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Chapter  10

INTRODUCTION

Hardware technology is ripe for the construction 
of mobile applications that run ubiquitously, foster 
peer-to-peer communication and seamlessly adapt 
their services to changing environments. With 

respect to these contemporary hardware phenom-
ena, we observe that programming technology 
is lagging behind in enabling the construction of 
applications that naturally support concurrency, 
decentralised and unreliable distribution, context-
awareness and dynamic self-adaptability. These 
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Language Engineering 
for Mobile Software

ABSTRACT

Mobile systems offer the possibility of delivering software services that tightly match user needs, thanks to 
their availability right at the moment and place where they are needed, and their ability to take advantage 
of local resources and self-adapt to their environment of use. Alas, writing software for mobile systems is 
not an easy endeavour. Mobile software construction imposes a number challenges that render existing 
programming technology insufficient to write such software conveniently. To improve this situation, the 
authors have taken a language engineering approach. In this chapter they identify the main challenges 
encountered in mobile software construction and the requirements that rise in the design of program-
ming languages. By way of illustration, the authors present the result of their language engineering 
experiments —four programming models to ease the construction of software that can cope gracefully 
with the challenges brought about by mobility.
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aspects are key to fully exploiting the potential 
that will set mobile systems apart from traditional 
desktop and server systems. To consolidate the 
emerging field of mobile software engineering, 
new programming languages, methodologies 
and development tools need to be co-designed. 
In this chapter we concentrate on one piece of 
the puzzle, namely language engineering for 
mobile applications. We give a rendition of the 
experience we have gathered so far in shaping the 
design space of mobile languages, and describe 
possible designs along our two principal axes 
of expertise: Ambient-Oriented Programming 
(AmOP) (Dedecker et al., 2006; Van Cutsem 
et al., 2007; Vallejos et al., 2009) and Context-
Oriented Programming (COP) (Costanza, 2008; 
González et al., 2008). AmOP languages ease the 
construction of software deployed in mobile ad hoc 
networks because they provide dedicated language 
features that help the programmer in dealing with 
the hardware characteristics inherent to those 
networks. Example features include connections 
that tolerate temporary network failures (required 
because of the volatility of wireless network links) 
and primitives to spontaneously discover nearby 
services in the local network. COP languages 
ease the construction of adaptive applications by 
providing features to support context-dependent 
behavioural variations. COP treats context ex-
plicitly, and provides mechanisms to dynamically 
adapt application behaviour in reaction to changes 
in context at run time. The context encompasses 
all computationally accessible information that 
describes the current situation, such as device 
location, battery charge level, and user activity. 
We use the most representative languages we have 
developed –AmbientTalk, Ambience, ContextL 
and Lambic– as case studies on language design, 
highlighting their strong points and discussing 
their pitfalls by way of illustration.

CHALLENGES IN MOBILE 
LANGUAGE ENGINEERING

The hardware properties of the devices consti-
tuting a mobile network engender a number of 
phenomena that have to be dealt with when con-
structing mobile software. Next we summarise 
these phenomena, which are inherent to mobile 
networks and which shape the design space of 
mobile programming languages.

Volatile Connections

Mobile devices featuring wireless connectivity 
possess only a limited communication range, such 
that two communicating devices may move out 
of earshot unannounced. The resulting disconnec-
tions are not always permanent: the two devices 
may meet again, requiring their connection to be 
re-established. Quite often, such transient network 
partitions should not affect an application, allow-
ing both parties to continue their collaboration 
where they left off. These more frequent transient 
disconnections expose applications to a much 
higher rate of partial failure than that for which 
most distributed languages have been designed. 
In mobile networks, disconnections become so 
omnipresent that they should be considered the 
rule, rather than an exceptional case.

Zero Infrastructure

In a mobile network, devices that offer services 
spontaneously join and leave the network. More-
over, a mobile ad hoc network is often not manually 
administered. As a result, in contrast to stationary 
networks where applications usually know where 
to find collaborating services via URLs or similar 
designators, applications in mobile networks have 
to find their required services dynamically in the 
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environment. Services have to be discovered on 
proximate devices, possibly without the help of 
shared infrastructure. This lack of infrastructure 
requires a peer-to-peer communication model, 
where services can be directly advertised and 
discovered.

Further, remote references to services may 
become unavailable as the mobile device user 
roams around; lost references to particular kinds 
of services should be regained when available. 
This is in contrast with stationary networks in 
which references to remote resources are obtained 
based on the explicit knowledge of the availability 
of the resource, and are relatively stable. In the 
context of mobile networks, resources are said 
to be ambient.

Dynamic Execution Context

Due to mobility, the execution context of appli-
cations changes constantly, both at physical and 
logical levels. Contextual information plays an 
increasingly important role in mobile applications, 
ranging from those that are location-based to 
those that are situation-dependent or even deeply 
personalised. All these context properties that can 
influence the behaviour of applications are much 
more variable than in stationary networks.

Run-Time Behavioural Adaptation

Mobile platforms heighten the expectation that 
applications running on them will turn from mere 
isolated programs to smart software that can in-
teract with its environment. Thanks to real-time 
availability of information coming from their 
physical and logical environment, mobile systems 
have the potential to adapt swiftly to changing 
running conditions. Mobile systems should be 
aware of their execution context and should adapt 
dynamically and autonomously to such context 
so that they can provide services that fulfil user 
needs to the best extent possible.

To the best of our knowledge, no programming 
language has been designed that deals with the 
characteristics of mobile systems just described. 
Languages like Emerald (Jul et al., 1987) and 
Obliq (Cardelli, 1995) are based on synchronous 
communication, which is irreconcilable with the 
connection volatility and the zero infrastructure 
characteristics. Languages like ABCL/f (Yone-
zawa et al., 1995) and Argus (Liskov and Shrira, 
1988) that are based on futures (Halstead, 1985) 
partially solve this issue, but their objects block 
when accessing unresolved futures. Other lan-
guages based on the actor model, such as Janus 
(Kahn and Saraswat, 1990), Salsa (Varela and 
Agha, 2001) and E (Miller et al., 2005) use pure 
asynchronous communication. However, these 
languages offer no support to discover ambient 
resources or to coordinate interactions among 
autonomous computing units in the face of volatile 
connections.

Languages that treat procedures or methods as 
first-class values allow programs to be structured 
in a way that they can exhibit different behaviour 
under different circumstances. In pure functional 
programming languages like Haskell (Hudak et 
al., 1992), they can be passed as parameters to 
higher-order functions, and in languages like 
Scheme (Dybvig, 1996) or ML (Ullman, 1994), 
they can be assigned to variables which can be 
side-effected later on to change the behaviour of 
a program. However, the availability of first-class 
procedures alone does not offer sufficient means 
to coordinate changes of several collaborating 
procedures. Piccola (Achermann et al., 1999) is 
an experimental language for specifying applica-
tions as compositions of software components. A 
key feature of Piccola is the form –a first-class 
environment which is used to model, amongst 
others, objects, components, modules and dy-
namic contexts (Achermann and Nierstrasz, 2000). 
Although environments can be manipulated in 
Piccola, expressions are statically bound to the 
environment they are evaluated in, so dynamic 
activation is not supported directly.
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An alternative to programming languages 
is middleware. Over the past few years, many 
middleware platforms to support mobile comput-
ing have been proposed (Mascolo et al., 2002). In 
RPC-based middleware like Rover toolkit (Joseph 
et al., 1997) attempt to tackle the issue of connec-
tion volatility by supporting temporary queuing of 
RPCs. However, these approaches remain varia-
tions of synchronous communication and are thus 
irreconcilable with the autonomy and connection 
volatility phenomena. Communication by means 
of shared tuple spaces, as originally proposed in 
Linda (Gelernter, 1985), has proven to be par-
ticularly good communication model for mobile 
networks. This is witnessed by middleware such as 
LIME and TOTA, which are based on distributed 
variants of the original, shared memory tuple space 
model. Even though tuple spaces are an interesting 
communication paradigm for mobile computing, 
they do not integrate well with the object-oriented 
paradigm because communication is achieved by 
placing data in a tuple space as opposed to send-
ing messages to objects. Another kind of existing 
middleware is publish-subscribe middleware that 
adapts the publish-subscribe paradigm (Eugster 
et al., 2003) to cope with the characteristics of 
mobile computing (Cugola and Arno, 2002; Ca-
poruscio et al., 2003). Such middleware allows 
asynchronous communication, but has the disad-
vantage of requiring manual callbacks to handle 
communication results, which severely clutters 
object-oriented code.

REQUIREMENTS FOR MOBILE 
COMPUTING LANGUAGES

This section presents main requirements for the 
design of mobile computing languages. These 
requirements are derived from the challenges 
described in the previous section.

Non-Blocking Communication

In a mobile computing language, all distributed 
communication should be non-blocking, i.e. 
asynchronous. The main reason behind this strict 
asynchrony is that communicating parties remain 
loosely coupled. It is this loose coupling that sig-
nificantly reduces the impact of volatile connec-
tions on a distributed application. With respect to 
communication, two degrees of coupling between 
communicating parties can be distinguished:

• Decoupling in time. The communicating 
parties do not need to be online at the same 
time (Eugster et al., 2003). Decoupling 
in time implies that a sender may send a 
message to a recipient that is offline, and 
a recipient may receive and process a mes-
sage from a sender that is offline. This 
makes it possible for communicating par-
ties to interact across volatile connections. 
Decoupling in time is directly inspired 
by the need to deal with the intermittent 
disconnections inherent to mobile ad hoc 
networks.

• Synchronisation decoupling. The con-
trol flow of communicating parties is 
not blocked upon sending or receiving 
(Eugster et al., 2003). Synchronisation de-
coupling implies that a sending party can 
employ a form of asynchronous message 
passing, such that the act of message send-
ing becomes decoupled from the act of 
message transmission. Likewise, allowing 
recipient parties to process messages asyn-
chronously decouples the act of message 
reception from the act of message process-
ing. Message transmission and reception 
require a connection between sender and 
receiver, but message sending and process-
ing can be decoupled, allowing commu-
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nicating parties to abstract over the avail-
ability of the other party. This requirement 
is again directly derived from the volatile 
connections phenomenon in mobile net-
works. It allows parties to perform useful 
work while being disconnected.

Ambient Acquaintance Management

A mobile computing language should have built-in 
support for ambient acquaintance management: 
the discovery and management of nearby devices 
and their hosted services. However, the way in 
which communicating parties can discover one 
another reveals yet another degree of coupling 
with important repercussions in mobile ad hoc 
networks:

• Decoupling in space. The communicat-
ing parties do not need to know each other 
beforehand (Eugster et al., 2003), not their 
address nor their location. However, this 
means that communicating parties must 
rely on some mechanism other than precise 
addresses or URLs to get to know one an-
other. Decoupling in space is an important 
property in mobile ad hoc networks be-
cause these networks have a minimum of 
shared infrastructure, making reliance on 
servers to mediate collaborations imprac-
tical. Ambient acquaintance management 
implies more than simply the discovery of 
new parties. It also implies that communi-
cating parties must be able to keep an up-
dated view of which participants are con-
nected or disconnected.

Runtime Context-Dependent 
Behavioural Adaptations

A mobile computing language should provide 
support to dynamically adapt system behaviour 
to the current context of use. Any information 
that is computationally accessible may form part 

of the context upon which system behavioural 
variations depend. We identify the following es-
sential language properties to support run-time 
behavioural system adaptation:

• A means to specify behavioural varia-
tions. Variations typically consist of new 
or modified behaviour, but may also com-
prise removed behaviour. They can be ex-
pressed as partial definitions of modules in 
the underlying programming model such 
as procedures or classes, with complete 
definitions representing just a special case. 
Variations may also be expressed as edits, 
wrappers, or even general refactorings.

• A means to group variations into enti-
ties. Entities group related context-depen-
dent behavioural variations. These entities 
are first-class in that they can be explicitly 
referred to in the underlying programming 
model. Entities are composed in reaction 
to contextual information. Based on infor-
mation available in the current execution 
context, specific program entities may be 
activated or deactivated.

• Dynamic activation and deactivation 
of entities based on context. Entities ag-
gregating context-dependent behavioural 
variations can be activated and deactivated 
dynamically at runtime. Code can decide 
to enable or disable entities of aggregate 
behavioural variations based on the current 
context.

• A means to explicitly and dynamically 
control the scope of entities. The scope 
within which entities are activated or de-
activated can be controlled explicitly. The 
same variations may be simultaneously ac-
tive or not within different scopes of the 
same running application.

The first two features just presented (i.e. non-
blocking communication and ambient acquain-
tance management) are designed with the volatile 
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connections and zero infrastructure phenomena 
in mind, respectively. We will henceforth refer to 
programming languages that adhere to these fea-
tures as Ambient-Oriented Programming (AmOP) 
languages. AmOP languages incorporate tran-
sient disconnections and evolving acquaintance 
relationships in the heart of their computation 
model. The run-time activation and deactivation 
of context-dependent behaviour language features 
are designed for the changing execution context 
and runtime behavioural adaptation phenomena. 
We will refer to the programming languages that 
adhere to these features as Context-Oriented 
Programming (COP) languages. COP languages 
deal with context explicitly and make it accessible 
and manipulable by software. In COP, programs 
can be partitioned into behavioural variations that 
can be freely activated and combined at runtime 
with well-defined scopes.

PROGRAMMING LANGUAGES 
FOR MOBILE COMPUTING

In this section we present a number of program-
ming language approaches we have developed 
to tackle the challenges of mobile networks. We 
briefly introduce these approaches and explain 
how they address the requirements put forward 
in the previous section. We illustrate the solutions 
provided by each language by using code snippets 
from the implementation of two common examples 
in mobile computing: an instant messenger and a 
context-aware mobile phone.

AmbientTalk

AmbientTalk (Van Cutsem et al., 2007) is an 
object-oriented programming language specially 
designed to satisfy the AmOP characteristics 
presented in the previous section, non-blocking 
communication and ambient acquaintance man-
agement. This language features a concurrency and 
distribution model based on the communicating 

event loops model of the E programming language 
(Miller et al., 2005), which is itself an adaptation 
of the well-known actor model (Agha, 1986).

Non-Bocking Communication

In AmbientTalk, actors spawn concurrency: one 
AmbientTalk virtual machine may host multiple 
actors which execute concurrently. Actors define 
boundaries of concurrent execution around groups 
of objects. Two objects owned by the same actor 
can communicate synchronously, by means of 
traditional message passing. However, objects 
may refer to objects owned by other actors. Object 
references that span different actor boundaries are 
named far references and only allow asynchronous 
access to the referenced object. Any message sent 
to a receiver object via a far reference is enqueued 
in the mailbox of the actor that owns the receiver 
object and processed by the owner itself. Actors 
are event loops: they take messages one by one 
(i.e. sequentially) from their mailbox and dispatch 
them to the receiver object by invoking its ap-
propriate method.

AmbientTalk allows asynchronous message 
sends to return values by means of futures (Hal-
stead, 1985). A future is a placeholder for the 
return value of an asynchronous message send. 
Once the return value is computed, it replaces 
the future object; the future is then said to be 
resolved with the value. To make the discussion 
more concrete, consider the following example. 
Assume messenger represents a far reference to a 
remote object that represents an instant messenger 
application (further explained at the end of this 
section). The following code shows how to query 
this instant messenger for its user’s username:

def f := messenger<-getName(); 

when: f becomes: { |val| display(val) }

The <- operator denotes an asynchronous send 
of the message getName to the remote messenger 
object. This operation returns a future f. In Ambi-
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entTalk, an object may react to a future becoming 
resolved by registering an observer (a closure) 
that will be called with the resolved value (val) 
when the future has become resolved. To be able 
to respond to a getName message, it suffices for 
the messenger object to define a getName method 
as follows:

def createMessenger(name) { 

   object: { 

    def getName() { name } 

  } 

}

Note that the return value of the getName 
method is used to resolve the future that was 
created as a result of the messenger<-getName() 
message send.

Ambient Acquaintance Management

AmbientTalk employs a publish/subscribe service 
discovery protocol. A publication corresponds to 
exporting an object by means of a type tag. The 
type tag serves as a topic known to both pub-
lishers and subscribers (Eugster et al., 2003). A 
subscription takes the form of the registration of 
an event handler on a type tag, which is triggered 
whenever an object exported under that tag has 
become available in the ad hoc network. In the 
instant messenger example, the user can discover 
other messenger applications available in the sur-
roundings as follows:

whenever: IM discovered: { |messenger| 

    def fut:= messenger<-getName(); 

    // notify user of new buddy 

};

The whenever:discovered: function takes as 
arguments a type tag and a closure that serves as 
an event handler. Whenever an actor is encountered 
in the ad hoc network that exports a matching 
object, the closure is scheduled for execution in 

the message queue of the owning actor. An object 
matches if its exported type tag is a subtype of 
the type tag argument of whenever:discovered:. 
The messenger parameter of the closure is bound 
to a far reference to the exported item object of 
another actor. The closure can then start sending 
asynchronous messages via this far reference to 
communicate with the remote object. Similar to 
the export:as: function, the discovery mechanism 
returns an object whose cancel() method cancels 
the registration of the closure.

In AmbientTalk, objects can acquire far refer-
ences to objects by means of parameter-passing 
or return values from inter-actor message sends. 
Additionally, an actor can explicitly export objects 
to make their services available to remote actors 
and their objects. Service objects are exported by 
means of a type tag. Type tags are a lightweight 
classification mechanism, used to categorise ob-
jects explicitly by means of a nominal type. One 
use of type tags in AmbientTalk is to provide an 
intensional description of what kinds of services 
an object provides to remote objects. In Ambient-
Talk, a type tag can be a subtype of one or more 
other type tags, and one object may be tagged 
with multiple type tags. Although type tags are 
not used for static type checking, they are best 
compared with empty Java interface types, like 
the typical “marker” interfaces used to merely tag 
objects (e.g. java.io.Serializable and java.lang.
Cloneable). In the instant messenger example, the 
user can announce the presence of the messenger 
application on the network by means of IM type 
tag as follows:

deftype IM; 

def createIM() { 

   def pub:= export: self as: IM; 

   // this object can be used to 

      cancel the advertisement 

   pub; 

}
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From the moment an object is exported, it is 
discoverable by objects owned by other actors by 
means of its associated type tag. The export:as: 
function returns an object which can be used to 
take the exported object offline again, by invok-
ing pub.cancel().

Last but not least, by admitting far references to 
cross virtual machine boundaries, we must specify 
their semantics in the face of partial failures. Am-
bientTalk’s far references are by default resilient to 
network disconnections. When a network failure 
occurs, a far reference to a disconnected object 
starts buffering all messages sent to it. When the 
network partition is restored at a later point in 
time, the far reference flushes all accumulated 
messages to the remote object in the same order 
as they were originally sent. Hence, messages 
sent to far references are never lost, regardless 
of the internal connection state of the reference. 
Making far references resilient to network failures 
by default is one of the key design decisions that 
make AmbientTalk’s distribution model suitable 
for mobile ad hoc networks, because temporary 
network failures have no immediate impact on 
the application’s control flow. Far references have 
been intentionally made resilient to transient par-
tial failures. This behaviour is desirable in mobile 
networks because temporary network partitions 
can provoke many partial failures.

Lambic

Lambic (Vallejos et al., 2009) is an actor-based 
extension to Common Lisp also designed for the 
AmOP paradigm. Lambic features a variation of 
the AmbientTalk’s communicating event loops 
model that reconciles event-driven program-
ming with the generic function invocation style 
of Common Lisp (object-oriented programs are 
written in terms of function invocations rather than 
messages exchanged between objects). Similar 
to AmbientTalk, Lambic takes the requirements 
of non-blocking communication and ambient 
acquaintance management into account. The 

main property of this language is that the event 
loops model is integrated in the method execution 
process. As such, Lambic enables programs to be 
written in a sequential style and with a uniform 
syntax for local and distributed computations, 
while still providing event-driven program execu-
tion and support to deal with mobile computing 
issues such as connection volatility and zero 
infrastructure.

Non-Blocking Communication

In Lambic (as in AmbientTalk), actors are contain-
ers defining boundaries of concurrent execution 
for a group of objects. Event notifications are 
modelled as asynchronous generic function invo-
cations, which are sequentially processed by the 
actor’s event loop, dispatching to the appropriate 
generic functions. Events are then handled by the 
corresponding methods in the generic function. 
Standard (synchronous) Common Lisp generic 
function invocations are allowed only if they oc-
cur within the actor that owns all the objects used 
as arguments. Inter-actor computations are pos-
sible by means of asynchronous generic function 
invocations. A generic function is asynchronously 
invoked by designating an actor as the responsible 
for its processing. This results in scheduling the 
function invocation in the event queue of the 
actor. The following expression illustrates an 
asynchronous function call in Lambic:

(in-actor-of messenger (get-username 

messenger))

In Lambic, neither actors nor objects can 
receive messages directly. In order to select the 
actor that should process an asynchronous func-
tion invocation, a programmer has to supply a 
reference to an object contained in the targeted 
actor. Thus, an asynchronous function invocation 
can be read as “process this function invocation 
in the actor of this object”. The example above 
corresponds to the translation of the AmbientTalk 
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message that queries for the name of the instant 
messenger’s user, described in the previous sec-
tion. In this asynchronous function invocation, 
messenger is a far reference to the remote object 
representing an instant messenger application. By 
passing this far reference as the first argument to 
the in-actor-of form, we ensure that the invocation 
to the get-username accessor method is processed 
by the actor that contains the remote object.

By default, an asynchronous generic function 
invocation returns a future as result whose result 
can be handled by means of an observer similar 
to the when:becomes: construct in AmbientTalk:

(when-resolved (in-actor-of messenger 

(get-username messenger)) 

    (lambda (name) 

        (display “Buddy name: ” name)))

Lambic integrates the features of the com-
municating events loop model into the method 
execution process, which makes it possible for 
concurrent and distributed programs with asyn-
chronous style (e.g. when-resolved) and non-
uniform syntax (e.g. in-actor-of) to be turned 
back into a sequential style with uniform syntax. 
This is ensured by two design principles. First, 
in Lambic there is no syntactic distinction to 
indicate whether a method invocation should be 
processed synchronously or asynchronously. This 
is an implicit decision that is based on the loca-
tion of the receiver object. Invoking a method on 
a local object leads to a standard (synchronous) 
method execution, whereas invoking a method on 
a remote object leads to an asynchronous method 
execution at the object’s remote location. Second, 
method invocations immediately return a future as 
result, which can be passed as argument to other 
invocations. As such, methods can be defined 
using a sequential style. No special construct is 
required to receive results of asynchronous remote 
invocations. Standard programming structures 
(e.g. control and conditional expressions) preserve 
their sequential semantics even if they are used in 
combination with futures. An invoked method is 

executed only when all the argument futures are 
resolved. The future created by a method invoca-
tion is asynchronously resolved with the result of 
the method execution.

Asynchronous function invocations follow 
the same syntactic pattern of Common Lisp 
synchronous invocations. For instance, the asyn-
chronous method invocation described above can 
be replaced by:

(get-username messenger)

In this case, messenger is both the receiver 
argument and the indicator of the actor in which 
the method should be processed. The remote invo-
cation of get-username implicitly returns a future 
and no special callback is required to receive the 
results Thus, the example of the when-resolved 
construct described previously can be replaced 
by the following nested expression:

(display “Buddy name: ” (get-username 

messenger))

Ambient Acquaintance Management

Lambic presents the same language support for 
dealing with the issues of distribution (discovery 
and failure handling) that the one of AmbientTalk. 
Each of these abstractions has been properly 
aligned to the semantics of generic functions. For 
the sake of conciseness, we do not discuss these 
constructs in this chapter and refer the reader to 
(Vallejos et al., 2009) for a complete explanation.

ContextL

ContextL (Costanza, 2008) is an extension to 
Common Lisp that enables context-oriented 
programming. It provides a means to model run-
time context-dependent adaptations of a software 
system as layers, which are modular increments 
to the underlying program definition.



159

Language Engineering for Mobile Software

Runtime Context-Dependent 
Behavioural Adaptations

In ContextL, the context-dependent behavioural 
variations of a program are represented as a num-
ber of partial class and method definitions which 
are associated with layers. A layer is a first-class 
entity that can be dynamically activated and de-
activated. When a layer is activated, the partial 
definitions contained in this layer become part of 
the program until it is deactivated. The effect is 
that the behaviour of a program can be modified 
according to its context of use without the need 
to mention such context dependencies in the af-
fected program. All layer (de)activations have a 
delimited scope of action which ensures that the 
behavioural variations are only effective for well-
defined parts of a program, and for well-defined 
durations.

ContextL layers basically consist of only a 
name and no further properties of their own. How-
ever, other constructs of ContextL can explicitly 
refer to such layers and add definitions to them 
accordingly. There is a predefined layer named t 
that denotes the root or default layer, in which all 

definitions are automatically placed when they 
do not explicitly name a layer.

The following example shows the definition 
in ContextL of a context-aware mobile phone that 
needs to adapt its behaviour between two phone 
tariffs based on dynamic properties such as time, 
flat rates, and so on. The interface for making 
phone calls can be defined as follows:

(define-layered-function start-phone-

call (number)) 

(define-layered-function end-phone-

call ())

In the above code snippet two generic functions 
are defined: start-phone-call which takes a phone 
number as parameter and end-phone-call which 
takes no parameters. Layers are defined with the 
deflayer construct. For example, the two phone 
tariff layers used to determine the cost of phone 
calls using different methods can be defined as 
follows in Exhibit 1.

In Exhibit 1, the start-phone-call and end-
phone-call layered methods specify their contain-
ment layer using the:in-layer specification. By 

 (deflayer phone-tariff-a) 

(define-layered-method start-phone-call 

   :in-layer phone-tariff-a  (number) 

   ... record start time...) 

 (define-layered-method end-phone-call 

   :in-layer phone-tariff-a  (number) 

   ... record end time & determine cost a...) 

 (deflayer phone-tariff-b) 

(define-layered-method start-phone-call 

   :in-layer phone-tariff-b  (number) 

   ... record start time...) 

 (define-layered-method end-phone-call 

   :in-layer phone-tariff-b  (number) 

   ... record end time & determine cost b...)

Exhibit 1.
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default, only the root layer is active at runtime, 
which means that only definitions associated with 
the root layer affect the behaviour of a program. 
Other layers can be activated at runtime by way of 
the with-active-layers language construct. Layer 
activation is dynamically scoped, ensuring that all 
the named layers affect the program’s behaviour 
for the dynamic extent of the enclosed program 
code. Layer activation in ContextL is expressed 
as follows:

(with-active-layers (phone-tarrif-a) 

    (start-phone-call...))

In the above code fragment, the phone-tarrif-a 
layer is activated, meaning means that start-phone-
call and end-phone-call function calls will execute 
the call behaviour defined in phone-tarrif-a. Layers 
can be deactivated at runtime by way of a similar 
construct with-inactive-layers as follows:

(with-inactive-layers (phone-tarrif-a) 

    ... contained code...)

Such a layer deactivation ensures that none of 
the named layers affect the program behaviour for 
the dynamic extent of the enclosed program code. 
Layer activation and deactivation is restricted to 
the current thread of execution in multithreaded 
Common Lisp implementations, to avoid race 
conditions and interferences between different 
contexts. Furthermore, layer activations and de-
activations can be nested arbitrarily in the control 
flow of the program.

Ambience

Ambience (González et al., 2008) is a context-
oriented language that borrows the Prototypes 
with Multiple Dispatch computation model from 
Slate (Salzman and Aldrich, 2005) and is also 
inspired by the similar object system of Cecil 
(Chambers, 1992). Ambience’s main features are 
the support of first-class contexts and dynamic 

behaviour adaptation to such contexts. Ambience 
is implemented on top of Common Lisp, therefore 
sharing the same syntax. However, Ambience does 
not rely on CLOS; rather, it implements its own 
object model from the ground up. Applications in 
Ambience are created in terms of objects which 
are cloned from prototypical objects. Prototypes 
are objects that act as representative examples of 
domain entities. Prototypes do not have a special 
status in the language other than being meaningful 
exemplars (Lieberman, 1986). By convention, 
prototype names are prefixed with the @ symbol. 
For example, in the case of a smartphone, we can 
define a prototypical @smartphone object from 
which other smartphone objects can be cloned:

(defproto @smartphone (clone @object)) 

(add-slot @smartphone ’number nil) 

(add-slot @smartphone ’ringtone nil)

Methods describe prototypical interactions 
among objects. Every method has a selector that 
identifies the particular interaction it implements, 
and a list of prototypical arguments that take 
part in the interaction. The method is said to be 
specialised on those particular arguments, and 
each prototypical argument is called an argument 
specialiser. In Ambience, argument specialisers 
are plain objects, in contrast with the multimethods 
of class-based languages such as CLOS (Bobrow 
et al., 1989) and MultiJava (Clifton et al., 2006), 
which use classes as argument specialisers. A 
method defining a call between two smartphones 
has the following form:

(defmethod call ((origin @smartphone) 

(target @smartphone)) 

   (play (ringtone target)) 

   (format t “Call from ~d to ~d~%”  

   (number from) (number to)))
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Ambient Acquaintance Management

In Ambience, contexts are first-class representa-
tions of situations. Contexts reify the physical 
and logical circumstances in which the system 
is running. For every relevant situation there is 
an associated context object that represents such 
situation computationally. For instance, being 
inside a car can be associated to a prototypical @
car context; whether it is currently day or night 
can be represented by @morning, @afternoon 
and @evening contexts; running with low bat-
tery charge can correspond to the @low-power 
context. The current activities or state of the user 
can also be reified if needed by contexts such as @
meeting, @programming, @sleeping, and so on. 
In an Ambience application, a context is defined 
programmatically as follows:

(defcontext @car) 

(defcontext @low-power) 

(defcontext @meeting)

A context object, as any normal object, can 
delegate part of its behaviour to other objects. 
These delegate objects can be seen as representing 
more general situations. General context objects 
can delegate further to coarser-grained contexts as 
needed. For instance, the @meeting context can be 
associated to a more general @silent context. The 
intention is that a meeting situation is expected 
to take place in a silent environment. To model 
this in Ambience, we have the particular context 
delegate to the more general one:

(add-delegation @meeting @silent)

Another use of delegation among context 
objects arises when two or more situations are 
valid simultaneously. Ambience will produce a 
combined context object representing the joint 
occurrence of the individual situations. This com-
bined context object delegates to each subcontext 
object corresponding to each individual situation.

There is a special context combination, the 
current context object, that represents the cur-
rent situation as a whole, the perceived state of 
affairs both inside and outside the device, at the 
physical and logical levels. This representation 
is subdivided by way of delegation in a number 
of domain-specific subcontexts. These contexts 
that are currently reachable in the delegation 
graph starting from the current context are said 
to be active. The current context thus serves as a 
handle to all currently active subcontexts. Note 
that by definition the current context is always 
active. Furthermore, it is the most specific context 
that can possibly be active at any given time. The 
reciprocal of the active status is of course inac-
tive: any context object that is not linked to the 
current context delegation graph is inactive. The 
activation and deactivation of context is controlled 
at runtime as follows:

 (activate-context @car) 

   -> @car context is active 

(deactivate-context @car) 

   -> @car context is inactive

Further, the activation of a context implies 
the activation of its delegate (more general) sub-
contexts. The effect of activating the @meeting 
context shown before is therefore as follows:

 (activate-context @meeting) 

   -> @meeting context is active 

   -> @silent context is active

Runtime Context-Dependent 
Behavioural Adaptations

In Ambience, object behaviour exhibited in re-
sponse to a message send does not only depend 
on the message arguments, but also on the context 
from which the message is sent. That is, the context 
of the caller affects behaviour selection (Harrison 
and Ossher, 1993). Hence, the behaviour that is 
exhibited by objects is intrinsically bound to the 
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current (changing) circumstances in which they 
are used.

Retaking the example shown previously, we 
will add to our smartphone specialised behaviour 
when the device is in silent environments. For 
doing that, we just need to define the specialised 
implementation in the @silent context (see Ex-
hibit 2).

In this way, Ambience allows modularising 
behaviour not only according to method specialis-
ers, but also considering the current situation of 
the running application. At run time our example 
will behave differently depending of the contexts 
that are currently active (see Exhibit 3).

When the context is updated by activating @
meeting,

 (activate-context @meeting) 

   -> @meeting context is active

the same message shown previously will result 
in different behaviour:

 (call bob-phone alice-phone) 

   -> Activating vibrator 

   -> Silent call from bob-phone to  

      alice-phone

This way, Ambience offers run-time behav-
ioural adaptation to changing running conditions.

FUTURE WORK

The AmOP and COP languages we have shown 
have been developed in relative independence, 
and even though their abstractions have been 
validated to varying degrees, open questions 
remain and more experience is still needed in 
medium- and large-scale applications. More 
practical experience will help us develop not 
only new programming abstractions, but also 
new accompanying methodologies to analyze, 
design and implement mobile software. Regard-
ing this methodological aspect, a promising line 
of research we are exploring is the adaptation of 
Feature-Oriented Domain Analysis, and more 
particularly the extension of the Feature Descrip-
tion Language, to the case of Context-Oriented 
Programming (Costanza and D’Hondt, 2008). 
We are also starting to explore the use of COP 

(with-context (@silent) 

  (defmethod call ((source @smartphone) (target @smartphone)) 

    (activate (vibrator @target) 

    (format t “Silent call from ~d to ~d~%” 

              (number from) (number to)))

(defparameter bob-phone (clone @smartphone)) 

(defparameter alice-phone (clone @smartphone)) 

(call bob-phone alice-phone) 

   -> Playing ringtone 

   -> Call from bob-phone to alice-phone

Exhibit 2.

Exhibit 3.
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programming abstractions to facilitate the imple-
mentation of advanced mechanisms that depend 
on logical states or modes of operation, such as 
lightweight memory transactions (Costanza et 
al., 2009; Gonzalez et al., 2009). Such modes of 
operation can be regarded as a particular case of 
execution context. With respect to AmOP, part of 
our future work focuses on scaling up the number 
of devices involved (going from tens of devices 
to thousands of computationally lightweight de-
vices, such as sensor nodes or active RFID tags) 
(Lombide et al., 2008).

Currently, none of our COP languages incor-
porates dedicated concurrency and distribution 
abstractions (although they can use the underly-
ing language’s facilities in an ad hoc fashion); 
conversely, none of our AmOP languages have 
features that are specifically designed for dynamic 
behaviour adaptation to context. Therefore, a 
major research direction we plan to follow in the 
future is the combination of both AmOP and COP 
features into one unified computation model. Mo-
bile systems are at the crossroads of concurrent, 
distributed, adaptable and autonomous systems 
—a mixture that renders this field unique and 
open to cross-fertilisation.

CONCLUSION

Mobile computing offers the opportunity to assist 
people in their everyday activities, right at the place 
and moment in which software services are needed 
the most. The usefulness and quality of delivered 
services can be improved considerably if the soft-
ware is able to cope seamlessly with mobility and 
adapt its behaviour according to sensed changes 
in the environment surrounding the host device. 
Given that existing programming languages and 
middleware do not address satisfactorily some 
of the main challenges we identified for mobile 
systems programming, we have set out to design 
our own programming abstractions. The language 

engineering experiments we have carried out were 
driven by the need for abstractions that explicitly 
support the construction of adaptable software 
running on mobile ad hoc networks. As a result, 
two fields have emerged: Ambient-Oriented 
Programming and Context-Oriented Program-
ming. The abstractions they propose are aimed 
at streamlining mobile software development 
by supporting adaptation and mobility with less 
hard-coded and cross-cutting infrastructural code. 
The use of dedicated programming abstractions 
helps avoiding the recurring use of special librar-
ies, design patterns and software architectures 
to support volatile connections, peer-to-peer 
communication, service discovery, and dynamic 
behavioural adaptation to context. These char-
acteristics are commonplace in mobile systems, 
rather than the exception. Provided with adequate 
abstractions, programmers can concentrate on the 
core logic of applications, with software designs 
that match more closely their domains of expertise, 
thus avoiding a bias towards the non-functional 
challenges imposed by mobility.
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KEY TERMS AND DEFINITIONS

Ambient Acquaintance Management: The 
discovery and management of nearby devices and 
their hosted services.

Ambient-Oriented Programming (AmOP): 
An emerging programming model aimed at easing 
the construction of software deployed in mobile 
ad hoc networks, by means of dedicated language 
features that help the programmer in dealing with 
the hardware characteristics inherent to those 
networks.

Behavioural Variation: Modularised defini-
tion of new, modified and removed behaviour, by 
means of the underlying programming model’s 
constructs, such as procedures or classes. A varia-
tion is therefore expressed as a group of partial 
definitions, with complete definitions being a 
particular case.

Context: All computationally accessible 
information that describes the current situation, 
such as device location, user activities, people and 

objects in the vicinity, environmental properties 
such as lighting and noise, device status such 
as battery charge and network signal strength, 
available network peers and the services they 
offer, and so on.

Context-Oriented Programming (COP): An 
emerging programming model aimed at easing the 
construction of adaptive applications by providing 
features to support context-dependent behavioural 
variations. COP treats context explicitly, and 
provides mechanisms to dynamically adapt ap-
plication behaviour in reaction to context changes.

Layers: Grouping of related behavioural 
variations. Layers are first-class entities that can 
be referred to explicitly at runtime, and whose 
composition can be dynamically controlled on 
demand. Layers are composed in reaction to 
contextual information.

Mobile Ad Hoc Network (MANET): A self-
configuring open network. Self configuration 
means that there is no centralised infrastructure. 
Openness means that hosts freely enter and leave 
the network at any point in time. Generally, hosts 
are mobile and thus use wireless network links.

Non-Blocking Communication: Commu-
nication that requires neither sender or receiver 
to be suspended while data is being transmitted, 
using asynchronous send and receive operations.

Scope: The dynamic extent in which behav-
ioural variations are simultaneously active or 
inactive within a running application. The scope 
delimits the execution time span in which varia-
tions are effectively applied.


