
Faculteit Wetenschappen en Bio-ingenieurswetenschappen
Vakgroep Computerwetenschappen
Software Languages Lab

Workflow Abstractions for Orchestrating
Services in Nomadic Networks

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Eline Philips

Promotor: Prof. Dr. Viviane Jonckers

Februari 2013

Print: Silhouet, Maldegem

© 2013 Eline Philips
2013 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5718 276 1
NUR 986 / 989
Legal deposit D/2013/11.161/036

All rights reserved. No parts of this book may be reproduced or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

info@vubpress.be
www.vubpress.be

A B S T R AC T

Nowadays we are surrounded by all kinds of computing devices, ranging from smart-
phones to digital watches, and in the near future even digital glasses. Everyday objects
are more and more integrated with computers, bringing us closer to Mark Weiser’s
vision of the ubiquitous computing era. The plethora of these miniaturised devices can
be connected in so-called mobile ad hoc networks, using a variety of standard tech-
nologies such as WiFi, Bluetooth, NFC, 3G, and recently also 4G. Mobile ad hoc net-
works emerge from the collaboration of nearby devices using wireless network topolo-
gies, without the need of any configuration or infrastructure. This is in contrast to
nomadic networks, a special case of mobile ad hoc networks, where mobile devices try
to maintain a connection with a fixed infrastructure. As these kinds of networks are om-
nipresent (for instance, in shopping malls, airports, etc.), an abundance of interesting
applications can be supported.

We envision a new type of rich applications, called nomadic applications, which
are deployed and executed on the fixed infrastructure of the nomadic network, while
communicating with nearby mobile devices. Such a nomadic application is centred
around the orchestration of services that are provided by connected servers and nearby
mobile devices. Orchestration of services enables the realisation of meaningful com-
plex behaviour out of the interaction between the aforementioned mobile devices and
the servers. The orchestration of these services is not without a challenge, since these
nomadic networks are built upon volatile connections. Services residing on mobile de-
vices are exposed to (temporary) network failures. Additionally, mobile services are
always on the move, meaning that the set of services to be orchestrated is dynamic
during the execution of a nomadic application and cannot be determined beforehand.

We propose a programming model that facilitates the development of nomadic ap-
plications. This programming model unifies the principles of two research pillars,
namely the workflow paradigm, which focusses on the orchestration of services, and
the ambient-oriented programming paradigm, which is tailored towards applications
running on mobile devices. We define high-level abstractions as workflow patterns that
allow the orchestration of services in a nomadic network. Therefore, we revise existing

i

control flow patterns in the context of nomadic networks where the different services
are not necessarily known beforehand, and can become (temporarily) unavailable.

Additionally, the programming model offers a set of new patterns that allows the
orchestration of dynamically changing groups of services. This set of patterns ensures
that (part of) the application is executed for all services satisfying the group’s descrip-
tion. The inherent volatile connections of the network cause communication partners
to disconnect making full synchronisation not always possible. Therefore, we include
more advanced synchronisation patterns, that enable control over the execution in a
way that transcends the individual process of a single member.

Because nomadic networks are built upon volatile networks, failure handling mech-
anisms are required to overcome communication faults. The programming model we
propose incorporates a default failure handling mechanism in order to overcome (net-
work) failures during service invocations. We define additional patterns that allow
application developers to specify compensating actions to handle particular failure
events.

We contribute the design and implementation of these novel patterns in the context
of NOW, a novel workflow language for nomadic networks. This workflow language
is implemented as an extra layer of abstraction on top of A M B I E N T TA L K/2, the
state-of-the-art programming language for coordination in mobile ad hoc networks.
We also provide a validation of our approach by comparing the code complexity of
the implementations of three nomadic applications in NOW and A M B I E N T TA L K/2.
Finally, we present a validation of NOW’s performance and scalability.

ii

S A M E N VAT T I N G

Het huidige straatbeeld wordt gekenmerkt door de aanwezigheid van geminiaturiseerde
apparaten zoals smartphones en digitale horloges, en binnenkort zelfs digitale brillen.
Deze alledaagse objecten krijgen steeds meer rekenkracht, wat ons dichter brengt
bij Mark Weiser’s visie van ubiquitous computing. Deze talrijk aanwezige geminia-
turiseerde apparaten kunnen verbonden worden in mobiele ad-hocnetwerken door ge-
bruik te maken van standaardtechnologieën zoals WiFi, Bluetooth, NFC, 3G en recent
ook 4G. Dergelijke mobiele ad-hocnetwerken ontstaan wanneer apparaten spontaan
een samenwerking tot stand willen brengen door middel van een draadloos netwerk,
zonder hiervoor configuratie of infrastructuur nodig te hebben. Dit is in tegenstelling
tot nomadische netwerken, waar een groep mobiele apparaten een verbinding probeert
te behouden met een vaste infrastructuur. Omdat dit type netwerken alomtegenwoordig
is (denk bijvoorbeeld aan winkelcentra, luchthavens, etc.), ontstaan rijke toepassings-
mogelijkheden.

Wij stellen ons een nieuw soort toepassingen voor, genaamd nomadische toepas-
singen, die ontwikkeld en uitgevoerd worden op de vaste infrastructuur van de nomadi-
sche netwerken en ondertussen complexe interacties met de nabije mobiele apparaten
orkestreren. De focus van dergelijke nomadische toepassingen is het orkestreren van de
verschillende diensten die worden aangeboden door verbonden servers en door nabije
mobiele apparaten. Het orkestreren van diensten leidt tot complex gedrag dat ontstaat
uit de interactie tussen deze aanwezige mobiele apparaten en de servers. Orkestratie
van diensten in deze context is niet triviaal aangezien nomadische netwerken onder-
hevig zijn aan volatiele verbindingen. Dit houdt in dat diensten op mobiele apparaten
gevoelig zijn voor (tijdelijke) netwerkfalingen. Bovendien zijn dergelijke mobiele ap-
paraten steeds in beweging, wat wil zeggen dat de groep van diensten die georkestreerd
wordt dynamisch is tijdens de uitvoering van een nomadische toepassing en dus bij-
gevolg niet op voorhand bepaald kan worden.

Wij stellen een programmeermodel voor dat de ontwikkeling van nomadische toe-
passingen vereenvoudigt. Dit programmeermodel unificeert de principes van twee on-
derzoekszuilen, namelijk het workflowparadigma dat zich toespitst op het orkestreren
van diensten en het ambient-geöriënteerd programmeerparadigma dat gericht is op

iii

toepassingen die worden uitgevoerd op mobiele apparaten. We definiëren hoogniveau
abstracties als workflowpatronen die de orkestratie van diensten in een nomadisch
netwerk ondersteunen. Daarvoor dienen we bestaande control flow patronen te herbe-
kijken in de context van nomadische netwerken, waar niet noodzakelijk alle diensten
op voorhand gekend zijn en waar deze (tijdelijk) onbeschikbaar kunnen zijn.

Bovendien biedt het voorgestelde programmeermodel een nieuwe groep van patro-
nen aan die zich richten tot de orkestratie van een dynamische groep van diensten.
Deze verzameling patronen zorgt er voor dat (een deel van) de toepassing uitgevoerd
wordt voor alle diensten die aan de groepsbeschrijving voldoen. De volatiliteit die aan-
wezig is in nomadische netwerken zorgt er voor dat gehele synchronisatie niet altijd
mogelijk is. Daarom stellen we meer geavanceerde synchronisatiepatronen voor die de
uitvoering van de toepassing controleren op een manier die de individuele uitvoering
van een enkel groepselement overstijgt.

Omdat nomadische netwerken gebouwd worden op volatiele netwerkverbindingen
zijn mechanismen nodig om falingen tijdens de communicatie af te handelen. Het
programmeermodel dat wij voorstellen, ondersteunt het automatisch afhandelen van
falingen om zo te kunnen omgaan met (netwerk) falingen veroorzaakt tijdens het
oproepen van een dienst. We definiëren eveneens extra patronen die toepassingsontwik-
kelaars toelaten om toepassingsspecifieke compensaties te specifiëren voor bepaalde
soorten falingen.

We presenteren het design en de implementatie van deze nieuwe patronen in de con-
text van NOW, een nieuwe workflowtaal voor nomadische netwerken. Deze work-
flowtaal is geïmplementeerd als een abstractielaag bovenop A M B I E N T TA L K/2, de
state-of-the-art voor coördinatie in mobiele ad-hocnetwerken. We voorzien ook een
validatie van onze aanpak door de codecomplexiteit van de implementaties van drie
nomadische toepassingen in NOW en A M B I E N T TA L K/2 te vergelijken. Tenslotte
presenteren we ook een validatie van de performantie en schaalbaarheid van NOW.

iv

AC K N OW L E D G E M E N T S

I would like to express my deepest gratitude to everyone who helped me to complete
this dissertation. First and foremost, I would like to thank my promotor Prof. Viviane
Jonckers for genuinely supporting my work. Many thanks for your advice and encour-
agement throughout all these years.

I would also like to thank the members of my jury: Prof. Mario Südholt, Prof.
Yolande Berbers, Prof. Kris Steenhaut, Prof. Ann Nowé, Prof. Tom Van Cutsem, and
Prof. Wolfgang De Meuter. Thanks for critically reading my dissertation and impro-
ving the quality of this text. I want to thank Wolfgang De Meuter for helping me write
my IWT proposal.

A big thanks goes out to the members of my reading-committe: Ragnhild Van Der
Straeten, Andoni Lombide Carreton, and Jorge Vallejos. Thanks a lot for your valuable
feedback on my text and your guidance throughout the years.

I want to thank all members of the Software Languages Lab, especially the members
of the System and Software Engineering Lab and of the ambient group. Special thanks
goes to Ragnhild Van Der Straeten, Mario Sánchez, Oscar González, Niels Joncheere,
Andoni Lombide Carreton, Dries Harnie, and Tom Van Cutsem. I also owe a a lot of
gratitude to my office mates, and in particular to Stefan Marr. Sharing an office with
someone who is also writing his dissertation could have caused unnecessary stress. For
us, it did not. I really enjoyed sharing this process with someone who was experienc-
ing the exact same things. The daily “How many pages did you write?”, “Do you have
to make a lot of adjustments?”, etc. questions were a motivation to keep on writing.
Thank you, Stefan, for being there for me and for providing me with the really delight-
ful chocolate!

I also want to thank the assistants with whom I shared teaching tasks. Special thanks
to Ragnhild Van Der Straeten for helping me survive my first classes and thanks to
Mattias De Wael for giving me an extra hand during these last months. I also want to
express my genuine gratitude to all students who attended my classes during the years:

v

thanks for your interest and making it a pleasure to teach!

I also want to express my gratitude to some people who supported me, even though
they might not be fully aware of how much they did. Special thank goes out to Char-
lotte Herzeel, Mattias De Wael, Reinout Stevens, Stefan Marr, Dries Harnie, Kevin
Pinte, Lode Hoste, Yves Vandriessche, Nicolás Cardozo, and Andy Kellens.

Last, but not least, I would like to thank my family and friends who were there for
me when I needed them. First of all I want to express my genuine gratitude to my par-
ents who unconditionally supported me. Without their support, nothing of this would
have been possible. During these last months I sometimes did honour to my nickname
of “mimosa pudica”, but they still managed to be there even though I was not always
pleasant company. I also want to thank my brother Michaël and sister Laure for sup-
porting me and providing me with the necessary distractions.

I want to thank my friends who joined me during my swimming sessions, dragged
me to the local pub, or entertained me with a night of board game fun! Thanks Bart,
Sarina, Reinout, Nicky, Tas (aka “Thomas”), Robrecht, Lilith, Brecht, Glenn, Hendrik,
Judith, Florence, Joeri, Robin, and Jourik.

There is one person to whom I am deeply indebted, she is not only my little sister,
but also my best friend, and now even my colleague. Last year I was really touched
when she thanked me in the acknowledgements of her master’s thesis and mentioned
that I was her inspiration. Well, this time it’s my time to thank her for everything she
has done for me. Thank you Laure for supporting me, pushing me when I needed it,
convincing me that I needed to take a break, for providing me with some nice guitar
play and the a-bit-more-annoying noise that came out of that piccolo of yours, and for
just being there when I needed it the most! I hope I can be the same support for you
when it is your time to write your dissertation.

This work is funded by a PhD scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT).

vi

C O N T E N T S

1 Introduction 1
1.1 Research Context . 1
1.2 Research Vision . 3
1.3 Research Objective . 5
1.4 Research Methodology . 7
1.5 Contributions . 8
1.6 Dissertation Roadmap . 10

2 Orchestration in Nomadic Networks 13
2.1 Workflows and Orchestration . 13

2.1.1 Service Orchestration . 14
2.1.2 Workflows . 14
2.1.3 Terminology . 19

2.2 Ambient-Oriented Programming . 20
2.2.1 Terminology . 22

2.3 Orchestration in Nomadic Networks 23
2.3.1 Scenarios of Nomadic Applications 23
2.3.2 Definitions . 25
2.3.3 Criteria for Service Orchestration 26
2.3.4 Criteria for Group Orchestration 28
2.3.5 Criteria for Failure Handling 29

2.4 Conclusion . 30

3 Ambient-Oriented Programming in A M B I E N T TA L K 31
3.1 Ambient-Oriented Programming . 32
3.2 A M B I E N T TA L K . 33
3.3 Object-Oriented Programming in A M B I E N T TA L K 34

3.3.1 Delegation . 35
3.3.2 Scoping . 36

vii

Contents

3.3.3 Encapsulation . 37
3.4 Concurrent Programming in A M B I E N T TA L K 38

3.4.1 Asynchronous Message Sending 40
3.4.2 Isolates . 40
3.4.3 Futures . 40

3.5 Distributed Programming in A M B I E N T TA L K 41
3.5.1 Exporting and Discovering of Objects in A M B I E N T TA L K . 42
3.5.2 Dealing with Failures . 44

3.6 Reflective Programming in A M B I E N T TA L K 45
3.6.1 Mirrors . 46
3.6.2 Mirages . 48

3.7 Ambient References . 50
3.8 Limitations . 52
3.9 Conclusion . 56

4 Patterns for Orchestration in Nomadic Networks 59
4.1 Activities . 60
4.2 Data Flow . 62
4.3 Patterns for Service Orchestration 67

4.3.1 Standard Patterns . 69
4.3.2 Synchronisation Patterns . 72
4.3.3 Trigger Patterns . 76

4.4 Patterns for Group Orchestration . 77
4.4.1 Definition of Group Membership 78
4.4.2 Synchronisation Mechanisms 84
4.4.3 Relation to Existing Research 90

4.5 Patterns for Failure Handling . 92
4.5.1 Automatic Failure Handling 92
4.5.2 Specification of Compensating Actions as a Failure Handling

Mechanism . 93
4.5.3 Failure Handling for Group Orchestration 97
4.5.4 Relation to Existing Research 105

4.6 Conclusion . 108

5 A Workflow Language for Orchestration in Nomadic Networks 111
5.1 Motivation . 112
5.2 Activities . 113
5.3 Data Flow . 116

viii

Contents

5.4 Service Orchestration . 118
5.4.1 Composition of Synchronisation Patterns 121
5.4.2 Implementing the iMPASSE Application in NOW 122

5.5 Group Orchestration . 127
5.5.1 Definition of Group Membership 128
5.5.2 Implementing the SURA Application in NOW 131

5.6 Failure Handling . 135
5.6.1 Failure Handling for Service Orchestration 136
5.6.2 Failure Handling for Group Orchestration 138
5.6.3 Implementing the SWOOP Application in NOW 139

5.7 NOW Related to the State of the Art 144
5.7.1 Workflow Languages . 144
5.7.2 Coordination Languages . 155
5.7.3 Summary . 163

5.8 Conclusion . 165

6 Implementing NOW 167
6.1 Activities . 168
6.2 Data Flow . 170
6.3 Service Orchestration . 174

6.3.1 Standard Patterns . 176
6.3.2 Synchronisation Patterns . 182
6.3.3 Trigger Patterns . 185

6.4 Group Orchestration . 187
6.4.1 Definition of Group Membership 187
6.4.2 Patterns for Group Orchestration 190

6.5 Failure Handling . 195
6.5.1 Automatic Failure Handling 196
6.5.2 Patterns for Failure Handling 199

6.6 Conclusion . 201

7 NOW Up and Running 203
7.1 Application stressing Service Orchestration 204
7.2 Application stressing Group Orchestration 204
7.3 Application Stressing Failure Handling 207
7.4 Scalability Results . 212

7.4.1 Language Scalability . 213
7.4.2 Scalability of Language with Failure Detection 217
7.4.3 Scalability of Example Scenarios 220

ix

Contents

7.4.4 Discussion . 223
7.5 Conclusion . 224

8 Conclusion 225
8.1 Summary and Contributions . 226
8.2 Discussion and Future Work . 229

Bibliography 233

Index 247

x

L I S T O F F I G U R E S

2.1 Example “order fulfilment” workflow [Obj12] (expressed using BPMN
[Obj11]). 16

3.1 A M B I E N T TA L K actor. 38
3.2 Concurrency model of A M B I E N T TA L K. 39
3.3 A M B I E N T TA L K: mirrors. 46
3.4 A M B I E N T TA L K: mirages. 49

4.1 Lifecycle of an activity. 61
4.2 Data flow: data environment passed simultaneously with incoming and

outgoing control flow edges. 63
4.3 Example sequence diagram of starting an activity. 64
4.4 Merging strategies for synchronisation patterns. 65
4.5 Basic control flow patterns: Parallel Split with a Sequence in its first

branch. 70
4.6 Sequence diagram of the execution of the workflow depicted in Figure

4.5. 71
4.7 Example of a multiple instances pattern. 72
4.8 Basic control flow patterns: Parallel Split followed by multiple syn-

chronisation patterns. 73
4.9 Sequence diagram of the execution of the workflow depicted in Figure

4.8. 75
4.10 Trigger patterns: Sequence pattern using a Persistent Trigger pattern. . 76
4.11 Sequence diagram of the execution of the workflow depicted in Figure

4.10. 77
4.12 Federated fact spaces of colocated devices. 82
4.13 Example of a Group pattern. 83
4.14 Sequence diagram of the execution of the workflow depicted in Figure

4.13. 83

xi

List of Figures

4.15 Restricting the members of the group by using a filter. 84
4.16 Synchronisation: the Barrier pattern. 86
4.17 Synchronisation: execution of a Cancelling Barrier pattern. 87
4.18 Synchronisation: a Group Join pattern to terminate the group. 88
4.19 Synchronisation: a Synchronised Task pattern executing a task once

for all instances. 91
4.20 Lifecycle of an activity (version II). 93
4.21 Failure pattern. 94
4.22 Failure pattern: overriding default failure handling strategies with more

specific compensating actions. 95
4.23 Nesting of Failure patterns to acquire more accurate failure handling

strategies. 97
4.24 Different compositions of failure handling for group orchestration. . . 98
4.25 Failure detection: normal failures versus participant failures. 100
4.26 Failure Handling for Group Orchestration - Composition 1. 102
4.27 Failure Handling for Group Orchestration - Composition 2. 103
4.28 Failure Handling for Group Orchestration - Composition 3. 104
4.29 Failure handling at the level of a work item [RtEv05a]. 105

5.1 Composition of synchronisation patterns: one Synchronization pattern. 121
5.2 Composition of synchronisation patterns: several Synchronization pat-

terns. 122
5.3 Workflow implementing the iMPASSE application. 123
5.4 Federated fact spaces of colocated devices. 129
5.5 Workflow implementing the SURA application. 132
5.6 Compensating actions specified for different kind of failures. 137
5.7 Workflow implementing the SWOOP application. 140

6.1 Prioritise merging strategy for synchronisation patterns. 172
6.2 Object diagram for service orchestration patterns. 174
6.3 Object diagram for group orchestration patterns. 190
6.4 Application-specific failure handling by nesting Failure patterns to over-

ride (default) compensations. 195

7.1 Lines of code for the code complexity of the SWOOP application in
NOW and A M B I E N T TA L K. 211

7.2 Measurement of overhead introduced by patterns. Results for sequence
pattern (a) and parallel split pattern (b). 215

xii

List of Figures

7.3 Measurement of overhead introduced by failure detection. Results for
sequence pattern (a) and parallel split pattern (b). 219

7.4 Measuring the addition of workflow patterns compared to plain A M B I E N T -
TA L K. Results are shown for a multiple instances pattern wrapping
the workflow implementing the iMPASSE application. 221

7.5 Measuring the addition of workflow patterns compared to plain A M B I E N T -
TA L K. Results are shown for a multiple instances pattern wrapping
the workflow implementing the SURA application. 222

7.6 Measuring the addition of workflow patterns compared to plain A M B I E N T -
TA L K. Results are shown for a multiple instances pattern wrapping
the workflow implementing the SWOOP application. 223

xiii

L I S T O F TA B L E S

4.1 Control Flow Patterns . 68
4.2 Effect of a compensating action depending on the composition that is

used for failure handling for group orchestration. 99

5.1 Control Flow Patterns supported by NOW. 119
5.2 Failure handling for group orchestration in NOW. 138
5.3 Survey of related work. 164

xv

1
I N T RO D U C T I O N

1.1 Research Context

Nowadays we are surrounded by all kinds of computing devices, ranging from smart-
phones to digital watches, and in the near future even digital glasses. Weiser’s vision
[Wei91, Wei93, Wei99] is becoming more and more reality seeing that everyday ob-
jects, such as refrigerators and product scanners, are more and more integrated with
computers and are able to provide digital information to its users. Consider for instance
electronic dresses that give light depending on the sound level, scarfs that calm autistic
kids when they are overstimulated, etc. The small connected computing units, dubbed
ambient devices, have characteristics which are significantly different from the con-
ventional devices. One of these characteristics is that connections cannot be assumed
stable, this stems from the fact that these devices are mobile and can leave a certain
area at any moment in time. The integration of these ambient devices into everyday
items is called ubiquitous computing [Wei91].

With the use of a variety of standard technologies like WiFi, Bluetooth and NFC
we can connect these miniaturised devices in a mobile ad hoc network (MANET)
[MRV98]. Mobile ad hoc networks spontaneously emerge by the colocation of devices
with wireless networking capabilities, without the need of an additional infrastructure,
and, furthermore, no substantial configuration is required. These characteristics allow
software for ubiquitous computing to interact spontaneously and unobtrusively.

Nomadic networks are a special case of mobile ad hoc networks. Nomadic networks
consist of a set of mobile devices that try to maintain a connection with the fixed

1

1 Introduction

infrastructure, that serves as a central backbone [MCE02]. Nomadic networks are om-
nipresent, for instance, in shopping malls, airports, train stations, universities, hospi-
tals, hotels, movie theatres, football stadia, festival areas, opera buildings, etc. Con-
cretely, the hospital of the Vrije Universiteit Brussel (“Universitair Ziekenhuis Brus-
sel”) has a nomadic network. The server of the hospital runs several applications that in-
teract with services provided by computers/devices that are connected via (un)reliable
communication links. There are services that are provided by servers in the hospital
itself, such as an application running on the computers at the check-in desk. Other
services are running on mobile devices, consider for instance the calendar application
running on the mobile phone of a nurse.

Since nomadic networks are omnipresent, an abundance of interesting applications
can be supported. However, the development of such applications is not straightfor-
ward as special properties of the communication with mobile devices, such as connec-
tion volatility, have to be considered. Application developers can rely on software for
ubiquitous computing to develop applications for nomadic networks. Ubiquitous com-
puting software must provide the necessary hooks to deal with the high dynamicity of
the network. The software must not only deal with intermittent network connections,
it must also allow applications to react upon events, such as other users and sensors
in the neighbourhood. Several models for programming these types of distributed ap-
plications have been developed. The model we use as a foundation for our work is
the ambient-oriented programming paradigm [DVM+06]. Ambient-oriented program-
ming is a paradigm specifically sculpted towards applications running on mobile de-
vices since it takes characteristics such as connection volatility and zero infrastructure
into account.

Although the ambient-oriented programming paradigm is suited for the develop-
ment of applications in mobile ad hoc networks, the cooperation between the different
entities in the environment is programmed ad hoc. In order to facilitate the develop-
ment of complex nomadic applications, there is a need for composition techniques
and high-level language abstractions that allow the specification of the interactions be-
tween the entities in the network. Therefore, the principles introduced by workflow
languages can be used, since they provide patterns that specify the composition of ser-
vices and the interactions between these services at a high level. This way, the control
flow of the application is not interwoven with the fine-grained application logic that is
provided by the services.

2

1.2 Research Vision

1.2 Research Vision

We envision a new type of rich applications, which we call nomadic applications from
now on, that are deployed and executed on the fixed infrastructure while communicat-
ing with the mobile devices in the network. Therefore, the backbone of the nomadic
network runs software that allows the discovery of nearby mobile devices. These mo-
bile devices are equipped with software such that their applications, called services,
can be published on the network. In order to allow discovery of nearby services, a
WiFi access point is required.

During the execution of a nomadic application, services can be invoked to perform
a certain task. We distinguish two categories of services that can be used by nomadic
applications, namely stationary services and mobile services.

Stationary services are services that reside on a device that is part of the fixed infras-
tructure of the network. An example of a stationary service is the application running
on a computer at the information desk at the airport that is responsible for announce-
ments.

The second category of services, the mobile services, are services residing on mo-
bile devices. For these category of services we make the distinction between registered
services and user services. Registered services are services that are part of the prede-
fined infrastructure of the nomadic network, whereas user services are services that
are not known a priori. An example of a registered service is the calendar application
of a specific airline company that is running on the mobile phone of a pilot of that
company. The infrastructure of the airport knows this service beforehand, since per-
sonnel at the airport is registered, and therefore, the backbone has knowledge about
the services associated with applications running on the mobile device of a personnel
member. Examples of user services are the applications running on the smartphones of
passengers. User services also grasp the services that are made available for download
by the nomadic applications, running on the fixed infrastructure of the network. Since
passengers and visitors are not registered, the backbone at the airport does not have
knowledge about all applications running on their devices. Interaction with these users
is achieved by discovering the services that are published on the network. Consider ap-
plications that can signal alerts for certain events. The nomadic application can invoke
this service when necessary.

Both stationary and registered mobile services are services that are part of the in-
frastructure and are responsible for the inner workings of the nomadic application.
Nomadic applications depend more on those types of services because they are in
charge of the more “predictable” processing. The failure of one of those services, like
the unavailability of a service, has an influence on the entire application. Consider the
nomadic application that contacts a tourist guide, before notifying the passengers of

3

1 Introduction

his/her guidance help. When a disconnection occurs during communication with the
(registered) service, running on the guide’s mobile device, the nomadic application’s
execution is affected. In this case, some compensating action is required, before con-
tacting the passengers.

Mobile services, on the other hand, actually drive the need for processing. Think
about an application that is responsible for reminding a passenger about the continuity
of his/her flight. The discovery of such a new (user) mobile service (i.e., application
running on a passenger’s mobile device), can trigger the execution of an application
running on the airport’s backbone. Mobile services are the services that steer these
applications, and the unavailability of such a service does not affect the correct working
of the application nearly as much.

Consider for instance the following example application where a tourist guide is
contacted to inform him/her that he/she can start gathering all passengers that will join
him/her to Italy. When the tourist guide, which is considered a registered service, is
unavailable, the nomadic application should perform the necessary actions to ensure
that the application’s task can be executed. The applications running on the mobile
phones of the passengers in the example are considered user mobile services. When
one or more passengers are unavailable, the entire application can continue its execu-
tion (i.e., the other passengers can be contacted), although it might also be useful to
provide compensations in case a user mobile service is unavailable.

Nomadic applications are applications that run on a stationary backbone and execute
tasks by invoking both stationary and mobile services. These nomadic applications
have some special characteristics:

• Nomadic applications control the different types of services in the network by
invoking them when necessary. The emphasis of a nomadic application is the
orchestration of the different services in the nomadic network. The orchestration
of these services describe the control flow of a nomadic application separately
from the fine-grained application logic, which is implemented by the services.

• Because mobile services (registered services and user services) are residing on
mobile devices, it is likely that communication failures occur. For example, such
a service can become unavailable when the mobile device goes out of commu-
nication range. Therefore, nomadic applications should take into account that
nomadic networks are dominated by volatile connections and provide means to
compensate for such errors and failures.

• Nomadic applications make use of user services, which are unknown to the in-
frastructure before they become connected. These applications need to discover
the services in the network that can execute particular tasks. Moreover, nomadic

4

1.3 Research Objective

applications need to react upon changes in the network topology. The discovery
of a mobile service in the network is an event that can cause the nomadic applica-
tion to behave differently. The number of services a nomadic application wants
to invoke can vary each time the same application is executed. For example, the
application that addresses all passengers of a particular flight is most likely to
communicate with a different number of services each time the application is
executed.

Executing a nomadic application results in the invocation of services in the nomadic
network in order to perform particular tasks. Nomadic applications are applications
that orchestrate the different types of services residing in the network.

1.3 Research Objective

In this dissertation we investigate how the development of the nomadic applications
we described in the previous section can be facilitated. We propose a programming
model that attends to the characteristics of nomadic applications. These special charac-
teristics, such as the fact that not all services are known beforehand, and that failures
can occur due to intermittent network connections, impose several criteria the program-
ming model must adhere to. These characteristics can be divided in three categories,
namely service orchestration, group orchestration, and failure handling.

• Service orchestration: Nomadic applications are applications running on the
fixed infrastructure of the nomadic network that communicate with services
(possibly) running on mobile devices. These nomadic applications interact with
three types of services, amongst which user services that are not known before-
hand.

During the execution of a nomadic application, services can go out of commu-
nication range at any moment in time. Nomadic applications handle intermittent
disconnections by allowing services to continue executing while not necessarily
connected to the backbone.

Moreover, nomadic applications cannot remain unresponsive for a significant
amount of time, such as when a service is temporarily disconnected.

Nomadic applications must specify the composition of tasks (i.e., service invo-
cations) at a high-level and ensure that the control flow of the application is
not interwoven with the fine-grained application logic, which is provided by the
services.

5

1 Introduction

• Group orchestration: The increasing popularity of mobile devices fosters the
omnipresence of services in mobile environments, such as MANETs and no-
madic networks. Nomadic applications have to manage a dynamically changing
group of services, such as the services running on the mobile devices of an air-
crew. Managing this logical group of services is achieved by orchestrating the
execution of a particular process for all group members. For example, ask all
passengers to fill in a survey, gather their answers, etc.

Since not all services are necessarily known a priori, an extensional description
of the services is not always possible. Therefore, nomadic applications must
intensionally describe the members of a group. Possible intensional descriptions
are “all passengers of a certain flight who have children younger than 12 years,
and are seated in rows 15 to 30”, “the personnel of Brussels Airlines”, etc.

Additionally, the number of services a group constitutes of, is not known before-
hand and can fluctuate over time.

Moreover, during the orchestration of a group of services, it must be possible to
redefine the group members. For instance, restricting the members of the group
to only a subset of the services that originally satisfied the group’s description
by adding an extra constraint.

Furthermore, the execution of the process for each group members must be con-
trolled, such that the identity of the service that is executing a particular task
can be managed. Moreover, the number of times a specific task is executed must
be controllable. Therefore, there is a need for synchronisation mechanisms that
let processes wait, redirect, or abort in order to guarantee a successful group
orchestration.

• Failure Handling: In a nomadic network, the challenge is to make the large
heterogeneity of services co-operate and deal with transient and permanent fail-
ures. To communicate in a fault tolerant manner, all common failures such as
disconnections, timeouts, unavailability of services, and service errors need to
be considered and handled.

There is a need for automatic failure handling, such that a nomadic applica-
tion can recover from (network) failures. It must also be possible to specify
application-specific compensating actions for certain types of failure.

In mobile environments where users and services enter and leave at will, it must
also be possible to orchestrate a group of services by managing the effects of
failures on the group. Nomadic applications must react upon a failure during
the execution of the process of a single group member, and must also manage

6

1.4 Research Methodology

failures at the level of the entire group. Failure handling for groups must allow
compensations to affect the execution of a group in a way that exceeds the exe-
cution of an individual group member.

1.4 Research Methodology

The characteristics of nomadic applications, which we described in the previous sec-
tion, impose criteria a programming model must adhere to. Because we are targeting
nomadic networks, some of these criteria originate from the ambient-oriented program-
ming paradigm. Other criteria either stem from the fact that nomadic applications are
centred around the notion of the orchestration of services in the network, or are a com-
bination of both.

The work we present in this dissertation fits in the context of two paradigms, namely
the workflow paradigm and the ambient-oriented programming paradigm, which we
both discuss in Chapter 2. This research is centred around the development of nomadic
applications, which are applications running on the fixed infrastructure of a nomadic
network while orchestrating services residing in the network.

Since nomadic applications are a special type of distributed applications, we are in-
spired by technologies used to develop distributed applications that function in highly
dynamic networks. Existing middleware [MCE02] and programming languages, such
as A M B I E N T TA L K [DVM+06], are specifically tailored towards the development
of applications for dynamic network environments. The cooperation between the dif-
ferent entities in the environment is, however, programmed ad hoc. In order to ease
the development of these applications, there is a need for composition techniques and
high-level patterns that allow the specification of the interactions between the different
entities in the network. In stable networks, complex distributed applications can be
developed using technologies such as service-oriented computing [PG03]. The com-
position of services and the interactions between these services can be achieved using
the principles of workflow languages. Workflow models and languages are already
successfully received in research domains like business processes and traditional dis-
tributed environments, because they support the composition of services, the descrip-
tion of the control flow, and parallel execution.

Although existing workflow languages, such as WS-BPEL [JE+07] and YAWL
[vdAtH05], are suited for distributed environments, they are not fully equipped to de-
scribe nomadic applications. First of all, these languages interact with services that
have a fixed location and are known a priori, for instance, through a URL. Nomadic
applications must be able to interact with three types of services, amongst which user
services that are not known beforehand. Secondly, interactions between the different

7

1 Introduction

services are typically synchronous. Because of the high dynamicity of the nomadic
network, not having access to a service must be considered the default.

This dissertation is focussed on language design. We identify the criteria a program-
ming model must adhere to in order to facilitate the development of nomadic applica-
tions. We define language abstractions that comply with these criteria, and implement
a proof-of-concept workflow language supporting the proposed language abstractions.
We validate these language abstractions by employing them to implement representa-
tive nomadic applications.

1.5 Contributions

The thesis we set forth in this dissertation is

By introducing language abstractions for service orchestration, group orchestration,
and failure handling, the development of nomadic applications is facilitated.

We summarise the main contributions of this dissertation:

• Identification of Criteria for Orchestration in Nomadic Networks: The re-
search described in this dissertation is founded by two paradigms, namely the
workflow paradigm and the ambient-oriented programming paradigm. Based
upon the principles and characteristics described by languages implementing
these paradigms and the characteristics of nomadic applications, we distill cri-
teria we argue are necessary for the orchestration of services in a nomadic net-
work.

• Definition of Abstractions for Developing Nomadic Applications: After hav-
ing identified criteria necessary for orchestration in nomadic networks, we de-
fine a set of patterns that enable orchestration in nomadic networks.

– We first revisit existing control flow patterns [RtHvdAM06] in the context
of nomadic networks;

– We present novel patterns that allow the orchestration of a dynamically
changing group of services; and

– We present patterns that allow the detection and handling of failure events
through the execution of compensating actions.

• Implementation of Proof-of-Concept Workflow Language: The postulated
patterns for orchestration are implemented in a proof-of-concept workflow lan-
guage (NOW). This workflow language for nomadic networks is built as a li-

8

1.5 Contributions

brary on top of the ambient-oriented programming language A M B I E N T TA L K/2.
NOW incorporates the three sets of patterns our programming language con-
sists of, namely a subset of existing control flow patterns, patterns for group
orchestration, and patterns for failure handling.

• Validation of Nomadic Applications developed using NOW: We present the
implementation of three example scenarios that are revolved around one specific
set of criteria. The first example application pays attention to the orchestration of
services, and the composition of control flow patterns. The second application is
centred around the necessity for group abstractions that allow the orchestration
of a set of services that form a logical group. The last application addresses
the notion of detecting and handling failures, both for service orchestration and
group orchestration.

Supporting Publications

The following (co-) authored publications support the key ideas in this dissertation:

• NOW: A Workflow Language for Orchestration in Nomadic Networks
[PVJ10]
Eline Philips, Ragnhild Van Der Straeten, Viviane Jonckers
12th International Conference on Coordination Models and Languages (COOR-
DINATION 2010)
This paper proposes a nomadic workflow language built on top of the ambient-
oriented programming language A M B I E N T TA L K/2. The proposed language,
called NOW, provides high-level workflow abstractions for control flow and
supports network and service failure detection and handling through compensat-
ing actions. The paper also introduces the variable binding mechanism employed
by NOW, which enables dynamic data flow between services in a nomadic net-
work.

• NOW: Orchestrating Services in a Nomadic Network using a dedicated
Workflow Language [PVJ13]
Eline Philips, Ragnhild Van Der Straeten, Viviane Jonckers
Science of Computer Programming, 2013
This paper extends the aforementioned paper with implementation details, and
by providing a comparison of the code complexity of the implementations of
two example applications in a dedicated language for mobile networks and in
our proposed workflow language.

9

1 Introduction

• Group Orchestration in a Mobile Environment [PVVJ12]
Eline Philips, Jorge Vallejos, Ragnhild Van Der Straeten, Viviane Jonckers
14th International Conference on Coordination Models and Languages (COOR-
DINATION 2012)
This paper presents high-level abstractions for group orchestration in a nomadic
network as a new set of workflow patterns. In this paper, we explain how these
patterns are integrated in the existing workflow language NOW. That workflow
language handles network and service failures at the core of the language. By
extending this fault tolerance to the new group abstractions, we illustrate how to
conduct these in a reliable way.

1.6 Dissertation Roadmap

Chapter 2: Orchestration in Nomadic Networks describes the context of this dis-
sertation, which is supported by the workflow paradigm and the ambient-oriented pro-
gramming paradigm. Both paradigms are introduced in this chapter, and the necessary
terminology is defined. Thereafter, we postulate criteria that are necessary for service
orchestration in a nomadic network. These criteria are distilled from three example
applications, which are used throughout this dissertation.

Chapter 3: Ambient-Oriented Programming in A M B I E N T TA L K presents the
programming language A M B I E N T TA L K/2. We describe the language features that
are necessary to understand the technical contribution of this dissertation, namely the
implementation of the nomadic workflow language NOW. A dedicated chapter on
A M B I E N T TA L K/2 is required because this nomadic workflow language is built as
an abstraction layer on top of this ambient-oriented programming language. Moreover,
A M B I E N T TA L K/2 is considered as related work of the work presented in this disserta-
tion, because this ambient-oriented programming language is targeted towards mobile
ad hoc networks. The nomadic networks we target in this dissertation can be regarded
as a special case of these mobile ad hoc networks. Lastly, part of the motivation for the
nomadic workflow language NOW is rooted in the difference between mobile ad hoc
networks and nomadic networks. In this chapter we also discuss A M B I E N T TA L K/2’s
limitations, concerning service orchestration.

Chapter 4: Patterns for Orchestration in Nomadic Networks puts forward a set
of patterns that allows the orchestration of services in a nomadic network. First, we
discuss an interpretation of activities suitable for nomadic networks. Afterwards, we
present a data flow mechanism, which allows data to be passed between activities

10

1.6 Dissertation Roadmap

in a workflow. Subsequently, we discuss the necessity of patterns to allow service
orchestration in a nomadic network. We start by presenting a set of existing control
flow patterns that are widely used for orchestration. Thereafter, we introduce a set
of novel patterns that are specifically sculpted for nomadic networks: We introduce
patterns for group orchestration, and patterns that allow (automatic) failure handling.

Chapter 5: A Workflow Language for Orchestration in Nomadic Networks in-
troduces a workflow language that has support for the patterns we proposed earlier.
This workflow language, called NOW, is targeted towards nomadic networks and is
built as an abstraction layer on top of the ambient-oriented programming language
A M B I E N T TA L K/2, presented in Chapter 3. In this chapter we first motivate why we
chose A M B I E N T TA L K/2 as the platform to build this workflow language on. Be-
fore presenting the patterns that NOW supports, we describe how services can be
implemented in NOW and explain the data flow mechanism the workflow language
employs. We also present NOW from the point of view of the application developer:
We introduce the implementation of three example applications, and, illustrate how
the proposed workflow patterns can be used. Given the criteria identified in Chapter
2, we survey a number of workflow languages and coordination languages that offer
interesting solutions for orchestrating services, or coordination in mobile networks, or
a combination of both. We evaluate these languages and discuss how they fail to meet
all our postulated criteria for orchestration in nomadic networks.

Chapter 6: Implementing NOW describes the patterns for service orchestration
from the implementor’s point of view. In this chapter we describe the technicalities of
the workflow language and point out how the language is built on top of A M B I E N T -
TA L K/2. We also discuss how new patterns can be added to the nomadic workflow
language.

Chapter 7: NOW Up and Running discusses the comparison of the code complex-
ity of the implementation of three example applications in NOW and A M B I E N T -
TA L K/2. From these experiments, we can conclude that the implementation in NOW
is shorter and contains less nested code. We also present the results of experiments
we conducted to measure the overhead of introducing patterns on top of the ambient-
oriented programming language.

Chapter 8: Conclusions summarises the contributions made in this dissertation. In
this chapter we also discuss the limitations of our work and outline some possible
future work directions.

11

2
O R C H E S T R AT I O N I N N O M A D I C N E T W O R K S

In this chapter we sketch the context of this dissertation, which is built upon two re-
search pillars, namely the workflow paradigm and the ambient-oriented programming
paradigm. We first discuss how orchestration of services can be achieved by using
principles from the workflow paradigm. Subsequently, we describe the context of our
work, namely nomadic networks, and describe how the criteria put forward by the
ambient-oriented programming paradigm also hold for these types of networks. After-
wards we distill criteria from both paradigms and postulate criteria that are necessary
for orchestration in nomadic networks.

2.1 Workflows and Orchestration

The term orchestration is used to designate the automated coordination and manage-
ment of services, middleware and computer systems. Orchestration is employed in a
wide range of domains, like service-oriented architectures, web services, and virtuali-
sation.

13

2 Orchestration in Nomadic Networks

2.1.1 Service Orchestration

A service-oriented architecture (SOA) enables the integration of several heterogeneous
applications in a network [PG03]. These applications provide their functionality as ser-
vices to other applications. Service-oriented architectures organise and utilise services
in a way that promotes the visibility of services, the interaction with services, and
the effects of services [MLM+06]. The services within a service-oriented architecture
are loosely coupled, and the interaction between services is typically described using
explicit service orchestrations.

Web services are commonly used to provide the functionality of the applications
in a SOA to other applications and clients [ACKM04]. A web service is defined as
“a software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format (specif-
ically WSDL [CCMW01]). Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages [NMM+03], typically conveyed us-
ing HTTP with an XML serialization in conjunction with other Web-related standards.”
[HB04].

Communication in heterogeneous environments like the internet is made possible as
these web services use open standards, platforms and software-independent technolo-
gies. These web service technologies ensure that services and clients are not tightly
coupled, and hence enable a volatile integration. The fact that web services allow the
interaction between heterogeneous software systems in a network leads to the devel-
opment of programs that compose several web services to provide some new function-
ality. This composition of web services is called web service orchestration. Service
orchestration is defined by Peltz [Pel03] as “a business process that interacts with
both internal and external web services”.

The orchestration of the different (web) services of a SOA can be specified using a
(web) service orchestration language, such as WS-BPEL [JE+07], which is built upon
the principles of workflow languages. Workflow languages allow the specification of
the different activities that must be executed, and have a focus on control flow, data
flow and exception handling. In the remainder of this section we describe workflow
languages and introduce the terminology related to the workflow paradigm.

2.1.2 Workflows

Workflow management was introduced to model and control the execution of business
processes, where the workflow describes those aspects of a process that are relevant
to controlling and coordinating the execution of its tasks [GHS95, WV98]. According
to the Workflow Management Coalition a workflow is “the computerised facilitation

14

2.1 Workflows and Orchestration

or automation of a business process, in whole or part” [Hol95]. A workflow manage-
ment system is defined as “a system that completely defines, manages and executes
workflows through the execution of software whose order of execution is driven by a
computer representation of the workflow logic” [Hol95].

We introduce an “order fulfilment” process [Obj12], which we use to explain the
most relevant concepts of workflows. The order fulfilment process starts when an or-
der message has been received. When the process is started, it first verifies whether the
ordered article is available in stock or not. When the article is available, it is shipped
towards the customer and a financial settlement is performed. In case the ordered ar-
ticle cannot be found in stock, the customer must be informed either that the delivery
will be later, or that the article cannot be delivered. When the article is undeliverable, it
must also be removed from the catalogue. This process is modelled using the Business
Process Model and Notation (BPMN), as can be seen in Figure 2.1.

Workflow languages aim at capturing workflow-relevant information of application
processes with the objective at their controlled execution by a workflow management
system [GHS95]. Workflow languages are used to describe the particular tasks (called
activities) that need to be executed and also specify the order in which these tasks need
to be performed (i.e., sequential, in parallel, etc.). An activity is the description of a
piece of work that needs to be performed. Activities are classified as either an atomic
task or as a sub process. An atomic task represents a single unit of work that cannot
be broken down to a smaller task. A sub process, on the other hand, has its own start
and end event, and consist of several task that are composed into a larger activity. In
BPMN, an activity is represented with a rounded-corner rectangle and describes the
kind of work which must be done. In the example workflow depicted in Figure 2.1,
“Check availability” and “Inform customer” are examples of activities.

The specification of the order in which activities need to be executed is referred to
as the control flow perspective of the workflow. van der Aalst [vtea12] defines five
kinds of perspectives that need to be supported by a workflow management system.
Besides the control flow perspective, a workflow language should also support the
data flow, resource, exception handling, and presentation perspective. The Workflow
Pattern Initiative [vtea12] provides a description of several patterns sculpted for each
of those perspectives and examines existing workflow languages with respect to the
proposed pattern abstractions.

15

2 Orchestration in Nomadic Networks

Ch
ec

k
av

ai
la

bi
lity

Sh
ip

 a
rti

cle

Pr
oc

ur
em

en
t

Fi
na

nc
ia

l
se

ttl
em

en
t

In
fo

rm
 c

us
to

m
er

Re
m

ov
e

ar
tic

le

fro
m

 c
at

al
og

ue

In
fo

rm
 c

us
to

m
er

+

+
O

rd
er

re
ce

ive
d

Ar
tic

le

av
ai

la
bl

e
ye

s

no

Un
de

liv
er

ab
le

La
te

de
liv

er
y

Cu
st

om
er

in
fo

rm
ed

Pa
ym

en
t

re
ce

ive
d

Ar
tic

le
re

m
ov

ed

LE
G
EN
D

st
ar

t e
ve

nt

en
d

ev
en

t

in
te

rm
ed

ia
te

 e
ve

nt

er
ro

r (
ca

tc
hi

ng
)

es
ca

la
tio

n
(n

on
-in

te
rru

pt
in

g)

m
es

sa
ge

 (c
at

ch
in

g)

Ta
sk

 n
am

e

+

Su
b-

pr
oc

es
s

na
m

e

ta
sk

 (a
to

m
ic)

co
lla

ps
ed

su
b-

pr
oc

es
s

ga
te

wa
y

(e
xc

lu
siv

e)

ex
ce

pt
io

n
flo

w

no
rm

al
 fl

ow

Figure 2.1: Example “order fulfilment” workflow [Obj12] (expressed using BPMN [Obj11]).

16

2.1 Workflows and Orchestration

We now explain the difference between the five proposed perspectives of the Work-
flow Pattern Initiative [vtea12].

• control flow perspective van der Aalst defines 43 control flow patterns that
specify the control flow of the application, i.e., how different tasks constitut-
ing the process must be linked together. The proposed patterns are divided into
several categories, ranging from basic control flow patterns (like sequence, syn-
chronization) to more advanced patterns such as multiple instances and iteration
patterns.

In the “order fulfilment” process we can distinguish the following patterns:

– A sequence pattern is used to ensure that a task in the process is only en-
abled after the completion of the preceding task in the process. This pattern
is depicted using arrows between the activities in the workflow, denoting
the order in which these activities must be executed. In our workflow exam-
ple, the “Ship article” activity precedes the “Financial settlement” activity.

– An exclusive choice pattern models the divergence of a branch into two or
more branches. When the incoming branch is enabled, the thread of con-
trol is passed to only one of these outgoing branches, namely the branch
that is selected using a decision mechanism. This pattern is modelled us-
ing a gateway, which is represented with a diamond shape and determines
forking and merging of paths, depending on the expressed conditions. In
the example workflow depicted in Figure 2.1, an exclusive choice pattern is
used to ensure that the necessary tasks are executed, depending on whether
the article is available, or not.

• resource perspective This perspective focusses on resources, which are defined
as “entities that can perform a task” [RvtE05]. The patterns defined for the re-
source perspective are, for instance, concerned with the allocation of resources
for the tasks of a process.

The association of a task or sub process to a specific resource can be modelled
in BPMN using swim lanes. Just like data flow, this perspective is not explicitly
depicted in Figure 2.1.

• data flow perspective For the third perspective, Russell [RtEv05a] specifies
how information is passed, variables are scoped, etc. More specifically, patterns
concerning data visibility, data interaction, data transfer, and data-based rout-
ing are defined.

Although data flow is not explicitly depicted in Figure 2.1, data flow can be
modelled in BPMN as property attributes of a single task or a sub process.

17

2 Orchestration in Nomadic Networks

• exception handling perspective This perspective explores the different origins
of exceptions and the possible actions to handle occurred exceptions. Russell
[Rvt06] outlines four exception types, namely deadline expiry, resource unavail-
ability, external trigger, and constraint violation. For such exceptions three re-
covery strategies are defined: no action, rollback, and compensate.

In the example workflow, exceptional flow occurs outside the normal flow of the
process and is based upon an intermediate event attached to the boundary of an
activity. The arrow between the activities “Procurement” and “Inform customer”
is an example of such an exceptional flow where a compensation is specified for
an exception type.

• presentation perspective The last perspective is concerned with both the struc-
ture and representation of the process model. First of all, patterns are introduced
that reduce the complexity of the process model at the level of the abstract syntax
[LWM+11]. A second collection of patterns is proposed in order to change the
visual representation of a process model by modifications to its concrete syntax
[LtW+11].

We evaluate these perspectives with respect to orchestration in nomadic networks.
The control flow perspective decouples the application logic (i.e., the different tasks
that must be executed) from the control flow of the application. This way, the control
flow of the application is the centre of attention: not only the knowledge of the different
tasks that must be performed, but also the order in which these tasks must be executed.
Furthermore, the information that is passed between the tasks of the application is
controllable.

Moreover, identifying smaller units of work facilitates the recovery in case a failure
occurs, by compensating the effects caused by these smaller units. In order to allow
orchestration of services in a nomadic network, the exception handling perspective is
also relevant.

In contrast to the other perspectives, the resource perspective and the presentation
perspective is less relevant for the orchestration in nomadic networks. This dissertation
is mainly concentrated on the definition of abstractions that allow the orchestration
of services in a nomadic network. Since no visual representation is presented in this
dissertation, this perspective is, at the moment, less important.

18

2.1 Workflows and Orchestration

2.1.3 Terminology

The workflow community has made efforts to standardise the terminology in order to
prevent several terms being used for various concepts. In this dissertation, we mainly
use the terminology that was standardised by the Workflow Management Coalition
[The99]. In this section we list the terms most relevant to this dissertation.

• business process is defined as “a set of one or more linked procedures or ac-
tivities which collectively realise a business objective or policy goal, normally
within the context of an organisational structure defining functional roles and
relationships.”;

• workflow is “the automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to an-
other for action, according to a set of procedural rules.”;

• workflow management system is “a system that defines, creates and manages
the execution of workflows through the use of software, running on one or more
workflow engines, which is able to interpret the process definition, interact with
workflow participants and, where required, invoke the use of IT tools and appli-
cations.”;

• process is defined as “a formalised view of a business process, represented as a
coordinated (parallel and/or serial) set of process activities that are connected
in order to achieve a common goal.” We use the term application in the remain-
der of this dissertation to refer to a process as it is defined here;

• sub process is “a process that is enacted or called from another (initiating) pro-
cess (or sub process), and which forms part of the overall (initiating) process.”
In the remainder of this dissertation we use the term sub workflow to refer to a
sub process;

• activity, also known as task, is defined as “a description of a piece of work that
forms one logical step within a process”;

• instance is “the representation of a single enactment of a process (process in-
stance), or activity within a process (activity instance), including its associated
data. Each instance represents a separate thread of execution of the process or
activity, which may be controlled independently and will have its own internal
state and externally visible identity, which may be used as a handle, for example,
to record or retrieve audit data relating to the individual enactment.”;

19

2 Orchestration in Nomadic Networks

• workflow participant (also known as user) is defined as “a resource which
performs the work represented by a workflow activity instance”;

• process definition is specified as “the representation of a business process in a
form which supports automated manipulation, such as modelling, or enactment
by a workflow management system”;

• workflow engine is “a software service that provides the run time execution
environment for a process instance”.

2.2 Ambient-Oriented Programming

The research conducted in this dissertation is centred around the notion of a nomadic
network. Programming applications for nomadic networks is not trivial, as certain hard-
ware characteristics, like volatile connections, must be taken into account. Ambient-
oriented programming (AmOP) is a paradigm that takes these hardware characteristics
into consideration, making it suitable for programming peer-to-peer mobile applica-
tions. Peer-to-peer mobile applications are applications that enable point-to-point com-
munication without relying on a third party. Note however that the AmOP paradigm
does not require all applications to be peer-to-peer, it is also allowed to structure the
applications using the client-server pattern.

The ambient-oriented programming paradigm led to the development of program-
ming languages (like A M B I E N T TA L K/2 which we present in Chapter 3) that incor-
porate potential network failures in the heart of their computational model, enabling
the development of applications in mobile ad hoc networks [DVM+06]. Two hardware
characteristics are inherent to mobile ad hoc networks [VC08]:

• volatile connections (also known as intermittent connections [MCE02]) Due to
the limited communication range of the mobile devices in a mobile ad hoc net-
work, partial failures can occur. As devices can go out of range at any moment
in time, disconnections should be considered the rule rather than the exception.
Often, applications do not want to block communication when such a partial
failure occurs, but want to continue after the connection is re-established.

• zero infrastructure In mobile ad hoc networks there is often no infrastructure
available. In this type of distributed system, services must be dynamically dis-
covered in their environment. Hence, the location of a device has a significant
role.

20

2.2 Ambient-Oriented Programming

These hardware phenomena were used by Van Cutsem [VC08] to define criteria for
coordination abstractions in a mobile ad hoc networks. Because nomadic networks are
a special case of the more dynamic mobile ad hoc network, some of these criteria are
also relevant for our research. The criteria postulated by Van Cutsem can be divided
into three categories:

1. Decentralised discovery (criterion 1)
The first criterion tackles the fact that for mobile ad hoc networks, a central
lookup service is too restricted. First of all, a lookup service (or name server)
requires some form of infrastructure, which is often not available in a mobile
ad hoc network. Moreover, the network topology of a mobile ad hoc network
changes frequently as devices go in and out of range. This change is not re-
flected by a lookup service, which does not notify clients of any changes to a
registered service. Decentralised discovery is defined as “processes require a
decentralised service discovery protocol that enables them to autonomously act
upon the (un)availability of nearby services”.

2. Decoupled communication

• Decoupling in time (criterion 2): Van Cutsem argues that processes should
be able to express communication independently of their connectivity. The
decoupling in time criteria states that “communicating processes do not
necessarily need to be online at the same time”.

• Decoupling in space (criterion 3): A second communication-related cri-
terion is called decoupling in space. This criterion is concerned with the
fact that “communicating processes do not need to know each other before-
hand”. In mobile ad hoc networks it is not opportune to have knowledge
about the exact address or location of all processes with which communi-
cation will take place.

• Synchronisation decoupling (criterion 4): In mobile ad hoc networks
processes should not be blocked when information is requested from other
services. By letting processes be responsive to other events while waiting
for such information, an application does not remain unresponsive for a
considerable time period. This criterion is known as synchronisation decou-
pling which indicates that “the control flow of communicating processes is
not blocked upon sending or receiving”.

• Arity decoupling (criterion 5): A last communication-related criterion is
concerned with the number of processes communicated with. Van Cutsem
argues that in mobile ad hoc networks “processes do not necessarily need
to know the total number of processes communicated with”.

21

2 Orchestration in Nomadic Networks

3. Connection-independent failure handling (criterion 6)
In mobile ad hoc networks, which are liable to volatile connections, transient
failures happen frequently. As we already mentioned, it is often useful to re-
sume computation after the connection is reestablished. Therefore, Van Cutsem
[VC08] argues that network failures should be considered as an ordinary event
instead of a failure event. That way, transient failures can be abstracted, and fail-
ure handling becomes more robust, because failure handling code can equally be
triggered even if there is no physical network failure. However, Van Cutsem de-
clares that abstractions to handle connection-dependent failures are opportune,
as the information about the underlying network connection is often useful. The
last criterion for coordination in mobile ad hoc networks is therefore formulated
as “processes should be able to perform failure handling independent of any
network failures”.

Before we adapt these criteria for nomadic networks (see Section 2.3.3), we list the
terms that are most relevant to this dissertation.

2.2.1 Terminology

We now recapitulate the definitions of the terms that are used throughout the remainder
of this dissertation.

• mobile ad hoc network (MANET): “a transitory association of mobile nodes
which do not depend upon any fixed support infrastructure” [MRV98];

• nomadic network: “a network consisting of both mobile devices and fixed sup-
port infrastructure”;

• time decoupling: “communicating processes do not necessarily need to be on-
line at the same time”;

• space decoupling: “communicating processes do not necessarily need to know
each other beforehand”;

• synchronisation decoupling: “the control flow of communicating processes is
not blocked upon sending or receiving”;

• arity decoupling: “processes do not necessarily need to know the total number
of processes communicated with”.

22

2.3 Orchestration in Nomadic Networks

2.3 Orchestration in Nomadic Networks

Based upon the characteristics of programming languages implementing either the
workflow paradigm or the ambient-oriented programming paradigm, we postulate cri-
teria for orchestration in nomadic networks. Before describing these criteria, we give
three examples of nomadic applications that are used throughout the remainder of this
dissertation, and we present our definition for orchestration in a nomadic network.

2.3.1 Scenarios of Nomadic Applications

In Section 1.2 we described the characteristics of nomadic applications. These appli-
cations are deployed and executed on the fixed infrastructure of a nomadic network
and communicate with services that are residing in the network. These services can be
either located on stationary or mobile devices. Recall that services can be either known
beforehand, when they are part of the infrastructure, or can be unknown a priori.

We present three examples of such nomadic applications. The first application, called
iMPASSE, focusses on the orchestration of services, the second application, SURA is
targeted towards the orchestration of a group of services, and the third application
(SWOOP) is more concentrated on the handling of failures during orchestration in a
nomadic network.

Application with focus on Service Orchestration

The infrastructure of the Brussels National Airport is equipped with several applica-
tions to assist its personnel. iMPASSE (the Missing Person ASSistancE application) is
an application which implements the necessary actions that must be performed when
a passenger is too late for boarding. Consider the following example scenario:

Peter lives in Brussels and wants to spend his holidays in New York city. His plane
leaves Brussels International Airport at 13:50 and he makes a transit at the airport of
Frankfurt. Ten minutes before boarding he has not yet entered the boarding area. At the
airport, Peter is announced as a missing passenger and a flight assistant is informed
to start looking for him. Peter is sent a reminder on his smartphone. After ten minutes,
the personnel responsible for boarding closes the gates and informs Aviapartner (the
company that takes care of the luggage) to remove Peter’s suitcase from the plane.
Brussels’ airport also ensures that the airport of Frankfurt is notified of the free seat,
so a last minute offer from Frankfurt to New York becomes available. Peter gets notified
that he can return home and catch another flight later.

23

2 Orchestration in Nomadic Networks

Application with focus on Group Orchestration

The second application, called SURA (the SURpise Act application) is more focussed
on group orchestration.

The headliner of a festival decides to surprise its fans with a special concert by
letting them vote for the songs that will be played. In order to accomplish this, the
festival’s infrastructure is used to communicate with the mobile phones of the fans who
are present in the festival area. All fans who are interested in participating in this vote
receive a list of the band’s discography. They are able to vote until two hours before the
band’s concert is scheduled. All votes that are cast afterwards are considered invalid.
As a special bonus, the voters have the benefit of receiving the band’s final playlist
before the start of the concert.

Application with focus on Failure Handling

The third application is an application used to help organising workshops at the uni-
versity. The application is called SWOOP (Student WOrkshOPs). During the National
Week of Science the university organises several workshops to get students from sec-
ondary school acquainted with their courses. Because the registered students are not
familiar with the university campus, students meet at the university’s welcome hall. Af-
terwards, student volunteers (i.e., students of the university) will guide groups of visit-
ing students to the place where the workshop they registered for takes place. In order
to help the organisation of this event, the university employs a dedicated application
that can communicate with the assistants that teach these workshops, the volunteering
students that guide students through the campus, and the students who registered for a
workshop.

The application sends a reminder to every assistant of a workshop, informing him/her
of the workshop’s location, and also contacts the administration desk to inquire for a
student volunteer that can guide the registered students of that assistant’s workshop.
All students that registered for that particular workshop receive a message, informing
them of the location of the workshop. When the administration desk has assigned a
student volunteer for a group of registered students, the volunteer is contacted with
the relevant information. Otherwise, the assistant of the workshop is contacted and
informed that he/she must go and fetch the students oneself.

Students from the secondary school are registered as a class, and the university only
has knowledge of the number of participants for each workshop. Therefore, the only
way to contact each individual student (for instance, to inform him/her about the work-
shop’s location) is by making use of the network connection in the welcome hall. When

24

2.3 Orchestration in Nomadic Networks

students enter the university’s welcome hall, they receive a request to download a ser-
vice on their mobile device, such that the application can interact with them.

This set up is dominated by volatile connections, and, therefore, the nomadic appli-
cation must deal with network failures that can occur. First of all, when the assistant
of a workshop cannot be contacted (for example, because his/her mobile device is
not in communication range), he/she can be contacted via email. This is not possible
for the visiting students, since the university does not have contact information of an
individual student. Therefore, when a particular student cannot be contacted, an an-
nouncement is made (once) informing the students of that workshop.

2.3.2 Definitions

In Section 2.1.1 we used Peltz’ definition of service orchestration, which is defined as
“a business process that interacts with both internal and external web services” [Pel03].
In this section we introduce a new definition for service orchestration, which is more
applicable for orchestration in nomadic networks. Not only does this new definition
consider orchestration of non-web services, the definition also incorporates the neces-
sity for failure handling. We use the following definition for service orchestration:

Definition 1. Service orchestration in a nomadic network is a process (or applica-
tion) of which the description comprises the order in which services must be invoked,
as well as a description of the data that must be available throughout the execution of
the process. During the execution of a particular process, both transient and perma-
nent (network) failures must be dealt with. Default recovery strategies must be at hand
since nomadic networks are liable to volatile connections, and hence, network failures
happen frequently. The specification of more accurate recovery strategies for detected
failures must also be permitted.

Besides service orchestration, we also want to orchestrate groups of services, for
instance, interact with the mobile devices of all patients at a hospital. Existing ap-
proaches that interact with a group of services can be either classified in the domain of
group communication or group behaviour. Group communication [LEH04] addresses
technologies that enable effective communication between various groups in the net-
work, using, for instance, multicasting. Group behaviour [GR06] is the capability of
services to coordinate with each other. In order to coordinate a group of services, the
dependencies between the members of the group must be managed in order to let them
collaborate.

25

2 Orchestration in Nomadic Networks

We define group orchestration in a nomadic network as follows:

Definition 2. Group orchestration in a nomadic network is the management of a set
of services that form a logical group where all its members execute the same process.
The execution of the group members must be controllable in a way that transcends the
individual process. Group orchestration should be able to deal with both the volun-
tary and involuntary removal and addition of group members. It is also essential that
there are ways to synchronise and streamline the execution process of several group
members.

Group orchestration varies from group communication which is only concerned
about the low-level protocols that can be used for the underlying communication.
Group orchestration also differs from group behaviour. Even though group behaviour
also needs to take the necessary precautions to handle unforeseen network failures, it
focusses on the collaboration between the group members unlike group orchestration
which aims at the management of the execution of a process by all the members of the
group.

Finally, we define orchestration in a nomadic network as:

Definition 3. Orchestration in a nomadic network is the combination of both service
orchestration and group orchestration.

In the remainder of this section we present the different criteria orchestration must
fulfil. These criteria can be divided into three main categories, namely “service or-
chestration” (discussed in Section 2.3.3), “group orchestration” (Section 2.3.4), and
“failure handling” (Section 2.3.5).

2.3.3 Criteria for Service Orchestration

In this section we postulate criteria that are concerned with the orchestration of ser-
vices.

1. Decoupled Communication
Processes must abstract from the intermittent connectivity of the underlying net-
work. This criteria consists of three of Van Cutsem’s criteria (we discussed in
Section 2.2):

• Time decoupling (criterion 1): It is not necessary that the fixed infras-
tructure of the nomadic networks and the services that are used to interact
with are online at the same time. It is possible that once a service is in-
voked, the service disconnects and performs its computation offline. Upon

26

2.3 Orchestration in Nomadic Networks

reconnection, the result of the service invocation can be sent to the fixed
infrastructure.

Consider the scenario at the airport. When a message is sent to the missing
passenger, it is not required that his device is online at the moment the
message is being sent. The message is stored and once the device connects,
it is sent to the passenger.

• Space decoupling (criterion 2): It is not necessary for the fixed infrastruc-
ture to know all services a priori. As we already mentioned in Section 1.2,
three types of services can be distinguished in a nomadic network: station-
ary services, registered services and user services. The first two categories
of services are typically known beforehand because they are part of the
infrastructure. The latter category, the user services, are not known in ad-
vance.

In the airport scenario, the iMPASSE application does not know the pas-
senger that will be contacted ahead of time.

• Synchronisation decoupling (criterion 3): Not having access to a remote
service should be considered the default in a nomadic network. Nomadic
applications, and the services that are used to execute certain tasks, should
not remain unresponsive for a considerable amount of time, for instance,
when a service is (temporarily) unavailable.

For example, in the iMPASSE application, the application can only com-
municate with the services that are nearby (such as the service running on
the smartphone of the flight assistant). In the SURA application it is pos-
sible that a fan who is exchanging his/her votes can leave the festival area
and only come back after hours. For both examples we do not want the
application and the services to remain unresponsive for a large amount of
time.

2. Explicit Control Flow (criterion 4)
There should be a focus on the control flow of the process, i.e., which tasks
must be executed in which order. Identifying these different units of work eases
the compensation of possible failures of these tasks, as we discuss in the third
category of criteria (see Section 2.3.5). Since the focus of nomadic applications
is the orchestration of its services, explicit control flow is crucial during the
development and maintenance of said applications.

For example, in the iMPASSE application, three tasks needs to be executed in
parallel, namely sending a reminder to the passenger, notifying the assistance
personnel, and announcing the missing passenger.

27

2 Orchestration in Nomadic Networks

2.3.4 Criteria for Group Orchestration

The criteria for group orchestration in a mobile environment can be divided into two
categories, namely “definition of group membership”, and “synchronisation mecha-
nisms”.

1. Definition of Group Membership

• Intensional definition (criterion 5): Users should be able to define pro-
cesses that are executed by a set of services that form a logical group. This
group can be either defined extensionally, by enumerating all its members,
or intensionally by giving a description all members must fulfil.

In the SURA application the services that are contacted are not known a
priori, and, hence, cannot be described extensionally. The group is defined
intensionally, namely all fans of the headliner who are located in the festi-
val area.

• Arity decoupling (criterion 6): First of all, users want to orchestrate a
group of services as if they are one single unit. Moreover, as we are tar-
geting mobile environments, this quantity of group members can fluctuate
over time as new services join and disjoin the group. This requirement is
known in existing literature as the need for encapsulating plurality [BI93]
or arity decoupling [VC08].

As we show in the festival scenario, the members of the group are not
known a priori and can change over time. For instance, fans can arrive at
the festival area at a later point in time than other fans who were there
earlier and who have already received the request to vote. Those fans that
arrive later will also receive the request to participate in the voting process.

• Dynamic modification (criterion 7): During the execution of the group it
should be possible to redefine the members of this group. It should be fea-
sible to restrict the members of the group by filtering out members based
on a certain condition and also to change the group’s description causing
the arity of the group to change.

In the SURA example, the group initially consists of all fans of the head-
liner. Later on, only those fans who are interested in voting are being ad-
dressed. So, in this case, the number of fans that are addressed is (possibly)
decreased.

28

2.3 Orchestration in Nomadic Networks

2. Synchronisation Mechanisms (criterion 8)
In order to streamline all executing processes of the group members, the execu-
tion of the process’s tasks should be controlled. For example, it should be man-
aged and controlled which services can perform a certain task at a particular time.
Moreover, the number of times a specific task is executed and the data needed
during this execution should be controllable. Synchronisation mechanisms can
let processes wait, redirect and even abort in order to let given criteria persist.
This way, synchronisation mechanisms influence the amount of members of the
group.

In the festival scenario, all results need to be gathered two hours before the
headliner’s concert is going to start. This task should only be performed by a
single service at a specific point in time. Therefore, all data needs to be collected
before the execution of that task can start.

2.3.5 Criteria for Failure Handling

The last category of criteria for orchestration is called “failure handling”. These criteria
have an influence on both service orchestration and group orchestration.

1. Automatic Failure Handling (criterion 9)
In a dynamically changing environment, the challenge is to make the large het-
erogeneity of services co-operate and deal with their transient and permanent
failures. Services residing on mobile devices are exposed to (temporary) net-
work failures, which must be considered the rule rather than the exception. There
must be rich network and service failure detection, and a default failure handling
mechanism through compensating actions, for example, transparently rediscov-
ering a service of the same type.

In the iMPASSE scenario, a default compensating action is executed in case a
failure occurs: when a message is not received by the assistant, the message is
resent (he/she is reminded again to look for the passenger).

2. Explicit Failure Handling (criterion 10)
Besides automatic failure handling, the programmer must also have the possibil-
ity to specify compensating actions to overcome specific failures. Hence, it must
be possible to formulate different compensation strategies on different levels of
granularity by overriding and/or extending the default behaviour.

For the SWOOP application, the default compensating action that retries to exe-
cute the task that failed is overridden. When an assistant of a workshop cannot

29

2 Orchestration in Nomadic Networks

be contacted, because he is not in communication range, an email is sent to that
person.

3. Failure Handling for Group Orchestration

• Individual failure handling (criterion 11): As mobile environments are
liable to volatile connections, ways to detect and handle failures must be
available. First of all, it should be possible to react upon a failure that
occurs during the individual process execution of a single member of the
group.

For the festival application the following rule applies: in case a failure
occurs within an individual process execution of a single fan, there should
be a compensating action that tries to re-execute the process (for instance,
resending the message).

• Failure handling for groups (criterion 12): There must be mechanisms to
detect and handle failures at the group level and even propagate individual
failures to the group level.

At the festival, when something goes wrong when the votes of all fans are
being gathered, the compensation should apply for all fans, hence the en-
tire group’s execution. A possible compensating action could be to ask all
fans to cast their votes again. In the SWOOP application, the disconnec-
tion of the mobile device of one visiting student is handled by making an
announcement. Note that this compensation is only executed once, namely
the first time a disconnection occurs for a student of a particular workshop.

Here we presented the first contribution of this dissertation where we extracted crite-
ria out of three representative nomadic applications. These criteria are divided in three
categories, namely service orchestration, group orchestration, and failure handling.

2.4 Conclusion

In this chapter we presented the context of this dissertation, which is supported by both
the workflow and the ambient-oriented programming paradigm. First, we introduced
the main concepts of the workflow paradigm and explained how principles from this
paradigm can be used for service orchestration. Secondly, we described three nomadic
applications that are used throughout the remainder of this dissertation. Thirdly, we
presented a definition for orchestration in nomadic networks and postulated twelve
criteria we argue are necessary to allow the orchestration of services in such a network.

30

3
A M B I E N T- O R I E N T E D P RO G R A M M I N G I N A M B I E N T TA L K

The ambient-oriented programming paradigm is one of the pillars upon which the re-
search of this dissertation is built. In this chapter we describe the ambient-oriented pro-
gramming language, called A M B I E N T TA L K/2, which is a concrete implementation
of this paradigm. This programming language is the successor of A M B I E N T TA L K

[Ded06] which was introduced to meet the hardware characteristics of mobile ad hoc
networks that we discussed in Chapter 2. In this chapter we focus on A M B I E N T -
TA L K/2, an updated version of the language as it is introduced by Dedecker et al.
[DVM+06]. From now on we use the name A M B I E N T TA L K to refer to the updated
language because it replaces its predecessor while staying true to its fundamental char-
acteristics.

In this chapter we present features of A M B I E N T TA L K that are necessary to under-
stand the implementation details we show in subsequent chapters of this dissertation.
The reason why a dedicated chapter on A M B I E N T TA L K is introduced is threefold:

• The nomadic workflow language NOW is built on top of A M B I E N T TA L K.
In order to understand the implementation details of the workflow language, an
introduction to A M B I E N T TA L K and its language features is necessary.

• A M B I E N T TA L K is a language targeted towards mobile ad hoc networks. As
nomadic networks can be seen as a special case of MANETs, the programming
language is also part of the related work of this dissertation.

• Part of the motivation for our nomadic workflow language NOW is rooted in
the difference between MANETs and nomadic networks. We discuss some draw-
backs of A M B I E N T TA L K, namely the lack of dedicated abstractions for coor-
dination.

31

3 Ambient-oriented Programming

3.1 Ambient-Oriented Programming

In Chapter 2 we introduced the ambient-oriented programming paradigm [Ded06].
This paradigm is motivated by the hardware phenomena that are inherent to MANETs,
namely volatile connections, and zero infrastructure. Every application deployed for a
mobile ad hoc network should deal with these hardware phenomena:

• volatile connections The phenomenon of connection volatility is also relevant
for nomadic networks, as during the execution of the application, the backbone
of the networks need to communicate with mobile devices in the neighbourhood.

• zero infrastructure This phenomenon can be neglected, as we are targeting a
special case of MANET, namely a nomadic network that does consist of a fixed
infrastructure.

In his dissertation, Dedecker [Ded06] put forward criteria for the ambient-oriented
programming paradigm which are aimed to come to grips with these hardware phe-
nomena. The language characteristics that Dedecker defined are [DVM+06]:

• Classless object models: Ambient-oriented programming languages preferably
disallow the use of classes, as known in class-based languages like JAVA. In
class-based languages, classes need to be copied when an object is moved from
one device to another. This way, a single class can become duplicated between
several devices in the network. As devices can go out of communication range
at any moment in time, synchronisation between all versions of the single class
becomes impossible. Ambient-oriented programming languages require that ob-
jects are self-descriptive such that no shared identity needs to be copied. Class-
less objects models are categorised under prototype based languages.

• Non-blocking communication primitives: Ambient-oriented programming lan-
guages require that the primitives for sending and receiving messages are non-
blocking. The execution thread should not block when no immediate response
is received. This characteristic is opportune in mobile ad hoc networks, where
communicating parties can often become temporary unavailable and delays are
not acceptable.

• Reified communication traces: Ensuring that communication primitives are
non-blocking, allows devices to be out of sync while communicating. However,
synchronisation is needed in order to prevent the communicating parties to be in
an inconsistent state. Therefore, ambient-oriented programming languages best
provide an explicit representation (a reification) of the communication that has
happened.

32

3.2 AmbientTalk

• Ambient acquaintance management: Ambient-oriented applications are based
upon distributed naming [Gel85]. Distributed naming implies that communicat-
ing parties do not need to have an explicit reference to one another a priori.
In mobile ad hoc networks where devices can join and disjoin at any moment
in time, this is a desired property. An ambient-oriented programming language
should allow objects to spontaneously become aware of previously unknown
objects based on an intensional description of that object.

In the remainder of this section we discuss A M B I E N T TA L K, an ambient-oriented
programming language that fulfils the above language characteristics.

3.2 A M B I E N T TA L K

In this section we present a concrete implementation of the ambient-oriented program-
ming paradigm, namely the A M B I E N T TA L K programming language in which we
carried out our work. This chapter describes the language features that are necessary
to understand the remainder of this dissertation. It is a shortened and reworked expla-
nation of the language [VC08].

A M B I E N T TA L K is an object-oriented distributed programming language specifi-
cally aimed at mobile ad hoc networks. The programming language is implemented as
an interpreter on top of JAVA. A symbiotic relationship exists between A M B I E N T -
TA L K and JAVA, meaning that A M B I E N T TA L K can use the class libraries from
JAVA and A M B I E N T TA L K objects can be accessed from within JAVA. Although
the language is implemented on top of JAVA, A M B I E N T TA L K deals with concur-
rency and network programming in a very different way. JAVA is a multi-threaded
language which has a low-level socket API and a high-level RPC API (JAVA RMI).
In contrast, A M B I E N T TA L K is a fully event-driven programming language which
provides both event-loop concurrency and distributed object communication.

A M B I E N T TA L K offers direct support for the different characteristics of the ambient-
oriented programming paradigm [DVM+05]:

• In a mobile ad hoc network, objects must be able to discover one another without
any infrastructure (such as a shared naming registry). Therefore, A M B I E N T -
TA L K has a discovery engine that allows objects to discover one another in a
peer-to-peer manner.

• In a mobile ad hoc network, objects may frequently disconnect and reconnect.
Therefore, A M B I E N T TA L K provides fault-tolerant asynchronous message pass-
ing between objects: if a message is sent to a disconnected object, the message
is buffered so it can be resent when the object reconnects.

33

3 Ambient-oriented Programming

In the following sections we describe the language’s object model, its ability for
meta-programming and reflection, and both its concurrent and distributed program-
ming model. Before concluding this chapter, we discuss A M B I E N T TA L K’s lack of
abstractions for orchestration.

3.3 Object-Oriented Programming in A M B I E N T TA L K

Although A M B I E N T TA L K’s main focus is its distribution model which allows the
language to function in a mobile ad hoc network with unreliable connections, A M B I E N T -
TA L K is also an object-oriented programming language. A M B I E N T TA L K is a dy-
namically typed object-oriented programming language where communication between
objects happens through message sends. Based upon SELF’s notion of a prototype
[UCCH91], A M B I E N T TA L K has a class-less model where objects can be either cre-
ated ex nihilo or by cloning an existing object.

Listing 3.1 shows the definition of an object ex-nihilo. The following naming con-
vention is used throughout the remainder of this chapter:

• An upper case is used for unique prototype objects that are only used to instan-
tiate other objects.

• A lower case is used for objects that can have multiple versions.

1 def Personnel := object: {
2 def name := "";
3 def personnelNbr := 0;
4 def role := "Personnel";
5 def seniority := 0;
6
7 def init(aName, aNbr, aRole, aSeniority) {
8 name := aName;
9 personnelNbr := aNbr;

10 role := aRole;
11 seniority := aSeniority;
12 };
13
14 def calculateSalary(salaryMapping) {
15 /* salaryMapping is a data structure mapping factors to roles. */
16 def factor := salaryMapping.get(role);
17 seniority * factor;
18 };
19 };

Listing 3.1: A M B I E N T TA L K: Definition of an object ex-nihilo.

In Listing 3.1 a new object, called Personnel, is defined ex-nihilo. The object:
keyword that is used for the creation of a new object takes as its argument a clo-
sure, which is used to instantiate the object. An A M B I E N T TA L K object consists

34

3.3 Object-Oriented Programming in AmbientTalk

of fields, that represent the object’s state, and methods representing the behaviour
of that object. In the example above, four fields (lines 2-5) and two methods (lines
7-12, 14-18) are present. In A M B I E N T TA L K the keyword def is used to asso-
ciate values with variables by using the following syntax: def variable :=
value.

As we already mentioned, objects can also be created by cloning and adapting
an existing object.

def assistant := Personnel.new("Alice", 151, "flight assistant", 17);

In the above code snippet a new object is instantiated by cloning the existing
prototype Personnel. Every object understands the new method which makes
a shallow copy (i.e., a clone) of the receiver object and initialises the clone
(assistant in our example) by invoking its init method with the arguments
that were passed (in the example "Alice", 151, "flight assistant", and
17).

A M B I E N T TA L K also allows taking a clone without calling the init method.
This can be realised using the clone: keyword, as is shown in the following
code snippet.

def assistant := clone: Personnel;

3.3.1 Delegation

A M B I E N T TA L K features delegation in order to allow code reuse. An object can
be created by extending an existing (parent) object, as is shown in the following
code snippet.

def FlightPersonnel := extend: Personnel with: {
def flightNbr := 0;

};

The extend: with: construct that is used on the first line of the example,
is used to create a new object with a super field set to the given parent object
(Personnel in our example). In A M B I E N T TA L K, messages that objects do not
understand are delegated to the object stored in their super field. In the example
above, any message that FlightPersonnel does not understand is delegated
to the Personnel object. For objects that are created ex-nihilo, the super field
is by default set to nil. It is important to note that in the example above both
Personnel and FlightPersonnel remain separate objects. The extend:
with: construct is used to define a relationship between a parent and a child, and
when the child is cloned, the cloned object’s super field is bound to a clone of the

35

3 Ambient-oriented Programming

parent bound in the super field. So, concretely, when the FlightPersonnel
object is cloned, that cloned object has its own Personnel object bound to its
super field, with its own fields (such as name and personnelNbr).

3.3.2 Scoping

A M B I E N T TA L K makes the distinction between two kinds of scope, namely lexical
scope and object scope. Lexical scope is the set of all variables that are lexically
visible in the program text: all variables in an enclosing scope are part of the
lexical scope of the enclosed (nested) scope. The object scope is introduced to
define the scope in which methods and fields of an object are looked up. This
scope constitutes a chain of delegation: the object scope is defined as all variables
of the object extended with those of its parent object (the object referenced by the
object’s super field). A M B I E N T TA L K defines two rules which determine the kind
of scoping that should be applied:

1. Unqualified access to a variable (or a method invocation) is always resolved
in the lexical scope. For instance, x and f() is resolved in the lexical scope.

2. Qualified access to a variable (or a method invocation) is always resolved
in the object scope. Hence, obj.x and obj.f() is resolved in the scope
consisting of all variables of obj and its parent object.

The lexical scoping can be determined statically whereas the object scope is subject
to late binding. The way in which fields of an object can be accessed varies
depending on the interaction between object inheritance (delegation) and the object
scope. Consider the following code example:

def Personnel := object: {
def role := "Personnel";

def getStaticRole() { role; };

def getDynamicRole() { self.role; };
};

In the code snippet above, two different accessor functions are defined to access
the object’s role field. The first accessor function performs an unqualified ac-
cess and applies lexical scoping, whereas the second one is a qualified accessor
function, resulting in looking up the variable role in the object scope. The get-
DynamicRole accesses the field through a self-send. As we already mentioned,
A M B I E N T TA L K uses super to indicate the parent object. Self is used to indicate
the receiver object. In contrast to super, self is a pseudo-variable, not a variable

36

3.3 Object-Oriented Programming in AmbientTalk

that can be assigned to. In the above example, both accessors will give the same
result.

When we extend this example with delegation, the difference between the two
accessor functions becomes clear.

def FlightPersonnel := extend: Personnel with: {
def role := "FlightPersonnel";

};

When we now invoke FlightPersonnel.getStaticRole() the result will
still equal "Personnel". On the other hand, the invocation of FlightPer-
sonnel.getDynamicRole() will result in "FlightPersonnel".

3.3.3 Encapsulation

All fields and methods in A M B I E N T TA L K are considered public, however through
lexical scoping it is possible to make a field or method private to a scope. The
code in Listing 3.2 shows the definition of an object inside a function definition.
A function in A M B I E N T TA L K is defined using the keyword def and has the
following syntax def functionName(<arglist>) { <body> }. The ar-
glist is a list of local variables which are evaluated in an applicative order (i.e.,
the arguments are evaluated one by one, from left to right).

The fields and methods of the object that is defined inside a function definition
are still public, and in addition the object can make use of fields and methods that
are lexically visible. In this example, the object uses the age field from the outer
function personnel.

1 def personnel(age) {
2 object: {
3 def personnelNbr := 0;
4 def seniority := 0;
5 ...
6
7 def ageHired() {
8 age - seniority;
9 };

10 };
11 };

Listing 3.2: A M B I E N T TA L K: Encapsulation.

37

3 Ambient-oriented Programming

3.4 Concurrent Programming in A M B I E N T TA L K

A M B I E N T TA L K uses the actor model to support concurrency [Agh86]. The ac-
tor model A M B I E N T TA L K exploits is based upon the programming language E’s
communicating event loops [MTS05]. This model differs from the traditional actor
model that was proposed by Agha [Agh86], as E’s model has a unified concur-
rency model that consists of both actors and objects. The E language introduces
the notion of a vat, which is a container of regular objects. Inside such a sin-
gle vat computation happens sequentially. Each vat has an event loop, a thread
of execution that processes events from an event queue. Processing these events
is realised by invoking its corresponding event handler. Vats can communicate by
exchanging messages between their event loops. In the remainder of this chapter
we use the term actor to denote a single unit of concurrency, and this terminology
is interchangeable with the terms event loop and vat.

A single A M B I E N T TA L K virtual machine can host multiple actors that run
concurrently. Every actor is represented as an event loop and the concurrency
mechanism of A M B I E N T TA L K is based on the notion of communicating event
loops. An actor consists of a message queue, a thread to process incoming mes-
sages, and a collection of objects that are hosted by that actor, as can be seen in
Figure 3.1. The dotted lines in the figure represent the actor’s event loop thread
which takes messages from its message queue and synchronously executes the
corresponding methods on the actor’s hosted objects.

Actor

object
object object

message queue

event
loop

Figure 3.1: A M B I E N T TA L K actor.

When an actor is created, it initially hosts a single object, which is called the
actor’s behaviour. An actor can be created using the actor: keyword, as can be
seen in the following code snippet.

38

3.4 Concurrent Programming in AmbientTalk

actor: {
def name = "Brussels National Airport";

def print() { system.println(name); };
};

Actors are created in a similar way objects are created, they are also instantiated
using a closure. Like objects, actors can also be nested, although there are some
restrictions concerning access to the enclosing lexical scope. In order to disable
race conditions, actors are not allowed to directly access the enclosing lexical scope.
Once an actor is created, the creating actor and the created actor run in parallel, and
the creating actor retrieves a so-called far reference to the newly created actor. A far
reference is an object reference that crosses actor boundaries in A M B I E N T TA L K.
As we discuss in Section 3.5, far references may refer to remote object references.
The difference between a regular object reference and a far reference is the fact
that for the former synchronous access is possible while for the latter access is
necessarily asynchronous. Figure 3.2 shows the concurrency model employed by
A M B I E N T TA L K, where an actor is represented as a communicating event loop.

Actor Actor

A

B

message from A to B

event loop

LEGEND

synchronous communication

asynchronous communication

object

message queue

message

Figure 3.2: Concurrency model of A M B I E N T TA L K.

In figure 3.2 two actors that run parallel are depicted. As we can see, the
message queue from the second actor contains a message that has been sent from
A to B. This is an example of a message that is asynchronously sent via a far
reference to an object that is located in another actor. Such an asynchronous

39

3 Ambient-oriented Programming

message sent via a far reference also results in a new message being added to the
receiving actor’s message queue.

3.4.1 Asynchronous Message Sending

Asynchronous message sending, denoted as obj<-m(), does not return any value
by default.1 As we already mentioned, method invocations on a far reference must
be accomplished through asynchronous message sends. When such an asynchronous
message is being sent, its parameters are either passed by copy or by far reference:

• Native data types are passed by copy.
• Objects and closures are always passed by far reference.

3.4.2 Isolates

Because objects are passed by far reference, the recipient actor needs to access the
object asynchronously and needs to perform inter-actor communication. In order
to allow the recipient actor to operate on a copy of the object synchronously,
A M B I E N T TA L K introduces the notion of isolates. An isolate is an object that is
isolated from its surrounding lexical scope and is passed by copy. Isolates differ
from regular objects in three ways:

• Isolates have no access to their surrounding lexical scope.
• Isolates are passed by copy.
• External method definition on isolates is not allowed.

Isolates are created similarly to objects, only now the keyword isolate: should
be used instead of object:.

3.4.3 Futures

As stated before, asynchronous message sends do not return any value by de-
fault. In order to enable computation with the actual return value of such sends,
A M B I E N T TA L K uses so-called futures. A future is a place-holder object for the
actual return value. When an asynchronous invocation is completed, the future is
replaced with the actual return value. We say that the future is resolved with that
value. Every object that refers to the future will transparently refer to the actual
return value once the future is resolved.

Objects are only allowed to send asynchronous messages to futures. In case the
future is not resolved yet, these message sends are buffered. When the future is

1An asynchronous message send returns nil.

40

3.5 Distributed Programming in AmbientTalk

eventually resolved, these buffered messages are asynchronously forwarded to the
actual return value of the original message send. Actors can register their interest in
the resolved value of a future by registering an observer that is invoked later, when
the future is resolved. These observers allow other operations than asynchronous
message sends on a future. Once the future is resolved those registered observers
are asynchronously notified.

When a certain computation that relies on the actual return value of an asyn-
chronous message send needs to be executed, that computation awaits the future
being resolved. Consider the following example where all passengers of flight
"BA432" that have already checked in need to be contacted.

when: checkinService<-retrievePassengers("BA432") becomes: { |collection|
collection.each: { |passenger| ... /* contact passenger */ };

};

In the code snippet above the A M B I E N T TA L K when: becomes: event han-
dler is installed to await the actual return value of the retrievePassengers
message. All A M B I E N T TA L K event handlers are instantiated with a block closure,
which has the following syntax { |<parlist>| <body> }. If the block
closure does not require any parameters, the | <parlist> | can be omitted.

When the future is resolved, the actual return value (in this example a collection
containing all passengers) is bound to the variable collection. Only after the
future is resolved, the body of the block closure is executed. Note that inside the
body of this block closure, another block closure is used to iterate over all the
passengers in the collection.

3.5 Distributed Programming in A M B I E N T TA L K

In the previous section we presented A M B I E N T TA L K’s concurrency model which
is based upon the notion of event loop actors. By introducing far references, ac-
tors residing on a single device are able to communicate with each other. Recall
that references between objects that are owned by different actors are always far
references which only permit asynchronous access. In this section we discuss how
distributed programming in A M B I E N T TA L K can be realised, allowing communi-
cation between actors that are located on different devices. The objects that are
residing on different devices must be owned by different actors, that can communi-
cate with each other through far references. The use of far references to establish
inter-actor communication (between actors possibly residing on different devices)
guarantees that all distributed communication is asynchronous.

41

3 Ambient-oriented Programming

Distributed programming is subject to partial failures. We give an overview of
A M B I E N T TA L K’s units of operations:

• Object: unit of designation
• Actor: unit of concurrency
• Interpreter: unit of partial failure
• JAVA Virtual Machine (JVM): unit of termination

As we already mentioned in Section 3.4, an actor can host several objects. Objects
that are owned by the same actor are said to be local.

Similar to the way a single actor can host several objects, an A M B I E N T TA L K

interpreter can host multiple actors for which inter-actor communication is realised
through far references. Two objects that are owned by different objects are consid-
ered to be remote, even if those actors are hosted by the same interpreter. Within
one interpreter there is no notion of partial failure, i.e., connections between actors
within a single interpreter never fail. Therefore, interpreters are the unit of partial
failure.

Because A M B I E N T TA L K is built on top of JAVA, a single JAVA Virtual Ma-
chine can host one or more A M B I E N T TA L K interpreters. JAVA Virtual Machines
are the unit of termination because either all interpreters within the JVM are ter-
minated, or none of them are.

In the remainder of this section, we first explain how remote objects can be
discovered in the network. Afterwards we describe the language constructs provided
by A M B I E N T TA L K in order to overcome (partial) failures.

3.5.1 Exporting and Discovering of Objects in A M B I E N T TA L K

In order to allow objects of another actor to be discovered, those objects must be
made accessible to other devices in the network. Objects in A M B I E N T TA L K can
be made remotely accessible by using the export: as: construct that publishes
an object under a given service type on the network, as is shown by the following
code snippet.

1 deftype Personnel;
2
3 def service := object: {
4 def role := "Personnel";
5
6 def print() {
7 system.println("Personnel : " + role);
8 };
9 };

10
11 export: service as: Personnel;

42

3.5 Distributed Programming in AmbientTalk

In this example, an object is exported with the service type Personnel (line 11).
A M B I E N T TA L K uses type tags to represent service types. Objects can be tagged
with zero or more type tags. Such a type tag is defined using the deftype
construct, as we can see on line 1 in the code snippet above. It is possible to
define a hierarchy of type tags: type1 <: type2 denotes the relation that type1
is a subtype of type2.

Type tags are used as a lightweight classification mechanism, they do not give
any guarantees on the interface of the published object. Hence, a type tag is not
associated with a set of methods and they cannot be used for static type checking.

Now that we have shown how objects can be published on the network using
a type tag, we explain how they can be discovered by actors residing in the
network. A M B I E N T TA L K uses a peer-to-peer discovery lookup mechanism based
upon publish-subscribe. Recall that as A M B I E N T TA L K is specifically sculpted
towards mobile ad hoc networks, the language cannot rely on any centralised
lookup infrastructure. In order to react upon discovery of objects in the network,
A M B I E N T TA L K provides a when: discovered: observer. This observer is
instantiated with a block closure that is executed at the moment a service of the
correct type tag is discovered. Consider the following example code

def people := []; /* A table */

when: Personnel discovered: { |person|
/* Add the object to the table */
people := people + [person];

};

where all personnel that are present at the airport are registered. So, when an object
with the given type tag Personnel is published on the network, the installed
when: discovered: observer is triggered and its block closure is executed
with the variable person bound to the discovered object.

We must clarify that the when: discovered: observer is only triggered
once, namely the first time an object with type tag Personnel is being discov-
ered. Hence, when all personnel present at the airport must be collected in some
kind of data structure (the A M B I E N T TA L K table defined on the first line of the
code snippet), a whenever: discovered: observer needs to be installed. The
difference between the when: discovered: and the whenever: discov-
ered: observer is that the latter one is triggered for each discovery of an object
with the specified type tag.

43

3 Ambient-oriented Programming

It is important to note that the observers for discovery are not triggered by
objects that are published in the same actor as the one that specified the observers.
Hence, an actor does not discover its own published objects.

3.5.2 Dealing with Failures

Since A M B I E N T TA L K is sculpted to function in MANETs where volatile con-
nections dominate, both transient and permanent failures happen frequently. As
we mentioned before, A M B I E N T TA L K uses far references to allow communica-
tion between remote objects. Using these far references, the current state of the
network (i.e., whether the remote objects are connected or not) is abstracted away:

• When a message is sent from object A to B, and the far reference to B is
connected, the message is asynchronously sent to B.

• When a message from object A is sent to object B, and the far reference to B
is disconnected, the message is buffered in the inbox of the far reference until
it reconnects. Upon reconnection, all messages stored in the far reference are
transmitted.

This way, A M B I E N T TA L K’s far references deal with transient failures. However,
sometimes the programmer wants to be able to know the current state of the net-
work and react upon disconnections and reconnections. To this end, A M B I E N T -
TA L K provides the whenever: disconnected: and whenever: recon-
nected: observers. The following code snippet extends the previous example
and shows how these observers can be used.

1 def people := [];
2
3 when: Personnel discovered: { |person|
4 people := people + [person];
5
6 whenever: person disconnected: {
7 /* Remove the object from the table */
8 people := people.filter: { |element| ! (element == person) };
9 };

10
11 whenever: person reconnected: {
12 /* Add the object to the table */
13 people := people + [person];
14 };
15 };

In this example, whenever a personnel disconnects, it is removed from the collec-
tion that contains all personnel that is present at the airport (line 6-9). Whenever
the person reconnects, the far reference pointing to that person is again added to
the collection (line 11-14).

44

3.6 Reflective Programming in AmbientTalk

As we have explained, A M B I E N T TA L K deals with transient failures by using
far references to communicate between remote objects. Moreover, the language
provides constructs to allow the programmer to react upon the disconnection and
reconnection of objects. In order to deal with permanent failures, A M B I E N T TA L K

introduces leased object references [GVV+09]. A leased object reference is a far
reference that allows access to a remote object for a restricted time. When the
time period elapses, the access to that remote object is retracted.

Leasing is integrated into futures in order to let an asynchronous message expire
either due to a timeout or when the computed return value is received. The timeout
for the lease on a future can be set by annotating the asynchronous message with
a @Due annotation as we show in the following example:

def searchFuture := assistant<-searchPerson(passenger)@Due(minutes(10));
when: searchFuture becomes: { |reply|

if: reply then: {
system.println("passenger is found");

} else: {
system.println("passenger not found");

}
} catch: TimeoutException using: { |e|

// unable to find person
};

In this code example an assistant of a flight company is contacted and ordered to
look for a missing passenger. When the passenger is not found within ten minutes,
some other procedures need to be started.

When the future is resolved, the value of the variable reply is a boolean value
denoting whether the person has been found or not. However, when the return
value is not received before the leased time elapsed, a TimeoutException is
raised when the future’s lease expires.

3.6 Reflective Programming in A M B I E N T TA L K

A M B I E N T TA L K supports reflection [Mae87] which allows the adaptation of the
programming language as well as the addition of new language constructs. The
programming language has support for two types of reflective access, namely
introspection and intercession. Introspection is the ability of a program to inspect
its own state at runtime. Intercession allows the semantics of meta-level operations
to be changed. In order to allow reflective programming, A M B I E N T TA L K relies
on the notion of mirrors, objects that allow reflection on the object’s state and
behaviour.

45

3 Ambient-oriented Programming

3.6.1 Mirrors

A M B I E N T TA L K employs a mirror-based architecture to provide support for re-
flection [BU04]. A mirror object offers reflective access to a single object, called
the reflectee, which does not have a field to access the mirror.

meta-level

base level

event
loop

nilobj

def obj := object: { ... }

reflect: objdefault
mirror

super

ba
se

event loop

LEGEND

synchronous
communication

causal connection
(mirror - object)

object

message queue

message

Figure 3.3: A M B I E N T TA L K: mirrors.

Figure 3.3 shows a number of objects residing in an A M B I E N T TA L K actor. An
actor consists of a meta-level and a base level. In the actor depicted in Figure
3.3 an object is defined ex-nihilo. Therefore, the actor’s super field refers to nil.
The actor’s meta-level has a single object, namely the default mirror provided
by A M B I E N T TA L K. This mirror object can be accessed using the reflect:
keyword, as we show in the following code snippet.

1 /* Define a personnel object */
2 def assistant := Personnel.new("Alice", 151, "flight assistant", 12);
3 /* Retrieve its mirror object */
4 def mirror := reflect: assistant;

On the second line of code in the above code snippet we define an A M B I E N T -
TA L K object, by cloning the prototype that is given in Listing 3.1. By using the
reflect: keyword the mirror object of the assistant object is retrieved, as
is shown in the third line of the code snippet above. Several methods are provided
by A M B I E N T TA L K that allow the state of an object to be inspected through a
mirror object. Consider for instance the following piece of code

1 /* Access all of the fields defined on the mirror’s base object */
2 mirror.listFields();
3 /* Reify a field of the mirror’s base object */
4 grabField(‘super);
5 /* Reification of the definition of fields */
6 mirror.defineField(‘foo, 42);

46

3.6 Reflective Programming in AmbientTalk

7 /* Reify the operation for field-selection */
8 mirror.invokeField(assistant, ‘foo);

Listing 3.3: A M B I E N T TA L K: facilities of mirrors.

The code in Listing 3.3 shows some facilities provided by mirrors. The facilities
that are provided by the mirror objects allow accessing and reification of methods,
fields, and slots2. In the code example we only show those methods related to the
object’s fields. On line 2 we retrieve all fields of the mirror’s base object, namely
the fields of the assistant object. The result is a table containing the follow-
ing fields: <field:super>, <field:name>, <field:personnelNbr>,
<field:role>, and <field:seniority>. On the fourth line, we show
how a field can be retrieved. The result of this method invocation is the field
<field:super>. It is also possible to define a field in the mirror’s base object,
as is shown on line 6. After this line of code is executed, the assistant object
has a new field, namely foo. On line 8, this field is invoked which gives the
number 42 as a result.

As we already said, the operations in Listing 3.3 are only a subset of all
operations that can be performed on an object’s mirror object. Those methods
belong to one of the following protocols [MVT+09] that form together A M B I E N T -
TA L K’s meta-object protocol (MOP) [KR91].

• Message Invocation Protocol: allows the interception upon receiving an asyn-
chronous message or upon the invocation of a synchronous message.

• Object Marshalling Protocol: consists of the methods pass and resolve
that describe how the object is passed to other actors and how it needs to
be resolved upon arrival.

• Slot Access and Modification Protocol: provides methods that allow the mod-
ification of slots and capture the dynamic access to an object’s slots.

• Structural Access Protocol: has methods that either list all available slots,
allow access of a slot, or add a new slot to the mirror’s base object.

• Object Instantiation Protocol: has two methods, clone and newInstance,
that are invoked when clone: obj or obj.new(@args) are used respec-
tively.

2Once a mirror has been created, it can be used to inspect an object as a collection of so-called
slot objects. Slot objects are objects which bind a name to a value (for instance, a method slot
is simply a slot that binds a name to a method object).

47

3 Ambient-oriented Programming

• Relational Testing Protocol: provides the methods isCloneOf and isRe-
latedTo that verify whether the object is a clone or a combination of
cloning and object extension.

• Type Tag Protocol: consists of the method isTaggedAs that verifies whether
the mirror’s base object is tagged with a particular type and the method
listTypeTags to retrieve all type tags of the mirror’s base object. The
former method is transitive, meaning that type tags of parent objects are also
considered, whereas the latter operation does only consider the object’s own
type tags.

• Evaluation Protocol: has two methods, namely eval and quote, in order
to ensure that any object can be part of a parse tree.

3.6.2 Mirages

In the previous section, we have shown the facilities A M B I E N T TA L K provides
to allow introspection through mirrors. In order to allow intercession, A M B I E N T -
TA L K introduces so-called mirages that enable the programmer to change the
operations provided by A M B I E N T TA L K’s MOP. The programming language pro-
vides a defaultMirror which encapsulates the default semantics of its MOP.
When only small changes to the semantics of the MOP need to be made, this de-
fault mirror can be adapted by overriding its methods, as we show in the following
code snippet.

1 def createTracingMirror(baseObject) {
2 extend: defaultMirror.new(baseObject) with: {
3 def invoke(slf, invocation) {
4 system.println("invocation of " + invocation.selector);
5 super^invoke(slf, invocation);
6 };
7 };
8 };

We define a TracingMirror that allows tracing method calls. To this end, the
invoke method of A M B I E N T TA L K’s defaultMirror needs to be overridden.
This is done on lines 3-6, where before the actual method invocation (line 5), the
logging takes place (line 4)).

A M B I E N T TA L K provides the mirror: primitive which is syntactic sugar for
extending the default mirror. The implementation of the above example can there-
fore also be written as

def TracingMirror := mirror: { def invoke(slf, invocation) { ... }; };

48

3.6 Reflective Programming in AmbientTalk

When we want to trace the method invocations of an object, for instance, the
assistant object defined earlier in Listing 3.1, that object’s mirror needs to be
the one we defined above. Such an object which has a custom mirror is called
a mirage. Mirages can be constructed in two ways, as we show in the following
code.

1 object: {
2 def role := "Personnel";
3 ...
4 } mirroredBy:{ |emptyBase| createTracingMirror(emptyBase) };
5
6 object: {
7 def role := "Personnel";
8 ...
9 } mirroredBy: TracingMirror;

Listing 3.4: A M B I E N T TA L K: construction of mirages.

A first way to define a mirage is shown on lines 1-4 in Listing 3.4. The block clo-
sure that is passed to the mirroredBy: primitive is called a mirror construction
closure. Such a closure is applied to a new mirage object and returns a new mirror
that reflects upon that mirage. When the mirror is created, the block closure that
is used to instantiate the object with is executed.

On lines 6-9 an alternative way to construct a mirage object is presented. Here,
a prototype mirror (TracingMirror) is passed as an argument to the mir-
roredBy: primitive.

In Figure 3.4 we depict an actor and all the objects that are involved.

meta-level

base level

event
loop

obj nil

default
Mirror

mirage

super

super

base

event loop

LEGEND

synchronous
communication

causal connection
(mirror - object)

object

message queue

message

def obj := object: { ... }

mirroredBy: ...

mirro
r: ...

Figure 3.4: A M B I E N T TA L K: mirages.

49

3 Ambient-oriented Programming

The base level consists of a mirage (object with a custom mirror) which is created
ex nihilo. Hence the object’s super refers to nil.

The mirage has a custom mirror, which is created using the mirror: keyword.
So, at the actor’s meta-level we find two objects, namely the newly created mirror
and the default mirror. As the new mirror is created using the mirror: primitive,
this object is created by extending the default mirror (i.e., its super refers to the
defaultMirror object).

The mirage on the base level of the actor is created using the mirroredBy:
primitive. The mirror construction closure that is passed to that primitive is applied
to the mirage object. Hence, the mirror’s base pointer refers to the mirage object.

3.7 Ambient References

People everywhere are surrounded by a wide range of mobile and stationary devices
that can perform all kinds of services. For instance, today’s smartphones are able
to determine temperature, location, orientation, etc. Since devices and services are
everywhere nowadays, there is a need to address several services or devices at
the same time. For instance, to determine the current temperature at a certain
location, one could retrieve that information from several temperature services
in the neighbourhood and calculate the average. A M B I E N T TA L K introduces a
dedicated data type, namely ambient references, to designate a group of objects
that are within reach [VC08]. An ambient reference refers to a collection of
nearby services of the same type which is kept up-to-date. When new services of
the specific type are discovered, they are added to the collection and unresponsive
services are removed.

In the following code example we show how an ambient reference can be
created.

deftype Passenger;
def passengers := ambient: Passenger;

In this example the ambient reference, created using the ambient: primitive,
collects all services of type Passenger that are in reach.

Sometimes, one wants to take a snapshot of the object references contained
in the ambient reference. Such a snapshot results in a collection of references to
nearby objects that are in reach at the moment is taken, and once the snapshot has
been taken the collection is not kept up-to-date. Such a snapshot of an ambient
reference can be created as follows:

def people := snapshot: passengers;

50

3.7 Ambient References

The variable people is a reference to a table that contains all passengers that
are within reach. This table can contain no elements when the snapshot was
taken at a moment no passenger services where within communication range. It s
possible that, when iterating over this retrieved collection, a service has gone out
of communication range. However, as this collection consists of far references to
services, communication is still decoupled in time and synchronisation.

Communication with ambient references is achieved by sending asynchronous
messages that can be annotated. These annotations are used to vary the number of
services that are addressed:

• @One: point-to-point communication is realised by annotating the ambient
message with the @One annotation.

• @All: one-to-many messages are expressed by annotating a message with
the @All annotation.

• @Any: using the @Any annotation result in the message being sent to any
discovered service with the given type tag.

Furthermore, it is possible to annotate a message with an expiration period. This
annotation allows you to send messages to the ambient references, and this mes-
sage is also sent to all services that are newly discovered during this expiration
period. However, once this period has elapsed, the message is no longer sent to
matched services. The following code snippet shows an example where a message
is annotated with an expiration period.
deftype Passenger;
def passengers := ambient: Passengers;
whenAll: passengers<-getFlightInfo()@Expires(minutes(5)) becomes: { |reply|

// process the retrieved flight information
};

In this example, the flight information of all passengers needs to be accumulated.
To this end, A M B I E N T TA L K introduces the notion of multifutures that provide
more possibilities for synchronisation than regular futures. Multifutures are a con-
venient abstraction to gather all of the replies to a broadcast at a single point in
the code.

In this code example a special kind of event handler is registered on the mul-
tifuture, namely whenAll: becomes:. This construct allows the programmer
to gather accumulated answers of all the far references contained in the ambient
references. In this example, when the future is resolved the value of the variable
reply is an array containing the flight information of all passengers.

It is also possible to register a whenEach: becomes: event handler on a
multifuture. This observer is triggered on each value or exception of the multi-
future. Note that both the whenAll: becomes: and whenEach: becomes:
observers can be registered on regular futures as well.

51

3 Ambient-oriented Programming

In all the above examples, we used a type tag to classify the services that belong
to the ambient reference. However, ambient references can be classified in three
ways:

1. type tag: represents a service type;
2. protocol: is a description of the set of selectors (message names) to which

an object responds;
3. filter: represents a predicate (unary block closure that returns a boolean

value).

In the code snippet below, each of these classification mechanisms is used:
1 deftype Passenger;
2
3 def passengers := ambient: Passenger;
4
5 def PassengerProtocol := protocol: {
6 def getFlightInfo();
7 };
8 def passengers := ambient: PassengerProtocol;
9

10 def passengers := ambient: Passenger where: { |p| p.flight == "BA472" };

On line 3 in the code snippet an ambient reference is defined using the type
tag Passenger. An ambient reference defined using the protocol categorisation
mechanism is shown on line 8. The protocol that is used to categorise the service
(defined on lines 5-7) specifies that the service must have a getFlightInfo
selector. The third categorisation mechanism is shown on the last line of the code
snippet where an ambient reference is defined using the predicate which evaluates
to true when the service’s field flight equals "BA472".

3.8 Limitations

Now that we have presented A M B I E N T TA L K and the language features that are
necessary to understand the remainder of this dissertation, we present the issues
involving service orchestration. This dissertation focusses on the orchestration of
asynchronously distributed processes in a nomadic network where volatile connec-
tions dominate. Although the ambient-oriented programming paradigm formulates
language characteristics that allow the development of applications in mobile ad
hoc networks, developing large-scale complex application is far from trivial. We
demonstrate this by implementing the example application described in Section
2.3.1 and illustrate several problems using its implementation in A M B I E N T TA L K.

We now show part of the implementation of the iMPASSE application in A M -
B I E N T TA L K in Listing 3.5. In this code snippet we implement the first part of the

52

3.8 Limitations

application, namely a passenger is missing, and the procedure to start looking for
him/her is started. For this procedure three tasks need to be executed: the person
must be announced, a reminder text message must be sent to his/her mobile phone,
and an assistance personnel member must go look for the passenger. Either one of
these tasks leads to an acknowledgement that the person is found, or after some
time the procedure is finished and it is concluded that the person has not been
found.

1 deftype ReminderService;
2 deftype AnnouncementService;
3 deftype AssistancePersonnel;
4 def reminderS := ambient: ReminderService;
5 def announcementS;
6 def assistanceP := ambient: AssistancePersonnel;
7
8 def missingPerson(passenger, flight) {
9 def results := [];

10 def numberNotFounds := 0;
11
12
13 def check (reply) {
14 def found := false;
15 if: (! found) then: {
16 if: reply then: {
17 found := true;
18 personFound(passenger, flight);
19 } else: {
20 numberNotFounds := numberNotFounds + 1;
21 if: (numberNotFounds == 3) then: {
22 personNotFound(passenger, flight);
23 };
24 };
25 };
26 };
27
28
29 def hulp(future, service) {
30 when: future becomes: { |reply|
31 results := results + [reply];
32 check(reply);
33 } catch: TimeoutException using: { |exception|
34 personNotFound(passenger, flight);
35 };
36 when: service disconnected: {
37 raise: XServiceDisconnection.new("The service disconnected.");
38 };
39 };
40
41
42 def f := reminderS<-missingPerson(passenger)@Due(minutes(10));
43 hulp(f, reminderS);
44
45

53

3 Ambient-oriented Programming

46 when: AnnouncementService discovered: { |svc|
47 f:= svc<-missingPerson(passenger)@Due(minutes(10));
48 hulp(f, svc);
49 when: seconds(30) elapsed: {
50 raise: XServiceNotFound.new("Required service cannot be found.");
51 };
52 };
53
54 f := assistanceP<-missingPerson(passenger)@Due(minutes(10));
55 hulp(f, assistanceP);
56 };

Listing 3.5: Implementation of part of the airport scenario in A M B I E N T TA L K.

Before we describe the implementation in detail, it is important to know that
some services are known beforehand, whereas for other services in the example
scenario it suffices to discover a service of the correct service type when needed. In
the part of the example application we implemented, three services must be invoked
(the reminder service, the announcement service, and the assistance personnel).
Both the reminder service and assistance personnel that must be addressed are
known beforehand, and a reference to that service is available. As we can see on
line 4 and line 6 in Listing 3.5, references to these two services are retrieved and
bound to the variables reminderS and assistanceP respectively.

The missingPerson function that is defined on lines 8-56 implements the
invocation of the three services in parallel. The implementation of the invoca-
tion of the reminder service (lines 42-43) and the assistance personnel (54-55) is
very similar: Because a reference to the service is available, service invocation is
achieved by sending an asynchronous message send to the given far reference. This
asynchronous message is annotated (with @Due), such that a timeout exception is
caught after ten minutes. When the future, returned by the asynchronous message
send, is resolved, the received reply is stored in a table containing the replies of
all service invocations (line 31). The function check will then verify whether
all three services have replied that the passenger cannot be found, or if the reply
was positive, meaning that the passenger is found and that the boarding personnel
should be informed to wait for the passenger.

It is important that the application can react upon certain failures, such as the
disconnection of a service. The failures we want to detect are timeout exceptions,
disconnections of services and the unavailability of services. As we already men-
tioned, timeout exceptions can be caught using the catch: using: event handler
(on lines 33-35). The last type of failure, the unavailability of a service, is not
applicable for these two services, because a reference to them is available.

54

3.8 Limitations

The invocation of the announcement service differs from the other two, because
this service needs to be discovered before the invocation. On line 46 a when:
discovered: event handler is installed. When a service that is tagged with
the type tag AnnouncementService is discovered, the code inside the event
handler is evaluated. The invocation of that service (lines 47-48) is similar to the
ones of the other two services.

Besides the registering of observers to handle timeouts and disconnections, a
third observer (when: elapsed:) is installed to react appropriately when a ser-
vice is unavailable (see lines 49-51).

From this example we can distill some general problems that arise when writing
applications in A M B I E N T TA L K:

1. Inversion of control: An unwanted property of A M B I E N T TA L K is the fact
that the application logic is divided amongst several event handlers that can
be triggered independently of one another [CM06], since the language has an
event-driven architecture. The control flow of an application is thus no longer
determined by the programmer but by external events. This phenomenon is
known as inversion of control. This makes the event-driven programming
style not always straightforward [HO06].

In Section 2.3.3 we argue that there should be a focus on the (control flow)
of the process when orchestrating services in a nomadic network (criterion
4: explicit control flow). The inversion of control phenomenon makes it very
hard to grasp the order in which tasks are executed.

2. No automatic failure handling: A M B I E N T TA L K provides the necessary lan-
guage abstractions for handling failures, which can be caught by registering
the appropriate event handlers. In a mobile ad hoc network, which is a highly
dynamic environment where devices can join and disjoin at any moment in
time, failures must be considered the rule rather than the exception. There-
fore, in A M B I E N T TA L K failures are hidden. However, the language has
no support for multiple failure handling mechanisms or high-level recovery
(criterion 9).

3. Limited support for groups: This last limitation cannot be deduced from the
above code example. A M B I E N T TA L K introduces the notion of ambient ref-
erences to enable communication with a volatile group of proximate objects
by means of asynchronous message sends [VMG+07]. Both definition by
means of an intensional description and arity decoupling are supported by

55

3 Ambient-oriented Programming

this language construct. Ambient references provide synchronisation mecha-
nisms by providing observers that are triggered either when the first service
has answered or when all services have responded. However, as communica-
tion with the set of services is expressed by means of an atomic message
send, it is for instance not possible to redefine the members of the group.
In Section 2.3.3 this requirement is formulated as the “dynamic modifica-
tion” criterion (criterion 7). Moreover, there are no mechanisms provided to
express failure handling on an ambient reference, for instance, express the
action that must be performed when a service of the group disconnects. In
Section 2.3.3 we discuss in criterion 11 (individual failure handling) and
criterion 12 (failure handling for groups) that for nomadic networks it is
opportune to have failure handling when orchestrating groups of services.

3.9 Conclusion

In this chapter we introduced the ambient-oriented programming paradigm and its
concrete implementation A M B I E N T TA L K. We did not only present the language
features that are necessary to understand the remainder of this dissertation, we also
discussed some limitations of the language. In this dissertation we argue that a
workflow language that is built as a library of this ambient-oriented programming
language can provide the necessary abstractions to orchestrate services in a nomadic
environment, and can overcome the limitations we discussed in Section 3.8. We
do not only present novel abstractions that adhere to the criteria we postulated
for orchestration in nomadic networks (Section 2.3.3), we also present a proof-of-
concept implementation on top of A M B I E N T TA L K. By adding these extra layers
on top of A M B I E N T TA L K the language’s limitations are tackled:

• By adding workflow patterns that describe very explicitly the control flow
of the application, the order in which tasks are executed can be determined.
These so-called control flow patterns abstract away A M B I E N T TA L K’s event
handlers and hence overcome the language’s inversion of control problem.

• Novel abstractions that allow the default compensation for specific kinds of
failures ensure that (network) failures are considered the rule rather than the
exception. However, the abstractions allow application developers to specify
more accurate behaviour by overriding this default failure handling mecha-
nism.

56

3.9 Conclusion

• Patterns are added to allow the execution of (several) task(s) for a volatile
set of services. These patterns also provide mechanisms to synchronise the
execution of these tasks for each individual service, and for the entire group
of services. Special patterns are also added in order to overcome both in-
dividual failures and failures that have an influence on the entire group of
services.

57

4
PAT T E R N S F O R O R C H E S T R AT I O N I N N O M A D I C
N E T W O R K S

This dissertation advocates the use of high-level workflow patterns for orchestration
in nomadic networks. These high-level abstractions ensure that the control flow
of the application and the fine-grained application logic are not interwoven, and
hence facilitate the development of large-scale complex applications in a nomadic
environment.

In this chapter we first discuss an interpretation of activities, which is suited for
nomadic networks (Section 4.1).

Secondly, we revise an existing mechanism that allows data to be passed between
activities in the workflow. We present an extension of this data flow mechanism
such that possible data conflicts upon synchronisation can be handled (Section 4.2).

Thirdly, we discuss patterns for orchestration in nomadic networks. We start by
presenting standard workflow patterns that are used for orchestration (Section 4.3).
We make use of the control flow patterns of van der Aalst [RtHvdAM06] that
are widely utilised for the design and development of workflows. Thereafter, we
present a specific set of novel patterns that are sculpted for nomadic networks. We
introduce high-level abstractions for group orchestration as a new set of workflow
patterns (Section 4.4). We also show the necessity for automatic failure handling
and discuss how more application-specific failure handling can be achieved by
specifying compensating actions (Section 4.5). Finally, we describe how this failure
handling mechanism can be applied to the abstractions for group orchestration we
proposed.

59

4 Patterns for Orchestration

4.1 Activities

In Section 2.1.3 we present a definition of activity, which is defined as “a descrip-
tion of a piece of work that forms one logical step within a process”. We refine this
definition and state that an activity is a placeholder for a service invocation. When
an activity is started, it must perform a service invocation, and process the result
of this invocation.

Before explaining the different execution steps an activity must perform when
started, we explain how activities are executed in a nomadic network. Activities
are part of a workflow description, which resides on the fixed infrastructure of the
nomadic network. The fixed infrastructure is responsible for executing the entire
workflow, ensuring that the workflow description cannot become unavailable during
the execution. An activity is used to invoke a service in the nomadic network.
Recall that nomadic applications interact with services that can be categorised as
stationary services, registered services and user services. Stationary services and
registered services are known beforehand because they are part of the infrastructure.
In case a specific service needs to be addressed, the activity has a reference to that
service (as we explain in Section 4.2). Consider the example where you want to
address the pilot of a particular flight. The service residing on the mobile phone of
the pilot can be regarded as a registered service, and is known beforehand. Note
that this does not imply that no failures can occur: it is for instance possible that
the service is unresponsive. Sometimes the service that needs to be addressed is
not known beforehand (user service), in which case the activity must first discover
a service of the correct type. For example, when in need of assistance it suffices to
discover a service running on the smartphone of a (random) assistance personnel
who is in the neighbourhood.

In general, an activity must perform several execution steps:

1. Service discovery: discover a service of the right type in the network.
2. Service invocation: invoke the found service.
3. Response management: process the result of the service invocation.

The lifecycle of an activity is schematically presented by the state diagram in
Figure 4.1. When no reference to the service is given, a service of the right
type needs to be discovered. Service discovery either results in a reference to the
service being retrieved, or results in indefinitely trying to discover a service of the
correct type. In case service discovery is required, there is decoupling in space
(criterion 2), because the service and the activity do not necessarily know each
other a priori. The first matching service that is discovered by the activity will be

60

4.1 Activities

Started

Service Invocation

start

Response Management

Service Discovery

Service type is given

Reference
to service
is given

Reference to service is obtained

Result of invocation is received

Figure 4.1: Lifecycle of an activity.

invoked. A service is said to match when the type of the service is a subtype of
the type specified by the activity. After such a matching service is discovered, the
activity automatically cancels the discovery mechanism such that no more matching
services are discovered.

When no service of the correct type can be discovered, the activity is not
doing any useful computation until a service is discovered. In order to avoid this
behaviour, built-in support to handle these kinds of “failures” is needed, as we
discuss in Section 4.5. In that section we present an extended state diagram that
models the lifecycle of an activity with failure handling for the case where no
service of the right type can be discovered.

When a reference to the service is obtained, either after discovery or because
it was given from the start, the service can be invoked. Service invocation is
achieved by sending an asynchronous message to the service, ensuring that both
the workflow and the service are not blocked upon sending or receiving messages
(criterion 3: synchronisation decoupling). It is possible that the service becomes
temporarily unavailable while the activity is waiting for the result of the invocation.

61

4 Patterns for Orchestration

This ensures decoupling in time (criterion 1), because the workflow and the service
do not need to be online at the same time.

Once a return value of the service invocation is received, the result can be
processed.

4.2 Data Flow

Next to the control flow perspective (see Section 4.3), which emphasises the
specification of the interactions with services, an application must also specify
its state, namely the data that is used by the application logic (handled by the
data flow perspective). Workflow research is typically focussed on the control flow
perspective, whereas the data flow perspective is rather treated stepmotherly.

Existing research has identified the following approaches for passing data be-
tween activities in the workflow [RtEv05b]:

• Integrated control and data channels: For this approach, data is passed
simultaneously with the control flow of the workflow. An activity has only
access to the data that has been passed to it.

• Distinct control and data channels: In this approach, data can be passed
between activities using links that are unconnected to the control flow. An
activity can access only the data it receives through such a data link.

• No data passing: For this approach, all activities of a workflow share the
same data. Typically, data is accessible via a shared scope. An activity can
only access the data that is defined in the surrounding scope of an activity.

In this section we extend the “integrated control and data channels” approach that
enables passing information between activities in the workflow. This mechanism fits
nicely with the refinement of activities which perform asynchronous invocations of
services in the nomadic networks, as we explained in Section 4.1. The data flow
mechanism we put forward employs a straightforward concept in which values
are passed between activities in the workflow. This mechanism adheres to Sadiq’s
[SOSF04] requirements that must be fulfilled by a data flow model. A data flow
model must have the ability to:

• manage both the input and output data of activities;
• ensure that data produced by one activity is available for other activities; and
• ensure consistent flow of data between activities.

We now describe our data flow mechanism and show how this mechanism
satisfies the requirements of Sadiq. Instead of using a simple global or static

62

4.2 Data Flow

environment for our workflow language, we developed a dynamic system where
the environment flows through the workflow graph and is dynamically adapted. To
this end, we introduce a data environment, an object with a unique identifier and
a dictionary associating variables with values. Each time a workflow is started, a
new data environment is instantiated and passed to this workflow instance.

When an activity is executed, the service’s method is invoked with its formal
parameters bound to their values, which are looked up in the data environment.
Using this concept of a data environment, the data flow is tightly coupled to the
control flow of the application. We show how the data environment gets updated
when an activity is started and a service is invoked. In Section 4.1 we already
explained the different execution steps that must be performed when an activity
is started. In case no reference to a particular service was given, a service of the
right type must be discovered.

luggageH ref1

flightNr 9W226

LEGEND
activity

control flow
data environment

 service: luggageH
 operation: getInfo
 input: flightNr
 output: trailer, belt

belt 5

trailer T42

luggageS ref1

flightNr 9W226

... ...

 service: ASSISTANCE
 operation: missing
 input: person
 output: found

ref1person yesfound

ref1person

... ...

Figure 4.2: Data flow: data environment passed simultaneously with incoming and outgoing
control flow edges.

In Figure 4.2 we show two examples of an activity that is started with a data
environment. The first example wants to address a specific luggage handler and ask
for a particular flight which trailer will transport the luggage, and to which belt

63

4 Patterns for Orchestration

this luggage is transported. In this example, a particular luggage handler needs
to be addressed. The second example contacts an assistance personnel member
to notify him/her that a certain person is missing. In this case, any assistance
personnel member that is in the neighbourhood suffices for this task.

The difference between a specific service and a service type is made by the
usage of capital letters. Capital letters are used to denote a service type whereas
non-capital letters are used when a reference to the service is available in the data
environment. In the remainder of this chapter we use this convention to differentiate
between those types of service descriptions.

The activity depicted at the top of Figure 4.2 depicts the first example scenario.
This is an example of an activity where a reference to a particular service is
available (luggageH). The reference to that service can be found in the data
environment that is used to start the activity’s execution. The activity shown at the
bottom in the figure shows the second example where the activity is instantiated
with a service type (ASSISTANCE). So, before a service can be invoked, a service
of the right type needs to be discovered. As we can see in the figure, the data
environment is extended after the activity has finished its execution. The variable
bindings that are added to the environment are specified by the activity (output).
This binding happens during the “response management” execution step of an
activity (see Section 4.1).

:Data Environment :Activity :Service

start(Data Environment)

find(luggageH)

ref1

getInfo(9W226)

[T42, 5]

ack

ack

insert(trailer, T42)

insert(belt, 5)

find(flightNr)

9W226

Data Environment

<<backbone>> <<backbone>>

Figure 4.3: Example sequence diagram of starting an activity.

64

4.2 Data Flow

We show a sequence diagram for the top activity in Figure 4.3. When the activ-
ity is started with a data environment, the values of the formal parameters of the
service invocation, luggageS and flightNr are looked up in this dictionary.
Recall that for this activity a reference to the service that must be invoked is stored
in the data environment. When the values are retrieved, the service is invoked by
sending an asynchronous message. When the result of the invocation is received,
the activity starts the response management: the received values are bound to the
corresponding output variables and these new variable bindings are put in the data
environment. The activity’s execution is finished at the moment this updated data
environment is returned as a result.

This data flow mechanism can be thought of as dynamic scoping but with special
semantics for patterns such as a Synchronization, which merges multiple incoming
branches, as is illustrated in Figure 4.4. If part of a workflow can be reached
by more than one path, it is possible that the data environments are (completely)
different. This is one of the flaws of the “integrated control and data channels”
approach. Russell et al. [RtEv05b] state that in case an activity receives (potentially)
different copies of data, the task must decide which data is the correct one. We
propose a mechanism that allows the specification of a data merging strategy for
synchronisation patterns.

 service: af
 operation: freeSeat
 input: dest
 output: [flight, price]

 service: ba
 operation: freeSeat
 input: dest
 output: [flight, price]

... ...+ +

ref1af
ref2bf
Italydest

...

[flight, price]

...
dest Italy

[AF72,262]

LEGEND

activity

data environmentgateway (and)

merging strategy

ref1af
ref2bf
Italydest

ref1af
ref2bf
Italydest

control flow

+

Italy
[BA93,335]

...

[flight, price]
dest

...

Figure 4.4: Merging strategies for synchronisation patterns.

As is shown in the example in Figure 4.4, when a Parallel Split is encountered,
the data environment is conceptually duplicated for each outgoing branch. Further
adaptations of the data environment are local to each branch. However, when a

65

4 Patterns for Orchestration

synchronisation point is reached, the data environments from all incoming branches
are merged. We have identified several possible merging strategies that are useful
in different cases:

• Prioritise one of the incoming branches when resolving conflicts.
• Pick the data environment of one incoming branch and ignore the others.
• Merge conflicts into a collection containing the different values (with or

without duplicates).
• Remember the “scope” from before splitting and restore it (not always desir-

able).
• Employ a programmer-defined function to resolve conflicts.

The small workflow depicted in Figure 4.4 represents a scenario where a booking
agent looks for a free seat on a flight to Italy. This is achieved by invoking the
services of two airline companies (Air France and British Airways). The result of
this service invocation is a tuple containing both the flight number and the price.
Therefore, the output variables are also specified as a tuple, namely [flight,
price].

When both results are received (i.e., when the activities have finished their execu-
tion), their outgoing data environments need to be merged. When the first merging
strategy is used, and Air France has a higher priority than British Airways, the
resulting data environment is the data environment that is passed from the Air
France activity to the Synchronization pattern. The second merging strategy will
just randomly pick one of those two data environments. The third strategy merges
all values of a variable into a collection. When the third merging strategy is
used, the resulting data environment contains the following binding: [[flight,
price], [[AF72, 262], [BA93, 335]]]. As we can see, the value for the
tuple [flight, price] is a container of two tuples. The fourth strategy results
in the data environment with only one variable binding [dest, Italy]. When
the fifth merging strategy is used and the user-provided function is to take the
flight with the lowest price, the resulting data environment is the one where price
equals 262.

By introducing this environment passing style, we satisfy the key requirements
of a data flow mechanism in a workflow model, as stated by Sadiq [SOSF04].

• Manage both the input and output data of activities.
The first requirement is fulfilled, since the actual parameters are looked up
in the data environment before starting the execution of an activity. After
this execution, the output values are associated with their variable names and
added to this dictionary.

66

4.3 Patterns for Service Orchestration

• Ensure that data produced by one activity is available for other activities.
By introducing the notion of an environment, which flows through the entire
workflow, we ensure that the second requirement is satisfied.

• Ensure consistent flow of data between activities.
The last requirement is fulfilled because of the passing of data in sequence
patterns, and the merging strategies we provide in case of multiple incoming
branches. The different branches of a split pattern have their own separated
data environments which can possibly be merged at specific synchronisation
points.

4.3 Patterns for Service Orchestration

Now that we have explained how activities are executed, we describe how these
activities can be linked together in order to form a workflow description. The
control flow perspective defined by van der Aalst et al. [RtHvdAM06] categorises
43 patterns which enable descriptions of the control flow dependencies between
several activities.

These 43 patterns are a result of the Workflow Patterns Initiative was established
with the aim of delineating the fundamental requirements that arise during business
process modelling on a recurring basis and describing them in an imperative way.
We adopt the definition and semantics of the control flow patterns that was given
by van der Aalst et al. [RtHvdAM06], except for the fact that the execution
of the activities can result in the invocation of a mobile service. Therefore, the
invocation of services must be realised through sending asynchronous messages,
as we explained in Section 4.1. Just as activities, the result of executing a control
flow pattern is a (possibly) updated data environment. When a control flow pattern
is started with a data environment, its components (activities and/or patterns) are
executed in the correct order, and the updated data environment is returned as a
result.

67

4 Patterns for Orchestration

Basic Control Flow Patterns
Sequence standard
Parallel Split standard
Synchronization synchronisation
Exclusive Choice standard
Simple Merge synchronisation
Advanced Branching and Synchronization Patterns
Multi-Choice standard
Structured Synchronizing Merge synchronisation
Multi-Merge synchronisation
Structured Discriminator synchronisation
Blocking Discriminator synchronisation
Cancelling Discriminator synchronisation
Structured Partial Join synchronisation
Blocking Partial Join synchronisation
Cancelling Partial Join synchronisation
Generalised AND-Join synchronisation
Local Synchronizing Merge synchronisation
General Synchronizing Merge synchronisation
Thread Merge synchronisation
Thread Split standard
Multiple Instance Patterns
Multiple Instances without Synchronization standard
Multiple Instances with a Priori Design-Time Knowledge standard
Multiple Instances with a Priori Run-Time Knowledge standard
Multiple Instances without a Priori Run-Time Knowledge standard
Static Partial Join for Multiple Instances synchronisation
Cancelling Partial Join for Multiple Instances synchronisation
Dynamic Partial Join for Multiple Instances synchronisation
State-based Patterns
Deferred Choice standard
Interleaved Parallel Routing standard
Milestone standard
Critical Section standard
Interleaved Routing standard
Cancellation and Force Completion Patterns
Cancel Task standard
Cancel Case standard
Cancel Region standard
Cancel Multiple Instance Activity standard
Complete Multiple Instance Activity standard
Iteration Patterns
Arbitrary Cycles standard
Structured Loop standard
Recursion standard
Termination Patterns
Implicit Termination NA
Explicit Termination standard
Trigger Patterns
Transient Trigger trigger
Persistent Trigger trigger

Table 4.1: Control Flow Patterns

68

4.3 Patterns for Service Orchestration

We make the distinction between standard patterns, synchronisation patterns,
and trigger patterns. The distinction between standard patterns and synchronisation
patterns is necessary because synchronisation patterns need to define a merging
strategy that specifies how the data environments must be merged (Section 4.2).
The last category of patterns, namely the trigger patterns, are different from the
former two as these patterns can be manipulated externally: They react upon ex-
ternal events.

In Table 4.1 we enumerate all 43 control flow patterns into the eight categories
that were proposed by van der Aalst et al. [RtHvdAM06]. The second column
in the tables is used to divide the patterns into one of our proposed categories:
standard, synchronisation, or trigger pattern. In the remainder of this section we
use this distinction to describe how the different categories can be composed.

4.3.1 Standard Patterns

The first category of control flow patterns we define is the so-called “standard
patterns” category. This group contains control flow patterns that do not require
any special precautions concerning data flow, and cannot be triggered by external
events. In this section we discuss how these standard patterns can be composed
and how the data flow mechanism that we described in Section 4.2 works for this
group of patterns.

In order to explain the composition of (standard) patterns, we introduce an
example that combines a Sequence and a Parallel Split pattern. Before describing
the example, we give the definition (according to [RtHvdAM06]) of the patterns
involved:

• Sequence: “A task in a process in enabled after the completion of a preceding
task in the same process.”

• Parallel Split: “The divergence of a branch into two or more parallel branches
each of which executes concurrently.”

Figure 4.5 depicts the composition of a Sequence and a Parallel Split pattern.
This small workflow models the scenario where a plane has landed and activities
must be executed in parallel. In this example the ground crew is reminded to bring
the jet bridge, and in parallel the trailer that is in charge of the luggage of that
flight must remove the luggage from the plane and transport it to a luggage belt.

69

4 Patterns for Orchestration

 service: groundCrew
 operation: bringJetBridge
 input: flightNr
 output: /

+

 service: trailer
 operation: rmvLuggage
 input: flightNr
 output: /

 service: trailer
 operation: transport
 input: belt
 output: /

LEGEND

gateway (and)

activity

+
control flow

Figure 4.5: Basic control flow patterns: Parallel Split with a Sequence in its first branch.

The three activities in this small workflow example are activities that do not
need to discover a service. For each activity a reference is available in the data
environment (that is passed to the activity at runtime).

Figure 4.6 shows the sequence diagram of an instance of this workflow example.
When the Parallel Split is started with a data environment, this data environment is
copied and used to start the execution of the pattern’s outgoing branches, namely
a Sequence pattern, which is started with Data Environment 1, and an activity
(called Activity3), which is started with Data Environment 2. The execu-
tion steps of an activity are the same as we mentioned in Section 4.2: the actual
parameters of the invocation are looked up in the data environment, the service is
invoked1, and the output variables are bound to their variables and inserted in the
data environment.

In the sequence diagram, we see that the execution of the Sequence pattern
starts the execution of its first activity (Activity1). Only when the execution
of that activity is finished, i.e., when an updated data environment is returned as
a result of that execution, the execution of the second activity can be started with
that updated data environment.

The execution of the Parallel Split pattern itself is finished at the moment all
its outgoing branches, 2 branches in this example, have returned an updated data
environment as the result of their execution. Note that the data environment that
is returned as a result of the execution of the Parallel Split pattern is a new
data environment. Split patterns, such as the Parallel Split pattern, frequently pre-
cede a synchronisation pattern, which merges the data environments. However, the
example we present in Figure 4.5 does not combine the split pattern with a syn-

1Recall that in this example, no service discovery needs to be performed.

70

4.3 Patterns for Service Orchestration

:D
at

a
En

vi
ro

nm
en

t
:T

ra
ile

r
:G

ro
un

dC
re

w
<<

ba
ck

bo
ne

>>
:P

ar
al

le
l S

pl
it

<<
ba

ck
bo

ne
>>

:S
eq

ue
nc

e
<<

ba
ck

bo
ne

>>
:A

ct
iv

ity
 1

<<
ba

ck
bo

ne
>>

:A
ct

iv
ity

 2
<<

ba
ck

bo
ne

>>
:A

ct
iv

ity
 3

<<
ba

ck
bo

ne
>>

st
ar

t(D
at

a
En

vr
io

nm
en

t)
st

ar
t(D

at
a

En
vr

io
nm

en
t 1

)

st
ar

t(D
at

a
En

vr
io

nm
en

t 2
)

st
ar

t(D
at

a
En

vr
io

nm
en

t 1
)

fin
d(

tra
ile

r)
fin

d(
fli

gh
tN

r)
re

f1
9W

22
6

rm
vL

ug
ga

ge
(9

W
22

6)

ac
k

D
at

a
En

vi
ro

nm
en

t 1

st
ar

t(D
at

a
En

vr
io

nm
en

t 1
)

fin
d(

tra
ile

r)

fin
d(

be
lt)

re
f 1

5

ac
k

tra
ns

po
rt(

5)

D
at

a
En

vi
ro

nm
en

t 1
D

at
a

En
vi

ro
nm

en
t 1

br
in

gJ
et

Br
id

ge
(9

W
22

6)

fin
d(

fli
gh

tN
r)

9W
22

6
re

f2

fin
d(

gr
ou

nd
C

re
w

)

ac
k

D
at

a
En

vi
ro

nm
en

t 2

D
at

a
En

vi
ro

nm
en

t

Figure 4.6: Sequence diagram of the execution of the workflow depicted in Figure 4.5.

71

4 Patterns for Orchestration

chronisation pattern, denoting that the data environments do not need to be merged.
Therefore, in this case a (random) data environment is returned to mark that the
execution is finished.

We now discuss an interesting type of standard patterns, namely the patterns
that are classified by van der Aalst et al. [RtHvdAM06] as “multiple instances
patterns”. Multiple instance patterns describe situations where there are multiple
threads of execution active. Each of these instances relates to the same activities
and patterns, and hence share the same workflow definition.

Consider the example where the boarding pass of all passengers who checked
in needs to be verified before going on board. When this task is executed for
all passengers, the boarding personnel is notified to close the gate. The workflow
modelling this example is depicted in Figure 4.7.

LEGEND

activity

service: boardingPersonnel
operation: checkBoardingPass
input: /
output: /

service: boardingPersonnel
operation: closeGate
input: /
output: / multiple instances of

the same activity are
started

control flow

LoopType: MI
MI_Condition: nrOfPassengers
MI_Ordering: Parallel
MI_FlowCondition: All

Figure 4.7: Example of a multiple instances pattern.

As we explained in Section 4.2, each time a control flow pattern is started, a
new data environment is instantiated and passed to that instance. Hence, in order
to support multiple instances patterns, it suffices to start each instance with a copy
of the passed data environment with a new unique id.

4.3.2 Synchronisation Patterns

The second category of control flow patterns contains the so-called “synchronisation
patterns”. This category consists of patterns that have several incoming branches
that need to be merged.

Synchronisation patterns distinguish themselves from standard patterns because
they require the specification of a data merging strategy. This merging strategy is
necessary to merge the data environments of the synchronisation pattern’s incoming
branches, as we explained in Section 4.2.

72

4.3 Patterns for Service Orchestration

Synchronisation patterns also differ from standard patterns, because these pat-
terns have multiple incoming branches. These incoming branches are not neces-
sarily originating from the same preceding split pattern (such as the Parallel Split
pattern). Moreover, it is also possible that the branches of a split pattern are merged
by several different synchronisation patterns. Before presenting a scenario of such
a workflow example, we give the definition of the patterns involved. We already
gave the definition of the Sequence and Parallel Split pattern (see Section 4.3.1),
which we now extend with the following definition (according to [RtHvdAM06]):

• Synchronization: “The convergence of two or more branches into a single sub-
sequent branch such that the thread of control is passed to the subsequent branch
when all input branches have been enabled.”

Consider a scenario where several things need to happen before a plane can take
off. First of all, catering must supply the plane with the necessary food and
beverages, and the luggage of the passengers must be loaded. Furthermore, before
passengers can board, the plane must be cleaned and a flight attendant must check
whether all personnel are on board. Figure 4.8 shows a workflow diagram for this
example scenario.

 service: flightAttendant
 operation: check
 input: /
 output: /

+

 service: catering
 operation: supply
 input: flight
 output: /

LEGEND

gateway (and) activity

 service: luggageHandler
 operation: load
 input: flight
 output: /

 service: cleaningS
 operation: clean
 input: flight
 output: /

 service: cockpit
 operation: ready
 input: /
 output: /

 service: boarding
 operation: start
 input: flight
 output: /

+

+

+
control flow

Figure 4.8: Basic control flow patterns: Parallel Split followed by multiple synchronisation
patterns.

73

4 Patterns for Orchestration

In this example scenario, the services that need to be addressed are all regis-
tered services. Hence, the services do not need to be discovered as a reference is
available in the data environment that is used to start the workflow.

Figure 4.9 shows the sequence diagram of part of the workflow depicted in
Figure 4.8. We omitted the details of the actual service invocation and only show
the starting of the activity and the data environment that is returned as a result
of executing an activity. Furthermore, we only show the first activity (catering)
and the third activity (cleaning service) of the example. For conciseness, we also
omitted the retrieval and insertion of variables in the data environment.

When the parallel split is started, the data environment is passed to its outgoing
branches (only two in the sequence diagram). The outgoing branches of the Parallel
Split pattern are Sequence patterns consisting of the activities of the branches
followed by a Synchronization pattern. When the Sequence pattern is started, it
starts its first activity, and when the execution is finished (i.e., when the data
environment is returned), the Sequence pattern starts its second component, namely
the Synchronization pattern.

When all incoming branches of the Synchronization pattern have been enabled
(i.e., when the pattern is started as much time as it has incoming branches), the
data environments are merged and the resulting data environment is returned as a
result. Note in the diagram in Figure 4.9, we only show two out of four outgoing
branches of the Parallel Split pattern.

When the data environment is returned as a result of the execution of the
Synchronization pattern, the execution of the Sequence pattern is finished because
all its components have finished their execution. As a result, the data environment
is returned as a result of its execution. The Parallel Split pattern’s execution is
finished once it has received the data environments of all its outgoing branches
(i.e., of all Sequence patterns).

74

4.3 Patterns for Service Orchestration

:P
ar

al
le

l S
pl

it
<<

ba
ck

bo
ne

>>
:S

yn
ch

ro
ni

za
tio

n
1

<<
ba

ck
bo

ne
>>

:S
yn

ch
ro

ni
za

tio
n

2
<<

ba
ck

bo
ne

>>
:S

eq
ue

nc
e

1
<<

ba
ck

bo
ne

>>
:S

eq
ue

nc
e

3
<<

ba
ck

bo
ne

>>
:A

ct
iv

ity
 1

<<
ba

ck
bo

ne
>>

:A
ct

iv
ity

 3
<<

ba
ck

bo
ne

>>

st
ar

t(D
at

a
En

vi
ro

nm
en

t 1
)

st
ar

t(D
at

a
En

vi
ro

nm
en

t 3
)

st
ar

t(D
at

a
En

vi
ro

nm
en

t 1
)

st
ar

t(D
at

a
En

vi
ro

nm
en

t 3
)

D
at

a
En

vi
ro

nm
en

t 1

D
at

a
En

vi
ro

nm
en

t 3
st

ar
t(D

at
a

En
vi

ro
nm

en
t 1

)
st

ar
t(D

at
a

En
vi

ro
nm

en
t 3

)

D
at

a
En

vi
ro

nm
en

t 7
D

at
a

En
vi

ro
nm

en
t 5

D
at

a
En

vi
ro

nm
en

t 5

D
at

a
En

vi
ro

nm
en

t 7

st
ar

t(D
at

a
En

vi
ro

nm
en

t)

D
at

a
En

vi
ro

nm
en

t

Figure 4.9: Sequence diagram of the execution of the workflow depicted in Figure 4.8.

75

4 Patterns for Orchestration

4.3.3 Trigger Patterns

We discuss a third category of control flow patterns, namely “trigger patterns”.
The category of trigger patterns deals with workflow components that require an
external signal in order to start their execution. van der Aalst et al. [RtHvdAM06]
define two patterns for this category, namely the Transient Trigger and Persistent
Trigger pattern.

These group of patterns behave similarly to standard patterns concerning how
data flow is handled. These categories of patterns differ however, because trigger
patterns must be able to react upon receiving external events. In this section we
discuss one of those patterns, namely the Persistent Trigger, which is defined as:

• Persistent Trigger: “The ability for a task to be triggered by a signal from
another part of the process or from the external environment. These triggers are
persistent in form and are retained by the process until they can be acted on by
the receiving task. ”

We introduce a small example where the execution is triggered by the reception
of an external event. Consider the scenario where the pilot is waiting for the final
signal in order to take off. When the jet bridge has been removed, the pilot is
waiting from a signal of the ground crew in order to start moving the plane towards
the runway. When the plane departs, the steward on board can start explaining the
emergency procedures. A workflow description modelling this scenario is depicted
in Figure 4.10.

 service: pilot
 operation: takeOff
 input: /
 output: /

 service: steward
 operation: showEmergencyProcedure
 input: /
 output: /

LEGEND

activity
the activity can only continue
once an event has been caught

 service: groundCrew
 operation: removeJetBrige
 input: /
 output: /

control flow

Figure 4.10: Trigger patterns: Sequence pattern using a Persistent Trigger pattern.

Figure 4.11 depicts the sequence diagram for this workflow. For conciseness we
omit the actual service invocation and depict only the start of the activities and
the data environment that is returned as a result of the activities’ executions. For
the same reason, we also do not depict the retrieval and insertion of variables in

76

4.4 Patterns for Group Orchestration

the data environment.

The execution of this workflow is started by passing the data environment
to the Sequence pattern. This pattern executes its components (activities in this
example) consecutively. When the first activity has finished its execution, i.e., the
data environment is returned as a result, the second activity’s execution is started
with that data environment. As we can see in the figure, the execution of the
second activity is waiting for the reception of a signal. Once such a signal has
been received, the activity can start its computation (perform a service invocation),
and return the data environment as a result.

:Sequence :Activity 1 :Activity 2 :Activity 3

start(Data Environment)
start(Data Environment)

start(Data Environment)

start(Data Environment)

Data Environment

Data Environment

Data Environment
Data Environment

signal

<<backbone>> <<backbone>> <<backbone>> <<backbone>>

Figure 4.11: Sequence diagram of the execution of the workflow depicted in Figure 4.10.

4.4 Patterns for Group Orchestration

The increasing popularity of mobile devices fosters the omnipresence of services
in mobile environments. Software systems in a mobile environment often want to
manage a set of services that form a logical group and orchestrate the execution
of a particular process for all its members. To orchestrate a group of services,
abstractions are required which allow control over the execution in a way that
transcends the individual process of a single member. In this section we present
high-level abstractions for group orchestration as a new set of workflow patterns.
The description of these abstractions adheres to the categories and criteria we
presented in Section 2.3.4.

In the previous sections of this chapter we used examples that are inspired
by the iMPASSE application we presented in Section 2.3.1. This scenario merely

77

4 Patterns for Orchestration

focusses on the orchestration of services, which addresses both the control flow
and data flow of an application. In this section we base the examples upon the
more sophisticated SURA application. The scenario we described in Section 2.3.1
introduced several group-related concepts, such as the need to intensionally describe
the services the process will interact with. The SURA application also exemplifies
the need for addressing a group of services and synchronising the application for
all these services.

4.4.1 Definition of Group Membership

1) Intensional Definition

The description of the services can be either achieved by enumerating all of them
(extensional description) or by describing all properties those services must fulfil
(intensional description). Deciding which services to interact with in a dynamically
changing environment is hard when reasoning extensionally about it, as the set
of services can vary over time. In these kinds of environments it is opportune to
provide intensional descriptions for those services. Intensional descriptions abstract
away the precise number of services during interaction and let services maintain
anonymity during this interaction. A group should be able to specify a descrip-
tion such that not only services of the same type, like temperature services, but
also more sophisticated characterisation of members can be achieved. In particular,
there is a need for intensional descriptions of services such as “the service I last
used”, “my favourite service”, or “all temperature services that are nearby and have
an accuracy of more than 95%”. The service types that can be used to describe a
service (see Section 4.1) is one way of specifying intensional descriptions. In order
to support more complex intensional descriptions, we use the logical coordination
language C R I M E [MSP+07].

We choose for C R I M E because this logic coordination language offers a full
fledged first order predicate logic. Moreover, this language is specifically sculpted
towards networks where volatile connections are present. We did not chose for
semantic web languages, such as OWL [BvHH+04], since these languages are
based upon description logics and are not as expressive as logic query languages.
Semantic web languages are however useful to define hierarchical relations of the
world. Inspired by this idea, the logic coordination language C R I M E has been
extended with the notion of lists and records such that composition and structur-
ing of contextual data are supported [Vas07]. Therefore, JSON syntax [Cro06] is
introduced to specify the meaning of attributes and the interrelation between them.

78

4.4 Patterns for Group Orchestration

By introducing records in C R I M E context information can be defined in a generic,
structured way that is flexible and adaptable to the constantly changing parameters
and the context information described by the record itself.

C R I M E The Fact Space Model [MSP+07] of C R I M E provides a logic coordina-
tion language for reasoning about context information that is represented as facts
in a federated fact space. Concretely, facts are locally published by applications
and transparently shared between nearby devices as long as they are within com-
munication range. The Fact Space Model equips applications with at least two fact
spaces, a “private” fact space, and one or more interface fact spaces. Facts residing
in the private fact space are not shared, whereas facts residing in an interface fact
space are exchanged with other applications in connection range.

Applications have the ability to react upon the appearance of facts, by making
use of rules. The conditions to adapt an application are described by making use
of the logic coordination language C R I M E of which the rules record the causal
link between facts and the conclusions that may be drawn from them. These links
are used in the Fact Space Model to reverse the effects a fact had on the system,
when the fact is retracted. In the Fact Space Model both the assertion and the
retraction of facts have consequences. Because facts are retracted when the device
that published them disconnects, the Fact Space Model offers fine-grained support
to deal with the effects of this disconnection.

The logic language uses the forward chaining strategy for deriving new con-
clusions as this data-driven technique is very suitable for the event-driven nature
of C R I M E. Because we describe workflow patterns that allow orchestration in
nomadic networks where lots of events (connections, disconnections, etc.) occur,
using C R I M E is beneficial.

The federated fact space used by CRIME ensures that the view of an application
on its environment is kept consistent by translating changes in the environment
into the assertion or retraction of facts shared by colocated devices. As we already
mentioned, applications have the ability to react on changes in their environment
by specifying rules:

1 private<-room(plane, silent).
2 private<-room(airportBuilding, general).
3
4 :switch(?profile),
5 profile(?profile) :-
6 public<-location(myID, ?room),
7 private<-room(?room, ?profile).
8
9

79

4 Patterns for Orchestration

10 :switch(default) :-
11 not profile(?p).

Listing 4.1: C R I M E: facts and rules to change the profile of a mobile phone.

The rule shown in Listing 4.1 is used to change the profile of a mobile phone.
Consider an air hostess who wants the profile to change automatically to “silent”
when she is on a plane, and to change to “general” when she is in the airport
building. The C R I M E rule above implements this behaviour:

• Definition of facts: On line 1 and line 2 we define two facts which specify
the desired profile for a certain location. As can be seen in the example, facts
can be quantified to denote the fact space in which they should be found or
asserted. Both facts are published in the private fact space, meaning that
these facts are not interchanged with fact spaces residing on nearby devices.

• Definition of rules: Rules can be seen as a mapping from (a combination of)
facts onto a conclusion. Conclusions may consist of the addition of new facts
to the fact space or the execution of application-specific actions (preceded by
a colon symbol). Application-specific actions are written in the base language
implementing the Fact Space Model (i.e., JAVA).
We define a first rule on lines 4-7. This rule has two prerequisites (lines 6-7),
which state that a fact of type location must be published in the public
fact space, and that a fact of type room must be available in the “private”
fact space. Moreover, the values of the variable room must be identical for
both facts. The rule is triggered when the mobile phone enters a location for
which the user has made her preferences clear (in the example, a plane or
the airport building). Two conclusions need to be made for this rule (lines
4-5): when the rule is triggered, the application-specific action switch is
executed and a private profile fact is added. Note that the location
facts are not defined in Listing 4.1. These types of facts are published by
the infrastructure of the airport and shared with nearby devices.
The second rule (defined on lines 10-11) is used to ensure that whenever
no desired profile is specified for a certain location, the “default” profile is
chosen.

As we already mentioned, C R I M E is sculpted to deal with the characteristics of
a mobile environment. One of these characteristics is that connections are volatile,
therefore intermittent disconnections happen frequently. Recall that facts from a co-
located device are retracted when the device is disconnected and reinserted when
it reconnects at a later time. Although care has been taken to optimise the match-
ing phase of the inference engine by making use of the Rete algorithm [For82],

80

4.4 Patterns for Group Orchestration

such removals and reinsertions of facts remain relatively costly. Therefore, C R I M E

implements an optimisation, known as “scaffolding the Rete network”, specifically
geared towards the way the coordination language deals with volatile connections.
By introducing causal links, constant time retractions are supported. Small scaled
test have shown that this optimisation performs significantly better than the normal
Rete algorithm [SP07]. Where the normal Rete algorithm slows down when used
extensively, the optimised version does not.

Now that we introduced C R I M E, we present how this logic coordination lan-
guage can be used to describe a group of services.

Service Descriptions We support both types of group descriptions: extensional
and intensional. First of all, it is possible to instantiate a group with a set of objects.
These objects can be either references to the services (e.g., the fans of festival’s
headliner), or just plain objects (for instance, all ids of those fans). Additionally,
we allow intensional description of the group members by either using a service
type or by writing a logical expression.

Listing 4.2 shows an example of an intensional description expressed using
a logical expression. This logical expression is triggered for all facts festi-
val_visitor for which a fact fan_info with the same id is available. More-
over, the band should correspond to the band for which the fact band_info
states that it is the headliner.

festival_visitor(?id),
fan_info(?id, ?band),
band_info(?band, "headliner").

Listing 4.2: Intensional description of a group.

In Figure 4.12 we depict the federated fact spaces of two fans and the federated
fact space residing on the festival’s infrastructure who are connected in a mobile
ad hoc network. Those fact spaces consist of quantified facts which denote the
fact space the fact belongs to. The different kinds of fact spaces we support
are “private”, “public” and “shared”. Private facts are not exchanged between
colocated devices, whereas public ones are. In order to limit the exchange of
facts between colocated devices, we added a third type of fact space “shared”.
Facts that are published in this fact space are only exchanged to fact spaces who
have subscribed to that type of facts. In our example, the infrastructure of the
festival is interested in a lot of information of the fans, for instance, the facts
of type festival_visitor and fan_info, whereas fans are, in general, not

81

4 Patterns for Orchestration

private<-age("PP3489", 23)

shared<-fan_info("PP3489", "Kasabian")
shared<-fan_info("PP3489", "Foo Fighters")

shared<-festival_visitor("PP3489")

private<-age("PP1721", 25)
public<-fan_info("PP1721", "Kasabian")
shared<-festival_visitor("PP1721")

public<-fan_info("PP1721", "Kasabian")

 private<-band_info("Kasabian", headliner)

 public<-fan_info("PP1721", "Kasabian")
 shared<-fan_info("PP3489", "Foo Fighters")
 shared<-fan_info("PP3489", "Kasabian")
 shared<-festival_visitor("PP3489")
 shared<-festival_visitor("PP1721")

FACT SPACE 1 FACT SPACE 2

FACT SPACE 3

Figure 4.12: Federated fact spaces of colocated devices.

interested in those published facts of other fans. Therefore, the facts that are
published in the shared fact space are only asserted in the federated fact space of
the infrastructure (fact space 3 in Figure 4.12).

2) Arity Decoupling

Now that we have presented how the members of a group can be described, we
explain how a group can be modelled. We introduce the notion of a Group pattern
which consists of

• description of the group members;
• variable name to refer to an individual group member;
• sub workflow that must be executed for all group members.

Figure 4.13 depicts a Group pattern, which has “all fans of the headliner” as
its description and the symbol “fan” as its variable name. The sub workflow that
is wrapped by the Group pattern consists of a sequence of several activities, of
which only the first one is shown.

The notation that is used to denote a Group pattern is loosely based upon the
BPMN [Obj11]. The upper part of the notation is used for the group’s description
and its variable name, whereas the part at the bottom is used to wrap a sub work-
flow. The latter part of the notation is based upon BPMN’s group which is used
to group graphical elements that are within the same category.

Now that we have introduced the Group pattern, we describe how the execution
of this pattern takes place. When the group pattern is started, first all services
satisfying the group’s description need to be retrieved. Once these services are
retrieved, the incoming data environment is copied for each of these services. This

82

4.4 Patterns for Group Orchestration

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

...

LEGEND

activity

control flow

group

Figure 4.13: Example of a Group pattern.

way, each member of the group has its own data environment where local changes
can occur. In order to access the specific service (member) for which the sub
workflow is executed, a reference to the service is added in the data environment
used to start each individual instance of the sub workflow. Afterwards, the sub
workflow that is wrapped by the Group pattern, is started with each of these data
environments. Note that each instance has its own copy of the sub workflow (for
more details we refer to Chapter 6). This is depicted in Figure 4.14.

:Backbone :Data Environment :Group :Sequence

loop i=1..N

start(Data Environment)

findServices(description)

[service1, … , serviceN]

ack

insert(var, servicei) getCopy()

seq

start(Data Environment)

<<backbone>> <<backbone>> <<backbone>> <<backbone>>

seq :Sequence
<<backbone>>create

Figure 4.14: Sequence diagram of the execution of the workflow depicted in Figure 4.13.

Please note that the sequence diagram in Figure 4.14 is not complete: we do
not show what happens when the execution of the sub workflow (the Sequence
pattern) is finished.

Once the execution of the Group pattern is started, it is possible that the back-
bone discovers a new service that satisfies the group’s description. In this case, a
new member is added to the group and the sub workflow wrapped by the group

83

4 Patterns for Orchestration

is started once more. Note that this only applies when an intensional description
(type tag or logical expression) was given. However, sometimes this behaviour is
not wanted. Therefore, we introduce the notion of a snapshot group [VC08], where
the number of services communicated with is fixed. Unlike a normal group, such
a snapshot group does not allow new members to join the execution once started.
Note, however, that once the snapshot group is made, members of the group can
still disconnect, upon which can be reacted in an appropriate way, as we explain
in Section 4.5.

3) Dynamic Modification

It is possible to redefine the members of a group when its execution is ongoing.
For instance, it is possible to restrict the members of a group by filtering out those
members that do not satisfy a certain condition. The Filter pattern only allows the
instances who satisfy the given condition to continue their execution.

Recall the nomadic application, called SURA, that addresses a group of fans at
a festival (see Section 2.3.1). The application is initially executed for all fans of
festival’s headliner. However, after being asked if they are interested in participating,
the members of the group are restricted to only those whom expressed their
enthusiasm. This is depicted in Figure 4.15, where the condition of the filter will
verify the value of the variable interested in the data environment.

interested == yes

...

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

LEGEND

activity
control flow

group

condition

filter

Figure 4.15: Restricting the members of the group by using a filter.

4.4.2 Synchronisation Mechanisms

The introduction of group orchestration gives rise to more advanced synchronisa-
tion patterns. The inherent volatile connections of the network cause communica-

84

4.4 Patterns for Group Orchestration

tion partners to disconnect making full synchronisation not always possible. For
instance, synchronisation should be able to succeed when only partial results are
returned (after the first result, after a number of results, after some time, etc.).
In this section we elaborate on the different synchronisation mechanisms needed
to orchestrate a group in a nomadic network. All of these synchronisation mech-
anisms do not only have an influence on the execution of the sub workflow for
each group member, they are also reflected on the group itself.

In this section we describe four patterns that enable group synchronisation,
namely a Barrier, Cancelling Barrier, Group Join, and Synchronised Task pattern.
Those patterns have the following criteria in common:

• A condition is given to specify when the synchronisation may succeed. All
individual instances of which the execution was blocked, can continue their
execution the moment the condition is satisfied.

• When the given condition is fulfilled, it is possible that instances that reach
the synchronisation at a later point in time should not continue their execu-
tion. Therefore, it should be possible to state whether or not a cancellation
should take place.

• It is possible that when the condition is fulfilled, a specific task (sub work-
flow) needs to be executed once.

• When such a one-time task is specified, a merging strategy can be defined
to specify which data must be available during the execution of that task.

In the remainder of this section, we first elaborate on the conditions that are used
to instantiate group synchronisation patterns. Thereafter we describe four specific
synchronisation patterns which implement (a subset of) the criteria mentioned
above.

1) Conditions used by Group Synchronisation Patterns

All group synchronisation patterns are instantiated with a certain condition, such
as “after 10 seconds”, “when all instances have succeeded”, or “when 90% of the
instances have succeeded”. Such a condition can be either classified as a time con-
straint, a quota constraint, or a combination of both. We define two different kinds
of time constraints, namely a deadline and a duration constraint. A deadline is a
condition which is fulfilled at a certain moment in time, whereas a duration con-
straint is fulfilled a predefined time after the synchronisation pattern is reached for
the first time. We also distinguish two kinds of quota constraints: percentage and

85

4 Patterns for Orchestration

amount. The amount and percentage condition take as argument a number and are
satisfied when that number, or that given percentage of instances respectively, has
reached the synchronisation. It should be possible to combine the above conditions
using logical expressions, such that it is possible to have a constraint like “when
one instance has reached the synchronisation pattern, or after 60 seconds”. This list
of constraints is not complete: other user-defined constraints are possible.

2) Barrier and Cancelling Barrier Pattern

We now present two novel patterns that allow synchronisation of individual in-
stances of group members by blocking their execution until a specified condition
is fulfilled. When the execution of an individual instance of a group member
reaches a Barrier, the condition of the pattern is verified. When the condition
is not yet fulfilled, the execution of that instance is blocked. At the moment the
condition is fulfilled, all instances that were blocked resume their execution. Figure
4.16 shows a Barrier pattern with a time constraint.

description: all fans of headliner
variable name: fan

20:30

 service: fan
 operation: show
 input: discography
 output: selection

......

LEGEND

activity

control flow

group

condition

barrier

Figure 4.16: Synchronisation: the Barrier pattern.

The difference between a (normal) Barrier and a Cancelling Barrier pattern is
explained by the way they treat instances that arrive at a barrier of which the
condition is already fulfilled (i.e., the “cancellation” criteria mentioned earlier).
Individual instances of members that arrive later at a normal barrier continue their
execution without waiting. On the other hand, when a Cancelling Barrier pattern is
used, only the blocked instances will execute the remainder of the workflow after
the barrier. The execution of instances that reach the Cancelling Barrier pattern
after these blocked instances’ execution is restarted are cancelled.

86

4.4 Patterns for Group Orchestration

Remark that a Cancelling Barrier pattern, by definition, has an influence on the
amount of members of the group. Once the condition of the Cancelling Barrier is
fulfilled, the blocked instances of the individual members continue their execution.
From that moment on, the amount of members of the group is restricted to those
that were able to continue their execution.

...

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

...

description: all fans of headliner
variable name: fan

...

ref2fan

... service: fan
 operation: show
 input: discography
 output: selection

...

ref1fan

...

LEGEND

control flow group

condition

cancelling
barrier

activity
data environment

20:3020:30

Figure 4.17: Synchronisation: execution of a Cancelling Barrier pattern.

In the SURA application, fans of the headliner are allowed to vote for their
favourite songs until half past eight. All votes that are received afterwards are not
taken into consideration. Figure 4.17 depicts this part of the application, which
is modelled using a Cancelling Barrier pattern. This figure shows the execution
of this workflow for two instances (i.e., for two fans). As we can see in the
picture, the first instance (corresponding the service with reference ref1) has
already passed the Cancelling Barrier pattern, and a second instance just reaches
the pattern. However, as the Cancelling Barrier’s condition is already satisfied
and the blocked instances (amongst other the first one, depicted on the left hand
side) have already continued the execution of the sub workflow after the pattern.
Therefore, the execution of the second instance is terminated.

3) Group Join Pattern

In order to terminate the execution of the group pattern both control flow and data
flow must be merged. We introduce a Group Join pattern that allows managing
how control flow and data flow are merged. The default merging strategy used

87

4 Patterns for Orchestration

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: playlist
 output: /

......

playlist

ref1fan

...

...

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: playlist
 output: /

......

playlist

ref2fan

...

...

23:00 23:00

(a) Execution of two instances of individual group members that reach the Group Join pattern.

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: playlist
 output: /

...

...

...

playlist

...

23:00

(b) After the execution of the Group Join pattern.

LEGEND

activity

control flow

group

condition

data environment

(c) Legend.

Figure 4.18: Synchronisation: a Group Join pattern to terminate the group.

to merge the data environments of all instances is “accumulating all values for
each variable”, one of the merging strategies proposed in Section 4.2. However,
it is often wanted to specify another merging strategy, which can be done upon
instantiation of the Group pattern.

A Group Join pattern is instantiated with both a condition and a merging strategy.
Once this condition is fulfilled, the control flow of all individual instances is
merged such that the remainder of the workflow pattern after the Group pattern
is executed only once. Therefore, a Group Join pattern is, by definition, always
cancelling, meaning that instances that reach the pattern after its condition is
fulfilled, will not be able to continue their execution.

In Figure 4.18 we show how both control flow and data flow are merged to
terminate the execution of a group pattern. Figure 4.18(a) depicts two running
instances of individual group members where both members have reached the end
of the Group pattern. The workflow depicted in Figure 4.18(b) represents the state

88

4.4 Patterns for Group Orchestration

of the execution where the Group Join pattern’s condition (in this example the
deadline 23:00) is met and the execution of the Group pattern is finished. As
we can see in the figure, only one single instance continues the execution of the
remainder of the workflow, with a merged data environment without the variable
name, used to instantiate the Group pattern. Just as synchronisation patterns (see
Section 4.3.2), a merging strategy specifies how the data environments must be
merged (for instance, by accumulating all values for a single value in a collection).

Note that we do not depict the group join pattern explicitly, as it is the only
place the pattern is allowed.

4) Synchronised Task pattern

In this section we present the notion of a Synchronised Task, a sub workflow that
only needs to be executed once for the entire group at a specific moment. In
essence, each member of the group executes its own instance, but there should be
provisions to allow a single task to be executed once for several or all members
of the group. Therefore, a Synchronised Task is, by definition, always cancelling,
meaning that instances that reach the pattern after the condition is fulfilled, will
not be able to continue their execution.

A Synchronised Task starts the execution of its wrapped sub workflow once
a given condition is fulfilled. In Figure 4.19 we show the functionality of the
Synchronised Task, that is depicted as a grey box wrapping a sub workflow (in
this example, one single activity). This figure shows the workflow that models
part of the SURA application: sending the accumulated votes of all fans to the
headliner at nine o’clock. Upon receiving all collected votes, the headliner decides
upon the final playlist, which is sent to all fans who voted.

Figure 4.19(a) depicts two running instances of individual group members (i.e.,
two fans), which have both reached the Synchronised Task pattern. Because the
Synchronised Task pattern’s condition is not yet fulfilled (the deadline 21:00 is
not expired), the instances are blocked. Once the condition is met, the execution
of the blocked instances can continue. To this end, the data environments of those
instances need to be merged (i.e., all votes selection need to be accumulated),
and the variable name that was used to instantiate the Group pattern needs to be
removed.

The resulting data environment is used to start the execution of the sub workflow
that is wrapped by the Synchronised Task pattern, as is depicted in Figure 4.19(b).
The sub workflow, a single activity in this example, shows the accumulated votes
to the headliner who decides upon the final playlist.

89

4 Patterns for Orchestration

In Figure 4.19(c), we see that the Synchronised Task’s sub workflow is termi-
nated. Before continuing the remainder of the workflow after the Synchronised
Task, the incoming data environments of the instances of the individual group
members need to be restored, and updated with additional variable bindings. In
this concrete example, a new binding is added for the variable playlist.

Figure 4.19(d) depicts the state of the workflow where the two instances of
the individual group members execute the remainder of the workflow after the
Synchronised Task pattern with their own data environment. As we can see, these
data environments are the ones of Figure 4.19(a) with an extra variable binding
for the variable playlist.

4.4.3 Relation to Existing Research

van der Aalst [RtHvdAM06] describes multiple instances patterns which wrap part
of a process that needs to be instantiated multiple times. These patterns are sup-
ported by YAWL [vdAtH05]. In YAWL it is possible to add new instances during
the execution of the “multiple instances without a priori run-time knowledge” pat-
tern. However, the synchronisation mechanisms that are supported by YAWL are
rather restricted. The only synchronisation mechanism YAWL supports, is used to
terminate the execution of the multiple instances pattern. There are no mechanisms
like the barriers we propose provided to synchronise the execution of all instances
inside the multiple instances pattern. Moreover, there is no support for the syn-
chronised task abstraction we presented. This behaviour can be modelled in YAWL
by defining a multiple instances pattern, followed by an activity or sub workflow
preceding a second multiple instances pattern. The disadvantage of this approach
is that contextual information, i.e., the data for which the first multiple instances
pattern was started, is discarded. By introducing a Group pattern and more ad-
vanced synchronisation patterns, specifically sculpted towards group orchestration,
modelling workflows for a group of services is more straightforward.

In the web services community, the notion of a service group [MSB12] is
introduced to denote a heterogeneous collection of web services that satisfy a
given constraint. Such a service group only consists of fixed web services that
are known beforehand (by means of a URL). Arity decoupling is supported as
services can be added or removed from the service group, causing the service
group registration to notify requestors of modifications to that service group. This
abstraction is similar to the Group pattern we described in this chapter, but is not
suited to function in dynamic networks where services are not necessarily known
a priori. Moreover, no synchronisation mechanisms are provided to control the
execution of such a service group.

90

4.4 Patterns for Group Orchestration

description: all fans of headliner
variable name: fan

... ...

 service: headliner
 operation: show
 input: selection
 output: playlist

selection [1, 2]

fan ref1

description: all fans of headliner
variable name: fan

... ...

selection [3, 8]

fan ref2

21:00 21:00

 service: headliner
 operation: show
 input: selection
 output: playlist

(a) Execution of two instances of individual group members that reach the Synchronised Task pattern.

description: all fans of headliner
variable name: fan

...

 service: headliner
 operation: show
 input: selection
 output: playlist

[1, 2,
3, 8]selection

...

21:00

(b) Execution of the Synchronised Task pattern
(part I)

description: all fans of headliner
variable name: fan

...

 service: headliner
 operation: show
 input: selection
 output: playlist

[1, 8]playlist

[1, 2,
3, 8]selection

21:00

(c) Execution of the Synchronised Task pattern
(part II)

description: all fans of headliner
variable name: fan

...
playlist [1, 8]

selection [1, 2]

fan ref1

...

description: all fans of headliner
variable name: fan

...
playlist [1, 8]

selection [3, 8]]

fan ref2

...

21:00 21:00

 service: headliner
 operation: show
 input: selection
 output: playlist

 service: headliner
 operation: show
 input: selection
 output: playlist

(d) Execution of two instances of individual group members after the execution of the Synchronised
Task pattern.

LEGEND

control flow group

condition

sycnhronised
task

activity
data environment

(e) Legend.

Figure 4.19: Synchronisation: a Synchronised Task pattern executing a task once for all in-
stances.

91

4 Patterns for Orchestration

Ambient References [VDM+06] enable communication with a volatile group
of proximate objects by means of asynchronous message sends. Ambient refer-
ences are developed as a programming language abstraction for A M B I E N T TA L K

[VMG+07]. This language construct satisfies two of our criteria related to group
orchestration, namely intensional definitions (criterion 5) and arity decoupling (cri-
terion 6). Ambient references provide synchronisation mechanisms by providing
observers that are triggered either when the first service has answered or when all
services have responded. However, as communication with the set of services is
expressed by means of a single message send, redefinition of group members and
synchronised task abstractions do not make sense. Moreover, there are no mecha-
nisms provided to express failure handling on an ambient reference, for instance,
expressing the action that must be performed when a service disconnects.

4.5 Patterns for Failure Handling

In a dynamically changing environment, the challenge is to make the large hetero-
geneity of services co-operate and deal with their transient and permanent failures.
Before introducing the patterns for failure handling we ought necessary for orches-
tration in nomadic networks, we describe the possible types of failures and the
necessity for the automatic handling of failures.

4.5.1 Automatic Failure Handling

Orchestrating services can always cause failures, such as exceptions during a ser-
vice invocation or an error of the service. However, when dealing with services
in nomadic networks, the high dynamicity of the network gives rise to network
failures as well. Therefore, the following failures can happen frequently: a service
is unavailable, a service is unresponsive, or a service does not respond in time.

In Figure 4.20 we show an updated version of the lifecycle diagram of an
activity (that we presented in Figure 4.1). As we can see in Figure 4.20, three new
states are added:

• Service unresponsive: when a service is not online or disconnects during
interaction with it;

• Service timeout: when the result of the service invocation is not received
within a limited time period;

• Service exception: during the service invocation, the service invocation can
throw an exception.

The transitions between the different states that are coloured in blue are the
default compensating actions to recover from these types of failures.

92

4.5 Patterns for Failure Handling

Started

Service Invocation

start

Response Management

Service Discovery

Service type is given

Reference
to service
is given

Reference to service is obtained

Received result of invocation

Service Unresponsive

Service Exception

Service Timeout

Service is offline

No response received
after some time

Exception is caught

Restart

Retry

Retry

Figure 4.20: Lifecycle of an activity (version II).

• Restart: This compensating action will restart the execution of the activity.
• Retry: This compensation will retry to invoke the same service again.

In order to use these compensations for failures, the services must be stateless.
Note that a compensating action is not always successful, which can lead to indef-
initely trying to compensate for a certain type of failure. Therefore, we may want
to limit the number of times a compensating action is tried. Moreover, sometimes
it is opportune to provide other (more drastic) compensating actions than the ones
that are executed by default. To this end, we introduce patterns that allow to detect
specific kinds of failures and the specification of (a chain of) compensating actions
to overcome those failures.

4.5.2 Specification of Compensating Actions as a Failure Handling
Mechanism

We introduce a Failure pattern that wraps part of a workflow and imposes com-
pensating actions and strategies. Since we want to handle (transient) failures at
different levels of granularity, the failure pattern can be used on one specific

93

4 Patterns for Orchestration

activity or wrap an entire sub workflow. Russell et al. [RtEv05a] already classi-
fied workflow exception patterns used by workflow systems. The exceptions he
discusses are, for instance, constraint violation, deadline expiry and work item fail-
ure. The failures we support are specific to the (temporary) network failures that
can arise, although some basic exception handling can be achieved by using the
exception failure. Examples of events we capture in a failure pattern are disconnec-
tions, reconnections, timeouts and possibly service exceptions/errors, as explained
in Section 4.5.1.

LEGEND

activity

control flow

failure ?

disconnection failure

timeout failure

exception failure

service not found failure

start event

 service: trailer
 operation: getDuration
 input: belt
 output: time

 service: luggageS
 operation: getInfo
 input: flight
 output: trailer, belt

 service: gui
 operation: update
 input: flight, belt, time
 output: /

?

Figure 4.21: Failure pattern.

Figure 4.21 shows a workflow example where a Failure pattern is used to
wrap a sub workflow (the second and third activity of the Sequence pattern). In
order to avoid any confusion, remark that the notation that is used to depict a
Failure pattern resembles the BMPN [Obj11] notation for a transaction. However,
the Failure pattern we define, does not share the definition of such a BPMN
transaction.

Using this Failure pattern, specific types of failure events (disconnection, time-
out, exception, service not found) can be captured. For each of these failure events,
compensating actions can be specified to override the default failure handling be-
haviour. In Section 4.5.1 we already explained three possible compensating actions,
namely rediscover, restart and retry. Further possible compensations include:

• RestartAll: This compensating action restarts the entire wrapped sub work-
flow.

• Skip: This compensation just skips the failed activity.
• SkipAll: This compensation skips the entire wrapped sub workflow.
• Replace: This action replaces a failed activity by executing a sub workflow.

94

4.5 Patterns for Failure Handling

• Alternative: This compensation replaces upon failure of one activity the
entire wrapped sub workflow by executing another sub workflow.

• Wait: This compensating action is used in combination with one of the other
compensations, and will simply wait for a specified time before trying the
next compensating action.

These compensating actions can be divided in two categories, namely the com-
pensations that only have an effect on the failed activity and the ones that have
an effect on the entire wrapped sub workflow. The compensations that only affect
the failed activity are: Rediscover, Restart, Retry, Skip, Replace. The compensat-
ing actions RestartAll, SkipAll, and Alternative have an effect on the entire sub
workflow that is wrapped by the Failure pattern.

Chaining Actions to Handle Failures Application-Specifically

Because compensating actions are not always successful, we provide a way of
limiting the number of times each compensating action is tried. When a compen-
sating action has reached its maximum attempts, another (more drastic) one can be
tried. Consider the example of updating a screen at the airport with the necessary
information (flight number, belt number, estimated duration before luggage is on
the belt) so that passengers can retrieve their luggage. By using the Failure pattern,
application-specific compensating actions (instead of the default actions Rediscover
and Retry) can be specified, as is shown in Figure 4.22.

 service: trailer
 operation: getDuration
 input: belt
 output: time

 service: luggageS
 operation: getInfo
 input: flight
 output: trailer, belt

 service: gui
 operation: update
 input: flight, belt, time
 output: /

RETRY3

SKIP
1

 service: luggageS
 operation: notResponding
 input: trailer
 output: time

60

LEGEND

activity

control flow

failure

disconnection failure

timeout failure

start event

 REPLACE

Figure 4.22: Failure pattern: overriding default failure handling strategies with more specific
compensating actions.

95

4 Patterns for Orchestration

The second activity of the Sequence pattern that is depicted in Figure 4.22
is wrapped with a Failure pattern. This Failure pattern is used to specify more
specific compensations in case a disconnection or timeout failure occurs. When
the second activity has a timeout (after 60 seconds no reply is returned), we try
to resend the message three times. If this is still unsuccessful we move on to the
next compensating action, which just skips this activity (so no time gets displayed
on the screen). In case of a disconnection, however, the failed activity is replaced
with another sub workflow (in this example, a single activity). The activity that
replaces the failed activity will contact the luggage service and inform them that
the trailer is not responding. This luggage service will give an estimated duration
(calculated based on the location of the trailer), such that the third activity of the
Sequence pattern is able to show an estimated time on the screen.

Please note that in this example compensating actions are only specified for
two types of failures, namely for a disconnection and a timeout. However, the
default compensations still apply: for example, when an exception occurs during
interaction with the trailer, the service will be invoked again (the compensation
Retry is executed). Moreover, these default compensating actions apply for all the
activities in the sub workflow: not only the three activities of the Sequence pattern,
but also the activities used by compensating actions (for instance, the activity of
the Replace compensation).

Nesting of Failure Patterns to Enable More Specialised Failure Handling

Failure patterns can be nested, so different strategies can be formulated on different
levels of granularity. A whole workflow can be surrounded by a failure pattern
specifying “after a disconnection, wait 20 seconds and then try to rediscover" and
smaller parts of this workflow can be wrapped with more specific failure patterns,
which possibly override (shadow) the behaviour imposed by the outermost failure
pattern. An inside-out policy is used to determine the compensations that must be
executed for an occurred failure event.

Figure 4.23 shows the nesting of Failure patterns. In this example, more accurate
behaviour is required in case an exception occurs. When an exception is caught
during the execution of the first activity of the Sequence pattern, the compensating
action that is executed is the Alternative compensation. This action will put the
message “Technical problem” on the screen next to the luggage belt. However,
when an exception is caught during the execution of the second or third activity of
the Failure pattern, another compensation is executed. In that case, the invocation
of the service is retried after waiting for 60 seconds. Remark that in this particular
example, no number is used to indicate the number of attempts that should be

96

4.5 Patterns for Failure Handling

 service: trailer
 operation: getDuration
 input: belt
 output: time

service: gui
operation: update

input: flight, belt, time
output: /

RETRY3

SKIP

60

 service: luggageS
 operation: getInfo
 input: flight
 output: trailer, belt

WAIT60

RETRY

LEGEND

activity

control flow

failure

exception failure

timeout failure

start event

1

 service: gui
 operation: update
 input: "Technical problem"
 output: /

ALTERNATIVE

Figure 4.23: Nesting of Failure patterns to acquire more accurate failure handling strategies.

executed, which will result in indefinitely retrying to invoke the service that threw
the exception.

4.5.3 Failure Handling for Group Orchestration

As mobile environments are liable to volatile connections, ways to detect and
handle failures must be available. In this section we present the influence of this
failure handling mechanism on the novel abstractions for group orchestration we
presented in Section 4.4. We distinguish three different compositions for failure
handling with respect to group orchestration, which we depict in Figure 4.24.

97

4 Patterns for Orchestration

...

description:
variable name:

...

(a) Composition 1: Failure pattern inside the Group pattern and wrapping (part of) the
Group pattern’s sub workflow.

...

description:
variable name:

...

(b) Composition 2: Failure pattern wrapping the Group pattern.

...

description:
variable name:

...

(c) Composition 3: Failure pattern outside the Group pattern and wrapping (part of) the
Group pattern’s sub workflow.

LEGEND

activity

control flow
group failure

(d) Legend.

Figure 4.24: Different compositions of failure handling for group orchestration.

98

4.5 Patterns for Failure Handling

We summarise the effects of compensating actions, depending on the composi-
tion of failure handling for group orchestration that is used. Recall that compen-
sating actions can be divided into two categories:

1. Compensations - Category 1: This category contains the compensating ac-
tions that only affect the execution of the failed activity. This category con-
sists of the compensations Rediscover, Restart, Retry, Skip, and Replace.

2. Compensations - Category 2: This category of compensating actions contain
those compensations that affect the entire wrapped sub workflow. The com-
pensating actions that are included in this category are RestartAll, SkipAll,
and Alternative.

In Table 4.2 we describe the effect these compensating actions have, depending
on the composition that is used. For each of these compositions, and each of the
categories for compensation, we describe what happens when a failure is detected
during the execution of an activity that is part of the group’s sub workflow.

Composition Compensations Compensations
Category 1 Category 2

Composition 1
Figure 4.24(a)

The compensation only
affects the failed activity
(and hence, only the ex-
ecution of a single group
instance).

The compensation only
has an effect on the ex-
ecution of an individual
group instance.

Composition 2
Figure 4.24(b)

The compensation only
affects the failed activity
(and hence, only the ex-
ecution of a single group
instance).

The compensation has an
effect on the execution
of the entire group (i.e.,
on the execution of all
group instances).

Composition 3
Figure 4.24(c)

The compensation only
affects the failed activity
(and hence, only the ex-
ecution of a single group
instance).

The compensation has an
effect on the execution
of the entire group (i.e.,
on the execution of all
group instances).

Table 4.2: Effect of a compensating action depending on the composition that is used for
failure handling for group orchestration.

Before elaborating on these three different compositions, we introduce new types
of failure events and new compensating actions.

99

4 Patterns for Orchestration

1) Dedicated Failure Handling for Groups

We extended the failure handling support in order to distinguish between a failure
that occurred during the execution of a group member (service), or another ser-
vice, such that all failures have a participant variant. For instance, we make the
distinction between a normal disconnection and a participant-disconnection failure.

Consider the following example scenario: the festival committee wants to organ-
ise a poll to inquire the festival visitors about the organisation of the festival. To
this end, during the last concert each festival visitor receives this poll on his/her
smartphone. The festival committee receives the results of this inquiry once the
last band has finished their performance. Therefore, the results of all festival visi-
tors are accumulated before sending. In order to stimulate the festival visitors to
fill in the questions, a reward (free drink tickets) is given after the results have
been received. This reward is given by sending a special code to the smartphones
of the visitors who participated. Figure 4.25 depicts the workflow modelling this
scenario.

description: FestivalVisitor
variable name: visitor

 service: festivalCommittee
 operation: show
 input: results
 output: /

 service: visitor
 operation: show
 input: poll
 output: result

01:00

 service: visitor
 operation: show
 input: code
 output: /

DROP
P REPLACE

 service: prTeam
 operation: show
 input: results
 output: /

LEGEND

activity

control flow group

failure

disconnection
failure

participant-
disconnection
failure

condition

sycnhronised
task P

Figure 4.25: Failure detection: normal failures versus participant failures.

100

4.5 Patterns for Failure Handling

In this example scenario, we would like to specify a different compensating
action when the mobile device of single visitor disconnects, in contrast to a dis-
connection of the server of the festival committee.

Figure 4.25 shows the difference between a (normal) disconnection failure and
a participant-disconnection failure. When a disconnection happens during the inter-
action with the mobile device of an individual festival visitor, the compensating
action will just drop that festival visitor from the members of the group. On the
other hand, when a disconnection occurs when communicating with the server of
the festival committee, the compensation will send a message to the members of
the festival’s PR team.

Besides the participant-failures we also introduce two additional group-specific
compensating actions, namely Drop and Wait-and-Resume. Both compensating ac-
tions can only be used in combination with a participant-failure (a failure that af-
fects a group member or the communication with that member). The Drop compen-
sating action drops the member from the group. The second compensating action,
Wait-and-Resume, can be used in combination with a participant-disconnection or
a participant-not-found failure. When such a failure occurs, the activity where that
failure occurs is stored, such that the execution can be resumed when that specific
group member (re)connects.

These two group-specific compensating actions belong to a dedicated category
of compensating actions that affect the execution of the group. In case of the Drop
compensation, the number of participants is reduced, and the activities following
the failed activity are all cancelled. Hence, the execution of the group is affected,
and the Drop compensation also has an influence on the execution of the individual
group instance by cancelling the remainder of its execution. The Wait-and-Resume
compensating action has an influence on the execution of an individual group
instance.

2) Failure Handling for Group Orchestration - Composition 1

In this section we describe the first composition where a Failure pattern is defined
inside a Group pattern and wraps (part of) the Group pattern’s sub workflow (cf.,
Figure 4.24(a)). This composition is used when compensating actions must only
affect the execution of an individual group instance.

Figure 4.26 depicts the situation where a sub workflow is wrapped by a Failure
pattern. In case a disconnection occurs, the compensation RestartAll is executed,
and when a timeout is detected, Retry is executed as the compensation. As we

101

4 Patterns for Orchestration

already mentioned, RestartAll is a compensation of category 2 (a compensation
which influences the sub workflow that is wrapped by the Failure pattern), whereas
Retry is classified as a compensation of category 1 (a compensation which only
affects the failed activity).

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

...

LEGEND

activity

control flow group

 service: fan
 operation: show
 input: discography
 output: selection

 RESTART ALL2

failureparticipant-
disconnection
failure

condition

filter

Env.interested == yes

participant-
timeout
failure

P P

RETRY

Figure 4.26: Failure Handling for Group Orchestration - Composition 1.

In the example, when a timeout happens during communication with a service,
the failed activity is retried, only for the individual group instance for which the
failure occurred. In case a disconnection failure occurs, the RestartAll compensating
action is executed. Because the Failure pattern is defined inside the Group pattern,
this compensation only affects the execution of an individual group instance, i.e.,
the execution of the sub workflow wrapped by the Failure pattern is only restarted
for one instance. This is in contrast with the behaviour that is accomplished when
this Failure pattern is defined on the outside of the Group pattern, as we explain
in the following section. When using the failure pattern outside the group pattern,
compensating actions might (depending on the specific category) affect the group
as a whole, as we explain later.

102

4.5 Patterns for Failure Handling

3) Failure Handling for Group Orchestration - Composition 2

It is also possible to wrap the Group pattern itself with a failure pattern (cf., Figure
4.24(b)). When the Failure pattern is defined outside the Group pattern, the com-
pensating actions have either an effect on the execution of an individual instance
or on the execution of the entire group, depending on the type of compensation
that is specified.

Suppose we adapt the example we used earlier (Figure 4.26) such that the Failure
pattern is now placed outside the Group pattern instead of inside (see Figure 4.27).
When a disconnection failure occurs, the compensating action restarts the wrapped
sub workflow, in this case the Group pattern. So now, all instances of the group
would be cancelled and the execution of the entire group would be restarted. So in
this case, all fans would be contacted again and asked whether they want to vote.

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

...

 service: fan
 operation: show
 input: discography
 output: selection

Env.interested == yes

LEGEND

activity

control flow group

failureparticipant-
disconnection
failure

condition

filter

participant-
timeout
failure

 RESTART ALL2

P P

RETRY

Figure 4.27: Failure Handling for Group Orchestration - Composition 2.

103

4 Patterns for Orchestration

4) Failure Handling for Group Orchestration - Composition 3

This type of composition is a special case of the previous one, and is used when
different compensating actions need to be specified for different activities in the
Group pattern’s sub workflow (cf., Figure 4.24(c)).

Figure 4.28 depicts an example where a Failure pattern wraps a part of the
Group pattern’s sub workflow. In this example different compensating actions are
specified for different activities that are part of the Group pattern’s sub workflow.
In case a disconnection occurs for the Sequence’s first activity, the compensating
action Retry is executed. Because Retry is classified as a compensation of category
1, only the execution of a single group instance is influenced.

When a disconnection is detected during the execution of the Sequence’s second
activity, the compensation that is performed is RestartAll. This compensating action
is classified as a category 2 compensating action, and hence it influences the
execution of the entire group.

description: all fans of headliner
variable name: fan

 service: fan
 operation: show
 input: "vote?"
 output: interested

...

 service: fan
 operation: show
 input: discography
 output: selection

LEGEND

activity

control flow group

failureparticipant-
disconnection
failure

condition

filter

 RESTART ALL2

P

Env.interested == yes

 RETRY

P

Figure 4.28: Failure Handling for Group Orchestration - Composition 3.

104

4.5 Patterns for Failure Handling

4.5.4 Relation to Existing Research

There exists related work concerning the handling of both expected and unex-
pected exceptions in workflow systems. The exception patterns proposed by Russell
[RtEv05a] (work item failure, work item deadline, external trigger and constraint
violation) are already available in workflow systems and business process modelling
languages, such as BPMN [Obj11]. Russell et al. [RtEv05a] introduce several prim-
itives for failure handling, both on the level of a single work item2 and on the
level of a case (i.e., a workflow instance). Possible primitives for handling failures
at the work item level are restart, continue-execution, reallocate, force-complete.
Figure 4.29 depicts these primitives as transitions between the different states of a
work item (i.e., the dotted arcs connecting the states in the lifecycle diagram).

Figure 4.29: Failure handling at the level of a work item [RtEv05a].

The lifecycle diagram presented in Figure 4.29 presents the different states of
a work item. We consider a task (activity) as a service invocation, and, therefore,
the diagram presented here differs from the lifecycle diagram we showed in Figure
4.20. For instance, the states “offered”, “allocated”, and “started” of the work item
lifecycle correspond to the “service invocation” state of the activity’s lifecycle. The
lifecycle diagram of an activity we showed in Figure 4.20 is also more centred
around the discovery of services, and failures that can occur due to the volatile con-
nections that dominate a nomadic network. These differences explain the presence

2A work item is a runtime instance of an atomic task definition.

105

4 Patterns for Orchestration

of other failure handling primitives (such as rediscover) in the activity’s lifecycle
diagram.

Besides these failure handling primitives, Russell [RtEv05a] proposes three al-
ternatives for failure handling at the level of a case (i.e., workflow instance),
namely continuing the workflow case, removing the current case, and removing all
cases. The first alternative can be accomplished by skipping the activity that failed
whereas the second one can be modelled by wrapping the entire workflow with a
Failure pattern and specifying “skip all” as the compensating action that must be
executed in case of a failure. The third alternative cannot be modelled using our
failure handling mechanism, because a Failure pattern only affects the execution
of a single workflow instance.

As possible recovery actions, Russell identifies three possible actions: do nothing,
rollback to a specific point in the process, and compensate by performing specified
compensation actions. Our failure handling mechanism does not allow rollback as
a compensating action. In nomadic networks, where disconnections are warp and
weft, rollback of a process/task is not always possible, because the service that
performed a task might not be in range any more.

WS-BPEL [JE+07] offers the concept of a fault handler for handling exceptions.
A fault handler can be attached to a process, a scope or as a shorthand notation
on an invoke-activity and it is installed when its associated scope is started.

YAWL [vdAtH05] only has built-in support for failure handling for atomic tasks
(i.e., a single activity and not a sub workflow). In YAWL it is not trivial to ex-
press failure handling strategies over a sub workflow. Introducing a Failure pattern
that can specify compensations for failure events, enables a strong mechanism for
failure handling. These failure patterns can be nested to acquire more drastic com-
pensations and compensating actions can even be chained together, such that more
complex failure handling can be achieved.

Research to handling of expected failures has led to the development of transac-
tional workflows [SMA+97, SR93, AAA+96]. ConTracts [RS95] provides a failure
model for workflow applications by introducing so-called contracts. A contract is
a long-lived transaction composed of steps, where a script describes the order in
which these steps need to be executed. Each of these steps is associated with a
compensation step that undoes the effects of the execution step. Transactional steps
are rolled back, whereas compensation of a non-transactional step requires human
intervention. ConTracts proposes a coordinated transaction model that allows both
forward, backward and partial recovery when a failure event is signalled. Back-
ward recovery compensates steps of which the execution is completed, typically

106

4.5 Patterns for Failure Handling

in reverse order of their execution. Recovery can be executed up to the point that
forward execution can be resumed (typically along a path, different from the one
that caused the failure), in which case the recovery is only partial. The failure
handling we propose differs from the transaction mechanism that is proposed by
the ConTracts project. First of all, we allow the programmer to define application-
specific compensations, which do not require any human intervention. Furthermore,
we argue that rolling back execution steps is not always desirable and/or possible
in a nomadic network. In these networks, services can reside on mobile devices
that can go out of range at any moment in time. Hence, it is possible that the
when a task (i.e., a service invocation) fails, the roll back cannot be performed
because the service that was invoked is no longer in communication range.

OPERA [HA98] incorporates language primitives for exception handling and
their strategies into a workflow system. OPERA introduces the notion of spheres
that are used to categorise operations as units with transactional properties. When a
task fails during the execution of an OPERA workflow, the execution is stopped and
the execution is transferred to the installed exception handler. Exception handling
is specified by defining tasks and the control and data flow between these tasks.
In OPERA, each event must be managed separately and for every case affected by
the exception, a different exception handler must be triggered. The approach we
propose is very similar to the exception handling mechanism employed by OPERA.
For each type of failure event a (chain of) compensating action(s) can be specified.

Another way to specify exception handling strategies is by using event-condition-
action (ECA) rules, as seen in, for example, the exception language Chimera-Exc
[CCPP99]. The types of events that are defined by Chimera-Exc are data manip-
ulation events, temporal events, external events, and workflow events. The actions
supported by this exception language are either data modification primitives (for
instance, to modify the value of an object’s attribute) or workflow management
primitives (which can, for example, start a new task). Since maintaining transac-
tions in a mobile network where participants can disconnect indefinitely, rolling
back transactions, etc. can be problematic and is not ideally suited for the environ-
ment we are targeting.

Adaptive workflow research and workflow evolution research focus on the detec-
tion and handling of unexpected failures introduced due to the dynamic changing
of the workflow. ADOME-WFMS [CLK01] is an example of a project that pro-
vides both support for expected and unexpected failures where exception handlers
are specified using ECA rules. The compensating actions (like skipping, or repeat-
ing a task) that are supported by ADOME-WFMS can also be achieved using the
failure handling mechanism we describe. Moreover, we allow compensations to be

107

4 Patterns for Orchestration

chained, such that a cascade of compensating actions is executed in case a failure
occurs.

Failure handling or recovery concepts are proposed by Eder [EL96]. They cate-
gorise two recovery techniques within workflow execution, namely automatic and
manual tasks. Automatic tasks are further divided into restarting the same task,
starting an alternative task and manual intervention. Recovery for a manual task
must be performed by the workflow participant responsible for that particular task.
The failure handling mechanism we introduce by specifying compensations for
specific failure events allows the same recovery concepts that Eder proposes. The
several compensations we introduce cover the automatic tasks proposed by Eder.
Recovery via manual tasks can be achieved by specifying a component (sub work-
flow or activity) as the compensating action of a failure, where that component
implements the human intervention that is needed, for instance, by implementing
a service that asks for user input.

4.6 Conclusion

In this chapter we introduced a programming model for orchestration of services
in nomadic networks. This programming model consists of workflow patterns that
allow the orchestration of services in nomadic networks. First, we introduced
the functionality that must be provided by activities in nomadic networks, and
explained a data flow mechanism that can be used in these networks. Afterwards,
we explained how existing control flow patterns can be used in nomadic networks.
We presented a categorisation for these patterns based on the way the control
flow patterns can be composed and how they deal with data. The combination of
activities, data flow and control flow patterns allow the orchestration of services in
a nomadic network.

In order to support orchestration of groups of services, novel patterns were
introduced. We showed how intensional definitions can be used to describe the
members of the group. We proposed a pattern that allows a process to be executed
for these group members and presented a pattern to restrict the members during
the execution of that process. We also put forward several patterns that allow the
synchronisation of the execution of the process that transcends the execution of
the individual instance of a group member.

The combination of the above patterns for service orchestration and group or-
chestration almost adhere all criteria we postulated for orchestration in nomadic
networks. In order to fulfil all criteria, some failure handling mechanism must be
available. We propose the use of a failure pattern that can wrap a sub workflow and

108

4.6 Conclusion

where compensating actions for specific types of failures can be specified. More-
over, we argue that a default compensation strategy must be available to overcome
the frequent network failures that dominate a nomadic network. We also showed
how this failure pattern can be used in combination with the proposed patterns for
group orchestration.

To summarise, we enumerate the criteria for orchestration in nomadic networks
(defined in Section 2.3) and show which abstractions we introduced to fulfil these
postulated criteria.

Service Orchestration
1. Time decoupling During the “service invocation” execution step, it

is possible that the service becomes temporarily
unavailable, while the activity is waiting for the
result of the invocation. This ensures decoupling
in time, because the workflow and the service do
not need to be online at the same time. (Section
4.1)

2. Space decoupling The activity of a workflow does not need to know
a priori the service it must invoke. It is possible
to define an activity using a service type. During
the “service discovery” execution step, the activity
will discover a service of the correct type. (Section
4.1)

3. Synchronisation decoupling Invocation of a service is achieved by sending an
asynchronous message to the service, ensuring that
the execution of the workflow and the service are
not blocked upon sending or receiving messages.
(Section 4.1)

4. Explicit control flow Introducing the control flow patterns, proposed by
van der Aalst et al. [RtHvdAM06], ensures that the
fine-grained application logic is separated from the
control flow of an application. (Section 4.3)

109

4 Patterns for Orchestration

Group Orchestration
5. Intensional definition Using service types and logical expressions, the

services that form a logical group can be described
intensionally. (Section 4.4.1)

6. Arity decoupling A Group pattern allows a group of services to be
treated as a single unit. The definition of this pat-
tern specifies that the number of participants can
fluctuate over time, i.e., new services satisfying the
group’s description can join at any moment in time.
(Section 4.4.1) Moreover, services can also disjoin
the group (for example, by using the Drop com-
pensating action to recover from failures). (Section
4.5.3)

7. Dynamic modification The participants of the group can be restricted dur-
ing the execution. A Filter pattern allows to filter
out group members that do not satisfy a given
condition. (Section 4.4.1)

8. Synchronisation mechanisms Novel patterns (Barrier, Cancelling Barrier, Group
Join, Synchronised Task) allow the execution of a
group to be controlled. (Section 4.4.2)

Failure Handling
9. Automatic failure handling Automatic handling of failures that occur during

the execution of an activity by executing prede-
fined compensations, such as retrying to invoke
the service. (Section 4.5.1)

10. Explicit failure handling The ability to formulate different compensation
strategies on different levels of granularity by over-
riding and/or extending the default failure handling
behaviour. These compensations can be chained to-
gether such that a cascade of compensating actions
is performed when a failure is detected. (Section
4.5.2)

11. Individual failure handling Reacting upon a failure that occurs during the in-
dividual process execution of a single member of
the group can be realised by composing the Fail-
ure pattern and the Group pattern such that the
Failure pattern is defined inside the Group pattern.
(Section 4.5.3)

12. Failure handling for groups Detecting and handling failures at the group level
is realised by composing a Failure pattern and
a Group pattern such that the Group pattern is
(partly) wrapped by a Failure pattern. Depend-
ing on the category of compensating action that
is specified for the detected failure, the execution
of an individual group instance (compensation of
category 1) or the entire group (compensation of
category 2) is affected. (Section 4.5.3)

110

5
A W O R K F L OW L A N G UAG E F O R O R C H E S T R AT I O N I N
N O M A D I C N E T W O R K S

Now that we have introduced patterns that allow orchestration in nomadic net-
works, we can present a workflow language that has support for the proposed
orchestration patterns. The workflow language for nomadic networks we present,
called NOW, is built as a library on top of the ambient-oriented programming
language A M B I E N T TA L K. Throughout this chapter we explain the syntax and
semantics of this workflow language. We start this chapter with a motivation for
using A M B I E N T TA L K as the platform to build our nomadic workflow language
on (Section 5.1). Subsequently, we introduce the notion of activities in NOW and
present the implementation of a service in NOW (Section 5.2). Thereafter, we
explain the data flow mechanism employed by NOW (Section 5.3). In this chapter
we also present the patterns supported by the workflow language to allow orches-
tration in nomadic networks. First of all, we describe the control flow patterns that
are provided by NOW (Section 5.4), and show how these patterns can be used
to build workflows. Secondly, we present the patterns for group orchestration and
implement the SURA application using these patterns (Section 5.5). Thirdly, we
introduce the patterns for failure handling in NOW, and implement the SWOOP
application using these patterns (Section 5.6). Before concluding this chapter, we
present a survey of existing workflow languages and coordination languages and
evaluate these languages using the criteria we postulated in Chapter 2.

111

5 A Nomadic Workflow Language

5.1 Motivation

In this section we motivate why we develop our nomadic workflow language
NOW on top of A M B I E N T TA L K. A M B I E N T TA L K is a distributed program-
ming language targeted towards mobile ad hoc networks which deals with volatile
connections at the heart of its programming model. As nomadic networks are
a special case of MANETs, a lot of A M B I E N T TA L K’s features are useful for
our work as well. A M B I E N T TA L K allows decoupled communication because it
enables decoupling in time, decoupling in space, synchronisation decoupling, and
arity decoupling.

However, as we discussed in Section 3.8, A M B I E N T TA L K has three limitations
with respect to orchestrating services in a nomadic network.

First, the application logic in A M B I E N T TA L K is divided amongst several event
handlers which can be triggered independently of one another [CM06]. For small
examples it is still manageable to understand the control flow. However, the control
flow of large-scale event-driven applications can become very hard to understand.
Applications implemented in A M B I E N T TA L K are not easily manageable as the
control flow and the fine-grained application logic are interwoven. This makes
A M B I E N T TA L K applications hard to maintain and difficult to reuse. Recall that
the nomadic applications we envision, need to control the different types of services
in the network. The emphasis of these application is on the orchestration of the
services. Therefore, there needs to be a focus on (the control flow of) the process,
i.e., the activities a process constitutes of, the order in which these activities need
to be executed, etc.

Secondly, A M B I E N T TA L K only has limited support for groups. The program-
ming language introduces ambient references to enable communication with a
volatile group of nearby objects. This communication is implemented by a single
asynchronous message send. Therefore, it is not possible to redefine the members
of the group during communication. Moreover, there are no mechanisms provided
to express failure handling on these ambient references.

Thirdly, A M B I E N T TA L K provides only one built-in strategy which hides fail-
ures by automatically reconnecting. For MANETs, where devices can join and
disjoin at any moment in time, (network) failures must be considered the rule
rather than the exception. Therefore, mechanisms that allow the automatic recov-
ery of (or compensating for) these failures should be available. For example, when
a service that is being invoked goes offline, the task that service is executing
cannot be finished properly, and appropriate actions should be taken to ensure the
correct functioning of the application.

112

5.2 Activities

In the following sections we discuss how to add a layer of abstraction on
top of A M B I E N T TA L K (which uses messages/events as the level of abstraction)
such that the asynchronously executing processes can be orchestrated by means of
workflow abstractions. The patterns for service orchestration, group orchestration,
and failure handling NOW introduces are available as a library for A M B I E N T -
TA L K1. By introducing this extra layer of abstraction we present a solution for
A M B I E N T TA L K’s limitations with respect to orchestration in nomadic networks.

5.2 Activities

Activities are used to describe a piece of work (a task) that needs to be performed.
The activities we described in Section 4.1 are used to invoke services residing in
the nomadic network. Such an activity typically consists of a service, an operation,
input parameters and output parameters. The abstract grammar of such an activity
in NOW is presented in Listing 5.1.

<data variable> := "Env." <symbol>
<service description> := <type_tag> | <data variable>
<argument> := <expression> | <data variable>
<activity> := <service description> "." <operation> "("

<argument>* ")" ["@Output(" <data variable>* ")"]

Listing 5.1: Abstract grammar of activities in NOW.

Please note that we use the following convention for the abstract grammars pre-
sented in this chapter: nonterminals are put in italic when they are part of
A M B I E N T TA L K’s syntax. For instance, the nonterminal <operation> is an
A M B I E N T TA L K message that can be sent to an actor.

As we can derive from this abstract grammar, activities in NOW consist of a
service description, an operation, arguments, and possibly output parameters.

• The service description can be a service type (type_tag) or a reference
to a particular service ("Env."<symbol>). We use the Env keyword to
specify that the reference to the service needs to be looked up in the data
environment that is passed to the activity when started (see Section 5.3).
Depending on the type of service description that is used, an activity needs
to perform the “Service Discovery” execution step when started (see Section
4.1).

• The operation is the name of the method that must be invoked on the
preferred service.

1http://soft.vub.ac.be/~ephilips/NOW

113

http://soft.vub.ac.be/~ephilips/NOW

5 A Nomadic Workflow Language

• The arguments are either A M B I E N T TA L K expressions, or references to
variables that are stored in the data environment. When an activity is started,
these latter types of arguments are looked up in the data environment that
is passed to the activity.

• The output parameters are either references to variables in the data envi-
ronment which need to be updated or names of variables for which a new
binding must be added in the data environment.

As we can derive from this grammar, output parameters only need to be specified
when required.

def type := createServiceType(‘LuggageHandler);
def act := type.getInfo(Env.flightNr)@Output(Env.trailer, Env.belt);

Listing 5.2: Definition of an activity in NOW.

Consider the code in Listing 5.2 where we create an activity (act). The definition
of an activity returns an object which can be started with a data environment
(act.start(env)). In this particular example, the activity is instantiated with
a service type LuggageHandler.

NOW Services

Nomadic applications interact with different categories of services (stationary, reg-
istered, and user services). NOW is oblivious to these types of services, which are
implemented in the same way, and interacting with a service is done identically.
The only part of the application where the difference between the kinds of services
is made explicit, is in the definition of an activity. As we can derive from the
abstract grammar (see Listing 5.1), the <service description> can be either
a service type or a reference to a service that is stored in the data environment.
Activities that want to invoke services that are part of the infrastructure and that
are known a priori (i.e., stationary services and registered services) typically use a
reference to that service, whereas activities that interact with user services utilise
service types.

Services in NOW can be implemented as distributed objects in A M B I E N T TA L K

that are invoked by sending asynchronous messages (as explained in Section 3.4.1).
Listing 5.3 shows how a NOW service can be created, based upon A M B I E N T -
TA L K’s facilities for defining and exporting objects. The code excerpt below is
A M B I E N T TA L K code which is executed on a (mobile) device and not on the
fixed infrastructure of the nomadic network.

114

5.2 Activities

1 deftype LuggageHandler <: Service;
2
3 def service := isolate: {
4 def companyName := "Aviapartner";
5 /* ... other fields */
6
7 def init(cn) {
8 self.companyName := cn;
9 /* assignment of other fields */

10 };
11
12 def removeLuggage(flight, name, id) {
13 /* Remove luggage from flight,
14 and return the location where it is stored */
15 };
16
17 /* ... other methods */
18 };
19
20 registerService(LuggageHandler, service);

Listing 5.3: Implementation of a service.

On the last line of code (line 20), the applicationService function, which
is provided by NOW, is called. This function is, amongst others, responsible for
publishing a service on the network, given its type tag, which is defined on the first
line of code. All of these tags need to be subtypes of the Service type tag that
is provided by NOW. This is required to allow group orchestration, as we explain
in Section 6.4.1, where we discuss the implementation of group orchestration.

The service itself is defined as an A M B I E N T TA L K object, as we can see on
lines 3-18. As we have seen in Chapter 3, such an object can be instantiated using
the object: keyword. Recall that the arguments of an activity can be references
to variables in the data environment, and, hence, can be references to services.
Therefore, the fixed infrastructure needs to send such a service object to a (possi-
bly mobile) device, that runs the service that is being invoked. During this service
invocation, the reference to that service must be synchronously accessible. Syn-
chronous access ensures that during the service invocation an immediate response
can be retrieved, and that no event handlers need to be installed to await the result
of an asynchronous message send. Therefore, the service object must be passed by
copy instead of by far reference, and hence, we must use the isolate: keyword
(on line 3).

Recall that a symbiosis between A M B I E N T TA L K and JAVA exists. Because of
this symbiosis, it is also possible to implement services that are orchestrated by
NOW in JAVA, instead of A M B I E N T TA L K. Listing 5.4 shows the implementation
of the same service we defined in Listing 5.3, but is now implemented in JAVA.

115

5 A Nomadic Workflow Language

1 package airport;
2
3 public class LuggageHandler implements Serializable {
4
5 private String companyName;
6
7 public LuggageHandler(String cn) {
8 this.companyName = cn;
9 }

10
11 public String[] removeLuggage(String flight, String name, int id) {
12 /* Remove luggage from flight, and return the location
13 where it is stored */
14 }
15 }

Listing 5.4: Implementation of a service in JAVA.

In order to discover a service that is implemented in JAVA, an A M B I E N T TA L K

actor that publishes the service needs to be defined. Such an actor is defined in
Listing 5.5.

1 def ATService := actor: {
2
3 def service := jlobby.airport.LuggageHandler.new("Aviapartner");
4 deftype LuggageHandler <: Service;
5 export: service as: LuggageHandler;
6
7 };

Listing 5.5: Implementation of a service in JAVA: publishing the service.

5.3 Data Flow

In Section 4.2 we introduced an environment passing style which ties the data flow
to the control flow of the application. The data environment that is passed between
the activities is implemented as an object which contains a unique identifier and a
dictionary mapping values to variables.

In Section 4.2 we have shown how data can be used to invoke a service, and how
response management (updating the data environment after the service invocation)
is taken care of by the activity. Before invoking the service, the input parameters
are looked up in the data environment, and when the result of the invocation is
received, these values are bound to the variables that are specified using @Output
(see Section 5.2).

116

5.3 Data Flow

In this section, we first show the implementation in NOW of the activities
depicted in Figure 4.2. The first activity addresses a specific luggage handler and
asks which trailer will transport the luggage for a particular flight, and also wants
to know to which belt this luggage is transported. This can be implemented in
NOW as follows

1 def env := DataEnvironment.new();
2 env.insert(‘luggageH, <far reference>);
3 env.insert(‘flightNr, "9W226");
4 def act := Env.luggageH.getInfo(Env.flightNr)@Output(Env.trailer,Env.belt);
5 act.start(env);

On the first line in the above code snippet, a new data environment is created,
and two new variable bindings are inserted (lines 2-3). On line 4 a new activity
is created, with the operation getInfo, a single argument (Env.flightNr),
and with two output parameters (Env.trailer and Env.belt). The activity’s
execution is started on line 5, by passing it the data environment that is created
on line 1.

The second example activity in Figure 4.2 is used to contact an assistance per-
sonnel member to notify him/her that a certain person is missing. In this example,
any assistance personnel member that is in the neighbourhood suffices for this task.
Therefore, this activity is instantiated with a service type, instead of a reference to
a particular service. The implementation of this activity in NOW is given in the
following code snippet.

1 createServiceType(‘Assistance);
2 def env := DataEnvironment.new();
3 env.insert(‘person, <far reference>);
4 def act := Assistance.missing(Env.person)@Output(Env.found);
5 act.start(env);

On line 1, a new service type (Assistance) is created. This service type serves
as the service description of the activity that is created on line 4. The activity
is created with the operation missing, the argument Env.person, and has a
single output parameter (Env.found). Similar to the previous activity, this newly
created activity’s execution is started on line 5 by passing it the data environment,
defined on line 2.

The data flow mechanism becomes more complex when synchronisation patterns
are involved. As we already explained in Section 4.2, synchronisation patterns must
specify a merging strategy that resolves conflicts in the incoming data environments.
Such a merging strategy can be implemented by using an A M B I E N T TA L K block
closure that has a table of data environments as its single argument.

117

5 A Nomadic Workflow Language

{ | envs | ... };

Consider the example we showed in Figure 4.4. In that small workflow example
a booking agent looks for a free seat on a flight to Italy. To this end, the services
of two airline companies are invoked. Afterwards, their data environments need
to be merged. A possible merging strategy could be to use the data environment
that has the lowest price for that flight. This strategy can be implemented by the
following function:

def myStrategy := { | envs| def env := envs[1];
def tuple := [‘flight, ‘price];
def [flight, price] := envs[1].find(tuple);
envs.each: { |e| def [_, p] := e.find(tuple);

if: (p < price) then: {
env := e;
price := p }; };

env; };

This block closure iterates over all data environments (envs.each:) and returns
the data environment that has the smallest value for the variable price.

NOW has support for the four merging strategies that we have identified in Sec-
tion 4.2, namely “prioritise”, “random”, “merge”, and “restore”. Merging strategies
are used to instantiate a synchronisation pattern, as we show in the next section,
where we introduce NOW’s control flow patterns.

5.4 Service Orchestration

Now that we have explained how activities and data flow are introduced by
NOW, we describe how these activities can be linked together in order to form a
workflow description. The control flow perspective defined by van der Aalst et al.
[RtHvdAM06] categorises 43 patterns which describe the control flow dependen-
cies between several activities. NOW has built-in support for the most common
control flow patterns. The current implementation consists of 19 control flow pat-
terns of van der Aalst that are used by standard workflow languages, such as
BPEL [RtHvdAM06]. Of the 43 patterns defined by van der Aalst the workflow
language BPEL has support for a similar set of 21 control flow patterns. NOW’s
patterns range from very basic ones, like Sequence, to more advanced patterns
such as the Structured Loop pattern and multiple instances patterns. NOW does
not implement control flow patterns of the category “cancellation and force com-
pletion patterns”, but cancelling tasks can be achieved using the language’s support
for failure handling, which is discussed in Section 5.6. In Table 5.1 we show an
inventory of van der Aalst’s control flow patterns and indicate whether the pattern
is supported by NOW (in the table’s third column).

118

5.4 Service Orchestration

Basic Control Flow Patterns
Sequence standard Yes
Parallel Split standard Yes
Synchronization synchronisation Yes
Exclusive Choice standard Yes
Simple Merge synchronisation Yes
Advanced Branching and Synchronization Patterns
Multi-Choice standard Yes
Structured Synchronizing Merge synchronisation Yes
Multi-Merge synchronisation Yes
Structured Discriminator synchronisation No
Blocking Discriminator synchronisation No
Cancelling Discriminator synchronisation Yes
Structured Partial Join synchronisation Yes
Blocking Partial Join synchronisation No
Cancelling Partial Join synchronisation No
Generalised AND-Join synchronisation No
Local Synchronizing Merge synchronisation No
General Synchronizing Merge synchronisation No
Thread Merge synchronisation No
Thread Split standard No
Multiple Instance Patterns
Multiple Instances without Synchronization standard Yes
Multiple Instances with a Priori Design-Time Knowledge standard Yes
Multiple Instances with a Priori Run-Time Knowledge standard Yes
Multiple Instances without a Priori Run-Time Knowledge standard No
Static Partial Join for Multiple Instances synchronisation Yes
Cancelling Partial Join for Multiple Instances synchronisation No
Dynamic Partial Join for Multiple Instances synchronisation No
State-based Patterns
Deferred Choice standard No
Interleaved Parallel Routing standard Yes
Milestone standard No
Critical Section standard No
Interleaved Routing standard No
Cancellation and Force Completion Patterns
Cancel Task standard No
Cancel Case standard No
Cancel Region standard No
Cancel Multiple Instance Activity standard No
Complete Multiple Instance Activity standard No
Iteration Patterns
Arbitrary Cycles standard No
Structured Loop standard Yes
Recursion standard No
Termination Patterns
Implicit Termination NA Yes
Explicit Termination standard No
Trigger Patterns
Transient Trigger trigger Yes
Persistent Trigger trigger Yes

Table 5.1: Control Flow Patterns supported by NOW.

119

5 A Nomadic Workflow Language

The grammar of the control flow patterns in NOW is shown in Backus-Naur form
in Listing 5.6. This grammar is an extension of the abstract grammar we presented
in Listing 5.1.

<component> := <activity> | <pattern>
<closure> := "{ |" <parlist> "|" <body> "}"
<condition_action> := "[" <closure> "," <component> "]"
<strategy> := "merge" | "restore" | "prioritise" | "random" |

"{ | envs |" <body> "}"
<sync_cmp> := <component> ["," <strategy> ["," <integer>]]
<pattern> := <std_pattern> | <sync_pattern> | <trigger_pattern>
<trigger_pattern> := "TransientTrigger(" <component> ")" |

"PersistentTrigger(" <component> ")"
<sync_pattern> := "Synchronization(" <sync_cmp> ")" |

"SimpleMerge(" <sync_cmp> ")" |
"StructuredSynchronizingMerge(" <sync_cmp> ")" |
"MultiMerge(" <sync_cmp> ")" |
"CancellingDiscriminator(" <sync_cmp> ")" |
"StructuredPartialJoin(" <sync_cmp> ")"

<std_pattern> := "Sequence(" <component>+ ")" |
"ParallelSplit(" <component>+ ")" |
"Connection(" <sync_pattern> ")" |
"ExclusiveChoice(" <closure> "," <component> ","

<component> ")" |
"MultiChoice(" <condition_action>+ ")" |
"MIWithoutSynchronization(" <component> ")" |
"StaticPartialJoinMI(" <component> ")" |
"MIWithPrioriDTKnow(" <component> "," <integer> ")" |
"MIWithPrioriRTKnow(" <component> "," <closure> ")" |
"InterleavedRouting(" <component>+ ")"
"StructuredLoop(" <component>+ ")"

Listing 5.6: Abstract grammar of control flow patterns in NOW.

The abstract grammar makes the distinction between standard patterns, synchro-
nisation patterns, and trigger patterns, the three categories of control flow patterns
we proposed in Section 4.3. From the abstract grammar in Listing 5.6 we can
derive that each pattern is implemented as a function which takes a (collection of)
component(s) as its argument. Such a component can be either an activity or a
pattern.

Before showing how these patterns can be used to build a workflow, we need to
discuss the composition of synchronisation patterns. In Section 4.3 we introduced
three categories of control flow patterns, namely standard patterns, synchronisation
patterns, and trigger patterns. Synchronisation patterns differ from the other two
categories in the way data flow needs to be handled, i.e., a data merging strategy
needs to be specified such that the data environments of the incoming branches
can be merged.

120

5.4 Service Orchestration

5.4.1 Composition of Synchronisation Patterns

Composition of patterns becomes more complex when synchronisation patterns are
involved. The distinction between standard and synchronisation patterns is made
because the latter category needs to support multiple incoming branches. These
incoming branches need to be linked to the synchronisation patterns using so-
called connections.

Connections are necessary for complex compositions where not all outgoing
branches, for instance, of a Parallel Split pattern, are connected to the same Syn-
chronization pattern. When all branches of a split pattern are joined by one syn-
chronisation pattern, it would be possible to write the following code

Sequence(ParallelSplit(branch1, branch2, ...), Synchronization(...))

This would imply that first the split pattern (for example, Parallel Split) is executed
and afterwards all its branches are merged by the same Synchronization pattern.
An example of this composition scenario is depicted by the workflow in Figure
5.1.

LEGEND

gateway (and)

activity

+

control flow++

Figure 5.1: Composition of synchronisation patterns: one Synchronization pattern.

However, it is also possible that the branches of the Parallel Split are merged
by different synchronisation patterns. Hence, for each branch it must be specified
which synchronisation pattern is responsible for its merging process. Such an
example is depicted in Figure 5.2.

An outline implementation of the workflow depicted in Figure 5.2 is:

1 def cancDiscr := CancellingDiscriminator();
2 def sync := Synchronization();
3
4 ParallelSplit(
5 Sequence(..., Connection(cancDiscr)),
6 Sequence(..., ParallelSplit(Sequence(..., Connection(cancDiscr)),
7 Sequence(..., Connection(sync)))),
8 Sequence(..., Connection(sync)),
9 Sequence(..., Connection(sync)));

121

5 A Nomadic Workflow Language

+

LEGEND

gateway (and) activity+

control flow

+

+

gateway (or)

Figure 5.2: Composition of synchronisation patterns: several Synchronization patterns.

As we can see, in this example there are two synchronisation patterns used, namely
a Cancelling Discriminator and a Synchronization. These patterns are defined up-
front. Synchronisation patterns cannot be created inline, because every time the
function is called (for instance Synchronization(...)) a new pattern is in-
stantiated. Because a single synchronisation pattern has multiple incoming branches,
the patterns need to be defined upfront, and a reference to that pattern needs to be
used when building the workflow. As we can see, the outgoing branches of a Par-
allel Split pattern are sequences of the components in that split pattern, followed
by a Connection pattern that wraps the synchronisation pattern.

5.4.2 Implementing the iMPASSE Application in NOW

In Section 2.3.1 we introduced three scenarios of nomadic applications. In this
section we present the implementation of the scenario of the iMPASSE application,
which focusses on service orchestration, in NOW. This application is used to assist
the personnel at the airport, by implementing, for instance, the necessary actions
that must be performed in case a passenger is too late for boarding.

122

5.4 Service Orchestration

En
v.

re
m

in
de

rS
.m

is
si

ng
P

er
so

n(
En
v.

pa
ss

en
ge

r)
@
O
ut
pu
t(E
nv

.fo
un

d)

A
nn

ou
nc

em
en

tS
.m

is
si

ng
P

er
so

n(
En
v.

pa
ss

en
ge

r)
@
O
ut
pu
t(E
nv

.fo
un

d)

En
v.

as
sis

ta
nc

eP
.m

iss
in

g
Pe

rs
on

(E
nv

.p
as

se
ng

er
)

@
O
ut
pu
t(E
nv

.fo
un

d)

En
v.

bo
ar

di
ng

P.
w

ai
t

(E
nv

.p
as

se
ng

er
)

En
v.

tra
ns

it.
la

st
M

in
ut

e
(E
nv

.fl
ig

ht
)

En
v.

bo
ar

di
ng

P.
cl

os
e

G
at

e(
)

En
v.

re
m

in
de

rS
.m

sg
("

bo
ar

di
ng

 c
lo

se
d"

)

Lu
gg

ag
eH

an
dl

er
.rm

vL
ug

ga
ge

(E
nv

.fl
ig

ht
, E
nv

.p
as

se
ng

er
)

LE
G
EN
D

st
ar

t e
ve

nt

en
d

ev
en

t

ga
te

wa
y

(o
r)

tim
er

 (e
ve

nt
)

ac
tiv

ity

+
ga

te
wa

y
(a

nd
)

+

+

+
+

10
 m

in

fo
un

d

fo
un

d

fo
un

d

no
t f

ou
nd

no
t f

ou
nd no

t f
ou

nd

1

1

2 2 2

3

3
4

4

ta
ke

O
ff

5

Figure 5.3: Workflow implementing the iMPASSE application.

123

5 A Nomadic Workflow Language

Figure 5.3 depicts the workflow implementing this application. The workflow
uses the following control flow patterns (annotated using grey circles) [RtHvdAM06]:

1. Parallel Split: The example uses this pattern twice. The first Parallel Split
pattern is introduced because several tasks need to be executed in parallel
at the moment a passenger is missing. In that case, three tasks need to be
executed: a reminder must be sent to the passenger, the passenger must be
announced, and the assistant personnel needs to start looking for the missing
passenger.
The second Parallel Split pattern is needed to implement the part of the
scenario where four tasks need to be executed when the passenger cannot be
found, such that the plane can take off after those tasks have been performed.
The tasks that must be executed before the plane can take off are: informing
the transit airport of the free seat on the plane, removing the passenger’s
luggage, closing the gate, and contacting the passenger to inform him that
he missed his flight.

2. Exclusive Choice: The workflow has three occurrences of this pattern. The
pattern is used to select between the appropriate actions that must be exe-
cuted, depending on whether the passenger is found or not.

3. Cancelling Discriminator: This pattern is used twice in the workflow imple-
menting the application. The first Cancelling Discriminator is used to ensure
that as soon as a signal (more specifically, the first signal) is received that
the passenger is found, the boarding personnel is informed to wait for him.
The second Cancelling Discriminator pattern is used to implement the part
where actions need to be performed when a passenger is not found. We can
conclude that a passenger cannot be found, either after 10 minutes, or when
all three services (the reminder service, the announcement service, and the
assistance personnel) reply that the passenger is not at the airport. When one
of these two conclusions can be drawn, the appropriate actions are taken.

4. Synchronization: Two Synchronization patterns are used to implement this
scenario. The first Synchronization pattern is used to ensure that only when
all three services (the reminder service, the announcement service, and the as-
sistance personnel) have replied that the person cannot be found, appropriate
actions are taken.
The second Synchronization is used to ensure that the flight can only take off
when all four actions (informing transit airport, removing luggage, closing
gate, and sending message to passenger) are taken.

124

5.4 Service Orchestration

5. Persistent Trigger: The Persistent Trigger pattern is used to ensure that after
ten minutes, a signal is received. The execution of the workflow acts upon
this signal by ensuring that the appropriate actions are taken (for instance,
the luggage of the passenger needs to be removed).

6. Sequence: This pattern is not annotated in Figure 5.3, but is, amongst oth-
ers, used to connect the activities and the Exclusive Choice patterns in the
outgoing branches of the first Parallel Split pattern.

This workflow can be implemented in NOW as is shown in Listing 5.7.

1 def sync1 := Synchronization(Env.tower.takeOff(Env.flight), restore);
2
3 def cancDiscr1 :=
4 CancellingDiscriminator(
5 ParallelSplit(Sequence(Env.transit.lastMinute(Env.flight),
6 Connection(sync1)),
7 Sequence(LuggageHandler.rmvLuggage(Env.flight,
8 Env.pass), Connection(sync1)),
9 Sequence(Env.boardingP.closeGate(),

10 Connection(sync1)),
11 Sequence(Env.reminderS.msg("boarding closed"),
12 Connection(sync1))));
13
14 def sync2 := Synchronization(Connection(cancDiscr1), restore);
15
16 def cancDiscr2 := CancellingDiscriminator(
17 Sequence(Env.boardingP.wait(Env.pass),
18 Env.tower.takeOff(Env.flight)));
19
20 def wf := ParallelSplit(
21 Sequence(Env.reminderS.missingPerson(Env.pass)@Output(Env.found),
22 ExclusiveChoice({|found| found}, Connection(cancDiscr2),
23 Connection(sync2))),
24 Sequence(Env.announcementS.missingPerson(Env.pass)@Output(Env.found),
25 ExclusiveChoice({|found| found}, Connection(cancDiscr2),
26 Connection(sync2))),
27 Sequence(Env.assistanceP.missingPerson(Env.pass)@Output(Env.found),
28 ExclusiveChoice({|found| found}, Connection(cancDiscr2),
29 Connection(sync2))),
30 PersistentTrigger(Connection(cancDiscr1), after(minutes(10))));

Listing 5.7: Implementation of the iMPASSE application in NOW.

As we can see in Listing 5.7, we define four synchronisation patterns upfront.
Recall that defining synchronisation patterns inline is not possible, because several
outgoing branches of a split pattern possibly refer to the same synchronisation
pattern. On line 1 and line 14 we create the two Synchronization patterns that are
used in this workflow. The first Synchronization (sync1) is used to synchronise
the four activities, such that the plane only takes off when those four activities

125

5 A Nomadic Workflow Language

have finished their execution. The second Synchronization (sync2) is used to
ensure that only when all three services have replied that the passenger cannot be
found, the necessary actions are performed. Note that both Synchronization patterns
are instantiated with the “restore” data merging strategy. During the execution of
the Synchronization’s incoming branches, no additional variables are added to
the data environment, and therefore, this merging strategy can be used. The data
environment that is used to start the execution of the remainder of the workflow
after the synchronisation pattern, is the same data environment that is used to start
each incoming branch individually.

We also define two Cancelling Discriminator patterns upfront. The first Can-
celling Discriminator is created on lines 3-12. At the moment this pattern is started
for the first time (i.e., when the first incoming branch is enabled), the remainder
of the workflow is executed. In this scenario, the execution of a Parallel Split
pattern with four outgoing branches is started. Each of these outgoing branches is
connected (using a Connection pattern) to the same Synchronization (sync1).
The second Cancelling Discriminator pattern (cancDiscr2) is created on lines
16-18 of Listing 5.7. The first enablement of an incoming branch of this pattern
results in the execution of the remainder of the workflow after this pattern. In this
example, the execution of two activities is executed in sequence, namely informing
the boarding personnel to wait for the passenger and informing the control tower
that the plane can take off (lines 17-18).

The other patterns can be created inline, because they are classified either as
standard or trigger patterns. The workflow starts with a Parallel Split (line 20) that
has four outgoing branches. The first three outgoing branches (created on lines
21-23, 24-26, 27-29 respectively) have a similar implementation. Such an outgoing
branch consists of a Sequence pattern, which has an activity as its first compo-
nent, followed by an Exclusive Choice pattern. The Exclusive Choice pattern is
either connected to the Cancelling Discriminator (cancDiscr1) or the Synchro-
nization (sync1). The first argument of the ExclusiveChoice function is an
A M B I E N T TA L K block closure which returns a boolean. In this example, when
the passenger has been found (i.e., when the value of the variable found, which
is stored in the data environment, is true), the second argument of the func-
tion call is executed (Connection(cancDiscr1)), otherwise the last argument
(Connection(sync1)) is executed. Recall that Connection patterns are used to
wrap the synchronisation patterns, such that these synchronisation patterns can be
notified of their number of incoming branches.

The fourth branch of the Parallel Split pattern (created on line 30) consists of a
Persistent Trigger pattern. This pattern is used to wrap part of the workflow that

126

5.5 Group Orchestration

can only be executed once an external event is received. In our example, only
after 10 minutes we can conclude that the passenger is not found and only then
the appropriate actions can be performed.

5.5 Group Orchestration

In the previous section, we presented the control flow patterns that are provided by
NOW and showed how these patterns can be composed to implement workflows.
In this section we extend the workflow language with the necessary abstractions
and patterns to allow group orchestration in a nomadic network. We first intro-
duce the abstract grammar of these novel patterns. Thereafter, we describe how
intensional descriptions of services can be defined in NOW. We also present the
implementation of the SURA application to illustrate how the patterns for group
orchestration can be composed.

The grammar of the patterns for group orchestration in NOW is shown in
Backus-Naur form in Listing 5.8. This grammar is an extension of the abstract
grammars we presented in Listing 5.1 and Listing 5.6.

<component> := <activity> | <pattern>
<strategy> := "merge" | "restore" | "prioritise" | "random" |

"{ | envs |" <body> "}"
<time> := "time(" <integer> "," <integer> "," <integer> ")"
<duration> := "hours(" <integer> ")" | "minutes(" <integer> ")" |

"seconds(" <integer> ")"
<condition> := <time_constraint> | <quota_constraint>
<time_constraint> := "at(" <time> ")" | "after(" <duration> ")"
<quota_constraint> := "percentage(" <integer> ")" |

"amount(" <integer> ")"
<description> := <intensional_d> | <extensional_d>
<intensional_d> := <type_tag> | <CRIME_expression> |

"union(" <intensional_d> "," <intensional_d> ")" |
"diff(" <intensional_d> "," <intensional_d> ")"

<extensional_d> := "[" <far_reference>* "]"
<pattern> := <std_pattern> | <sync_pattern> | <group_pattern> |

<trigger_pattern> | <group_sync_pattern>
<std_pattern> := "Filter({ | env |" <body> "})" |
<group_sync_pattern> := "Barrier(" <condition> ")" |

"CancellingBarrier(" <condition> ")" |
"GroupJoin(" <condition> ")"
"SynchronisedTask(" <component>, <condition>

["," <strategy>] ")"
<group_pattern> := "Group(" <description>, <symbol>,

<component>
["," <condition>] ["," <strategy>] ")"

"SnapshotGroup(" <description>, <symbol>,
<component> ["," <condition>]
["," <strategy>]")"

Listing 5.8: Abstract grammar of group orchestration patterns in NOW.

127

5 A Nomadic Workflow Language

The abstract grammar we present here, extends the grammar shown in Listing 5.6.
As we can see in Listing 5.8, two new categories of patterns are added, namely
group patterns and group synchronisation patterns. The group patterns category con-
sists of two patterns, namely the Group and Snapshot Group pattern we introduced
in Section 4.4. The category of group synchronisation patterns contains the other
group orchestration patterns, such as the Barrier pattern. Group synchronisation pat-
terns differ from synchronisation patterns because a group synchronisation pattern
must be the same for all running instances of the group. The difference between
these categories is explained in more detail in Section 6.4, where we discuss the
implementation of the patterns for group orchestration.

We first explain how intensional definitions of services are implemented in
NOW. Afterwards, we give the implementation of the SURA application in our
nomadic workflow language.

5.5.1 Definition of Group Membership

Members of a group can be defined either extensionally or intensionally. NOW
supports both kinds of group descriptions: a group can be either instantiated with
a group of far references to the services, or with a type tag or logical expression.
In this section we elaborate more on the last types of descriptions, namely the
intensional definition of services through a logical expression.

Recall that C R I M E’s fact space model provides a logic coordination language
for reasoning about context information that is represented as facts in a feder-
ated fact space. Those facts are locally published by applications and transparently
shared between fact spaces residing on nearby devices as long as they are within
communication range.

In Figure 4.12 we showed such federated facts spaces, namely the federated
fact spaces of two fans and the federated fact space residing on the festival’s
infrastructure which are connected in a mobile ad hoc network. In this section we
use the same intensional description, namely “all the fans of the headliner who
are at the festival”, which can be expressed as a logical rule with the following
prerequisites:

shared<-festival_visitor(?festivalNbr),
shared<-fan_info(?festivalNbr, ?band),
private<-band_info(?band, "headliner").

128

5.5 Group Orchestration

In this example, the intensional description of all participants is a description
that consists of three prerequisites:

• the participant must be a festival visitor;
• and that participant must be a fan of a band;
• and that band must be listed as the headliner of the festival.

The intensional description, using these three prerequisites, in NOW is given in
the following code snippet:

1 def shared := createFactSpace("shared");
2 def private := createFactSpace("private");
3 def temp1 := shared.festival_visitor(Var.participantId, Var.festivalNbr);
4 def temp2 := shared.fan_info(Var.participantId, Var.festivalNbr, Var.band);
5 def temp3 := private.band_info(Var.id, Var.band, "headliner");
6 def description := makeIntensionalDescription(temp1, temp2, temp3);

The three prerequisites are defined on line 3, line 4, and line 5 respectively. Note
that in NOW, these templates have an extra (first) argument. Before explaining
the necessity of this extra argument, we explain how facts are shared.

On line 1 and line 2 in the code snippet above, two types of fact spaces are
defined. Facts are published in these fact space, and depending on the kind of fact
space, the facts are exchanged with fact spaces of nearby devices.

private.age("PP3489", 23)

shared.fan_info("PP3489", "Kasabian")
shared.fan_info("PP3489", "Foo Fighters")

shared.festival_visitor("PP3489")

private.age("PP1721", 25)
public.fan_info("PP1721", "Kasabian")
shared.festival_visitor("PP1721")

public.fan_info("PP1721", "Kasabian")

 private.band_info("Kasabian", headliner)

 public.fan_info("PP1721", "Kasabian")
 shared.fan_info("PP3489", "Foo Fighters")
 shared.fan_info("PP3489", "Kasabian")
 shared.festival_visitor("PP3489")
 shared.festival_visitor("PP1721")

FACT SPACE 1 FACT SPACE 2

FACT SPACE 3

Figure 5.4: Federated fact spaces of colocated devices.

In Figure 5.4 we show the fact spaces of several devices: two fact spaces on the
mobile device of a festival visitor, and one fact space on the fixed infrastructure of
the festival. In fact space 1 four facts are published: one private fact (the age
of the visitor), and three facts that are shared with fact spaces that have subscribed
their interest in these kinds of facts. In the second fact space, fact space 2, a
private fact is published, a public fact that is exchanged with all connected fact

129

5 A Nomadic Workflow Language

spaces, and a shared fact. The fact space residing on the fixed infrastructure, fact
space 3, consists of a single private fact that is locally published. All other facts
are originally published in a colocated fact space.

Remark that the prerequisites defined on line 3-5 in the NOW description have
one extra argument than the facts that are originally published. For example, the
facts of type fan_info are published with two arguments ("PP3489", and "Foo
Fighters"). However, the corresponding prerequisite is defined as a template
with three arguments Var.id, Var.festivalNbr, and Var.band. When a
fact is inserted in a fact space, NOW ensures that, before insertion, a reference to
the service that published the fact is added as the fact’s first argument.

This mechanism of adding a reference to the publisher is required so NOW can
obtain references to the services that satisfy the intensional description. The inten-
sional description we showed above has three prerequisites using four variables,
namely Var.participantId, Var.festivalNbr, Var.id, and Var.band.
By convention, the first argument of a fact matching the prerequisite is a reference
to the service that published the fact. Hence, the variable Var.participantId
is bound to a reference to the service running on the mobile device of a festival
visitor. Similarly, the variable Var.id is bound to a reference to a service on
the fixed infrastructure that published the fact of type band_info. The other
variables, Var.festivalNbr and Var.band are bound to a unique identifier
relating to a festival visitor or a band respectively.

Recall that an intensional description in NOW can be used to accumulate refer-
ences to services that satisfy the given description. The rule is that those references
are obtained by searching for all facts that satisfy the description, returning all the
references to which the variable Var.participantId is bound. In Section 6.4.1
we explain how these references can be obtained.

In the previous example we used a single intensional definition. However, some-
times a combination of intensional definitions is preferred: “all children and parents
who are present at the festival area”, or “all adults who do not have children”, etc.
In order to implement these types of intensional definitions, NOW introduces the
union and diff functions.

Consider the example scenario where the festival visitors who are a fan of
“Kassabian” and not of the “Foo Fighters” need to be addressed. The intensional
definition that describes these participants is:

1 def shared := createFactSpace("shared");
2 def temp1 := shared.festival_visitor(Var.participantId, Var.festivalNbr);
3 def temp2 := shared.fan_info(Var.participantId, Var.nbr, "Kassabian");

130

5.5 Group Orchestration

4 def temp3 := shared.fan_info(Var.participantId, Var.nbr, "Foo Fighters");
5 def description1 := makeIntensionalDescription(temp1, temp2);
6 def description2 := makeIntensionalDescription(temp1, temp3);
7 def description := diff(description1, description2);

In the code snippet above two intensional descriptions are defined. The first
intensional description (defined on line 5) is used to capture all the participants
who are at the festival and are a fan of Kassabian. Recall that references to these
services are obtained using the Var.participantId variable that is bound
to a reference to the service that published the facts satisfying the prerequisites.
The second description, description2 (defined on line 6), is used to obtain
references to the festival visitors who are currently present at the festival and are
a fan of the Foo Fighters. The final description is defined by taking the difference
(diff) of these obtained references (see line 7).

5.5.2 Implementing the SURA Application in NOW

We present the implementation of the SURA application we introduced in Section
2.3.1. This scenario wants to address all fans of a festival’s headliner and ask
them to vote for the band’s playlist. The scenario describing the SURA application
exemplifies the need for addressing a group of services and synchronising the
application for all these services.

Figure 5.5 shows the workflow implementing this scenario. This workflow con-
sists of the following patterns (both control flow patterns and patterns for group
orchestration), which are annotated in the figure using grey circles:

1. Group: Several tasks must be executed for multiple services (all fans). A
Group pattern is used to capture these tasks and ensure that they are executed
for all services satisfying the group’s description.

2. Filter: This pattern is used to restrict the members of the group during the
execution. In our example scenario, at the beginning all fans of the headliner
are contacted. Afterwards, only those fans who are interested in participating
in the voting process are contacted.

3. Synchronised Task: A Synchronised Task pattern is used to capture a part
of the application that must be executed once for all group members. In our
example, this pattern is used to wrap the task where all votes of the fans
must be gathered and sent to the headliner. The condition upon which the
execution of this task should be started is given, namely two hours before
the start of the concert (i.e., at half past eight).

131

5 A Nomadic Workflow Language

de
f

sh
ar

ed
 :

=
cr

ea
te

Fa
ct

Sp
ac

e(
"s

ha
re

d"
);

de
f

pr
iv

at
e

:=
 c

re
at

eF
ac

tS
pa

ce
("

pr
iv

at
e"

);
de

f
te

mp
1

:=
 s

ha
re

d.
fe

st
iv

al
_v

is
it

or
(V

ar
.p

ar
ti

ci
pa

nt
Id

,
Va

r.
fe

st
iv

al
Nb

r)
;

de
f

te
mp

2
:=

 s
ha

re
d.

fa
n_

in
fo

(V
ar

.p
ar

ti
ci

pa
nt

Id
,

Va
r.

fe
st

iv
al

Nb
r,

 V
ar

.b
an

d)
;

de
f

te
mp

3
:=

 p
ri

va
te

.b
an

d_
in

fo
(V

ar
.i

d,
 V

ar
.b

an
d,

 "
he

ad
li

ne
r"

);

de

f
fe

st
iv

al
De

sc
ri

pt
io

n
:=

 m
ak

eI
nt

en
si

on
al

De
sc

ri
pt

io
n(

 t
em

p1
,

te
mp

2,
 t

em
p3

)
;

de
sc

rip
tio

n:
 fe
st
iv
al
D
es
cr
ip
tio
n

va
ria

bl
e

na
m

e:
 `f
an

En
v.

fa
n.

sh
ow

("
vo

te
?"

)
@
O
ut
pu
t(E
nv

.in
te

re
st

ed
)

LE
G
EN
D

ac
tiv

ity

co
nt

ro
l fl

ow
gr

ou
p

co
nd

iti
on

En
v.

in
te

re
st

ed
 =

=
"y

es
"En
v.

fa
n.

sh
ow

(E
nv

.d
is

co
gr

ap
hy

)
@
O
ut
pu
t(E
nv

.s
el

ec
tio

n)

20
:3
0

co
nd

iti
on

En
v.

he
ad

lin
er

.s
ho

w
(E
nv

.s
el

ec
tio

n)
@
O
ut
pu
t(E
nv

.p
la

yl
is

t)

co
nd

iti
on

22
:2
0

En
v.

fa
n.

sh
ow

(E
nv

.p
la

yl
is

t)

sy
nc

hr
on

is
ed

ta
sk

fil
te

r
ca

nc
el

lin
g

ba
rri

er

1
2

3

4

Figure 5.5: Workflow implementing the SURA application.

132

5.5 Group Orchestration

4. Cancelling Barrier: A cancelling barrier is used to block the execution of
all group members until a certain condition is satisfied. In our scenario, this
pattern is used to ensure that the final playlist is sent to the fans who voted,
only ten minutes before the start of the show.

5. Sequence: A Sequence pattern is used to ensure that tasks and patterns
are executed in the correct ordering. In the scenario, the Sequence pattern
ensures, for example, that the Filter pattern, which is used to restrict the
group members to be contacted, is executed after the fans are asked whether
they want to vote for the playlist or not. Please remark that this control flow
pattern is not explicitly annotated in Figure 5.5.

The description that is used to describe the members of the group is a logical
CRIME expression which intensionally defines the group members. The expression
has three prerequisites, namely be a festival visitor, be a fan of a band, and that
band must be the headliner of the festival. This intensional description is the same
as we showed earlier in Section 5.5.1.

1 def shared := createFactSpace("shared");
2 def private := createFactSpace("private");
3 def temp1 := shared.festival_visitor(Var.participantId, Var.festivalNbr);
4 def temp2 := shared.fan_info(Var.participantId, Var. festivalNbr, Var.band);
5 def temp3 := private.band_info(Var.id, Var.band, "headliner");
6 def description := makeIntensionalDescription(temp1, temp2, temp3);
7
8 Group(description,
9 ‘fan,

10 Sequence(Env.fan.show("vote?")@Output(Env.interested),
11 Filter({|env| env.find(‘interested) == "yes"}),
12 Env.fan.show(Env.discography)@Output(Env.selection),
13 SynchronisedTask(
14 Env.headliner.show(Env.selection)@Output(Env.playlist),
15 at(time(20,30,0))),
16 CancellingBarrier(at(time(22,20,0))),
17 Env.fan.show(Env.playlist)));

Listing 5.9: Implementation of the SURA application in NOW.

The code in Listing 5.9 is the implementation of the SURA application in NOW.
This scenario is implemented as a Group pattern which wraps a sub workflow. The
Group pattern is instantiated with the intensional description (defined on lines 1-6),
and has the symbol fan as its second argument (line 9).

The intensional description is the same we used earlier: The description con-
sists of three prerequisites using four variables, namely Var.participantId,
Var.festivalNbr, Var.id, and Var.band. The first argument of a fact
matching a prerequisite is a reference to the service that published the fact. Hence,
the variable Var.participantId is bound to a reference to the service running

133

5 A Nomadic Workflow Language

on the mobile device of a festival visitor. Similarly, the variable Var.id is bound
to a reference to a service on the fixed infrastructure that published the fact of
type band_info. The other variables, Var.festivalNbr and Var.band are
bound to a unique identifier relating to a festival visitor or a band respectively.

The variable used to instantiate the group ensures that a reference to the service
(i.e., group member) is available at runtime. The sub workflow that is wrapped by
the Group pattern is a Sequence pattern (lines 10-17).

The first activity that must be executed in this pattern implements the sending of
a message to each group member, asking whether they want to vote (on line 10).
Afterwards, a Filter pattern is used to restrict the group members to only those who
were interested in voting (line 11). The Filter pattern is instantiated with a closure,
and returns a boolean denoting whether the value of the variable interested
equals "yes". Note that this variable is added to the data environment as a
consequence of executing the first activity of the Sequence pattern (i.e., the variable
is specified using @Output). Subsequently, the fans who are interested in voting
are contacted to cast their votes, given the band’s discography.

At half past eight, the results of the votes need to be sent to the headliner
such that they can decide the order of the songs that will be played during their
show. This is implemented using a Synchronised Task pattern, which is the fourth
element of the Sequence pattern (lines 13-15). The Synchronised Task pattern is
instantiated with a sub workflow (in our example, a single activity) and a condition.
In this scenario, the condition is a time constraint, namely the deadline (20:30).
The activity wrapped by the pattern implements the sending of the votes to the
band, and receiving, as a result, the playlist of their show (line 14). Note that
no data merging strategy is used to instantiate the pattern. The abstract grammar,
shown in Listing 5.8, shows that the Synchronised Task pattern has an optional
third argument, namely the merging strategy used to merge the environments of
the instances of each group member. NOW’s implementation of the Synchronised
Task pattern has a default merging strategy provided, namely the “merge” strategy
that accumulates all values of the variables.

The fifth element of the Sequence pattern is a Cancelling Barrier pattern (line
16). This pattern blocks the execution of the individual instances of all group
members whose execution reached the pattern until a certain condition is satisfied.
In this example, only ten minutes before the concert starts (i.e., at 22:20) the
fans receive the playlist. Therefore, this activity (the sixth element of the Sequence)
must be placed after the Cancelling Barrier pattern (line 17).

134

5.6 Failure Handling

5.6 Failure Handling

We already described the control flow patterns that are supported by NOW and
which allow the orchestration of services in a nomadic network. We also introduced
the patterns that allow the orchestration of a group of services in these types of
networks. We now present the necessary patterns to allow failure handling by
defining compensating actions for specific kinds of failures.

The grammar of the failure handling patterns in NOW is shown in Backus-Naur
form in Listing 5.10.

<component> := <activity> | <pattern>
<duration> := "hours(" <integer> ")" | "minutes(" <integer> ")" |

"seconds(" <integer> ")"
<pattern> := <std_pattern> | <sync_pattern> | <group_pattern> |

<trigger_pattern> | <group_sync_pattern> |
<failure_event> | <compensation>

<std_pattern> := "Failure(" <component> ", [" <description>* "])"
<description> := "Description(" <failure_event> "," <compensation>

["‘group"] ")"
<failure_event> := "Disconnection()" | "Timeout(" [<duration>] ")" |

"NotFound(" [<duration>] ")" | "Exception()" |
"PDisconnection()" | "PTimeout(" [<duration>] ")" |
"PNotFound(" [<duration>] ")" | "PException()"

<compensation> := "Retry(" [<integer> "," <compensation>] ")" |
"Rediscover(" [<integer> "," <compensation>] ")" |
"Restart(" [<integer> "," <compensation>] ")" |
"RestartAll(" [<integer> "," <compensation>] ")" |
"Skip()" |
"SkipAll()" |
"Wait(" <duration> "," <compensation> ")" |
"Replace(" <component> ")" |
"Alternative(" <component> ")" |
"Drop()" |
"WaitAndResume()"

Listing 5.10: Abstract grammar of failure handling patterns in NOW.

This grammar extends the abstract grammars we presented in Listing 5.1, Listing
5.6 and Listing 5.8. Two new types of patterns are introduced, namely failure events
and compensations. The first of these categories is used to capture specific types of
failures, whereas the second category consists of patterns that are used to overcome
these failures. As we can see, the category of standard patterns is extended with a
Failure pattern. Such a Failure pattern wraps a sub workflow (called component)
and specifies compensations for specific kinds of failures. This specification is
given by a Description which maps a (chain of) compensation(s) to a failure
event. The failure events that are supported by NOW are disconnections, timeouts,
service unavailability and exceptions. Possible compensating actions are

135

5 A Nomadic Workflow Language

• retrying to invoke the same service;
• rediscovering a (possibly different) service of the same service type;
• restarting the activity of which the execution failed;
• restarting the execution of the sub workflow wrapped by the Failure pattern;
• skipping the activity that failed;
• skipping the entire sub workflow that is wrapped by the Failure pattern;
• waiting a specific time before trying another compensating action;
• replacing the failed activity by executing a sub workflow; and
• replacing the wrapped sub workflow with the execution of another sub work-

flow;
• dropping a participant from the group members (recall that this a compen-

sating action that can only be used for participant failure events); and
• waiting for a group member to reconnect, upon which the execution can be

resumed (this compensation can only be used for participant failure events).

Failure descriptions are used to specify the compensating action for a specific
type of failure. Recall that failure handling must also function for the group
orchestration patterns provided by NOW. It must be possible to react upon a
failure that occurs during the individual process execution of a single member
of the group, and, moreover, mechanisms must be provided to detect and handle
failures at the group level, and to propagate individual failures to the group level.
Therefore, descriptions have an optional third argument, which can be used to
specify whether the compensation should have an effect on the execution of the
entire group.

5.6.1 Failure Handling for Service Orchestration

Consider the example of updating a screen at the airport with the necessary in-
formation (flight number, belt number, estimated duration before luggage is on
the belt) so that passengers can retrieve their luggage. By using the failure pat-
tern (drawn as a dashed rectangle wrapping part of a workflow), we can specify
compensating actions, as is shown for the trailer service in Figure 5.6.

136

5.6 Failure Handling

Env.trailer.getDuration
(Env.belt)

@Output(Env.time)

Env.luggageS.getInfo
(Env.flight)

@Output(Env.trailer, Env.belt)

Env.gui.update
(Env.flight, Env.belt, Env.time)

...

SKIP

RETRY3

SKIP

LEGEND

activity

control flow

failure

disconnection failure

timeout failure
start event

20

Figure 5.6: Compensating actions specified for different kind of failures.

When the second activity has a timeout (after 20 seconds no reply is returned),
we try to resend the message three times. If this is still unsuccessful we move on
to the next compensating action, which just skips this activity (so no time gets
displayed on the screen). In case of a disconnection, however, the wrapped activity
is skipped in which case no time is displayed on the screen. The implementation
of this workflow in NOW can be seen in the following code snippet.

Sequence(Env.luggageS.getInfo(Env.flight)@Output(Env.trailer, Env.belt),
Failure(Env.trailer.getDuration(Env.belt)@Output(Env.time),

[Description(Timeout(seconds(20)), Retry(3, Skip())),
Description(Disconnection(), Skip())]),

Env.gui.update(Env.flight, Env.belt, Env.time));

Failure patterns can be nested, so different strategies can be formulated on differ-
ent levels of granularity. A whole workflow can be surrounded by a failure pattern
specifying “after a disconnection, wait 20 seconds and then try to rediscover" and
smaller parts of this workflow can be wrapped with more specific failure patterns,
which possibly override (shadow) the behaviour imposed by the outermost failure
pattern. In NOW an inside-out policy is used to determine the compensations that
must be executed for an occured failure event.

Recall that the language provides default compensations for failure events. Hence,
failures that occur during the execution of a compensation itself are taken care

137

5 A Nomadic Workflow Language

of by the language. However, application developers need to be careful when
specifying compensations for failures. For example, compensating actions are tried
indefinitely when no number indicates the number of attempts the compensation
should be executed.

5.6.2 Failure Handling for Group Orchestration

We now discuss the different possible compositions of the patterns for group
orchestration and failure handling. Recall that there are three possible compositions
that allow failure handling for group orchestration. Table 5.2 summarises how these
compositions can be implemented in NOW.

Composition Implementation in NOW
Composition 1
Figure 4.24(a) Group(TypeTag,

‘varName,
Sequence(...,

Failure(...,
[Description(Disconnection(),

RestartAll())]
)));

Composition 2
Figure 4.24(b) Failure(Group(TypeTag,

‘varName,
Sequence(...)),

[Description(Disconnection(),
RestartAll())]);

Composition 3
Figure 4.24(c) Group(TypeTag,

‘varName,
Sequence(...,

Failure(...,
[Description(

Disconnection(),
RestartAll(),
‘group)])));

Table 5.2: Failure handling for group orchestration in NOW.

Table 5.2 shows the implementation of the three possible compositions of failure
handling for group orchestrations, where the compensation for a disconnection is

138

5.6 Failure Handling

“restart all”. As we can see, for the third composition, the Failure pattern needs to
be created inside the group pattern. By instantiating the failure description with a
third argument, the symbol ‘group, we ensure that the compensating action will
have an effect on the execution of the entire group.

5.6.3 Implementing the SWOOP Application in NOW

We present how a scenario that uses these failure handling patterns can be imple-
mented in NOW. The scenario we use is the one of the SWOOP application we
presented in Section 2.3.1. This application is used to help organise workshops
at the university. This scenario introduces several failure-related concepts, such as
the need for automatic failure recovery in case of network failures. Moreover, the
SWOOP application exemplifies the necessity for recovery during the orchestration
of services in a nomadic network, by allowing the specification of application-
specific compensations, both for service orchestration and group orchestration.

Figure 5.7 shows the workflow implementing the scenario described for the
SWOOP application.

The workflow implementing the SWOOP application consists of the following
patterns (annotated using grey circles):

1. Failure: In the scenario of the SWOOP application, a lot of failure handling
is described. For instance, in case the mobile device of a workshop assistant
disconnects, this is signalled on the computer of the administration desk,
such that the assistant can be contacted via email. In order to implement
compensations for specific kinds of failures, a Failure pattern needs to wrap
the (part of the) workflow that is affected by the compensating action. For
this scenario, four Failure patterns are used: one to wrap the entire workflow,
one pattern such that individual failures with students can be overcome, and
two patterns that wrap a single activity.
Note that NOW has a default failure handling strategy, hence, it is not
necessary that compensations are specified for each of the failure types we
support (i.e., disconnection, timeout, exception, and service unavailability).
Failure patterns only need to be used in case the default compensation needs
to be overridden with an application-specific compensation.

139

5 A Nomadic Workflow Language

de
sc

rip
tio

n:
 E
nv

.a
ss
is
ta
nt
s

va
ria

bl
e

na
m

e:
 `a
ss
is
ta
nt

LE
G
EN
D

ac
tiv

ity

co
nt

ro
l fl

ow
gr

ou
p

ga
te

w
ay

 (o
r)

fa
ilu

re
P

di
sc

on
ne

ct
io

n
fa

ilu
re

pa
rti

ci
pa

nt
-d

is
co

nn
ec

tio
n

fa
ilu

re

1

2

En
v.

as
si

st
an

t.s
ho

w
("

R
em

in
de

r
w

or
ks

ho
p"

, E
nv

.ro
om

)

En
v.

fa
ci

lit
yM

an
ag

em
en

t.g
et

R
oo

m
(E
nv

.a
ss

is
ta

nt
)

@
O
ut
pu
t(E
nv

.ro
om

, E
nv

.w
or

ks
ho

p)

de
sc

rip
tio

n:
 p
ar
tic
ip
an
tD
es
cr
ip
tio
n

va
ria

bl
e

na
m

e:
 `p

ar
tic

ip
an

t

En
v.

pa
rti

cp
an

t.s
ho

w
("

W
or

ks
ho

p
lo

ca
tio

n"
, E
nv

.ro
om

)

En
v.

ad
m

in
.g

et
Vo

lu
nt

ee
r

(E
nv

.ro
om

)
@
O
ut
pu
t(E
nv

.v
ol

un
te

er
)

En
v.

vo
lu

nt
ee

r.s
ho

w
("

A
cc

om
pa

ny

st
ud

en
ts

",
 E
nv

.ro
om

, E
nv

.w
or

ks
ho

p)

En
v.

as
si

st
an

t.s
ho

w
("

A
cc

om
pa

ny

st
ud

en
ts

")

P

 A

LT
E

R
N

AT
IV

E
En
v.

ad
m

in
.a

nn
ou

nc
e

(E
nv

.w
or

ks
ho

p,
 E
nv

.ro
om

)

 R

E
P

LA
C

E

En
v.

ad
m

in
.a

nn
ou

nc
e

(E
nv

.w
or

ks
ho

p,
 E
nv

.ro
om

)

 W
A

IT
5

 R
E

S
TA

R
T

 R

E
P

LA
C

E

En
v.

ad
m

in
.c

on
ta

ct
(E
nv

.a
ss

is
ta

nt
)

P

+

+

2

1

1

1

3

4

3
5

5

5

5

5

no
 v

ol
un

te
er

vo
lu

nt
ee

r

tim
eo

ut
 fa

ilu
re

12
0

Figure 5.7: Workflow implementing the SWOOP application.

140

5.6 Failure Handling

2. Group: In the example scenario, two groups of services are addressed. First
of all, several tasks are performed for all workshops assistants. Secondly, all
students of a particular workshop are contacted such that they are notified
of the workshop’s location.
For the first group, an extensional description of the group members is
given, i.e., the references to the workshops assistants are stored in the data
environment, that is used to start the execution of the workflow.
For the second group, an intensional description is used, since these group
members are not known a priori (i.e., the group members are categorised as
user services), and need to be discovered when required.

3. Parallel Split: Two Parallel Split patterns are used to implement this applica-
tion in NOW. The first Parallel Split is used such that the task of reminding
the workshop assistant happens in parallel with the rest of the application
(searching for a student volunteer, etc.). The second pattern ensures that the
task of either informing the workshop assistant or student volunteer happens
parallel to informing all students that are registered for the workshop.

4. Exclusive Choice: This pattern is used to ensure that the right task(s) are
executed depending on whether a student volunteer has been found or not.
When no student volunteer has been found, the workshop assistant is in-
formed to guide the students himself/herself. Otherwise, the student volunteer
is informed about the room of the workshop.

5. Compensation: Several compensating actions are used to build the work-
flow of this example scenario. For instance, the Alternative compensation is
used such that when a disconnection occurs during communication with a
single student, an announcement is made. Another compensating action is
the Replace compensation, which is used such that in case a disconnection
happens during communication with a student volunteer, the persons at the
administration desks are informed to make an announcement.

141

5 A Nomadic Workflow Language

This workflow can be implemented in NOW as is shown in Listing 5.11.

1 Failure(
2 Group(
3 Env.assistants,
4 ‘assistant,
5 Sequence(
6 Env.fMgmt.getRoom(Env.assistant)@Output(Env.room, Env.workshop),
7 ParallelSplit(
8 Env.assistant.show("Reminder workshop", Env.room),
9 Sequence(

10 Failure(
11 Env.admin.getVolunteer(Env.workshop)@Output(Env.volunteer),
12 [Description(Timeout(seconds(120)),
13 Wait(seconds(30), Restart()))]),
14 ParallelSplit(
15 ExclusiveChoice({ |volunteer| volunteer == false },
16 Env.assistant.show("Accompany students", Env.room),
17 Failure(
18 Env.volunteer.show("Accompany", Env.room, Env.workshop),
19 [Description(Disconnection(),
20 Replace(Env.admin.announce(Env.workshop, Env.room)))])),
21 Group(
22 participantDescription,
23 ‘participant,
24 Failure(
25 Env.participant.show("Workshop location" , Env.room),
26 [Description(PDisconnection(),
27 Alternative(
28 Env.admin.announce(Env.workshop, Env.room)))]))))))),
29 [Description(PDisconnection(),
30 Replace(Env.admin.contact(Env.assistant)))]);

Listing 5.11: Implementation of the SWOOP application in NOW.

As we can see in Figure 5.7, the application consists of a Failure pattern that
wraps the entire workflow. This Failure pattern is created on lines 1-30 in List-
ing 5.11. The pattern is instantiated with a sub workflow (created on lines 2-28)
and with one failure descriptions (lines 29-30). This failure description is used to
specify the application-specific compensating action for a participant disconnection
failure. In case a disconnection occurs, with a service that is a member of the
group, the compensation defined on line 30 is executed, resulting in replacing the
activity that failed with the task of informing the administration desk that the
assistant must be contacted.

The sub workflow that is wrapped by the Failure pattern consists of a Group
pattern, which is created on lines 2-28. This Group pattern is used to address all
assistants that teach a workshop, and is described using an extensional description
(defined on line 3). In the data environment that is used to start the workflow’s

142

5.6 Failure Handling

execution, references to these assistants are stored in a table (the value of the
variable assistants). The variable that can be used to refer to these services
inside the group is assistant, as we can see on line 4. The Group pattern is
responsible for executing several tasks for all its services (i.e., for all assistants).

In our scenario, a sequence of tasks (contacting facility management, student
volunteers, students, etc.) needs to be performed. Hence, a Sequence pattern (lines
5-28) is used to compose the activities. First, facility management is contacted and
asked which room is reserved for the particular assistant (line 6). When the room
and the workshop are retrieved, several tasks need to be executed in parallel. First
of all, the assistant must receive a reminder that he/she must teach a workshop.
Secondly, the administration desk needs to search for a student volunteer that can
guide the students to the correct location, inform the students, etc. Therefore, a
Parallel Split pattern is introduced on lines 7-28.

The first outgoing branch of that pattern constitutes of a single activity, namely
sending a reminder to the assistant (see line 8). In the second outgoing branch
of the Parallel Split pattern several activities need to be executed. First of all, the
administration desk is asked to look for a student volunteer that can guide students
to the location of the particular workshop. Afterwards, either students are informed
about the workshop’s location and either the assistant or a student volunteer need
to be contacted. In order to implement this, a Sequence pattern is introduced on
lines 9-28.

The Sequence pattern is instantiated with a single activity (line 11), which is
wrapped by a Failure pattern, and is followed by a Parallel Split pattern (lines
14-28). The activity that implements the task of asking the administration desk
to look for a student volunteer, is wrapped by a Failure pattern that implements
application-specific compensations for a timeout failure (lines 10-13). In case a
timeout occurs during communication with the administration desk, recovery con-
sists of waiting 30 seconds, before restarting the execution of the failed activity.

The second component of the Sequence pattern is the Parallel Split pattern,
which is defined on lines 14-28. That pattern has two outgoing branches, consisting
of either an Exclusive Choice pattern or a Group pattern. Depending on whether a
student volunteer has been found, either the assistant or that student volunteer needs
to be contacted. This is implemented using an Exclusive Choice pattern (defined
on lines 15-20). In case no student volunteer was found, the workshop assistant
is informed that he/she needs to accompany the students (line 16). Otherwise, the
student volunteer is informed of the location of the workshop he/she needs to
accompany students to (line 18). Application-specific failure handling is specified

143

5 A Nomadic Workflow Language

for this activity: when a disconnection occurs during communication with the
volunteer, the administration desk is asked to announce the relevant information,
such that the student volunteer is informed about his/her work duties (lines 19-20).

The second outgoing branch of the Parallel Split pattern consists of a Group
pattern. This pattern is used to address all students that are registered for the
assistant’s workshop. The intensional definition that is used to instantiate this
group, is defined as

def shared := createFactSpace("shared");
def temp1 := shared.workshop_participant(Var.participantId, Var.workshop);
def temp2 := shared.workshop_assistant(Env.assistant, Var.workshop);
def participantDescription := makeIntensionalDescription(temp1, temp2);

This intensional description captures those references (Var.participantId) to
students that are registered to the workshop (Var.workshop) of the particular
assistant (Env.assistant). All these students receive a message, informing
them of the workshop’s location (line 25). In case a disconnection occurs during
the communication with one student, an announcement should be made (once).
This is achieved by wrapping the activity with a Failure pattern and specifying a
compensating action for a participant disconnection. The compensating action is
an Alternative compensation, because the compensation should only be executed
once for the entire group. This is implemented on lines 26-28.

5.7 NOW Related to the State of the Art

In this section we describe related work and evaluate existing work using the
criteria for orchestration in nomadic networks we presented in Section 2.3. First,
we give a survey of workflow languages, followed by an evaluation of existing
coordination languages.

5.7.1 Workflow Languages

Workflow languages were introduced to develop business processes. Throughout
the years, those languages gained popularity, and right now a variety of workflow
languages are available. These languages can be divided into several categories.
First, we distinguish traditional workflow languages, such as YAWL [vdAtH05] and
WS-BPEL [JE+07], which are concerned with the composition of (web)services.
The second category differs from traditional workflow languages by allowing a
distributed execution [MWW+98] because the workflow execution engine is dis-
tributed. The idea of a federated workflow is introduced by Micro-Workflow
[Man00] where sub workflows can be divided in a distributed setting. Another

144

5.7 NOW Related to the State of the Art

category is concerned with so-called scientific workflows which are used to de-
scribe the process in terms of computations that arise in scientific problem-solving.
Scientific workflows systems, like Kepler [LAB+06], differ from traditional ones,
as the computations are heavy, complex, use scientific data, and can take a long
time to finish. The workflow engine is distributed as well; tasks can be divided
among computation nodes in a computer cluster or computing grid. A last cate-
gory of workflow languages are those workflow languages which are tailored for
development in MANETs and nomadic networks.

In this section we give a survey of workflow languages that are relevant for
our research. We limit ourselves to the both the traditional workflow languages, as
these languages introduce the necessary abstractions for service orchestration, and
the latter category that focusses on workflow languages for MANETs and nomadic
networks.

Traditional Workflow Languages

Yet Another Workflow Language YAWL [vdAtH05] is developed as a result of
the examination of workflow patterns conducted by the Workflow Pattern Initiative.
This study showed that support for several workflow patterns were missing, as well
as a formal semantics. This observation led to the development of this workflow
language. YAWL is implemented on top of high-level Petri nets [vv02].

YAWL has support for basic control flow patterns, advanced branching and
synchronization patterns, structural patterns, patterns involving multiple instances,
state-based patterns, and cancellation patterns. Therefore, the usage of patterns to
describe the control flow of a process ensures that the flow is made explicit.

Just like most workflow management systems, YAWL completely relies on XML-
based standards like XPath and XQuery [vvH94]. The workflow language provides
both net and task variables, which can be categorised further into input variables,
output variables and local variables. Net variables are used to store data that needs
to be accessed/updated by tasks in a net, whereas tasks variables are used to store
data that needs to be accessed or updated in the context of an individual instance
of a task. YAWL makes the distinction between “input and output” variables and
“input only or output only” variables. In general, data is read from output variables
and written to input variables and local data can only be used for net variables. The
workflow language supports both internal data transfer by means of data passing
between variables, and external data transfer which is accomplished through data
interaction between the process and its operating environment (i.e. the engine and

145

5 A Nomadic Workflow Language

the services). YAWL also supports contextual data, which can be modelled using
worklets, a workflow specification that is dynamically assigned at runtime.

YAWL has no discovery mechanism and cannot react upon the availability of
services in the neighbourhood, since all services are known a priori. Therefore,
there is no decoupling in space.

Services are invoked in YAWL using Remote Procedure Calls (RPC), which
block the execution of a single activity. However, the language spawns the nec-
essary threads in case multiple activities need to be executed, for instance when
a parallel split or multiple instances pattern is used. Each task is executed by
a dedicated service. The association between a task and its service can either
be done explicitly at design time, or it can be the default Resource Service of
YAWL. The service invocation must be synchronous (i.e. request/response). In or-
der to allow asynchronous invocations of services, custom YAWL services must
be used. The custom services of YAWL communicate with the execution engine
using XML/HTTP messages. When such a service is invoked, it marks its status
as “executing” until the execution of the task is finished.

YAWL has built-in support for failure handling for atomic tasks (i.e., a single
activity and not a sub workflow). Hence, defining recovery strategies that cover
several tasks of the workflow, such as restarting the execution of the entire work-
flow, is not straightforward. YAWL provides an Exception Service which handles
both expected and unexpected exceptions (e.g., events/occurrences not defined in
the process model), such that the process can continue unhindered. When an unex-
pected exception is handled, it becomes an implicit part of the process specification,
ensuring a continuous evolution of the process. YAWL has support for ten different
kinds of exceptions and provides several actions to handle these failures, either at
the level of an activity, a single instance, or for all instances. Amongst these actions
are cancelling, suspending, and restarting the execution of the activity, instance, or
all instances. Although the workflow language has support for exception handling,
there are no ways available to deal differently with network failures compared with
other exceptions that occur. The language is able to detect a deadline expiry, but
has no provisions to catch disconnections of services.

To summarise, we evaluate YAWL using the criteria we postulated in Section 2.3.

• time decoupling: YAWL provides decoupling in time through the usage of a
data structure. This data structure, called worklist handler, is the component
used to assign work to users of the system. Users can accept work items2

through this worklist handler and signal their completion once finished.

2A work item is a runtime instance of an atomic task definition.

146

5.7 NOW Related to the State of the Art

• space decoupling: YAWL cannot react upon the availability of services in
the neighbourhood, as all services communicated with must be known be-
forehand.

• synchronisation decoupling: YAWL uses synchronous communication for
the invocation of services by default.

• explicit control flow: The usage of patterns to describe the control flow of
a process ensures that the flow is made explicit.

• intensional definition: Intensional definitions in YAWL must be specified
relying on the language’s data flow mechanism that relies on XML-based
standards like XPath and XQuery [vvH94].

• arity decoupling: Because the language provides a “multiple instances with-
out a priori run-time knowledge” pattern, a process can be executed multiple
times. The number of times the process is executed can however not vary
over time.

• dynamic modification: YAWL is not equipped with patterns that allow the
dynamic modification of the members of a group (i.e., the number of exe-
cuting instances of a multiple instances pattern).

• synchronisation mechanisms: YAWL does not have support for the more
advanced group synchronisation mechanisms, like the barrier patterns we
propose.

• automatic failure handling: Because YAWL only allows failures to be han-
dled on the level of an atomic task, the workflow language has only limited
support to automatically handle failures.

• explicit failure handling: YAWL only partially enables explicit failure han-
dling, since no compensations can be specified to overcome network failures.

Because YAWL does not have dedicated patterns for the orchestration of a group
of services, the workflow language does not support the criteria concerned with
failure handling for groups (i.e., individual failure handling, and failure handling
for groups).

Business Process Execution Language Orchestrating web services is often achieved
using the workflow language BPEL, the Business Process Execution Language
[JE+07]. This workflow language provides a standard way to specify business pro-
cesses using XML-based standards. BPEL makes the distinction between abstract
processes and executable processes. An abstract process is the specification of a
process in BPEL which is not intended to be executed by a workflow engine,
whereas executable processes provide a full specification of the process and can
hence be executed by an engine.

147

5 A Nomadic Workflow Language

A BPEL process consists of partner links, variables and a main activity. The
partner links describe the partners (i.e., web services) the process interacts with
during its execution. The web service that will be invoked is selected using the
service type that is specified by the partner link using a WSDL (Web Service De-
scription Language) interface. Because services are described using WSDL, which
specifies amongst other the location of the service, BPEL has no decoupling in
space. Services can either be invoked using request-response (<invoke> activ-
ity) or one-way operations. Asynchronous communication can be initiated using
BPEL’s <request> activity.

Variables enable capturing the process’ messages. Such messages are frequently
received from partners or must be sent to partners. Furthermore, these variables can
hold the state of the process (global data) which is not exchanged with partners.

The main activity that is specified by the process represents the workflow that
must be executed. BPEL has support for 20 different types of activities, which
are divided in basic activities and structured activities. Basic activities (like <in-
voke> and <reply>) describe steps of the process behaviour, whereas structured
activities (for instance, <sequence>) are used to describe the control flow of the
process. The process’ main activity is most often one of the latter category, namely
a structured activity composing several activities. So we conclude that BPEL has
support for explicit control flow through its structured activities.

BPEL provides fault handlers to react upon “failures”, i.e., when a web ser-
vice returns data other than what was expected. The workflow language makes
the distinction between two categories of failures, namely business faults and run-
time faults. Business faults are generated in case there is a problem with the data
that is processed, whereas runtime faults are caused when executing a process or
web service. The last category of faults are not user-defined and are thrown by
the workflow management system. In contradiction to YAWL, BPEL does have
support to specify fault handlers for multiple activities. To this end, the language
introduces a scope activity which is a simple container for activities for which fault
handlers and compensations can be provided.

We evaluate BPEL with respect to the criteria we postulated in Section 2.3.

• time decoupling: BPEL messages are buffered in a queue, therefore, the
workflow language enables decoupling in time.

• space decoupling: In BPEL services are described using WSDL, which spec-
ifies amongst other the location of the service. Therefore, BPEL has no
decoupling in space.

148

5.7 NOW Related to the State of the Art

• synchronisation decoupling: BPEL’s <request> activity initiates asyn-
chronous communication, enabling decoupling in synchronisation.

• explicit control flow: BPEL has support for explicit control flow through its
structured activities.

• automatic failure handling: The workflow language has no built-in recovery
mechanism to overcome detected failures.

• explicit failure handling: Although the language provides support for failure
handling by allowing the specification of fault handlers, BPEL has no support
for connection-independent failure handling.

To the best of our knowledge, BPEL does not provide abstractions that allow
the orchestration of a group of services. Because BPEL only implements the
“multiple instances without synchronisation” pattern, it is not possible to model
NOW’s Group pattern. Therefore, we state that none of the criteria with respect
to group orchestration are enabled by BPEL. However, the language does have
support for intensional definitions of services, because it relies on XML standards
like XPath and XQuery [vvH94]. Because BPEL does not provide abstractions
for group orchestration, the two criteria with respect to failure handling for group
orchestration (namely individual failure handling, and failure handling for groups)
are not supported by this workflow language.

Workflow Languages for Mobile Environments

Collaboration in Ad Hoc Networks CiAN (collaboration in ad hoc networks)
[SRG08, Sen08] is a workflow management system for mobile ad hoc networks.
CiAN makes a shift from centralised workflow management towards distributed
management. CiAN does not only have support for a distributed management
system and an appropriate communication protocol to function in MANETs, it
also has support to adapt the workflow execution depending on the context of its
surrounding environment.

Since the goal is to function in a dynamic network, CiAN employs appropri-
ate communication and coordination protocols. The workflow engine works in a
choreographed manner, meaning that no central entity is needed to coordinate its
execution. Peltz [Pel03] states that for orchestration the interactions are described
from the perspective of one controlling service. For choreography, on the other
hand, the description is from a global point of view.

CiAN introduces the concept of a host, which constitutes of both the mobile
device and its user. Initially all hosts are colocated, and after the execution is
started, hosts can be separated. Each host has the following information: a name,
a list of offered services, and a schedule containing entries of when the host is

149

5 A Nomadic Workflow Language

unavailable. Moreover, each has as a local knowledge base where information about
other hosts is being stored. As all hosts are connected upon instantiation, these
knowledge bases are ensured to contain information for all hosts in the network.
Once the execution is started and hosts are no longer guaranteed to be colocated,
there can be asymmetric information in the network as updates to hosts are being
propagated.

Recall that CiAN functions in a choreographed manner, and hence, no central
coordinating entity is available. Therefore, an allocation algorithm is provided
which divides the responsibility for each task a priori. CiAN operates in two
different modes, namely planning and standard. During the planning mode, tasks
are being allocated, whereas the standard mode is used when an allocated task is
being executed by a host.

A workflow specification in CiAN is modelled using a directed acyclic graph.
The language has support for 9 control flow patterns defined by Russell [RtHvdAM06],
namely all basic control flow patterns and advanced synchronisation patterns. The
data that flows throughout the workflow is modelled on the incoming and outgoing
edges of each task.

CiAN uses request-response in the form of a SOAP message to invoke ser-
vices. CiAN relies on Sliver [HGR07] for the invocation of services. Sliver is
a a lightweight BPEL execution engine that is developed to function on mobile
devices.

CiAN introduces a host listener to notify of hosts that come in or out of commu-
nication range. Hence, the workflow language can react upon the (un)availability
of services in the neighbourhood. However, CiAN has no mechanism to detect
(network) failures or exceptions that occur during communication with a service,
and hence, does not have any recovery mechanism provided as well.

We summarise by deliberating over the proposed criteria for orchestration in no-
madic networks.

• time decoupling: CiAN relies on Sliver [HGR07] for its invocation of ser-
vices. Sliver is a lightweight BPEL execution engine that is developed to
function on mobile devices. Just like BPEL, Sliver does enable decoupling
in time.

• space decoupling: CiAN has no decoupling in space, because all hosts need
to be colocated initially.

• synchronisation decoupling: CiAN uses request-response in the form of a
SOAP message to invoke services. Therefore, the execution of a process is
blocked until the service invocation is finished.

150

5.7 NOW Related to the State of the Art

• explicit control flow: CiAN provides 9 control flow patterns.
• automatic failure handling: CiAN provides some (restricted) automatic fail-

ure handling through its host listener.
• explicit failure handling: CiAN has no mechanism to detect (network) fail-

ures or exceptions that occur during communication with a service, nor does
it provide any recovery mechanism.

To the best of our knowledge, CiAN does not provide any support for group
orchestration. Therefore, all criteria we postulated with respect to group orchestra-
tion are not enabled by CiAN. Because no abstractions for group orchestration are
provided, CiAN does neither have individual failure handling, nor failure handling
for groups.

The Open Workflow Initiative is a project which builds upon the research realised
when developing CiAN. Open Workflow [TWRG09] allows the construction of
custom, context-specific workflows in mobile ad hoc networks. The language allows
workflows to be “plugged in” at runtime in order to acquire a more concrete
workflow description. Although the concept of merging workflows dynamically in
a mobile environment is very interesting, it is not the focus of our work. Moreover,
the short evaluation we performed for CiAN still holds for this workflow language,
as it builds upon the same principles. For instance, the allocation algorithm used
by Open Workflow is the same that is used by CiAN, entailing that all services
are known beforehand, and hence, violating the space decoupling criterion.

WORKPAD WORKPAD [CdRdL+06, CdM+08] is a workflow management sys-
tem that is developed for mobile ad hoc networks. WORKPAD focusses in par-
ticular on the peer-to-peer collaboration between human users in MANETs. The
architecture of WORKPAD consists of two layers, namely a front end and back
end layer. The front end layer comprises several teams of which the team members
are connected in a MANET. Each team consists of several devices (called actors)
which provide several services, and a coordinator device which orchestrates the
team members. This coordinator device acts as a gateway to the back end layer.
The back end layer is a peer-to-peer network that lets teams collaborate. The back
end layer is responsible for the coordination and the exchange of information.

To do this, WORKPAD uses a process management system [vv02] to coordinate
the tasks of a single team. Therefore, WORKPAD extends the workflow specifica-
tion with directives allowing tasks in the workflow to pass data to subsequent tasks,
steering the execution of the workflow. Each device has a worklist handler which
stores the assigned task for a particular actor (device of a team member). When

151

5 A Nomadic Workflow Language

a task is picked by the team member, the worklist handler starts the application
that can perform the task. Information is exchanged between the system and the
handler by invoking remote methods of web service interfaces.

WORKPAD can propose configurations of services based upon the team mem-
bers that are reachable (i.e., in communication range). The system is also able to
react upon disconnections of team members: When an actor goes out of reach, the
system assigns another device to act as a bridge. In order to support this, WORK-
PAD relies on a central entity to coordinate the mobile devices and to manage
disconnections. However, the language has no support to handle reconnections of
actors, something which happens frequently in a mobile network.

To summarise, we evaluate WORKPAD using the postulated criteria for orchestra-
tion in nomadic networks.

• time decoupling: WORKPAD’s engine is based on Sliver [HGR07], the
lightweight BPEL execution engine for mobile devices. Just like BPEL, Sliver
buffers messages, enabling decoupling in time.

• space decoupling: WORKPAD relies on RESCUE [JD08], an open-source
middleware for communication with services. RESCUE employs a proto-
col for service discovery using active advertisements sent out by service
providers. Therefore, WORKPAD adheres to decoupling in space.

• synchronisation decoupling: RESCUE consists of a local database contain-
ing an updated view of the environment, i.e., the services that are currently
connected. This middleware enables one way invocation of web services
through asynchronous requests/responses, enabling synchronisation decou-
pling.

• explicit control flow: WORKPAD uses structured workflows to model pro-
cesses. Hence, the control flow of a process is made explicit.

• automatic failure handling: WORKPAD distinguishes two types of failure
events, namely communication failures and (network) node failures. WORK-
PAD tries to provide strategies to reschedule activities in order to overcome
each of these events.

• explicit failure handling: The workflow language does not allow the specifi-
cation of compensating actions for specific failure events.

To the best of our knowledge, WORKPAD does not provide any support for
group orchestration. Therefore, all criteria we postulated with respect to group
orchestration are not enabled by WORKPAD.

152

5.7 NOW Related to the State of the Art

FlowMark The Exotica Research Project [MAGK95, AGK+95] of IBM is mainly
focussed on workflows and advanced transaction management. The project wants to
support disconnected computing by integrating disconnected clients into a workflow
management system. For their research, Exotica/FDMC uses FlowMark [Lut94], a
workflow management system of IBM.

FlowMark is based upon a client-server architecture and uses a central object-
oriented database to store information about the schema and runtime information
of the process. The system provides several clients, namely the runtime client, the
program execution client, and the buildtime client. The buildtime client takes care
of several tasks, amongst others the definition and creation of the workflow and
the assignment of roles. To this end, the buildtime client needs to have knowledge
about all clients in the system.

The workflow language provided by FlowMark consists of the following com-
ponents: processes, activities, control connectors, data connectors, and worklists.
Control connectors are used to describe the control flow of the processes, whereas
data connectors are used to specify the data that is needed to start a particular
activity.

Worklists are used to determine the work items that are distributed to a particular
client. A single work item can be distributed to several clients at the same time,
and the server determines the clients an activity (work item) is distributed to.
However, the system ensures that a work item is not executed multiple times, by
deleting a work item that is selected by one client in the list of all other clients
in the system. The invocation of a service can be done either synchronous or
asynchronous.

FlowMark supports disconnected clients, meaning that a mobile or disconnected
user has the capability to process work while not being connected to the FlowMark
server. When the client is connected to the server, all work items that require work
are available. When the client selects a work item from its worklist, the FlowMark
server marks the work item as “running” for that client and “disabled” for the other
clients that were assigned to that work item. The client can disconnect, perform the
work, and upon reconnection to the server, the completed work items are checked
in.

FlowMark introduces the concept of planned disconnection: clients that can dis-
connect for a certain time period and commit to perform work during that discon-
nection phase. The disconnection is said to be “planned” as both the client needs
to notify the server of its intention and both the server and the client need to agree
upon the disconnection. In order to allow such disconnected clients, clients should
have enough information as they can no longer query the central server. This can
either be realised by providing clients with enough information before the discon-

153

5 A Nomadic Workflow Language

nection, or by allowing clients to perform navigation themselves by transferring
parts of the process to the clients. When a client does not perform the activity
after a dedicated time period a timeout is signalled to the server, which reacts
appropriately upon it.

We evaluate FlowMark running through the postulated criteria (Section 2.3).

• time decoupling: FlowMark enables decoupling in time through its support
for disconnected clients.

• space decoupling: FlowMark’s buildtime client assigns tasks to clients. To
this end, the buildtime client needs to have knowledge about all clients
in the system. Hence, the FlowMark workflow management system has no
decoupling in space.

• synchronisation decoupling: The FlowMark Definition Language has support
to set an activity in asynchronous mode, therefore enabling decoupling in
synchronisation.

• explicit control flow: FlowMark enables the control flow of processes to be
made explicit through its notion of control connectors.

• automatic failure handling: By introducing the notion of disconnected clients,
the system is able to deal with planned disconnections. However, the system
has no mechanisms to cope with spontaneous disconnections which happen
frequently in a mobile environment dominated by volatile connections. Hence,
we can state that FlowMark only has (restricted) support for automatic failure
handling.

• explicit failure handling: FlowMark guarantees forward recovery, ensuring
that a process makes progress when a failure is detected. In order to al-
low backward recovery, Exotica introduces spheres of compensation [Ley95]
which specify the scope in case of failures. Within the Exotica project, ad-
vanced transaction models on top of FlowMark have been developed, such
that the workflow can be extended with the definition of a compensating task
for each ordinary task [AKA+94, AAA+96].

Concerning group orchestration, to the best of our knowledge, FlowMark does
not provide abstractions that allow the orchestration of a group of services. Be-
cause FlowMark does not have dedicated patterns for the orchestration of a group
of services, the workflow language does not support the criteria concerned with
failure handling for groups (i.e., individual failure handling, and failure handling
for groups).

154

5.7 NOW Related to the State of the Art

5.7.2 Coordination Languages

Coordination languages are concerned with the communication and cooperation
between the different entities in a system. These can be situated in a distributed
environment or hosted on the same device. Coordination languages implement a
coordination model, in contrast to computation languages which implement a com-
putational model. According to [PA98], such a coordination model is the glue that
binds separate activities into an ensemble. In most low-level mainstream languages
like C [KR88] and C++ [Str00], communication is not embedded in the language
itself, rather special purpose libraries are used to orchestrate communication which
are forced to adopt the paradigm of the language. This is in contrast with coor-
dination languages where the paradigm itself is dedicated to communication and
cooperation between processes.

The survey paper on coordination models and languages [PA98] makes the
distinction between data-driven and control-driven coordination. The data-driven
categorisation captures these coordination models that are evolved around the no-
tion of a shared dataspace. Communication between processes is achieved through
this medium by broadcasting information to this medium, or by copying it. The
second category of coordination models, called control-driven or process-oriented,
achieves almost a complete separation between coordination and computation con-
cerns. In control-driven coordination languages, processes communicate by means
of interfaces, which are usually referred to as input or output ports. Relationships
between the processes (producer and consumer) are created using streams or chan-
nels between the output ports of the producer and the input ports of the consumer.
Next to these ports, processes use events or control message to inform other pro-
cesses of state changes.

In this section we describe these two categories in more detail. We start by
discussing the data-driven coordination languages, and present the first genuine
coordination language that falls into this category. Thereafter, we describe two
popular coordination languages that are sculpted for service orchestration in a
mobile environment, and are categorised as control-driven coordination languages.

Data-Driven Coordination Languages

Data-driven coordination languages use a shared dataspace that allows indirect
communication between processes. Communication is realised by processes that
publish and/or retrieve information from this shared dataspace. This mechanism
allows both decoupling in time and space, because processes do not need to be
alive at the same time, nor do their identities need to be known a priori.

155

5 A Nomadic Workflow Language

Historically, Linda [Gel85] is the first coordination language that implements
such a shared dataspace. Linda uses the model of generative communication for
coordination, and needs a host language for its computation. When data needs to
be exchanged, a new data object (called a tuple) must be created and stored in
the shared dataspace (called tuple space). A distinction is made between tuples
which have solely data fields, and tuples which have at least one field containing
executable code. The former kind of tuples are called passive tuples whereas the
latter are called active tuples. The difference between both kinds is that a passive
tuple can be stored directly into the tuple space. In contrast, an active tuple
contains code which must be evaluated by a special operator to a passive value.
When all active fields have been processed to passive values, a passive tuple is
constructed and inserted into the tuple space. All tuples reside in a tuple space
which is accessible by a number of concurrent processes, possibly distributed over
different devices. Processes can publish and withdraw tuples from the tuple space,
which acts as a shared distributed associative memory. Communication between
concurrent processes is handled solely through the tuple space. In order to let
two concurrent processes communicate, one process publishes tuples into the tuple
space and the other process withdraws them.

Linda has been designed for a distributed environment where there is access to
a globally shared tuple space. It provides primitives adopted from the tuple space
model for the access to this memory. These primitives can be used to simulate
the standard coordination patterns, like semaphores and the rendez-vous pattern.
Moreover, these primitives provide additional properties, such as time and space
decoupling.

Linda in a Mobile Environment LIME [PMR99] is the first coordination lan-
guage based on Linda’s tuple space model that adapted the model to operate in a
dynamically changing network. Linda’s tuple space model enables both time and
space decoupling, properties which align well with a mobile environment where
the network topology is constantly changing. However, the restriction that Linda’s
tuple space must be globally accessible for all entities in the network does not fit
nicely for mobile environments.

In order to overcome this restriction, LIME breaks down the Linda global tuple
space into a hierarchy of tuple spaces. Every process has its own tuple space
which contains the tuples it wants to share with other processes. The union of all
tuple spaces, which resides on the same host, are grouped together in a host level
tuple space. These host level tuple spaces are merged together in a federated tuple
space.

156

5.7 NOW Related to the State of the Art

This federated tuple space can be compared with the Linda tuple space, though
the contents of this tuple space is dynamically changed according to the connec-
tivity of the hosts, as well as upon the arrival of new processes on those hosts.
In Linda, the tuple space coordinates the data that is associated with the process
communication, whereas LIME uses the tuple space to provide context information
depending on connectivity [PMR99].

LIME’s mechanism of breaking down the tuple space into a hierarchy of tu-
ple spaces provides a powerful abstraction, because the process does not need to
be concerned with the dynamically changing network topology, which is reflected
through changes in the tuple space. A LIME group consists of a group of devices
within one another’s range. All tuples of a LIME group are transiently shared, and
the tuple space perceived by a mobile device through its interface tuple space is
the conjunction of all interface tuple spaces in that group.

LIME is evaluated using the criteria for orchestration in nomadic networks we
proposed in Section 2.3.

• time decoupling: LIME is based upon Linda’s tuple space model which
enables decoupling in time.

• space decoupling: LIME is based upon Linda’s tuple space model which
enables decoupling in space.

• synchronisation decoupling: Synchronisation decoupling is not enabled in
Linda’s tuple space model, where blocking operations exist to extract tuples
from the tuple space. LIME extends the basic tuple space model with reac-
tions, which are callbacks that can trigger asynchronously when a matching
tuple is asserted in the tuple space. These reactions enable decoupling in
synchronisation.

• explicit control flow: The usage of callbacks to react upon the assertion of
tuples in the tuple space, the control flow of the process is not explicitly
modelled.

• intensional definition: The language does also not allow intensional defini-
tions of the processes that are allowed to access tuples in the tuple space.

• arity decoupling: In tuple spaces, arity decoupling is enabled because a
tuple can be read by multiple processes. This is only achieved using read
operations (not retract operations), which leave the tuple in the tuple space
such that it can be read by other processes [EFGK03].

• dynamic modification: There are no ways to restrict the number of processes
that read tuples from the tuple space.

157

5 A Nomadic Workflow Language

• synchronisation mechanisms: There are no advanced synchronisation mech-
anisms available to synchronise the processes that are reading certain tuples.

• explicit failure handling: With respect to failure handling, LIME introduces
a read-only tuple space, of which the asserted tuples represent information,
such as the connected hosts. Connectivity with other hosts can be observers
by registering reactions, enabling explicit failure handling.

LIME does provide not provide automatic failure handling, nor failure handling
with respect to group orchestration (individual failure handling, and failure handling
for groups).

Tuples on the Air In contrast to LIME, coordination in TOTA [MZ04] is not
achieved by a tuple space distributed among the mobile hosts in the network.
TOTA provides the facilities for tuples themselves to hop from host to host using
a migration policy. These tuples do not belong to a specific host but are injected
by a host in the network and flood the network according to a pattern specified
by the injected tuple.

The network topology of a group of TOTA nodes is organised as a peer-to-peer
network where every node has access to a limited number of colocated hosts. Every
host can store tuples and provides the necessary support to let the tuples propagate
to other connected hosts. A tuple can no longer be viewed as merely data, it is
in fact a mobile program that hops from host to host. TOTA tuples consist of
both content (list of fields) and a propagation rule. The propagation rule describes
whether a tuple can be propagated, and also has the opportunity to transform the
tuple.

By letting the propagation rules change the tuple information, the passing of
tuples is changed from merely making copies to a distributed computation that is
achieved by passing the TOTA tuple around. Because of the propagation rules, the
distribution of tuples is no longer restricted to the physical network topology but
can be extended to any virtual network topology supported by the physical one.
For example, limiting the propagation of tuples to a certain distance from the host
which published the tuple, can easily be achieved by computing the distance to
the original host every time the tuple is migrated. The propagation stops when the
tuple’s distance is too far from its originating host.

TOTA does not only support active distribution of the tuples, but also dynamic
adaptation. As the underlying network topology is changed, these changes are
propagated to tuples and tuples can be automatically re-propagated taking into
account the changed network. Reconfigurations of the network, like the addition
of a host to the network, are propagated by checking the propagation rules of the
already stored tuples and the re-propagation of tuples to this newly added host in

158

5.7 NOW Related to the State of the Art

the network may be triggered depending on the propagation rules. Using the same
mechanism, the distribution of tuples is adapted according to movements of a host
through the network.

Communication in TOTA is thus reduced to injecting tuples to the network and
detecting tuples in the local tuple space. Applications written in TOTA are able to
access the local tuple space, publish tuples with a content and a propagation rule,
and can be notified about changes in the context.

TOTAM [SGD09] is an extension of TOTA, where the propagation of tuples can
be restricted. TOTAM is a tuple space model sculpted towards mobile ad hoc net-
works and provides a dynamic scoping mechanism that limits the transportation of
tuples. TOTAM tuples can be scoped themselves, meaning that these tuples can dy-
namically adjust their scope when hopping from one host to another. Programmers
can scope the tuples by providing a tuple space descriptor, and hence, can prevent
tuples to be propagated to unwanted hosts. Because this scope is determined be-
fore transmission of the tuple, the physical movement of the tuple can be prevented.

TOTAM uses the combination of leasing with a replication-based tuple space
model in order deal with both intermittent and persistent failures. In order to deal
with intermittent connectivity, TOTAM replicates tuples to other tuple spaces in the
network. Applications are, by default, not aware of the intermittent disconnections
of other TOTAM systems in the network since the model abstracts the configuration
of the network.

However, tuples can contain rules that describe runtime conditions under which
tuples should be visible in the receiving tuple space. Dealing with permanent dis-
connections can be achieved by injecting tuples with a lease, determining how
long the tuple must remain in the tuple space.

We evaluate TOTAM using the criteria we proposed for orchestration in nomadic
networks.

• time decoupling: TOTA’s replication-based model provides decoupling in
time.

• space decoupling: Decoupling in space is naturally supported in data-driven
coordination models.

• synchronisation decoupling: TOTA(M) uses an intermediate coordinator to
transmit messages, and therefore enables decoupling in synchronisation.

159

5 A Nomadic Workflow Language

• explicit control flow: In TOTAM, reactions are registered on the tuple space
for given templates. Therefore, the control flow of the application is not
apparent.

• intensional definition: Group orchestration can be realised in TOTAM by
means of its propagation protocol. Members of the group can be described
by adapting the protocol’s inScope method. The protocol provides a doAc-
tion method, which allows the execution of some action on the local tuple
space the tuple is injected into. This way, a process can be executed for a
group of members satisfying a description.

• arity decoupling: TOTAM tuples can adjust their scope when hopping from
one host to another. Therefore, the number of hosts communicated with is
not known a priori and can fluctuate over time.

• dynamic modification: TOTAM’s propagation protocol can be adapted such
that before transmission of the tuple, the hosts to which the tuple may be
propagated can be adapted.

• synchronisation mechanisms: TOTAM’s tuple space model does not provide
the advanced synchronisation mechanisms we propose.

• automatic failure handling: TOTAM deals with intermittent connectivity, us-
ing replication. However, the language does not provide any default recovery
mechanisms for reconnections of TOTAM systems.

• explicit failure handling: TOTAM enables explicit handling of failures, through
the introduction of leases.

Concerning failure handling for groups, TOTAM does not provide any abstrac-
tions that allow recovery for a group of TOTAM systems.

Control-Driven Coordination Languages

Orc Orc [KQCM09] is a programming language with explicit support for ser-
vice orchestration. The programming language uses a process calculus to express
the coordination of different processes. The process definition in this language is
simple as the invocations are abstracted and represented by keywords, and service
composition is specified with four concurrent combinators.

The calculus introduces the notion of sites to refer to (external) services. Sites
can be several types of software components, like web services, JAVA classes, or
custom Orc sites. A program communicates with the environment by calling these
sites which create channels of communication.

Calling a site constitutes of the following execution steps: invocation of the site,
receiving a response from the site, and publication of that result. Those three steps
can be interleaved at any moment with other site calls, or can even be delayed

160

5.7 NOW Related to the State of the Art

indefinitely. A handle is used to connect a site call to a site return. This handle
is blocked waiting for the response from the site call. When there is no response,
the call blocks indefinitely. An asynchronous semantics of Orc in which all events
(other than external response) are processed as soon as possible is presented by
Misra [MC07].

Chromatic Orc [MK09] allows exception handling by introducing throw and try
catch expressions that can both run in parallel and hence do not cause termination
(criterion 10). The exception handling mechanism introduced in Chromatic Orc
differs from how exceptions are handled in traditional sequential programming lan-
guages. First of all, multiple exceptions may be raised (possibly in parallel) in the
throw clause. Moreover, the catch handler that catches the exceptions is executed
in parallel with the expression that raised the exception. This mechanism ensures
that throwing an exception does not cause the expression to terminate.

We evaluate this coordination language using the postulated criteria for orchestra-
tion in nomadic networks.

• time decoupling: Orc uses temporary proxy objects to manage external com-
munication for site calls [AM10]. Such a proxy object serves as a buffer for
the site’s response. Therefore, Orc adheres to decoupling in time.

• space decoupling: The sites that are used by an Orc program are known a
priori (for instance through a URL), disabling decoupling in space.

• synchronisation decoupling: An asynchronous semantics of Orc is presented,
enabling decoupling in synchronisation.

• explicit control flow: The Orc programming language has been extended
with definitions for several control flow patterns [CPM06]. The language
extension has support for 16 control flow patterns that were categorised
by Russell [RtHvdAM06]. These patterns are introduced in Orc as reusable
definitions, ensuring that they can be used to create larger programs.

• intensional definition: X-Orc [MKC07] is an extension of Orc, enabling
the coordination language with an XML data model and XML-specific data
management capabilities from XQuery. Intensional definitions of services can
be achieved using XQuery.

• automatic failure handling: Chromatic Orc has no built-in recovery strate-
gies provided.

• explicit failure handling: Chromatic Orc introduces abstractions for excep-
tion handling, the language assumes a stable network interconnecting the
services. Hence, there are no mechanisms provided to capture and recover
from network failures.

161

5 A Nomadic Workflow Language

However, to the best of our knowledge, Orc does not provide abstractions for
orchestrating a group of services. Orc does not enable arity decoupling, dynamic
modification and group synchronisation mechanisms, nor the criteria for failure han-
dling for group orchestration (i.e., individual failure handling, and failure handling
for groups).

Reo Reo [Arb04] is a glue language that allows the orchestration of different
heterogeneous, distributed and concurrent software components. Reo has a coor-
dination model wherein complex coordinators, called connectors, are composed
of simpler ones (where the simplest ones are channels). These different types of
coordinators dictate the coordination of the simpler connectors, which eventually
coordinate the software components that they interconnect. Reo is based on the
notion of mobile channels, which consist of two ends (source and sink) and a
constraint limiting the data flow that is observed by those ends. The source ending
of the channel is used to accept data into the channel, whereas the sink disposes
data out of it. Reo provides several types of channels, namely synchronous, asyn-
chronous, and lossy channels [Arb04]. A channel is called synchronous when it
delays the success of the appropriate pairs of operations on its two ends such
that they can succeed only simultaneously. This is in contrast to an asynchronous
channel, which may have a buffer (to hold the data items it has already consumed
through its source, but not yet dispensed through its sink) and can impose a certain
order on the delivery of its contents. A lossy channel must not deliver all of its
received data items, i.e., it may only deliver some and lose the remainder.

Reo’s channel-based communication model can be used to model primitives of
other communication models (such as message passing, shared spaces, or remote
procedure calls). Channel-based communication models adhere to time decoupling.

Reo is already applied in areas like business process modelling [AKM08] and
web service composition [MA07]. Reo supports patterns to compose sub-processes
and exception handling is possible by using so called routers (which can interrupt
a process) to propagate cancel messages. Each sub process can be interrupted by
such a cancel message or an internal exception.

We run through the criteria for orchestration in nomadic networks we proposed in
Section 2.3, and discuss whether or not Reo adheres to it.

• time decoupling: Reo’s channel-based communication models enables decou-
pling in time.

162

5.7 NOW Related to the State of the Art

• space decoupling: Reo uses a smart registry service which can be queried
to acquire a particular service implementation when needed. Therefore, the
coordination language had no decoupling in space.

• synchronisation decoupling: Reo’s asynchronous channel is used to model
asynchronous communication. Each data element enters and exits the asyn-
chronous channels as long as both the input and output are available to
do the transmission. Asynchronous channels ensure that the order of the
data elements that enter the channel remains consistent. Reo’s asynchronous
channel enables synchronisation decoupling.

• explicit control flow: Tools exist that can translate Business Process Mod-
elling Notation (BPMN) [Obj11], and BPEL models into Reo [AKM08]. In
their paper [LN86], Ladani et al. argue that Reo is suited for the orchestra-
tion of web services. In this paper, BPEL’s control flow patterns are modelled
using Reo channels.

• intensional definition: Reo allows the orchestration of web services, which
are described using its signature, states, and its non-functional properties. A
web service’s signature is represented by the ports of the service and data
constraints. Using these constraints, an intensional description of services can
be achieved.

• automatic failure handling: When software components in Reo are discon-
nected, one has to manually invoke the migration of a component to a differ-
ent node; however the channels connecting the component are automatically
rebound.

• explicit failure handling: In Reo, failures can also be handled with timed
connectors, enabling the explicit handling of failures.

To the best of our knowledge, Reo does not have dedicated abstractions to
allow the orchestration of a group of services, as we defined in Section 2.3.2.
Therefore, this coordination language does not adhere to the criteria dedicated to
group orchestration.

5.7.3 Summary

Table 5.3 summarises our survey of related work. It indicates, for each program-
ming language we discussed previously, whether it adheres to the criteria for
orchestration in nomadic networks. In this table we use yes to indicate that the
languages adheres to the specific criterion, and no when it does not. A +- sign
is used to designate that the language only partially complies with the criterion.

163

5 A Nomadic Workflow Language

Service
O

rchestration
G

roup
O

rchestration
Failure

H
andling

1
2

3
4

5
6

7
8

9
10

11
12

W
orkflow

L
anguages

YA
W

L
Yes

N
o

+-
Yes

Yes
N

o
N

o
N

o
+-

+-
N

o
N

o
B

PE
L

Yes
N

o
Yes

Yes
Yes

N
o

N
o

N
o

N
o

+-
N

o
N

o
C

iA
N

Yes
N

o
N

o
Yes

N
o

N
o

N
o

N
o

Yes
N

o
N

o
N

o
W

O
R

K
PA

D
Yes

Yes
Yes

Yes
N

o
N

o
N

o
N

o
Yes

N
o

N
o

N
o

Flow
M

ark
Yes

N
o

Yes
Yes

N
o

N
o

N
o

N
o

+-
Yes

N
o

N
o

C
oordination

L
anguages

L
IM

E
Yes

Yes
Yes

N
o

N
o

Yes
N

o
N

o
N

o
Yes

N
o

N
o

TO
TA

M
Yes

Yes
Yes

N
o

Yes
Yes

Yes
N

o
+-

Yes
N

o
N

o
O

rc
Yes

N
o

Yes
Yes

Yes
N

o
N

o
N

o
N

o
+-

N
o

N
o

R
eo

Yes
N

o
Yes

Yes
Yes

N
o

N
o

N
o

Yes
Yes

N
o

N
o

A
m

bient-O
riented

Program
m

ing
L

anguages
A

M
B

IE
N

T
T

A
L

K
Yes

Yes
Yes

N
o

Yes
Yes

N
o

N
o

N
o

Yes
N

o
N

o

Table
5.3:Survey

ofrelated
w

ork.

Service
O

rchestration
G

roup
O

rchestration
Failure

H
andling

1.
tim

e
decoupling

5.
intensional

definition
9.

autom
atic

failure
handling

2.
space

decoupling
6.

arity
decoupling

10.
explicit

failure
handling

3.
synchronisation

decoupling
7.

dynam
ic

m
odification

11.
individual

failure
handling

4.
explicit

control
flow

8.
synchronisation

m
echanism

s
12.

failure
handling

for
groups

164

5.8 Conclusion

The following observations can be derived from the survey presented in Table
5.3:

• Workflow languages employ patterns to describe the control flow of the
application, and therefore, those languages adhere to criterion 4 (explicit
control flow). The category of control-driven coordination languages, for
which we surveyed the languages Orc and Reo, also complies with this
criterion.

• In general, we can make the observation that the support for group orches-
trations is very limited. As is indicated in Table 5.3, only three (out of ten)
programming languages enable arity decoupling. This is a necessary require-
ment to allow the orchestration of a group of services, where the number of
participants is not known a priori and can vary over time.

• The languages we scrutinised do not adhere to the two criteria we postulated
with respect to failure handling for group orchestration. This lack of support
can be explained, because these programming languages only provide partial
(or none at all) abstractions that allow group orchestration in a nomadic
network.

5.8 Conclusion

In this chapter we introduced the workflow language NOW which is sculpted to-
wards orchestration in nomadic networks. First, we described how the notion of
an activity as a placeholder for a service invocation, is supported by NOW. After-
wards, we introduced the data flow mechanism adopted by NOW, which allows
data passing between activities in a workflow. Thereafter we presented the patterns
that are supported by NOW to allow service orchestration, group orchestration,
and failure handling. We also presented NOW from the point of view of the appli-
cation developer, and showed how these patterns can be composed to implement
the scenarios of the applications we presented in Section 2.3.1. We also presented
a survey of related work, where we scrutinise existing workflow languages and co-
ordination languages using the criteria for orchestration in nomadic networks, we
postulated in Section 2.3. In the next chapter we present the actual implementation
of the workflow language NOW and describe how the language can be extended
with novel patterns.

165

6
I M P L E M E N T I N G N O W

Our nomadic workflow language NOW is built as an abstraction layer on top
of A M B I E N T TA L K. Throughout this chapter we explain the implementation of
this workflow language. First we show the implementation of an activity (Section
6.1). Secondly, we explain how the data flow mechanism employed by NOW
is implemented (Section 6.2). Thirdly, we describe the implementation of the
patterns that allow orchestration in a nomadic network. We start by presenting
the implementation details of several control flow patterns, and discuss how new
patterns can be added to the language (Section 6.3). Subsequently, we describe the
implementation of a set of group orchestration patterns (Section 6.4). Thereafter,
we discuss the implementation of the failure handling patterns that are provided
by NOW (Section 6.5).

167

6 Implementing NOW

6.1 Activities

Before presenting the implementation of an activity, we recapitulate the different
execution steps that must be performed when starting an activity (see Section 4.1):

• Service discovery;
• Service invocation;
• Response management.

Recall that service discovery is not necessary when a reference to the service
is given. The second execution step invokes the (possibly discovered) service.
Service invocation is achieved by sending an asynchronous message to that service
such that the processes are not blocked when other services with which they are
interacting do not respond. Response management takes care of processing the
result of the service invocation (as we explained in more detail in Section 5.3).

The definition of an activity, as we showed in Listing 5.2, returns an A M B I E N T -
TA L K object. This object has a start method, which implements the different
execution steps an activity performs. In Listing 6.1 we show an outline of the
implementation of this method.

1 /* When the start method is called, it returns a future and stores
2 the future’s corresponding resolver, so it can be explicitly
3 resolved at another moment in time */
4 def start(env) {
5 // Creation of an explicit future
6 def [result, resolver] := makeFuture();
7 when: typeTag discovered: { |service|
8 /* Make a first class asynchronous message object, given an
9 operation and arguments */

10 def msg := reflectOnActor().createMessage(operation, arguments,
11 [FutureMessage]);
12 // Send the message object using the <+ operator
13 when: service <+ msg becomes: { |reply|
14 env.insertOutputValues(reply, output);
15 // To explicitly resolve the future
16 resolver.resolve(env);
17 };
18 };
19 result;
20 };

Listing 6.1: Start method of the Activity object.

Starting an activity results in obtaining an A M B I E N T TA L K future, which is
resolved once the last execution step of the activity (response management) is
finished. This future is defined on line 6 and returned as the result of the method
invocation (on line 19).

168

6.1 Activities

Depending on the kind of activity, i.e., whether a reference to a service or a
service type is given, the service discovery execution step can be omitted. Therefore
the implementation we show in Listing 6.1 is only an outline of the implementation
of this method, which only applies for activities that are instantiated with a service
type, instead of a reference to a particular service. When the activity is instantiated
with a service type (i.e., an A M B I E N T TA L K type tag), a when: discovered:
event handler is installed to await the discovery of a service of the correct type
(as can be seen on line 7).

After such a service has been discovered, the discovered service can be invoked.
To this end, an asynchronous message needs to be sent to the service (which is
implemented as a remote A M B I E N T TA L K object, as we showed in Section 5.2).
The asynchronous message send is created using the activity’s operation and input
arguments (lines 10-11). When these arguments are not variables (nor A M B I E N T -
TA L K expressions), these arguments are the result of looking up the activity’s input
parameters in the data environment. The last argument, FutureMessage, is used
to annotate the message, such that a future is returned when the asynchronous
message is sent. The service invocation is implemented on line 13 where the
message is sent to the discovered service. In order to await the result of the
service invocation, a when: becomes: event handler is installed.

Once the result of the service invocation is retrieved, i.e., when the future
returned by service<+msg is resolved, the last execution step (response man-
agement) can be executed. This is implemented on line 14 where the retrieved
values are bound to the corresponding output variables and inserted in the data
environment.

When this last execution step is performed, the future (created upon starting the
method invocation) can be resolved. This is implemented on line 16.

Note that, just like a workflow, an activity can be started multiple times. Every
time an activity is started, a new copy (clone) of the activity is created. The fact
that every running instance has its own copy of the activity (and patterns, as we
explain in Section 6.3) is important because these copies contain runtime informa-
tion which is specific for the execution of a single instance.

Starting an activity returns an A M B I E N T TA L K future, which makes it possible
to register a when: becomes: event handler to await the result of executing an
activity.

def type := createServiceType(‘LuggageHandler);
def act := type.getInfo(Env.flightNr)@Output(Env.trailer, Env.belt);
when: act.start(env) becomes: { |nEnv| ... };

169

6 Implementing NOW

In the above code snippet we register such an event handler to await the com-
pletion of the execution of the activity (act). The result of this execution is a
(possibly) updated data environment (nEnv).

Before exploiting this registering of event handlers to chain together activities
to implement control flow patterns, we give some implementation details on how
the data flow mechanism we presented in Section 4.2 is supported.

6.2 Data Flow

The data flow mechanism that is employed by NOW is straightforward: a data
environment is passed through the workflow linked to its control flow. The data
environment is implemented as an object that is passed when an activity or pattern
is started. The futures that link together the different components of a workflow are
always resolved with an updated environment, ensuring that the data environment
is passed from one activity to another.

This object is composed with a dictionary that contains variable bindings and
is used upon service invocation, or updated with new variable bindings as the
result of a service invocation. Besides this dictionary, the object implementing the
data environment also contains references to several objects, such as the failure
descriptions that are at hand. Each workflow instance has its own data environment,
and, therefore, it contains all the instance-dependent information that is necessary
for the execution of a workflow. The data environment has:

• an id: the unique identifier for this environment. Each time a new instance
is started, a new data environment is instantiated with a unique id.

• a dictionary: variable bindings that are used for service invocations.
• failure descriptions: describing the compensations for the failure events NOW

supports.
• data merging strategy information: recall that synchronisation patterns are

instantiated with a data merging strategy that dictates how the data envi-
ronments of the pattern’s incoming branches need to be merged. This data
merging strategy can be implemented as a user-provided function that re-
solves possible conflicts. NOW provides built-in merging strategies, such
as “prioritise”, and “random”. When such a merging strategy needs to be
employed upon synchronisation, the strategy must have access to instance-
dependent information.
For instance, the “prioritise” merging strategy choses the data environment of
the preferred incoming branch of the synchronisation pattern. Therefore, each

170

6.2 Data Flow

outgoing branch of a split pattern must be labelled such that upon synchroni-
sation the labels of these branches can be compared with the preferred label
that is specified by the “prioritise” merging strategy. This strategy uses the
data environment of a specific incoming branch, of which the label is spec-
ified, as the resulting data environment after synchronisation. Hence, when
a split pattern is started, the data environment used to start each outgoing
branch contains the label of that branch. For the same reason, the label of
the preferred incoming branch needs to be stored, such that the “prioritise”
merging strategy knows which incoming data environment must be chosen
by the synchronisation pattern.
NOW also provides a “restore” data merging strategy that, upon synchroni-
sation, restores the data environment that was used to start the split pattern
with. This merging strategy is not always desired, because all variable bind-
ings that were added as the result of the execution of the different branches
of the split pattern are lost. In order to allow the usage of this strategy, the
data environment must also remember the data environment that was passed
to the split pattern. Therefore, a reference to this data environment is also
stored in the data environment.

In this section, we also describe how data environments are merged by syn-
chronisation patterns. As we already explained in Section 5.3, a data merging
strategy can be implemented as a user-provided function that resolves possible
conflicts. However, NOW provides four built-in merging strategies, of which we
now explain the implementation.

1. Prioritise one of the incoming branches when resolving conflicts.
This merging strategy is implemented as a function which takes a list of data
environments of all incoming branches as its single argument and searches
the data environment of the preferred incoming branch.

def prioritise(envs) {
def nEnvs := envs.filter: {|e| e.branchNr == envs[1].prefNr};
nEnvs[1];

};

In order to use this merging strategy, the data environment must keep track of
the label of the branch it flows through and know the label of the preferred
incoming branch. Therefore, when a split pattern (such as the Parallel Split
pattern) is started, each of its outgoing branches receives a copy of the data
environment which stores the label of the outgoing branch of the pattern.
Note that the label of the preferred branch is stored in the data environment

171

6 Implementing NOW

upon instantiation of the Synchronization pattern, as we explain in Section
6.3.2.

The prioritise function iterates over the data environments and filters
out the data environments for which the branch label (branchNr) does
not equal the label of the preferred branch (prefNr). This returns a new
list nEnvs (only containing a single data environment), of which its first
element is returned as a result.

+

+
+ +

+

"1"

"2"

"3"

"4"

"3"

"1"

"2"

"4"

"1,1"

"1,2"

"4,1"

"4,2"

"4,1"

"4,2"

"1,1"

"1,2"

1

2

"1"

Figure 6.1: Prioritise merging strategy for synchronisation patterns.

Consider the example workflow depicted in Figure 6.1. We use this workflow
to explain how the outgoing branches of a split pattern are labelled. As we
can see in the figure, this label is a string that is created by concatenating the
number of the outgoing branch of a split pattern to the string that represents
the label of the split pattern’s incoming branch. When the prioritise merging
strategy is used for a synchronisation pattern, the programmer can either

• specify the entire string of the label;
• specify a regular expression;

The workflow in Figure 6.1 uses two Synchronization patterns. The merging
strategy that is used by the first Synchronization pattern is the prioritise
strategy, where the preferred branch must have the label "1". Therefore, the
data environment that is tide to the outgoing branch of that Synchroniza-
tion pattern is labeled with the string "1". When the label of the second
Synchronization pattern is

• the string "3", the data environment that is chosen is the one where
the outgoing branch label equals this string.

• the regular expression ".*,1", there are two data environments that
have a matching label. The resulting data environment, after merging,
is the first data environment that matches the regular expression.

172

6.2 Data Flow

2. Pick the data environment of one incoming branch and ignore the others.
This merging strategy picks a random data environment of one of its incom-
ing branches. This is implemented by the following function:

def random(envs) {
// Calculate r with: 0.0 <= r < 1.0
def r := jlobby.java.lang.Math.random();
def index := (r * envs.length).ceiling();
envs[index];

};

The random function also has a list of data environments as its argument.
A random index is computed, and the data environment at that position in
the list is returned as a result.

Please note that through the symbiosis between A M B I E N T TA L K and JAVA,
the random function provided by JAVA’s Math library can be used.

3. Merge conflicts into a collection containing the different values.
This merging strategy is implemented by the merge function:

def merge(envs) {
def nEnv := DataEnvironment.new();
nEnv.id := envs[1].id;
nEnv.merge(envs);
nEnv;

};

This function defines a new data environment that has the same identifier
as the identifier of all the data environments of the synchronisation pattern’s
incoming branches. All the variables and values of the data environments
of these incoming branches are then inserted into this newly defined data
environment, which is returned as the result of this function.

4. Remember the “scope” from before splitting and restore it.
The restore function implements this merging strategy. This function also
has a single argument, namely a list of data environments.

def restore(envs) {
envs[1].splitEnv;

};

In order to support this merging strategy, the data environment that is used
to start the split pattern needs to be stored. The reference to this data
environment is stored (splitEnv) in the data environment of each of the
split pattern’s outgoing branches. The restore function just needs to return

173

6 Implementing NOW

this reference by retrieving it from one of the data environments in the list
(for example, the first data environment envs[1]).

6.3 Service Orchestration

In the abstract grammar (Listing 5.6), we used the proposed categorisation of
control flow patterns, namely standard, synchronisation, and trigger patterns (see
Section 4.3). Before discussing the differences in the implementation for these
types of control flow patterns, we explain how, in general, a control flow pattern
is implemented.

Implementation of a Pattern

Component

result

resolver

start(env)

getClone(env)

startExecute(env)

Synchronisation Pattern

incomingBranches
environments

startExecute(env)

Trigger Pattern

triggered
started

trigger(blockClosure)

Standard Pattern

addSync()

environment

startExecute(env)

merging strategy

getClone(env)

Figure 6.2: Object diagram for service orchestration patterns.

Figure 6.2 shows an object diagram for the control flow patterns. As we can
see, each type of pattern (standard, synchronisation, trigger) is implemented as an
object which inherits from the Component object. This Component object has
two fields, namely result and resolver, which store the future and its resolver

174

6.3 Service Orchestration

that must be returned when a pattern is started. Besides the start method, this
object also implements a getClone method. Because each pattern stores runtime
information (such as the number of incoming branches that have been enabled),
every workflow instance must have their own copy of the patterns involved. A
workflow can be started multiple times, and hence a pattern can be started multiple
times as well, for each instance a new copy of the patterns/activities must be made.
This way, every instance uses their own objects which store the runtime information
of that instance. Such a copy (clone) is retrieved by the getClone method. Note
that, although we did not mention this explicitly in Section 6.1, this method is
also implemented by the Activity object.

The difference between the three categories of patterns is discussed in more
detail in Section 6.3.1, Section 6.3.2, and Section 6.3.3.

Because the execution of each control flow pattern is different, the actual ex-
ecution of each pattern is implemented by the pattern itself (startExecute
method). Therefore, the implementation of the Component’s start method is
as follows:

1 def Component := object: {
2 def result;
3 def resolver;
4
5 def start(env) {
6 [result, resolver] := makeFuture();
7 self.startExecute(env);
8 result;
9 };

10
11 def getClone(env) {
12 ...
13 };
14 } taggedAs: [Pattern];

Listing 6.2: Implementation of NOW’s Component object.

Since we want to interact with activities in the same way as patterns in our im-
plementation, the execution of a pattern must also return a future. When a control
flow pattern is started, a future is created (line 6) and, before returning that future
(line 8), the actual execution of the pattern is started (startExecute on line 7).
Recall that the self-send is used to indicate the receiver object, i.e., the standard,
synchronisation, or trigger pattern itself (see Section 3.3.2).

Now that we have shown the object diagram, and presented an outline of the
Component object’s implementation, we demonstrate how a programmer can
extend NOW with the implementation of a new pattern.

175

6 Implementing NOW

1 def PatternName(@components) {
2 def obj := extend: Component with: {
3
4 def startExecute(env) {
5 ...
6 };
7 } taggedAs: [Pattern];
8 obj;
9 };

Listing 6.3: Implementing a new pattern.

The code in Listing 6.3 shows the implementation of a new pattern. The con-
structor function (PatternName) has several components as its argument and
returns an object, which is tagged with the Pattern tag (line 7). The object
must implement the startExecute method which takes a data environment as
its argument (lines 4-6). The body of this method implements the execution of
all components used to instantiate the pattern. In general, when the execution of
all components is finished, the pattern’s execution is terminated as well. This rule
does not always apply, for instance, a “Multiple Instances without Synchroniza-
tion” pattern does not require its component to be finished in order to terminate
the execution of the pattern itself.

6.3.1 Standard Patterns

In this section, we describe the implementation of the first category of control flow
patterns, namely the standard patterns. NOW uses a different categorisation for its
control flow patterns than the one proposed by van der Aalst et al. [RtHvdAM06].
The classification employed by NOW is based upon the way these patterns are
composed and implemented, and will become clear when we present the imple-
mentation.

1) Implementation of the Sequence Pattern

The Sequence pattern is categorised as a “basic control flow pattern” by van der
Aalst et al. [RtHvdAM06]. In order to implement this pattern in A M B I E N T TA L K,
we follow the outline of the implementation that is given in Listing 6.3. We
define a function, called Sequence, that has a collection of components as its
argument. This function returns an object that is tagged as a StdPattern and
implements the startExecute method. Listing 6.4 shows the implementation
of the Sequence pattern.

176

6.3 Service Orchestration

1 def Sequence(@args) {
2 def obj := extend: StandardPattern with: {
3 def components := args;
4 def instanceComponents := [];
5
6 def startExecute(env) {
7 execute(1, env);
8 };
9

10 def execute(idx, env) {
11 if: (idx <= components.length) then: {
12 def cmp := components[idx].getClone(env);
13 instanceComponents := instanceComponents + [cmp];
14 when: cmp.start(env) becomes: { |nEnv|
15 execute(idx + 1, nEnv);
16 };
17 } else: {
18 super.resolver.resolve(env);
19 };
20 };
21 } taggedAs: [StdPattern];
22 obj;
23 };

Listing 6.4: Implementation of the Sequence pattern.

The startExecute method of a pattern is used to implement how the pat-
tern’s components must be executed (i.e., sequential, in parallel, etc.). For the
Sequence pattern, the components must be executed one after the other, and when
the last component finishes its execution, the execution of the pattern itself is
finished.

As we can see on line 7 of Listing 6.4, the body of the startExecute
method is a method call. The execute method iterates over all the pattern’s
components and executes one after the other.

Recall that patterns store runtime information (such as the number of times
it is started), and therefore, every workflow instance must have its own copy of
patterns and activities. So, instead of starting the execution of a component, a
clone of that component is taken (line 12) and stored (line 13). Storing the clones
of the pattern’s component is necessary to allow the cancellation of a component,
as we explain later in Section 5.6.

After a clone is taken and stored, that cloned object is started with the data
environment (on line 14). In order to await the result of that component’s execu-
tion, a when: becomes: event handler is installed. The result of executing a
component is always the reception of an updated data environment. Once such a
data environment is received, the next component can be started.

177

6 Implementing NOW

When the last component of the Sequence pattern has finished its execution, the
execution of the pattern itself is finished, and the pattern’s future can be resolved
(see line 18).

2) Implementation of the Multi-Choice Pattern

The second pattern of which we present the implementation is the Multi-Choice
pattern. This pattern is defined as “the divergence of a branch into two or more
branches such that when the incoming branch is enabled, the thread of control is im-
mediately passed to one or more of the outgoing branches based on a mechanism that
selects one or more outgoing branches” [RtHvdAM06]. The Multi-Choice pattern’s
implementation follows the outline that is given in Listing 6.3. Listing 6.5 shows
the implementation of the pattern.

1 def MultiChoice(@args) {
2 def obj := extend: StandardPattern with: {
3 def components := args;
4 def instanceComponents := [];
5 def indices := [];
6
7 def startExecute(env) {
8 1.to: components.length+1 do: { |idx|
9 def elem := components[idx];

10 def block := elem[1];
11 def method := block.method();
12 def bindings := env.bind(method.parameters());
13 if: block.apply(bindings) then: {
14 indices := indices + [idx];
15 }; };
16 if: (indices.isEmpty()) then: {
17 raise: XNoCondition.new("No matching condition found");
18 } else: {
19 execute(env);
20 };
21 };
22
23
24 def execute(env) {
25 def finished := 0;
26 def clonedEnv := clone: env;
27 indices.each: { |idx|
28 def cmp := components[idx][2];
29 cmp := cmp.getClone(env);
30 instanceComponents := instanceComponents + [cmp];
31 /* Store the env that is used to start the split pattern.
32 Needed when a synchronisation pattern uses
33 the Restore data merging strategy */
34 clonedEnv.splitEnv := env;
35 /* Store the number of the outgoing branch.
36 Needed for the Prioritise data merging strategy */
37 def label := clonedEnv.branchNr + "," + idx;
38 clonedEnv.branchNr := label;

178

6.3 Service Orchestration

39 when: cmp.start(clonedEnv) becomes: { |nEnv|
40 finished := finished + 1;
41 if: (finished == indices.length) then: {
42 super.resolver.resolve(nEnv);
43 };
44 };
45 };
46 };
47 } taggedAs: [StdPattern];
48 obj;
49 };

Listing 6.5: Implementation of the Multi-Choice pattern.

This pattern is instantiated with multiple arguments (corresponding to outgoing
branches), where each argument is a list consisting of a block closure and a
component. For example,

MultiChoice([{|total| total == 50}, Sequence(...)],
[{|total| total < 10}, Sequence(...)],
[{|total| total > 10}, Sequence(...)]);

In this example, depending on the value of the variable total, which is stored
in the data environment, one or more Sequence patterns must be executed. The
startExecute method implements how these components need to be executed.

First, the indices of those outgoing branches that need to be executed need to
be retrieved (i.e., the branches for which the condition evaluates to true). This is
implemented on lines 8-15 of Listing 6.5. For each of the arguments that are used
to instantiate the pattern, the block closure is applied (with values that are the
result of looking up the parameters in the data environment). Only the indices of
the arguments for which the block closure evaluate to true are stored in the list
indices.

After having retrieved the indices of those outgoing branches that need to be
executed, the components of those branches can be executed. Executing these
components happens in parallel, because service invocations are implemented as
asynchronous message sends (see line 13 of Listing 6.1). For each of the retrieved
indices, the corresponding component is executed by performing the following
steps:

• a clone of the data environment is taken [line 26];
• a clone of the component is taken [line 29];
• the cloned object is stored (added to the list instanceComponents) [line

30];

179

6 Implementing NOW

• the environment that is used to start the Multi-Choice pattern is stored in
the cloned data environment (this is possibly needed when a synchronisation
pattern, following this pattern, uses the “restore” data merging strategy) [line
34];

• the label of the outgoing branch is stored in the cloned data environment
(this is possibly needed when a synchronisation pattern, following this pattern,
uses the “prioritise” data merging strategy) [line 38];

• the cloned object is started [line 39]. In order to await the component’s
result, a when: becomes: event handler is installed (line 39). When all
components of the outgoing branches that needed to be executed have fin-
ished their execution, the execution of the Multi-Choice pattern is finished.
At that moment, the pattern’s future can be resolved (line 42).

Recall that each outgoing branch of a split pattern (a pattern with multiple outgoing
branches) has its own local copy of the data environment that is used to start the
split pattern. Therefore, a clone of the data environment is taken before starting
the execution of the component.

Because a split pattern is possibly followed by a synchronisation pattern, the
necessary precautions need to be taken to assure the correct functioning of the
data merging strategies used by the synchronisation patterns. One of these merging
strategies is restoring the data environment before splitting. Therefore, each copied
data environment stores this environment, such that, when needed, the merging
strategy can restore the data environment to the stored scope. Another data merging
strategy (called “prioritise”) prefers the data environment of a specific branch,
depending on the label of the outgoing branch of the preceding split pattern. In
order to allow the correct working of this strategy, the label of each outgoing
branch of a split pattern needs to be stored. This is achieved by storing the label
of the branch in its own local data environment.

3) Implementation of the Interleaved Routing Pattern

The third standard pattern of which we show the implementation is the Interleaved
Routing pattern. This pattern is categorised as a “state-based pattern” and has the
following definition: “Each member of a set of tasks must be executed once. They can
be executed in any order but no two tasks can be executed at the same time (i.e., no
two tasks can be active for the same process instance at the same time). Once all of the
tasks have completed, the next task in the process can be initiated.” [RtHvdAM06].

In order to implement this pattern in A M B I E N T TA L K, we follow the outline
of the implementation that is given in Listing 6.3. We define a constructor func-
tion, called InterleavedRouting, that takes a collection of components as its

180

6.3 Service Orchestration

argument. This function returns an object that is tagged as a StdPattern and
implements the startExecute method. Listing 6.6 shows the implementation
of the Interleaved Routing pattern.

1 def InterleavedRouting(@args) {
2 def obj := extend: StandardPattern with: {
3 def components := args;
4 def instanceComponents := [];
5 def indices := [];
6
7 def startExecute(env) {
8 def index := searchIndex();
9 execute(index, env);

10 };
11
12 def searchIndex() {
13 /* Compute random index: 0 < idx < components.length
14 Ensure that the component (of that index) has not been
15 executed.
16 List indices stores index of all executed components */
17 ...
18 };
19
20 def execute(idx, env) {
21 def component := components[idx].getClone(env);
22 instanceComponents := instanceComponents + [component];
23 when: component.start(env) becomes: { |nEnv|
24 def index := searchIndex();
25 if: ! (indices.length > components.length) then: {
26 execute(index, nEnv);
27 } else: {
28 super.resolver.resolve(env);
29 };
30 };
31 };
32 } taggedAs: [StdPattern];
33 obj;
34 };

Listing 6.6: Implementation of the Interleaved Routing pattern.

The implementation of the startExecute method resembles the one of the
Sequence pattern we showed in Listing 6.4. The difference is the order in which the
components are executed. For the Sequence pattern, the components are executed
one after the other, following the ordering used to instantiate the pattern. The
components of the Interleaved Routing can be executed in a random order.

As we can see in Listing 6.6, the function searchIndex (line 12) is used
to compute a random index. The component at that place is executed, and when
its execution is finished, the next index is computed. When all components have
finished their execution, the pattern’s execution is finished and its future can be
resolved (line 28).

181

6 Implementing NOW

Note that the execution of a single component results in cloning that component,
storing the cloned object and starting the execution of the cloned object (line 21-
23). Again, the result of the execution of a component is awaited by installing a
when: becomes: event handler (line 23).

6.3.2 Synchronisation Patterns

The second category of control flow patterns we define is the category of syn-
chronisation patterns. Synchronisation patterns are control flow patterns that have
multiple incoming branches. As we already mentioned, synchronisation patterns
differ from standard patterns in the way data flow is handled. Recall that synchro-
nisation patterns need to specify a data merging strategy which specifies how the
data environments of the pattern’s incoming branches must be merged. Moreover,
the composition of synchronisation patterns requires special care, i.e., synchroni-
sation patterns must be composed using so-called connections (see Section 5.4.1).
In this section we discuss a third difference of these patterns to standard patterns,
concerning cloning the patterns.

We now present how a synchronisation pattern can be implemented in A M B I E N T -
TA L K. As we could already deduct from the object diagram we showed in Figure
6.2, the prototype object of a synchronisation pattern consists of additional fields
and methods, compared to the prototype object of a standard pattern.

• First of all, a synchronisation pattern needs to know its number of incoming
branches. This is required in order to know when synchronisation succeeds
(when all incoming branches have been enabled, when n out of m incoming
branches have been enabled, etc.).

• Secondly, the data environments of incoming branches that are enabled are
stored, such that they can be merged when necessary. In order to merge
these data environments, a data merging strategy needs to be provided.

• Thirdly, special care must to be taken when cloning a synchronisation pat-
tern. Recall that patterns and activities store runtime information, and every
instance needs to have its own copies of those objects. For activities and
standard patterns it suffices to take a clone each time such a component needs
to be executed. However, this cloning strategy does not apply for synchro-
nisation pattern because multiple incoming branches can refer to the same
synchronisation pattern (i.e., the same synchronisation pattern’s execution can
be started multiple times for one instance).

182

6.3 Service Orchestration

Synchronisation patterns store runtime information, such as the number of
times the pattern is started. This information is required because this pattern
may, by definition, only proceed once all its incoming branches have been
enabled (i.e., at the moment the pattern is started as much times as it has
incoming branches). Because several instances may be executing the same
workflow, it is important to distinguish the enablements of the branches per
instance. Therefore, a clone of the Synchronization pattern can only be taken
when the pattern is started the first time per instance. It is possible to retrieve
the instance for which the pattern is started by looking at the data environ-
ment that is used to start the pattern. Recall that the data environment has a
unique identifier which is different for every instance. So, to recapitulate, for
synchronisation patterns a clone of the pattern is only taken once for each
instance, namely for the first incoming branch that is enabled.

In Listing 6.7 we show the implementation of the Synchronization pattern in
A M B I E N T TA L K.

1 def Synchronization(cmp, strategy := {|envs| merge(envs)}, prefNr := "1") {
2 def obj := extend: SynchronisationPattern with: {
3 def incomingBranches := 0;
4 def nextComponent := cmp;
5 def instanceComponent;
6 def environments := [];
7 /* Dictionary: key = env id, value = clone of this syncPattern
8 When multiple instances wraps a sync pattern, for each instance
9 a new clone of a syncPattern needs to be made:

10 MIWithPrioriDTKnow(Sequence(..., Synchronization, ...)).
11 The instance of the synchronization can be retrieved by
12 checking the id of the data environment. */
13 def instances := Dictionary.new();
14
15
16 def getClone(env) {
17 def res :=instances.find(env.id);
18 if: (res == nil) then: {
19 res := clone: component;
20 instances.insert(env.id, res);
21 };
22 res;
23 };
24
25
26 def addSync() {
27 incomingBranches := incomingBranches + 1;
28 };
29
30
31

183

6 Implementing NOW

32 def startExecute(env) {
33 environments := environments + [env];
34 /* Store the preferred nbr of the incoming branch,
35 needed for preference data strategy */
36 env.prefNr := prefNr;
37 execute(env);
38 };
39
40 def execute(env) {
41 if: (environments.length == incomingBranches) then: {
42 def nEnv := strategy(environments);
43 def cmp := nextComponent.getClone(env);
44 instanceComponent := cmp;
45 when: cmp.start(nEnv) becomes: { |newEnv|
46 super.resolver.resolve(newEnv);
47 };
48 };
49 };
50 } taggedAs: [SyncPattern];
51 obj;
52 };

Listing 6.7: Implementation of the Synchronization pattern.

The Synchronization pattern is implemented as a function that returns an object
that is tagged as a SyncPattern. This function has three arguments, namely the
component that must be executed once synchronisation succeeds, an optional data
merging strategy, and an optional argument representing the label of the preferred
outgoing branch of the last split pattern proceeding this pattern. Note that a default
data merging strategy (merge) and a default prioritisation label ("1") are given.

We first explain the execution of this pattern. When an incoming branch is en-
abled, i.e., when the pattern’s execution is started with a data environment, that data
environment is stored such that it can be merged with all incoming data environ-
ments when needed (line 33 in Listing 6.7). In order to allow the correct working
of the “prioritise” data merging strategy, the preferred label must be stored in
the data environments. Afterwards it is verified whether synchronisation succeeded,
which is the case when all incoming branches are enabled (i.e., the number of
stored data environments equals the number of incoming branches). When this is
the case, all incoming data environments are merged using the provided merging
strategy (line 42). Thereafter, the execution of the component (that must be ex-
ecuted after synchronisation) is started with that merged data environment (line
45). Note that first a clone of that component needs to be taken and stored (lines
43-44). The Synchronization pattern’s execution is finished at the moment this
component’s pattern’s execution is finished. So, when an updated data environment
is returned, the Synchronization’s future can be resolved (line 46).

184

6.3 Service Orchestration

Besides the startExecute method, the implementation of this object also
consists of an addSync method (lines 26-28). This method is used to let the
connection pattern inform the synchronisation pattern of its number of incoming
branches. Whenever the execution of a Connection pattern (that wraps a synchro-
nisation pattern) is started, the addSync method is executed.

Other than the two methods we just mentioned, a synchronisation pattern also
implements the method getClone (lines 16-23). A synchronisation pattern stores
its own clones in a dictionary (instances). When the execution of a synchroni-
sation pattern is started, it is first verified whether a new clone must be taken or
not. A clone must only be taken when the first time the pattern is started for a new
instance. Because each instance has a unique identifier, it suffices to verify whether
a clone was already taken previously for that identifier. When no such clone was
taken before (i.e., it is the first time an incoming branch of the pattern is enabled
for that specific instance), a new clone is taken and stored in the dictionary.

6.3.3 Trigger Patterns

The third category of control flow patterns we define is the category of trigger
patterns. Trigger patterns are control flow patterns that react upon external events.
van der Aalst et al. [RtHvdAM06] define two patterns, namely the Transient Trigger
pattern and Persistent Trigger pattern, which are both provided by NOW.

Trigger patterns also differ from standard patterns and synchronisation patterns
concerning the runtime copies (i.e., cloned objects). Recall that when a pattern
is executed, each of its components is cloned. A special policy is required for
synchronisation patterns, as these patterns have multiple incoming branches that
refer to the same pattern. Concerning trigger patterns, yet another approach must
be taken. Because trigger patterns must be accessible at runtime, these objects
cannot be cloned. Therefore, the getClone method of the Component object
(given in Listing 6.2) has a dedicated implementation for trigger patterns.

Note that when a trigger pattern is used inside a multiple instance pattern, only
one trigger pattern is used for all running instances. As trigger patterns are not
cloned, every instance refers to the same trigger pattern. So, once a single trigger
pattern receives an external event, it influences the execution of all instances.

Listing 6.8 shows how the Persistent Trigger pattern can be implemented in
A M B I E N T TA L K. This pattern is defined as “The ability for a task to be triggered
by a signal from another part of the process or from the external environment. These

185

6 Implementing NOW

triggers are persistent in form and are retained by the process until they can be acted
on by the receiving task.” [RtHvdAM06].

1 def PersistentTrigger(cmp) {
2 def obj := extend: TriggerPattern with: {
3 def component := cmp;
4 def instanceComponent;
5 def triggered := false;
6 def started := false;
7 def startedEnv;
8
9 def startExecute(env) {

10 execute(env);
11 };
12
13 def trigger(closure) {
14 triggered := true;
15 closure();
16 if: started then: {
17 executeCmp(startedEnv, instanceComponent);
18 };
19 };
20
21 def execute(env) {
22 def cmp := component.getClone(env);
23 instanceComponent := cmp;
24 executeCmp(env, cmp);
25 };
26
27 def executeCmp(env, cmp) {
28 if: triggered then: {
29 when: cmp.start(env) becomes: { |nEnv|
30 started := false;
31 super.resolver.resolve(env);
32 };
33 } else: {
34 started := true;
35 startedEnv := env;
36 };
37 };
38 } taggedAs: [TriggerPattern];
39 obj;
40 };

Listing 6.8: Implementation of the Persistent Trigger pattern.

The execution of the component that is used to instantiate the Persistent Trigger
can only take place once an external event is (or has been) received. This is
shown on line 28 in Listing 6.8 where an if test is performed to verify whether
the trigger method has already been called. When the external event was
already received, the component can be started (line 29). Otherwise, the necessary
information to start the execution of the component is stored, such that, when an

186

6.4 Group Orchestration

event is received, the execution can start immediately. Therefore, it is indicated
that the pattern’s execution is started, and the data environment used to start the
pattern is stored (line 34-35).

As we already mentioned, a trigger pattern has an extra trigger method (lines
13-19). This method has a single parameter closure, which has as its default
value an empty block closure. This argument can be used to perform a task when
the external event triggers the pattern. When the trigger method is called, it is
indicated that an external event has been received (line 14). The A M B I E N T TA L K

block closure is also executed, and when the pattern was already started before,
the component can start its execution. In the other case, the pattern must just wait
until it is started.

6.4 Group Orchestration

In this section we give the implementation of two patterns for group orchestration.
We start with the implementation of the Filter pattern, which is categorised as
a standard pattern, and subsequently present the implementation of a group syn-
chronisation pattern, namely the Synchronised Task pattern. Before presenting the
implementation of these patterns, we explain how group members can be defined.

6.4.1 Definition of Group Membership

Group membership can be either described extensional or intensional. In order to
allow an intensional definition of group members, NOW uses the logic coordina-
tion language C R I M E. In this section we first describe C R I M E, before explaining
how the logic coordination language is integrated in NOW.

C R I M E

C R I M E’s implementation of the federated fact spaces is achieved by a distribution
architecture similar to the one used by LIME [PMR99]. The Fact Space Model of
C R I M E provides a logic coordination language for reasoning about context infor-
mation that is represented as facts in a federated fact space. This logic language
uses the forward chaining strategy for deriving new conclusions as this data-driven
technique is very suitable for the event-driven nature of C R I M E. The use of a for-
ward chainer on the other hand is useful when applications need to reason over a
fluctuating distributed knowledge base. Forward chaining is a data-driven reasoning
strategy, this implies that, in contrast with the backward chaining strategy, the in-
ference engine is triggered automatically when changes to the knowledge base are

187

6 Implementing NOW

made. The main difference with the backward chaining strategy is the behaviour
when new data becomes available. Instead of starting from scratch, the inference
engine builds its proofs bottom-up, resulting in a rederivation of only those parts
affected by the appearance of the new data. The benefit of using this strategy in
a distributed context is that irrelevant changes to the knowledge base are filtered
out in the first step of reasoning: Filtering is done by checking the prerequisites
of the rules, if none of these prerequisites match with the new information, this
can be dismissed.

The Fact Space Model provides a logic coordination language for reasoning
about a perceived environment. As this environment is a mobile ad hoc network,
devices can go out of range due to the transient connectivity of the network. Such
disconnections result in the retraction of facts, namely the quantified facts of the
other device.

Integration of C R I M E in NOW

In order to use C R I M E for the intensional definitions of group members, both
the fixed infrastructure and the services residing in the nomadic network must be
equipped with a C R I M E engine.

Fixed infrastructure In order to allow group orchestration, the backbone of the
nomadic network, which is responsible for the execution of the workflow, needs
to be adapted. First of all, the backbone needs to have its own C R I M E engine
that can be used to capture facts that are published by other C R I M E engines in
the neighbourhood. Secondly, all Group patterns need to be notified when a new
service is discovered, or when a service reconnects or disconnects, as can be seen
in the following code snippet.

crimeEngine.goOnline();
whenever: Service discovered: { |service|

...
// Inform all executing groups of the discovery of a new service
whenever: service disconnected: {

...
// Inform executing groups of disconnection of a service

};
whenever: service reconnected: {
// Inform executing groups of reconnection of a service

...
};

};

As we can see in the code snippet, the backbone’s C R I M E engine is instructed
to go online, meaning that it can be discovered by nearby engines and can itself

188

6.4 Group Orchestration

discover other engines. In order to inform groups (of which the execution is
ongoing) of changes in the network the backbone needs to register event handlers
that are triggered upon discovery, disconnection and reconnection of a service
in the network. Therefore, each group must register itself to the backbone upon
starting its execution. That way, when an event handler is triggered, the fixed
infrastructure can iterate over these group observers and inform them of the event
that happened.

For example, when a new service is discovered, all group patterns (either normal
Group patterns or Snapshot Group patterns) are informed of the newly discovered
service. These group patterns can react upon this discovery in an appropriate
way: if the service satisfies the group’s description, the service can join the group
members (on the condition that the group pattern is not a snapshot group of which
the execution was already started).

Services In order to allow the exchange of facts, all services must also be
equipped with a C R I M E engine. In Section 5.2 we explained how a service in
NOW can be implemented. The programmer just needs to define an object (re-
call that it is actually an isolate) with its appropriate fields and methods. NOW
provides a function, called applicationService, that takes, amongst others,
care of publishing the service on the network. This function is also responsible for
maintaining a C R I M E engine and publishing and retracting the service’s facts.

In Listing 6.9 we present the implementation of a service that asserts a fact in
its C R I M E engine. Note that this implementation is an extension of the one given
in Listing 5.3 where no facts were published. Here, the service publishes one fact,
which is defined on line 9.

1 deftype LuggageHandler <: Service;
2
3 def service := isolate: {
4 def companyName := "Aviapartner";
5 /* ... other fields */
6
7 def init(cn) {
8 self.companyName := cn;
9 fact("luggage handler", "Aviapartner");

10 };
11
12 // Methods
13 };
14
15 applicationService(LuggageHandler, service);

Listing 6.9: Implementation of a service that asserts a fact in its C R I M E engine.

189

6 Implementing NOW

6.4.2 Patterns for Group Orchestration

Before presenting the implementation of a subset of NOW’s group orchestration
patterns, we show the object diagram for these group-related patterns. Figure 6.3
depicts this object diagram. As we can see, two new types of patterns are added,
namely group patterns and group synchronisation patterns. Both types of objects
are implemented as objects that inherit from the Component object.

Component

result
resolver

start(env)
getClone(env)

startExecute(env)

Group Pattern

description

condition

variable name

join

component

Group Synchronisation
Pattern

environments

startExecute(env)

condition

satisfied?
timeObservers

getClone(env)

Figure 6.3: Object diagram for group orchestration patterns.

Group synchronisation patterns differ from (regular) synchronisation patterns, be-
cause group synchronisation patterns need to be shared for all members of a group.
Regular synchronisation patterns are patterns that require special attention in the
way that they are composed (because they have multiple incoming branches), and
in the way these patterns need to be cloned. Recall that for each workflow instance,
only the first enablement of an incoming branch may result in taking a clone of
the pattern. Cloning group synchronisation patterns requires a different strategy,
because these patterns are shared for members of the same group. Hence, when a
group synchronisation pattern is started, it must be verified whether a clone was

190

6.4 Group Orchestration

already taken for (another) individual instance of that group. Only when this has
not happened, the object needs to be cloned.

In the remainder of this section we present the implementation of two patterns
for group orchestration. First, we show the implementation of the Filter pattern,
which is categorised as a standard pattern, and afterwards describe the implemen-
tation of a group synchronisation pattern.

1) Implementation of the Filter Pattern

Restricting the group members during the execution of a group pattern can be
realised using a Filter pattern. This pattern is not categorised as a group synchro-
nisation pattern, because a filter pattern cannot block the execution of instances,
and the pattern is not joint for all instances of a group. A Filter pattern can only
cancel the execution of an instance, for which the pattern’s condition is not satis-
fied. Therefore, the filter pattern does have an influence on the group: The number
of group members can be altered by the Filter pattern. The implementation of the
Filter pattern is given in Listing 6.10.

1 def Filter(condition) {
2 def obj := extend: StandardPattern with: {
3
4 def startExecute(env) {
5 if: condition(env) then: {
6 resolver.resolve(env);
7 } else: {
8 env.group.decrease();
9 };

10 };
11 } taggedAs: [StdPattern];
12 };

Listing 6.10: Implementation of the Filter pattern.

The function that is used to define a Filter pattern, has one argument, namely
the pattern’s condition, and returns an object that is tagged as a StdPattern
(line 11). This object contains one methods, namely the startExecute method
that must be implemented for each pattern in NOW.

A Filter pattern is started with an incoming data environment. The execution
of that pattern verifies whether the pattern’s condition is satisfied, and when this
is the case, the pattern’s execution is finished. When the condition is not fulfilled
for that environment (i.e., for that specific group member), the execution of that
instance is terminated (the pattern’s future is not resolved), and the number of
group members is decreased. This is implemented on lines 4-10 in Listing 6.10.

191

6 Implementing NOW

2) Implementation of the Synchronised Task Pattern

We now present the implementation of a group synchronisation pattern. The Syn-
chronised Task pattern is a pattern for group orchestration that performs synchro-
nisation of the execution of all instances of a group.

Group synchronisation patterns differ from traditional synchronisation patterns,
because group synchronisation patterns break the boundaries of a single instance.
As we already discussed, outgoing branches of a split pattern can point to the same
synchronisation pattern. In this case, each outgoing branch has a reference to the
same synchronisation pattern. Therefore, for a single instance multiple references
to a synchronisation pattern can exist. However, each workflow instance has its
own synchronisation patterns.

A group synchronisation pattern is a bit more complex, because these patterns
are employed inside a Group pattern. When the execution of such a Group pattern
is started, multiple instances are executed (namely one for each group member).
Group synchronisation patterns are used to synchronise these different instances,
and, therefore, break the boundaries of a single instance.

Moreover, group synchronisation patterns must maintain a collection of observers,
i.e., objects that are interested in the time when the pattern is started for the first
time. Recall that group synchronisation patterns are instantiated with a condition.
An example of such a condition is After(minutes(10), barrier), de-
noting that the execution of the instances can continue 10 minutes after the first
instance has reached the group synchronisation pattern.

The implementation of the Synchronised Task pattern is given in Listing 6.11.

1 def SynchronisedTask(component, condition, strategy := merge) {
2 def obj := extend: GroupSynchronisationPattern with: {
3 def joinAllowed? := { |_| false };
4 def resultEnvs := [];
5 def resolvers := [];
6 def satisfied? := false;
7 /* Dictionary: key = group, value = clone of this syncPattern
8 Needed in order to ensure that all participants of a group refer
9 to the same SynchronisedTask pattern.

10 When a multiple instances pattern wraps a group pattern, for each
11 instance, a new clone of the SynchronisedTask pattern needs
12 to be made. For example,
13 MIWithPrioriDTKnow(Group(tag, ...,
14 Sequence(..., SynchronisedTask, ...)),
15 3)
16 with 2 services of type ’Tag’ that are discovered at runtime.
17 The Synchronised Task should be the same for each group, hence,
18 there should only be 3 different SynchronisedTask clones.
19 The object-instance of the SynchronisedTask can be retrieved
20 by checking the group, which is stored in the data environment. */

192

6.4 Group Orchestration

21 def instances := Dictionary.new();
22 def instanceCmp;
23
24 def getClone(env) {
25 def res := instances.find(env.group);
26 if: (res == nil) then: {
27 res := clone: self;
28 instances.insert(env.group, res);
29 };
30 res;
31 };
32
33 def startExecute(env, resolver) {
34 if: ! satisfied? then: {
35 resolvers := resolvers + [resolver];
36 when: super^execute(env) becomes: { |reply|
37 if: reply then: {
38 env.getGroup().setParticipants(futures.length);
39 // Merge all incoming data environments
40 def mergedEnv := DataEnvironment.new();
41 mergedEnv.merge(resultEnvs, true);
42 // Execute component once with the merged
43 // data environment
44 def cmp := component.getClone(env);
45 def instanceCmp := cmp;
46 when: cmp.start(mergedEnv) becomes: { |newEnv|
47 /* New variable bindings need to be added to
48 the incoming data environments, before
49 resolving the futures */
50 def diff := newEnv.difference(resultEnvs[1]);
51 def idx := 0;
52 resolvers.each: { |resolver|
53 idx := idx+1;
54 def nEnv := resultEnvs[idx];
55 nEnv.merge([diff]);
56 resolver.resolve(nEnv); };
57 };
58 };
59 };
60 };
61 };
62 } taggedAs: [GroupSyncPattern];
63 obj;
64 };

Listing 6.11: Implementation of the Synchronised Task pattern.

A Synchronised Task pattern is defined as a function that has three arguments
(the component that must be executed, a condition, and a data merging strategy)
and returns an object that is tagged as GroupSyncPattern (line 62). The object
has the following fields:

193

6 Implementing NOW

• joinAllowed? (line 3): closure that evaluates to a boolean. When a new
service is discovered, the group pattern is notified of its discovery. The
group pattern subsequently verifies whether letting the new service join the
execution is still useful by checking for all group synchronisation patterns,
of which the execution is started, whether joining is still allowed.

• resultEnvs (line 4): list containing the data environments of instances
that reached the pattern.

• resolvers (line 5): list containing the resolvers of all instances of the
group that reached the pattern.

• satisfied? (line 6): boolean: false when the pattern’s condition is not
yet fulfilled, true otherwise.

• instances (line 21): dictionary containing the instances of this object for
a specific group pattern.

• instanceCmp (line 22): used to store a reference to the cloned component
(i.e., sub workflow that is wrapped by the Synchronised Task pattern).

The object has two methods, namely getClone and startExecute. Starting
the execution of the Synchronised Task pattern results in verifying whether the
pattern’s condition is fulfilled. In case the pattern’s condition is already fulfilled
(the value of satisfied? is true), the instance for which the pattern’s execution
is started cannot continue executing. Recall that the Synchronised Task pattern
is by definition cancelling, meaning that once the pattern’s condition is fulfilled,
instances that arrive later at the pattern cannot continue their execution.

Otherwise, i.e., the value of satisfied? is false, the resolver of the future
is stored, such that it can be resolved once the condition is satisfied. Checking
whether the condition is already satisfied, is implemented by the execute method,
which is part of the SynchronisationPattern object. When the condition
is fulfilled, i.e., when the value of the method call to execute is received (the
variable reply on line 36), the execution of the component that is wrapped by
the Synchronised Task pattern can be started.

First, the number of group members is restricted to the number of instances that
reached the pattern before the pattern’s condition is satisfied (line 38). Moreover,
the data environments of all these instances are merged (lines 39-40). The result-
ing data environment is used to start the execution of the pattern’s component.
Recall that before starting the execution of a workflow component, a clone of that
component is retrieved and stored (lines 44-45).

A when: becomes: event handler is installed to await the result of starting
the component that is wrapped by the Synchronised Task pattern (line 46). The
variable bindings that are added to the data environment during the execution of this
component, need to be retrieved so that they can be added to the data environments

194

6.5 Failure Handling

of the instances of all group members. The execution of all instances continue with
these (possibly) extended data environments (lines 52-57). So, after the execution
of the pattern’s component is finished, there are again several instances executing.

6.5 Failure Handling

NOW employs a failure handling mechanism that allows to wrap a sub workflow
and specify compensating actions for specific failure events. The implementation of
this mechanism exploits NOW’s data flow mechanism, where a data environment
is linked to the control flow of the workflow. As we already mentioned in Section
6.2, this data environment contains the failure descriptions, which specify the
compensations for failure events.

Whenever a Failure pattern is encountered, these stored failure descriptions
should be updated with the ones defined by the pattern, and when the execution of
the Failure pattern is finished they need to be restored. Consider the example we
show in Figure 6.4 where two Failure patterns are used to wrap part of a workflow.

 REPLACE

LEGEND

activity

control flow failure

disconnection failure

1 2 4

 WAIT5

 RESTART ALL

3

timeout failure

SKIP

Figure 6.4: Application-specific failure handling by nesting Failure patterns to override (de-
fault) compensations.

The failure descriptions that are stored in the data environment are summarised
in the following table:

195

6 Implementing NOW

position 1 position 2 position 3 position 4
notFound Rediscover Rediscover Rediscover Rediscover

disconnection Restart Wait(5) - RestartAll Replace Restart
timeout Retry Skip Skip Retry

exception Retry Retry Retry Retry

Recall that timeout failure types are used to capture message timeouts, i.e.,
messages are annotated with a duration and when no result is received after this
dedicated time period, a timeout failure is signalled.

For every position in the workflow (marked by the grey circles depicted in
Figure 6.4), the compensating action for a failure event is given. For position 1
and position 4, which represent activities in the workflow that are not wrapped by
a Failure pattern, the default compensating actions apply (see Section 4.5.1).

Activities that are wrapped by the outermost Failure pattern (position 2) execute
application-specific compensating actions for the disconnection and timeout failure
events. In case of a disconnection, the execution waits for 5 seconds, before
restarting the sub workflow that is wrapped by the Failure pattern. When a timeout
occurs during the execution of an activity, the activity that failed is skipped.

A second Failure pattern is used to override the compensation for a disconnection
failure that is defined by the outermost Failure pattern. This Failure pattern specifies
that when a disconnection failure event occurs during the execution of the activity,
placed inside the innermost Failure pattern (position 3), the compensation that
must be executed replaces the failed activity with a sub workflow. Note that the
compensating action that is executed in case of a timeout failure, is the action that
is specified by the outermost Failure pattern.

Please remark that, for conciseness, we omit the compensations for the participant-
failures and only present the compensating actions for the (normal) failure events.

6.5.1 Automatic Failure Handling

In Section 6.1 we presented the implementation of an activity’s start method,
which corresponded to the lifecycle diagram of an activity, as shown in Figure
4.1. We presented an updated lifecycle diagram for an activity in Figure 4.20,
where failure handling is added to ensure that a failed activity can automatically
recover from failures that occur during its execution. In this section we show the
implementation of an activity’s start method, which corresponds to this extended
lifecycle diagram.

196

6.5 Failure Handling

In order to implement this extended lifecycle diagram, several extra event han-
dlers need to be installed. First of all, it must be possible to catch timeout excep-
tions and exceptions that are raised by a service during invocation. Secondly, an
event handler must be registered in order to observe a possible disconnection of a
service. Lastly, in order to detect a service unavailability failure, an event handler
that is triggered after a specific time must be installed. The code of the start
method, implementing these extra event handlers, is given in Listing 6.12.

1 def start(env) {
2 def [result, resolver] := makeFuture();
3 def msg := createAsyncMsg(operation, arguments);
4 def duration := getTimeoutDuration(env);
5 // When a timeout is specified, create async msg with @Due annotation
6 if: ! (duration == nil) then: {
7 msg := createTimeoutMsg(operation, arguments, duration);
8 };
9

10 def discoverSub := when: typeTag discovered: { |service|
11 def invocationSub := when: service <+ msg becomes: { |reply|
12 disconnectionSub.cancel();
13 unavailableSub.cancel();
14 env.insertOutputValues(reply, output);
15 resolver.resolve(env);
16 } catch: Exception using: { |exception|
17 disconnectionSub.cancel();
18 unavailableSub.cancel();
19 if: (is: exception taggedAs: TimeoutException) then: {
20 timeoutOccurred(service, env);
21 } else: {
22 if: (is: exception taggedAs: ServiceException) then: {
23 exceptionOccurred(service, env);
24 };
25 };
26 };
27
28 def disconnectionSub := when: service disconnected: {
29 discoverSub.cancel();
30 unavailableSub.cancel();
31 // In order to be able to resume when wanted
32 env.getGroup().savePoint(env, self);
33 disconnectionOccurred(service, env);
34 };
35 };
36
37 duration := getNotFoundDuration(env);
38 def unavailableSub := when: duration elapsed: {
39 discoverSub.cancel();
40 disconnectionSub.cancel();
41 notFoundOccurred(env);
42 };
43
44 result;
45 };

Listing 6.12: Start method of the Activity object with extra event handlers installed for failure
handling.

197

6 Implementing NOW

As we can see in the code in Listing 6.12, the following event handlers are
installed:

• when: discovered: (line 10): This event handler observers the discovery
of a service with the correct service type (i.e., the correct typeTag). When
such a service is found, the second execution step of the activity can be
performed, namely the invocation of the service that has been found. Recall
that the discovery execution step must only be executed for activities that are
instantiated with a service type, and not for activities that have a reference
to the service that must be invoked.

• when: becomes: catch: (line 11, 16): This event handler observes two
events that are necessary for the correct functioning of an activity’s execution.
First of all, the when: becomes: event handler is installed to await the
result of the service invocation. Secondly, possible exceptions that can be
raised must be caught by this event handler. The exceptions that are caught
are either classified as TimeoutExceptions or ServiceExceptions.
A timeout exception is raised when a service does not respond within a
given time period (specified by annotating the asynchronous message send
with @Due) after the service has been invoked. A service exception can be
raised by the service to signal some kind of exception.

When this event handler is triggered, the other event handlers that are in-
stalled need to be cancelled (lines 17-18). This is necessary in order to
ensure that only one compensating action is executed. When we would not
cancel the other event handlers, it is possible that after having triggered this
event handler with for example a TimeoutException, the service dis-
connects. This would trigger the when: disconnected: event handlers,
resulting in executing the compensating action for a disconnection, while the
compensation for a timeout failure is also being executed.

• when: disconnected (line 28): This event handler is installed in order to
react upon the disconnection of the service. Just like exceptions, when a dis-
connection event is signalled, the other event handlers (invocationSub
and unavailableSub) must be cancelled such that only one compen-
sating action is executed, namely the compensation that is specified for a
disconnection failure event.

• when: elapsed: (line 38): The when: elapsed: event handler is used
to signal that a service cannot be found within a given time period. The
time period is specified by the failure description for the NotFound failure

198

6.5 Failure Handling

event. When no failure description is given for this type of failure event,
the default failure description is used, which specifies a time period of 60
seconds.

As we already mentioned for the previous two event handlers, when an event
handler is triggered, the other two event handlers must be cancelled such
that they cannot be triggered. This is needed in order to guarantee that only
one compensating action is executed, namely the compensation specified for
the failure event that is detected first.

6.5.2 Patterns for Failure Handling

NOW introduces several new patterns in order to support failure handling. On
the one hand, there is the Failure pattern that is used to define the “scope” of
the failure handling mechanism, i.e., the activities upon which the compensations
(can) have influence. On the other hand, there are patterns that implement the
compensating actions. In this section we show the implementation of one of these
compensations, namely the Alternative compensation. The implementation of the
other compensations is similar to the one we present here.

Cancellation

Executing some compensating actions, such as Skip and Alternative, requires the
execution of activities and/or patterns to be cancelled. To this end, both the Ac-
tivity and Component object implement a cancel method. Cancelling an ac-
tivity results in ruining the activity’s future, such that it can no longer be resolved.
Cancelling a pattern is implemented by cancelling all the pattern’s components.

Implementation of the Alternative Compensation

Alternative is used to execute a sub workflow as a compensation for a failure of
an activity. The difference between the Alternative and Replace compensation is
the fact that the Alternative compensating action does not only replace the activity
of which the execution is failed, but replaces all activities that are wrapped by the
Failure pattern.

The compensation is implemented as a function that has a single argument,
namely the sub workflow that must be executed, and returns an object. The object
has one method, namely start, similar to the implementation of activities and
other patterns. This method has four arguments, namely the data environment, the
activity of which the execution failed, the failure description (containing the failure
event of which the compensation is Alternative), and the service that was invoked.

199

6 Implementing NOW

Executing the Alternative compensation results in executing the sub workflow
specified by the compensation. Note that the execution of the remainder of the
sub workflow that is wrapped by the Failure pattern is cancelled.

The implementation of this compensation is given in Listing 6.13.

1 def Alternative(component) {
2 object: {
3 def start(env, activity, failureDescription, service) {
4 def failureEvent := failureDescription.failureEvent;
5 // Drop the participant of the group
6 env.getGroup().dropMember(env, service);
7 // Cancel the remainder of the sub workflow.
8 failureDescription.getFailurePattern().cancel(env);
9 component.start(env);

10 };
11 } taggedAs: [AlternativeType];
12 };

Listing 6.13: The Alternative compensating action.

As we can see in Listing 6.13, starting the execution of the compensating action
results in cancelling the activities wrapped by the Failure pattern that are succeed-
ing the failed activity. Afterwards, the sub workflow that replaces the execution of
these cancelled activities is started (line 9). When the execution of this sub work-
flow is finished, i.e., when a future is resolved, the execution of the remainder of
the workflow can proceed.

Cancelling the activities succeeding the failed activity is implemented on line 8.
The failure description, of which the compensating action is being executed, stores
a reference to the Failure pattern that wraps the failed activity. This enables the
remainder of the sub workflow inside that Failure pattern to be cancelled.

Besides cancelling the activities of the sub workflow that is wrapped by the
Failure pattern, and executing the sub workflow that needs to replace these can-
celled activities, the Alternative compensation action also influences the execution
of Group patterns. As we can see in the implementation of the Alternative compen-
sation, we see that the compensating action drops the participant from the group.
We explain why this action implements the correct enactment, depending on how
the Failure pattern and Group pattern are composed. The following compositions
are possible:

• There is no Group pattern involved. In this case, there are no effects that
need to be enacted upon.

The data environment that is passed throughout the remainder of the work-
flow stores a reference to the Group pattern that is being executed. When

200

6.6 Conclusion

no such pattern is executed, a reference to a dummy Group object is stored.
Dropping a participant from that group does not have any side effects.

• The activity that failed is wrapped by a Failure pattern, which is defined
inside a Group pattern. In this case, the compensating action only affects
the execution of an individual group instance. So, when the Alternative
compensation is executed, the group member for whom the execution failed,
should be removed from the group’s members.

Dropping the participant from the group, as is done on line 6, implements
the correct behaviour.

• The activity that fails is wrapped by a Group pattern, which is defined in-
side a Failure pattern. Alternative is categorised as a compensating action
that has an effect on the entire wrapped sub workflow. Therefore, when an
activity fails, the Alternative compensation cancels the sub workflow that is
wrapped by the Failure pattern. In this case, the Group pattern is part of that
sub workflow, and hence, the execution of the Group pattern is cancelled.

So, dropping the group member from the group is not really necessary, but
does not cause any problems.

6.6 Conclusion

In this chapter we have shown how patterns for orchestration in nomadic networks
can be implemented as an extra layer of abstraction on top of the ambient-oriented
programming language A M B I E N T TA L K. We have shown how the execution of
an activity can be implemented by installing the necessary event handlers for
the discovery of a services, and to await the result of the service invocation.
We also presented the implementation of the data environment and explained the
information it must store, and discussed the implementation of NOW’s built-in
data merging strategies. This chapter also described how the programmer can add
extra patterns to the language and showed the implementation of a subset of
NOW’s patterns. We showed implementations of patterns for service orchestration,
group orchestration and failure handling.

201

7
N O W U P A N D RU N N I N G

The nomadic workflow language we presented in this dissertation is related to
research domains such as ubiquitous computing and ambient intelligence. These re-
search domains are very active and serve a wide range of applications. In order to
implement these kinds of applications for environments with volatile connections,
application developers can depend on languages like A M B I E N T TA L K, where net-
work failures are tackled at the heart of their programming model. As a validation
of our work we show that implementing applications for a nomadic network is still
not straightforward in a language like A M B I E N T TA L K. We highlight some prob-
lematic properties (such as maintainability and readability) of programs written in
an event-driven style as in A M B I E N T TA L K and show how workflow abstractions
can be used to overcome these.

In this chapter we first discuss the implementation of the three example applica-
tions we presented in Section 2.3.1. In Section 7.1 we discuss the implementation
of the iMPASSE application, where we focus on the composition of control flow
patterns. Thereafter, we analyse the implementation of a second scenario, namely
the SURA application, which is revolved around orchestrating a group of services
(Section 7.2). The third scenario we review is centred around the detection and
handling of failures, for service orchestration as well as group orchestration (Sec-
tion 7.3). In Section 7.4 we present the results of experiments used to measure
the overhead of introducing workflow abstractions on top of A M B I E N T TA L K and
also measure the overhead introduced by failure detection. Afterwards, we show
the results of these experiments conducted for the three example applications we
used in this dissertation.

203

7 NOW Up and Running

7.1 Application stressing Service Orchestration

Our first example application implements the scenario of the airport’s iMPASSE
application, which is described in Section 2.3.1. This application focuses on the
composition of control flow patterns. For conciseness we omit the detection and
handling of failures, which is explained in detail by a subsequent example appli-
cation (in Section 7.3).

In this section we discuss the code complexity of the implementations of this
scenario in A M B I E N T TA L K and in NOW. Recall that we already showed parts
of the direct-style implementation in A M B I E N T TA L K in Section 3.8, whereas the
implementation in NOW is presented in Section 5.4.2.

The implementation of this example application is more compact in our nomadic
language compared to a direct style implementation in A M B I E N T TA L K (27 LoC
in NOW compared to 93 LoC in A M B I E N T TA L K). Moreover, there is less nesting
of code in the implementation in NOW.

An unwanted property of A M B I E N T TA L K is the fact that the application logic
is divided amongst several event handlers that can be triggered independently of
one another [CM06], since the language has an event-driven architecture. The
control flow of an application is thus no longer determined by the programmer but
by external events. This phenomenon is known as inversion of control. This makes
the event-driven programming style not always straightforward or suitable for large-
scale applications [HO06]. As a library of this ambient-oriented programming
language, NOW hides these event handlers for the application developers.

Moreover, as we can see in the code excerpt in Listing 3.5, the implementation of
the three branches of the parallel split are very similar. The only difference between
them is the name of the service that must be discovered and the asynchronous
message send (lines 29-37, 38-56, and ??-?? in Listing 3.5). There is no way
this can be abstracted easily in A M B I E N T TA L K, since this is conceptually the
asynchronous version of initialising a reference and sending it a message.

From this we can conclude that the implementation in NOW is shorter and
contains less nested code. This is a result of employing control flow patterns that
ensure that the control flow and fine-grained application logic are not interwoven.

7.2 Application stressing Group Orchestration

The second application, called SURA, presented in Section 2.3.1 focusses on group
orchestration. In this scenario, the fans of a festival’s headliner need to be con-
tacted, such that they can vote and influence the songs that will be played during

204

7.2 Application stressing Group Orchestration

the show. In Section 5.5.2 we already presented the implementation of this appli-
cation in NOW. Implementing this application in plain A M B I E N T TA L K may or
may not be achieved by using A M B I E N T TA L K’s language construct “ambient ref-
erences” (see Section 3.7). In this section we first present an implementation that
does not use this language construct. Afterwards, we discuss an implementation of
the SURA application using ambient references.

In order to address a group of services in A M B I E N T TA L K, references to these
services need to be stored. When a service of the right type is discovered, its far
reference needs to be manually added to this set, and upon disconnection needs
to be removed. The implementation of the SURA application is shown in Listing
7.1.

1 def fans := [];
2 def selections := [];
3
4 def observer := whenever: FestivalVisitor discovered: { |visitor|
5 when: visitor<-isFan(band) becomes: { |isFan|
6 if: isFan then: {
7
8 when: visitor<-vote() becomes: { |interested|
9 if: interested == "yes" then: {

10 fans := fans + [visitor];
11 when: visitor<-select(discography) becomes: { |sel|
12 selections := selections + [sel];
13 if: (selections.length == fans.length) then: {
14 decidePlaylist();
15 };
16 };
17 };
18 };
19 };
20 };
21 };
22
23 def decidePlaylist() {
24 def curTime := jDate.new();
25 def duration := calculateTimeDiff(curTime, contactBandTime);
26 when: duration elapsed: {
27 observer.cancel();
28 when: headliner<-show(selections) becomes: { |playlist|
29 curTime := jDate.new();
30 duration := calculateTimeDiff(curTime, contactFansTime);
31 when: duration elapsed: {
32 fans.each: { |fan| fan<-show(playlist); };
33 };
34 };
35 };
36 };

Listing 7.1: Implementation of the SURA application in A M B I E N T TA L K.

205

7 NOW Up and Running

As we can see, on line 4 of Listing 7.1 a whenever: discovered: event
handler is installed to capture all services with type tag FestivalVisitor.
When such a service is discovered, the asynchronous message isFan is sent (line
5) to the service. The reply of this message is a boolean indicating whether the
festival visitor is a fan of the band, or not. When the festival visitor is a fan of the
headliner, the far reference to that visitor (service) is added to the table fans,
which is defined on line 1.

Afterwards, the fan is contacted and asked to select songs from the band’s
discography (line 11), and when a selection is returned as a result of the asyn-
chronous message send, it is added to the table selections, which stores the
selected songs of all fans (line 2).

At a specified moment in time (i.e., at 20:30) those votes need to be sent
to the headliner. A when: elapsed: event handler is installed on line 26, to
await the time (contactBandTime) upon which the fans’ votes can be sent.
At that moment, no more fans are allowed to vote, and hence, the whenever:
discovered: event handler is cancelled (line 27).

The final playlist is sent to all fans who voted at a specific moment in time.
Therefore, a second when: elapsed: event handler is installed on line 31. The
application terminates after the playlist is sent to all fans who voted (line 32).

The implementation we just presented, does not use ambient references. An
ambient reference can be used to designate a group of services that are within
communication range. The implementation of the SURA application in A M B I E N T -
TA L K that uses ambient references is given in Listing 7.2.

1 def fans := ambient: FestivalVisitor where: {|v| v.fanInfo == "Kassabian"};
2 def handle := fans<-vote()@[All, Sustain, Reply];
3
4 def observer := whenEach: handle.future becomes: { |fan|
5 if: ! (fan == nil) then: {
6 interestedFans := interestedFans + [fan];
7 when: fan<-select(discography) becomes: { |selection|
8 ...
9 };

10 };
11 };

Listing 7.2: Implementation of the SURA application in A M B I E N T TA L K using ambient
references.

On line 1 of Listing 7.2 an ambient reference is defined with a filter. The filter
specifies that the service’s field fanInfo must equal Kassabian. On line 2 an
asynchronous message is sent to this ambient reference. The message is one-to-
many (@All), may be delivered indefinitely until explicitly retracted (@Sustain),
and is two-way, meaning that a result must be returned (@Reply).

206

7.3 Application Stressing Failure Handling

Using an ambient reference to address the set of services that satisfy a descrip-
tion (in this example, all festival visitors that are a fan of Kassabian) eases the
development, because the management of the set of services does not need to be
programmed explicitly. For instance, no table needs to be defined to store the far
references, and discovered services do not need to be inserted into that table. On
the other hand, in our example scenario we want to have a reference to those
services, such that we can send other messages later on. Therefore, the return
value of the asynchronous message vote is either a reference to the service or nil.
When a fan is interested in participating in the voting process, a reference to the
service is returned. This far reference is stored in a table (interestedFans),
such that all interested fans can be addressed when necessary. For example, at the
end of the application, the final playlist must be sent to all fans who voted.

When we compare the code complexity of the implementation of the SURA
applications in NOW (see Section 5.5.2) and in A M B I E N T TA L K, we can con-
clude that the implementation in NOW is more compact (16 compared to 52 lines
of code). The same conclusions can be made as we did for the comparison of
the implementations for the iMPASSE application in Section 7.1. With respect to
group orchestration, we claim that the NOW implementation is shorter. Moreover,
the programmer does not explicitly need to take care of storing references to the
services the group consists of.

7.3 Application Stressing Failure Handling

The third example application (called SWOOP) we show, focuses on the detection
and handling of failures. We show that, although A M B I E N T TA L K has built-in
support for both permanent and transient failures, the implementation of such an
application using failures is not straightforward. The implementation we present
here introduces an abstraction that implements compensations for failures that can
occur during a service invocation. The function invokeService is shown in
Listing 7.3.

207

7 NOW Up and Running

Listing 7.3: Invoking a service in A M B I E N T TA L K.
1 def invokeService(service, msg, compensation := ‘default) {
2 when: service <+ msg becomes: { |res|
3 res;
4 } catch: Exception using: { |exception|
5 if: ((is: exception taggedAs: TimeoutException) ||
6 (is: exception taggedAs: ServiceException)) then: {
7 if: (compensation == ‘default) then: {
8 invokeService(service, msg, compensation);
9 } else: {

10 compensation();
11 };
12 };
13 };
14 };

The invokeService function has three formal parameters, namely the ser-
vice that must be invoked (service), the asynchronous message that must be sent
(msg), and an optional compensating action that must be executed (compensation).
The third argument is by default the symbol ‘default, ensuring that the default
compensation is executed in case of a failure.

A when: becomes: event handler is registered to await the result of the
asynchronous message send (line 2). When the result is obtained, the result is
returned (line 3).

The code on lines 4-12 is used to ensure that compensating actions are executed
in case of a service exception or timeout failure. When no specific compensation
is required (i.e., the function is called with only two arguments), the default com-
pensation “retry invoking the same service” is executed, as we can see on line 8.
Otherwise, the specified compensating action is executed, as can be seen on line 10.

As we can see parts of the implementation shown in Listing 7.3 some lines of
code are highlighted, either in grey or in orange. We use the following colouring
scheme: grey is used to highlight the lines of code that are concerned with service
orchestration, orange is used to highlight the lines of code that are concerned
with failure handling. In the following code snippet we also introduce cyan to
colour the lines of code concerned with group orchestration. After we have pre-
sented the entire implementation of the application in A M B I E N T TA L K, we show
a stacked graph comparing the NOW and A M B I E N T TA L K implementation, using
this colouring scheme.

The implementation of the SWOOP application is given in Listing 7.4. As we
can see on line 1, we register a whenever: discovered: event handler to

208

7.3 Application Stressing Failure Handling

discover all services that are tagged with the type tag Assistant. For each
assistant, the location of his/her workshop is retrieved by facility management
(line 2). Afterwards the assistant is reminded about the workshop (line 4), and
the administration desk looks for a volunteer that can guide the students to that
location (line 7).

When no student volunteer can be found, the workshop’s assistant is notified
that he/she needs to guide the students to the correct location (line 9). Otherwise,
the student volunteer is informed of the workshop location that he/she needs to
accompany the students to (line 11).

In parallel, the students of the workshop are notified of the workshop’s loca-
tion. By registering a whenever: discovered: event handler (on line 16) all
services that are exported with the type tag Student are captured. However, we
only want to address those student that are registered for the particular assistant’s
workshop. Therefore, the result of the asynchronous message send getWorkshop
needs to equal the given workshop (line 18). The students of that workshop are
collected in a table students (on line 14). This information is required, because
only when all students have received the message, the group’s execution is finished.
Therefore, the number of results (i.e., acknowledgements) that are received are also
stored (line 15), and an if test verifies whether all acknowledgements have been
received (line 23).

209

7 NOW Up and Running

Listing 7.4: Implementation of the SWOOP application in A M B I E N T TA L K.
1 def observer := whenever: Assistant discovered: { |assistant|
2 when: invokeService(fMgmt, <-getRoom(assistant)) becomes: { |resT|
3 def [room, workshop] := resT;
4 invokeService(assistant, <-show("Workshop", room)@Due(seconds(120)));
5 def cmp := { when: seconds(5) elapsed: { /* restart */ } };
6 def msg := <-getVolunteer(workshop)@Due(seconds(120));
7 when: invokeService(admin, msg, cmp) becomes: { |volunteer|
8 if: volunteer == false then: {
9 invokeService(assistant, <-show("Guidance", room));

10 } else: {
11 invokeService(volunteer, <-show("Guidance", room, workshop));
12 };
13 def announced := false;
14 def students := [];
15 def results := 0;
16 def observer := whenever: Student discovered: { |student|
17 when: student<-getWorkshop() becomes: { |w|
18 if: w == workshop then: {
19 students := students + [student];
20 msg := <-show("WS room", room);
21 when: invokeService(student, msg) becomes: { |res|
22 results := results + 1;
23 if: results == students.length() then: {
24 ‘done;
25 };
26 };
27 };
28 };
29 when: student disconnected: {
30 if: ! announced then: {
31 announced := true;
32 invokeService(admin, <-announce(workshop, room));
33 };
34 };
35 };
36 };
37 };
38 when: assistant disconnected: {
39 observer.cancel();
40 invokeService(admin, <-contact(assistant));
41 };
42 };

Besides the invocation of services, which we just described, extra lines of code
are required to handle failures. Lines 29-34 implement the compensating action
that must be executed in case a disconnection occurs during communication with
a student. The first time such a disconnection occurs, the administration desk
makes an announcement in order to inform all students of the workshop’s location.
This compensation is only made once for each workshop, namely the first time a
disconnection occurs.

210

7.3 Application Stressing Failure Handling

Moreover, on lines 38-41 the disconnection of an assistant is taken care of.
When an assistant disconnects, the administration desk is asked to inform that
assistant through other communication channels, such as for instance email.

Comparing the code complexity of the implementations of the SWOOP appli-
cation in NOW and A M B I E N T TA L K follows the observations we made for the
previous applications. First, the size of the implementation is smaller in NOW
than in A M B I E N T TA L K (21, compared to 56 lines of code). Secondly, we ob-
serve that event handlers are scattered throughout the implementation. Therefore,
the same conclusions can be drawn as the ones we described in Section 7.1. Since
A M B I E N T TA L K has no support for default compensating actions in the communi-
cation with mobile services, more code (event handlers) is needed for the detection
and handling of failures. Although we only show a small part of this example no-
madic application, the nesting of the event handlers is 4 levels deep (without the
event handlers of the service invocation) which makes it more difficult to follow
the control flow of the application.

Figure 7.1: Lines of code for the code complexity of the SWOOP application in NOW and
A M B I E N T TA L K.

211

7 NOW Up and Running

In Figure 7.1 we compare the implementation of the SWOOP application in
NOW and A M B I E N T TA L K and show the lines of code for different concerns.
We use the same colouring scheme as we used to highlight the lines of code in
the implementation. Note that we do not show the entire lines of code, since we
only focus on the lines that are concerned with either service orchestration, group
orchestration, or failure handling. For instance, we omitted the lines where the
service is actually invoked.

As we can see, NOW uses less lines of code to describe the orchestration of
services. By providing patterns, the control flow of an application can be easily
grasped. In A M B I E N T TA L K, this must be achieved by nesting event handlers in
the appropriate order. For example, for a simple example where three services
must be invoked sequentially, three when: becomes: event handlers must be
nested. And, in case the services must be discovered, three additional when:
discovered: event handlers are required. In NOW, on the other hand, one
single line of code is required, namely Sequence(...).

Comparing the lines of code that are concerned with the orchestration of a group
of services, both implementations behave similarly. This can be explained, because
A M B I E N T TA L K already provides language constructs for group orchestrations.
For example, the whenever: discovered: event handler enables the discovery
of several services of the same type. The language also provides ambient references
to designate a group of nearby services.

Because A M B I E N T TA L K has no built-in support to automatically recover from
failures, a lot more failure handling code must be explicitly written by the pro-
grammer. Therefore, the number of lines of code that are concerned with failure
handling is higher than the one for NOW.

From the above experiments, we conclude that the implementation of this ex-
ample application is shorter in our nomadic workflow language compared to a
direct style implementation in A M B I E N T TA L K. Not only is the implementation
in NOW more compact, it is also less nested. In order to confirm/validate this
claim, however, further user tests with a representative group of people need to be
conducted.

7.4 Scalability Results

In this section we present the performance measurements of NOW compared
to A M B I E N T TA L K. Part of the results of the experiments we present here are
published in [PVJ13].

212

7.4 Scalability Results

We implemented NOW as a library for A M B I E N T TA L K, and illustrated in the
previous section that the introduction of workflow abstractions makes the code
more compact and less nested. When absolute performance is a necessity, NOW
could be implemented in the A M B I E N T TA L K interpreter itself. At this moment,
the scalability of our language is our main concern. In this section we show that
the NOW library is scalable and also measure the overhead introduced by the
workflow patterns.

We show the results of three different experiments. In the first experiment, pre-
sented in Section 7.4.1, we measure the overhead of the control flow patterns intro-
duced by NOW. For this experiment we implement two basic control flow patterns
frequently used in workflows, namely a sequence and parallel split, and compare
the execution time of the implementation in NOW and A M B I E N T TA L K. In Sec-
tion 7.4.2 we show the overhead introduced by failure detection in both NOW
and A M B I E N T TA L K and compare the execution times of both implementations
using the same two control flow patterns. As a third experiment, we compare the
performance of implementations of the three applications we presented in Section
2.3.1. Those applications use more control flow patterns, and in order to make the
example more complex we wrap the application with a multiple instances pattern.

The experiments are executed on a MacBook with a 2.4 GHZ Intel Core 2 Duo
processor and 4GB of 1066MHz DDR3 RAM. The used software includes OS
X 10.6.6, JVM 1.6.0_22 and A M B I E N T TA L K 2.19.1. For each experiment two
virtual machines are started (with a maximum heap size of 2GB). A first virtual
machine is used for the execution of the example application (in our experiments
the sequence or parallel split pattern), whereas the services are executed by a
second VM. Each experiment was executed 10 times and the average execution
time was computed. Note that all activities used in the first experiments presented
in Section 7.4.1 and Section 7.4.2 have the same execution time.

7.4.1 Language Scalability

We conducted two experiments: one where we increased the number of activities
of a sequence and one where we augmented the number of branches of a parallel
split pattern. We compared the execution time of these example applications in
plain A M B I E N T TA L K and in NOW. The implementation in A M B I E N T TA L K be-
haves in the same way as the way the control flow patterns are defined. However,
the implementation of those patterns in A M B I E N T TA L K uses a more direct style
of programming using event handlers and hence does not have as many layers of

213

7 NOW Up and Running

abstraction as the implementation in NOW.

The first experiment we performed consists of increasing the number of activities
in a sequence pattern and comparing the execution time of its implementation using
plain A M B I E N T TA L K and using NOW. We measured the execution time of a
sequence with 1, 10, 20, 30, 40 and 80 activities. The results of this experiment
are shown in Figure 7.2(a).

We can conclude that for each of the implementations there exists a linear
correlation with the following coefficients:

NOW A M B I E N T TA L K

R2 0.9993 0.9971
a 26.534 16.3902
b 80.700 62.2802

where R2 is the squared correlation coefficient, and the linear model is defined as
ax + b.

The linear correlation between the number of activities and the implementation
in our workflow language shows that the implementation of NOW is scalable, as
is the case for A M B I E N T TA L K as well. From the results we can also conclude
that there is a small overhead when the NOW application is executed compared
to the core A M B I E N T TA L K application. For instance, the execution time of a
sequence of 80 activities is 2.2 seconds in our workflow language, whereas the
execution takes 1.4 seconds when the implementation written in (plain) A M B I E N T -
TA L K is used. This overhead (an average factor of 1.62) is a result of, amongst
other things, the management of the environment implementing the data flow
through the workflow. The corresponding implementation in A M B I E N T TA L K uses
local variables in event handlers which are assigned when a return value of a
service is retrieved. Moreover, NOW introduces patterns and activities which are
all implemented as A M B I E N T TA L K objects. So, the execution in our workflow
languages uses more objects (for each activity, for the pattern itself, environment,
...), and there is a higher number of futures, used to chain patterns and activities
together, that must be managed. We refer to Section 7.4.4 for a more elaborate
discussion on the overhead introduced by NOW.

As a second experiment, we increase the number of branches of a parallel split
pattern (where each branch consists of one activity which has identical execution
time in all the branches). The measured application consists of a parallel split of
1, 10, 20, 30, 40, and 80 branches, followed by a synchronisation pattern which
merges all branches of the parallel split pattern. The different execution times
of its implementation in NOW and A M B I E N T TA L K are shown in Figure 7.2(b).

214

7.4 Scalability Results

(a) Execution time of a sequence pattern.

(b) Execution time of a parallel split pattern.

Figure 7.2: Measurement of overhead introduced by patterns. Results for sequence pattern (a)
and parallel split pattern (b).

215

7 NOW Up and Running

Again, there is a linear correlation between the execution time and the number of
branches. The table below shows the coefficients for each implementation.

NOW A M B I E N T TA L K

R2 0.9995 0.9986
a 41.2915 17.854
b 52.9908 85.649

Executing a parallel split with 40 branches takes around 1.7 seconds using
NOW’s implementation, compared to 0.7 seconds when using A M B I E N T TA L K.
The implementation in NOW is on average 2.32 times slower than the one in
A M B I E N T TA L K. The overhead introduced by this workflow pattern is a result
from the usage of more futures used to chain patterns and activities together.
Moreover, no optimisations for NOW have been implemented yet. We discuss this
difference in execution time between NOW and A M B I E N T TA L K more in Section
7.4.4.

When we compare the coefficients of the regression test (ax + b) of the parallel
split, with those of the sequence pattern obtained from the previous experiment, we
see that the execution time of the sequence pattern is faster for the same number
of activities. As we already mentioned, each experiment uses a separate virtual
machine for the execution of the services of the application. For the sequence
experiment, only one service is provided and this service is invoked sequentially
as many times as the number of the pattern’s activities. In order to perform the
second experiment, we need several services (one for each branch of the parallel
split pattern) in order to prevent a bottleneck in one single service. When a parallel
split is being executed, all those services are invoked and can execute in parallel.
However, the workflow, running in a separate virtual machine, cannot benefit from
any parallelism because it is implemented as a single actor and the actor model
specifically forbids inter-actor concurrency. Hence, in this experiment (where the
execution time of a single activity is small) there is no real benefit of parallelism.
When the execution time of the activities would be significantly larger, using a
parallel split would be beneficial and the difference between the execution time of
the two experiments would be the other way around.

The benchmarks of these two basic control flow patterns hint that our language
implementation is scalable, as there is a linear correlation between the number of
activities (branches) and the execution time of the application. In Section 7.4.3
we show the benchmarks of two more elaborate experiments that contain more
patterns and use more advanced ones, such as multiple instances. The experiments
we conducted for these two basic control flow patterns, sequence and parallel

216

7.4 Scalability Results

split, are executed using two VMs on the same machine, which gives us very
small latencies. However, in real-life there will be much more latency involved as
services are running on different machines connected by a network. The overhead
that is introduced by NOW will be less significant in these real-life applications
since the network delays are larger.

7.4.2 Scalability of Language with Failure Detection

The experiments we conducted to test the scalability of the language implemen-
tation are repeated in order to test the scalability of languages with support for
failure detection. In order to conduct these experiments we used the implemen-
tation of NOW with failure detection. This simulates the behaviour where each
activity is wrapped by a failure pattern that can detect all 4 failures: timeouts,
disconnections, exceptions and when a service is not found. In order to achieve
the same behaviour when testing the implementation in A M B I E N T TA L K, we also
need to detect those four failures. Instead of only using the when: discovered:
and when: becomes: event handlers in A M B I E N T TA L K, we also install the
event handlers that can catch exceptions (catch:), timeouts (by annotating the
asynchronous message send with @Due and catching a Timeout exception), dis-
connections (when: disconnected:), and detect when a service is not found
(when: elapsed:).

We repeat the experiment where the number of activities, each wrapped by a
failure pattern, in a sequence pattern is increased. The results of this experiment
are shown in Figure 7.3(a).

We can derive that for each of the performance graphs of implementations
with failure detection code there exists a linear correlation between the number of
activities and the total runtime with the following coefficients:

NOW A M B I E N T TA L K

R2 0.9999 0.9973
a 52.268 26.7466
b 90.639 41.8289

where R2 is the squared correlation coefficient, and the linear model is defined as
ax + b.

From the results obtained by this experiment, we can deduce that the implemen-
tation of a sequence pattern in NOW is slower with a factor of 1.95 than the cor-
responding code in A M B I E N T TA L K. For a discussion on the difference between
the execution times of these implementations we refer to Section 7.4.4. Moreover,
we can conclude that the execution time of an implementation is increased when

217

7 NOW Up and Running

introducing failure detection. This phenomenon occurs for applications written in
A M B I E N T TA L K as well as in NOW. For instance, where previously a sequence
of 80 activities had an execution time of 1.4 seconds in A M B I E N T TA L K, it now
has a duration of 2.2 seconds. This factor is 18% higher than the difference in
performance measured for the same experiment without failure detection (1.92 com-
pared to 1.62 previously). Recall that for this experiment, each activity is wrapped
by a failure pattern that can detect the four types of failures we support. For the
corresponding implementation in A M B I E N T TA L K, this behaviour is achieved by
adding four event handlers, for each service that must be discovered and invoked.
These extra event handlers cause the difference in execution time with the previous
experiment presented in Section 7.4.1.

We also measured the execution times of the second experiment where the
number of branches of a parallel split is increased. The different execution times
of those implementations are shown in Figure 7.3(b). The table below shows the
coefficients of the linear correlation for the implementations both in NOW and
A M B I E N T TA L K.

NOW A M B I E N T TA L K

R2 0.9994 0.9995
a 70.4633 29.0120
b 70.0916 90.5204

Here again we notice that the implementations with failure detection support are
slower than the ones without. We can also derive that the execution time of a par-
allel split in NOW is on average 2.43 times larger than the execution time of the
corresponding implementation in A M B I E N T TA L K. When comparing this factor
with the one obtained from the parallel split-experiment without failure detection
(presented in Section 7.4.1), we see that this factor is 4.7% higher (the factor of
the previous experiment is 2.32).

We showed that the introduction of failure detection increases the execution
time (with a factor of 20% for a parallel split). However, we did not measure
the overhead that is introduced by executing the actual compensating actions them-
selves for a certain failure. Executing performance tests for this experiment is
meaningless, as the nature of a fault (timeout, disconnection, ...) leads to delays
orders of magnitudes larger than its compensation. For instance, the compensation
of a timeout of 20 seconds can take a mere 20 ms. We can conclude from these
benchmarks that our language implementation with failure detection is scalable for
basic control flow patterns (sequence, parallel split), as there is a linear correlation
between the number of activities (wrapped by a failure pattern) and the execution

218

7.4 Scalability Results

(a) Execution time of a sequence pattern.

(b) Execution time of a parallel split pattern.

Figure 7.3: Measurement of overhead introduced by failure detection. Results for sequence
pattern (a) and parallel split pattern (b).

219

7 NOW Up and Running

time of the application. In Section 7.4.3 we present benchmarks for applications
using more, and more complex, workflow patterns.

7.4.3 Scalability of Example Scenarios

In this section we present benchmarks testing the overhead introduced by NOW
measured using the three example applications, of which we presented the imple-
mentation in Section 2.3.1.

The iMPASSE Application

The airport example consists of 12 control flow patterns (sequences, parallel splits,
synchronizations, connections, exclusive choice patterns, and a structured discrim-
inator). We also want to measure the overhead of more complex control flow
patterns, hence, we wrap this workflow with a multiple instances pattern (called
multiple instances with a priori design-time knowledge). We repeat the experiment
by increasing the number of multiple instances. The results are shown in Figure
7.4.

For this experiment, we can conclude that for the implementations in NOW and
A M B I E N T TA L K there exists a linear correlation with the following coefficients:

NOW A M B I E N T TA L K

R2 0.9999 0.9973
a 52.268 26.7466
b 90.639 41.8289

We can derive that for the airport application the implementation in NOW is
2.12 times slower than the one in A M B I E N T TA L K.

In this experiment we show that for more complex applications, using several
control flow patterns (even a more complex multiple instances pattern), the imple-
mentation of NOW is scalable. We can also conclude that our workflow patterns
introduce overhead, but still lead to scalable applications.

The SURA Application

The results of the aforementioned experiments have been published in [PVJ13].
The experiments we present now are executed on a MacBook Pro with a 2.7 GHZ
Intel Core 2 Duo processor and 16GB of 1600MHz DDR3 RAM. The used soft-
ware includes OS X 10.8.1, JVM 1.6.0_22 and A M B I E N T TA L K 2.21. Just like
before, for each experiment two virtual machines are started (with a maximum

220

7.4 Scalability Results

Figure 7.4: Measuring the addition of workflow patterns compared to plain A M B I E N T TA L K.
Results are shown for a multiple instances pattern wrapping the workflow implementing
the iMPASSE application.

heap size of 2GB), and each experiment was executed 10 times and the average
execution time was computed.

The SURA application only has 6 patterns (group, sequence, filter, synchronised
task, cancelling barrier, and group join). We also wrap this workflow with a
multiple instances pattern and repeat the experiment with increasing the number
of instances. The results of this experiment are shown in Figure 7.5.

For this experiment, we can conclude that for the implementations in NOW and
A M B I E N T TA L K there exists a linear correlation with the following coefficients:

NOW A M B I E N T TA L K

R2 0.9917 0.9995
a 48.43 42.0588
b 358.94 51.2897

221

7 NOW Up and Running

Figure 7.5: Measuring the addition of workflow patterns compared to plain A M B I E N T TA L K.
Results are shown for a multiple instances pattern wrapping the workflow implementing
the SURA application.

The SWOOP Application

The third application uses 10 patterns (sequences, parallel split, exclusive choice,
groups, failures), and extra patterns for the handling of failures (for instance,
alternative). We also wrap this workflow with a multiple instances pattern and
repeat the experiment with increasing the number of instances. The results of this
experiment are shown in Figure 7.6.

For this experiment, we can conclude that for the implementations in NOW and
A M B I E N T TA L K there exists a linear correlation with the following coefficients:

NOW A M B I E N T TA L K

R2 0.9984 0.9999
a 412.799 176.439
b -119.275 68.014

222

7.4 Scalability Results

0 10 20 30 40

0
50
00

10
00
0

15
00
0

Increasing the number of instances of the ORATE application

Number of instances

Ti
m

e
(in

 m
ili

se
c)

NOW
AmbientTalk

Figure 7.6: Measuring the addition of workflow patterns compared to plain A M B I E N T TA L K.
Results are shown for a multiple instances pattern wrapping the workflow implementing
the SWOOP application.

7.4.4 Discussion

In this section, we first discuss the difference in execution time between an appli-
cation in our nomadic workflow language and its corresponding implementation in
A M B I E N T TA L K. Thereafter, we describe the threats to validity of our scalability
results.

The three experiments we presented each show that NOW’s implementation is
slower than the one in plain A M B I E N T TA L K. First of all, we want to stress that
NOW is a proof-of-concept implementation that is implemented as a library for
A M B I E N T TA L K. The goal of this proof-of-concept implementation is to show
that languages can benefit from the extra abstraction layer of workflow patterns,
such that the code becomes shorter and less nested. When the language has reached
full maturity, it could be integrated in the A M B I E N T TA L K interpreter itself where
more optimisations can be made. The goal of the conducted experiments is to
show that the library is scalable.

The difference in execution time between the implementations in NOW and
A M B I E N T TA L K can be explained, as our workflow language introduces more

223

7 NOW Up and Running

futures and objects. For instance, instead of just assigning local variables (done
in the A M B I E N T TA L K implementation of the experiments), the implementation
in NOW uses an environment object which requires extra provisions in order to
allow the data to flow through the entire workflow. Moreover, the workflow lan-
guage introduces more objects (for each activity, pattern, etc.), which each create
a new future when started. Hence, more futures must be managed by NOW. This
extra complexity causes the extra overhead we showed in our experiments.

The benchmarks measuring the execution time of two basic control flow pat-
terns without failure detection (in Section 7.4.1) show that the implementation in
NOW is slower than their corresponding implementation in A M B I E N T TA L K. To
determine whether our results are generalisable to other workflow patterns, more
experiments are needed. We need to extend our experiments to other kinds of
applications as well.

As a third experiment we presented the results of three applications that consist
of several workflow patterns. From these experiments we could deduce that the
implementation of our workflow language is scalable. However, more stress tests
on complex applications are needed to further support this conclusion.

7.5 Conclusion

We have shown how NOW can be used by implementing three small, but rep-
resentative applications for nomadic networks in Chapter 5. In this chapter, we
have compared the code complexity of the implementations of these applications
in NOW and in A M B I E N T TA L K. We can conclude that the implementation in
our nomadic workflow language is, not only, shorter, its code is less nested. Af-
terwards, we presented the results of the benchmarks that measure the overhead
introduced by the patterns on top of A M B I E N T TA L K. Although the introduction
of workflow patterns introduces an overhead, the implementation of our nomadic
workflow language is scalable for applications that use several control flow patterns,
of which some of them are rather complex.

224

8
C O N C L U S I O N

In this chapter, the conclusions of this dissertation are presented. First, the ideas
and work presented in this dissertation are summarised stressing our contributions.
Subsequently, we present directions for future research.

225

8 Conclusion

8.1 Summary and Contributions

The goal of this dissertation was to investigate how the development of nomadic
applications can be facilitated by proposing a programming model that attends to
the characteristics of these applications.

Nomadic applications are a type of distributed application that run in no-
madic networks. Developing nomadic applications is achieved by orchestrating
the plethora of services in the network. In stable networks, the orchestration of
services is often achieved using technologies such as service-oriented computing
[PG03]. The composition and interaction with services is typically specified using
so-called workflow languages. Workflow languages do not only allow the composi-
tion of services, these languages are also suited to describe the control flow of an
application. However, existing workflow languages are not fully equipped for the
development of nomadic applications.

As a result, the work presented in this dissertation combines two existing
paradigms, from different niches of computer science, namely the workflow paradigm
and the ambient-oriented programming paradigm. The first pillar our research is
built upon, namely the workflow paradigm, focusses on the orchestration of ser-
vices. The other pillar supporting our research is the ambient-oriented programming
paradigm that takes the hardware characteristics of mobile networks into account,
making it suitable to program peer-to-peer mobile applications. In this summary the
same sequence of steps is followed as in this dissertation: We first summarise the
different criteria necessary for the orchestration of services in a nomadic network,
and then design a programming model that adheres to these criteria. Finally, we
describe a proof-of-concept implementation of this proposed programming model.
In each of these steps, we indicate the contributions of this dissertation.

Nomadic applications are typically deployed and executed on the fixed infras-
tructure and orchestrate the abundance of services that are available in the network.
Because nomadic networks are liable to volatile connections, special characteristics
have to be considered. Not all services are necessarily known a priori, services
can disconnect at any moment in time, and dynamic groups of services can fluc-
tuate over time. The characteristics of nomadic networks impose several criteria
the programming model must adhere to. These criteria can be classified into three
categories, namely service orchestration, group orchestration, and failure handling.

The category of service orchestration consists of criteria that allow the invocation
of services that are not necessarily known a priori, and can become (temporarily)
disconnected. The orchestration of these services must be described in such a way

226

8.1 Summary and Contributions

that the control flow of a nomadic application is separated from the fine-grained
application logic, which is implemented by the services. The second category of
criteria is concerned with the orchestration of a dynamically changing group of
services. We postulate criteria that allow an intensional definition of services a
group constitutes of, and allow the number of group members to fluctuate during
execution. Moreover, the execution during the orchestration of such a group of
services must be controllable, in order to allow processes to be synchronised,
redirected, or aborted. The last category consists of criteria that are focussed on
the detection and handling of (network) failures. The criteria we put forward have
an effect on both service orchestration, and group orchestration. Nomadic networks
are subject to intermittent connections, causing network failures to be considered
the rule, rather than the exception. Besides the support for automatic recovery of
failures, this behaviour can be overridden with application-specific compensating
actions by application developers. This results in our first contribution:

Contribution 1: Based upon the characteristics of programming languages im-
plementing either the workflow paradigm or the ambient-oriented programming
paradigm, we postulate criteria for orchestration in nomadic networks [PVJ10,
PVVJ12].

In order to support service orchestration in a nomadic network, we define high-
level abstractions as workflow patterns. Therefore, existing control flow patterns
[RtHvdAM06] need to be revised in the context of nomadic networks. We intro-
duce a different interpretation of an activity, which is a placeholder for a service
invocation, incorporating the fact that such a service is not necessarily known be-
forehand, and can become (temporarily) unavailable. We also present a data flow
mechanism that can be used in these networks. We set forth a categorisation for
these patterns based on the way the control flow patterns can be composed and
how they deal with data. This leads to our second contribution:

Contribution 2: We revise traditional workflow languages, reintroduce the con-
cept of an activity, and introduce a data flow mechanism to arrive at a programming
model to support service orchestration in a nomadic network [PCJ+10, PVJ10].

In order to allow group orchestration, the programming model must provide
novel patterns. First, we show the usage of intensional definitions to describe the
members of the group. Such intensional descriptions can be achieved by either
providing a service type, or a logical expression the service(s) must fulfil. We

227

8 Conclusion

propose a pattern that allows a process to be executed for these group members
and present a pattern to restrict the members during the execution of that process.
We also introduce novel patterns that allow the synchronisation of the execution of
the process, in a way that exceeds the execution of an individual group member.
This results in our third contribution:

Contribution 3: We define novel workflow patterns that allow the orchestration
of a dynamically changing group of services in a nomadic network [PVVJ12].

Nomadic networks are dominated by volatile connections which force the appli-
cation developer to take into account failures that can occur during communication
with services. Because these failures, such as the disconnection of a service, must
be considered the rule rather than the exception, we incorporate a default failure
handling mechanism in our proposed programming model. This way, our model
can recover from four types of failures, namely the disconnection and unavailability
of a service, a timeout caused during communication with a service, and an error
caused by the execution of the service. This default recovery mechanism can how-
ever be overridden with application-specific compensating actions. Therefore, we
put forward a failure pattern that wraps a sub workflow and imposes a cascade of
compensating actions for specific failure events. Possible compensating actions in-
clude restarting the execution of that sub workflow, retrying the service invocation
that failed, and skipping the activity that caused the failure. The proposed failure
handling mechanism can be utilised both in the context of service orchestration
and group orchestration. This results in the fourth contribution of this dissertation:

Contribution 4: We define novel workflow patterns that allow the specification
of compensating actions for failures that occur during service orchestration and
group orchestration [PVJ10, PVVJ12].

We designed and implemented these novel patterns in the context of NOW, a
novel workflow language for nomadic networks. We first present this novel work-
flow language from the perspective of the application programmer: We introduce
the language’s syntax and show how nomadic applications can be developed us-
ing NOW. Thereafter, we describe the implementation of the nomadic workflow
language. NOW is implemented as an extra layer of abstraction on top of the
ambient-oriented programming language A M B I E N T TA L K/2. We explain how the
workflow patterns are implemented, and describe how the language can be extended
with novel patterns. This results in the fifth and sixth contributions:

228

8.2 Discussion and Future Work

Contribution 5: We introduce a novel workflow language, called NOW, specifi-
cally sculpted for orchestration in nomadic networks [PVJ10].

We compared the code complexity of the implementations of three nomadic
applications in the developed workflow language NOW and A M B I E N T TA L K/2,
a state-of-the-art programming language for developing mobile applications. We
also present an evaluation of the nomadic workflow language’s performance and
scalability. This results in the final seventh contribution:

Contribution 6: We present a validation of our approach by comparing the code
complexity of NOW to a state-of-the-art programming language for mobile net-
works, namely A M B I E N T TA L K/2. Finally, we perform an initial quantitative eval-
uation of NOW’s performance and scalability [PVJ13].

8.2 Discussion and Future Work

The assessment of NOW we presented in Chapter 7 leads us to think that the
programming model we proposed is well suited for the development of nomadic
applications. However, a number of issues need to be further explored. In this
section we reflect upon the concepts this dissertation introduces, and present new
research areas that are related to our work, but are outside the scope of this
dissertation.

Security and Privacy of Nomadic Applications The execution of nomadic appli-
cations relies heavily on the information that is available about connected services.
In order to orchestrate (dynamic groups of) services, these services must advertise
themselves on the network. Moreover, each service publishes facts on the network
that are exchanged with nearby servers, and possibly even other services. The result-
ing uncontrolled dissemination of information could pose a potential privacy risk.
In this dissertation we did not consider both security and privacy. When security
and privacy are concerns, our proposed programming model needs to incorporate
additional requirements such as confidentiality, integrity, anonymity, etc. In order
to add these requirements we can look at multi-level secure workflows [AHB00]
where data and tasks are associated with a security level. We can also find inspi-
ration in the world of web services where a policy language is used to represent
the capabilities and requirements of web services as policies [DLGHB+05].

229

8 Conclusion

Formalisation In this dissertation we postulated criteria a programming model
must adhere to in order to facilitate the development of nomadic applications.
We presented the list of workflow patterns this programming model consists of,
and we introduced a proof-of-concept workflow language implementing this model.
These research artifacts and the nomadic applications we presented give us an
idea of how our ideas and abstractions behave, and to which applications they
can be applied. However, we have not formalised the semantics of the novel
workflow patterns we introduced. In the workflow community, there is a tradition
of formalising novel workflow concepts. Existing workflow languages are often
built upon calculi, process algebras, petri nets, event-driven process chains or finite
state automata. Introducing a formalisation could serve as a formal backing for
the work introduced in this dissertation. Therefore, we could use the ambient
calculus [CG98], a process calculus that can describe the movement of processes
and devices and that can express the communication between (mobile) processes.
Another possibility could be to use the operational semantics of the AmbientTalk
programming language [VSHD12].

Executing More Complex Behaviour on Mobile Devices In NOW, the control
flow of a nomadic application is specified and controlled by the fixed infrastruc-
ture, whereas the fine-grained application logic is provided by services in the
network. These services are applications that are running on connected servers, or
on colocated mobile devices. In this dissertation we rely on the nomadic network’s
fixed infrastructure that cannot become unavailable during the execution of an ap-
plication. A NOW program consists of two main parts: the workflow description,
and the implementation of the connected services. These services reside on devices
that are either connected via a reliable or an unreliable communication link. In
this dissertation, services implement the fine-grained application logic, whereas the
control flow of the application is specified and controlled by the process running
on the backbone. In the future we would like to explore the possibility of letting
the servers and mobile devices run more complex applications moving towards a
decentralised workflow. We envision mobile devices that can deploy and execute
more complex behaviour, ranging from a sub workflow to a workflow describing
an entire nomadic application. In the latter case, the mobile devices that are run-
ning the nomadic application could be considered the backbone of the network,
and must orchestrate services residing on other devices in the network.

Collaboration of Nomadic Applications In this dissertation we made the assump-
tion that the deployment and execution of a nomadic application takes place at

230

8.2 Discussion and Future Work

a server, i.e., the fixed infrastructure of the nomadic network. As we already dis-
cussed in the previous paragraph, we would like to investigate the possibility to
have mobile devices operate as the backbone that is responsible for the execution
of a nomadic application. When this is realised, we plan to investigate how such
individually defined processes can collaborate. The cooperation of nomadic applica-
tions is an interesting research idea, which is crucial in situations such as disaster
area where multiple parties are involved. In such a situation, every head of a team
(police, fire brigade, etc.) can serve as the “backbone” and execute the nomadic
application while interacting with the services. These services are the applications
provided by the mobile devices of the team members. In order to support collab-
oration between the nomadic applications that describe the emergency procedure
for each team, dedicated language abstractions are required. First of all, it must
be possible to specify the transition or task in the process that is connected to
the processes running on another device in the network. Moreover, since nomadic
applications are possibly being executed on a mobile device, the description of the
process can become unavailable. In order to allow the collaboration of nomadic
applications, that are possibly running on mobile devices, our workflow language
must be extended with novel language abstractions. Because we can no longer
make the assumption that the nomadic application is executed on a fixed infras-
tructure, NOW’s failure handling patterns must be extended. Not only must we
investigate novel compensating actions, we must also extend the language such
that connections to other processes can be specified. Inspiration for these language
abstractions can be found in aspect-oriented programming [Kic96].

Context-Oriented Nomadic Applications In this dissertation, we presented NOW,
a novel workflow language implementing the proposed programming model that fa-
cilitates the development of nomadic applications. One of the characteristics of the
nomadic applications we envision, is the orchestration of a dynamically changing
group of services, such as the services running on the devices of all passengers
of a specific flight. Because a nomadic network is highly dynamic, an exten-
sional description of the involved services cannot always be realised. Therefore,
services a group constitutes of can be defined intensionally. In this dissertation
we developed a proof-of-concept implementation of a workflow language that in-
corporates such intensional definitions of services. Therefore, an integration of the
logic coordination language C R I M E was required. This coordination language al-
lows applications to specify logic rules which specify how the applications should
respond to changes in its immediate environment. Such changes are modelled by
the addition or removal of facts which contain context information. Because we
are already integrated C R I M E in NOW, we can extend our vision of nomadic

231

8 Conclusion

applications to nomadic applications that react upon context changes. For instance,
as a result of a service invocation, novel facts can be asserted in the fact space.
The addition of a new fact can be regarded as an external event which can trigger
the execution of a workflow.

Reasoning about the Past and Present The workflow language we developed
is integrated with the logic coordination language C R I M E. This integration is
required to allow an intensional definition of services that must be orchestrated.
As we already mentioned in the above paragraph, we would like to extend NOW
such that context-dependent nomadic applications can be developed. Additionally,
we would like to reason about past context information, because past events may
contribute useful information to make decisions about the present situation. This
would allow the specification of more sophisticated intensional definitions, such
as “the last service I used”, “the services that have been used since the last
time the tourist guide was away”, etc. Because C R I M E only allows reasoning
about the current context, the language was extended with temporal operators in
C R I M E T I M E [PSHM07].

Nomadic networks are subject to changes since the topology of the network is
constantly changing. Therefore, the behaviour of services can evolve over time,
although the composition of the services is not altered (i.e., the same workflow
description is being used). In order to ensure that this evolution of services does
not lead to incorrect behaviour, the functionality and quality of services must be
probed during the workflow’s execution. The idea of self-adaptive workflows that
preserves their dependability and robustness has already been researched. In BPEL,
so-called self-supervising processes were introduced such that a BPEL process can
assess its behaviour by specifying rules for monitoring and recovery [BG11].

RFID-Enabled Nomadic Applications Nomadic networks do not only consist of
a plethora of services, a lot of sensors are also available. The ambient-oriented
programming paradigm has already been extended in order to allow the develop-
ment of RFID-enabled applications [Lom11]. These applications arise when RFID
technology is used in a mobile ad hoc networks. A possible direction for future
work could be to extend our proposed programming model such that nomadic
applications are reactive to the events generated by sensors (such as RFID technol-
ogy).

232

B I B L I O G R A P H Y

[AAA+96] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, Mohan Ka-
math, Roger Günthör, and C. Mohan. Advanced transaction models
in workflow contexts. In Proceedings of the Twelfth International
Conference on Data Engineering, ICDE ’96, pages 574–581, Wash-
ington, DC, USA, 1996. IEEE Computer Society. 106, 154

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machi-
raju. Web Services - Concepts, Architectures and Applications. Data-
Centric Systems and Applications. Springer, 2004. 14

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986. 38

[AGK+95] Gustavo Alonso, Roger Günthör, Mohan Kamath, Divyakant
Agrawal, Amr El Abbadi, and C. Mohan. Exotica/FMDC: Han-
dling disconnected clients in a workflow management system. In
CoopIS, pages 99–110, 1995. 153

[AHB00] Vijayalakshmi Atluri, Wei-Kuang Huang, and Elisa Bertino. A
semantic-based execution model for multilevel secure workflows. J.
Comput. Secur., 8(1):3–41, January 2000. 229

[AKA+94] Gustavo Alonso, Mohan U. Kamath, Divyakant Agrawal, Amr El
Abbadi, R. Günthör, and C. Mohan. Failure Handling in Large
Scale Workflow Management Systems. Technical report, IBM,
November 1994. 154

[AKM08] Farhad Arbab, Natallia Kokash, and Sun Meng. Towards using
Reo for compliance-aware business process modeling. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of

233

Bibliography

Formal Methods, Verification and Validation, Third International Sym-
posium, ISoLA 2008, volume 17 of Communications in Computer
and Information Science, pages 108–123. Springer, 2008. 162, 163

[AM10] Musab AlTurki and José Meseguer. Dist-Orc: A rewriting-based
distributed implementation of Orc with formal analysis. In RTRTS,
pages 26–45, 2010. 161

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for compo-
nent composition. Mathematical. Structures in Comp. Sci., 14:329–
366, June 2004. 162

[BG11] Luciano Baresi and Sam Guinea. Self-supervising bpel processes.
IEEE Trans. Software Eng., 37(2):247–263, 2011. 232

[BI93] Andrew P. Black and Mark P. Immel. Encapsulating plurality. In
Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming, ECOOP ’93, pages 57–79, London, UK, UK, 1993.
Springer-Verlag. 28

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. SIGPLAN
Not., 39(10):331–344, October 2004. 46

[BvHH+04] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. OWL Web Ontology Language Reference, february 2004.
http://www.w3.org/TR/owl-ref/. 78

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1.
W3C Note, March 2001. 14

[CCPP99] Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi.
Specification and implementation of exceptions in workflow man-
agement systems. ACM Trans. Database Syst., 24:405–451, Septem-
ber 1999. 107

[CdM+08] Tiziana Catarci, Massimiliano de Leoni, Andrea Marrella, Massimo
Mecella, Berardino Salvatore, Guido Vetere, Schahram Dustdar,
Lukasz Juszczyk, Atif Manzoor, and Hong-Linh Truong. Perva-
sive software environments for supporting disaster responses. IEEE
Internet Computing, 12(1):26–37, jan 2008. 151

234

Bibliography

[CdRdL+06] Tiziana Catarci, Fabio de Rosa, Massimiliano de Leoni, Massimo
Mecella, Michele Angelaccio, Schahram Dustdar, Begofia Gonza-
lvez, Giuseppe Iiritano, Alenka Krek, Guido Vetere, and Zdenek M.
Zalis. WORKPAD: 2-layered peer-to-peer for emergency man-
agement through adaptive processes. International Conference on
Collaborative Computing: Networking, Applications and Workshar-
ing, 0:43, 2006. 151

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Pro-
ceedings of the First International Conference on Foundations of Soft-
ware Science and Computation Structure, FoSSaCS ’98, pages 140–
155, London, UK, UK, 1998. Springer-Verlag. 230

[CLK01] Dickson K. W. Chiu, Qing Li, and Kamalakar Karlapalem.
ADOME-WFMS: towards cooperative handling of workflow excep-
tions, pages 271–288. Springer-Verlag New York, Inc., New York,
NY, USA, 2001. 107

[CM06] Brian Chin and Todd Millstein. Responders: language support for
interactive applications. In Proceedings of the 20th European confer-
ence on Object-Oriented Programming, Lecture Notes in Computer
Science, pages 255–278, Berlin, Heidelberg, 2006. Springer-Verlag.
55, 112, 204

[CPM06] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Work-
flow patterns in Orc. In Paolo Ciancarini and Herbert Wiklicky, ed-
itors, Coordination Models and Languages, 8th International Confer-
ence, COORDINATION 2006, Bologna, Italy, June 14-16, 2006, Pro-
ceedings, volume 4038 of Lecture Notes in Computer Science, pages
82–96. Springer, 2006. 161

[Cro06] Douglas Crockford. The application/json media type for javascript
object notation (JSON). RFC 4627, IETF, 7 2006. 78

[Ded06] Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Vrije
Universiteit Brussel, Department of Informatics, 2006. 31, 32

[DLGHB+05] Giovanni Della-Libera, Martin Gudgin, Phillip Hallam-Baker,
Maryann Hondo, Hans Granqvist, Chris Kaler, Hiroshi Maruyama,
Michael McIntosh, Anthony Nadalin, Nataraj Nagaratnam, Rob
Philpott, Hemma Prafullchandra, John Shewchuck, Doug Walter,

235

Bibliography

and Riaz Zolnofoon. Web services security policy language, july
2005. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html. 229

[DVM+05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-oriented programming. In
Ralph E. Johnson and Richard P. Gabriel, editors, Companion to the
20th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’05, pages 31–
40, New York, NY, USA, 2005. ACM. 33

[DVM+06] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-oriented programming in Ambi-
entTalk. In Proceedings of the 20th European conference on Object-
Oriented Programming, ECOOP’06, pages 230–254, Berlin, Heidel-
berg, 2006. Springer-Verlag. 2, 7, 20, 31, 32

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, June 2003. 157

[EL96] Johann Eder and Walter Liebhart. Workflow recovery. In Proceed-
ings of the First IFCIS International Conference on Cooperative In-
formation Systems, COOPIS ’96, pages 124–134, Washington, DC,
USA, 1996. IEEE Computer Society. 108

[For82] Charles Forgy. Rete: A fast algorithm for the many patterns/many
objects match problem. Artif. Intell., 19(1):17–37, 1982. 80

[Gel85] David Gelernter. Generative communication in Linda. ACM Trans.
Program. Lang. Syst., 7(1):80–112, January 1985. 33, 156

[GHS95] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An
overview of workflow management: from process modeling to
workflow automation infrastructure. Distributed Parallel Databases,
3(2):119–153, apr 1995. 14, 15

[GR06] Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Dis-
tributed Programming. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. 25

[GVV+09] Elisa Gonzalez Boix, Tom Van Cutsem, Jorge Vallejos, Wolfgang
De Meuter, and Theo D’Hondt. A leasing model to deal with

236

Bibliography

partial failures in mobile ad hoc networks. In Manuel Oriol and
Bertrand Meyer, editors, TOOLS (47), volume 33 of Lecture Notes
in Business Information Processing, pages 231–251. Springer, 2009.
45

[HA98] Claus Hagen and Gustavo Alonso. Flexible exception handling in
the OPERA process support system. In Proceedings of the The 18th
International Conference on Distributed Computing Systems, ICDCS
’98, pages 526–533, Washington, DC, USA, 1998. IEEE Computer
Society. 107

[HB04] Hugo Haas and Allen Brown. Web services glossary. w3c work-
ing group note, april 2004. http://www.w3.org/TR/2004/NOTE-ws-
gloss-20040211/. 14

[HGR07] Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman.
Extending BPEL for interoperable pervasive computing. In Proceed-
ings of the 2007 IEEE International Conference on Pervasive Services,
pages 204–213, 2007. 150, 152

[HO06] Philipp Haller and Martin Odersky. Event-based programming with-
out inversion of control. In Proceedings of the 7th joint conference
on Modular Programming Languages, JMLC’06, pages 4–22, Berlin,
Heidelberg, 2006. Springer-Verlag. 55, 204

[Hol95] David Hollingsworth. Workflow management coalition - the work-
flow reference model. Technical report, Workflow Management
Coalition, Jan 1995. 15

[JD08] Lukasz Juszczyk and Schahram Dustdar. A middleware for service-
oriented communication in mobile disaster response environments.
In Proceedings of the 6th international workshop on Middleware for
pervasive and ad-hoc computing, MPAC ’08, pages 37–42, New
York, NY, USA, 2008. ACM. 152

[JE+07] Diane Jordan, John Evdemon, et al. Web Services
Business Process Execution Language, version 2.0, April
2007. http://docs.oasis-open.org/wsbpel/2.0/OS/w
sbpel-v2.0-OS.html. 7, 14, 106, 144, 147

[Kic96] Gregor Kiczales. Aspect-oriented programming. ACM Computing
Survey, 28(4es), December 1996. 231

237

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography

[KQCM09] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra.
The Orc programming language. In David Lee, Antónia Lopes, and
Arnd Poetzsch-Heffter, editors, Formal Techniques for Distributed
Systems, Joint 11th IFIP WG 6.1 International Conference FMOODS
2009 and 29th IFIP WG 6.1 International Conference FORTE 2009,
Lisboa, Portugal, June 9-12, 2009. Proceedings, volume 5522 of Lec-
ture Notes in Computer Science, pages 1–25. Springer, 2009. 160

[KR88] Brian W. Kernighan and Dennis M. Ritchie. C Programming Lan-
guage. Prentice Hall, March 1988. 155

[KR91] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991. 47

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins,
Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang
Zhao. Scientific workflow management and the kepler system. Con-
currency and Computation: Practice and Experience, 18(10):1039–
1065, 2006. 145

[LEH04] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. Pilot:
Probabilistic lightweight group communication system for ad hoc
networks. IEEE Transactions on Mobile Computing, 3(2):164–179,
April 2004. 25

[Ley95] Frank Leymann. Supporting business transactions via partial back-
ward recovery in workflow management systems. In BTW, pages
51–70, 1995. 154

[LN86] Behrouz Tork Ladani and Naser Nematbakhsh. Modelling web
service composition using Reo coordination language. In Interna-
tional Conference for Internet Technology and Secured Transactions
(ICITST-2007), 1386. 2. 163

[Lom11] Andoni Lombide Carreton. Ambient-Oriented Dataflow Program-
ming for Mobile RFID-Enabled Applications. PhD thesis, Vrije Uni-
versiteit Brussel, Department of Informatics, 2011. 232

[LtW+11] Marcello La Rosa, Arthur H. M. ter Hofstede, Petia Wohed, Hajo A.
Reijers, Jan Mendling, and Wil M. P. van der Aalst. Managing
process model complexity via concrete syntax modifications. IEEE
Trans. Industrial Informatics, 7(2):255–265, 2011. 18

238

Bibliography

[Lut94] Roland Lutz. IBM FlowMark workflow manager: concept and
overview. In Proceedings of the ninth Austrian-informatics confer-
ence on Workflow management : challenges, paradigms and products:
challenges, paradigms and products, CON ’94, pages 65–68, Mu-
nich, Germany, Germany, 1994. R. Oldenbourg Verlag GmbH. 153

[LWM+11] Marcello La Rosa, Petia Wohed, Jan Mendling, Arthur H. M. ter
Hofstede, Hajo A. Reijers, and Wil M. P. van der Aalst. Managing
process model complexity via abstract syntax modifications. IEEE
Trans. Industrial Informatics, 7(4):614–629, 2011. 18

[MA07] Sun Meng and Farhad Arbab. Web services choreography and
orchestration in Reo and constraint automata. In Proceedings of
the 2007 ACM symposium on Applied computing, SAC ’07, pages
346–353, New York, NY, USA, 2007. ACM. 162

[Mae87] Pattie Maes. Concepts and experiments in computational reflection.
In Conference proceedings on Object-oriented programming systems,
languages and applications, OOPSLA ’87, pages 147–155, New
York, NY, USA, 1987. ACM. 45

[MAGK95] C. Mohan, Gustavo Alonso, Roger Günthör, and Mohan Kamath.
Exotica: A research perspective on workflow management systems.
Data Engineering Bulletin, 18, 1995. 153

[Man00] Dragos Manolescu. Micro-Workflow: A Workflow Architecture Sup-
porting Compositional Object-Oriented Software Development. PhD
thesis, University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 2000. 144

[MC07] Jayadev Misra and William R. Cook. Computation orchestration:
A basis for wide-area computing. Software and Systems Modeling,
6(1):83–110, 23 Mar 2007. 161

[MCE02] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile
Computing Middleware. In Enrico Gregori, Giuseppe Anastasi, and
Stefano Basagni, editors, Advanced Lectures on Networking, NET-
WORKING 2002, volume 2497 of Lecture Notes in Computer Sci-
ence, pages 20–58. Springer-Verlag, 2002. 2, 7, 20

[MK09] Andrew Matsuoka and David Kitchin. A semantics for exception
handling in Orc. 2009. 161

239

Bibliography

[MKC07] Kristi Morton, David Kitchin, and William Cook. Orc-X: Combin-
ing Orchestrations and XQuery. Technical Report TR-07-63, The
University of Texas at Austin, December 2007. 161

[MLM+06] Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown,
and Rebekah Metz. Reference model for service oriented architec-
ture 1.0. Technical report, OASIS, 2006. 14

[MRV98] Amy L. Murphy, Gruia-Catalin Roman, and George Varghese. An
exercise in formal reasoning about mobile communications. In In
Proc. of the 9th Int. Workshop on Software Specification and Design,
pages 25–33. IEEE Computer Society Press, 1998. 1, 22

[MSB12] Tom Maguire, David Snelling, and Tim Banks. Web Services
Service Group - Specification (WS-ServiceGroup), Version 1.2.,
August 2012. http://docs.oasis-open.org/wsrf/wsrf-
ws_service_group-1.2-spec-os.pdf. 90

[MSP+07] Stijn Mostinckx, Christophe Scholliers, Eline Philips, Charlotte
Herzeel, and Wolfgang De Meuter. Fact Spaces: Coordination in
the face of disconnection. In Amy L. Murphy and Jan Vitek, ed-
itors, Coordination Models and Languages, 9th International Confer-
ence, COORDINATION 2007, Paphos, Cyprus, June 6-8, 2007, Pro-
ceedings, volume 4467 of Lecture Notes in Computer Science, pages
268–285. Springer, 2007. 78, 79

[MTS05] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Con-
currency among strangers: programming in E as plan coordina-
tion. In Proceedings of the 1st international conference on Trustwor-
thy global computing, TGC’05, pages 195–229, Berlin, Heidelberg,
2005. Springer-Verlag. 38

[MVT+09] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonza-
lez Boix, Éric Tanter, and Wolfgang De Meuter. Mirror-based reflec-
tion in AmbientTalk. Software - Practice and Experience, 39(7):661–
699, May 2009. 47

[MWW+98] Peter Muth, Dirk Wodtke, Jeanine Weissenfels, Angelika Kotz Dit-
trich, and Gerhard Weikum. From centralized workflow specifica-
tion to distributed workflow execution, 1998. 144

240

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf

Bibliography

[MZ04] Marco Mamei and Franco Zambonelli. Self-maintained distributed
tuples for field-based coordination in dynamic networks. SAC

’04: Proceedings of the 2004 ACM symposium on Applied computing,
pages 479–486, 2004. 158

[NMM+03] Henrik F. Nielsen, Noah Mendelsohn, Jean J. Moreau, Martin Gud-
gin, and Marc Hadley. SOAP version 1.2 part 1: Messaging frame-
work. W3C recommendation, W3C, June 2003. 14

[Obj11] Object Management Group. Business Process Model and Notation,
version 2.0, January 2011. http://www.omg.org/spec/BP
MN/2.0/. xi, 16, 82, 94, 105, 163

[Obj12] Object Management Group. BPMN 2.0 by example, august 2012.
http://www.bpmn.org. xi, 15, 16

[PA98] George A. Papadopoulos and Farhad Arbab. Coordination models
and languages. Advances in Computers, 46:329–400, 1998. 155

[PCJ+10] Eline Philips, Andoni Lombide Carreton, Niels Joncheere, Wolf-
gang De Meuter, and Viviane Jonckers. Orchestrating nomadic
mashups using workflows. In Proceedings of the 3rd and 4th In-
ternational Workshop on Web APIs and Services Mashups, Mashups
’09/’10, pages 1:1–1:7, New York, NY, USA, 2010. ACM. 227

[Pel03] Chris Peltz. Web services orchestration and choreography. Com-
puter, 36(10):46–52, October 2003. 14, 25, 149

[PG03] Mike P. Papazoglou and Dimitrios Georgakopoulos. Introduction:
Service-oriented computing. Commun. ACM, 46(10):24–28, oct
2003. 7, 14, 226

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman.
LIME: Linda meets mobility. In Proceedings of the 21st interna-
tional conference on Software engineering, ICSE ’99, pages 368–377,
New York, NY, USA, 1999. ACM. 156, 157, 187

[PSHM07] Eline Philips, Christophe Scholliers, Charlotte Herzeel, and Stijn
Mostinckx. Reasoning about past events in context-aware middle-
ware. In Proceedings of Object Technology for Ambient Intelligence
and Pervasive Computing, OT4AmI2007, pages 27–32, Berlin Hei-
delberg, 2007. Springer-Verlag. 232

241

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Bibliography

[PVJ10] Eline Philips, Ragnhild Van Der Straeten, and Viviane Jonckers.
NOW: a workflow language for orchestration in nomadic networks.
In Proceedings of the 12th international conference on Coordination
Models and Languages, COORDINATION’10, pages 31–45, Berlin,
Heidelberg, 2010. Springer-Verlag. 9, 227, 228, 229

[PVJ13] Eline Philips, Ragnhild Van Der Straeten, and Viviane Jonck-
ers. NOW: Orchestrating services in a nomadic network using
a dedicated workflow language. Science of Computer Programming,
78(2):168–194, feb 2013. 9, 212, 220, 229

[PVVJ12] Eline Philips, Jorge Vallejos, Ragnhild Van Der Straeten, and Vi-
viane Jonckers. Group orchestration in a mobile environment.
In Proceedings of the 14th international conference on Coordina-
tion Models and Languages, COORDINATION’12, pages 181–195,
Berlin, Heidelberg, 2012. Springer-Verlag. 10, 227, 228

[RS95] Andreas Reuter and Friedemann Schwenkreis. ConTracts -
a low-level mechanism for building general-purpose workflow
management-systems. IEEE Data Engineering Bulletin, 18:4–10,
1995. 106

[RtEv05a] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil
M. P. van der Aalst. Workflow data patterns: identification, rep-
resentation and tool support. In Lois M. L. Delcambre, Christian
Kop, Heinrich C. Mayr, John Mylopoulos, and Oscar Pastor, editors,
Proceedings of the 24th international conference on Conceptual Mod-
eling, Lecture Notes in Computer Science, pages 353–368, Berlin,
Heidelberg, 2005. Springer-Verlag. xii, 17, 94, 105, 106

[RtEv05b] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil
M. P. van der Aalst. Workflow data patterns: identification, repre-
sentation and tool support. In Proceedings of the 24th international
conference on Conceptual Modeling, ER’05, pages 353–368, Berlin,
Heidelberg, 2005. Springer-Verlag. 62, 65

[RtHvdAM06] Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der
Aalst, and Nataliya Mulyar. Workflow control-flow patterns: A
revised view. BPM Center Report BPM-06-22, BPM Center,
2006. http://www.workflowpatterns.com/documenta
tion/documents/BPM-06-22.pdf. 8, 59, 67, 69, 72, 73, 76,
90, 109, 118, 124, 150, 161, 176, 178, 180, 185, 186, 227

242

http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf

Bibliography

[Rvt06] Nick Russell, Wil van der Aalst, and Arthur ter Hofstede. Work-
flow exception patterns. In Eric Dubois and Klaus Pohl, editors,
Proceedings of the 18th international conference on Advanced Infor-
mation Systems Engineering, Lecture Notes in Computer Science,
pages 288–302, Berlin, Heidelberg, 2006. Springer-Verlag. 18

[RvtE05] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofst-
ede, and David Edmond. Workflow resource patterns: identification,
representation and tool support. In Proceedings of the 17th inter-
national conference on Advanced Information Systems Engineering,
Lecture Notes in Computer Science, pages 216–232, Berlin, Hei-
delberg, 2005. Springer-Verlag. 17

[Sen08] Rohan Sen. Supporting collaboration in mobile environments.
PhD thesis, Washington University, St. Louis, MO, USA, 2008.
AAI3332131. 149

[SGD09] Christophe Scholliers, Elisa Gonzalez Boix, and Wolfgang De
Meuter. TOTAM: Scoped tuples for the ambient. ECEASST, 19,
2009. 159

[SMA+97] Remco V. Stiphout, Theo D. Meijler, Ad Aerts, Dieter Hammer,
and Riné L. Comte. TREX: Workflow TRansactions by Means of
EXceptions. Technical report, Eindhoven University of Technology,
1997. 106

[SOSF04] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Cameron Foulger.
Data flow and validation in workflow modelling. In Proceedings
of the 15th Australasian database conference - Volume 27, ADC ’04,
pages 207–214, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc. 62, 66

[SP07] Christophe Scholliers and Eline Philips. Coordination in volatile
networks. Master’s thesis, Vrije Universiteit Brussel, Department
of Informatics, 2007. 81

[SR93] Amit P. Sheth and Marek Rusinkiewicz. On transactional workflows.
IEEE Data Eng. Bull., 16(2):37–40, 1993. 106

[SRG08] Rohan Sen, Gruia-Catalin Roman, and Christopher D. Gill. CiAN:
A workflow engine for MANETs. In Doug Lea and Gianluigi Za-
vattaro, editors, Proceedings of the 10th international conference on

243

Bibliography

Coordination models and languages, volume 5052 of Lecture Notes
in Computer Science, pages 280–295, Berlin, Heidelberg, 2008.
Springer-Verlag. 149

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.
155

[The99] The Workflow Management Coalition. Workflow Management
Coalition, Terminology & Glossary (Document No. WFMC-TC-1011).
Workflow Management Coalition Specification, feb 1999. 19

[TWRG09] Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christo-
pher Gill. Achieving coordination through dynamic construction of
open workflows. In Proceedings of the 10th ACM/IFIP/USENIX In-
ternational Conference on Middleware, Middleware ’09, pages 14:1–
14:20, New York, NY, USA, 2009. Springer-Verlag New York, Inc.
151

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle.
Organizing programs without classes. In Lisp Symbolic Computu-
tation, volume 4, pages 223–242, Hingham, MA, USA, jul 1991.
Kluwer Academic Publishers. 34

[Vas07] Mariana Hernandez Vasquez. User-adaptable context-aware applica-
tions in a mobile environment. Master’s thesis, Vrije Universiteit
Brussel, Écoles des Mines de Nantes, 2007. 78

[VC08] Tom Van Cutsem. Ambient References: Object Designation in Mo-
bile Ad Hoc Networks. PhD thesis, Vrije Universiteit Brussel, De-
partment of Informatics, 2008. 20, 21, 22, 28, 33, 50, 84

[vdAtH05] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL:
yet another workflow language. Information Systems, 30(4):245–
275, June 2005. 7, 90, 106, 144, 145

[VDM+06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonza-
lez Boix, Theo D’Hondt, and Wolfgang De Meuter. Ambient ref-
erences: addressing objects in mobile networks. In Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, OOPSLA ’06, pages 986–997,
New York, NY, USA, 2006. ACM. 92

244

Bibliography

[VMG+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. AmbientTalk: Object-oriented
event-driven programming in mobile ad hoc networks. In Proceed-
ings of the XXVI International Conference of the Chilean Society of
Computer Science, SCCC ’07, pages 3–12, Washington, DC, USA,
2007. IEEE Computer Society. 55, 92

[VSHD12] Tom Van Cutsem, Christophe Scholliers, Dries Harnie, and Wolf-
gang De Meuter. An operational semantics of event loop concur-
rency in AmbientTalk. Technical report, Vrije Universiteit Brussel,
2012. http://soft.vub.ac.be/Publications/2012/vu
b-soft-tr-12-04.pdf. 230

[vtea12] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and et al. The
workflow patterns initiative. http://www.workflowpattern
s.com, april 2012. 15, 17

[vv02] Wil M. P. van der Aalst and Kees van Hee. Workflow Management:
Models, Methods, and Systems. MIT Press, 2002. 145, 151

[vvH94] W. M. P. van der Aalst, Kees van Hee, and Geert-Jan Houben.
Modelling and analysing workflow using a Petri-net based approach.
In G. De Michelis, C. Ellis, and G. Memmi, editors, Proceedings
of the 2nd Workshop on Computer-Supported Cooperative Work, Petri
nets and related formalisms, 1994. 145, 147, 149

[Wei91] Mark Weiser. The Computer for the Twenty-First Century. Scientific
American, 265(3):94–104, 1991. 1

[Wei93] Mark Weiser. Ubiquitous computing. Computer, 26:71–72, 1993. 1

[Wei99] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob.
Comput. Commun. Rev., 3(3):3–11, July 1999. 1

[WV98] Mathias Weske and Gottfried Vossen. Workflow languages. Hand-
book on Architectures of Information Systems (International Hand-
books on Information Systems), pages 359–379, 1998. 14

245

http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-04.pdf
http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-04.pdf
http://www.workflowpatterns.com
http://www.workflowpatterns.com

I N D E X

SWOOP, 139, 207
SURA, 131, 204
iMPASSE, 122, 204

Abstract Process
in BPEL, 147

Active Tuple
in Linda, 156

Activity, 15, 19, 60, 113, 168
Actor, 38

in WORKPAD, 151
actor:, 38
Actor Model, 38
ADOMA-WFMS, 107
@All, 51
Alternative, 95, 199
ambient:, 50
Ambient Devices, 1
Ambient Reference, 50, 92
Ambient-Oriented Programming, 2
AmbientTalk, 31, 33
AmbientTalk/2, 31
AmOP, 20
@Any, 51
Application, 19
Arity Decoupling, 22, 28
Asynchronous Channel

in Reo, 162
Asynchronous Message, 40

Atomic Task, 15

Barrier, 86
Basic Activity

in BPEL, 148
Block Closure, 41
BPEL, 147
BPMN, 15
Business Process, 19

Cancelling Barrier, 86, 133
Cancelling Discriminator, 124
Case, 105
Chimera-Exc, 107
Chromatic Orc, 161
CiAN, 149
clone:, 35
Closure, 34
Communicating Event Loops

in E, 38
Compensation, 141
Compensations, 135
component, 175
Concurrent Combinator

in Orc, 160
Connection, 121
Connection, 122
Connector

in Reo, 162

247

Index

Contract
in ConTracts, 106

ConTracts, 106
Control Connector

in FlowMark, 153
Control Flow, 120
Control Flow Perspective, 17
Coordination Languages, 155
Coordination Model, 155
Crime, 78, 79, 128, 187

Data Connector
in FlowMark, 153

Data Environment, 63
Data Flow, 116, 170
Data Flow Perspective, 17
Decoupled Communication, 26
deftype, 43
Delegation, 35
Description, 135
Disconnected Client

in FlowMark, 153
Distributed Naming, 32
Drop, 101
@Due, 45
Dynamic Modification, 28

E, 38
Env, 113
Exception Handling Perspective, 18
Exclusive Choice, 17, 124, 141
Executable Process

in BPEL, 147
Exotica/FDMC, 153
Explicit Control Flow, 27
export: as:, 42
extend: with:, 35

Fact Space Model, 79, 128
Failure, 139, 195

Failure Description, 136
Failure Events, 135
Failure Handling, 6, 29, 135, 195, 207

Automatic, 29, 196
Explicit, 29
For Groups, 30
Individual, 30

Far Reference, 39
Fault Handler

in BPEL, 106
Federated Fact Space, 79, 128
Federated Tuple Space

in LIME, 156
Filter, 84, 131, 191
FlowMark, 153
Forward Chainer, 187
Function, 37
Future, 40

Gateway, 17
Generative Communication, 156
Group, 82, 131, 141

in LIME, 157
Group Behaviour, 25
Group Communication, 25
Group Join, 88
Group Membership, 28
Group Orchestration, 5, 26, 28, 127,

187, 204
Group Patterns, 128
Group Synchronisation Patterns, 128,

190, 192

Host
in CiAN, 149

Host Level Tuple Space
in LIME, 156

Host Listener
in CiAN, 150

248

Index

iMPASSE, 23
Instance, 19
Intensional Definition, 28, 128, 187
Intercession, 45
Interface Tuple Space

in LIME, 157
Interleaved Routing, 180
Intermittent Connections, 20
Introspection, 45
Inversion of Control, 55
Isolate, 40
isolate:, 40

Kepler, 145
Keyword

in Orc, 160

Leased Object Reference, 45
Lexical Scope, 36
LIME, 156
Linda, 156
Lossy Channel

in Reo, 162

MANET, 22
merge, 173
Merging Strategy, 117
Meta-Object Protocol, 47
Micro-Workflow, 144
Mirage, 48, 49
Mirror, 45, 46
mirror:, 48
Mirror Construction Closure, 49
mirroredBy:, 49
Mobile Ad Hoc Network, 1, 22
Mobile Channel

in Reo, 162
Mobile Service, 3
MOP, 47
Multi-Choice, 178

Multifuture, 51

Net Variable
in YAWL, 145

Nomadic Application, 2
Nomadic Network, 1, 22

object:, 34, 40
Object Scope, 36
@One, 51
Open Workflow, 151
OPERA, 107
Orc, 160
Orchestration, 13, 26

Parallel Split, 69, 124, 141
Partial Failure, 20
Partner Link

in BPEL, 148
Passive Tuple

in Linda, 156
Persistent Trigger, 76, 125, 185
Planned Disconnection

in FlowMark, 153
Presentation Perspective, 18
prioritise, 172
Process, 19
Process Definition, 20
Propagation Rule

in TOTA, 158
Prototype, 34

Quota Constraint, 85

random, 173
Reaction

in LIME, 157
in TOTAM, 160

reflect:, 46
Reflectee, 46

249

Index

Reflection, 45
Registered Service, 3
Registry Service

in Reo, 163
Reo, 162
Replace, 95
RESCUE, 152
Resource Perspective, 17
Restart, 93
RestartAll, 94
restore, 173
Retry, 93
Router

in Reo, 162

Scope Activity
in BPEL, 148

self, 36
Self-send, 36
Sequence, 17, 69, 125, 133, 176
Service, 3, 114
Service Description, 113
Service Exception, 93
Service Group, 90
Service Orchestration, 5, 14, 25, 26,

118, 174, 204
Service Timeout, 92
Service Unresponsive, 92
Shared Fact Space, 82
Site

in Orc, 160
Skip, 95, 199
SkipAll, 95
Sliver, 150, 152
Slot Object, 47
Slots, 47
Snapshot, 50
Snapshot Group, 84
Space Decoupling, 22, 27

Sphere
in OPERA, 107

Spheres of Compensation, 154
Standard Patterns, 69, 176
Stationary Service, 3
Structured Activity

in BPEL, 148
Sub Process, 15, 19
Sub Workflow, 19
super, 35
SURA, 24
SWOOP, 24
Synchronisation Decoupling, 22, 27
Synchronisation Patterns, 72, 121, 182
Synchronised Task, 89, 131, 192
Synchronization, 73, 124, 184
Synchronous Channel

in Reo, 162

Task, 19
Task Variable

in YAWL, 145
Time Constraint, 85
Time Decoupling, 22, 26
TimeoutException, 45
TOTA, 158
TOTAM, 159
Trigger Patterns, 76, 185
Tuple, 66

in Linda, 156
Tuple Space

in Linda, 156
Tuple Space Descriptor

in TOTAM, 159
Type Tag, 43

Ubiquitous Computing, 1
User, 20
User Service, 3

250

Index

Vat
in E, 38

Volatile Connections, 20

Wait, 95
Wait-and-Resume, 101
Web Service, 14
whenAll: becomes:, 51
when:becomes:, 41
when: becomes: catch:, 198
when: disconnected:, 198
when: discovered:, 43, 198
whenEach: becomes:, 51
when: elapsed:, 198
whenever: disconnected:, 44
whenever: discovered:, 43
whenever: reconnected:, 44
Work Item, 105

in YAWL, 146
Workflow, 14, 19
Workflow Engine, 20
Workflow Language, 15
Workflow Management System, 14, 19
Workflow Participant, 20
Worklet

in YAWL, 146
Worklist

in FlowMark, 153
Worklist Handler

in WORKPAD, 151
inYAWL, 146

WORKPAD, 151
WS-BPEL, 106, 144

X-Orc, 161

YAWL, 90, 106, 144, 145

Zero Infrastructure, 20

251

	1 Introduction
	1.1 Research Context
	1.2 Research Vision
	1.3 Research Objective
	1.4 Research Methodology
	1.5 Contributions
	1.6 Dissertation Roadmap

	2 Orchestration in Nomadic Networks
	2.1 Workflows and Orchestration
	2.1.1 Service Orchestration
	2.1.2 Workflows
	2.1.3 Terminology

	2.2 Ambient-Oriented Programming
	2.2.1 Terminology

	2.3 Orchestration in Nomadic Networks
	2.3.1 Scenarios of Nomadic Applications
	2.3.2 Definitions
	2.3.3 Criteria for Service Orchestration
	2.3.4 Criteria for Group Orchestration
	2.3.5 Criteria for Failure Handling

	2.4 Conclusion

	3 Ambient-Oriented Programming in AmbientTalk
	3.1 Ambient-Oriented Programming
	3.2 AmbientTalk
	3.3 Object-Oriented Programming in AmbientTalk
	3.3.1 Delegation
	3.3.2 Scoping
	3.3.3 Encapsulation

	3.4 Concurrent Programming in AmbientTalk
	3.4.1 Asynchronous Message Sending
	3.4.2 Isolates
	3.4.3 Futures

	3.5 Distributed Programming in AmbientTalk
	3.5.1 Exporting and Discovering of Objects in AmbientTalk
	3.5.2 Dealing with Failures

	3.6 Reflective Programming in AmbientTalk
	3.6.1 Mirrors
	3.6.2 Mirages

	3.7 Ambient References
	3.8 Limitations
	3.9 Conclusion

	4 Patterns for Orchestration in Nomadic Networks
	4.1 Activities
	4.2 Data Flow
	4.3 Patterns for Service Orchestration
	4.3.1 Standard Patterns
	4.3.2 Synchronisation Patterns
	4.3.3 Trigger Patterns

	4.4 Patterns for Group Orchestration
	4.4.1 Definition of Group Membership
	4.4.2 Synchronisation Mechanisms
	4.4.3 Relation to Existing Research

	4.5 Patterns for Failure Handling
	4.5.1 Automatic Failure Handling
	4.5.2 Specification of Compensating Actions as a Failure Handling Mechanism
	4.5.3 Failure Handling for Group Orchestration
	4.5.4 Relation to Existing Research

	4.6 Conclusion

	5 A Workflow Language for Orchestration in Nomadic Networks
	5.1 Motivation
	5.2 Activities
	5.3 Data Flow
	5.4 Service Orchestration
	5.4.1 Composition of Synchronisation Patterns
	5.4.2 Implementing the iMPASSE Application in NOW

	5.5 Group Orchestration
	5.5.1 Definition of Group Membership
	5.5.2 Implementing the SURA Application in NOW

	5.6 Failure Handling
	5.6.1 Failure Handling for Service Orchestration
	5.6.2 Failure Handling for Group Orchestration
	5.6.3 Implementing the SWOOP Application in NOW

	5.7 NOW Related to the State of the Art
	5.7.1 Workflow Languages
	5.7.2 Coordination Languages
	5.7.3 Summary

	5.8 Conclusion

	6 Implementing NOW
	6.1 Activities
	6.2 Data Flow
	6.3 Service Orchestration
	6.3.1 Standard Patterns
	6.3.2 Synchronisation Patterns
	6.3.3 Trigger Patterns

	6.4 Group Orchestration
	6.4.1 Definition of Group Membership
	6.4.2 Patterns for Group Orchestration

	6.5 Failure Handling
	6.5.1 Automatic Failure Handling
	6.5.2 Patterns for Failure Handling

	6.6 Conclusion

	7 NOW Up and Running
	7.1 Application stressing Service Orchestration
	7.2 Application stressing Group Orchestration
	7.3 Application Stressing Failure Handling
	7.4 Scalability Results
	7.4.1 Language Scalability
	7.4.2 Scalability of Language with Failure Detection
	7.4.3 Scalability of Example Scenarios
	7.4.4 Discussion

	7.5 Conclusion

	8 Conclusion
	8.1 Summary and Contributions
	8.2 Discussion and Future Work

	Bibliography
	Index

