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Abstract
Context-aware applications provide end-users with en-
hanced experiences by continuously sensing their envi-
ronment and adapting their behaviour to match the cur-
rent context of use. However, developing true context-
aware applications remains notoriously difficult due to
the unpredictable nature of context changes. A context
change may occur at any moment during a procedure
execution, which may require an ongoing execution to
be promptly interrupted in order to prevent the proce-
dure from running in a wrong context. Currently, de-
velopers have to manually constrain a procedure execu-
tion to a particular context and take care of saving and
restoring the execution state between context changes.
Such manual approaches are error-prone and may lead
to incorrect application behaviour.

This paper presents a novel programming language
model called interruptible context-dependent executions,
where a procedure execution is always constrained to
happen only under a specified context. In this model,
a procedure execution can be seamlessly interrupted or
resumed depending on the context. Additionally, the
procedure execution state is automatically preserved be-
tween interruptions. We present the Flute language that
supports interruptible context-dependent executions.

Categories and Subject Descriptors D.3.3 [Lan-
guage Constructs and Features]: Control structures

General Terms Design, Languages

Keywords Context-aware applications, interruptible
context-dependent executions, reactive dispatching,
prompt adaptations
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1. Introduction
Context-aware applications continuously sense their
environment in order to dynamically adapt their be-
haviour to match the current context of use (e.g., cur-
rent location and user preferences). However, using
the current programming languages, developing true
context-aware applications remains notoriously difficult
mainly because of the unpredictable nature of context
changes.

More concretely, current programming languages fall
short of providing support for developing context-aware
applications that must react promptly to a sudden
context change – especially if such a context change
occurs in the middle of an ongoing procedure execution.
An application should be able to automatically save its
execution state between context changes and resume
seamlessly from where it left off when it goes back to the
previous context at a later point. Currently, developers
have little choice but to resort to explicit management
of the execution state (saving and restoring application
execution state between context changes) and explicit
context checks (to ensure that the procedure execution
is always constrained to run only in the correct context).
However, the unpredictable nature of context changes
renders it almost impossible for the developer to know
beforehand at which points in the procedure body to
implement the above concerns. Doing this manually
may result in incorrect application behaviour, such as a
procedure continuing to run in a wrong context.

Over the past years researchers have carried out in-
vestigations on middleware [4, 17] and language ap-
proaches [11, 26, 31, 32] in order to ease the devel-
opment of context-aware applications. For instance, a
programming language approach called context-oriented
programming (COP) [16], has recently been explored in
a number of languages [7, 18] as a technique for ex-
pressing context-dependent behaviours in a program.
COP provides linguistic abstractions that facilitate the
dynamic adaptation of the application behaviour. How-
ever, in those approaches it is not possible to constrain



an entire procedure execution to a particular context.
Once a procedure is selected and its execution is started,
any context changes that occur during its execution
cannot immediately affect the application behaviour.
Such approaches are not suitable for cases where a pro-
cedure execution may need to be promptly adapted at
any moment during the execution.

The main contribution of this paper is a novel pro-
gramming language model called interruptible context-
dependent executions, where a procedure execution is
always constrained to happen only under a particular
context condition. In this model, the execution of a
context-dependent procedure is seamlessly interrupted
or resumed depending on whether the specified context
condition is satisfied or not. In addition, the execution
state of a context-dependent procedure is automatically
preserved between interruptions. We present a new pro-
gramming language called Flute that adheres to the in-
terruptible context-dependent executions model.

The Flute language allows the developer to specify
under what context conditions a procedure should be
executed (by means of a single context predicate) and
the language runtime ensures that the context predicate
is respected throughout the procedure execution. In ad-
dition, Flute allows developers to specify what should
happen when the context predicate is no longer satisfied
(e.g., suspend or abort the execution) and what should
happen when the context predicate later becomes sat-
isfied again (e.g., resume or restart the execution). De-
velopers can scope state changes made during the pro-
cedure execution by means of state management strate-
gies provided by Flute. Flute features a new dispatching
mechanism called reactive dispatching that continually
takes into account new context changes to select appli-
cable procedures to execute.

2. Motivating Scenarios
In this section, we introduce scenarios that motivate
the need for a new programming language model for
interruptible context-aware applications.

2.1 A Mobile Platform for Interruptible and
Context-aware Applications

The increasing availability of context sources (such as
GPS, proximity and accelerometer) on mobile devices
has enabled developing applications that dynamically
adapt their behaviour to match the current situation
(e.g., location-specific services and user-specific ser-
vices).

Consider, for instance, a mobile platform that pro-
vides a suite of applications used for different tasks. In
order to alleviate the user from the burden of manually
selecting which application to run for a task, such a mo-
bile platform can be enhanced with context-awareness

to automatically present to the user the application that
is appropriate for the task at hand and the context of
use. Thus, as the user moves about with their device,
the mobile platform automatically switches back-and-
forth between applications. Naturally, when there is a
switch between applications, the user expects applica-
tions to automatically save their current state and be
able to resume running from where they left off at a
later point in time.

Applications running on such a platform can be en-
hanced with context-awareness to dynamically adapt
their behaviour to match the changing user’s needs. Be-
low we present examples of such context-aware applica-
tions.

2.1.1 A Context-aware Calendar Application
Consider a context-aware calendar application that au-
tomatically launches to show the calendar items when-
ever the user moves within range of their workplace.
Calendar items may include user’s private appoint-
ments (e.g., family events or a doctor appointment) that
should be displayed only to the device owner and public
items (e.g., workplace meetings or bank holidays) that
can be visible to everyone. Therefore, when the owner is
not the one using the device, it can dynamically adapt
to show only the calendar items that are public. For
instance, suppose that a user who is browsing through
his/her private calendar items temporarily gives the
device to a coworker. The calendar application should
immediately adapt to show only public items and adapt
the display properties (e.g., font size or colour) to match
the coworker’s preferences. Furthermore, suppose that
the coworker gives back the device to the owner, the
calendar application should immediately restore the
owner’s previous calendar items view.

2.1.2 A Context-aware Printer Assistant
Consider a context-aware printer assistant application
that provides functionalities for monitoring a printer’s
status (e.g., toner and paper levels) and managing print-
ing tasks. Such an application can be specified to auto-
matically launch on a mobile device whenever the user
walks into a printer room or is nearby a printer. In addi-
tion, the printing tasks can be enhanced with context-
awareness to dynamically adapt the printing of sensitive
documents on a shared printer. For instance, when the
user is printing sensitive documents from his/her mo-
bile device, the application can automatically pause the
printing whenever another person walks into the printer
room and resumes where it left off when that person
leaves.

2.1.3 A Context-aware Task Guide
Our third motivating example is a mobile application
for assisting individuals with memory impairments to



perform a sequence of tasks (e.g., making coffee, prepar-
ing soup, doing laundry or operating a TV). The ap-
plication can be enhanced with context-awareness such
that when the user is at home, the application is au-
tomatically launched and presents to the user a guide
on how to perform a certain task depending on the
user’s needs. For instance, when the user is nearby a
coffee machine, the application automatically offers to
assist the user through the steps and instructions of
making a coffee. Similarly, when the user walks into
the kitchen the system presents steps on how to pre-
pare soup. When the user leaves the kitchen or moves
away from the coffee machine before the completion of
a task sequence, the application is interrupted but au-
tomatically resumes from where it left off when the user
moves back such that he/she can continue with the task.
These steps and instructions may be further enhanced
with context-awareness to vary depending the context
such as the user’s experience.

2.2 Scenarios Analysis
Context-aware applications such as the ones described
above exhibit new characteristics that sets them apart
from traditional mobile and PC applications. Com-
mon to the above scenarios is the notion of context-
constrained executions, prompt adaptability, and sudden
interruptibility.

Context-constrained executions. Context-aware ap-
plications are constrained to run under particular
context conditions. This means that the execution
of a context-aware application should only proceed
if the specified context conditions are satisfied and
should not be allowed to execute in a wrong context
situation. This is necessary to ensure that the appli-
cation behaviour that is presented to the user at any
moment in time matches the current context of use.
For instance, when a user is running a task guide
application on his/her mobile device, the execution
of the sequence of tasks to operate a TV should only
happen when the user is nearby a TV but not when
the user is in the kitchen. Similarly, in the context-
aware printer assistant application, the execution of
the printing task for confidential documents should
only proceed when there is no other person in the
printer room.

Prompt adaptability. Context-aware applications need
to promptly and continuously adapt their behaviour
to match the current context. A single context-aware
application is typically composed of variants of be-
haviours that need to be dynamically made available
depending on the context. As such, the application
needs to ensure that when there is a context change
the correct variant of the application is promptly
made available without explicit user intervention.

For instance, when the user is navigating through a
calendar application on his/her mobile device and
gives his/her device to a coworker, the calendar ap-
plication should promptly adapt the current display
and provide the coworker with a calendar display
that includes only public calendars and any other
public display preferences such as the background
colour.

Sudden interruptibility. Context-aware applications
need to always be prepared for sudden interruptions
due to the unpredictable nature of context changes.
Unlike traditional applications where a user interacts
with a single application from the start to the end of
a certain task, interruptions are the norm in context-
aware applications. If there is a context change while
an application is running, another application that
match the current context may start running while
interrupting the previous application. For instance,
in the above scenarios, when the user walks into a
printer room while running a calendar application
on his/her mobile device, the calendar application
needs to be temporarily interrupted and the printer
assistant application should be started. Similarly,
when the user leaves the printer room, and say, walks
back to his/her office, the printer application should
be interrupted and the calendar application should
automatically resume from where it left off.

We would like to stress that the these characteristics
are not specific to the above scenarios but depict a gen-
eral pattern that is present in most context-aware ap-
plications. However, the lack of suitable programming
language abstractions coupled with the unpredictable
nature of context changes renders the task of devel-
oping true context-aware applications notoriously dif-
ficult. Because context changes can occur at any mo-
ment during the execution of a procedure, it is possi-
ble that a procedure execution that started in a cor-
rect context may end up running in a wrong context.
Allowing a procedure execution to continue executing
in a wrong context may result in incorrect application
behaviour (e.g., presenting to the user the application
behaviour that does not match the current context).
To prevent that, the developer must perform explicit
context checks in the procedure body. A disadvantage
with such an approach is that context checks need to
be inserted throughout the procedure body. This can
lead to negative effects on program comprehension and
maintainability (e.g., introducing a new context source
implies modifying all the existing context checks). In ad-
dition, the developer must manually express concerns of
the decisions to perform when such context checks are
not satisfied. For instance, in order to be able to re-
store the execution later on, the developer must devise
means to capture and restore the procedure execution



state. Such concerns are not trivial and it is almost im-
possible to express them manually.

To concretely illustrate these issues, we consider a
language like Scheme [30] to express the behaviour for
the steps of making a coffee in the context-aware task
guide application. In Scheme, we can define such a
procedure as follows:

1 ; a task guide for making a co f fee
2 ( define making−coffee
3 (lambda (person−name)
4 ( write ”Welcome: ” person−name)
5 ( task ” 1. place a cup”)
6 ( task ” 2. s e l e c t ingredients ”)
7 ( task ” 3. press make button”)
8 ( task ” 4. pick your co f fee ”) ) )

The above code snippet shows the definition of the
making-coffee procedure that presents to the user
a sequence of tasks for making a coffee. The above
making-coffee procedure is context-unaware, i.e., it
does not take into account any context changes and
assumes that its execution runs uninterrupted from the
start to the end. Thus, assume that this procedure is
started on a mobile device when the user is nearby a
coffee machine, the procedure will continue its execution
even if the user moves away from the coffee machine,
which is undesired.

In order to make the execution of the making-coffee
procedure context-aware, the developer must manu-
ally insert checks within the body of the procedure,
to ensure that its execution happens only in a par-
ticular context (i.e., only when the user is nearby a
coffee machine). For instance, the execution of the
making-coffee procedure may be naively enriched with
context-awareness by redefining it as follows:

1 ( define making−coffee
2 (lambda (person−name)
3 ( i f (nearby−coffee−machine?)
4 ( write ”Welcome: ” person−name)
5 (save/suspend) )
6 ( i f (nearby−coffee−machine?)
7 ( task ” 1. place a cup”)
8 (save/suspend) )
9 ( i f (nearby−coffee−machine?)

10 ( task ” 2. s e l e c t ingredients ”)
11 (save/suspend) )
12 ( i f (nearby−coffee−machine?)
13 ( task ” 3. press make button”)
14 (save/suspend) )
15 ( i f (nearby−coffee−machine?)
16 ( task ” 4. pick your co f fee ”)
17 (save/suspend) ) ) )

This code example shows a redefined version of the
making-coffee procedure with condition checks to con-
strain its execution to the correct context (i.e., it should
be executed only when the user is nearby a coffee ma-
chine). To simplify the implementation, we assume that
there is a language construct save/suspend that en-
ables saving a procedure execution state and suspending

the ongoing execution1. The write procedure displays a
message to the user’s mobile device while the task pro-
cedure displays the details of the task to be performed
for making a coffee.

In order to ensure that the making-coffee procedure
executes only if the user is nearby the coffee machine,
the (nearby-coffee-machine?) condition is inserted
before every expression in the procedure body (Lines 3,
6, 9, 12, and 15). If the context condition is false (i.e.,
if the user is not nearby the coffee machine), then the
procedure execution is saved and suspended using the
save/suspend construct (Lines 5, 8, 11, 14, and 17).

The context-aware version of the making-coffee
procedure is visibly convoluted because of the verbose
code that is needed to check the context conditions, save
the execution state and suspend the execution. Clearly,
implementing context-aware applications in this style
is hard and error-prone. Even with all the checks and
manual execution state management in the context-
aware version of the making-coffee procedure, the
above implementation is lacking since it does not in-
clude the logic of resuming the execution when the user
moves back near to the coffee machine. These observa-
tions have motivated our vision for a new programming
language model, interruptible context-dependent execu-
tions, which we present in the next section.

3. Interruptible Context-dependent
Executions

In this section, we present the main ingredients of
the interruptible context-dependent executions model.
These ingredients are motivated by the scenarios that
we described in Section 2.

3.1 Terminology
Before unveiling the model, we will first define the key
terms that are used throughout this paper.
• The term execution is used to refer to a running

procedure.
• The term context-dependent execution is used to refer

to an execution that is constrained to run under
particular context conditions.
• The term execution state is used to refer to the

program counter (i.e., the rest of the expressions to
be evaluated) and local bindings of an execution.

The remainder of this section presents the main in-
gredients of the interruptible context-dependent execu-
tions model. These are: predicated procedures, reactive

1 The save/suspend construct can be easily implemented in lan-
guages that provide support for first-class continuations. For in-
stance, in Scheme such a construct can be built on top of the
native call-with-current-continuation function.



dispatching, interruptible and resumable executions, and
scoped state changes.

3.2 Predicated Procedures
A context-aware application consists of procedures that
define behavioural variations for different contexts.
Each context-dependent procedure should be associated
with a context predicate that specifies when the proce-
dure is allowed to execute. The context predicate should
be implicitly checked throughout the procedure execu-
tion in order to ensure that the execution happens only
in the correct context. Traditional ways of associating
a predicate to procedure using conditional statements
are impractical because they require the developer to
explicitly insert several if statements in the procedure
body. That solution would be too cumbersome and
could result in writing programs in a style where every
statement in the procedure body is preceded with a
context predicate. Therefore, a programming language
that supports the interruptible context-dependent ex-
ecutions model, should provide the developer with a
construct to associate a context predicate a procedure
and the language runtime should ensure that the con-
text predicate is satisfied throughout the execution.

3.3 Reactive Dispatching
The execution of a context-aware application involves
a dispatching process to determine the appropriate
context-dependent procedures to execute for the current
context. Given the current context parameters (e.g., the
current location or user preferences) and a set of proce-
dures together with their associated context predicates,
the dispatching process should be able to determine
which procedure to execute based on the context pred-
icate that evaluates to true. The fact context changes
continuously occur, implies that the applicability of a
context-dependent procedure to execute depends on a
context predicate that may change dynamically. This
implies that a context-dependent procedure that cannot
be selected in the current context may eventually be-
come applicable when a context change occurs. This ne-
cessitates a dispatching mechanism that is repeated in
response to new context changes. We introduce the con-
cept of reactive dispatching where the dispatcher con-
tinuously takes into account any new context changes
that occur – even after the first dispatching phase has
happened. This in contrast with existing dynamic dis-
patching mechanisms [9] where the selection of the ap-
plicable procedure happens once and is based only on
the currently available information.

3.4 Interruptible Executions
The execution of a context-dependent procedure should
be constrained to happen only under a particular con-
text condition. This requires that a context-dependent

procedure starts or continues executing only if the spec-
ified context predicate is satisfied. If the context pred-
icate is no longer satisfied while its associated proce-
dure execution is ongoing, then the execution should be
interrupted. A programming language for interruptible
context-dependent executions should provide the devel-
oper with interruption strategies to specify what to do
(depending on the application). We identify two inter-
ruption strategies.

The execution is suspended. When the context
predicate is no longer satisfied, the corresponding exe-
cution is paused and its execution state is saved. Paus-
ing an execution means that it is possible to resume
the execution later on if its associated context predi-
cate becomes satisfied again. It is important that such
a suspension and the execution state management hap-
pens transparently because the unpredictable nature of
context changes makes it difficult for the developer to
know beforehand when the execution needs to be sus-
pended.

The execution is aborted. Another interruption
strategy is to abort the execution once the associated
context predicate is no longer satisfied. In this case,
the execution is aborted and there is no possibility to
resume the execution even if a later context change ren-
ders the context predicate satisfied again. As a conse-
quence, any state changes to the shared or global vari-
ables before the execution is aborted may need to be
undone. We further explore the management of state
changes that arise in interruptible executions in Sec-
tion 3.6.

3.5 Resumable Executions
Another important consideration that needs to be taken
into account is what to do with a previously interrupted
execution whose associated context predicate later be-
comes satisfied again. As context changes continually
occur, it is possible that a previously unsatisfied con-
text predicate becomes satisfied again. For instance, a
context predicate that depends on the current location
may become satisfied or unsatisfied as the user moves
about. Therefore, a programming language for inter-
ruptible context-dependent executions should provide
the developer with resumption strategies to re-establish
a previously interrupted execution. We can identify two
resumption strategies (the choice depends on the appli-
cation).

The interrupted execution is resumed. A previ-
ously suspended execution can be resumed such that it
continues from the exact point where it left off before
interruption. The execution state should be restored to
the same program instruction. Once the execution is re-
sumed, the context predicate should be checked again



throughout the execution. This ensures that executions
can be seamlessly suspended and resumed depending on
the current context of use.
The interrupted execution is restarted. Another
strategy is to restart the suspended execution from
the beginning. This is useful in cases where it is not
appropriate to continue the execution from where it was
before the context predicate became unsatisfied.

The resumption process should be event-driven (i.e.,
triggered by the availability of new and relevant context
changes) in order to avoid unnecessary re-evaluations
of context predicates even when the relevant context
sources have not received new values.

3.6 Scoped State Changes
The execution of a context-dependent procedure may
result in state changes2 to the values stored in shared or
global variables. The fact that a context-dependent exe-
cution can be suspended or resumed at a later moment,
may result in situations where state changes made by
one execution become visible to other executions. This
can lead to undesirable behaviour (e.g., observing incon-
sistent values between suspension time and resumption
time). It is therefore necessary that a programming lan-
guage for the context-dependent executions model, pro-
vides mechanisms to enable the developer to scope the
visibility of state changes. We identify three state man-
agement strategies that the developer can select from
to scope state changes among executions.
Immediate visibility. With this strategy, changes
made by one execution to a shared state are immedi-
ately visible by other executions that share this state.
Deferred visibility. This strategy ensures that state
changes remain local to the execution and become vis-
ible to other executions on completion of the execu-
tion. This concept is comparable to software transac-
tions [14, 28] and side effects management techniques
of the worlds construct [34].
Isolated state changes. This strategy guarantees
isolation of state changes. That is, any state changes
made by one execution are restricted to that execution
and are not visible by other executions.

4. The Flute Language
We now present a programming language called Flute
that adheres to the interruptible context-dependent ex-
ecutions model proposed in Section 3. The Flute lan-
guage has been implemented as a meta-interpreter in
iScheme [2], our Scheme implementation that runs on
iOS devices.
2 In our exploration, we only consider assignments and do not
consider external side effects such as I/Os since they are generally
hard to circumvent.

4.1 Building Blocks: Modes and Modals
In order to incorporate the ICoDE model, Flute intro-
duces two building blocks, namely, modes and modals.
Definition 1. (Mode) A mode defines a variant of be-
haviour (context-dependent procedure) or state (context-
dependent variable) for a particular context. It is asso-
ciated with a context predicate to specify the context
conditions in which it is constrained to run.

Definition 2. (Modal) A modal is a group of related
modes. It specifies context sources that may affect the
execution of those modes.

In Flute, context-dependent procedures and context-
dependent variables are represented as a suite of modes,
each defining a different behaviour or value for a dif-
ferent context. Related context-dependent procedure or
variable modes are grouped together under the same
modal. In the context-aware calendar application, for
example, there are different procedure modes, private
and public, for showing the agenda items depending on
whether the device user is the owner or not. Such pro-
cedure modes can be grouped together under a single
modal, agenda. Flute provides language constructs to
create modals and modes. However, the developer does
not need to worry about ensuring that the appropri-
ate mode is always executed for the current context of
use. Flute ensures that the right mode is executed for
the right context and that the entire execution of the
mode happens under the specified context condition.
New modes can be dynamically added to a modal as
required.

Having introduced the building blocks of the Flute
language, we will now discuss its support for interrupt-
ible context-dependent executions by means of illustra-
tive examples. We will use the context-aware calendar
application as the running example throughout this sec-
tion. Figure 1 shows the informal description of the
Flute syntax for mode, modal, and context source def-
initions.

4.2 Modes of a Variable
In Flute, a variable has one or more values (modes)
that correspond to different contexts. Therefore, a vari-
able access yields a different value depending on the
context in which it is accessed. This is unlike variables
in conventional programming languages where a vari-
able access always yields the same value. For instance,
while developing a context-aware calendar application,
we require a variable that contains a different colour
value depending on the device user (i.e., a grey colour
when the device user is the owner and a brown colour
when the device user is not the owner). In Flute, such a
context-dependent variable can be expressed as follows.



;A general form for a context source d e f i n i t i o n
( define <context−source−name> ( ctx-event ) )

;A general form for a modal d e f i n i t i o n
( define <modal−name> ( modal (<context−sources>)) )

;A general form for a var iab le mode d e f i n i t i o n
( mode (<modal−name>)

<context−predicate>
<value−expression >)

;A general form for a procedure mode d e f i n i t i o n
( mode (<modal−name>)

<context−predicate>
(<configuration−options >)
( lambda (<parameters>)

<body>))

Figure 1. An informal description of the Flute syntax
for modal, mode, and context source definitions.

1 ; context source de f in i t i on
2 ( define current−user (ctx−event) )
3
4 ; modal ( var iab le ) de f in i t i on
5 ( define bg−colour (modal ( current−user ) ) )
6
7 ;mode de f in i t i on
8 (mode ( bg−colour )
9 (not−owner? current−user ) ; a context predicate

10 brown−colour)
11
12 ;mode de f in i t i on
13 (mode ( bg−colour )
14 (owner? current−user )
15 grey−colour )

Listing 1. Defining variable modes

Listing 1 creates bg-colour as a modal variable that
has two modes. A modal is created using the special
form modal while a mode is created using the special
form mode. In addition, the modal definition specifies
a context source upon which context predicates oper-
ate. A context source is created using the special form
ctx-source. In the above example, current-user is
populated with a value that indicates the current user
of the device. The details of initialising context sources
with values from sensors (such as GPS) that are avail-
able on a mobile device are discussed in Section 4.4.
Each mode definition specifies the modal it belongs to,
a context predicate and a value for the mode when the
context predicate is true. In the remainder of this sec-
tion we explain the variable access and assignment se-
mantics of modal variables in Flute.

4.2.1 Variable Access Semantics
A modal variable can be accessed like a regular variable
in a programming language by using the variable name.
The difference, however, is that accessing a modal vari-
able can yield a different value depending on the cur-

rent context of use. For instance, in the above example,
accessing the variable bg-colour may yield the colour
value as brown-colour or grey-colour depending on
the current device user. Below we illustrate the seman-
tics of accessing the bg-colour in different contexts.
The input expression is prefixed with a > while the re-
sult of evaluating the expression is prefixed with a ===>.

1 ; suppose the current user i s the device owner
2 > bg−colour
3 ===> grey−colour
4
5 ; suppose the current user i s not the device owner
6 > bg−colour
7 ===> brown−colour

As the above example shows, accessing the bg-colour
when the current user is the device owner, yields a
grey-colour value, and yields brown-colour when the
user is not the device owner. In Section 4.3, we will see
that abstraction for variable modes is useful for devel-
oping context-aware applications because often there is
a need for a data structure that holds different values
for different contexts. Observe that it is possible to add
new modes of a variable at runtime, and when they are
added, they become part of the suite value modes for
the modal variable. This has an advantage that develop-
ers can add unanticipated variable modes on demand.
Note that in case there are multiple values (i.e., if there
are more than one context predicates that are satisfied)
or there is no value found (i.e., if there is no context
predicate that is satisfied), an exception is thrown. We
further discuss other dispatching semantics of procedure
modes in Section 4.3.1.

4.2.2 Assignment Semantics
Performing an assignment on a modal variable only af-
fects the value of the variable mode whose context pred-
icate evaluates to true. Like with the variable access,
before performing a state change to the value, the cor-
rect mode is looked up depending on the current con-
text. Below we illustrate an example of mutating the
bg-colour.

1 ; suppose the current user i s the device owner
2 > ( set ! bg−colour blue−colour )
3
4 ; accessing bg−colour with the user s t i l l the

device owner
5 > bg−colour
6 ===> blue−colour
7
8 ; suppose the current user i s not the device owner
9 ; the value of the not device owner mode i s not

a f f ec ted
10 > bg−colour
11 ===> brown−colour

As we can see from the above code snippet, performing
an assignment operation on the bg-colour variable



when the current device user is the owner, only affects
the value of that mode.

4.3 Modes of a Procedure
Context-dependent procedures in Flute are expressed
in terms of different modes of a modal. For instance,
the context-aware calendar application consists of two
modes: (i) private agenda mode, and (ii) public agenda
mode. The private agenda mode is executed when the
owner is using the device, whereas the public agenda
mode is executed when another user is using the device.
In Flute, we can express such variations of modes as
follows.

1 ; modal de f in i t i on
2 ( define agenda (modal ( current−user ) ) )
3
4 ; shared var iab l e s
5 ( define date−range 2)
6 ( define display−scale 4)
7
8 ; configuration options de f in i t i on
9 ( define config

10 (create−config suspend resume isolated ) )
11
12 ;mode de f in i t i on
13 ( define show−private−agenda
14 (mode (agenda)
15 (owner? current−user ) ; context predicate
16 ( config ) ; configuration options
17 (lambda ()
18 ( write ” private agendas”)
19 ( set ! display−scale 8)
20 ( write bg−colour )
21 ( sca le display−scale )
22 . . .
23 ( write calendars ) ) ) )
24
25 ;mode de f in i t i on
26 ( define show−public−agenda
27 (mode (agenda)
28 (not−owner? current−user )
29 ( default−config )
30 (lambda ()
31 ( write ” pub l ic agendas”)
32 ( write bg−colour )
33 . . .
34 ( write calendars ) ) ) )
35
36 (agenda)

Listing 2. Defining procedure modes
Listing 2 creates a modal agenda using the special

form modal and two modes show-private-agenda and
show-public-agenda using the special form mode. As in
the case of modal variables, the current-user variable
in the modal definition, specifies the context source.
date-range (on Line 5) and display-scale (on Line 6)
are shared variables that are visible to both modes. The
date-range value specifies the date range of calendar
items to display. The display-scale value specifies
the scale of the font size of the calendar display. As
with modes of a variable, new procedure modes can be

dynamically added to a modal on demand. Each mode
definition includes a context predicate that must be
satisfied throughout the execution of the mode. In the
above example, the context predicates for the private
and public modes are (owner? current-user) and
(not-owner? current-user), respectively. To avoid
ambiguities, the developer should ensure that context
predicates are mutually exclusive.

In addition, a procedure mode definition includes
configuration options that specify a strategy for in-
terruption (i.e., suspend or abort), a strategy for re-
sumption (i.e., resume or restart) and a strategy for
scoping state changes (i.e., immediate, deferred or
isolated). The developer may use the default con-
figuration default-config or can define own con-
figuration options using the create-config abstrac-
tion. The default-config specifies the configuration
options as (:p-false suspend :p-true restart
:state-changes immediate), which implies that when
the context predicate is false the execution is suspended,
when the context predicate becomes satisfied again the
execution is restarted and any state changes are imme-
diately visible. In the above example, the private agenda
mode specifies the configuration as config that is de-
fined on Line 9 while the public agenda mode uses the
default configuration. For conciseness, the above imple-
mentation does not include the graphical user interface
(GUI) concerns of the calendar application. The screen-
shot of the context-aware calendar application running
in the public mode on an iPad device can be found in
the Appendix (Figure 3).

A context predicate specified in each mode plays
two roles. First, it is used by the dispatcher to select
the applicable mode (dispatching) to execute for the
current context of use. Second, it is also used by the
runtime to ensure that the mode execution continues to
happen in the correct context by continually evaluating
the context predicate at every evaluation step of the
procedure of body for the mode.

Let us first explain the dispatching process.

4.3.1 Reactive Dispatching of Modes
The execution of modes is initiated by invoking a modal.
Invoking a modal requires a dispatching mechanism to
select the applicable mode to execute for the current
context. For instance, in Listing 2 invoking the agenda
modal as (agenda), may execute a private agenda mode
procedure or the public agenda mode procedure depend-
ing on the current context.

The dispatcher starts by evaluating all context pred-
icates that are associated with the modes that belong
to the same modal. The mode whose context predicate
evaluates to true is scheduled for execution. However,
unlike traditional dispatching mechanisms in conven-
tional languages, the dispatching process in Flute does



not happen just once. Since context changes typically
occur continuously, it is possible that some context
predicates that could not be satisfied may become sat-
isfied later and thus requiring their associated modes to
be executed. In Flute, the dispatcher is implicitly reg-
istered to the context sources that may affect the con-
text predicates and the dispatching process is triggered
again whenever context sources receive new values. This
means that modes that were not previously selected for
execution may be selected later. So even when there is
no applicable mode, the Flute dispatcher does not throw
a procedure-not-found exception because the mode may
later be found when relevant context changes are ob-
served.

Note that binding a procedure mode to a variable
is optional. However, if a mode is bound to a variable,
it is possible to invoke the mode directly. In that case,
the context predicate associated with the mode is only
used to ensure that execution of the mode happens
in the correct context. Allowing modes to be directly
invoked also makes it possible to define recursive modes.
In the next section, we discuss the execution semantics
of procedure modes.

4.3.2 Interruptible Execution of Modes
Once the dispatcher selects the mode to execute, its
associated context predicate must be satisfied through-
out the mode execution, otherwise the execution is in-
terrupted based on the specified interruption strategy.
For instance, in the calendar example, suppose that the
agenda modal is initially invoked when the current user
is the device owner, thus the (owner? current-user)
predicate will be satisfied. As a result, the execution
of the private agenda mode will be started and the
user will view all the agenda items including private ap-
pointments and office meetings. Suppose that the user
then gives the device to another user while the private
mode is executing. As a consequence, there will be a
context switch and (owner? current-user) will be-
come false and therefore, the execution of the private
agenda mode will be promptly suspended since its con-
figuration options config specify suspend as the inter-
ruption strategy. On the other hand, the context predi-
cate (not-owner? current-user) will be satisfied and
therefore, the public mode execution will be started.

4.3.3 Event-driven Resumption of Suspended
Executions

As context changes occur, context sources will re-
ceive new values and as a result any suspended exe-
cutions whose context predicates operate on those con-
text sources will be scheduled for resumption. For in-
stance, in the calendar example, suppose that while the
public agenda mode is executing, the device is given
back to the owner. Then the execution of the pub-

lic agenda mode will be promptly interrupted. Con-
versely, the execution of the private agenda mode will
be resumed from where it left off since the resumption
strategy in the configuration options is resume. For in-
stance, if the user was scrolling an agenda items list
before the interruption, the application will be resumed
at the same position where the user was. Resumption
of suspended executions is triggered by the occurrence
of relevant context changes. In this example, the lan-
guage runtime is implicitly registered to the context
source current-user and is notified when a new value
is received. Subsequently, the (owner? current-user)
context predicate is re-evaluated and the previously sus-
pended private agenda mode execution will be resumed.

4.3.4 Scoping State Changes
The configuration options include a strategy for con-
trolling the visibility of the state changes made by a
mode to the shared state. In Listing 2, the private
agenda mode is specified with the isolated strategy,
which implies that all state changes remain local to
the mode. For instance, the private agenda mode mod-
ifies the shared variable display-scale variable to in-
crease display scale of the agenda items (i.e., (set!
display-scale 8) on Line 19). Such a state change
will remain local to the private agenda mode and will
not be visible to the public agenda mode. With the
isolated strategy, the Flute runtime keeps a local copy
when a shared variable is accessed for the first time, and
any subsequent changes are made to the local copy.
Other state changes scoping strategies are immediate
and deferred as discussed in Section 3.6. With the
deferred strategy, the Flute runtime keeps a local copy
as in the isolated strategy, with an additional valida-
tion step before committing the changes when the mode
completes executing. The validation step involves com-
paring the values of variables when they were first read
and its current value. If the validation step succeeds,
then the mode state changes are committed. Otherwise,
the state changes are discarded.

4.3.5 Lexical and Dynamic Extent of Context
Predicates

When a mode is internally defined within another mode,
the context predicate of the enclosing mode must be re-
spected throughout the execution of the internal mode.
In addition, a context predicate of the enclosing mode
must be respected throughout the execution of modes
that are invoked from the mode body. We classify these
as lexical and dynamic extent of context predicates.

Lexical extent of a context predicate. In Flute,
a mode that is defined inside another mode “inherits”
the context predicate of its enclosing mode as part of
the context predicate under which the mode can exe-



cute. Consider for example, the context-aware calendar
application that is specified with a context predicate to
run only when the user walks into his/her office. This
can be defined as a mode that encloses the private and
public agenda modes as follows.

1 ( define f lute−apps (modal ( locat ion ) ) )
2
3 ( define calendar−assistant
4 (mode ( flute−apps )
5 ( o f f i c e ? locat ion )
6 ( default−config )
7 (lambda ()
8 . . .
9

10 ( define show−private−agenda
11 (mode (agenda)
12 (owner? current−user ) ; a context predicate
13 ( config ) ; configuration

options
14 ( lambda ()
15 . . . ) ) )
16
17 ( define show−public−agenda
18 (mode (agenda)
19 (not−owner? current−user )
20 ( default−config )
21 (lambda ()
22 . . . ) ) ) ) ) )

Listing 3. Nested mode definitions.
Listing 3 shows the definition of the
show-private-agenda and show-public-agenda
modes as internal definitions of the
calendar-assistant mode. The calendar-assistant
represents the entire calendar application and is spec-
ified with the context predicate (office? location)
that ensures that the application should only be
launched when the user is in his/her office. The
calendar-assistant mode belongs to the flute-apps
modal that groups together context-aware applications
that run in the Flute platform. In this example,
the (office? location) context predicate must
also be satisfied during the execution of the the
show-private-agenda and show-public-agenda
modes (in addition to their own context predicates).
Dynamic extent of a context predicate. When
a modal is invoked inside a mode, then the context
predicate of the mode at the callee side must also be
ensured throughout the execution of any subsequent
direct and indirect invocations of modes.

4.3.6 Demarcating Uninterruptible Regions
The default semantics of Flute is that the execution of
a mode may be interrupted at any evaluation step of
its body expressions. However, it may be required that
some critical sections of a procedure must run uninter-
rupted. For this, Flute provides a dedicated construct
(continuous <expressions>) to demarcate such unin-
terruptible regions.

4.4 Defining Context Sources
Context sources in Flute are represented as reactive val-
ues. A reactive value is like a regular value in a program-
ming language, except that when its value changes, any
computation that uses its value is automatically recom-
puted. For instance, the context source for the current
location is defined as follows.

1 ; def ining a context source
2 ( define gps−coordinates (ctx−event) )
3
4 ; de f in i t i on of the locat ion context source
5 ( define locat ion
6 (gps−>locat ion gps−coordinates ) )
7
8 ; obtaining GPS coordinates
9 (CURRENT−LOCATION

10 (lambda ( l a t i t u d e longi tude )
11 ( update−value ! gps−coordinates
12 (cons l a t i t u d e longi tude ) ) ) )

Listing 4. Defining context sources

Listing 4 shows the definition of the context source
gps-coordinates which is created using the ctx-event
construct. The location context source is cre-
ated by applying the gps->location procedure on
the gps-coordinates context source (Line 5). The
gps->location procedure transforms raw GPS coor-
dinates into a high-level context value such as of-
fice or home. The GPS coordinates are obtained us-
ing the CURRENT-LOCATION construct that is provided
by iScheme. This construct takes a procedure as its
argument and registers it as an event-handler that
is invoked whenever GPS sensors have new latitude
and longitude values. This in turn automatically up-
dates the location context source with the new value.
Note that once gps-coordinates gets new values, the
gps->location procedure is automatically invoked.

A reactive value employs a push-driven model, which
means that any procedure that operates on its value is
immediately notified as soon as a new value is received.
A similar evaluation model is used in functional reactive
programming (FRP) approaches [6]. This facilitates the
implementation event-driven resumption of suspended
executions and reactive dispatching. A suspended ex-
ecution is encapsulated as a resumption handler that
establishes a link between relevant context sources and
the suspended execution. When the context source re-
ceives a new value, the resumption handler is automati-
cally executed which in turn triggers the evaluation con-
tinuation of the procedure body. A similar technique is
used to link the dispatcher to context sources.

5. Flute Implementation
The Flute language is implemented as a meta-
interpreter in Scheme. We implement the interpreter in
a flavour of Scheme called iScheme [2], our Scheme im-



plementation that runs on iOS devices (such as iPhone
and iPad). iScheme supports a linguistic symbiosis3 be-
tween Scheme and Objective-C language which makes it
possible to access context source APIs provided by the
iOS platform. The Flute interpreter is implemented in a
continuation-passing style [10], and therefore, explicitly
passes a continuation parameter along with the envi-
ronment. The continuation parameter makes the con-
trol flow explicit, which facilitates the capturing and
saving the execution state of an expression at any step
of the evaluation. The evaluation of the procedure body
is broken down into sequences of expressions. At each
evaluation step, the context predicate is re-evaluated to
determine whether to proceed with the evaluation or
not.
Availability. The current implementation of the
Flute interpreter is available at
http://soft.vub.ac.be/~ebainomu/Flute/

6. Motivating Scenarios Revisited
Let us go back to the scenarios introduced in Section 2
in order to illustrate how Flute can be used to imple-
ment such applications.

6.1 The iFlute Platform
As a case study, we have implemented a prototype ap-
plication platform called iFlute Platform where inter-
ruptible context-aware applications can be deployed.
The screenshot of the platform running on an iOS de-
vice can be found in the Appendix (Figure 2).

Context-aware applications (developed in the Flute
language) can be deployed on the iFlute platform and
are automatically launched depending on the current
context of use. As an experiment, we have so far de-
veloped and deployed example applications, namely, a
context-aware calendar application and a context-aware
printer assistant, and a context-aware task guide.

6.2 Example: A Context-aware Task Guide
The context-aware task guide application can be imple-
mented in Flute as follows.

1 ( define task−manager
2 (mode ( flute−apps )
3 (at−home? locat ion )
4 ( default−config )
5 (lambda ()
6
7 ; a modal de f in i t i on for task guide
8 ( define task−guide (modal ( nearby−object ) ) )
9

10 ; a mode for making co f fee
11 ( define making−coffee
12 (mode ( task−guide )

3 The language symbiosis between Scheme and Objective-C en-
ables access to the Objective-C APIs from Scheme programs and
vice versa.

13 ( coffee−machine? nearby−object )
14 ( default−config )
15 (lambda (person−name)
16 ( write ”Welcome: ” person−name)
17 ( task ” 1. place a cup”)
18 ( task ” 2. s e l e c t ingredients ”)
19 ( task ” 3. press make button”)
20 ( task ” 4. pick your co f fee ”) ) ) )
21
22 ; a mode for making soup
23 ( define making−soup
24 (mode ( task−guide )
25 (soup−maker? nearby−object )
26 ( default−config )
27 (lambda (person−name)
28 ( write ”Welcome: ” person−name)
29 ( task ” 1. s e l e c t soup can”)
30 ( task ” 2. get a pan”)
31 ( task ” 3. pour soup in the pan”)
32 ( task ” 4. turn on hot p la te ”)
33 ; demarcating a non− interruptible

region
34 (continuous
35 ( task ” 5. remove pan”)
36 ( task ” 6. turn o f f hot p la te ”) )
37 ( task ” 7. serve soup”) ) ) )
38
39 ; a mode for operating a TV
40 ( define tv−control ler
41 (mode ( task−guide )
42 ( tv ? nearby−object )
43 ( default−config )
44 (lambda (person−name)
45 ( write ”Welcome: ” person−name)
46 ( task ” 1. get remote con t ro l l ”)
47 ( task ” 2. enable TV mode”)
48 ( task ” 3. turn on TV”)
49 ( task ” 4. enable decoder mode”)
50 ( task ” 5. turn on decoder”)
51 ( task ” 6. s e l e c t channel”) ) ) )
52
53 ( task−guide name) ) ) )

Listing 5. Implementing the context-aware task guide
application in Flute

Listing 5 shows the implementation of the context-
aware task guide application. task-manager is a
mode that represents the entire task guide appli-
cation and belongs to the flute-apps modal. The
task-manager is specified with the context predicate
(at-home? location), which implies that the appli-
cation should only run when the user is at home.
The task-manager mode includes making-coffee,
making-soup and tv-controller which belong to the
task-guide modal. Each of those modes defines the
behaviour of guiding a user through the steps of per-
forming a certain task. In addition, each mode is as-
sociated with a context predicate to specify under
what context condition the mode can be executed. For
instance, the making-coffee mode is specified with
(cofee-machine? nearby-object) predicate which
means that the mode should be executed when the user
is nearby a coffee machine. Since those modes are de-



fined inside the task-manager mode, the context pred-
icate (at-home? location) must also be satisfied in
order for the mode to be executed. Suppose that the
user arrives at home, then the task-manager applica-
tion will be executed. As the user moves about, if the
user is nearby a coffee machine, then the task guide
for making coffee will be presented to him/her. If the
user moves about before the completion of the steps
of the making coffee, the execution of the mode will
be suspended and can later resume from the same step
when the user moves back in range with the coffee ma-
chine. Tasks 5 and 6 of making soup are enclosed in the
continuous block meaning that the execution cannot
be interrupted at the step of the evaluation. In this ex-
ample, this is necessary since removing a pan and turn-
ing off the hot plate tasks must be done immediately
after each other to avoid leaving the hotplate on after
removing the pan.

6.3 Example: A Context-aware Printer
Assistant

1 ( define print ing−assistant
2 (mode ( flute−apps )
3 (printer−room? locat ion )
4 ( default−config )
5 (lambda ()
6 ; a modal var iab le for documents
7 ( define documents (modal ( motion−detector ) ) )
8
9 ; a modal procedure for print ing modes

10 ( define print ing (modal ( motion−detector ) ) )
11
12 ; shared var iab le for paper l e v e l
13 ( define paper− level ( tray−load ) )
14 . . .
15 ; var iab le modes for documents to print
16 (mode (documents)
17 ( alone? motion−detector )
18 ( f i l t e r con f ident ia l ? app−directory ) )
19
20 (mode (documents)
21 ( people−nearby? motion−detector )
22 ( f i l t e r regular? app−directory ) )
23
24 ; procedure mode for con f ident ia l pr int ing
25 ( define con f ident ia lpr in t ing
26 (mode ( print ing )
27 ( alone? motion−detector )
28 ( default−config )
29 (lambda ()
30 ( define print−queue documents)
31 ( define header ” Confidentia l ”)
32 ( define owner user−name)
33 ; loop over documents
34 ; add metadata and print
35 ( for−each
36 (lambda (doc)
37 (metadata header owner doc)
38 ( print doc) )
39 print−queue ) ) ) )
40
41 ; procedure mode for regular print ing
42 ( define regu larpr int ing

43 (lambda ( pr int ing )
44 ( people−nearby? motion−detector )
45 ( default−config )
46 ( lambda ()
47 ( define print−queue documents)
48 ; loop over documents and print
49 ( for−each
50 (lambda (doc)
51 ( print doc) )
52 print−queue ) ) ) )
53 . . .
54 ( render−toner−paper−status )
55 ( pr int ing ) ) ) )

Listing 6. Implementing the context-aware printer
assistant application in Flute.

Listing 6 shows the implementation of the context-
aware printer assistant application in Flute. The
printing-assistant mode belongs to the flute-apps
modal and is specified with a context predicate
(printer-room? location) which implies that the ap-
plication will be launched when the user walks into a
printer room. Line 7 creates the documents modal vari-
able whose value is a list of either confidential or reg-
ular documents depending on the context when it is
accessed (i.e., confidential documents the user is alone
in the printer room and regular documents when there
is another person in the printer room). The presence
of another person in a printer room is derived from
the context source motion-detector. Line 10 creates
the printing procedure modal which consists of the
confidentialprinting and regularprinting modes.
Each mode is associated with a context predicate to
specify when it should be executed. For instance, the
confidentialprinting mode is associated with the
(alone? motion-detector), which implies that the
mode should be executed only the user is alone in
the printer room. Therefore, suppose the confidential
mode is executing and another person walks into the
printer room, the printing will be suspended and re-
sumed when the person walks out of range. The screen-
shot of the context-aware printer assistant application
running on the iPad device can be found in Appendix
A Figure 4.
6.4 Discussion
In this section, we have demonstrated the Flute lan-
guage in action by implementing the example context-
aware applications. Flute enables the developer to con-
strain a context-dependent procedure execution to hap-
pen only under a particular context by means of a single
context predicate. The context predicate is implicitly
evaluated at every step of the execution of the proce-
dure body. This ensures that the context predicate is
respected throughout the procedure execution. If the
context predicate is no longer satisfied, the procedure
execution is promptly interrupted using the developer
specified interruption strategy. Flute employs an event-



driven resumption mechanism that promptly resumes
any previously interrupted executions when relevant
context changes occur. In addition, Flute provides state
scoping strategies that enable the developer to control
the visibility of state changes among executions.

Such context-driven executions that promptly react
to context changes cannot be achieved using the exist-
ing approaches. For instance, in the current context-
oriented programming languages [7, 11, 18], once a pro-
cedure is selected and its execution is started, it is not
possible to interrupt the execution. As a consequence
the developer must manually guard each expression in
the procedure body. Moreover, the developer has to ex-
plicitly capture and restore the procedure execution in
order to preserve the execution state between context
changes. Addressing such concerns manually is error-
prone and can lead to incorrect application behaviour.
We further discuss current approaches in Section 8.

7. Challenges
The interruptible context-dependent executions model
and its first instantiation, the Flute language, is only a
first step towards our vision for a fresh look at program-
ming language support for context-aware applications.
However, to make this vision a reality, there is still more
work to do. We discuss some of the remaining challenges
below.

Ambiguous context predicates. An open issue
which is not specific to the Flute implementation
but also common to predicate-based dispatching
approaches is the predicate ambiguity problem [21].
The current implementation of Flute relies on
the developer to write mutually exclusive context
predicates for modes that belong to the same modal.
However, sometimes the developer may specify
ambiguous context predicates where multiple
predicates may be true at the same time. When
the Flute dispatcher encounters such cases during
the dispatching process, an ambiguous context
predicates exception is raised. However, this is one
design choice and there is room for exploring the
solution space to this problem. For instance, the
developer can specify ordering priorities that can
used select one mode in case there are multiple
context predicates that evaluate to true. Another
design choice is to employ a dedicated ambiguity
resolution mechanism [1].

Garbage collection of suspended executions.
Allowing executions to be suspended raises a
garbage collection challenge. How long should sus-
pended executions be stored before being subjected
to garbage collection? In the best case scenario every
suspended execution will be resumed or restarted at

a later point when its associated context predicate
becomes satisfied again. However, in the worst case
scenario, the context predicate associated with a
suspended execution may never become satisfied
again. Such executions should be automatically
garbage collected by the language runtime. The
main difficulty is due to the fact that it is not
possible to a priori identify context predicates that
will never be satisfied again. There are possible
solutions that we have explored (but not presented
in this paper) such as allowing the developer to
specify a condition or a predefined timeout such that
when it becomes satisfied and the corresponding
execution that is still suspended is automatically
garbage collected.

Explicit versus implicit shared variables. The
state scoping strategies that we have discussed, are
applied to all variables that are shared by the exe-
cutions. However, this involves a possible overhead
of keeping track of state changes for all the variables
that belong to the shared scope. Moreover, the fact
that new modes can be dynamically added to a
modal, it renders it difficult to control the variables
that can be accessed by the modes. To alleviate
such a concern, we are exploring the possibility
of allowing the developer to explicitly specify the
variables that can be shared by the modes that
belong to the same modal. For instance, the agenda
modal can explicitly specify the shared variables for
its modes as follows:

1 ; modal de f in i t i on
2 ( define agenda (modal ( current−user )
3 ; shared var iab l e s
4 ( define date−range 2)
5 ( define display−scale 4) ) )

Listing 7. Explicit shared variables in a modal
definition

8. Related Work
To the best of our knowledge, there is no existing ap-
proach that supports the ingredients of the interrupt-
ible context-dependent executions model. However, our
model absorbs some of its ingredients from existing ap-
proaches. In particular, our work can be compared to
existing works on context-oriented programming lan-
guages, continuations, coroutines, threads, and func-
tional reactive languages. The remainder of this section
gives a review of those approaches.

8.1 Context-oriented Programming
The context-oriented programming (COP) [16]
paradigm has been recently proposed for the develop-
ment of context-aware applications. Subsequently, a
number of COP languages have been developed. These



include ContextL [7], Ambience [11] and EventCJ [18].
COP focuses on modularising context-dependent
behaviours (procedure definitions) into entities (called
layers), which can be dynamically activated or de-
activated at runtime. Most COP languages provide
explicit language constructs to activate or deactivate
layers. For example, ContextL provides with-layers
and without-layer as constructs to activate and
deactivate layers respectively. Activating a layer makes
certain procedures available while deactivating a layer
makes certain procedures unavailable. However, in
COP once a procedure execution is started it is not
possible to react to any context changes that occur
before the completion of the procedure execution. Thus,
none of the COP approaches support interruption of
an ongoing procedure execution. Contextual values [31]
support variables similar to our modes of variables
that hold different values depending on the context.
However, they do not support modes of procedures
and there is no notion of interruptible and resumable
executions.

Most recently, Vallejos et al. [32] proposed predi-
cated generic functions, which is a predicate dispatch-
ing mechanism that enables one to associate context
predicates to context-dependent functions. Like in our
approach, a function definition is associated with a con-
text predicate expression. However, in their case the
context predicate is only used to determine the most-
specific function that should be invoked but once the
selected function and its execution started, it cannot
be interrupted. The context predicate is only checked
at the function dispatch stage whereas in our approach
the context predicate is checked at every evaluation step
during the function execution. Moreover, the dispatch-
ing process happens only once i.e., it does not take into
account of future context changes.

8.2 Continuations and Coroutines
Programming languages like Scheme [30] and Stan-
dard ML [13] provide support for first-class con-
tinuations [15], which enable the developer to
capture the current execution state during pro-
cedure execution and return to that particular
point later on. For instance, Scheme provides the
call-with-current-continuation (commonly abbre-
viated as call/cc) construct. The call/cc construct
reifies the current continuation into a first-class function
that can be arbitrarily invoked later. In order to capture
execution state using call/cc, the developer needs to
explicitly identify which points in the procedure body
that an execution state needs to be captured and when
it can be interrupted or resumed. Expressing context-
dependent interruptible executions in this style, implies
that the developer must precede each statement in the
procedure body with a conditional statement in order to

check for the validity of certain context condition. Since
a context change can potentially occur at any evalua-
tion step during the execution it is difficult to determine
the interruption points. In addition, the developer must
maintain an inventory of continuations mapping to dif-
ferent context events. Our approach builds on the idea
of first-class continuations to preserve execution state,
but with the focus on providing transparent and au-
tomatic execution state management (i.e., without re-
quiring the developer to explicitly use continuation con-
structs in order to capture or restore the execution).

Coroutines [5], which are available in languages such
as Lua [23] and Simula [3] support a control transfer
mechanism that allows a coroutine to pass control back
and forth between coroutines. As summarised in [19]
and later in [22], the main characteristics of a corou-
tine are: (i) the state local to a coroutine persists be-
tween successive calls, and (ii) the execution of a corou-
tine is suspended as control leaves it, only to carry on
where it left off when control re-enters the coroutine
at some later stage. Therefore, when the current exe-
cuting coroutine transfers control to another coroutine,
its execution becomes suspended and the execution of
the target coroutine is resumed. However, in coroutines
approaches the developer must explicitly transfer con-
trol (typically expressed using the resume or yield con-
struct) at certain points in the procedure body. How-
ever, if the transfer of control depends on runtime con-
text conditions (which is the case in context-aware ap-
plications) it is not always possible to determine those
points at development time. And thus the developer
has to insert multiple control transfer constructs and
guard each one of those with a context predicate. Also,
coroutines only support suspend and resume semantics
and the developer has no other interruption mechanisms
such as abort or restart. Moreover, coroutines neither
provide support for automatic resumptions nor mecha-
nisms to scope state changes.

8.3 Threads
Traditional threads [12, 24] can be used to express exe-
cutions that can be suspended and resumed. Threads
are typically classified according to their scheduling
strategy i.e., preemptive or cooperative [27]. How-
ever, the two categories of threads appear at the two
extremes. On the one extreme, there is preemptive
threads, which are non-deterministic and their sus-
pension or resumption is entirely based on a preemp-
tive scheduler. Preemptive threads are unsuitable for
context-aware applications since the interruption of a
context-dependent execution depends on certain con-
text conditions and not on a predefined time-slot by
the underlying scheduler. On the other extreme, there
is cooperative threads that require one thread to ex-
plicitly handover control to another thread. Therefore,



cooperative threads seem to be the only viable thread-
ing mechanism to context-dependent interruptible ex-
ecutions. However, cooperative threads suffer from the
same limitation as coroutines.

As with coroutines, it is difficult to know when an
execution may need to be suspended or resumed since a
context change can potentially occur at any moment.
Using threads to develop interruptible context-aware
applications would require the developer to identify
those points where an execution may be interrupted,
which is almost impossible due to the unpredictable
nature of context changes. The developer would have
to face the burden of explicitly inserting context predi-
cates to proceed every expression in the procedure body.
Also, the developer would require explicit suspend con-
structs for every context condition. Even still, the de-
veloper would need to setup a custom management of
suspended threads to decide when they need to be re-
sumed. Another problem is that multiple threads may
interfere with each other thus requiring the developer
to deal with the problems of thread management to
avoid race conditions and deadlocks. All that burden
lies squarely on the shoulders of the developer.

8.4 Functional Reactive Programming
Functional reactive programming (FRP) languages [6,
20, 29, 33] provide support for automatically manag-
ing dependencies among procedures. Central to FRP
is the language mechanism to declaratively express de-
pendencies among procedures and data, and then let
the language automatically re-evaluate the procedures
whenever there is value change of the data they depend
on. The technique we employ in the change-driven re-
sumption of paused executions is similar to that found
in FRP languages. However, the focus of FRP is mostly
on efficient propagation of change and not on express-
ing context conditions to decide whether an execution
should be executed or not. Therefore, any change of a
value always triggers the execution that runs from the
start to the end without interruption.

ReactiveML [25] is reactive library for Standard ML
that is based on the notion of reactive expressions. A
reactive expression is an SML expression that can be
activated and suspended during its execution. The li-
brary provides constructs activate and suspend to ac-
tivate and suspend an execution of a reactive expression,
respectively. The main difference between ReactiveML
and our approach is that ReactiveML requires the de-
veloper to explicitly express which points in the proce-
dure body that an execution can be suspended using
the suspend construct.

9. Conclusion
To advance beyond stone, we must tame fire. Only
then can we forge new tools and spark a new age of
invention and an explosion of new technologies. I’m
talking about the limitations of programming which
force the programmer to think like the computer
rather than having the computer think more like the
programmer –Dmitriev Sergey [8].

The explosion of sensor-equipped devices has led us to
believe that the future of mobile applications lies in
true context-awareness. We have presented our vision
of the interruptible context-dependent executions, which
aims at spurring a programming language revolution to
ease the development of true context-aware applications
that fully exploit context information and promptly
react to context changes. Our first step towards such
a revolution is the Flute language, which incorporates
the interruptible context-dependent executions model.
As we have demonstrated, by incorporating this model,
Flute:
• Facilitates the development of context-aware appli-

cations whose execution can be interrupted by con-
text changes at any moment during the execution.
• Enables the developer to express a context condition

(by means of a single context predicate) under which
a context-dependent procedure is constrained to run.
• Supports a reactive dispatching mechanism that con-

tinuously takes into account of any new context
changes in order to select new applicable context-
dependent procedures to execute for the current con-
text.
• Provides interruption strategies (suspend and abort)

that allow the developer to specify what to do with
the execution when the associated context predicate
is no longer satisfied
• Provides resumption strategies (resume and restart)

that allow the developer to specify what to do with
the suspended execution when its associated context
predicate later becomes satisfied again.
• Provides a number of state scoping strategies (im-

mediate, deferred, and isolated) that enable the de-
veloper to control the visibility of state changes to
the shared state.
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A. The iFlute Platform Screenshots
The example context-aware applications we have pre-
sented have been developed and deployed on the iPad
device that runs Apple’s iOS 5.0.1. However, note that
the iOS is just a testing platform and the context-
dependent interruptible executions model and Flute are
not tied to the iOS. Figure 2 shows the screenshot of

Figure 2. The iFlute platform for interruptible
context-aware applications

the iFlute platform where context-aware applications
can be deployed. Figures 3 and 4 show the screenshots of
the context-aware calendar application and the context-
aware printer assistant application running in the iFlute
platform.



Figure 3. The context-aware calendar application ex-
ecuting in the public mode.

Figure 4. The context-aware printer assistant applica-
tion. For this experiment, we setup a simulated Bonjour
printer that supports wireless printing with the iOS.


