51
52 synchronized void pong() { //multithreading

53 try {//error handling

54 dg.reset(); //data packaging

55 dg.writeInt(PONG); //data packaging

56 rCon.send(dg); //communication

57 } catch (Exception e) { //error handling

58 System.err.println("Caught " + e + " while collecting/sending sensor sample.");//error handling

59 }//error handling

60 }

61
62 synchronized void ping() { //multithreading

63 try { //error handling

64 dg.reset(); //data packaging

65 dg.writeInt(PING); //data packaging

66 rCon.send(dg); //communication

67 } catch (Exception e) {//error handling

68 System.err.println("Caught " + e + " while collecting/sending sensor sample.");//error handling

69 }//error handling

70 }

71
72 protected void startApp() throws MIDletStateChangeException { ////Multi threading, SUNPSOT Specific

73 // Listen for downloads/commands over USB connection

74 new com.sun.spot.util.BootloaderListener().start(); //SUNPSOT Specific

75
76 //opening a broadcast channel

77 try {//error handling

78 rCon = (RadiogramConnection) Connector.open("radiogram://broadcast:" + HOST_PORT); //communication

79 // only sending 12 bytes of data

80 dg = rCon.newDatagram(50); //data packaging

81 } catch (Exception e) {//error handling

82 System.err.println("Caught " + e + " in connection initialization.");//error handling

83 System.exit(1);//error handling

84 }//error handling

85
86 Receive r = new Receive(HOST_PORT,this); //multi threading

87 r.start(); //multi threading

88
89 while(true) { //multi threading

90 ping(); //application logic

91 }

92 }

93
94 protected void pauseApp() { //multi threading, SUNPSOT Specific

95 // This will never be called by the Squawk VM

96 }

97
98 protected void destroyApp(boolean arg0) throws MIDletStateChangeException { //multi threading, SUNPSOT Specific

99 // Only called if startApp throws any exception other than MIDletStateChangeException

100 }

101 }
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