
Programming Urban-area Applications

Dries Harnie
dharnie@vub.ac.be

Elisa Gonzalez Boix
egonzale@vub.ac.be

Theo D’Hondt
tjdhondt@vub.ac.be

Wolfgang De Meuter
wdmeuter@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel

ABSTRACT
The evolution of smartphones has given rise to urban-area
applications: applications that communicate in a city by
means of the public (moving) infrastructure, e.g. buses and
trams. In this setting, applications need to communicate
and discover each other using intermediaries that move around
the city and transfer data between them. This requires pro-
grammers to scatter code that deals with routing messages
to the correct place and dealing with network failures all
over their programs. Our approach allows the programmer
to specify urban-area applications in a high-level manner
without the burden of directly encoding communication us-
ing intermediaries. We present this as a translation from a
high-level object-oriented programming paradigm to a low-
level communication mechanism.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems Distributed Applications; D.3.3 [Software]: Lan-
guage Constructs and Features

Keywords
Tuple spaces, ambient-oriented programming

1. INTRODUCTION
There is no denying that smartphones have taken off in re-

cent years, with significant improvements to both their com-
putational and communication capacities. This has given
rise to a huge ecosystem of mobile applications, varying from
entertainment to information retrieval, on-line shopping and
others. These applications typically adapt the functionality
present in existing desktop or web applications to the user
interface and capabilities of mobile devices. Some mobile
applications are explicitly targeted towards people in a city:
e.g. applications that alert the user to road works in the
city or tourist guide applications. These applications are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

sometimes made available outside of traditional channels,
for example the city of London offers tourist information
applications in tourism offices spread throughout the city.

Almost all mobile applications assume that internet con-
nectivity is always available. This is not always the case
though, e.g. a user might be in an area where his device
does not get a signal. Additionally, a user might not want
to use mobile data connections as they can be very expen-
sive, especially when traveling abroad. In practice, smart-
phone owners travel between “islands of connectivity”, like
their home, their office and Wi-Fi access points provided by
local businesses.

When the user is not on an island of connectivity the
mobile applications on their smartphone are incapable of
communicating, often for hours at a time. When the device
regains connectivity, programmers need to coordinate and
reconcile any off-line operations with other devices. In this
paper we propose to use the public transportation infrastruc-
ture to carry user communication, extending the existing
islands of connectivity to the areas frequented by the pub-
lic transportation. We call this kind of applications that are
distributed on and focused on a city urban-area applications.
Rather than communicating through servers on the inter-
net, urban-area applications communicate using this public
transportation backbone.

Unfortunately, current mobile middleware is not directly
applicable for programming urban-area applications, as they
work under different assumptions. First of all, applications
primarily communicate with other applications indirectly.
They will send a message using the public transportation
backbone and eventually get an answer back. With round-
trip communication times of several minutes, programmers
must write applications that communicate asynchronously.
Because communication happens via third parties, some mes-
sages will arrive in duplicate or not at all; developers must
take care their applications still work as intended. Finally,
there is no central registry of applications; instead, applica-
tions must discover other running applications in order to
interact with them.

In this paper, we explore a means of programming urban-
area applications that extends the popular object-oriented
programming paradigm, while hiding the communication
and distribution details from the programmer. This makes
it possible to formulate urban-area applications using high-
level communication abstractions. Our approach then trans-
lates these abstractions into low-level communication that
uses store-and-forward communication strategies.

The rest of this paper is structured as follows: first we de-

scribe urban-area applications and the environment in which
they work in section 2. Then, we discuss existing approaches
to indirect communication and programming abstractions
for unstable network connections in section 3. In section 4
we define criteria for a suitable low-level communication
mechanism, along with a high-level language for program-
ming urban-area applications and a translation between the
two. Finally, in section 5 we present a first evaluation of
our translation and we discuss a number of parameters that
can be tweaked in future deployments of urban-area appli-
cations.

2. URBAN-AREA APPLICATIONS
In this section we will discuss the characteristics of urban-

area applications. As mentioned in the introduction, urban-
area applications are deployed in an urban setting and com-
municate using the available (mobile) infrastructure in the
city. In this paper, we use the public transportation vehicles
as extensions of the current “islands of connectivity”. These
vehicles, equipped with wireless communication hardware,
transport communication between islands.

As a concrete example of an urban-area application de-
ployed on an urban-area network, we present an urban bul-
letin board : an open city-wide discussion forum inspired by
the popular website Craigslist. Instead of transmitting mes-
sages to a centralized server over the internet, the urban
bulletin board application exchanges messages with a pub-
lic transportation vehicle whenever the user is on or near it.
This vehicle will then propagate it to other users. Somebody
who e.g. lost her umbrella on the bus can post a message to
this urban bulletin board. This message will be picked up
by other public transportation vehicles and carried around
as they move through town. People who are physically re-
mote can in turn pick up this message and send out replies
to the message, which will be transported back in a similar
way. Implementing this as an urban-area application allows
people to engage on a highly local and topical basis.

Because of the difference in network topologies, urban-
area applications are more related to applications in mobile
ad-hoc networks [15] and nomadic networks. In these kinds
of networks, users move about constantly and occasionally
connect wirelessly to either peers or (mobile) infrastructure
nodes. Urban-area networks additionally allow users to for-
ward communication on to islands of connectivity. This
difference in connectivity and network topology also makes
programming urban-area applications different from typical
distributed applications:
Indirect communication by default
In an urban-area setting, connections to other parties will
be extremely volatile. Additionally, urban-area applications
will almost always communicate indirectly using the pub-
lic transport infrastructure. Because messages need to be
physically carried around by public transportation vehicles,
communication between two parties can take hours.
Scoping by default
Urban-area applications are implicitly scoped to the area
they are deployed. This in contrast to traditional internet
applications, where messages must be explicitly scoped and
users must define bounds on their interaction. Additionally,
the user’s relative location or connectivity in the urban area
can be used to further delimit scope. For example, messages
posted close to the user’s position can be prioritized over
other messages, changing as the user moves about.

Indirect peer-to-peer communication
Instead of using a global infrastructure like internet-hosted
applications, urban-area applications will communicate lo-
cally through the public transportation infrastructure. This
blurs the line between client and server applications: appli-
cations can publish data directly onto the infrastructure and
similarly can directly read data published by others.
Large periods of disconnection
Users will often be out of range of the public transporta-
tion infrastructure or turn off their wireless connection to
save power. This means that urban-area applications can-
not depend on permanent connectivity: they should buffer
communication locally until it can be forwarded to the pub-
lic transport infrastructure. These large periods of discon-
nection also make it more probable that applications are
working from data that is out of date.

Dealing with these properties puts an extra burden on
programmers. Therefore, the goal of this paper is to hide
them from programmers by means of high-level abstractions
for writing urban-area applications.

3. RELATED WORK
Now that we have given an overview of what urban-area

applications entail, we will discuss how existing approaches
deal with these issues. In order to deal with the unstable
network connection, programmers often turn to middleware
suited to mobile applications. We can divide these in four
categories.

First, there is delay-tolerant networking [3]: a low-level ap-
proach to communication for urban-area applications. This
technology is typically deployed when users are physically
separated and cannot communicate directly, i.e. because there
is no infrastructure. For this purpose, there are message
ferries who can physically carry messages around between
users. These message ferries often do not reach their des-
tination in one go, but instead hand over the message to
another ferry which can get the message closer to the desti-
nation. There are variants where the next hop is determined
by social connectedness [9] or the messages themselves [16].
Programming applications using delay-tolerant networking
is done using a very low-level API that only supports di-
rect connections. Secondly, for delay-tolerant networking to
work, the programmer has to know the destination in ad-
vance. This is not possible in urban-area applications, as
other running applications need to be discovered dynam-
ically. Additionally, users of urban-area applications are
highly mobile, which nullifies most of the routing optimiza-
tions used in delay-tolerant networking.

A second, already more high-level type of approach is pub-
lish/subscribe middleware [2]. In such systems, applications
register an explicit interest in certain types of events with the
middleware, whenever another application publishes such an
event, the subscribers are notified asynchronously. Matching
subscribers to publishers is done through event brokers, who
notify publishers of new subscriptions and forward events to
subscribers. The publish/subscribe paradigm was originally
limited to static event brokers in local-area networks (LANs),
but soon evolved to a more hierarchical and dynamic archi-
tecture where event brokers can be added and removed at
will [2]. An important evolution for use in mobile contexts
can be found in STEAM [8], where events are only valid
within a certain proximity of a publisher.

Unfortunately, publish/subscribe middlewares are not suited

to one-to-one communication: programmers need to explic-
itly encode one-to-one communication themselves. Further-
more, the publish/subscribe hierarchy needs to be recom-
puted every time the network topology changes, negating the
advantages of a hierarchical architecture. Finally, publish/-
subscribe middlewares do not support the atomic removal of
events, making it hard to clean up stale events.

A third category is object-oriented middleware, like Java
RMI and .NET Remoting. They try to add support for
distribution to the well-known object-oriented programming
paradigm. However, they are not resistant to disconnec-
tions and need to know the address of the other party in
advance. Jini [14] allows programmers to discover services
at runtime and interact with them through proxies, allowing
for a more flexible architecture. Finally, M2MI [6] enables
group communication in Java by providing handles to ob-
jects that implement a given Java interface on the local net-
work. It does not provide any delivery guarantees however,
the programmer must implement this manually. None of
these object-oriented middlewares support rapidly changing
network topologies or the indirect communication in urban-
area applications.

A final set of approaches are tuple spaces [4]. Tuple spaces
contain small units of data called tuples. Applications co-
ordinate by adding tuples to the tuple space and waiting
for certain tuples to appear. In the original model, a sin-
gle shared tuple space was used as a coordination mecha-
nism for distributed computing between devices. Extensions
for mobile use [11] adhere to a federated tuple space model :
when a group of devices establish a connection, their re-
spective tuple spaces are combined. The devices can then
see other devices’ tuples and e.g. put tuples in other tuple
spaces. When the devices later disengage, the federated tu-
ple space is deactivated and each device is left with its own
tuple space. Variants of this model replicate tuples to im-
prove data availability [10]. TOTA (Tuples on the Air [7])
additionally provides context by propagating tuples across
the network according to rules embedded in the tuples.

Unfortunately, it is currently not easy to program urban-
area applications using tuple spaces. First of all, the various
stages of interaction that represent an interaction between
running applications will result in different tuples being cre-
ated. The operations in the original tuple space model are
blocking and thus require one thread per communication
partner. Newer tuple space implementations use event han-
dlers for each kind of tuple, but this inversion of control [5]
scatters the control flow of the program across several event
handlers. Secondly, there is no uniform mechanism to scope
tuples in a tuple space. There are systems where multiple tu-
ple spaces can coexist and access to them can be controlled,
but these are static and do not use semantic information.
Additionally, there is usually no support for limiting the
lifetime of tuples. There are exceptions, like L2imbo [1]
that allow developers to specify timeouts on tuples. Scoping
is essential in urban-area applications to prevent urban-area
networks from collapsing under large amounts of abandoned-
but-not-removed tuples. Finally, current replicated tuple
spaces do not provide support for deletion of tuples in a tu-
ple space as it can lead to inconsistency. However, program-
mers writing urban-area applications will sometimes need to
delete tuples to indicate the end of conversations.

Summary
In summary, the existing approaches all lack some kind of
functionality to properly support urban-area applications.
Publish/subscribe middleware allows message to percolate
throughout the urban area regardless of connectivity, but
is not well suited to one-to-one communication. Object-
oriented middleware offers programmers a familiar way of
programming, but is ill-suited to deal with the ever changing
network topology. Delay-tolerant networking can be used to
deliver messages between peers who are physically separate,
but is very low-level and thus hard to program. Finally, tu-
ple spaces are also hard to program but are flexible enough
to represent the communication patterns programmers en-
vision.

4. URBAN-AREA PROGRAMMING MODEL
In this section we will describe the programming model

we propose for urban-area applications. This model consists
of three parts: first, each device in an urban-area setting is
equipped with a low-level communication mechanism that
is responsible for distributing messages across the city.

The second part of our urban-area programming model is
a high-level programming paradigm that extends the object-
oriented programming paradigm with abstractions for deal-
ing with the issues presented by urban-area networks.

Finally, we will present a mapping between the high-level
programming model and the low-level communication mech-
anism. This mapping will translate the direct communica-
tion between peers in the high-level programming model to
low-level communication using intermediaries.

4.1 Urban-area tuple space
In this paper we propose tuple spaces as the low-level com-

munication mechanism, because they are flexible enough to
express all communication patterns. In an urban-area net-
work, each device defines a tuple space to carry around not
only its own, but also a number of “foreign” tuples belonging
to other devices.

In the rest of this section we will define and motivate a
number of features we envision for the tuple space on these
devices. Currently, no tuple space supports all of these fea-
tures. We have added some of the missing features below to
an existing tuple space called TOTAM [12].

4.1.1 Replication-based model
When two tuple devices connect to each other, their tu-

ple spaces will exchange their own tuples along with foreign
tuples. Each tuple is marked with a unique ID. Prior work
in the literature has shown that a replication-based model
increases data availability in a highly disconnected environ-
ment. In this paper, we use replication to support indirect
communication, as it enables intermediary nodes to carry
information to and from their eventual destination.

4.1.2 Leasing for tuples
As long as a tuple is in circulation, it takes up crucial

storage space and transmission time. Some kinds of tuples
are inherently transient, for example tuples that advertise
social events on a particular date or store promotions limited
in time. Other tuples might be “orphaned” because their
owner is no longer in the city. In order to make space and
bandwidth available for newer tuples, our urban-area tuple

space requires leasing for tuples. After a certain time period
has passed (a day, in our implementation), the leases are
revoked and the tuples are removed from the tuple space.

4.1.3 Distributed removal of tuples
A side effect of replicating tuples across devices is that

deleting tuples becomes harder: a locally deleted tuple might
be reinstated by a subsequent communication with another
device. Currently tuple spaces cannot distinguish between a
tuple that was deleted and a tuple that has not been received
yet. To make this distinction, the replicated tuple space
remembers and propagates deletions of tuples by introducing
anti-tuples. These spread like normal tuples but annihilate
their corresponding tuple when they enter a tuple space.

We have extended TOTAM to allow anyone (not just the
owner of the tuple) to initiate the deletion of tuples. Anti-
tuples expire not long after the regular tuples, ensuring that
anti-tuples do not linger.

4.1.4 Scoped tuples
In an urban-area environment, battery and network us-

age are important considerations. Tuples should therefore
be targeted towards people more likely to propagate them to
the correct destination. Highly context-sensitive data could
even be limited to certain physical locations or public trans-
port lines. For example, a message from a commuter who
lost his umbrella on the bus should not spread beyond that
bus line. Implementation of this feature is still ongoing.

4.1.5 Event-driven operation
As round-trip times in an urban-area application can be

long, programs interacting with an urban-area tuple space
cannot use synchronous operations. While it is possible to
perform multiple blocking operations using threads, this is
not feasible given the multitude of communication partners.
Given the mobile setting we propose an event-driven opera-
tion instead, where the programmer registers callbacks that
are invoked when e.g. a certain tuple is put in the tuple
space. TOTAM is already event-driven. Furthermore, it
allows event handlers to register new event handlers, pre-
serving control and data flow.

4.2 Programming urban-area applications
As mentioned earlier, urban-area networks are similar to

mobile ad-hoc networks. Just like an urban-area network,
connections in such a network are considered extremely volatile,
which requires programmers to litter their code with ex-
ception handlers. To ease development in mobile ad-hoc
networks, the ambient-oriented programming paradigm [13]
was proposed. It extends the object-oriented paradigm to
tackle the volatile network connections inherent to mobile
ad-hoc networks. In order to support urban-area applica-
tions, we propose to extend the ambient-oriented program-
ming paradigm with support for indirect communication.

In the ambient-oriented paradigm, communication between
two applications happens exclusively through far references:
remote object references that only allow asynchronous com-
munication and mask disconnections by default. When a far
reference becomes disconnected — the device hosting the ob-
ject is no longer reachable — all further messages sent to the
far reference are buffered locally. When the remote device
later reconnects, the messages are sent. This property makes
ambient-orient programming interesting for urban-area ap-

plications. However, ambient-oriented programming relies
exclusively on direct connections between devices which is
almost never the case in urban-area applications.

We have implemented our extensions to the ambient-oriented
programming paradigm in the AmbientTalk language [13],
a distributed programming language that adheres to this
paradigm. In order to illustrate how to program urban-area
applications, we will use AmbientTalk to present the urban
bulletin board example introduced in section 2.

In AmbientTalk, applications need to discover objects ex-
ported by other applications in order to communicate. Each
application can export its services using descriptive type
tags. When it starts, a urban-area application starts dis-
covering any objects that are exported:

deftype BBoard; // urban bulletin board
whenever: BBoard discovered: { |aBoard|

def topicsFut := aBoard← queryFor(interestingTopics);
when: topicsFut becomes: { |topics|

GUI.show(topics);
}}

Whenever an urban bulletin board service is discovered with
the BBoard type tag, the whenever:discovered: callback is in-
voked with a single argument: a far reference to the dis-
covered object. If this far reference disconnects and later
reconnects, the discovery handler is triggered again.

Here the ← operator denotes an asynchronous message
send. The ambient-oriented programming paradigm enforces
that subsequent messages sent to the same far reference are
processed in the same order. Note that the programmer
does not have to specify explicitly how the message should
be sent. The queryFor message returns a future: a place-
holder for the return value. When the remote aBoard finishes
its queryFor computation, the future is resolved with the re-
turn value. This in turn triggers the attached when:becomes:

handler, in this case showing the returned topics.
Programmers can also attach arbitrary annotations to mes-

sage sends:

aBoard←post("lost umbrella")@For(weeks (1))

This posts a message to aBoard that has a suggested lifetime
of one week. We also support a @Near annotation that scopes
a message to a given location.

An application exports its own services using the export:as:

construct, which makes the given object discoverable using
the given type tag:

def myBoard := object: { def queryFor(topics) { . . . }};
export: myBoard as: BBoard;

Messages sent to this exported object (as above) are trans-
lated into method invocations on this object and any return
values are wrapped in a future.

This style of programming frees the programmer from the
specifics of the networking technology used. Our proposed
translation replaces the ← operation on far references by
putting tuples in the urban-area tuple space, where they can
be transported to their destination by public transportation
vehicles. Similarly, our translation enables service discovery
by exporting tuples for other applications to discover.

4.3 Translating ambient-oriented programs to
tuple spaces

In this section we will explain how the ambient-oriented
communication primitives we described above can be repre-
sented using operations on tuples. These tuples will reside

Ambient-oriented code Operations on the urban-area tuple space

export export: OBJ as: TAG

objectID ← generate new object ID
mapping objectID ← OBJ
ref ← 〈deviceID, objectID〉
out〈export,TAG,ref 〉

discovery whenever: TAG discovered: CLOSURE
whenever: 〈export,TAG,?ref 〉 read: {

call CLOSURE with ref
}

send REF←AMESSAGE(arg1, arg2, . . .)

if first time sending to REF
then seqnoREF ← 0
else seqnoREF ← seqnoREF + 1

sender ← deviceID
out〈message,sender,REF,seqnoREF ,AMESSAGE,toReference〈arg1,arg2,...〉〉

receive (done automatically)

whenever: 〈message,?sender,〈deviceID,?objectID 〉,0,?message,?arguments 〉 in: {
localObject ← mapping objectID

localObject .message (arguments)
// install a handler with the same sender and objectID ,
// but with seqno = seqno + 1

}

Table 1: Mapping the basic operations in ambient-oriented programs to urban-area tuple spaces

in an urban-area tuple space as defined above. Our transla-
tion can be applied both at compile-time and at run-time.
Our translation uses two kinds of tuples for communication,
tagged with either export or message:

• 〈export, tag, obj 〉
This kind of tuples represent an object exported to the
environment. The first parameter, tag, is a type tag
that informally describes the exported object; other
applications can use this type tag to discover objects
they are interested in. obj refers to the exported ob-
ject.

• 〈message, sender, target, seqno, message, arguments〉
This kind of tuples encode the sending of a message
with given arguments to a far reference. To retain
the implicit message ordering in point-to-point connec-
tions, we tag each message sent to target with the actor
that sent it (sender) and a sequence number seqno.

Table 1 contains two rules that describe how the object dis-
covery mechanism is encoded into tuples, and two rules that
describe how message transmission and reception happens:

4.3.1 The export/discovery protocol
When an applications exports an object to the environ-

ment, it creates an export tuple that contains a type tag
and a tuple that represents a far reference to the object.
This tuple consists of a fresh identifier for the object and an
identifier for the device it is hosted on.

When a client wants to discover objects in the environ-
ment, the procedure is reversed: it attempts to read an ex-
port tuple with the tag field filled in. Whenever such a
tuple is found, the ?ref parameter is filled in by the tuple
space and passed to the callback.

4.3.2 The send/receive protocol
Reading tuples from tuple spaces is inherently nondeter-

ministic, there is no ordering imposed on tuples. Our trans-
lation must take care to preserve the message ordering im-
posed by the ambient-oriented paradigm. We tag each mes-
sage with its originator and a sequence number: the first
time an application sends a message to a far reference, it is
tagged with sequence number zero. This number is increased
for every message sent afterwards. Before a message tuple
is sent the toReference function replaces each object in the

Figure 1: Histogram of delivery times
argument list with a far reference, similar to when an object
is exported.

On the receiver side, each device creates an asynchronous
whenever:in: handler that is triggered when another device
sends its first message to each exported service. When such
a tuple is found, it is removed from the tuple space and
forwarded to the local object. Afterwards, a new whenever:in:

handler is installed that explicitly matches the given sender,
object ID and sequence number.

5. EVALUATION AND FUTURE WORK
We have tested our approach by simulating an urban-area

network using thirty buses on three separate lines. At the
endpoints of each line stands a person that discovers other
people and then exchanges messages. Communication is car-
ried by buses, moving from stop to stop at a speed of 30
km/h. When buses meet at a stop, they exchange their car-
ried tuples. The result of this simulation can be seen in
Figure 1: 90% of all communication is received within 20
minutes with a median delivery time of 12 minutes.

To get an estimate of how real urban-area applications will
fare, we need to scale up these experiments to real-world
situations. We are currently conducting experiments with
real buses in Brussels with the help of the STIB, the local
public transport company. We surmise that proper tuning
of the individual tuple spaces will be crucial to supporting

effective urban-area network applications. In the rest of this
section we will discuss some possible improvements, both for
the programming model as the urban-area tuple spaces.

Prioritizing tuples: From a replicating tuple space’s point
of view, all tuples are equal. However, as programmers we
can identify tuples that should be sent first during the short
tuple transmission window, to ensure that the recipient can
proceed with local computations as far as possible. A sim-
ple example of this are the message tuples: since e.g. mes-
sage #5 will not be processed before #4 arrives, our system
should transmit these tuples in their sequence order. Simi-
larly, sending anti-tuples first reduces the amount of tuples
that are moved around the urban-area network. Finally, the
type of application could also have an impact on the priority
its tuples get. For example, tuples that are part of adminis-
trative urban-area applications could be given priority.

Shared global data structures: Since a city-wide tuple space
reintroduces the idea of shared knowledge, this could be ex-
posed to programmers. For example, a map of landmarks
and tourist attractions in the city could be presented as a
“shared set” which can then be discovered, imported into a
local tuple space, and used off-line. Such a data structure
would not be modifiable by the general public, but instead
curated by a dedicated entity related to the data structure,
e.g. the tourism office.

Explicit message queues: As a side effect of our transla-
tion, message queues are made explicit as tuples. We are
currently investigating the possibilities of allowing program-
mers to reify this message queue. This could enable pro-
grammers to batch multiple messages into one single mes-
sage. It could also enable “anti-messages” which — like anti-
tuples — annihilate messages waiting in the message queue.

6. CONCLUSION
In this paper we presented urban-area applications: ap-

plications designed for an urban setting that communicate
with each other by relaying messages over shared public in-
frastructure. This public infrastructure can be static, like
bus stops or public internet access points, or dynamic, for
example buses rolling around.

This network topology poses a number of problems for
programmers who wish to use traditional mobile program-
ming paradigms. First of all, direct connections to other
devices are infrequent, so urban-area applications need to
use indirect communication. Secondly, there is no central
registry of active applications; instead, applications must
discover other running applications. Finally, urban-area ap-
plications spend long periods of time without connectivity
to other devices, so data availability is important.

To avoid addressing these problems directly in code, pro-
grammers use middleware. In this paper we identified two
types of middleware: high-level extensions to the object-
oriented programming paradigm and low-level middleware
for propagating data across an unreliable network. The for-
mer provides a high-level approach to programming urban-
area applications, but is not suited to indirect communica-
tion. By contrast, low-level middleware is hard to program
but is well suited to indirect communication. Our approach
combines the benefits of the two approaches by enabling
programmers to write urban-area applications using object-
oriented programming, while abstracting from the low-level
mechanism used to provide indirect communication.

7. ACKNOWLEDGMENTS
Dries Harnie and Elisa Gonzalez Boix are supported by a

grant from the Prospective Research for Brussels program of
Innoviris. We would like to thank the STIB for providing us
with the necessary resources, and the anonymous reviewers
for their helpful comments.

8. REFERENCES
[1] N. Davies, A. Friday, S. Wade, and G. Blair. L2imbo:

a distributed systems platform for mobile computing.
Mob. Netw. Appl., 3(2):143–156, 1998.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and
A. Kermarrec. The many faces of publish/subscribe.
ACM Computing Survey, 35(2):114–131, 2003.

[3] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proc. of SIGCOMM 2003,
pages 27–34. ACM, 2003.

[4] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, Jan 1985.

[5] P. Haller and M. Odersky. Event-based programming
without inversion of control. In Proc. Joint Modular
Languages Conference, volume 4228 of Lecture Notes
in Computer Science, pages 4–22. Springer, 2006.

[6] A. Kaminsky and H.-P. Bischof. Many-to-many
invocation: a new object oriented paradigm for ad hoc
collaborative systems. In Proc. of OOPSLA 2002,
pages 72–73, 2002.

[7] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications with the TOTA
middleware. In Proc. of PERCOM ’04, page 263, 2004.

[8] R. Meier, V. Cahill, A. Nedos, and S. Clarke.
Proximity-based service discovery in mobile ad hoc
networks. In DAIS 05, pages 115–129. Springer, 2005.

[9] A. Mtibaa, M. May, C. Diot, and M. Ammar.
Peoplerank: Social opportunistic forwarding. In Proc.
of IEEE INFOCOM 2010, pages 1–5.

[10] A. Murphy and G. Picco. Using lime to support
replication for availability in mobile ad hoc networks.
In 8th International Conference on Coordination
Models and Languages (COORDINATION), LNCS,
pages 194–211. Springer-Verlag, 2006.

[11] A. Murphy, G. Picco, and G.-C. Roman. LIME: A
middleware for physical and logical mobility. In Proc.
of ICDCS01, pages 524–536, 2001.

[12] C. Scholliers, E. Gonzalez Boix, and W. De Meuter.
Totam: Scoped tuples for the ambient. In Proc. of
CAMPUS09, volume 19, pages 19–34. EASST, 2009.

[13] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk:
object-oriented event-driven programming in mobile
ad hoc networks. In Inter. Conf. of the Chilean
Computer Science Society (SCCC), pages 3–12, 2007.

[14] J. Waldo. The Jini Architecture for Network-centric
Computing. Commun. ACM, 42(7):76–82, 1999.

[15] Z. Zhang. Routing in intermittently connected mobile
ad hoc networks and delay tolerant networks:
overview and challenges. IEEE Communications
Surveys & Tutorials, 8(1):24–37, 2006.

[16] W. Zhao and M. Ammar. Message ferrying: proactive
routing in highly-partitioned wireless ad hoc networks.
In Proc. of FTDCS 2003, pages 308–314. IEEE.

