
Open Reactive Dispatch

Engineer Bainomugisha and Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

{ebainomu, wdmeuter}@vub.ac.be

ABSTRACT
This paper proposes the open reactive dispatching mechanism, where
predicates are not only used for determining the applicable procedure to
execute for the current situation but also for ensuring that the entire pro-
cedure execution happens under the specified predicate. Predicates op-
erate on contextual parameters whose values change continuously (e.g.,
the current user’s location). The dispatching process is repeated when-
ever the values of contextual parameters change. As a result previously
unsatisfied predicates may later become satisfied and their associated
procedures are selected for execution. Additionally, new procedures can
be added at runtime and become part of the potential procedures that
the dispatching process can select from. The open reactive dispatch-
ing mechanism is embodied in the Flute language, a proof-of-concept
programming language that is designed for context-aware applications.

Keywords
event-based systems, predicate dispatch, open reactive dispatch

1. INTRODUCTION
Almost every program execution requires a dispatching mechanism to
select the applicable procedure or method to execute for the current situ-
ation. In modern event-based systems (e.g., mobile context-aware appli-
cations) such dispatching mechanisms depend on contextual parameters
(e.g., the current user’s location and time of the day). Without appropri-
ate language support, this implies for the developer to perform multiple
conditional checks (e.g., by using case and/or if statements) to de-
termine the appropriate procedure to execute for the current situation.
This can negatively affect a program’s composability, comprehension
and maintainability (e.g., introducing new procedures or contextual pa-
rameters requires modifying multiple existing dispatching points in a
program). Moreover, since such conditional checks operate on time-
varying values, it implies that the applicability of the procedures to ex-
ecute depends on conditions whose outcome also changes over time.
This implies that a procedure that cannot be selected under the current
context situation may eventually become applicable when a context
change occurs at a later moment. We argue that there is a need for a dis-
patching mechanism that continuously selects appropriate procedures to
execute for the current situation whenever context changes are observed.
In order to motivate the need for such a dispatching mechanism, we in-
troduce a scenario called an onboard digital platform.

1.1 Motivating Scenario: An Onboard Digital Plat-
form

Consider an onboard digital platform that is fitted in a bus to continu-
ously show useful information to the passengers by running a suite of
applications. The applications’ behaviours switch all the time as the
bus drives about, as it approaches stops, as it smells other buses (e.g.,
by using RFID technology), when it is within a range of certain GPS-
coordinates and as passengers get on or off the bus. The bus company
can add or extend the existing applications and their behaviours at run-
time. An example application that is deployed on the platform is the
BainoInfo application. BainoInfo is an application that continuously
shows useful information to the passengers as the bus drives about. The
application automatically adapts its behaviour depending on contextual
information. It shows information (e.g., name and timetable) about a bus
stop as soon as the bus approaches the stop. It shows touristic informa-
tion as soon as the bus approaches a museum or other touristic attractions
in the neighbourhood. It shows targeted advertisements that are relevant
for the current location of the bus (e.g., displaying the showing movies
at the nearby cinema). Moreover, passengers can interact with the plat-
form using their mobile phones to customise the application’s behaviour
(e.g., changing the display language and colour). Table 1 summarises
the different behavioural variations of the BainoInfo application.

Context Behaviour
Bus stop Showing the bus stop’s timetable
Touristic area Showing touristic information
Nearby cinema Presenting showtimes and promotions

Table 1: Behavioural variations for the BainoInfo appli-
cation.

1.2 Scenario Analysis
The motivating example described above reveals a general pattern of
issues that characterise modern event-based systems. Below we focus
on three representative issues:

Need for contextual dispatch. Event-based systems such as then
one described above consist of different behavioural variations for dif-
ferent context situations. The currently running behavioural variation
depends on runtime contextual information. This requires a dispatch-
ing mechanism that takes into account contextual information (e.g., the
current bus location) in order to select the appropriate behavioural vari-
ation to execute for the current situation. For instance, in the BainoInfo
application, the behavioural variation for showing touristic information
should be executed only if the bus is within range of a touristic area,
while the timetable for a particular stop should be shown only if the bus
is nearby that bus stop. Traditionally, such dispatching is done using
explicit conditions (e.g., if statements). However, that approach results
in convoluted code where each behavioural variation in a program has
to be preceded with a contextual check.

Need for eventual and reactive dispatch. Since context changes
occur continuously, it implies that the applicability of the appropriate
behaviour to execute depends on contextual conditions whose outcome
changes all the time. This implies that a behavioural variation that
cannot be selected in the current context may eventually become ap-
plicable when a context change occurs. This necessitates a dispatching
mechanism that is continuously repeated in response to context changes.
For instance, in the above scenario, as the bus moves about, previously
unsatisfied conditions can become satisfied. As a result, their corre-
sponding behavioural variations should be selected for execution. Ad-
ditionally, new behavioural variations may also need to be deployed to
cater for new context situations (e.g., add new behaviours for new bus
stops). When new behavioural variations are added, the dispatching pro-
cess should automatically consider them. For developers, realising such
functionality without appropriate support is not trivial.

Need for contextual-constrained executions. Another issue that
needs to be addressed is that even after a behavioural variation is selected
for execution, there is a need to ensure that the entire behavioural varia-
tion’s execution happens in the prescribed contextual condition. For in-
stance, in the above scenario, the bus can move away from within range
of a cinema while the behavioural variation for showtimes is executing.
In such case, allowing the behavioural variation to continue executing
would be wrong since the showtimes behavioural variation should only
be executed when the bus is within range of a cinema. Without ap-
propriate support, this implies for developers to manually insert extra
conditions in the body of a procedure or a method in order to ensure that
its entire execution happens under the correct conditions. One disadvan-
tage of implementing such concerns in that style is that the developer is
required to modify multiple conditional checks in case there is a need to
change a context condition (e.g., a change of location of a bus stop).

1.3 Inadequacy of Existing Dispatching Mecha-
nisms

Predicate dispatch approaches [6, 8] alleviate some of these problems,
by allowing the selection of applicable procedures to depend on arbitrary
predicates. However, in predicate dispatch approaches the predicate is
used only to select the applicable procedure but not for ensuring that the
entire procedure execution happens under the specified condition. We
characterise existing dispatching mechanisms as closed dispatch in the
sense that they:

Dispatch and execute until completion. The current dispatch-
ing mechanisms employ some form of dispatch and go. The dispatch-
ing process happens only once upon each dispatching incident but when
the procedure execution starts, it is up to the developer to ensure that the
entire procedure execution happens in the right conditions (e.g., through
repetitive conditional checks in the procedure’s body). This is neces-
sary because the initial dispatching condition may become false while
the procedure execution is ongoing. Allowing a procedure execution to
continue under wrong conditions may result in an incorrect application
behaviour.

Provide no support for eventual applicability. Because the
dispatch conditions in event-based systems depend on contextual param-
eters whose values change over time, it is possible that procedures that
were not previously selected may become applicable at a later time. Cur-
rent dispatching mechanisms only select the applicable procedure based
on condition that evaluates to true at the initial dispatching time. How-
ever, once the initial dispatching process is completed the procedures
that were not selected will not be executed even when their associated
conditions later become true.

Have limited runtime extensibility. In dynamic software appli-
cations, it may be necessary to add new procedures at runtime even after
the initial dispatching process has completed. In current dispatching

mechanisms it is not possible for the procedures that are added after
the initial dispatching process to be considered by the dispatcher. This
implies for the developer to manually restart the dispatching process (re-
issue the invocation) whenever new procedures are added to an existing
group of procedures to select from.

We argue that there is a need for a new dispatching mechanism that
addresses the above issues. In the next section we present our proposal
for the open reactive dispatching mechanism that aims to provide the
appropriate language support for composition and dispatch in modern
event-based systems.

2. OPEN REACTIVE DISPATCHING
This paper proposes a new dispatching mechanism called open reactive
dispatch. With open reactive dispatch, a procedure is associated with
a predicate to determine its applicability like in predicate dispatch
approaches. The predicates operate on contextual parameters such as
the current context of use (e.g., location, time of the day, and user pref-
erences). A unique property of the open reactive dispatching mechanism
is that the predicate is not only used for determining the applicability of
a procedure but also used to ensure that the entire procedure execu-
tion respects the predicate. If the predicate is no longer satisfied while
the procedure execution is ongoing, then the execution is promptly in-
terrupted (aborted or suspended). The suspended execution is resumed
or restarted later if its associated predicate happens to become satisfied
again. Additionally, the dispatching process is repeated whenever
the values of the contextual parameters change. When previously
unsatisfied predicates – those that are associated with the procedures
that were previously not selected – later become satisfied, the dispatch-
ing process is automatically repeated and new applicable procedures are
selected for execution. Moreover, new predicated procedures can be
added at runtime and are taken into account whenever the dispatching
process is repeated. Below we describe the defining properties of the
open reactive dispatching mechanism:

BainoInfo

show-timetable

at-bus-stop?

show-touristic-info

nearby-museum?

present-showtimes

nearby-cinema?

current bus location
context source

extensible grouping unit
for predicated procedures

- bus-company
- city
- language

variables that are
shared by the

predicated procedures

predicated procedures

Figure 1: An extensible group of predicated procedures

Extensible composition units. Related behavioural variations (pred-
icated procedures) are composed together under the same unit that is
denoted by a name specified by the developer. The name can be re-
ferred to in other parts of a program and can be used to initiate invo-
cation. The grouping entity also specifies any shared variables that are
accessible to all predicated procedures belonging to that entity. New
predicated procedures can be added to an existing entity at runtime.
The addition of new predicated procedures should not require modifica-
tions existing procedure definitions. Figure 1 shows an extensible group
of the predicated procedures that make up the BainoInfo application.
show-timetable is associated with the at-bus-stop? predicate, show-
touristic-info is associated with the predicate nearby-museum?, while

present-showtimes is associated with the predicate nearby-cinema?.
The predicates operate on the context source current bus location,
whose value changes as the bus moves about. All these predicated pro-
cedures belong to the grouping entity BainoInfo. The grouping entity
defines variables bus-company, city, and language that are shared by
all the predicated procedures.

Reactive dispatching of predicated procedures. The execu-
tion of predicated procedures is initiated by invoking the grouping entity.
Invoking a grouping entity requires a dispatching mechanism to select
the applicable procedure to execute. The dispatching process is broken
down into the following steps:

1. The dispatching process starts by evaluating the predicates that
are associated with predicated procedures belonging to the same
group. A predicated procedure whose predicate evaluates to true
is selected for execution. For instance, in the BainoInfo applica-
tion (cf. Figure 1), if the bus happens to be nearby a bus a stop,
the predicate at-bus-stop? will evaluate to true hence the show-
timetable procedure is selected for execution.

2. During the execution of the selected predicated procedure, its as-
sociated predicate is re-evaluated at every step in the procedure
body in order to ensure that the procedure only executes in the
correct situation. If the predicate is no longer satisfied, then the
procedure execution is interrupted – suspended or aborted. The
kind of interruption is specified by the developer. The suspended
procedure execution can be resumed or restarted if its associated
predicate happens to become satisfied again. Like with the inter-
ruption, the kind of resumption is specified by the developer. For
instance, in the BainoInfo application, the show-touristic-info
procedure should run only if the bus is nearby a museum. So, if
the bus moves out of range while the show-touristic-info proce-
dure’s execution is ongoing, the execution is immediately inter-
rupted. If the bus later returns to the location the execution can be
resumed or restarted.

3. The dispatching process is repeated whenever the values of con-
textual sources change. This implies that previously unsatisfied
predicates may become satisfied and as result their associated pro-
cedures will be selected for execution. Additionally, any new
predicated procedures that are added (after the previous dispatch-
ing process) are also considered whenever the dispatching process
is repeated. For instance, in the BainoInfo application, suppose
that the bus is initially nearby a museum. This implies that the
nearby-museum? predicate evaluates to true while the predi-
cates at-bus-stop? and nearby-cinema? evaluate to false. How-
ever, if the bus later approaches a bus stop, the dispatching process
is automatically repeated and the show-timetable procedure will
be selected for execution since its associated predicate – at-bus-
stop? – will now evaluate to true.

Reactive scope management. Because the execution of proce-
dures can be interrupted at any moment, it is desirable to ensure that
they resume in a consistent execution environment. Different predicated
procedures may be manipulating the same data. As such the currently
interrupted executions may be resumed when shared data has been mod-
ified by other executions. For instance, in the BainoInfo application
(cf. Figure 1), if the language variable is modified during the execu-
tion of the show-touristic-info procedure, its changes may be visible
by other procedures that share that variable. It is therefore necessary
to ensure that modifications to the shared data do not lead to incon-
sistencies. To this end, each predicated procedure is associated with a
developer specified scope management strategy for controlling the vis-
ibility of changes to the variables that are shared by several predicated
procedures. The scope management strategies are: (i) Immediate visi-

bility – where state changes to the variables that are shared among pred-
icated procedures are immediately visible by other executions that share
that variable, (ii) Deferred visibility – where changes remain local to
the execution on interruption but become visible to other executions on
completion of the procedure execution, and (iii) Isolated visibility –
where changes are restricted to the procedure that made the changes and
they are not visible by other procedures.

2.1 Supporting Open Reactive Dispatching
The open reactive dispatching mechanism is embodied in the Flute lan-
guage [2], a proof-of-concept programming language that is designed
for context-aware applications. Flute is built as a meta-interpreter in our
Scheme implementation called iScheme [1], which runs on the iOS plat-
form. The syntax of the Flute language is essentially an extension of that
of the Scheme language [5]. In the remainder of this section, we discuss
the language support for open reactive dispatching in Flute. We will do
so by using the motivating example of the onboard digital platform
that we introduced in Section 1.1.

2.1.1 Defining extensible composition units (modals)
Flute provides a composition abstraction, a modal that allows the devel-
oper to define a composition unit that groups together related predicated
procedures. A modal specifies the contextual sources on which the pred-
icates operate. It also allows the developer to define variables that are
shared among the predicated procedures belonging to the same modal.
A modal is extensible in the sense that new predicated procedures can
be added to it at runtime without requiring modification of the modal
definition and existing predicated procedures.

For instance, when developing the BainoInfo application, we require a
modal that groups together all its different behavioural variations (pred-
icated procedures). Such a modal is defined as follows:

Listing 1: Defining modals
1 ; defining a contextual source
2 (define bus-location (ctx−event))
3

4 ; defining a modal
5 (define bainoinfo (modal (bus-location)
6 (define bus-company "BainomugiStar")
7 (define city "Kampala")
8 (define language "EN")))

The current location of the bus is represented as a contextual source.
A contextual source is created using the ctx-event construct. In the
above code excerpt the resulting contextual source for the current bus’
location is bound to bus-location. A modal is created using the
modal construct, which takes as arguments a list of contextual sources
and an optional definition of shared variables. In the above code listing,
bainoinfo is a modal for grouping together the behavioural variations
of the BainoInfo application. It specifies the contextual source as bus-
location and defines shared variables bus-company, city, and lan-

guage that are accessible to all predicated procedures belonging to that
modal. In the next section, we discuss the support for defining predi-
cated procedures.

2.1.2 Defining predicated procedures (modes)
Behavioural variations (predicated procedures) are represented as modes.
Each mode specifies the modal it belongs to. In addition, each mode is
associated with a predicate that specifies its applicability. Predicates op-
erate on the contextual sources that are specified as part of the modal
definition that the mode belongs to. New modes can be added to an
existing modal at runtime.

An application is composed of different modes for different behaviours.
Each mode represents the behaviour that corresponds to a particular con-
text situation. For instance, the BainoInfo application consists of: a

mode for showing touristic information when the bus is within range of
a touristic area, and a mode for showing the timetable for a particular
stop when the bus is nearby that bus stop. Such modes can be defined as
follows:

Listing 2: Defining modes.
1 ;a mode for showing bus stop ’ s timetable
2 (mode (bainoinfo)
3 (at-bus-stop? bus-location)
4 (suspend resume deferred)
5 (lambda ()
6 (show bus-company)
7 (show city)
8 (show (get-stop-name))
9 (show (get-timetable))

10 . . .))
11

12 ;a mode for showing toursitic information
13 (mode (bainoinfo)
14 (nearby-museum? bus-location)
15 (suspend resume isolated)
16 (lambda ()
17 (show bus-company)
18 (show city)
19 (set ! language "NL")
20 (show (get-museum-name))
21 (show (museum-attractions))
22 . . .))

A mode is created using the mode construct. It takes as argument the
modal it belongs to, a predicate expression, a list of interruption, re-
sumption and scope management strategies, and a procedure that is cre-
ated using the lambda special form. Modes belonging the same modal
have the same list of parameters. In this example the two modes have no
parameters. The mode for showing the timetable for bus stops is speci-
fied with the at-bus-stop? predicate, while that for display the touris-
tic information is specified with the nearby-museum?. Both modes be-
long to the bainoinfo modal and operate on the bus-location con-
text source that is specified as part of the bainoinfo definition. Ad-
ditionally, each mode is specified with an interruption strategy – that
specifies what do when the predicate is no longer satisfied during the
execution of the mode, a resumption strategy – that specifies what to
do when the predicate becomes satisfied again, and scope management
strategy – that specifies the scope of changes made to the variables that
are shared among all modes. Note that both modes have access to the
variables bus-company, city, and language that are defined as part
of the bainoinfo modal. In next section, we discuss the dispatching
mechanism for selecting the appropriate mode to execute.

2.1.3 Contextual and reactive dispatching for modes
A modal is invoked as (modal-name <arguments>). For instance, the
bainoinfo modal is invoked as (bainoinfo) since its modes take no
arguments. Modes are not invoked directly1. When a modal is invoked,
the dispatching process is initiated to select the applicable mode to exe-
cute for the current situation. The dispatcher evaluates all the predicates
that are associated with the modes belonging to that modal. The mode
whose predicate evaluates to true is selected for execution. However,
unlike traditional dispatching mechanisms where the dispatching pro-
cess happens only once upon each dispatching incident, in Flute the dis-
patching process is repeated when context changes are observed. Since
context changes typically occur continuously, it is possible that some
predicates that could not be satisfied may become satisfied later and
thus requiring their associated modes to be executed. In Flute, the dis-
patcher is implicitly registered to the contextual sources that may affect
1When a mode is bound to a name it is possible to invoke it
directly. However in that case the initial dispatching process of
selecting the applicable procedure is not necessary since there
the name is associated with only one procedure implementation.

the contextual predicates. The dispatching process continuously moni-
tors context changes and is automatically triggered again whenever con-
text sources receive new values. This means that modes that were not
previously selected for execution may be selected later if their associated
predicates eventually evaluate to true.

2.1.4 Interruptible and resumable execution of modes
The predicate that is associated with a mode is not only used for dis-
patching but also for ensuring that the entire mode’s execution happens
in the prescribed condition. Throughout the evaluation of the body ex-
pressions of a mode, the predicate that is associated with that mode
is re-evaluated. If the predicate evaluates to false then the execution
is interrupted (i.e., suspended or aborted) depending on the developer
specified interruption strategy. If the predicate later evaluates to true
again, then the previously interrupted execution is resumed or restarted
depending on the developer specified resumption strategy. For instance,
in Listing 2, the mode for showing the bus timetable is specified with
the suspend strategy and the resume resumption strategy. Addition-
ally, each mode has a scoping strategy for controlling the visibility of
state changes. For instance, the mode for showing touristic information
is specified with isolated strategy. This means that the state change
(set! language "NL") is not visible to other modes that share that
state.

2.1.5 Runtime addition of modes to modals
Note that it is possible to add new modes to an existing modal at runtime
and when they are added they automatically become part of the poten-
tial modes that the dispatching process can select from for execution –
even if the modal was already invoked. For instance, the mode for the
displaying the currently showing movies when the bus is within range
of a cinema can be added to the bainoinfo modal as follows.

Listing 3: Adding a new mode at runtime.
1 (mode (bainoinfo)
2 (nearby-cinema? bus-location)
3 (abort restart deferred)
4 (lambda ()
5 (show bus-company)
6 (show city)
7 (show (get-cinema-name))
8 (show (get-showing-movies))
9))

Listing 3 shows how to extend the bainoinfo modal with a new mode.
The mode is specified with the nearby-cinema? predicate. Addition-
ally, it is specified with the abort interruption strategy, restart re-
sumption strategy, and deferred scope management strategy. Adding
a new mode does not require re-invoking the modal and the new mode
has access to the shared variables bus-company, city, and language

of the bainoinfo modal.

2.1.6 Scoping semantics for predicates and modes
Flute adheres to the lexical scoping semantics of the Scheme language.
However, the support for open reactive dispatching requires a change
in the variable lookup semantics. This is particularly important for the
evaluation of predicates and modes that are added at runtime to modals.
All modes belonging to the same modal have access the shared vari-
ables and contextual sources that are specified in the modal definition.
Variable lookup for a predicate evaluation happens as follows:

1. To evaluate a predicate, the lookup of variables starts from the
environment of the modal, which includes contextual sources and
the shared variables that are defined in the modal.

2. If the variable is not found in the modal environment, the lookup
proceeds to the enclosing environment of the mode.

Variable lookup for the mode evaluation happens as follows:

1. To evaluate the body of a mode, the lookup of variables starts from
the local environment of the mode.

2. If the variable is not found in the mode’s local environment, the
lookup proceeds to environment of the modal in which it belongs.

3. If the variable is not found in the modal environment, the lookup
proceeds to the enclosing environment of the mode.

2.2 Discussion and Limitations
The previous sections have presented the support for the open reac-
tive dispatching mechanism in the Flute language and illustrated it
by implementing the BainoInfo application that runs different modes
depending on the current situation. A modal serves as a composition
unit that allows developers to add new modes at runtime without requir-
ing modification to existing modes. The predicate associated with each
mode is not only used to select the right mode to execute but also for
ensuring that the entire mode execution is constrained to the correct con-
ditions. Additionally the dispatching process is repeated when context
changes are observed. Realising such functionality using existing predi-
cate dispatch approaches implies for the developer to insert dispatching
points in the procedure body, which can lead to negative effects on the
program composability. Moreover, in existing predicate dispatching ap-
proaches the dispatch process happens once upon each dispatching inci-
dent and any predicates that later become true are not taken into account.
We further discuss the related approaches in Section 3.

The current Flute implementation for supporting the open reactive dis-
patching mechanism is only a proof-of-concept prototype and there re-
main limitations that we discuss below.
Handling of return values. The fact the dispatching process may
be repeated and several modes may be invoked there is need to specify
how to handle multiple return values. For instance, it may be desirable
to provide options to the developer to select from or merge the return
values.

Ambiguous contextual predicates. Because predicates operate
on contextual parameters whose values change over time, it is possi-
ble that more than one predicate may be satisfied at the same time. A
possible solution to this problem is to allow the developer specify the
priority order of predicates [8].

3. RELATED WORK
Predicate dispatch approaches [6, 8] employ a dispatching mechanism
where the applicability of a procedure or a method depends on arbi-
trary predicates. Like in our approach each procedure is associated with
a predicate that specifies the condition under which the procedure is
allowed to execute. This eliminates the need for explicit conditional
checks for selecting the procedure to execute for the current situation.
However, those approaches do not provide support to ensure that the
entire procedure execution allowed to execute in the correct condition.
Also, dispatching process in the predicate dispatch approaches happens
only once upon each dispatching incident. This means that if certain
predicates later become true, their associated procedures are not consid-
ered for execution unless the procedures are invoked again. Context-
oriented programming (COP) approaches [3] provide support for con-
textual dispatch. However, in COP languages, the dispatching of appli-
cable behavioural variations happens only once upon each dispatching
incident. Guards [4] are synchronisation mechanisms that are used to
guard a method such that it only starts executing under certain condi-
tions. Like in our approach they provide a construct to enable the devel-
oper associate a precondition with a method that specifies the condition
under which the execution is allowed to begin. However, with guards,
the condition that is associated with a method is only used as a precondi-
tion for a method invocation and not for ensuring that the entire method

execution occurs in the specified condition. Coroutines [7] also pro-
vide support to express interruptions (through suspension) and resump-
tions. However, the developer has to explicitly transfer control using the
yield construct at certain points in the procedure body. In event-based
systems, such control transfers have to happen based on context condi-
tions. As a consequence, the developer has to insert repetitive control
transfer constructs and guard each one of those with a context condition.

4. CONCLUSION
This paper has presented the open reactive dispatch as a dispatching
mechanism that improves the composition and eases the development
of modern event-based systems such as context-aware applications. It
uses the predicate not only to select the applicable procedure but also
to ensure that entire procedure execution is only allowed to proceed
when the specified condition is satisfied. Predicates operate on con-
textual parameters whose values change over time. The dispatching is
repeated whenever the values of contextual parameters change and thus
previously unsatisfied predicates may become satisfied and their associ-
ated procedures are selected for execution. The open reactive dispatch-
ing mechanism has been embodied in the Flute programming language.
Flute provides composition abstractions modals and modes that allow
developers to represent behavioural variations as predicated procedures
and group them together in extensible composition units. For future
work we plan to investigation techniques for addressing the limitations
discussed in Section 2.2.

5. ACKNOWLEDGMENTS
This work was partially funded by the SAFE-IS project in the context of
the Research Foundation - Flanders (FWO).

6. REFERENCES
[1] E. Bainomugisha, J. Vallejos, E. G. Boix, P. Costanza, T. D’Hondt,

and W. D. Meuter. Bringing Scheme programming to the iPhone -
Experience. Software, Practice Experience., 42(3):331–356,
2012.

[2] E. Bainomugisha, J. Vallejos, C. D. Roover, A. Lombide Carreton,
and W. D. Meuter. Interruptible context-dependent executions: A
fresh look at programming context-aware applications. In
Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software Proceedings, ONWARD ’12, New York, NY, USA,
2012. ACM. (To appear).

[3] P. Costanza. Language constructs for context-oriented
programming. In Proceedings of the Dynamic Languages
Symposium, pages 1–10. ACM Press, 2005.

[4] D. Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Patterns. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[5] J. Matthews and R. b. Findler. An operational semantics for
Scheme. J. Funct. Program., 18(1):47–86, Jan. 2008.

[6] T. Millstein. Practical predicate dispatch. In Proceedings of the
19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA ’04, pages 345–364, New York, NY, USA, 2004. ACM.

[7] A. L. D. Moura and R. Ierusalimschy. Revisiting coroutines. ACM
Transactions on Programming Languages and Systems,
31:1–31, 2009.

[8] J. Vallejos, S. González, P. Costanza, W. De Meuter, T. D’Hondt,
and K. Mens. Predicated generic functions: enabling
context-dependent method dispatch. In Proceedings of the 9th
international conference on Software composition, SC’10,
pages 66–81, Berlin, Heidelberg, 2010. Springer-Verlag.

