
How to Achieve Scalable Fork/Join on Many-core Architectures?

Mattias De Wael∗

Software Languages Laboratory
Department of Computer Science

Vrije Universiteit Brussel, Belgium

madewael@vub.ac.be

Tom Van Cutsem†

Software Languages Laboratory
Department of Computer Science

Vrije Universiteit Brussel, Belgium

tvcutsem@vub.ac.be

Abstract
Fork/Join is a parallel programming model that implicitly as-
sumes uniform memory access. The transition from multi- to
many-core architectures will render this assumption invalid,
and consequently it is likely that Fork/Join in its current form
will not scale. This research investigates implementations
for Fork/Join to allow the transition to many-core.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming, Parallel program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features Concurrent programming structures

Keywords Fork/Join, Work Stealing, Many-core

1. Introduction
Contemporary processors become ever more parallel, in-
stead of faster as they used to. This new approach of in-
creasing processor power has put a stop to the virtually free
improvement of software performance with every newly re-
leased processor. Instead, if we want to continue the pro-
duction of software that scales in performance with the new
multicore processors, then the programs themselves need to
become parallel as well. Simultaneous with the rise of par-
allel processors, the model of uniform memory access starts
to break down, amplifying the bottleneck effect of memory
latency on performance even more. Therefore, hardware ar-
chitects do not only increase the number of cores on a chip,
but also envision and implement new memory architectures.
The latter is what is also referred to as the transition from
multicore to many-core architectures. This research wantsto
prepare the convenient to use parallel programming model

∗ Supported by a doctoral scholarship of IWT-Vlaanderen, Belgium
† Postdoctoral Fellow of the Research Foundation - Flanders (FWO)

Copyright is held by the author/owner(s).

SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

Fork/Join for this transition. This text presents the problems
we foresee in this transition from multicore to many-core ar-
chitectures, as well as some preliminary ideas to solve those
problems.

2. Fork/Join and Work Stealing
Fork/Join is a convenient to use parallel programming
model. Today we see a great variety of Fork/Join imple-
mentations. Either as library [9–11] or as language (exten-
sion) [3, 5]. The extra cognitive burden of Fork/Join for the
programmer is limited to only 2 constructs:fork and join.
Other concerns such as load balancing are taken care of by a
scheduler. Fork/Join parallelism forces its users to focuson
exposing parallelism by dividing a problem into potentially
parallel tasks. These tasks, usually of recursive nature, form
at run-time a directed acyclic graph of dependencies. The
graph, usually referred to as the computation graph, forms
a solid model to reason about the computation. At run-time,
the generated tasks are assigned to processing cores without
intervention of the programmer. Contemporary Fork/Join
implementations all use some variation of work stealing,
where idle processors steal work from busy procesors [2, 7].

3. The Shift from Multicore to Many-core
Today, multicore architectures with uniform memory access,
up to cache hierarchies, are ubiquitous. However, with the
rise of many-core architectures [4, 8, 12], uniform memory
access becomes unfeasible. Hardware architects will have
to shift to memory architectures with non-uniform access
(NUMA). For instance, contemporary hardware exists where
a shared memory is supported by an elaborate cache hier-
archy, and, furthermore, these caches can be dynamically
accessed by neighboring processing cores. Not only caches
will play an important role, but also the idea of a network-
on-chip that allows fast and direct inter-core communication
can already be seen in contemporary hardware [13]. Now,
data is not longer close by, or far away, but it can be any-
where in between.



4. Foreseen problems
All the Fork/Join implementations use a (slightly) different
scheduling policy. Each flavor of Fork/Join (and its sched-
uler) behaves differently for different scenarios, and operates
with different stack and memory bounds [7].

Today, Fork/Join and work stealing implicitly assume
uniform memory access, in the sense that contemporary im-
plementations do not allow access control. Therefore it is
likely that in its current form Fork/Join programs will not
scale into the many-core era. Since steals are randomized,
and the number of potential victims for work stealing in-
creases, the chance of counter productive steals increases
due to bad data locality and other NUMA effects.

5. Ideas for possible solutions
To prepare Fork/Join and work stealing for the many-core
era, we think changes are needed on three frontiers: at the
level oflanguage constructs, at the level ofalgorithm design,
and at the level of the work stealingscheduler. We want to
evaluate solutions proposed for multicore work stealing with
improved data locality [1], as well as as solutions proposed
for distributed work stealing and PGAS-like languages [5],
and new solutions that emerge because of the potential of the
upcoming hardware.

We will need a richer language to express new phenom-
ena, such a data locality, without adding to much cognitive
burden. Currently we think about expressing data locality
similar as the efforts done for PGAS languages, such that
data and/or tasks can express more elaborate on their data
access patterns. On the other hand, we think about type an-
notations for tasks, added by the programmer or a compiler,
to provide more information about the behavior of a task,
e.g. tasks that synchronize by their very nature, require less
synchronization at the scheduler level. At the algorithmic
level, the use of cache oblivious algorithms and data struc-
tures [6], can aid programmers in creating scalable Fork/Join
programs.

Finally, we want to improve upon the work stealing
scheduler itself. We want to evaluate and adapt techniques
such as locality guided work stealing [1], and adaptive work
stealing [7] on the many-core architectures. A second idea
on how to improve Fork/Join’s work stealing scheduler is
to anticipate on processors becoming idle before they actu-
ally do. For instance by sending non-blocking messages to
nearby workers to ask for more work when they are about
to become idle. Finally, with the extra information about the
characteristics of a task (e.g. idempotent, self synchroniz-
ing), variants of the local deques can be implemented that
require less syntonization and therefore induce less over-
head.

6. Conclusion
Since the turn of the century, the need for parallel programs
increases. Fork/Join proves to be a convenient to use model
to express divide-and-conquer algorithms in a parallel fash-
ion. The model is adopted and implemented by various in-
dustry strength vendors. However, with the rise of the many-
core architectures this model is unlikely to scale on these
new hardware. We propose to adapt Fork/Join on three fron-
tiers to tackle the problems induced by the transition from
multicore to many-core architectures.

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. InProceedings of the twelfth annual
ACM symposium on Parallel algorithms and architectures,
2000.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing.J. ACM, September 1999.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. InProceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, 1995.

[4] S. Borkar. Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation
Conference, 2007.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, 2005.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. InProceedings of the 40th
Annual Symposium on Foundations of Computer Science,
1999.

[7] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: A scalable
locality-aware adaptive work-stealing scheduler.Parallel and
Distributed Processing Symposium, International, January
2010.

[8] J. Held, J. Bautista, and S. Koehl. From a Few Cores to Many:
A Tera-scale Computing Research Overview. Technical
report, Intel White Paper, 2006.

[9] Intel. Threading Building Blocks.
http://threadingbuildingblocks.org/, Septem-
ber 2011.

[10] D. Lea. A java fork/join framework. InProceedings of the
ACM 2000 conference on Java Grande, 2000.

[11] D. Leijen, W. Schulte, and S. Burckhardt. The design of a
task parallel library.SIGPLAN Not., October 2009.

[12] Microsoft. The Manycore Shift. Technical report, Microsoft
White Paper, November 2007.

[13] Tilera. TILE-Gx, TilePro, and Tile64 processors.
http://www.tilera.com/products/processors , 2012.

http://threadingbuildingblocks.org/
http://www.tilera.com/products/processors

	Introduction
	Fork/Join and Work Stealing
	The Shift from Multicore to Many-core
	Foreseen problems
	Ideas for possible solutions
	Conclusion

