
10th edition of the
BElgian-NEtherlands software

eVOLution seminar

Sponsored by:

Technical Report VUB-TR-SOFT-01-12
Software Languages Lab
Vrije Universiteit Brussel

Contents

1 Preface 1

2 Keynote: Requiem for Software Engineering
Michele Lanza (University of Lugano) 2

3 Keynote: Multi-objective Miniaturization of Software
Yann-Gaël Guéhéneuc (University of Montreal) 3

4 Similar Tasks, Different Effort: Why the Same Amount of Func-
tionality Requires Different Development Effort?
Alexander Serebrenik, Bogdan Vasilescu, Mark van den Brand
(Technische Universiteit Eindhoven) 4

5 Code Decay Triangulation using Metrics, Experts Opinion and
Defect Counts
Juan Fernández-Ramil (The Open University), David Reed (IT
Division of a UK Government Department) 6

6 An Approach for Refactoring Planning
Javier Pérez (University of Mons), Yania Crespo (University
of Valladolid) 8

7 Refactoring In Scheme Using Static Analysis
Jens Nicolay (Vrije Universiteit Brussel) 10

8 CloudComputing: from Revolution to Evolution
Sébastien Mosser, Eirik Brandtzaeg, Parastoo Mohagheghi (Uni-
versity of Oslo) 12

9 “Why Humans Cant Green Computers” An Autonomous Green
Approach for Distributed Environments
Adel Noureddine (INRIA Lille - Team ADAM) 14

10 Managing Runtime Evolution in Dynamic Software Systems
Nicolás Cardozo, Sebastián González, Kim Mens (Université
catholique de Louvain), Theo D’Hondt (Vrije Universiteit Brus-
sel) 16

11 Modelling the behaviour and recognizing 3D virtual objects
Romuald Deshayes (Université de Mons) 19

12 Continuous Architecture Evaluation
Eric Bouwers, Joost Visser (Software Improvement Group) 22

13 Evolution Mechanisms of Automotive Architecture Description
Languages
Yanja Dajsuren, Mark van den Brand, Alexander Serebrenik
(Technische Universiteit Eindhoven) 24

i

14 Reverse Engineering Architectural Feature Models
Mathieu Acher, Anthony Cleve (University of Namur), Philippe
Collet (Université de Nice Sophia Antipolis), Philippe Merle,
Laurence Duchien (INRIA Lille - Team ADAM), Philippe Lahire
(Université de Nice Sophia Antipolis) 26

15 Squinting at the data: Investigating software artifact prove-
nance using KISS techniques
Michael W. Godfrey (University of Waterloo - CWI) 28

16 Querying the History and Evolution of a Software Project
Reinout Stevens (Vrije Universiteit Brussel) 29

17 Exploring Risks in the Usage of Third Party Libraries
Steven Raemaekers (Technische Universiteit Delft) 31

18 An empirical study on the specialisation effect in Open Source
communities
Mathieu Goeminne, Tom Mens (University of Mons) 32

ii

1 Preface

The goal of the BElgian-NEtherlands software eVOLution seminar (BENEVOL)
series is to bring together researchers from Belgium, The Netherlands and
the neighboring countries that are working in the field of software evolution.
BENEVOL offers an informal forum to meet and to discuss new ideas, impor-
tant problems and obtained research results.

The 10th edition of BENEVOL took place in Brussels on the 8th and 9th of
December 2011. This edition attracted 38 participants and featured an interest-
ing program consisting of 2 keynotes (Prof. Michele Lanza and Prof. Yann-Gaël
Guéhéneuc) and 15 technical talks. This document (technical report VUB-TR-
SOFT-01-12 – Vrije Universiteit Brussel) provides a compilation of the abstracts
of these talks.

We would like to take this occasion to thank our sponsors:

• the MoVES research network, funded the IAP Program of the Belgian
State

• the FRFC Research Center on Software Adaptability funded by FNRS,
and in particular the contributions of Prof. Kim Mens and Prof. Tom
Mens

• Universiteit Antwerpen, and in particular Prof. Serge Demeyer

Without their financial support, it would not have been possible to organize
this seminar.

The local organizers:

Andy Kellens and Carlos Noguera

1

Keynote: Requiem for Software Engineering

Michele Lanza
University of Lugano

Software engineering (1968 - 2011) had an amazing life, even though it was
rather short.

It was a great friend; the kind of friend that stands by you when you need
somebody to be there. It once saved my life. We were both young then and we
weren’t very close. I was hastily hacking some code when software engineering
saw a speeding bug. If it wasn’t for software engineering, my program would
have died right there. That’s how I became close to software engineering, and
we have been inseparable ever since.

Software engineering was well-loved and it has done so many things on earth
and I am sure it will do much more in heaven [or hell]. I will forever be grateful to
have known it. All the memories I have shared with it will forever be cherished
and remembered. It will forever live in my heart, in our hearts. Don’t ever
forget software engineering. It never wanted to see people cry. It wanted to
make everyone happy. So at this moment when we are about to lay its body to
rest, let us all think back and remember how it touched our lives, how it made
us laugh. This is not the moment for us to shed our tears but we should all be
thankful that we were given the chance to have known software engineering.

The death of software engineering was sudden, but not unexpected. Let me
tell you how this all came about . . .

2

Keynote: Multi-objective Miniaturization of

Software

Yann-Gaël Guéhéneuc
University of Montreal

Joint work with Nasir Ali, Wei Wu, Giuliano Antoniol, Massimiliano Di
Penta and Jane Huffman Hayes
Smart phones, gaming consoles, and wireless routers are ubiquitous; the in-
creasing diffusion of such devices with limited resources, together with society’s
unsatiated appetite for new applications, pushes companies to miniaturize their
programs.

Miniaturizing a program for a hand-held device is a time-consuming task
often requiring complex decisions. Companies must accommodate conflicting
constraints: customers’ satisfaction with features may be in conflict with a
device’s limited storage, memory, or battery life. Also, the miniaturization
process is doubly impacted by quality considerations.

First, the (poor) quality of the program to be miniaturized may impede
the miniaturization process. Second, the expected quality of the miniaturized
program constrains the process. In this talk, we describe a process, MoMS, for
the multi-objective miniaturization of software to help developers miniaturize
programs while satisfying multiple conflicting constraints. The process directs
the elicitation of customer pre-requirements, their mapping to program features,
and the selection of the features to port. We then present two case studies based
on Pooka, an email client, and SIP Communicator, an instant messenger, to
demonstrate that MoMS supports optimized miniaturization and helps reduce
effort by 77%, on average, over a manual approach. Then, we discuss the use
of the the process to support other software engineering problems, such as the
reverse engineering of programs, the next release problem, and the porting of
both software and product lines. Finally, we present challenges relating the
miniaturization process with quality assessment models.

3

Similar Tasks, Different Effort:
Why the Same Amount of Functionality Requires

Different Development Effort?
Alexander Serebrenik, Bogdan Vasilescu, Mark van den Brand

Technische Universiteit Eindhoven,
Den Dolech 2, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
{a.serebrenik, b.n.vasilescu, m.g.j.v.d.brand}@tue.nl

Abstract—Since the appearance of Albrechts pioneering work,
function points have attracted significant attention from the
industry. In their work, project managers can benchmark
function point counts obtained for their projects against large
publicly available datasets such as the ISBSG development &
enhancement repository release 11, containing function point
counts for more than 5000 projects. Unfortunately, larger amount
of functionality as reflected in the function points count does not
necessarily correspond to a more significant development effort.
In this paper we focus on a collection of ISBSG projects with a
similar amount of functionality and study the impact of different
project attributes on the development effort.

In our study we consider the ISBSG development & en-
hancement repository release 11, the largest publicly available
dataset with function point counts, containing data about
more than 5000 projects developed in a variety of different
countries using a variety of different design and development
techniques [1]. The ISBSG repository contains information
about 118 different project attributes, including its functional
size as well as organizational (e.g., scheduling, development
team size and its productivity), technical (e.g., architecture
and the main programming language), and problem-specific
attributes (e.g., business or application area). Data is provided
by the project owners themselves. Functional size is for most
of the projects measured by applying such methods as IFPUG
function points (3799 out of 5052 projects or 75.2%) [2], hence
we solely focus on the IFPUG projects.

For the IFPUG projects, the ISBSG repository contains
data on the development effort. First, we exclude projects
that report the effort figures only for some project phases.
Second, while some projects report on the recorded effort,
some other projects report on the estimated effort based, e.g.,
on the amount of functionality. To ensure validity of our study
we solely consider projects that report on the actual recorded
effort. Furthermore, we focus only projects that record the
effort in staff hours (as opposed, e.g., “productive time”) and
that only record time spent on software development, including
project management and project administration, but excluding
non-project specific supporting activities such as control and
audit or hardware support. Overall, excluding projects that
report the effort figures only for some project phases, that re-

port estimated rather than recorded effort, that report recorded
effort expressed in some other unit than staff hours, or that
include the effort dedicated to non-project specific supporting
activities, reduces the number of considered projects to 1661.

Finally, as the data in the ISBSG repository is provided
by the project owners themselves, it might become polluted
by imprecise or unreliable values. Therefore, ISBSG quality
reviewers assess the soundness of the data submitted. The
result of the assessment ranges from “A” to “D”, where “A”
indicates that the data “was assessed as being sound with
nothing being identified that might affect its integrity”, while
for “B” the data “appears sound but some aspects might
have affected the data or count integrity”. Assessment “C”
indicates impossibility of assessment due to incompleteness
of the data provided, while little credibility should be given to
data assessed “D”. Restricting our attention to the “A”-projects
reduces the number of the eligible projects to 84, while 1609
projects remain if both “A”- and “B”-projects are considered.
Hereafter we consider both “A”- and “B”-projects.

As mentioned, for

2 4 6 8 10

2
4

6
8

1
0

1
2

log(Adjusted Function Points)

lo
g

(S
u

m
m

a
ry

 W
o

rk
 E

ff
o

rt
)

each project the ISBSG
repository contains
information about 118
different project attributes
including the summary
work effort, functional
size (measured using the
so called unadjusted and
adjusted function points
counts), as well as organizational, technical and problem-
specific attributes. We prefer adjusted function points count to
unadjusted function points count (cf. [3]), and consider the
following project attributes: primary programming language,
language type, organization type, intended market, year of
project, development type, platform, and architecture.

Plotting the summary work effort against the adjusted
function points count reveals presence of four outliers, projects
containing more than 5000 function points. Moreover smaller
projects up to 500 function points cover the entire range of
work effort. The log-scale plot recommended in [4] shows a

4

clear linear relation between the summary work effort (SWE)
and the adjusted function points count (AFP). Using linear
regression we obtain the following model:

log(SWE) = 0.20735 + 0.65569 ∗ log(AFP)

The fitted linear model is adequate: F -statistic equals 2003 on
1 and 1607 degrees of freedom with the corresponding p-value
not exceeding 2.2×10−16, and p-values both for the intercept
and for the coefficient do not exceed 0.05. The residuals plot
exhibits a clear chaotic pattern.

We would like to

0 500 1000 1500

-3
-2

-1
0

1
2

3

R
e

s
id

u
a

ls

get a better insight
into the distribution
of the residuals, i.e.,
we would like to ex-
plain their diversity
by investigating to
what extent they can
be explained using
one of the remain-
ing project attributes
such as the primary programming language or the intended
market. We carry out the explanation step by means of
econometric inequality indices, recently applied in the context
of software engineering [5]. Due to the nature of residuals,
the chosen inequality index should be applicable to negative
as well as positive values. Moreover, to calculate the ex-
planation percentage [6], the index should be decomposable,
i.e., representable as Ibetween(G) + Iwithin(G) = I for any
partition G into mutually exclusive and completely exhaustive
groups. From all the inequality indices studied in [7], there
is only one that satisfies the requirements of decomposability
and applicability to the negative numbers, namely the Kolm
index [8]. Explanation percentages are shown in the column
“With NA” below.

Project attribute Explanation %
With NA Without NA

N = 1609 N = 151
Primary programming language 21.59 36.86
Organization type 14.05 48.15
Year of project 11.60 31.40
Development type 11.45 24.92
Architecture 5.25 20.11
Development platform 4.10 28.91
Language type 2.59 6.18
Intended market 2.15 22.09

The table data clearly indicates that such attributes as the
primary programming language, the organization type, and the
year of the project explain a higher share of the inequality in
the residual values than the development platform, language
type and intended market. Language type is a type of the
programming language, e.g., 3GL, 4GL or an Application
Generator. Since many primary programming languages be-
long to one language type, and one programming language can
belong solely to one language type, the language type induces
a more coarse grained partition of the projects considered.

Therefore, the explanation value of the language type is lower
than that of the primary programming language [5]. High
explanation values related to the organization type are caused
by association of different organization types to the same
project, e.g., “Wholesale & Retail Trade” and “Financial,
Property & Business Services”. Since explanation provided by
the inequality indices is applicable solely to mutually exclusive
decompositions, we had to introduce a very fine-grained
partitioning, including a group containing only projects asso-
ciated with both “Wholesale & Retail Trade” and “Financial,
Property & Business Services”. Extending inequality indices
to non-mutually exclusive groups is considered as future work.
The high explanation percentage obtained for the year of the
project corroborates the earlier findings of [3] that stress the
importance of the project age in effort estimation.

One of the main issues arising when analyzing the ISBSG
data, recognized already in [4], is related to presence of
missing values. Indeed, since the ISBSG data is based on
self-reporting, many project aspects are not being reported.
In particular, this would mean that that all projects with
unreported value for, e.g., development type, would be put
together in the same group. To evaluate the impact of missing
values on the explanation percentages we have eliminated all
the projects having a missing value in at least one of the project
attributes considered, and recalculated the Kolm indices based
on the remaining 151 projects. These values are present in the
“Without NA” column. Overall, the explanation percentages
are higher, which may be explained by the decrease in the
number of projects, and, therefore, by a more fine grained
partition induced by the same project attributes. We see that
the primary programming language, the organization type, and
the year of the project still provide high explanation values.

To conclude, in this paper we have applied econometric
inequality indices to study how different project attributes
can explain diversity of the residuals of the logarithm of the
summary work effort with respect to the logarithm of the
adjusted function points, i.e., how different project attributes
can explain why projects with similar amount of functionality
require different development effort.

REFERENCES

[1] ISBSG Development & Enhancement Repository, release 11, International
Software Benchmarking Standards Group, 2009.

[2] Function Point Counting Practices Manual. Release 4.2, International
Function Point Users Group, 2004.

[3] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan, “An empirical
study of maintenance and development estimation accuracy,” Journal of
Systems and Software, vol. 64, no. 1, pp. 57–77, 2002.

[4] B. Kitchenham and E. Mendes, “Why comparative effort prediction
studies may be invalid,” in PROMISE’09. ACM, 2009, pp. 4:1–4:5.

[5] A. Serebrenik and M. G. J. van den Brand, “Theil index for aggregation
of software metrics values,” in ICSM’10, 2010, pp. 1–9.

[6] F. A. Cowell and S. P. Jenkins, “How much inequality can we explain? a
methodology and an application to the United States,” Economic Journal,
vol. 105, no. 429, pp. 421–430, March 1995.

[7] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “You can’t
control the unfamiliar: A study on the relations between aggregation
techniques for software metrics,” in ICSM’11, 2011, pp. 313–322.

[8] S.-C. Kolm, “Unequal inequalities I,” Journal of Economic Theory,
vol. 12, no. 3, pp. 416–442, 1976.

5

Code Decay Triangulation using Metrics, Experts’ Opinion and Defect Counts
Juan Fernández-Ramil David Reed

Computing Dept. The Open University, UK IT Division of a UK Government Department
j.f.ramil@open.ac.uk ydj_reed@yahoo.co.uk

10th edition of the BElgian-NEtherlands software eVOLution seminar BENEVOL,
Brussels, 8-9 Sept 2011 http://soft.vub.ac.be/benevol2011/

Motivation
In contrast to physically engineered artefacts, software does not deteriorate through use. Code
quality, however, may decay (i.e. deteriorate) through the process of software evolution (a.k.a.
maintenance). Such decay may have negative human, technical and economic consequences. For
example, software maintainers may find that the code is becoming excessively complex.
Evolution may become more time consuming and difficult than it should. Other stakeholders may
not receive the functional improvements they are waiting for in time. Unexpected side-effects
may emerge when new changes are implemented. Defect fixing may get harder. And so on...

The problem of code decay (a.k.a. code aging, excessive complexity, ‘spaghetti’ code) has been
identified and discussed a long time ago [e.g., Lehman 1974, Parnas 1994]. There are many code
decay empirical studies in the literature [e.g. Eick et al 2001]. There are, at least, three different
ways of trying to assess the level of code decay in a particular system: direct measuring of the
code through software metrics, surveying experts’ opinion about code quality and using indirect
measures (e.g. process related measures such as defect counts). It isn’t known whether these three
different ways will converge to the same insights when applied to a particular system.

In this extended abstract, we briefly report the findings of a case study in which software metrics,
a developers’ questionnaire and defect counts were compared and used in an attempt to rank the
software’s components with respect to their level of decay. We aimed at achieving a greater
clarity on the ‘details’ of how to measure code decay in a particular context. We also wanted to
provide the organisation owing the software with a ranked list of components which could be use
to prioritise any refactoring or replacement efforts.

The Case Study
The software used as a case study was a proprietary business critical information system. The
system handled an important database which is used nationally by many stakeholders. Any errors
in the system and in the database may have serious legal and financial implications. The system
was initially implemented in 2004 following the PRINCE2 methodology and using mainly
Borland Delphi, a variant of Object Pascal. At the time of the study the system had evolved for
four years, with 19 releases. At the most recent release the system consisted of approximately
225,000 lines of Delphi code including comments. Further details can be found in [Reed 2009].

Data Collection
The study involved the collection of three types of data: code metrics, defect counts and expert
opinion. The code metrics included McCabe complexity, coupling (CBO), afferent and efferent
coupling and lack of cohesion (LCOM2). The expert opinions were gathered via a specially
designed questionnaire. The number of reported defects was obtained from the documentation
and manually assigned to each of the subsystems.

The metric data was visualised by plotting point values (average values) per release and box-plots
(i.e. abstracted views of the distributions) for the first and most recent releases. From the box-
plots, the tail length and the tail volume was calculated for each of the 11 subsystems. Changes in
metrics values were measured relative to the first release rather than in absolute terms. A first
version of the questionnaire was generated and sent to a small number of experts who could give
comments on it. The questionnaire was then revised based on their feedback and then sent to the
real developers. It was answered by 10 out of 12 developers. In order to normalise defect counts
by the size of the system, the cumulative number of defects was divided by the current size of the
system in number of lines of code.

6

Main Results
The three types of data provided some evidence that could be interpreted as decay being present.
However, the convergence was not complete. For example, the average McCabe complexity
increased slightly from 2.96 to 3.08 (4.1%) during the 4 years of evolution. Tail volumes
increased for complexity, CBO and afferent coupling, showing evidence of code decay.
Surprisingly, tail volumes decreased for efferent coupling and LCOM2, showing improvement
rather than decay. Six developers said that the system has become more complex; three
developers indicated that the complexity has stayed the same and one developer said that the
system has become less complex. Cumulative defect values (normalised by size) showed a
positive slope (increasing trend) from month 22.

Seven ranking pairs (based on point values, tail length, tail volume, questionnaire and defects) for
the 11 subsystems were compared using Kendall’s and Spearman’s rank correlation measures.
The results ranged widely from positive correlations (e.g. Spearman’s Rho value of 0.7 for the
pair ‘point values – defects’ to negative correlations (e.g. Kendall’s Tau value of -0.4 for the pair
‘tail volume – questionnaire’).

Despite the evidence showing, overall, that the code has decayed, it was found that different types
of measurement may lead to different results. Code decay is multi-dimensional. Careful
examination is needed to interpret which measures are more meaningful in a given context. In
general, expert opinion seems to be the most reliable source of information, followed by code
metrics (at distribution level) and finally defect counts. Defect counts can vary widely due to, for
example, changes in the testing effort, without necessarily indicating code decay. Within code
metrics, the analysis based on distributions (box-plots) was found to be more insightful than point
values (averages). The latter generally ‘compress’ the tail of the distribution where the most
complex code elements reside and in this way may hide the parts of the code where the actual
code decay is actually happening.

Conclusion
Code decay symptoms are not easy to triangulate, that is, to confirm (or not) through different
types of measurement whether the code has suffered from quality deterioration. In this case study
an initial approach based on code metrics, questionnaire and defect counts showed mixed results.
For example, some metrics showed deterioration while others showed improvement. Moreover,
subsystem decay rankings of possible decay based on different types of information are not
always leading to the same results. Despite all this, the methodological approach used in this case
study could be used by a software organisation to start an internal discussion and reflection on the
evolutionary ‘trajectory’ of the system and on the possible measures to improve code’s quality
where it is most needed. How to apply code decay measurement approaches in a given context or
project is not immediately clear and needs experimentation. All this, makes code decay detection
a difficult problem for practitioners and an interesting area of research which combines the
software evolution and the software measurement topics.

References
[Eick et al 2001] S.G. Eick et al, Does Code Decay? Assessing the Evidence from Change Management
Data, IEEE TSE, 27(1), pp. 1-12 , 2001.

[Lehman 1974] M.M. Lehman, Programs, Cities and Students – Limits to Growth?, Inaugural lecture,
Imperial College of Science, Technology, London, 14th May 1974

[Parnas 1994] D.L. Parnas, Software Aging, Proc 16th ICSE, Sorrento Italy, pp 279-287

[Reed 2009] D. Reed, Code Decay – Examining Evidence from Expert Subjective Assessment and Metrics,
M801 Master’s Dissertation, Computing Dept., The Open University, Milton Keynes, U.K., March 2009.

7

An Approach for Refactoring Planning

Javier Pérez1,2, Yania Crespo2

1 University of Mons; Software Engineering Lab
2 University of Valladolid; Department of Computer Science

javipeg@gmail.com, yania@infor.uva.es

Refactorings are source code transformations that change the system’s inter-
nal design while preserving its observable behaviour [?]. Refactorings can be used
to improve, in general, certain quality factors such as reusability, understand-
ability, maintainability, etc. More specifically, refactorings can help to achieve a
particular system structure or consolidating the system’s architecture [?].

Refactoring operations are meant to be executed in small steps, so that more
complex refactorings can be executed by the composition of simpler ones. Be-
haviour preservation is also easier to check in the case of simpler refactorings.
When a refactoring process aims to solve a complex problem, such as the correc-
tion of design smells [?], a significant amount of changes is needed. Refactorings’
preconditions can help to assure behaviour preservation, but at the same time
they hinder the application of complex transformation sequences because they
restrict the applicability of refactoring operations. If any precondition of any
operation in the intended transformation sequence, is not fulfilled at the time of
its application, the whole sequence can not be applied. This makes it hard for
the developer to perform complex refactoring processes.

We have developed a technique that uses Hierarchical Task Network (HTN)
Planning [?] to tackle this problem [?]. The proposal is based at the definition of
refactoring strategies and refactoring plans. A Refactoring Strategy is a heuristic-
based, automation-suitable specification of a complex behaviour-preserving soft-
ware transformation which is aimed at a certain goal. It can be instantiated, for
each particular case, into a Refactoring Plan. A Refactoring Plan is a sequence
of instantiated transformations, aimed at achieving a certain goal, that can be
effectively applied over a software system in its current state, while preserving
its observable behaviour. It can be an instance of a Refactoring Strategy.

To develop this proposal we have focused in how refactorings are used for de-
sign smell correction. We have first analysed the current correction specifications
from different authors, identified the main characteristics of these specifications
and unified them in a single model. We have then identified the current prob-
lems and the requirements that correction specifications have to meet in order to
be automation-suitable. We have defined a model for refactoring strategies that
fulfills these requirements and defined a language in order to ease writing these
specifications. We have identified the requirements an underlying approach has
to meet to support the computations of refactoring plans from refactoring strate-
gies and we have selected HTN automated planning for this purpose. We have
implemented this proposal as a reference prototype and it has been evaluated
by performing two case studies over a set of open-source systems.

8

The assembled prototype is composed of a small HTN domain, which is our
main contribution to this prototype, and some third-party tools. The refactor-
ing planning domain we have written, addresses Feature Envy and Data Class
design smells and comprises the specifications of a set of refactorings, refac-
toring strategies, other transformations and system queries, all of which have
been represented as task networks. Regarding the other tools, we have used
JTransformer, a program transformation tool based in Prolog, to obtain
the predicate-based representation of Java systems. We have also used iPlasma,
a design smell detection tool, to obtain reports of the two design smells we have
addressed. The logic-based representation of a Java program, and the informa-
tion about which entities are affected of which smells constitute the initial state
of the system for the planner. A set of scripts compiles the refactoring planning
domain and all these inputs as a refactoring planning problem for JSHOP2,
the planner we had selected. The planner searches refactoring sequences, for
applying the requested strategies and produces refactoring plans.

To conclude, two case studies have been carried out to evaluate our approach,
and to test the reference prototype in terms of effectiveness, efficiency and scal-
ability. The case studies used are addressed for removing the Feature Envy and
Data Class design smells and have been performed over 9 software systems of dif-
ferent sizes ranging from small to medium size. The results of the study confirm
that our approach can be used to automatically generate refactoring plans for
complex refactoring processes in a reasonable time. The studies performed also
demonstrate that the efficiency of the HTN family of planners and the expres-
siveness of the JSHOP2 domain specification language makes it the appropriate
planner to support the refactoring planning problem.

Aknowledgements

This work has been partially funded by the spanish government (Ministerio de
Ciencia e Innovación, project TIN2008-05675).

References

1. Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley, 1 edition, June 1999.

2. Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan
Wu, and Fusun Yaman. SHOP2: An HTN Planning System. Journal of Artificial
Intelligence Research (JAIR), 20:379–404, 2003.

3. Colin J. Neill and Phillip A. Laplante. Paying down design debt with strategic
refactoring. IEEE Computer, 39(12):131–134, 2006.

4. W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1992. also Technical
Report UIUCDCS-R-92-1759.

5. Javier Pérez. Refactoring Planning for Design Smell Correction in Object-Oriented
Software. PhD thesis, University of Valladolid, 2011.

9

Refactoring In Scheme Using Static Analysis

Jens Nicolay

Scheme is a small but elegant and powerful programming language with clean syn-
tax. It allows for both imperative and functional programming and is able to express sev-
eral different programming paradigms. As a consequence, Scheme has influenced the
design of many other more widely-used and industrially-relevant languages, while also
making the language especially suited for experimentation. Even with all this power,
expressivity and influence, no refactoring catalog or well-known refactoring tools exist
for Scheme. There are a couple of reasons why this is might be the case. Firstly, most
refactorings are based on static analysis of code, and static analysis is far from trivial to
perform in dynamic languages such as Scheme. Also, Scheme isn’t widely used outside
of academia, although this does not change the fact that it is very well suited as a re-
search language, especially in the context of the growing interest in dynamic languages
that we see today. We argue that refactoring in Scheme should enjoy the same status as
the language itself: it should deepen our general understanding of techniques for, and
implementations of, program analysis and transformation, with influences far beyond
the Scheme language. Our aim is twofold. First of all we want to compile a refactoring
catalog for Scheme, containing the exact specifications of general refactorings like RE-
NAME, ADD PARAMETER, and so on, expressed as program transformations guarded by
pre- and postconditions. We also want to discover refactorings that are not readily iden-
tified as general refactorings and see how these might carry over into other languages.
Our second goal is to design a specification language that allows us to express Scheme
refactorings. For this specification language we again choose Scheme, but with built-in
backtracking for convenience and with a library of primitives that allow reasoning over
Scheme programs. This reasoning is based on the results of a sufficiently precise, pow-
erful and fast static analysis, on which several layers of primitives are layered so that
the right level of abstraction can be selected by the designer of refactorings. Th analysis
approximates value flow, control flow and interprocedural dependencies. Note that our
two aims go hand in hand. In order to write down refactoring specifications we need a
language. At the same time this specification language will determine what the refac-
toring specifications will look like. To validate our work, we select existing refactoring
scenarios and see how our approach deals with them, assessing strengths and investi-
gating weaknesses. In order to facilitate experimentation and as a way to make our
work publicly available, we have also build an Eclipse plugin aimed at programming

1

10

in Scheme and containing several refactorings. The provided Scheme editor also detect
certain patterns in the source code in order to provide feedback during development. The
plugin also allows a developer to perform program analysis and transformation using a
meta-programming approach, which is useful for prototyping refactorings.

2

11

Cloud–Computing: from Revolution to Evolution

Sébastien Mosser?, Eirik Brandtzæg?,†, Parastoo Mohagheghi?

? SINTEF IKT
† University of Oslo

{firstname.lastname}@sintef.no

Extended Abstract, submitted to BENEVOL’11

Introduction. Cloud–Computing [1] was considered as a revolution. Taking
its root in distributed systems design, this paradigm advocates the share of
distributed computing resources designated as “the cloud”. The main advan-
tage of using a cloud-based infrastructure is the associated scalability property
(called elasticity). Since a cloud works on a pay–as–you–go basis, companies
can rent computing resources in an elastic way. A typical example is to tempo-
rary increase the server–side capacity of an e–commerce website to avoid service
breakdowns during a load peak (e.g., Christmas period). However, there is still
a huge gap between the commercial point of view and the technical reality that
one has to face in front of “the cloud”. As any emerging paradigm, and despite
all its intrinsic advantages, Cloud–Computing still relies on fuzzy definitions1

and lots of buzzwords (e.g., the overused “IaaS”, “PaaS” and “SaaS” acronyms
that does not come with accepted definitions).

Problem Statement. A company that wants to migrate its own systems
to the cloud (i.e., be part of the cloud revolution) has to cope with existing
standards. They focus on cloud modeling, but does not provide any support
for software evolution. Thus, the evolution of a legacy system into a cloud–
based system is a di�cult task. On the one hand, an immediate issue is the
paradigm shift (e.g., migrating a centralized cobol system to a service–oriented
architecture deployed in the cloud). This issue is not directly related to Cloud–
Computing, and considered as out of the scope of this work (e.g, see the smart
method [2]). On the other hand, the Cloud–Computing paradigm introduces
several key concepts that must be used during the evolution process to accu-
rately promote a given legacy system into a cloud–based one. For example,
deploying an application to the cloud does not automatically transform it into
a scalable entity: the evolution process must carefully identify the components
that can be replicated to ensure elasticity using resources available in the cloud.
Consequently, the evolution of a legacy system into a cloud–based system re-
quires a dedicated entity that support (i) reasoning mechanisms dedicated to

1The Cloud–Standard initiative (http://cloud-standards.org/) lists dozens of overlap-
ping standards related to Cloud–Computing. They focus on infrastructure modeling or busi-
ness modeling.

112

cloud concepts and (ii) technical implementation of cloud deployment for such
systems.

Objectives. Instead of designing yet another cloud standard, our goal (part
of the remics project [3]) is to define a language that supports evolution to the
cloud. The objectives of this language are the following:

• Platform–independence. It is an abstract modeling language to support
the description of the software that will be deployed on the cloud. This ar-
chitecture description language includes cloud–specific concepts (e.g., elas-
tic capability, deployment geographic zone, failure recovery, parallelism,
data protection). The language acts as an intermediary pivot between
legacy applications and the cloud. Thus, the evolution process does not
target concrete cloud providers entities anymore. Moreover, it is possible
to reason on the modeled element using a cloud–based vocabulary.

• Transparent projection. Based on the modeled entities, the framework as-
sociated to the language handle the projection of the abstract description
into concrete cloud entities. A matching step is used to accurately bind
the abstract resource described in the language with available resources
published by cloud providers. For example, at the infrastructure level, it
identifies which virtual images must be deployed on what cloud resources.

• Automated deployment. The language comes with an interpreter that im-
plements the actual deployment. It abstracts the underlying platform
complexity and programming interfaces. Thus, assuming that the evo-
lution process targets the modeling language previously described, the
application can be deployed on existing clouds in an automatic way.

Perspectives: Cloud Evolution. The definition of this language and its
associated engine is a first step. Based on this experience, we will consider evo-
lution in cloud context according to two complementary axis: (i) the evolution
of the application after its initial deployment and (ii) the evolution of the cloud
infrastructure itself.

Acknowledgments. This work is funded by the EU Commission through the
remics project (http://remics.eu), contract number 257793 (FP7).

References

[1] M. Armbrust, A. Fox, R. Gri�th, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[2] G. Lewis, E. Morris, D. Smith, and L. O’Brien. Service-Oriented Migration and
Reuse Technique (SMART). In Proceedings of the 13th IEEE International Work-
shop on Software Technology and Engineering Practice, pages 222–229, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[3] P. Mohagheghi and T. Sæther. Software Engineering Challenges for Migration to
the Service Cloud Paradigm: Ongoing Work in the REMICS Project. In SER-
VICES, pages 507–514. IEEE Computer Society, 2011.

213

“Why Humans Can’t Green Computers”
An Autonomous Green Approach for Distributed

Environments

Adel Noureddine?

INRIA Lille – Nord Europe, Project-team ADAM
University Lille 1 - LIFL CNRS UMR 8022, France

adel.noureddine@inria.fr

Energy-aware solutions and approaches are becoming broadly available as energy
concerns is becoming mainstream. The usage of computers and other electronic devices
(e.g., smartphones, sensors, or digital equipments) is increasing, thus impacting the
overall energy consumption. Although ICT accounts for 2% of global carbon emissions
in 2007 [4], ICT solutions could help in reducing the energy footprint of other sectors
(e.g., building, transportation, industry). In [10], the Climate Group estimates that ICT
solutions could reduce 15% of carbon emissions in 2020. However, in 2007, ICT foot-
print was 830 MtCO2e and is expected to grow to 1,430 MtCO2e in 2020 [10]. These
numbers show the need for efficient ICT solutions in order to reduce carbon emissions
and energy consumption.

Reducing the energy consumption of connected devices and computers requires a
comprehensive view of the different layers of the system. Sensors and actuators, used
to monitor energy consumption and modify devices’ options, need to be controlled
by intelligent software. Applications running on the devices and the hardware itself
also need to be monitored and controlled in order to achieve efficient energy savings.
The middleware layer positions itself as a relevant candidate for hosting energy-aware
approaches and solutions.

Many approaches have been proposed to manage the energy consumption of the
hardware, operating system, or software layers. In particular, more and more architec-
tural or algorithmic solutions are now emerging in the middleware layer. The widespread
usage of mobile devices and the high coverage of networks (WiFi, 3G) have led to a new
generation of communicating and moving devices. Therefore, the middleware layer re-
quires a flexible approach to manage efficiently the energy consumption of such devices
at a large-scale level.

Many middleware platforms, architectures, optimization techniques or algorithms
already exist for energy management of hardware or software. Rule-based approaches
offer a high degree of architectural autonomy, but with a limited decisional autonomy.
The architecture of the middleware is flexible and evolutive, and can easily cope with
changes in the environment. Rules, on the other hand, need to be predefined and updated
on environment’s evolutions. Current rule-based solutions ([3, 5, 11]) use predefined
and manually updated rules and policies.

Predefined approaches vary from algorithmic adaptations ([1, 6]), to protocol ones [8],
to modeling ones [12]. The approach in [7, 9] uses predefined allocation and prediction

? Ph.D. student under the supervision of Prof. Lionel Seinturier and Dr. Romain Rouvoy

14

2 Adel Noureddine

algorithms and predefined coordination. The approach in [2] takes a wider approach
with adapting itself to the user habits and the environments events. This context-based
event learning offers better autonomic management than other approaches.

Although these approaches offer a certain degree of autonomic management of
energy consumption, a full autonomous energy management is yet to be defined. An
energy-aware autonomous approach should therefore imitate the human body metabolism:
the platform needs to be transparent to the user and to devices and applications, but
without limiting users’ high-level decisions. In the human body, when energy becomes
low, the system starts by using its reserves and notifying the human about the situation
(e.g., the human feels hunger). Therefore, the human could apply high-level decisions,
such as eating (to recharge his energy and reserves), or reduce his activity, or go to
sleep (low power mode). We therefore believe that middleware approaches should take
inspiration from biologic systems and provide a similar autonomous functioning for
energy-awareness because the complexity of systems is rapidly increasing.

We propose an approach that adapts the software components and hardware param-
eters in an autonomous manner. User interaction is therefore limited to defining some
of the user preferences and very high-level energy-aware policies (through an energy-
aware DSL). We also propose to use distributed services (locally and on the cloud) in
order to provide flexibility and evolution to the architecture. The local services will store
energy information, but also usage patterns and user preferences. Remote servers on the
cloud will take the role of a worldwide knowledge repository. They will also be used
for utility services (e.g., electricity price), user activity synchronization (e.g., the user’s
online agenda), and computation and intelligence offloading. A modular monitoring en-
vironment is reponsible for collecting energy-aware information from the environment.
The degree of the collected information can vary from fine-grained information (e.g.,
per class or per method in an application) or coarse-grained (e.g., per process or per
device). Preliminary results on our monitoring environment provide fine-grained infor-
mation on the energy consumption of classes and methods inside a Java application. We
are currently working on extending and experimenting the monitoring environment in
order to optimize its overhead and integrate it into our architecture.

References
[1] Binder, W., Suri, N.: Green Computing: Energy Consumption Optimized Service Hosting. In: Proceedings of the 35th Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM ’09). pp. 117–128. Springer-Verlag, Berlin, Heidelberg (2009)
[2] Capone, A., Barros, M., Hrasnica, H., Tompros, S.: A new architecture for reduction of energy consumption of home appliances. In: Towards eEnvironment, European

conference of the Czech Presidency of the Council of the EU (e-Envi’2009). Prague, Czech Republic (2009)
[3] Demeure, I., Paroux, G., Hernando-ureta, J., Khakpour, A.R., Nowalczyk, J.: An energy-aware middleware for collaboration on small scale manets. In: Proceedings of

the Autonomous and Spontaneous Networks Symposium (ASN’08). Paris, France (November 2008)
[4] Gartner: Green it: The new industry shockwave. Presentation at Symposium/ITXPO Conference (2007)
[5] Klein, A., Jerzak, Z.: Ginseng for sustainable energy awareness: flexible energy monitoring using wireless sensor nodes. In: Proceedings of the 4th ACM International

Conference on Distributed Event-Based Systems (DEBS ’10). pp. 109–110. ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1827418.
1827443

[6] Mohapatra, S., Venkatasubramanian, N.: Parm: Power aware reconfigurable middleware. In: Proceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS’03). p. 312. IEEE Computer Society, Washington, DC, USA (2003)

[7] Sachs, D.G., Yuan, W., Hughes, C.J., Harris, A., Adve, S.V., Jones, D.L., Kravets, R.H., Nahrstedt, K.: Grace: A hierarchical adaptation framework for saving energy
(2004)

[8] Schiele, G., Handte, M., Becker, C.: Experiences in designing an energy-aware middleware for pervasive computing. In: Proceedings of the 6th Annual IEEE
International Conference on Pervasive Computing and Communications (PERCOM’08). pp. 504–508. IEEE Computer Society, Washington, DC, USA (2008),
http://portal.acm.org/citation.cfm?id=1371610.1372873

[9] Vardhan, V., Yuan, W., III, A.F.H., Adve, S.V., Kravets, R., Nahrstedt, K., Sachs, D.G., Jones, D.L.: Grace-2: integrating fine-grained application adaptation with global
adaptation for saving energy. International Journal of Engineering Science 4(2), 152–169 (2009)

[10] Webb, M.: SMART 2020: enabling the low carbon economy in the information age, a report by The Climate Group on behalf of the Global eSustainability Initiative
(GeSI) (2008)

[11] Xiao, Y., Kalyanaraman, R.S., Ylä-Jääski, A.: Middleware for energy-awareness in mobile devices. In: Proceedings of the 4th International ICST Conference on
Communication System software and middleware (COMSWARE’09). pp. 1–6. ACM, New York, NY, USA (2009)

[12] Zeng, H., Ellis, C.S., Lebeck, A.R.: Experiences in managing energy with ecosystem. IEEE Pervasive Computing 4, 62–68 (January 2005), http://dx.doi.org/
10.1109/MPRV.2005.10

15

Managing Runtime Evolution in Dynamic
Software Systems

Extended Abstract

Nicolás Cardozo1,2, Sebastán González1, Kim Mens1, and Theo D’Hondt2

1 ICTEAM Institute, Université catholique de Louvain
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium
2 Software Languages Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium

In the context of mobile and pervasive computing [7] contextual information
(like personalization, location, internal device’s state, and on-spot environmen-
tal information) is becoming central to application development. Current-day
systems are required to incorporate and react to contextual information, which
emphasizes the growing importance of runtime software evolution [3]. To ad-
dress this need, the context-oriented programming (COP) paradigm has been
proposed to provide the ability of writing programs that can adapt, correct, or
extend their behavior dynamically at runtime according to the surrounding ex-
ecution environment. Different COP languages have been defined as either new
languages or extensions of existing languages [1,4].

COP languages introduce different language abstractions that enable the
definition, dynamic (de)activation, and composition of contexts and context-
dependent behavior. Let us illustrate the idea by means of a particular COP
language, Subjective-C [5], although similar concepts can be found in most COP
languages. Contexts are defined as first-class program entities and are usually
given by assigning a semantic meaning to internal/external characteristics of the
environment (e.g., the GPS coordinates 50°51’0”N 4°21’0”E correspond to the
Brussels context), which is defined as @context(Brussels). Behavior is associ-
ated to a context by annotating partial method definitions with the correspond-
ing contexts for which the method is applicable as follows, @contexts Brussels

-(void) getCoordinates{...}. Such method definitions become available dy-
namically in the main application only if their context of definition is active.
Contexts can be activated and deactivated dynamically, using respectively the
@activate(Brussels) and @deactivate(Brussels) constructs.3

In the context of COP applications, activations and deactivations of con-
texts are assumed to happen concurrently and without warning, which may lead
to incoherences or inconsistencies with respect to the expected application be-
havior. To deal with this, different proposals have been made to manage the
definition and composition of dependencies between contexts [2,5]. Such propos-
als only provide models that constrain the dynamics of (de)activating a context,
according to the state of its related contexts. Nonetheless, in most cases, the

3 Activations and deactivations are triggered by a sensed change in the internal or
external information.

16

corresponding language abstractions or runtime support for the model is not
provided. Furthermore, the informal and high-level definition of such constraints
makes their verification difficult and computationally expensive especially in the
highly dynamic settings encountered in mobile and pervasive computing.

We propose to address the problem of consistency management in systems
that dynamically evolve at runtime, along two fronts. First, to cope with the
dynamic nature of COP systems, we propose a module for the precise definition
and management of interaction between context dependencies. We use the Petri
net [6] based formalisms for this. In addition to the advantages given by the
formal definition, the model also provides a first-hand view on the dynamics
and state of COP systems. Moreover, it serves as an underlying implementation
in our context management system, thus providing a lightweight verification
mechanism for the activation and deactivation of contexts.

Second, an static analysis module could be used to provide an upfront fine-
grained reasoning about consistency and validity properties of the application.
The introduced formalism of Petri nets already provides analysis and verifica-
tion mechanisms that could be used to, for example, find whether an application
may reach a conflicting configuration of active contexts. Alongside the analysis
tools provided by Petri nets, another verification module could identify possible
inconsistencies at the method level. Based on the static information for each
method (contexts in which it may be applicable, and methods which it may
call), an analysis can be performed to ensure that application behavior remains
consistent whenever methods are switched. For example, in a localization appli-
cation, detecting faulty message sends to getCoordinates on a GPS device, just
as the location context changes from GPS to Extrapolate, where the method
is not defined. This module thus gives meaningful feedback about potential er-
rors, and different possibilities on how to solve them for example, by creating a
dependency between the two contexts.

The modules proposed here constitute a clear step forward in the support
for runtime evolution of COP applications. We provide a lightweight runtime
system for managing dependencies between adaptations, and an upfront analysis
to identify possible runtime conflicts at a fine-grained level of granularity. Other
modules will be explore in the future, to widen the family of problems addressed.

References

1. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented programming:
an overview of ContextL. In: Proceedings of the Dynamic Languages Symposium.
pp. 1–10. ACM Press (Oct 2005), collocated with OOPSLA’05

2. Desmet, B., Vallejos, J., Costanza, P., De Meuter, W., D’Hondt, T.: Context-
oriented domain analysis. In: Modeling and Using Context. pp. 178–191. Lecture
Notes in Computer Science, Springer-Verlag (2007)

3. Gabriel, R.P., Goldman, R.: Conscientious software. In: Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. pp. 433–450. OOPSLA’06, ACM Press, New York, NY, USA (2006)

17

4. González Montesinos, S.: Programming in Ambience: Gearing up for dynamic adap-
tion to context. Ph.D. thesis, Université catholique de Louvain (October 2008)

5. Gonzlez, S., Cardozo, N., Mens, K., Cdiz, A., Libbrecht, J.C., Goffaux, J.:
Subjective-C: Bringing context to mobile platform programming. In: Proceedings
of the International Conference on Software Language Engineering. Lecture Notes
in Computer Science, vol. 6563, pp. 246–265. Springer-Verlag (2011)

6. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541 – 580 (April 1989)

7. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10–17 (Aug 2001)

18

Modelling the behaviour and

recognizing 3D virtual objects

Romuald Deshayes
Univesité de Mons,

Service de Génie Logiciel,
Faculté des Sciences

romuald.deshayes@umons.ac.be

October 26, 2011

Abstract

In this document, we present an overview of our research topic, mixing
both software modelling and computer vision. Our work will focus on two
problems, the first is the research of a generic solution to specify the in-
teractive behaviour of 3D virtual objects, the second is the improvement of
the robustness of the 3D object recognition. Eventually, resolving those two
problems will allow the computer, equiped with a 3D sensor, to automati-
cally associate a behavioural model to recognized objects, allowing advanced
interaction in a virtual scene. In order to be able to use next generation 3D
sensors we will develop an extensive framework to deal with the rapid evo-
lution of sensors and will allow to use our new recognition algorithm on
various 3D sensors.

1 Introduction

Objects around us di↵er in nature, composition, function. . . Also in their
behaviour, every object reacts di↵erently to stimuli depending on many fac-
tors such as those aforementioned. In this context, the first part of our
research work consists in identifying and classifying di↵erent types of ob-
jects based on their behaviour. We will then model this behaviour using
a visual formalism (such as statecharts or petri nets). The purpose of this
approach is to provide a generic and expressive way to reduce the complex-
ity of interaction with 3D virtual objects (we already used such a formalism
to specify the behaviour of a 3D graphical application [1]). Interaction is
here expressed in a broad meaning; it can be interaction between two virtual
objets (e.g. physical contact), between a real object and a virtual one or it

119

can be a gestural interaction between a virtual object and a user (e.g. hand
movement).

In computer vision, a common problem for a machine is to detect and
recognize the objects around it, using a capture device (e.g. a camera).
Currently, this kind of problem is often resolved by using learning-based
algorithms along with a set of 2D views of the object to be recognized.
Nowadays, thanks to 3D sensors (such as Microsoft Kinect) and 3D recon-
struction algorithms, we can exploit the geometric shape of objects to be
identified to provide a greater robustness for recognition algorithms, espe-
cially when the 3D objects are located in a complex scene containing many
objects that can be partially occluded. Current techniques based only on 2D
views can not directly exploit the geometric shape of the objects , making
recognition di�cult to achieve. Methods exploiting 3D vision have started
to appear, but their use in complex scenes with partially occluded objects
is still a topic under research.

2 Research challenges

A first scientific challenge of our research is to develop a domain-specific
visual modelling language (DSML) based on visual languages such as state-
charts or petri nets to model the interactive behaviour of real world objects.
These objects will be usable in Virtual Reality (VR) applications bringing
a substantial opening in the field of computer simulation. It is therefore
necessary to study in depth the advantages of both formalisms mentionned
to see if one of them is most appropriate to meet the needs of our research.

A second scientific challenge consists in proposing a new algorithm for
3D object recognition based on knowledge of the geometry of the object to
be recognized using a 3D sensor (e.g. a Kinect sensor). Recognition algo-
rithms typically use databases containing 2D pictures of an object in order
to recognize it. Thanks to the 3D information that is available using such
3D sensors, we have a lot more informations that are interesting to exploit.
Using those additional informations will help to improve the robustness of
the algorithm because it will no longer be necessary to make assumptions
about the shape of the objects to be recognized (which is dificult using 2D
only). We will also improve the complexity of these algorithms because fewer
calculations must be made for recognition. Indeed, the search of particular
features is a very expensive process on 2D images. Lastly, we will use 3D
vision to allow our recognition algorithm to segment a 3D scene and more
precisely to detect discontinuities in the scene.

In order to be able to use next generation 3D sensors (which will prob-

220

ably be more accurate and work at a higher resolution), we will develop an
extensive framework coupled with high level routines to access raw data of
the sensors in a generic way. Developing this framework will help us to deal
with the rapid evolution of capture devices and will allow to use our new
recognition algorithm on various 3D sensors.

References

[1] R. Deshayes and T. Mens. Statechart modelling of interactive gesture-
based applications. In First International Workshop on Combining De-
sign and Engineering of Interactive Systems through Models and Tools
(ComDeisMoto), organized at INTERACT 2011, 2011.

321

Continuous Architecture Evaluation

Eric Bouwers and Joost Visser
Software Improvement Group, Amsterdam, The Netherlands

E-mail {e.bouwers,j.visser}@sig.eu

Most software systems start out with a designed architecture which documents the
important design decisions. These decisions include, but are not limited to, responsi-
bilities of each of the main components and the way in which the components interact.
Ideally, the implemented architecture of the system corresponds exactly with the de-
sign, only those components which are described are implemented and all components
interact through pre-defined communication channels. Unfortunately, in practice we
often see that the original design is not reflected in the implementation. Common de-
viations are more (or less) components, undefined dependencies between components
and components implementing unexpected functionality.

There are many reasons for these discrepancies to occur. For example, the choice
for a technology can lead to an unwanted implementation because the chosen technol-
ogy does not allow a particular construct. Deviation can also arise because of process-
related issues, for example because new functionality is added to the system without
taking into account the design. Lastly, it could simply be the case that there is an error
in the designed architecture.

In these situations the development team can decide to solve the issue by means
of a quick fix outside of the designed architecture to meet a deadline. Even though
everybody knows that this type of fixes should be temporarily, the priority of solving
these ’cosmetic’ issues is low. After all, the system is working correctly, so why change
something which is not broken?

The examples illustrate legitimate reasons for deviating from the designed architec-
ture. By involving both the development team as well as the architects in an evaluation
of the implemented architecture both the implementation and the design can evolve
together. Many methods are available for such evaluations, varying greatly in depth,
scope and required resources. The end-result of such evaluations are, amongst others,
an up-to-date overview of the implemented architecture and the corresponding design.

But when should such an evaluation take place? Depending on the amount of re-
sources required the evaluation can take place once or twice during a project, or period-
ically (for example every month). Unfortunately, in between the evaluations issues can
still arise, which still leads to deviations between the design and the implementation.
The later these deviations are discovered the more costly it is to fix them.

A solution to these problems is to continuously monitor important aspects of the
implemented architecture. This can be done automatically by the means of software
metrics. A basic metric, such as the number of components, is easy to calculate after
each change and can serve as a trigger to perform a quick manual evaluation to see
whether the change fits into the current design. If this is not the case a more detailed
evaluation can be performed, potentially leading to a full-scale architecture evaluation.

Basic metrics (number modules, number of connections) are easy to measure and
provide relevant information. However, just examining these two metrics does not

122

make it possible to detect all types of changes, for example when a single components
is implementing too much of the overall functionality.

In our current research project we are extending the set of available architecture
metrics by new metrics which are related to quality aspects as defined in ISO 9126.
More specifically, we have designed and validated two new metrics which quantify the
Analyzability and the Stability of an implemented software architecture.

The first metric we designed is called “Component Balance” [1]. This metric takes
into account the number of components as well as the relative sizes of the components.
Due to the combination of these two properties, both systems with a large number
of components (or just a few components) as well as systems in which one or two
components contain most of the functionality of the system receive a low score. We
validated this metric against the intuition and opinion of experts in the field of software
quality assessments by means of interviews and a case study. The overall result is a
metric which is easy to explain, can be measured automatically and can therefore be
used as a signaling mechanism for either light-weight or more involved architecture
evaluations.

The other concept we introduced is the “dependency profile” [2]. For this profile
each module (i.e. source-file or class) is placed inside one of four categories; hidden
inside a component, being part of the requires interface of a component, being part of
the provides interfaces of a component, or being part of both interfaces. The summation
of all sizes of the modules inside a category provides a system-level quantification of
the encapsulation of a software system. This metric has been validated by an empirical
experiment in which the changes which occurred to a system are correlated to the
values of each of the four categories. The main conclusions of the experiment is that
with more code encapsulated within the components of a system more of the changes
remain localized to a single component.

Both of the metrics have shown to be useful in isolation. We are taking the next
step by determining how these metrics can best be combined in order to reach a well-
balanced evaluation of an implemented architecture. In order to answer the question
when a more elaborate evaluation should take place we are planning to determine ap-
propriate thresholds for these two metrics. The combined results of these studies en-
sures that these metrics can be embedded within the services currently offered by the
Software Improvement Group.

References
[1] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying the analyzabil-

ity of software architectures. In Proceedings of the 9th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2011). IEEE Computer Society, 2011.

[2] E. Bouwers, A. van Deursen, and J. Visser. Quantifying the encapsulation of im-
plemented software architectures. Technical Report TUD-SERG-2011-031, Delft
Software Engineering Research Group, Delft University of Technology, 2011.

223

Evolution Mechanisms of Automotive Architecture
Description Languages

Yanja Dajsuren, M. G. J. van den Brand, and Alexander Serebrenik

Eindhoven University of Technology
5600 MB, Eindhoven, The Netherlands

{Y.Dajsuren | M.G.J.v.d.Brand | A.Serebrenik}@tue.nl

As software becomes more and more important for automotive systems, introducing and adopt-
ing existing solutions from software engineering discipline are becoming common practice. One of
the approaches being recognized as an important contribution to the automotive industry is Archi-
tecture Description Language (ADL) [1]. ADLs are used to describe a system at different phases of
its development and to facilitate communication between different parties. Although many general-
purpose ADLs exist, ADLs for safety critical systems and specifically for automotive systems have
been developed to address the need of expressing quality attributes such as dependability, safety,
timing aspects and variability issues. Automotive ADLs like EAST-ADL [2], SAE AADL [3], AML
[4], and TADL [5] are introduced to improve the software development process of automotive sys-
tems. Since evolution is considered as one of the costliest software development activities [6], ADLs
need to provide explicit mechanisms to support it. However, there has been so far no attempt to
evaluate the evolution mechanisms in the automotive ADLs.

This paper aims to analyze mechanisms of supporting design-time evolution by two widely re-
searched automotive ADLs, namely EAST-ADL [7] and AADL [8]1. We used the evolution features
defined in the ADL classification framework of Medvidović and Taylor [9]. The framework defines
architecture modeling features based on components, connectors and architectural configurations.
A component is defined as a unit of computation or a data store with an explicit interface, which
is an interaction point with other components and external world. The component evolution is
informally defined as the change of a component’s properties such as interface, behavior or imple-
mentation. Subtyping of component types and refinement of component features are considered as
common techniques to support systematic evolution of components. A connector is used to model
the interactions between different components and to define the rules that govern the interactions.
The connectors may not result in compilation units, but they can be implemented as messages
between components for example. The connector evolution is a modification of its properties such
as interface, semantics, or connector constraints. Evolution of components and configurations
are closely related to connectors thus existing connectors may be modified or refined further by
evolution mechanisms like incremental information filtering, subtyping, and refinement. An ar-
chitectural configuration describes architectural structure by connecting appropriate components.
Descriptions of configurations enable analyses of architectures for adherence to design heuristics.
The configuration evolution is supported by incremental addition, reconnection, replacement, and
removal of components and connectors.

After analyzing EAST-ADL and AADL using the Medvidović and Taylor framework, we con-
clude that evolution mechanisms for connectors are not explicitly addressed in the definition of
automotive ADLs. In EAST-ADL, higher level design models are refined by the lower level com-
ponents containing more implementation-oriented aspects. In AADL, a component evolution is
supported by extensions (by enabling component type to have multiple implementations and by
refinement of existing elements of a component). Connectors are not modeled as first-class objects
in EAST-ADL and AADL, therefore no explicit evolution mechanisms are provided. However, in
AADL ports are declared as features in component types and can be refined into concrete fea-
tures from abstract definitions. In terms of enabling evolution mechanisms for the architecture
configuration, EAST-ADL and AADL provide addition and modification of new components and
connectors.

1 We refer to EAST-ADL 2.0 and AADL 2.0.
24

References

1. N. Navet and F. Simonot-Lion, Automotive Embedded Systems Handbook. Industrial information tech-
nology series, CRC Press, 2009.

2. P. Cuenot, P. Frey, R. Johansson, H. Lönn, and et al., “The EAST-ADL Architecture Description
Language for Automotive Embedded Software,” in Model-Based Engineering of Embedded Real-Time
Systems, vol. 6100 of Lecture Notes in Computer Science, pp. 297–307, Springer Berlin, 2010.

3. SAE International, “Architecture Analysis and Design Language.” http://www.aadl.info/.
4. U. Freund, M. von der Beeck, P. Braun, and M. Rappl, “Architecture Centric Modeling of Automotive

Control Software,” 2003.
5. K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller, “Timing Modeling and Analysis for AUTOSAR-

based Software Development - A Case Study,” in Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 642 –645, 2010.

6. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1991.

7. The ATESST Consortium, “EAST-ADL 2.0 Specification.”
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification 2008-02-29.pdf.

8. SAE International, “AADL 2.0 Specification.”
http://standards.sae.org/as5506a/.

9. N. Medvidovic and R. Taylor, “A Classification and Comparison Framework for Software Architecture
Description Languages,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 70 –93, 2000.

25

Reverse Engineering
Architectural Feature Models

Mathieu Acher1, Anthony Cleve1, Philippe Collet3,
Philippe Merle2, Laurence Duchien2, and Philippe Lahire3

1 PReCISE Research Centre, University of Namur, Belgium
{mac, acl}@info.fundp.ac.be

2 INRIA Lille-Nord Europe, Univ. Lille 1 - CNRS UMR 8022, France
{philippe.merle,laurence.duchien}@inria.fr

3 Université de Nice Sophia Antipolis - I3S (CNRS UMR 6070), France
{collet,lahire}@i3s.unice.fr

Software product line (SPL) engineering aims at generating tailor-made soft-
ware variants for the needs of particular customers or environments. SPL princi-
ples and techniques are gaining more and more attention as a means of efficiently
producing and maintaining multiple similar software products, exploiting what
they have in common and managing what varies among them.

It is not always feasible to design and implement a complete mass customiza-
tion production line to support the full scope of products needed on the foresee-
able horizon. In many cases, SPL practitioners rather have to deal with (legacy)
software systems, that were not initially designed as SPLs. It is the case of FraS-
CAti, a large and highly configurable component and plugin based system, that
have constantly evolved over time and now offers a large number of variants,
with many configuration and extension points. The variability of such existing
and feature rich systems should be properly modeled and managed.

A first and essential step is to explicitly identify and represent the variabil-
ity of a system, including complex constraints between architectural elements.
We rely on feature models that are widely used to model the variability of an
SPL in terms of mandatory, optional and exclusive features as well as Boolean
constraints over the features [5]. Feature models characterize the scope [3] of
an SPL by specifying the set of combination of features (configurations) sup-
ported or not by an SPL. Reverse engineering the feature model of an existing
system is a challenging activity [4]. The architect knowledge is essential to iden-
tify features and to explicit interactions or constraints between them. But the
manual creation of feature models is both time-consuming and error-prone. On
a large scale, it is very difficult for an architect to guarantee that the resulting
feature model correctly represents the valid combination of features supported
by the software system. The scope defined by the feature model should not be
too large (otherwise some unsafe composition of the architectural elements are
authorized) or too narrow (otherwise it is a symptom of unused flexibility of the
architecture). Both automatic extraction from existing parts and the architect
knowledge should be ideally combined to achieve this goal.

We present a comprehensive, tool supported process for reverse engineer-
ing architectural feature models [1]. At the starting point of the process, an
intentional model of the variability – a feature model – is elaborated by the soft-
ware architect. As the software architect feature model may contain errors, we

26

2 Acher et al.

develop automated techniques to extract and combine different variability de-
scriptions of an architecture, namely a hierarchical software architecture model
and a plugin dependencies model. Then, the extracted feature model and the
software architect feature model are reconciled in order to reason about their dif-
ferences. Advanced editing techniques are incrementally applied to integrate the
software architect knowledge. The reverse engineering process is tool supported
and made possible by the combined use of FAMILIAR [2] operators (aggregate,
merge, slice, compare, etc.).

We illustrate the process when applied to a representative software system,
FraSCAti. Our experience in the context of FraSCAti shows that the automated
procedures produce both correct and useful results, thereby significantly reduc-
ing manual effort. First, the gap between the feature model extracted by the
procedure and the feature model elaborated by the software architect appears
to be manageable, due to an important similarity between the two feature mod-
els. However, it remains helpful to assist the software architect with automated
support, in particular, to establish correspondences between features of the two
feature models. The most time-consuming task was to reconcile the granularity
levels of both feature models. For this specific activity, tool supported, advanced
techniques, such as the safe removal of a feature, are not desirable but manda-
tory, since basic manual edits [5] of feature models are not sufficient. Second, the
extraction procedure recovers most of the variability expressed by the software
architect and encourages the software architect to correct his initial model. A
manual checking of the five variability decisions imposed by the software archi-
tect shows that the extraction is not faulty. It correctly reproduces the informa-
tion as described in the software artefacts of the project. Third, we learn that
the software architect knowledge is required i) to scope the SPL architecture
(e.g., by restricting the set of configurations of the extracted feature model),
especially when software artefacts do not correctly document the variability of
the system and ii) to control the accuracy of the automated procedure.

An open issue is to provide a mechanism and a systematic process to reuse
the software architect knowledge, for example, for another evolution of the ar-
chitectural feature model of FraSCAti.

References

1. Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle, Laurence Duchien,
and Philippe Lahire. Reverse engineering architectural feature models. In ECSA’11,
LNCS. Springer. material and experiments: https://nyx.unice.fr/projects/
familiar/wiki/ArchFm.

2. Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. In Symposium
on Applied Computing (SAC), pages 1333–1340, Taiwan, March. Programming Lan-
guages Track, ACM.

3. Isabel John and Michael Eisenbarth. A decade of scoping: a survey. In SPLC’09,
volume 446 of ICPS, pages 31–40. ACM, 2009.

4. S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering
feature models. In ICSE’11, pages 461–470. ACM, 2011.

5. T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In
ICSE’09, pages 254–264. IEEE, 2009.

27

Squinting at the data:

Investigating software artifact provenance using

KISS techniques

Michael W. Godfrey
University of Waterloo

Visiting Distinguished Scientist at CWI-Amsterdam

“Provenance” is a term from archaeology and the arts that refers to a set of
evidence supporting the claimed origin of an artifact, such as a piece of pottery
or an oil painting. Recently, the term has been used in an electronic context —
“digital provenance” — to indicate an artifact such as a software component or
set of data, really is what it claims to be and should be permitted to be used
within sensitive operating environments.

In this talk, I suggest how we can stretch the definition further to encompass
“software artifact provenance”. That is, for a give software development artifact
such as a user-visible feature, a source code function, or a third-party library,
we might want to ask the question: Where did this come from and what is the
evidence? For example, one might wonder how a given feature was decided upon
during a mailing list discussion, how it manifested itself in the code, and how
it has been maintained since the initial implementation. For a given function,
one might wonder about its history within the design of the system: Was it
designed to fit exactly here, or was it moved or cloned from elsewhere? And for
a given third-party jar file that has been included in a Java system distribution,
one might ask: What version of the library is this, and how do we know?

In this talk I will sketch some of the ideas behind this work, and show how we
might phrase some of these questions in terms of concrete criteria. In particular,
we will concentrate on simple techniques for reducing a large search space of
candidates down to a small handful that can be examined in detail using more
expensive techniques. A concrete example of investigating third-party libraries
in Java systems will be presented.

This is joint work with Daniel German of the University of Victoria, Julius
Davies of the University of British Columbia, and Abram Hindle of the Univer-
sity of Alberta.

28

Querying the History and Evolution of a Software

Project

Reinout Stevens
Software Languages Lab
Vrije Universiteit Brussel

Developers spend most of their time understanding how a software system
works. In order to do this they need answers to a wide variety of questions.
There have been extensive studies concerning the nature of these questions.

Using these studies, we identified three different categories of questions. The
first one contains simple questions that can be answered using a proper IDE.
An example of such a question is finding out the places where a method is called
by the rest of the system.

The second category contains more complex questions, which can be an-
swered using program query tools. Program query tools allow developers to
describe the behaviour or characteristics the source code has to exhibit, and
identifies source code that corresponds to the specified query. An example of
such a question is finding out whether there is code that accesses the database
outside of the persistence infrastructure.

The final category contains questions regarding the history and evolution of
a software project. For example finding out how often a method was changed
can only be answered by consulting the history of the project. A more complex
example is finding who added an if-test in a method, and for what reason it was
added. These sorts of questions cannot be easily answered using existing tools.

We propose a new program query tool that allows developers to answer
these kinds of questions. This tool needs access to the history of a project, and
provide this information to the developer. The history of a software project can
be found in a version repository, which nowadays are an industry best practice.

Developers need to be able to specify the following characteristics:

1. The characteristics of the source code in one version.

2. The evolution of the source code across different versions.

3. The characteristics of a version in which the source has to be found.

4. The temporal relations between versions in which the evolution of the
source code has to be found.

There are several challenges for such a query tool. We list some of them:
Code analyses are computation intensive, and doing these for each version

will not scale. There is need for an incremental analysis that reuses information
from a previous version.

29

A complete representation of each version consumes too much memory. The
number of changed entities across versions is limited, allowing reusing these
entities in different versions.

In this presentation we show the current state of this tool. We explain the
workings by several illustrative examples.

30

Exploring Risks in the Usage of Third Party

Libraries

Steven Raemaekers
Technische Universiteit Delft

Third party libraries can be beneficial to reduce development time and costs,
but there are also various risks associated with it, such as lower quality standards
or security risks. The goal of this paper is to explore to what extent risks

involved in the use of third party libraries can be assessed automatically.
To that end, we first of all propose a ‘commonality rating’ which is based on
frequency of use in a corpus of 103 open source and 178 proprietary systems.

Furthermore, we propose an ‘isolation rating’ which measures concentration
and distribution of import statements of third party libraries through packages
of a system. We evaluate the proposed rating methodology by conducting a
number of case studies on both open source and commercial systems, in which
we compare our ratings with a qualitative assessment of library risks involved
in those systems. Other system properties which could serve as risk indicators
are also investigated.

31

An empirical study on the specialisation e↵ect

in Open Source communities

Mathieu Goeminne and Tom Mens

October 28, 2011

1 Introduction

Since a couple of decades, open source software has gained popularity due to the savings they represent
and the ability for the users to modify and improve the software themeselves. As the number of projects
which the entire history is available grows over time, the number of empirical studies on them grows as well.
Most of these empirical studies are carried out with no consideration for other artefacts but source code.
Unfortunately, a restriction to the study of source code evolution only is not su�cient to understand and
explain some evolutionary behaviour. In order to gain a better insight into how a software project evolves,
information about persons involved in the software development, and in particular developers, must be taken
into account.

We are carrying out an empirical study on the evolution of the GNOME1 ecosystem, a collection of 1325
open source projects. Our aim is to study how the developers involved in an open source software community
organize themselves to share development tasks.

2 Methodology

In a first phase, we extracted information from the source code repositories of 1325 GNOME projects, and
stored them in FLOSSMetrics-compliant2 databases. We defined 13 file categories, such as code, image,
documentation, based on the file types, file names and directories in which files are stored. For instance,
.png files will be classified as images. Each file category represents a type of activity done by the developer
who touched the file. We assigned such an activity category to each file that has been created, modified or
deleted during the project’s life. Our classification process is inspired by the one of Robles et al. [2].

A recurrent problem when carrying out empirical studies involving source code repositories is identity
matching [1]. Persons involved in open source projects can have several user accounts they use. In order to
get a more accurate model of the developer’s activities, all accounts belonging to the same physical person
must be merged in a single identity representing the person. In our approach, we have addressed this problem
into account and used unique identities representing physical persons instead of their multiple accounts.

3 Research questions

In order to gain a better insight of how developers organize themselves over time, we are studying the
following questions:

• Are developers mainly active in a small number of projects?

• Are developers mainly involved in a small number of activity types?

1www.gnome.org/
2www.flossmetrics.org/

1
32

• Is there a correlation between certain activities related to the software development?

• Does the number of developers involved in an activity type a↵ect the extent to which these developers
specialise themselves?

These questions must be refined in subquestions. Preliminary results of our study on the GNOME
projects lets us hypothesise that the developers are highly specialised in some categories of activities, like
coding (code) or translation (i18n), whereas in other categories the development process is not subject
to specialisation, as the boxplots of Figure 1 show. In the figure each developer is represented by a value
between 0 and 1 for each category. The value expresses the specialisation degree of the considered developer.
A value of 1 means that the developer only works on this type of files, a value of 0 means that the developer
has never worked on this type of file. Categories code, i18n and develdoc reveal a specialisation degree higher
that is significantly higher than the other ones.

Figure 1: Developer’s specialisation across GNOME projects for each activity category.

References

[1] Mathieu Goeminne and Tom Mens. A comparison of identity merge algorithms for software repositories.
Science of Computer Programming, 2012.

[2] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan Julian Merelo. Beyond source code: the im-
portance of other artifacts in software development (a case study). J. Syst. Softw., 79(9):1233–1248,
2006.

2
33

