
Domains: Safe sharing among actors

Joeri De Koster Tom Van Cutsem Theo D’Hondt
Vrije Universiteit Brussel,

Pleinlaan 2,
B-1050 Brussels, Belgium

jdekoste@vub.ac.be tvcutsem@vub.ac.be tjdhondt@vub.ac.be

Abstract
The actor model has already proven itself as an interesting concur-
rency model that avoids issues such as deadlocks and race condi-
tions by construction, and thus facilitates concurrent programming.
While it has mainly been used in a distributed context it is certainly
equally useful for modeling interactive components in a concurrent
setting. In component based software, the actor model lends itself
to naturally dividing the components over different actors and us-
ing message passing concurrency for implementing the interactiv-
ity between these components. The tradeoff is that the actor model
sacrifices expressiveness and efficiency especially with respect to
parallel access to shared state.

This paper gives an overview of the disadvantages of the actor
model in the case of shared state and then formulates an extension
of the actor model to solve these issues. Our solution proposes
domains and synchronization views to solve the issues without
compromising on the semantic properties of the actor model. Thus,
the resulting concurrency model maintains deadlock-freedom and
avoids low-level race conditions.

1. Introduction
Traditionally, concurrency models fall into two broad categories:
message-passing versus shared-state concurrency control. Both
models have their relative advantages and disadvantages. In this
paper, we explore an extension to a message-passing concurrency
model that allows safe, expressive and efficient sharing of mutable
state among otherwise isolated concurrent components.

A well-known message-passing concurrency model is the actor
model [3]. In this model, applications are decomposed into con-
currently running actors. Actors are isolated (i.e., have no direct
access to each other’s state), but may interact via (asynchronous)
message passing. While originally designed to model open, dis-
tributed systems, and thus often used as a distributed programming
model, they remain equally useful as a more high-level alterna-
tive to shared-memory multithreading. Both component-based and
service-oriented architectures can be modeled naturally using ac-
tors. It is important to point out that in this paper, we restrict our-
selves to the use of actors as a concurrency model, not as a distri-
bution model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AGERE! @ SPLASH ’12 21-22 October 2012 - Tucson, Arizona, USA.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

In practice, the actor model is either made available via dedi-
cated programming languages (actor languages), or via libraries in
existing languages. Actor languages are mostly pure, in the sense
that they often strictly enforce the isolation of actors: the state of an
actor is fully encapsulated, cannot leak, and asynchronous access
to it is enforced. Examples of pure actor languages include Erlang
[5], E [18], AmbientTalk [23], Salsa [24] and Kilim [20]. The ma-
jor benefit of pure actor languages is that the developer gets very
strong safety guarantees: low-level race conditions are avoided. On
the other hand, these languages make it difficult to express shared
mutable state. Often, one needs to express shared state in terms of
a shared actor encapsulating that state, which has several disadvan-
tages, as will be discussed in Section 2.4.

On the other end of the spectrum, we find actor libraries, which
are very often added to an existing language whose concurrency
model is based on shared-memory multithreading. For Java alone,
there exist the ActorFoundry [6], AsyncObjects [2], ... Scala, which
inherits shared-memory multithreading from Java, features mul-
tiple actor frameworks, such as Scala Actors [12] and Akka [1].
What these libraries have in common is that they cannot typically
enforce actor isolation, i.e. they do not guarantee that actors don’t
share mutable state. On the other hand, it’s easy for a developer to
use the underlying shared-memory concurrency model as an “es-
cape hatch” when direct sharing of state is the most natural or most
efficient solution. However, once the developer chooses to go this
route, all of the benefits of the high-level actor model are lost, and
the developer typically has to resort to manual locking to prevent
data races.

The goal of this work is to enable safe, expressive and efficient
state sharing among actors:

safe : the isolation properties of actors are often helpful to bring
structure to, and help reason about, large-scale software. Con-
sider for instance a plug-in or component architecture. By run-
ning plug-ins in their own isolated actors, we can guarantee that
they do not violate invariants of the “core” application. Thus, as
in pure actor languages, we want an actor system that maintains
strong language-enforced guarantees, such as the fact that low-
level data races and deadlocks are prevented by design.

expressive : many phenomena in the real world can be naturally
modelled using message-passing concurrency (e.g. telephone
calls, e-mail, digital circuits, discrete-event simulations, etc.).
Sometimes, however, a phenomenon can be modelled more di-
rectly in terms of shared state. Consider for instance the score-
board in a game of football, which can be read in parallel by
thousands of spectators. As in impure actor libraries, we want
an actor system in which one can directly express access to
shared mutable state, without having to encode shared state
via a shared actor. Furthermore, by enabling direct synchronous
access to shared state, we gain stronger synchronization con-

straints and prevent the inversion of control that is characteris-
tic of interacting with actors (as interaction is typically asyn-
chronous).

efficient : today, multicore hardware is becoming the prevalent
computing platform, both on the client and the server [21].
While multiple isolated actors can be perfectly executed in
parallel by different hardware threads, shared access to a single
actor can still form a serious sequential bottleneck. In particular,
in pure actor languages that support mutable state, all requests
sent to an actor are typically serialized, even if some requests
could be processed in parallel (e.g. requests to simply read
or query some of the actor’s state). Pure actors lack multiple-
reader, single-writer access, which is required to enable truly
parallel reads of shared state.

In this paper, we propose domains, an extension to the actor
model that enables safe, expressive and efficient sharing among
actors. Since we want to provide strong language-level guarantees,
we present domains as part of a small actor language called Shacl1.
In terms of sharing state, our approach strikes a middle ground
between what is achievable in a pure actor language versus what
can be achieved using impure actor libraries. An interpreter for the
whole SHACL language can be found on our website2.

In the next section 2 we present a number of problems that
occur when representing shared state within the actor model. In
section 3 we present our domain and view abstractions. In section 4
we list a number of important additional features of SHACL. And
to conclude the paper we have a related work section and finally a
conclusion.

2. The problem: Accessing non-local shared state
In this section we introduce SHACL, a small implementation of a
pure event-loop actor language for which we introduce new fea-
tures to allow synchronous access to shared state as we go along.
There are two ways to represent shared state in the event-loop ac-
tor model: either by replicating the shared state over the different
actors or by encapsulating the shared state as an additional inde-
pendent actor. In this section we discuss the disadvantages of both
approaches using a motivating example.

2.1 Shacl: An event-loop actor language
The sequential subset of SHACL implements a prototype-based ob-
ject model similar to Self [22]. This object model also has an in-
heritance model, supports late binding and static super references.
However, these are not relevant in the context of this paper and thus
will not be discussed. The concurrency model of SHACL is based
on the event-loop model of E [18] and AmbientTalk [23] where ac-
tors are represented by vats. Each vat/actor has a single thread of
execution, an object heap, and an event queue. Each object in the
object heap of an actor is owned by that actor.“Owning” an object
gives that actor exclusive access rights to that object. Any reference
to an object owned by the same actor is called a local reference. A
reference to an object owned by another actor is called a remote
reference. The type of reference determines the access capabilities
of the actor on the referenced object. While objects pointed to by
local references can be synchronously accessed, any remote ob-
ject can only be accessed through asynchronous message passing.
Thus, sending a message to another actor in this model is just a
matter of sending a message to a remote object in that actor’s ob-
ject heap. Any incoming message is then added to the event queue
of the actor that owns the remote object. The thread of execution

1 Pronounce as “shackle”, short for shared actor language
2 http://soft.vub.ac.be/˜jdekoste/shacl

of that actor combined with the event queue form the event-loop of
that actor. This event-loop processes arriving messages one by one.
The processing of a single message is called a turn. Each of those
turns is processed in a single atomic step. As in E and AmbientTalk,
SHACL supports non-blocking futures to implement two-way mes-
sages without using callbacks (See section 4.2). This model was
extended with the notion of domains to allow shared state between
different actors in a controlled way.

2.2 Motivating example
As a motivating example we looked into plugin architectures. Iso-
lation and encapsulation are important properties for such architec-
tures to model the different plugins. Hence, the event-loop actor
model is a good fit for such application as it already enforces these
properties on the level of the language. The actor model lends it-
self to naturally model the different plugins each as an actor and
using message passing concurrency to model the communication
between these different components of the application. However,
in such applications, it is common for different plugins to require
access to a shared resource. Whether it be globally available for all
plugins or just shared between a subset of the plugins.

Figure 1 shows a model of an application where two different
plugins use a binary search tree (BST) as a shared data-structure.
The binary search tree can be queried for a certain key using
query and users can insert key-value pairs using insert. In our
application Plugin 1 will periodically insert new key-value pairs in
the tree and Plugin 2 will first query the tree and depending on the
result insert a new key-value pair in the tree.

Figure 1. Two plugins using the same shared resource

In the next two sections we will use this example to motivate
the issues of using shared state within the actor model.

2.3 Replication
One option for representing shared state in the actor model would
be to replicate this state inside different actors that require access
to it. For our specific example this would mean that the BST would
be replicated in both plugin 1 and 2. This approach has a number
of issues:

Consistency Keeping replicated state consistent requires a consis-
tency protocol that usually does not scale well with the number
of participants. In our specific example this approach can be
used but if we consider applications with hundreds of compo-
nents this no longer feasible. Lowering the availability or con-
sistency of shared state can be a solution to this problem [9].
Unfortunately, whether lowering either availability or consis-
tency is possible is entirely application dependent. In general,
keeping replicated state consistent is a hard problem that usu-
ally leads to inefficient code.

Memory usage increases linearly with the amount of shared state
and the number of actors. Depending on the granularity with
which actors are created, this might incur a memory overhead
that is too high.

Copying cost Sometimes short lived objects need to be shared
between different actors and the cost of copying them is greater
than the cost of the operation that needs to be performed on
them.

For our approach, we could try to hide these consistency proto-
cols and try to lower the memory usage and copying costs. Unfor-
tunately this solution does not scale very well with the number of
actors, making it very unfeasible to use.

2.4 Shared state as an additional independent actor
Using a separate actor to encapsulate shared state is the more
natural solution as it does not require any consistency protocols
and also scales well with the number of other actors accessing that
shared state. There are however three different classes of problems
when using this approach:

Continuation-passing style enforced. Using a distinct actor to
represent conceptually shared state implies that this resource
can not be accessed directly from any other actor since all com-
munication happens asynchronously within the actor model.
Thus, the programmer needs to explicitly handle a request-
response situation, which usually forces the programmer to
employ an explicit continuation-passing-style.

No synchronization conditions. The traditional actor model does
not allow specifying extra synchronization conditions on dif-
ferent operations since the order in which events from different
senders are handled is nondeterministic.

No parallel reads. State that is conceptually shared can never be
read truly in parallel because all accesses to this state are se-
quentialized by the event queue of the encapsulating actor.

Figure 2 shows an implementation of the BST that is encapsu-
lated by a separate actor. Similarly to E [18] and AmbientTalk [23]
in SHACL the actor{<expression>} syntax evaluates to a
new actor with its own separate object heap and event-loop. That
object heap is then initialized with a single new object initialized
by <expression>. The actor syntax immediately evaluates to a
remote reference to that newly created object. Any asynchronous
message that is sent to that reference will then be scheduled as an
event in the event-loop of the newly created actor. For this exam-
ple we intentionally left out the implementation details of the BST.
What is important here is its interface and how it can be accessed.
In this example, querying or updating the BST requires the use of
asynchronous communication. Because of that, querying the BST
for a value requires the use of callbacks to implement the response
message. In our example this is done by passing a callback object,
namely the client (lines 19–25), as a second argument of the
query method. This callback object then has to implement a queried
method that is called with the result of the query method.

In this example the insert method of plugin 1 just delegates
any insert calls to the BST. On the other hand, plugin 2 provides a
queryInsert method that will query the BST for a certain key
and will then decrement the value of that key if it is positive.

In this section we will discuss the three issues raised above in
more detail using our motivating example.

Asynchronous communication leads to continuation passing
style
The style of programming where a computation is divided into
different execution steps is called continuation passing style (CPS),
also known as programming without a call stack [15]. This problem
of using CPS to access a remote resource is typical and can be
found in various other actor languages like Salsa [24], Kilim [20],
etc. The problem with this style of programming is that it leads to
“inversion of control”.

1 let bst = actor {
2 insert(key, value) {
3 ...
4 }
5 query(key, client) {
6 result := ...
7 client<-queried(result);
8 }
9 }

10

11 let plugin1 = actor {
12 insert(bst, key, value) {
13 bst<-insert(key, value)
14 }
15 }
16

17 let plugin2 = actor {
18 queryInsert(bst, key) {
19 bst<-query(key, object {
20 queried(value) {
21 if(value > 0) {
22 bst<-insert(key, value - 1)
23 }
24 }
25 });
26 }
27 }

Figure 2. A shared bst encapsulated in a separate actor

Figure 2 shows that the restriction of only being able to com-
municate asynchronously with a remote shared resource forces the
programmer to structure his code in a very unintuitive way (CPS,
lines 19–25). If we want to query and afterwards insert a new value
in the BST to update it, we either have to extend the implemen-
tation of our BST with an update method or we combine the
query and insert method in some way. Let us assume that
changing the interface of the BST is not possible3 and we need to
employ the latter solution. Inter-actor communication always hap-
pens asynchronously in the event-loop model and therefore does
not yield a return value. If we want to access items in our BST we
will need a way to send back the result of the query method. The
common approach to achieve this is to add an extra argument to
each message that represents a callback. This client implements the
continuation of our program given the return value of the message.
In our example this is done via the queried method.

On line 19 we asynchronously send a query message to the
BST passing a key as a parameter as well as a reference to an
object that implements the continuation of our program given the
return value of the query method (lines 20–24). Once the bst
actor is processing the event it will eventually send back the result
of the query to the client object via an asynchronous message (line
7). Because the client object was created by the plugin 2 actor
that message will then be scheduled as an event in the event-queue
of the plugin 2 actor. Note that while the bst actor is busy
processing the query request, the plugin 2 actor is available
for handling other incoming events. Once the plugin 2 actor is
ready to process the “queried” event it can then decide whether or
not to send an insert message to the bst actor depending on the
return value of the query (lines 21–23).

The lack of synchronous communication with remote resources
forces us to write our code in a CPS. Ideally we would want the

3 This can be true for various reasons. Either legacy reasons or it might be
that the query and insert messages need to be combined in a non-trivial way
that also involves other remote objects.

query and insert method to be evaluated in the context of one
event, which is not possible in either the event-loop actor model.

Extra synchronization conditions on groups of messages are
not possible
In some cases it is possible that a certain interleaving of the eval-
uation of different messages leads to event-level race conditions.
For example, in Figure 2 we introduce a race condition when both
plugin 1 and plugin 2 try to insert a new value in the BST. Even if
we would somehow avoid having to use CPS, any unwanted inter-
leaving of the query an insert methods might lead plugin 2 to
update the BST using old information. For example, if the bst actor
first receives a query event from plugin 1, then the insert event from
plugin 2 and only then the insert event from plugin 1, then plugin 1
updated the value of the bst depending on old information which is
a race condition.

The reason race conditions like these occur when programming
in an actor language is because different messages, sent by the same
actor, cannot always be processed atomically. Programmers cannot
specify extra synchronization conditions on groups of messages.
A programmer is limited by the smallest unit of non-interleaved
operations provided by the interface of the objects he or she is
using and there are no mechanisms provided to eliminate unwanted
interleaving without changing the implementation of the object (i.e.
there are no means for client-side synchronization). There are ways
to circumvent this, such as batch messages [25], but they do not
solve the problem in the case where there are data dependencies
between the different messages (e.g. in our example we need the
value of the query method to be able to pass it to the insert
method).

One way to solve this issue in our specific case would be to
introduce a “coordination actor” that synchronizes access to the
BST. Figure 3 illustrates how we could implement this.

The coordinator implements an asynchronous lock that can be
acquired when the lock is available and released otherwise. Using
a coordinator like this to guard critical sections has a number of
disadvantages:

• Because all operations are asynchronous all of the actors will
stay responsive to any message. However, this approach just
reintroduces all the issues of traditional locking techniques.
For example, similarly to deadlocks, progress can still be lost
if different client objects are waiting to acquire a lock on a
coordinator locked by the other client.

• Because the coordinator actor is a shared resource as well,
asynchronous locking mechanism introduces another level of
CPS code (lines 25 and 39).

• Introducing locks like this has the additional overhead of having
to use the message passing system to both acquire and release a
lock which makes it unsuitable for fine-grained locking.

No parallel reads
The main inefficiency of the actor model with respect to parallel
programming is the fact that data cannot be read truly in parallel.
This is assuming that we represent shared state as a separate actor.
If we want to read (part of) an actor’s state in parallel we have to
go through the message passing system and the event-loop of the
actor, which will handle each received event sequentially.

In Figure 2, our shared bst resource needs to be encapsulated
by an actor. This means that all querymessages will be needlessly
sequentialized (in the absence of a queryInsert method)

Not only does this make accessing a large data structure from
within different components of an application inefficient, it also
makes it difficult to implement typical data-parallel algorithms
efficiently within the actor model.

1 let bst = actor {
2 insert(key, value, client) {
3 result := ...
4 client<-inserted(result);
5 }
6 query(key, client) {
7 result := ...
8 client<-queried(result);
9 }

10 }
11

12 let coordinator = actor {
13 acquire(client) {
14 ...
15 client<-aqcuired();
16 ...
17 }
18 release() {
19 ...
20 }
21 }
22

23 let plugin1 = actor {
24 insert(coordinator, bst, key, value) {
25 coordinator<-acquire(object {
26 aqcuired() {
27 bst<-insert(key, value, object {
28 inserted(ignore) {
29 coordinator<-release();
30 }
31 });
32 }
33 });
34 }
35 }
36

37 let plugin2 = actor {
38 queryInsert(coordinator, bst, key) {
39 coordinator<-acquire(object {
40 aqcuired() {
41 bst<-query(key, object {
42 queried(value) {
43 if(value > 0) {
44 bst<-insert(key, value - 1, object {
45 inserted(ignore) {
46 coordinator<-release();
47 }
48 });
49 } else {
50 coordinator<-release();
51 }
52 }
53 });
54 }
55 });
56 }
57 }

Figure 3. Synchronizing access to the BST

2.5 Our approach
Ideally we would want a third option in which we represent shared
state as objects that do not belong to any particular actor but rather
to a separate entity on which multiple actors can have synchronous
access in a controlled way. This way we avoid all the issues with
replicating state and also avoid all the issues that come with asyn-
chronously communicating with that shared state.

3. The solution: Domains and views
Our approach allows the programmer to bundle any number of ob-
jects in the shared state as a domain. A domain does not belong
to a specific actor but is rather a separate entity on which actors
can have synchronous access. This synchronous access is impor-
tant as most of the problems we identified are caused by the use of
asynchronous communication to access the shared state. In our ap-
proach this synchronous access is represented by a “view”. Views
are a synchronization mechanism that allows one or more actors to
have synchronous access to a shared domain for the duration of one
event-loop event. There are two kinds of views, a shared and an ex-
clusive view which mimic multiple reader, single writer access as a
synchronization strategy.

As we discussed in section 2.4 an actor is a combination of
an object heap and an event loop. The actor{<expression>}
syntax creates a new event-loop and an object heap initialized with
a single object initialized with <expression>. Evaluating the
actor expression will result in a remote reference to that object.
Similarly, a domain is just a container for a number of objects. An
actor can never have a direct reference to a domain as a whole.
Rather it can have references to objects inside that domain. From
now on we will refer to these kinds of references as domain refer-
ences. The domain{<expression>} syntax will create a new
domain and initialize that domain’s object heap with one object
initialized by <expression>. Evaluating the domain expression
will result in a domain reference to that object.

SHACL has a number of primitives to asynchronously request
access rights to a particular domain using a domain reference. Once
the corresponding domain becomes available for shared or exclu-
sive access, an event is queued in the event-loop of the requesting
actor. During that event, that actor has a window to synchronously
access any object encapsulated by that domain using a domain ref-
erence.

Figure 4 gives a quick illustration of the usage of domains
and views. Note that the bst actor of figure 2 has been replaced
by a domain. As we saw in the previous section, the domain
syntax on line 1 will create a new domain with a single object
that implements two methods, insert and query. The return
value of the domain syntax is always a domain reference to that
object. This means that in our example the bst variable will
contain a domain reference. Any object created by an expression
nested inside the domain syntax cannot have access to variables
that outside of the scope of that domain. The domain reference
contained in the variable can be arbitrarily passed around between
actors but can only be dereferenced when obtaining a view.

In Figure 4 sending a queryInsert message to plugin 2 will
first asynchronously request an exclusive view on the bst domain
reference (line 21). Once the corresponding domain becomes avail-
able for exclusive access, an event is scheduled in the event queue
of the plugin 2 actor which will evaluate the block of code provided
to the whenExclusive primitive (lines 22–25). Note that this
block of code is executed by the actor that created it (plugin2)
and it has access to all lexically available variables such as bst and
key. The plugin 2 actor can synchronously access the BST within
that block of code. It can synchronously query it for a certain key
and then synchronously update that key-value pair depending on
the result of that operation. The same holds if we want to read the
same value multiple times, read and/or update different values, etc.
Additionally, during the event on which we acquired the view the
actor code no longer has to be written in CPS to read and/or write
values from and to our shared resource, we can synchronize differ-
ent messages to the same resource and in the case of a shared view
we can even parallelize reads to that resource.

1 let bst = domain {
2 insert(key, value) {
3 ...
4 }
5 query(key) {
6 ...
7 }
8 }
9

10 let plugin1 = actor {
11 insert(bst, key, value) {
12 whenExclusive(bst) {
13 bst.insert(key, value);
14 }
15 }
16 }
17

18

19 let plugin2 = actor {
20 queryInsert(bst, key) {
21 whenExclusive(bst) {
22 value := bst.query(key);
23 if(value > 0) {
24 bst.insert(key, value - 1)
25 }
26 }
27 }
28 }

Figure 4. Illustration of domains and views

3.1 View primitives
In this section we will only consider view primitives that acquire a
view on a single domain at a time. For SHACL this set of primitives
was extended to also allow acquiring shared and/or exclusive views
on a set of domains (See section 4). SHACL supports the following
primitives for requesting views on a domain reference:

whenShared(e){e′}
whenExclusive(e){e′}

Here, e is a valid SHACL expression that evaluates to a domain
reference and e′ is any valid SHACL expression. Note that these
primitives are asynchronous operations, they will schedule a view-
request and immediately return. After the request is scheduled,
the event-loop of the actor can resume processing other events in
its event-queue. Once the domain becomes available two things
happen. First the domain is locked for exclusive or shared access.
Then an event that is responsible for evaluating the expression e′ is
put in the event-queue of the corresponding actor. Once that event is
processed the domain is freed again, allowing other actors to access
it.

Figure 5 illustrates how views are created. Both actor A and
actor B have a reference to the shared object. If they want to
access this shared object, first they need to request a view on that
object. Attempting to access a domain reference outside of a view
results in an error. Once the request is handled by the domain, any
reference to an object inside that domain becomes synchronously
available for the duration of one event. When e′ is evaluated, the
actor loses its access rights to that domain. A shared view allows
the actor to synchronously invoke read-only methods of all the
objects within the corresponding domain. Any attempt to write a
field of a domain object during a shared view will result in an error.
An exclusive view allows the actor to synchronously invoke any

Figure 5. Actor A and B share a reference to an object inside
domain D on which Actor B has an exclusive view.

method on objects inside the corresponding domain, regardless of
whether they change the state of the object(s) inside that domain.

3.2 Semantic properties
In this section we will evaluate and discuss our approach with
regard to the original actor model. The following topics will be
discussed: deadlock freedom, race condition freedom and macro-
step semantics.

3.2.1 Deadlock freedom
The absence of deadlocks and low-level race conditions are the two
properties of the actor model that differentiate it from lower-level
models and provide the required guarantees to build large concur-
rent applications in a sustainable manner. To maintain deadlock-
freedom, the following two restrictions are enforced for views:

View requests are non-blocking. All primitives that request views
are non-blocking. As explained in Section 3.1, the request for a
view is scheduled as an asynchronous event which is processed
only once the domain becomes available. This implies that all
operations in our language terminate, meaning that all events
can be processed in a finite operational time (if programmed
correctly). And thus, the event for which a lock was acquired
will eventually terminate and release the lock again, which is
important to ensure that our language remains deadlock free.

A view on a domain only exists for the duration of one event.
Events in our model can be considered atomic operations with
a finite operational time. This means that any domain that is
currently unavailable due to a view will become available at
some point in the future.

With those restrictions in place SHACL is guaranteed to be dead-
lock free. With view requests being non-blocking, and the absence
of any other blocking operation in the model, it is guaranteed that
wait-for cycles can not be constructed with the basic primitives pro-
vided.

As discussed in Section 3.1, views are only held for the duration
of a single event, and requesting a “nested” view while holding
another view is an asynchronous operation. All this supports the
notion of an event being executed as an atomic operation with a
finite number of operational steps. Barring any sequential infinite
loops included by the programmer.

3.2.2 Race condition freedom
To maintain race condition freedom, the following three restrictions
are enforced for views:

Only allow view requests on domain references
All our primitives require that the reference on which a view is
requested is a domain reference. In contrast with other remote
objects, domain objects are not allowed to have direct refer-
ences to objects contained in another domain. This way, acci-
dentally shared state is avoided, which ensures that no low-level
race conditions can occur in our model. Without this restriction,
multiple actors could access the same free variable in the lexi-
cal scope of a domain object, opening the door for classical data
races.

Domain references cannot be accessed outside of a view
Care has to be taken of views which had been previously lexi-
cally captured but haven been only available in an asynchronous
operation. Since the lexical scope would hold a reference to a
domain object that is not protected by a view anymore, race
conditions could be introduced. To avoid such data races, any
attempt to access a domain object outside of a view throws an
error.

Object creation inside a domain.
Any object creation expression lexically nested inside a domain
generates objects owned by that domain. Views are acquired on
a domain and dereferencing an object owned by that domain
can never expose that domain’s content. As such, any reference
to an object that is owned by a domain is always a domain
reference.

These three rules ensures that, in any scenario, any domain
reference or lexically nested state is no longer accessible while
processing later events without requesting a new view. They also
ensure that any concurrent updates of shared state are impossible
and thus ensures that we avoid race conditions by construction.

3.2.3 Macro-step semantics
The actor model provides one important property for formal rea-
soning about different program properties. This property is the
macro-step semantics [4].

In an actor model, the granularity of reasoning is a mes-
sage/event. For the properties of a program, each event is processed
in a single atomic step. This leads to a convenient reduction of the
overall state-space that has to be regarded in the process of formal
reasoning. Furthermore, this property is directly beneficial to appli-
cation programmers as well in their development process. Program-
mers can design the semantics of message sends as coarse-grained
as appropriate, reducing the potential problematic interactions.

After introducing domains and views, the question is whether
the macro-step semantics still holds. Arguable, this is still the case,
since the macro-step semantics only requires the atomicity of the
evaluation of a message, but does not imply any locality of changes.
Thus, changing the state of an object for which a view was obtained
does not violate atomicity, since we only allow exclusive views
for state modifications. Shared views for reading state are also not
violating the semantics since state is not actually changed.

Based on this reasoning, an actor-model with the concept of
views presented in Section 3.1 still maintains the macro-step se-
mantics, and thus keeps the main properties of the actor model that
are beneficial for formal reasoning intact.

Furthermore, the semantics of all writes in our model, being re-
stricted either to local writes inside an actor, or writes protected
by an exclusive view, result in a memory model which enforces se-
quential consistency [11]. Thus, the original semantics remains pre-
served and allows the application of relevant reasoning techniques.

3.3 Expressiveness
Since the actor model relies solely on asynchronous event process-
ing to avoid deadlocks, the expressiveness of such a language is
typically impaired.

With the mechanisms proposed here, it is however possible to
grant synchronous access to domain objects protected by views.
Listing 4 introduced the corresponding example and demonstrates
how to access a shared resource synchronously, which could not
be expressed before. For this specific case, the alternative solution
would be to change the interface of the remote object, to be able to
request and update its state in a single step. However, that approach
is neither always possible, e. g., for third-party code, nor desirable.
Also, this solution would not be appropriate for synchronizing up-
dates to different domain objects as ensuring synchronized access
in the traditional actor model would require to bundle these objects
into one actor. Thus, with views the expressiveness is extended con-
siderably over the standard actor model. Programmers can model
their shared state without taking into account how this shared state
will be accessed from the client side and the client side can syn-
chronize and compose access to different objects in an arbitrary
way.

3.4 Conclusion
In this section we have shown that with the use of views we can
avoid the problems discussed in section 2. Firstly, by not repli-
cating the shared state we avoid the need to keep replicas con-
sistent. Secondly, from within a view we do not need to employ
CPS to access shared state. If we have synchronous access to the
domain object we can directly access it’s fields without using the
message passing system. Thirdly, we can safely build more coarse-
grained synchronization boundaries by combining messages to ob-
jects within the same domain in an arbitrary way during the event
in which we acquired the view. Lastly, if we only use shared views
on a resource we can read from that resource in parallel.

4. SHACL further features
Section 3 discussed only the core features of SHACL. In this section
we will discuss a number of other important features of SHACL.

4.1 Views on multiple domains
Currently, SHACL only supports shared and exclusive views, which
mimic single writer, multiple reader locking. This means that it
is impossible to do parallel updates of objects a single domain.
A workaround for this problem would be to subdivide the shared
data structure into several domains. We could for example put
each node of the binary search tree of our example in a separate
domain. This however also means that any parallel updates to that
data structure need to be synchronized by the program. SHACL has
a primitive that allows the programmer to synchronize access to
multiple domains:

when(e, e′){e′′}

The when primitive takes any 2 SHACL expressions e and e′

that evaluate to two arrays of domain references. The first array
has to contain all the domain references for which the programmer
wants to have shared access and similarly the second array has to
contain all the domain references for which the programmer wants
to have exclusive access. e′′ is the expression that will be scheduled
as an event in the event-loop of the executing actor once all the
necessary resources become available.

In SHACL there is a global ordering in which all domains are
locked for shared and/or exclusive access. This is to prevent dead-
locks when views are requested on multiple domains.

4.2 Futures
In section 1 we already mentioned that SHACL supports future-
type messages. Futures introduce a synchronization mechanism for
actors to synchronize on the reception of a message without using
callbacks. Traditional asynchronous messages have no return value.
A developer needs to work around this lack of return values by
means of an explicit customer object as seen in all the examples
throughout the paper. Future type messages allow the programmer
to hide this explicit callback parameter.

In contrast to regular asynchronous messages, a future-type
message does have a return value. It returns a future-value that
represents the “eventual” return value of the message that was
sent. The developer can then register an observer with that future-
value using a special whenBecomes primitive. When the original
message is processed by the receiving actor, the future is “resolved”
with the return value of that message and any registered observer
is notified. A notified observer triggers an event that is scheduled
in the event-loop of the actor that executed the whenBecomes
primitive.

The following example illustrates the usage of futures:

1 let cell = object {
2 c := 0;
3 get() {
4 c;
5 }
6 set(n) {
7 this.c := n;
8 }
9 }

10

11 let a = actor {
12 increase(counter) {
13 future := counter<-get();
14 whenBecomes(future -> c) {
15 counter<-set(c + 1);
16 }
17 }
18 }
19

20 a<-increase(cell);

Figure 6. Illustration of futures

In Figure 6 get is sent as a future-type message to the remote
reference counter and immediately returns a future-value. An event
is registered with that future that is responsible for updating the
counter by sending it a regular asynchronous set message. Notice
that using futures does not solve the issues discussed in section 2.
We still need to employ CPS if we want to access several values of
our remote object, event-level data races can still occur and reads
are not parallelized.

The reason that futures are interesting for our model is because
they work well together with domains and views. In fact, a view
request in SHACL returns a future-value on which can be synchro-
nized. If part of our computation depends on the atomic update of
a shared resource but does not necessarily require synchronous ac-
cess to that resource, these futures can be used to schedule code
that can be executed after the view was released.

There is also a mechanism in SHACL to group futures into a
single future (namely the primitive group). This mechanism can
be used in conjunction with future-type messages to branch work
to other actors and then synchronize on all of them. Or it can be

used in conjunction with domains and views to schedule a number
of atomic updates and then synchronize on the completion of all of
them.

5. Related work
The engineering benefits of semantically coarse-grained synchro-
nization mechanisms in general [10] and the restrictions of the actor
model [16] have been recognized by others. In particular the notion
of domains and view-like constructs has been proposed before.

Demsky and Lam [10] propose views as a coarse-grained lock-
ing mechanism for concurrent Java objects. Their approach is based
on static view definitions from which at compile time the correct
locking strategy is derived. Furthermore, their compiler detects a
number of problems during compilation which can aid the devel-
oper to refine the static view definitions. For instance they de-
tect when a developer violates the view semantics by acquiring a
read view but writing to a field. The main distinction between our
and their approach comes from the different underlying concur-
rency models. Since Demsky and Lam start from a shared-memory
model, they have to tackle many problems that do not exist in the
actor model. This results in a more complex solution with weaker
overall guarantees than what our approach provides. First of all, ac-
cessing shared state without the use of views is not prohibited by
the compiler thereby compromising any general assumptions about
thread safety. Secondly, the programmer is required to manually
list all the incompatibilities between the different views. While the
compiler does check for inconsistencies when acquiring views, it
does not automatically check if different views are incompatible.
Forgetting to list an incompatibility between different views again
compromises thread safety. Thirdly, acquiring a view is a blocking
statement and nested views are allowed, possibly leading to dead-
locks. They do recognize this problem and partially solve this by
allowing simultaneously acquiring different views to avoid this is-
sue. But avoiding the acquiring of nested views is not enforced by
the compiler. Finally, their approach does not support a dynamic
notion of a view which could be used to safely access shared state
depending on runtime information.

Hoffman et al. [14] show the need for programs to isolate
state between different subcomponents of an application. They
propose protection domains and ribbons as an extension to Java.
Similarly to our approach, protection domains dynamically limit
access to shared state from different executing threads. Access
rights are defined with ribbons where different threads are grouped
into. While their approach is very similar to ours, they started
from a model with less restrictions (threads) and built on top of
that while we started from the actor model which already has the
necessary isolation of processes by default. While access modifiers
on protection domains do limit the number of critical operations in
which race conditions need to be considered. If two threads have
write access to the same data structure, access to that data structure
still needs to be synchronized.

Axum [17] is an actor based language that also introduced the
concept of domains for state sharing. Similarly to our approach sin-
gle writer, multiple reader access is provided to domains. Access
patterns in Axum have to be statically written down, which does
give some static guarantees about the program but ultimately suf-
fers from the same problems as the views abstractions from Dem-
sky and Lam. Although the Axum project was concluded it also
showed that there is an interest in a high level concurrency model
that allows structuring interactive and independent components of
an application.

ProActive [7] is middleware for Java that provides an actor ab-
straction on top of threads. It provides the notion of Coordination
actors to avoid race conditions similar to views. However, the over-
all reasoning about thread safety is hampered since its use is not

enforced. Furthermore, coordination actors are proxy objects that
sequentialize access to a shared resource, and thus, are not able
to support parallel reads, one of the main issues tackled with our
approach. In addition, it is neither possible to add synchroniza-
tion constraints on batches of messages, nor is deadlock-freedom
guaranteed, since accessing a shared resource through a proxy is a
blocking operation.

In Deterministic Parallel Java [8] the programmer has to use
effect annotations to determine what parts (regions) of the heap a
certain method accesses. They ensure race condition free programs
by only allowing nested calls to write disjoint sub-regions of that
region. This means that this approach is best suited for algorithms
that employ a divide and conquer strategy. In our approach we want
a solution that is applicable to a wider range of problems including
algorithms that randomly access data from different regions.

Parallel Actor Monitors [19] (PAM) is a related approach to en-
able parallelism inside a single actor by evaluating different mes-
sages in the message queue of an actor in parallel. The differ-
ence with our approach is that the actor that owns the shared data-
structure is still the only one that has synchronous access on that
resource. In our approach we apply an inversion of control where
the user of the shared resource has exclusive access instead of the
owner. This inversion of control allows an actor in SHACL to syn-
chronize access to multiple resources which is not possible in the
case of PAM.

6. Conclusion
The Actor Model is a good model for concurrent programming, it
provides a number of safety guarantees for issues that are often
problematic in other models (Deadlock freedom, data-race free-
dom, macro-step semantics). Unfortunately the restrictions on this
model often limit the expressiveness of the model in comparison
with less strict implementations, limiting its adoptability as a main-
stream programming model. The issue of accessing shared state
is one shared between all actor languages. Others solve this issue
by allowing the programmer to break actor boundaries as an es-
cape hatch (e.g. Scala). In this case, the programmer has to rely
on traditional locking mechanisms to synchronize access to that
state, reintroducing all problems that come with locks. Others com-
bine several concurrency models to solve this issue. For example,
Clojure [13] both implements actor based concurrency primitives
as well as a Software Transactional Memory. In our approach we
tried to tailor our solution specifically for the Actor Model ensur-
ing maximum interoperability between the different primitives. The
advantages of our model over the traditional event-loop model are
threefold. Firstly we avoid the continuation passing style of pro-
gramming when accessing shared state. Secondlyndly we allow
the programmer to introduce extra synchronization constraints on
groups of messages and lastly we are able to model true parallel
reads.

7. Acknowledgements
Joeri De Koster is supported by a doctoral scholarship granted by
the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen), Belgium.

Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO)

References
[1] Akka. http://akka.io/.

[2] Asyncobjects framework. http://asyncobjects.sourceforge.net/.

[3] G. Agha. Actors: a model of concurrent computation in distributed
systems. AITR-844, 1985.

[4] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for
actor computation. Journal of Functional Programming, 7(1):1–72,
1997.

[5] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent
programming in erlang. 1996.

[6] M. Astley. The actor foundry: A java-based actor programming envi-
ronment. University of Illinois at Urbana-Champaign: Open Systems
Laboratory, 1998.

[7] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,
and R. Quilici. Grid Computing: Software Environments and Tools,
chapter Programming, Deploying, Composing, for the Grid. Springer-
Verlag, January 2006.

[8] R. Bocchino Jr, V. Adve, D. Dig, S. Adve, S. Heumann, R. Komurav-
elli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and
effect system for deterministic parallel Java. ACM SIGPLAN Notices,
44(10):97–116, 2009.

[9] E. Brewer. Towards robust distributed systems. In Proceedings of
the Annual ACM Symposium on Principles of Distributed Computing,
volume 19, pages 7–10, 2000.

[10] B. Demsky and P. Lam. Views: Object-inspired concurrency control.
In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 395–404. ACM, 2010.

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. ACM SIGARCH Computer Archi-
tecture News, 18:15–26, May 1990. ISSN 0163-5964.

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 410(2-3):
202–220, 2009.

[13] S. Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.
[14] K. Hoffman, H. Metzger, and P. Eugster. Ribbons: a partially shared

memory programming model. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems
languages and applications, pages 289–306. ACM, 2011.

[15] G. Hohpe. Programming Without a Call Stack–Event-driven Archi-
tectures. Objekt Spektrum, 2006.

[16] R. Karmani, A. Shali, and G. Agha. Actor frameworks for the jvm
platform: A comparative analysis. In Proceedings of the 7th Interna-
tional Conference on Principles and Practice of Programming in Java,
pages 11–20. ACM, 2009.

[17] Microsoft Corporation. Axum programming language.
http://tinyurl.com/r5e558.

[18] M. S. Miller, E. D. Tribble, J. Shapiro, and H. P. Laboratories. Concur-
rency among strangers: Programming in e as plan coordination. In In
Trustworthy Global Computing, International Symposium, TGC 2005,
pages 195–229. Springer, 2005.

[19] C. Scholliers, É. Tanter, and W. De Meuter. Parallel actor monitors.
Technical report, 2010. vub-tr-soft-10-05.

[20] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java.
ECOOP 2008–Object-Oriented Programming, pages 104–128, 2008.

[21] H. Sutter. Welcome to the jungle. http://herbsutter.com/welcome-to-
the-jungle/, 2011.

[22] D. Ungar and R. Smith. Self: The power of simplicity, volume 22.
ACM, 1987.

[23] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and
W. De Meuter. Ambienttalk: Object-oriented event-driven program-
ming in mobile ad hoc networks. In Chilean Society of Computer Sci-
ence, 2007. SCCC’07. XXVI International Conference of the, pages
3–12. Ieee, 2007.

[24] C. Varela and G. Agha. Programming dynamically reconfigurable
open systems with salsa. ACM SIGPLAN Notices, 36(12):20–34,
2001.

[25] A. Yonezawa, J. Briot, and E. Shibayama. Object-oriented concurrent
programming ABCL/1. ACM SIGPLAN Notices, 21(11):268, 1986.

