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ABSTRACT
Software-as-a-Service (SaaS) applications are multi-tenant
software applications that are delivered as highly config-
urable web services to individual customers, which are called
tenants in this context. For reasons of complexity manage-
ment and to lower maintenance cost, SaaS providers main-
tain and deploy a single version of the application code for all
tenants. As a result, however, custom-made extensions for
individual tenants cannot be e�ciently integrated and man-
aged. In this paper we show that by using a context-oriented
programming model, cross-tier tenant-specific software vari-
ations can be easily integrated into the single-version appli-
cation code base. Moreover, the selection of which variations
to execute can be configured on a per tenant basis. Con-
cretely, we provide a technical case study based on Google
App Engine (GAE), a cloud platform for building multi-
tenant web applications. We contribute by showing: (a)
how ContextJ, a context-oriented programming (COP) lan-
guage, can be used with GAE, (b) the increase in flexibil-
ity and customizability of tenant-specific software variations
using ContextJ as compared to Google’s dependency injec-
tion framework Guice, and (c) that the performance of using
ContextJ is comparable to Guice. Based on these observa-
tions, we come to the conclusion that COP can be helpful
for providing software variations in SaaS.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed Applications; D.2.3 [Software
Engineering]: Coding Tools and Techniques—Object-ori-
ented programming ; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, and Enhancement—Extensibility
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1. INTRODUCTION
Software-as-a-Service (SaaS) [24] di↵ers from traditional

application service provisioning (ASP) in the sense that econ-
omies of scale play a much more important role. A tra-
ditional application service provider typically manages one
dedicated server per customer. In contrast, SaaS providers
typically adopt a multi-tenant architecture [5], meaning that
a shared physical or virtual server typically hosts multiple
customers, which are called tenants in this context.

Di↵erent architectural strategies can be applied to achieve
multi-tenancy, for example at the application or virtual-
ized infrastructure level. Most SaaS providers prefer the
application-level multi-tenancy approach where multiple ten-
ants are served by a shared application instance, which may
be either placed on physical or virtualized hardware. The
primary benefit of application-level multi-tenancy with re-
spect to the virtualization approach is that the operational
costs can be significantly reduced [5, 21]: (i) hardware and
software resources can be more cost-e�ciently divided and
multiplexed across tenants, and (ii) the overall maintenance
e↵ort is seriously simplified because there is only a single
version of the application code for all tenants.

A known problem with the application-level multi-tenancy
approach however is the lack of customization flexibility. In
order to meet the unique requirements of the di↵erent ten-
ants, the application must be highly configurable and cus-
tomizable. The current state of practice in application-level
multi-tenancy is that configuration [5, 17] is preferred over
customization which is considered too complex [23]. Con-
figuration usually supports variance through setting pre-
defined parameters for the data model, user interface and
business rules of the application. Customization on the other
hand involves software variations in the core of the SaaS
application in order to address tenant-specific requirements
that cannot be solved by means of configuration.



Existing programming models for customizable software
such as reflection [4], aspect-oriented programming (AOP) [9]
and dependency injection (DI) [10] do support tenant-specific
variations to a certain extent, but these approaches also have
several limitations with respect to management of tenant-
specific customizations in a single-version application code
base (a detailed account of these limitations is presented in
Section 2). In this paper, we show that these limitations
can be solved by the context-oriented programming (COP)
model [8, 18].

Using COP, tenant-specific software variations can be eas-
ily integrated and managed in the core SaaS application.
The selection of which variations to execute can be config-
ured on a per tenant basis. Moreover, COP automatically
ensures isolation between di↵erent tenants with respect to
the application configuration, i.e. di↵erent combinations of
software variations can co-exist within a single application
instance at run-time. Because all tenants are served by the
same instance of the SaaS application, COP supports run-
time activation of tenant-specific software variations in such
shared application instances.

This paper contributes with the following findings. First,
we integrate the COP implementation ContextJ [18] on top
of Google App Engine (GAE) [12]. While relying on the scal-
able and high-performant datastore of GAE to store and iso-
late tenant-specific application metadata, we use ContextJ
to implement tenant-specific software variations. Second,
we discuss how using ContextJ improves the flexibility and
the customizability of software variations as compared to
Google’s dependency injection framework Guice [13]. Third,
we show that the performance of using ContextJ is equal
to Guice. Therefore, our approach is a viable alternative to
current approaches of managing software variations in GAE.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of the relevant state of the art in
the field of tenant-specific customization. Subsequently, Sec-
tion 3 introduces our application case study and sets out
the requirements for tenant-specific customization of multi-
tenant applications. Section 4 presents the COP program-
ming model and its integration with Google App Engine.
In Section 5 we illustrate the major benefits of COP with
respect to customization flexibility and evaluate the perfor-
mance overhead of COP+GAE with respect to operational
costs by comparing it with the dependency injection ap-
proach Guice+GAE. Section 6 concludes the paper and dis-
cusses future work.

2. RELATED WORK
This section discusses related approaches and program-

ming models with respect to tenant-specific customization
of SaaS applications.

Virtualization-level Multi-tenancy

With virtualization-level multi-tenancy, virtualization tech-
nology can be used to run multiple operating system par-
titions with a dedicated application-middleware-OS stack
for each tenant on shared servers. The advantage of this
approach is its increased customization flexibility, i.e. it is
possible to perform o↵-line customization of the applica-
tion software for a specific tenant into a new version and
then (re)deploy a virtual image with the new version for
that tenant. Moreover the application design should not
be tenant-aware and therefore the upfront application en-

gineering cost is not increased [21]. On the negative side,
however, server resources are unnecessarily wasted because
for each tenant a separate instance of the middleware stack
has to be created and maintained. Moreover, maintaining
separate application code versions for each tenant also in-
curs a high maintenance cost which cannot be tolerated by
many SaaS providers. For example, experiments by Tsai et
al. [26] demonstrate that hosting multiple tenants on a single
VM yields a scalability increase of 60-90% over a traditional
design in which each tenant is assigned to a single virtual
machine.

Multi-tenant Middleware

To manage multiple tenants on a single VM, an additional
middleware layer is necessary to ensure appropriate data
and performance isolation between di↵erent tenants. For ex-
ample, Google App Engine (GAE) [12] recently introduced
an API for isolation of application data of di↵erent tenants
within a shared application instance [14]. Another initia-
tive is a recent JSR to include support for multi-tenancy
in the Java EE platform [7]. The aim of these middleware
platforms is focused on reducing the application engineering
complexity of building multi-tenant software by shifting this
complexity from the application design towards a reusable
middleware architecture. However, these approaches cur-
rently do not tackle the challenge of advanced customization,
i.e. managing tenant-specific software variations within a
single application instance. To support tenant-specific soft-
ware variations, separate application instances still have to
be created and maintained on a per tenant basis [2].

Programming Models for Customizable Software

Di↵erent software engineering models are used to encode
software variations of a single core application. A meta-
object protocol (MOP) allows programs to inspect (reflec-
tion) and modify (intercession) programs behavior. Using
these reflective capabilities, it would be possible to di↵er-
entiate, manage and modify an application for a particu-
lar tenant, much in the way it is done with classboxes [4].
However, reflection mechanisms require the host language
to have a full MOP implementation, which is often not the
case for industrial languages such as the ones used by SaaS
providers.

Several aspect-oriented programming (AOP) [9] languages
such as CaesarJ [1], allow dynamically scoped activation of
program definitions which can be used for the introduction
of tenant-specific behavior, and e↵ectively express the con-
ditions under which each aspect is applicable. Nonetheless,
declaration of such conditions is performed statically, mak-
ing it ill-suited for the maintenance of multiple tenants, since
the configuration for each tenant will block the application
for all the others.

Dependency injection (DI) is a well-known design pattern
for component-based applications that enables to separate
the management of component dependencies from the ap-
plication code based on the principle of Inversion of Control
(IoC) [10]. This pattern is supported by various dependency
injection frameworks such as Guice [13] or IoC containers
such as Spring [22]. In previous work, we have shown that
it is possible to support tenant-specific software variations
on top of a PaaS platform by means of dependency injec-
tion [27]. Still, there are some limitations inherently related
to the component-based composition mechanism that de-



pendency injection assumes. Essentially, with dependency
injection, a multi-tenant application is designed as a soft-
ware product line with run-time binding of software vari-
ations [27]. However, software variations must be decom-
posed according to multiple localized variation points which
are similar to hot spots in object-oriented framework design.
Moreover, at most one software variation can be activated
per variation point while in the general case it would be
desirable to combine multiple ones.

3. MOTIVATION
This section motivates our work by means of an applica-

tion case and subsequently sets out important characteristics
for supporting tenant-specific customization of multi-tenant
applications.

3.1 A SaaS Application for On-line Hotel
Booking

Let us consider the example of a SaaS provider for on-line
hotel booking (see Fig. 1). It provides a highly configurable
service that travel agencies can use for booking hotels on
behalf of their customers. In this scenario, travel agencies
play the role of tenants whereas employees and customers
of a travel agency correspond to a tenant’s users. Employ-
ees are o↵ered a customized user interface and customers of
the travel agency can login to check the status of the travel
items through a URL with a custom-made domain-name
that corresponds with the travel agency. A special ‘tenant
administrator’ role is assigned to someone who is responsi-
ble for configuring the SaaS application, setting up the ap-
plication data and monitoring the overall service. This role
can be played by an internal or external client of the SaaS
provider. In the context of this simple example, the tenant
administrator belongs to the ICT sta↵ of a travel agency.
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Figure 1: SaaS application for on-line hotel booking.

We designed this SaaS application as a multi-tiered Model-
View-Controller web application and deployed it on top of
Google App Engine (GAE) [12]. The View is implemented
using Java Server Pages (JSP) at the presentation tier. The
Controller is implemented using Java Servlets and plain old
Java components; this controller logic is typically distrib-
uted among the presentation tier and business tier. Finally
the Model is implemented in the data tier using JEE Entity
Beans and a slightly modified version of the JPA standard [6,
3] as provided by the GAE Java SDK.

3.2 Tenant-specific Customization
Requirements

We set out a list of important requirements for tenant-
specific customization based on a simple customization sce-
nario.

Take the case of a particular travel agency that wants to
be able to o↵er discounts to their returning customers or dur-
ing the low season. The hotel booking application should be
extended with an additional service for managing customer
profiles and a variation on the service for calculating prices.
We assume furthermore that SaaS providers employ a busi-
ness model where the base application is o↵ered to tenants
at no or low cost, but tenants incur an additional price for
additional services. As stated above, we target the design of
interactive web applications instead of coarse-grained service
compositions or workflows. As a consequence, the imple-
mentation of these additional pricing and customer profile
services are ideally integrated as part of the web application
code base in the form of easy-to-manage software extensions
in the above MVC-based architecture. Based on this simple
customization scenario, business model and application de-
sign assumptions, we can derive requirements with respect
to application development, application configuration and
run-time support.

Tenant-specific software variations: The application devel-
opment team of the SaaS provider should be o↵ered
a simple way to manage the di↵erent tenant-specific
variations as separate units of deployment that can be
selectively bound to the core architecture of the appli-
cation.

Configuration facility: With respect to customization, ten-
ant administrators should be o↵ered a configuration
facility to select what software variations should be
enabled for them (e.g. the price calculation service).
In addition, this facility should also allow to specify
specific configuration parameters (e.g. business rules
for the price calculation service). These configuration
data should be stored in the datastore of the SaaS
provider in an isolated way under a specific tenant ID.

Run-time activation of tenant-specific variations: Run-time
support is needed to provide support for activating
software variations on a per tenant basis or even per
user basis. When a user (either client or employee)
logs in, the tenant to which the user belongs should
be determined. Based on the acquired tenant ID, the
run-time support should then activate the appropriate
software variations to process the requests of the user.
Another key requirement of the run-time support is
that the tenant-specific software variations should be
applied in an isolated way without a↵ecting the service
behavior that is delivered to other tenants or users
of that tenant. To ensure robustness in the face of
run-time adaptations (i.e. safe updates [20]), we as-
sume for now that multi-tenant applications imple-
ment the stateless session model and that all tenant-
specific state is stored in a (separate) database.

4. SUPPORTING CO-EXISTING
SOFTWARE VARIATIONS USING COP

This section presents how the context-oriented program-
ming (COP) model supports tenant-specific customization



of SaaS applications. First, we briefly explain the support-
ing infrastructure of Google App Engine (GAE) that enables
implementing multi-tenant applications without support for
tenant-specific customization. Subsequently we introduce
the COP programming model and explain its integration
with GAE. To do so we use ContextJ [18], a context-oriented
extension to the Java language.

4.1 Multi-tenancy Support by GAE
We propose to integrate COP as an extension to Google

App Engine (GAE). The main reason is that this PaaS plat-
form provides the supporting infrastructure to take care of
scalability. Google App Engine automatically scales up (and
down) by creating a pool of identical application instances
as user load increases.

In our case, each application instance itself is able to serve
multiple tenants. To achieve tenant data isolation within
such a single application instance, three main components
are required: (i) the tenant context containing the informa-
tion of the tenant linked to the current request (via a unique
tenant ID), (ii) tenant-specific authentication to identify the
tenant, and (iii) multi-tenant data storage. As stated in
Section 3, GAE has built-in support for such tenant data
isolation via the Namespaces API [14]. We only had to im-
plement a filter to map incoming requests to a specific tenant
namespace. Moreover we have used the caching service of
GAE [16] in order to retrieve tenant-specific data and meta-
data without large I/O performance overhead.

In order to enable tenant-specific customization, we have
also implemented a simple configuration interface for the
tenant administrators to express their preferred software
variations. These tenant-specific configurations are stored
as tenant metadata in the GAE datastore in the form of
mappings from a Tenant ID to a set of layers. This concept
of layers is the key of context-oriented programming and will
be introduced in the next subsection.

4.2 Context-oriented Programming on GAE
To develop tenant-specific customizations, we use the run-

time behavior adaptation facilities provided by an upraising
programming paradigm, called context-oriented programming
(COP) [18, 11, 8]. COP is especially tailored for the con-
struction of highly adaptable software. It enables writing
applications that can vary their behavior dynamically ac-
cording to their context of execution. The context may in-
clude any computationally accessible information, ranging
from the internal state of the application, e.g. user prefer-
ences and CPU usage, to external state such as the time of
day or physical location. COP provides dedicated language-
level abstractions to enable context-dependent software vari-
ations to be defined independently from each other and the
core application. In addition, COP allows such variations to
be dynamically activated, i.e. selected and composed with
the core application.

Using COP, tenant-specific customizations can be express-
ed as independent software variations. These variations can
be activated according to context information like the cur-
rent tenant ID and the user role who interacts with the appli-
cation. We illustrate the use of COP with the on-line hotel
booking application introduced in Section 3. As shown in
Figure 2, the application consists of three (vertical) tiers:
the presentation tier, the business tier, and the data tier.
We separate the behavior of the application into entities

called layers. At the bottom, the base layer represents the
core behavior of the application. In addition to this, we add
the layers LowSeason and VIP which correspond to tenant-
specific software variations. As can be seen, these layers
modify the price calculation (e.g. providing low-season and
VIP discounts) and the creation of bookings (e.g. allowing
VIP users to create multiple tentative bookings).

Presentation Tier Bussines Tier Data Tier

Base layer
Calculate 

Price

VIP layer

LowSeason 
layer

Calculate 
Price

Calculate 
Price

Create Booking

Create Booking

Filter room constraints

Figure 2: Software variations for the on-line booking
application.

A layer is a first-class programming language entity in
COP that represents and groups software variations. For the
implementation of our case study, we use a Java framework
for COP, called ContextJ [18]1. As shown in Listing 1, layers
are defined as separate objects.

1 public stat ic f ina l Layer VIP = new Layer ( ) ;
2 public stat ic f ina l Layer LowSeason = new Layer ( ) ;

Listing 1: Basic layer definition.

After creating the classes, we define and associate the soft-
ware variations. In ContextJ, layer-specific behavior is de-
fined by enclosing method declarations in layer expressions.
Consider Listing 2, in which the PriceCalculator class is
defined. This class provides a common method calculate-

BookingPrice that is part of the base layer (Lines 3–6).
Then, we add specific method declarations for the VIP layer
(Lines 8–14) and for the LowSeason layer (Lines 16–21).

Once the software variations have been defined, they are
made available to the application by activating the corre-
sponding layer. In ContextJ, a layer should be activated
explicitly by means of the with construct. This construct
contains a block-like set of expressions. These expressions
are compiled with the software variations of the activated
layer as their context. Outside of the with constructs, only
the core behavior of the base layer is active.

Listing 3 shows a layer activation in ContextJ. Here, we
see part of the definition of the CreateBookingServlet class.
In Line 7, we use getTenantLayers() to retrieve the tenant-
specific configuration and to determine the currently acti-
vated layer, for which we then execute the layer-specific cre-
ateBooking method. For example, if the VIP layer would be

1The full implementation of ContextJ is available at [19].
ContextJ extends Java’s standard syntax by means of a pre-
compiler. There also exists an implemented version that
does not use syntactic abstractions. We refer the interested
reader to [18] for further details about these two implemen-
tations.



1 public c lass Pr i c eCa l cu l a to r {
2 . . .
3 public double ca l cu l a t eBook ingPr i c e (double pr i ce ,
4 Date s ta r t , Date end ) {
5 // Ca lcu la te d e f au l t p r i c e
6 }
7
8 layer VIP {
9 public double ca l cu l a t eBook ingPr i c e (

10 double pr i ce , Date s ta r t , Date end ) {
11 double de f au l tP r i c e = proceed ( ) ;
12 // Apply d i scount to d e f au l t p r i c e
13 }
14 }
15
16 layer LowSeason {
17 public double ca l cu l a t eBook ingPr i c e (
18 double pr i ce , Date s ta r t , Date end ) {
19 // Ca lcu la te p r i c e with low season d i scount
20 }
21 }
22 }

Listing 2: Software variation definition.

activated, we would use its software variation definition, and
otherwise the behavior as it is defined in the base layer.

1 public c lass CreateBookingServ let
2 extends HttpServ le t {
3 . . .
4 public void doPost ( HttpServ letRequest req ,
5 HttpServletResponse resp ) throws IOException {
6 . . .
7 with ( getTenantLayers ( ) ) {
8 // s e t booking c on s t r a i n t s
9 createBooking ( const r s , guest , p r i c eCa l c ) ;

10 // createBooking c a l l s ca l cu l a t eBook ingPr i c e ( )
11 }
12
13 public Booking createBooking ( Const ra int s constr ,
14 User guest , P r i c eCa l cu l a to r p r i c eCa l c ) {
15 // Create s i n g l e booking
16 // Display s i n g l e booking
17 }
18
19 layer VIP {
20 public Booking createBooking ( Const ra int s constr ,
21 User guest , P r i c eCa l cu l a to r p r i c eCa l c ) {
22 // Create mul t ip l e bookings
23 // Display mul t ip l e bookings
24 }
25 }
26 }

Listing 3: Software variation activation.

A tenant may be able to compose di↵erent layers, for in-
stance to combine the behavior of a tenant-specific layer with
the behavior of the base layer.2 The call of a proceed con-
struct in a method defined in the tenant-specific layer (e.g. in
the calculateBookingPrice method in the VIP layer (Line
11 in Listing 2)), ensures that the original definition of the
method is called.

The tenant-specific configurations used for choosing a spe-
cific layer in the getTenantLayers() method, are stored as

2In ContextJ, the order of composition of layers is deter-
mined by the order of activation. The base layer is consid-
ered to be activated before any other layer. We refer the
reader to [18] for further details about layer composition in
COP.

tenant metadata in the GAE datastore in the form of map-
pings from Tenant ID to a set of layers. Similarly, metadata
about user-specific software variations can also be stored in
this way in the GAE datastore. In case that a specific ten-
ant does not specify any preference, the behavior of the base
layer is selected.

5. FEASIBILITY AND PERFORMANCE
DISCUSSION

To show that ContextJ is a viable alternative to imple-
ment tenant-specific software variations in GAE, we imple-
mented two versions of the on-line hotel booking case study,
with Guice and ContextJ respectively. In this section we
present and discuss our observations. First, we describe
some details of the Guice implementation of the on-line
booking application on top of GAE. Subsequently we de-
scribe the increased customization flexibility that context-
oriented programming (ContextJ) gives over dependency in-
jection (Guice). Finally, we evaluate and compare the per-
formance of both implementations, and see that they have
an equal performance.

5.1 The Guice-based Implementation
As explained in Section 2, Guice supports the binding of

software variations to locally declared variation points. This
binding is specified in a separate configuration file, called
web.xml. To use Guice for supporting tenant-specific cus-
tomizations on top of GAE, we first stored the data from
this configuration file in the database as first-class entities
that can be inspected and modified at run-time by tenant
administrators. Second, to enable a single application in-
stance to simultaneously serve multiple tenants, it should
be possible to switch between software variations at run-
time, i.e. run-time rewiring of dependencies must be imple-
mented. Fortunately, Guice supports this run-time rewiring
by injecting a Provider [15], which is a user-specified class
to return an instance of a given type. In our case we imple-
mented a Provider that returns for each variation point the
software component that is specified in the configuration of
the current tenant being served.

5.2 Customization Flexibility
Context-oriented programming succeeds to provide a flex-

ible implementation of multi-tenant applications for GAE,
with the added value that this can be done even at run-
time. Under the spotlight of the case study presented in
Section 3, the use of COP to customize SaaS applications is
proven beneficial with respect to: modularization, configu-
ration, and behavior isolation of software variations.

Tenant-specific software variations can be mapped to lay-
ers in a straightforward way. A system-wide customization,
regarding a specific software variation, is grouped and man-
aged together in a layer, which can be dynamically activated
and deactivated. Dependency injection (DI) only o↵ers sup-
port for localized changes. For example, the VIP layer in
Figure 2 provides a software variation for creating a book-
ing, which customizes the core behavior in both the business
and presentation tiers.

COP supports the dynamic combination of multiple lay-
ers. For example, a specific tenant (i.e. travel agency) can
configure the SaaS application to select both the LowSeason
and VIP software variations using the configuration facility.



When a VIP customer of that tenant uses the on-line hotel
booking application during the low season period, the two
layers will be activated. To achieve layer combinations, it
su�ces to use the with construct at the entry point of the
application, e.g. the CreateBookingServlet class in List-
ing 3. This kind of combinations are generally di�cult to
achieve using DI, where for each variation point it is possible
to inject only one software component at a time.

Software variations are applied within the dynamic scope
of the with construct. This property allows COP to in-
herently support the isolation of layer activations between
di↵erent tenants. Di↵erent combinations of layers can thus
be concurrently activated for di↵erent tenants. For instance,
if a travel agency selects the LowSeason software variation,
the appropriate layer will be activated only for the customers
of that particular travel agency, while customers of tenants
who have not selected this variation will not see the price
discounts for the low season. With DI, a software variation
is applied within the scope of a single variation point. There,
the Provider ensures the isolation of this software variation.

5.3 Performance and Scalability Evaluation
For the performance evaluation, we first describe the cost

model that we use for the execution cost of customizable
SaaS applications. Next, we compare our COP implemen-
tation (using ContextJ), with the version developed using
the Guice dependency injection framework. We describe
the performed experiments on these two versions deployed
on top of Google App Engine, and analyze the results.

5.3.1 Cost Model

With traditional application service provisioning (ASP),
the execution cost is defined by the usage of CPU, memory
and storage for normal application execution. In general, a
customizable, multi-tenant SaaS application has the same
application execution cost per tenant. However, performing
tenant-specific authentication and the necessary customiza-
tions add to this base load. CPU time is increased to process
the authentication and the customizations, and additional
memory is needed to store the tenant-specific configurations,
the di↵erent software variations, and data about the tenants
(e.g. the tenant’s name and address). Currently, storage is a
cheap resource and has less influence on the total execution
cost. Therefore, we focus our evaluation on CPU time and
memory.

5.3.2 Experiments

We compare the execution costs, measured in CPU time
and memory, of our case study for the Guice and the Con-
textJ version. Both versions are deployed with GAE (SDK
1.5.2), using the high replication datastore (default option).
Each tenant is represented by 200 users who each execute a
booking scenario. This booking scenario consists of 10 re-
quests to the application: first several queries are performed
to search for hotels with free rooms in a given period, then
a tentative booking in one hotel is created, and finally the
booking is confirmed. The di↵erent users of one tenant will
execute the booking scenario sequentially, while the tenants
run concurrently. It is not our goal to create a represen-
tative load for this application, but to compare the execu-
tion cost of the di↵erent versions under the same load. We
retrieve the information about the execution cost via the
Google App Engine Administration Console. It provides a

dashboard displaying the resource usage by the application.
Notice that the focus of this comparison is on the relative
di↵erences between the execution costs, since the absolute
numbers depend on the current (global) load on the GAE
platform. Furthermore, to keep the comparison between
COP and DI fair, we only compared the performance of
running the two applications with the same software varia-
tion (i.e. the LowSeason software variation) activated for all
tenants on top of the base code. We also activated only this
one software variation because Guice does not support com-
binations of multiple software variations at a single variation
point.

In Figure 3 we present the evolution of the average CPU
usage by the COP and DI versions with an increasing num-
ber of tenants. To our surprise, the COP version results in
lesser CPU usage for a higher number of tenants.

Figure 3: Overview of the CPU usage by the COP
and DI versions.

The total memory usage cannot be measured precisely,
because several other factors despite the application bina-
ries add or reduce memory consumption: a rising number of
requests triggers an increase in memory because a new in-
stance is started to provide better load balancing, and once
the requests decline, instances become idle and are removed
to release memory. Therefore, we use the average number of
instances to represent the maximal possible memory usage.
Figure 4 shows the evolution of the average number of appli-
cation instances when increasing the number of tenants. As
can be seen, the number of instances increases slightly with
the number of tenants, which is parallel for both versions.

Figure 4: Overview of the number of instances used
by the COP and DI versions.



Regarding scalability, Figure 4 also shows that GAE pro-
vides the same behavior of adding instances for both the
Guice and the ContextJ versions, from which we conclude
that COP does not have a negative e↵ect on the scalability
property of the application.

We also measured the number of datastore queries. The
results of these measurements are almost identical for both
implementations with minimal di↵erences. As will be ex-
plained in the next subsection, the reason for this is that
the LowSeason layer corresponds to a single variation point.

5.3.3 Analysis of the Results

The experiments clearly show that COP does not intro-
duce any performance overhead compared to the implemen-
tation using dependency injection. Specifically, comparing
the CPU load in Figure 3, we see that COP has a lower exe-
cution cost with an increasing number of tenants. The mem-
ory consumption, Figure 4, is equal for both versions. From
these observations, we extrapolate that activating more than
one software variation for each tenant will further increase
the CPU load and memory consumption, while the scaling
behavior remains the same.

A higher number of software variations will also cause a
di↵erence in the number of datastore queries between COP
and dependency injection: we assume that the DI implemen-
tation increases the load more than the COP version when
cross-tier software variations are considered. In the DI im-
plementation, the appropriate tenant-specific configuration
must be retrieved from the datastore at every variation point
throughout the request handling process. Of course this will
be optimized by caching, but even queries to the caching
service cause I/O delays. In COP, the tenant-specific con-
figuration for a particular request is retrieved only once from
the datastore, that is, during the evaluation of the with con-
struct. Thus, an increasing number of variation points has
less impact on the COP version with respect to the number
of datastore queries.

During the experiments, we encountered two challenges
that are related to performing a big amount of requests and
the state of sessions.

During the experiments, we experienced that GAE ex-
poses an issue that user requests are dropped when the load
is too high for a particular application instance to handle
in time. This resulted in a temporary denial to handle user
requests for all tenants that are sent to that instance, in
particular those tenant applications for which new user re-
quests arrive (i.e. at the start of a new tenant’s client ap-
plication). This unpredictable behavior especially appeared
with a higher number of tenants. We decided to stop a
tenant’s client application from running when its user re-
quests were dropped to prevent that other tenants would be
a↵ected. This explains why in Figure 4 the graphs of the
di↵erent versions show results for a di↵erent number of ten-
ants (for example 27 tenants for the COP version and 34 for
the dependency injection version). In addition, this problem
prevented us to perform experiments with a higher number
of tenants.

As stated above, we assumed a stateless session model.
However, even in a stateless session model, intermediate
transient state is created in the course of a single transaction
request. For example, in the on-line booking application,
one or more bookings are first tentatively created during a
session and the resulting state is stored in the caching ser-

vice of GAE; thereafter during check-out all bookings are
committed into permanent orders as a whole. Depending
on the application design, this intermediate state needs to
be managed in the scope of a single request, per session or
simply per tenant. A powerful feature of dependency in-
jection (and Guice in particular) is that these state scopes
can be declaratively enforced and custom state scopes can
be defined. COP on the other hand lacks such state scoping
mechanism. This lack of COP does however not a↵ect the
robustness of the application because GAE’s caching service
actually implements the state scoping mechanisms automat-
ically: transient state is managed in the caching service in
such a way that the state cannot leak to other sessions or
tenants. Still, an interesting line of work for COP specifi-
cally is adding a state scoping mechanism to COP.

6. CONCLUSION AND FUTURE WORK
The paper has shown that COP is a powerful customiza-

tion mechanism that allows to easily integrate and manage
tenant-specific software variations within SaaS applications.
COP achieves a higher customization flexibility in compar-
ison to the Guice dependency injection framework without
causing any performance overhead.

We have experienced problems with COP in asynchronous
communication primitives. When an application compo-
nent, for example, spawns method invocations in a new
thread, the layer activation logic of the originating thread
should hand over to the new thread. This is currently not
supported by the existing COP implementations. Exist-
ing middleware approaches that support context-sensitive
customization tackle this problem by propagating activa-
tion logic with messages that are exchanged between pro-
cesses [25]. Integrating such middleware solution with COP
is an interesting avenue for future research.

Further, a big research challenge with application-level
multi-tenancy is to create better support for ensuring per-
formance isolation between co-existing tenant applications
in a shared address space. During our experiments we expe-
rienced that GAE lacks performance isolation between the
di↵erent tenants. This resulted in the denial to handle re-
quests of certain tenants, especially when the number of ten-
ants using the application increased. Moreover, besides this
problem, it is desirable to assign di↵erent thread priorities
to di↵erent tenants; however in a Java-based system addi-
tional support from the operating system layer is needed for
this.

Finally, maintaining global state consistency comes at risk
in the presence of run-time layer upgrades: safe state consis-
tency must be enforced for those layers subject to upgrade,
while on the other hand tenants that are not a↵ected by the
layer upgrade should not experience any interruption in the
service delivery. This is also an important open issue.
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