
Uniform Modularization
of Workflow Concerns

using UNIFY

Uniform Modularization
of Workflow Concerns

using UNIFY

Niels Joncheere

A dissertation submitted in fulfillment of the requirements
for the award of the degree of Doctor of Science

May 2013

Promotor: Prof. Dr. Viviane Jonckers
Co-promotor: Dr. Ragnhild Van Der Straeten

Vrije Universiteit Brussel
Faculty of Science

Department of Computer Science
Software Languages Lab

Print: Silhouet, Maldegem

© 2013 Niels Joncheere

© 2013 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@aspeditions.be
www.aspeditions.be

ISBN 978 90 5718 304 1
NUR 989
Legal Deposit D/2013/11.161/069

All rights reserved. No parts of this book may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the author.

Abstract

Workflow management systems have become a widely accepted technique for automa-
ting processes in many domains. A workflow is created by dividing a process into dif-
ferent activities, and specifying the ordering in which these activities need to be perfor-
med. This ordering is called the control flow perspective. Current workflow languages al-
low natively expressing a multitude of control flow patterns that are related to the funda-
mental concepts of sequence, parallelism, choice, or iteration. Like any realistic software
application, realistic workflows consist of several concerns — parts that are relevant to a
particular concept, goal, or purpose — which are combined in order to achieve the desi-
red behavior. The general software engineering notion of separation of concerns refers
to the ability to identify, encapsulate, and manipulate such concerns in isolation of each
other. Separation of concerns is traditionally accomplished by decomposing software
into modules, which is associated with benefits regarding development time, product
flexibility, and comprehensibility. Current workflow languages lack the means to effec-
tively modularize workflow concerns, especially when these concerns are crosscutting.
Existing work, which includes aspect-oriented programming for workflows, offers only
partial solutions to this problem. The goal of this dissertation is to improve separation
of concerns in workflows by developing a novel, comprehensive approach for modulari-
zation of workflow concerns that fills the gaps left by existing work.

We develop a framework named UNIFY, at the heart of which lies a base language
meta-model that allows uniform modularization of all workflow concerns: all workflow
concerns, regardless of whether they are regular concerns or crosscutting concerns, are
independently specified using the same language construct. We propose a coherent col-
lection of workflow-specific patterns according to which these independently specified
concerns can connect to each other, and allow specifying such connections using a con-
nector language meta-model that complements the base language meta-model. The
patterns we identify correspond to more expressive, workflow-specific advice types than
those supported by aspect-oriented programming languages. Additionally, UNIFY is ap-
plicable to several concrete workflow languages, and does not favor a specific implemen-
tation strategy.

Because UNIFY’s connector mechanism constitutes a novel workflow modularizati-
on mechanism, we ensure that the connector mechanism’s semantics is precisely de-
scribed, and that the way in which this semantics is specified fits into the workflow com-
munity’s existing formal tradition. In order to formalize the aspect-oriented workflow
concepts introduced by UNIFY, we employ two complementary formalisms. First, we

v

Abstract

augment the static description of UNIFY’s workflows as provided by its base language
and connector language meta-models with a static semantics for the weaving of UNIFY

connectors using the Graph Transformation formalism. Second, we provide a semantics
for the operational properties of workflows by proposing a translation to Petri nets, and
subsequently extend this semantics to support the operational effects of connectors.

Although UNIFY promotes separation of concerns in workflow languages by offering
an improved modularization mechanism, the abstractions offered by existing modulari-
zation approaches for workflows, including UNIFY, typically remain at the same level as
the base workflow: concerns are implemented using the constructs of the base workflow
language, which may not be ideally suited to expressing the concern in question in an
efficient, elegant or natural way. Inspired by the benefits of domain-specific languages
in general software engineering, we believe that a means of expressing workflow con-
cerns using abstractions that are closer to the concerns’ domains can facilitate expres-
sing workflow concerns, and can improve communication with domain experts. There-
fore, we develop a methodology for specifying concern-specific languages (CSLs) on top
of UNIFY, and provide two examples of such CSLs.

Finally, we implement a proof-of-concept of UNIFY, and perform a qualitative va-
lidation of the approach. We instantiate the UNIFY framework towards the BPEL and
BPMN workflow languages, and perform an initial quantitative validation of UNIFY’s
performance and scalability.

vi

Samenvatting

Workflow management systemen zijn een algemeen aanvaarde techniek geworden voor
het automatiseren van processen in vele domeinen. Een workflow wordt gemaakt door
een proces op te delen in verschillende activiteiten en de ordening te specifiëren volgens
dewelke deze activiteiten moeten worden uitgevoerd. Deze ordening wordt het control
flow perspectief genoemd. Huidige workflow-talen laten toe om op een natuurlijke ma-
nier een veelheid aan control flow patronen uit te drukken die gerelateerd zijn aan de
fundamentele concepten van sequentie, parallellisme, keuze of iteratie. Net als elke rea-
listische software-toepassing, bestaan realistische workflows uit verschillende belangen
— delen die relevant zijn voor een specifiek concept of doel — welke gecombineerd wor-
den teneinde het gewenste gedrag te bereiken. Het begrip scheiding van belangen uit de
algemene software-ontwikkeling verwijst naar de mogelijkheid om dergelijke belangen
te encapsuleren en los van elkaar te manipuleren. Scheiding van belangen wordt tradi-
tioneel bereikt door software onder te verdelen in modules, hetgeen geassocieerd wordt
met voordelen inzake ontwikkelingstijd, flexibiliteit van het product, en begrijpbaarheid.
Huidige workflow-talen ontberen de middelen om workflow-belangen effectief te modu-
lariseren, vooral wanneer deze belangen doorsnijdend zijn. Bestaand werk, waaronder
aspectgericht programmeren voor workflows, biedt enkel gedeeltelijke oplossingen voor
dit probleem. Het doel van deze thesis is om scheiding van belangen in workflows te
verbeteren door een nieuwe, veelomvattende aanpak voor modularisatie van workflow-
belangen te ontwikkelen die de gaten opvult die door bestaand werk werden achtergela-
ten.

We ontwikkelen een raamwerk genaamd UNIFY, waarvan de kern gevormd wordt
door een meta-model voor een basistaal die uniforme modularisatie van alle workflow-
belangen toelaat: alle workflow-belangen, ongeacht ze gewone belangen of doorsnij-
dende belangen zijn, worden los van elkaar gespecifieerd door middel van hetzelfde taal-
element. We stellen een samenhangende verzameling van workflow-specifieke patronen
voor volgens dewelke deze los van elkaar gespecifieerde belangen met elkaar verbonden
kunnen worden, en laten toe om zulke verbindingen te specifiëren door middel van een
meta-model voor een connectortaal dat complementair is aan het meta-model voor de
basistaal. De patronen die we identificeren komen overeen met meer expressieve, work-
flow-specifieke adviestypes dan diegene die ondersteund worden door aspectgerichte
programmeertalen. Bovendien is UNIFY toepasbaar op meerdere concrete workflow-
talen, en is het niet gericht op één specifieke implementatie-strategie.

Omdat het connectormechanisme van UNIFY een nieuw modularisatiemechanisme

vii

Samenvatting

voor workflows vormt, dienen we te verzekeren dat de semantiek van dit connectorme-
chanisme precies beschreven is, en dat de manier waarop deze semantiek beschreven
is past bij de bestaande formele traditie binnen de workflow-gemeenschap. Teneinde
de aspectgerichte workflow-concepten geïntroduceerd door UNIFY te formaliseren ge-
bruiken we twee complementaire formalismen. Ten eerste vullen we de statische be-
schrijving van UNIFY-workflows zoals voorzien door de meta-modellen voor de basis- en
connectortaal aan met een statische semantiek voor het weven van UNIFY-connectoren
door middel van het Graaf-transformatie formalisme. Ten tweede voorzien we een se-
mantiek voor de operationele eigenschappen van workflows door een vertaling naar
Petri-netten voor te stellen, en breiden we deze semantiek uit met ondersteuning voor
de operationele effecten van connectoren.

Hoewel UNIFY scheiding van belangen in workflow-talen bevordert door een ver-
beterd modularisatiemechanisme te bieden, blijven de abstracties van zowel bestaande
modularisatie-aanpakken voor workflows als UNIFY vaak op hetzelfde niveau als de ba-
sisworkflow: belangen worden geïmplementeerd door middel van de taal-elementen
van de basistaal, die mogelijk niet ideaal geschikt is voor het uitdrukken van het belang
in kwestie op een efficiënte, elegante of natuurlijke manier. Geïnspireerd door de voor-
delen van domein-specifieke talen in algemene software-ontwikkeling, geloven we dat
een manier om workflow-belangen uit te drukken door middel van abstracties die dich-
ter bij het domein van de belangen staan, het uitdrukken van workflow-belangen kan
vergemakkelijken en de communicatie met domein-experten kan verbeteren. Daarom
ontwikkelen we een methodologie voor het specifiëren van belang-specifieke talen bo-
venop UNIFY, en voorzien we twee voorbeelden van zulke belang-specifieke talen.

Tenslotte implementeren we een proof-of-concept van UNIFY, en voeren we een
kwalitatieve validatie van de aanpak uit. We instantiëren het raamwerk naar de BPEL-
en BPMN-workflow-talen toe, en voeren een initiële kwantitatieve validatie van UNIFY’s
performantie en schaalbaarheid uit.

viii

Acknowledgements

Writing this dissertation has only been possible thanks to the support of many people.
First and foremost, I would like to thank my promotor, Viviane Jonckers, for offering me
the opportunity to pursue a Ph.D., for guiding me during my research, and for proof-
reading this dissertation.

I am also greatly indebted to my co-promotor, Ragnhild Van Der Straeten, who ad-
vised me on a day-to-day basis and with whom I have spent countless hours of fruitful
discussion of my research, and finally of this dissertation. In the many years we have
shared a desk, first at the SSEL laboratory and later at SOFT, I have not only grown to
respect Ragnhild as an outstanding researcher, but also to appreciate her as a most con-
genial colleague.

This dissertation has also benefited considerably from the feedback of my Ph.D. com-
mittee members. Apart from Viviane and Ragnhild, the committee members are Uwe
Aßmann, Rubby Casallas, Gilles Geeraerts, Theo D’Hondt, Sven Casteleyn, and Coen De
Roover. Many thanks to each of them!

I would also like to thank the many colleagues and former colleagues with whom
I have collaborated in the context of my research, especially Wim Vanderperren, Davy
Suvée, Mathieu Braem, Bart Verheecke, Dirk Deridder, Bruno De Fraine, Carlos Noguera,
Eline Philips, and Sebastian Günther. I made the first LATEX template for this dissertation
by drawing inspiration from Bruno’s dissertation, wrote a first version of my introduction
after Dirk instructed his own Ph.D. students to do so, and started writing the actual text
of this dissertation after a number of interesting talks with Sebastian.

In addition to all these people, I thank the members of the computer science depart-
ment with whom I have collaborated in the context of education, most notably Wolfgang
De Meuter and Andoni Lombide Carreton. Simon De Schutter deserves special mention
for taking over some of my teaching commitments during the past months. I am also
grateful to the department’s secretaries — Brigitte Beyens, Simonne De Schrijver, Lara
Mennes, and Lydie Seghers — for their help in many practical and administrative mat-
ters, and to those (former) members of the SSEL and SOFT laboratories that I have not yet
mentioned, especially to Andy Kellens, Stefan Marr, and Mattias De Wael for the pleasant
chats during breaks at work.

Of course, I was not only supported by my colleagues: during evenings, week-ends
and holidays, I was glad to spend time with my friends, especially Steven Billens, Ben
Van Biesen, Marten Montaine, and Jasper De Bruyn, often while enjoying a nice drink
at Jeugdhuis Qw1i in Lennik, at music festivals near Leuven and Hasselt, in the snow-

ix

Acknowledgements

covered mountains of Val Thorens, or in the green pastures of Saint-Gatien-des-Bois. I
would also like to thank the (other) core members of Jeugdhuis Qw1i with whom I have
collaborated over the years, as well as the other members of our gastronomic society
“Ambrond”. And last but not least: thanks to Wim Leo — my drums and percussion
teacher, motorcycle driving instructor, and friend — for the weekly hour of teaching and
discussion. I will buy him a steak at De Kuiper in Vilvoorde to celebrate the completion
of this dissertation.

My final thanks go out to my family: my father Jos Joncheere, my sister Jolien Jonc-
heere, and my mother Françoise Hemelinckx. Their love and support has been invalu-
able to finishing this dissertation. And finally, I thank the remaining member of my fam-
ily — my cat Poepoes — for the many hours she spent loafing around my keyboard while
I was writing this dissertation. I’m sure she won’t mind me blaming any remaining typos
in the text on her!

Niels Joncheere
May 2013

x

Table of Contents

Abstract v

Samenvatting vii

Acknowledgements ix

Table of Contents xi

List of Figures xv

List of Tables xviii

List of Listings xix

List of Abbreviations xxi

1 Introduction 1
1.1 Research Context . 1
1.2 Research Objectives . 3
1.3 Research Methodology . 4
1.4 Contributions . 6
1.5 Outline . 7

2 Context: Separation of Concerns in Workflows 9
2.1 Workflows . 9

2.1.1 History . 9
2.1.2 The Workflow Paradigm . 10
2.1.3 Terminology . 12
2.1.4 Current Application Domains . 15
2.1.5 The Business Process Execution Language 17
2.1.6 The Business Process Model and Notation 20
2.1.7 Yet Another Workflow Language . 22

2.2 Separation of Concerns . 23
2.2.1 General Principles . 23
2.2.2 Aspect-Oriented Programming . 24

xi

Table of Contents

2.3 Separation of Concerns in Workflows . 30
2.3.1 The Sub-Workflow Mechanism . 31
2.3.2 Aspect-Oriented Programming for Workflows 31

2.4 Summary . 33

3 Modularization of Crosscutting Workflow Concerns using PADUS 35
3.1 Context: The WIT-CASE Project . 35
3.2 Motivation and Requirements . 36
3.3 Language . 38

3.3.1 Joinpoint Model and Pointcut Language 38
3.3.2 Advice Model and Language . 41
3.3.3 Aspect Module Model . 43
3.3.4 Aspect Instantiation and Composition Models 46

3.4 Case Study: The Billing Concern . 47
3.5 Architecture and Implementation . 48

3.5.1 Architecture . 48
3.5.2 Weaver Implementation . 49

3.6 The Service Creation Environment . 50
3.6.1 Overview . 50
3.6.2 Guiding the Service Composition Process 52

3.7 Summary . 55

4 Uniform Modularization of Workflow Concerns using UNIFY 57
4.1 Motivation and Requirements . 57
4.2 Approach . 61
4.3 Base Language . 62

4.3.1 Control Flow Perspective . 62
4.3.2 Data Perspective . 65

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns 67
4.4.1 Existing Workflow Patterns . 67
4.4.2 Outline of Our Proposal . 68
4.4.3 External Concern Connection Patterns 69
4.4.4 Internal Concern Connection Patterns 75
4.4.5 Realization of Concern Connection Patterns in Existing Approaches 76
4.4.6 Conclusions . 78

4.5 Connector Mechanism . 79
4.5.1 Joinpoint Model and Pointcut Language 79
4.5.2 Advice Model and Language . 82
4.5.3 Aspect Module Model . 82
4.5.4 Aspect Composition Model . 93

4.6 Discussion . 97
4.7 Summary . 98

5 A Formal Semantics for Aspect-Oriented Workflow Languages 101
5.1 Motivation and Requirements . 101

xii

Table of Contents

5.2 Towards a Formalization of Aspect-Oriented Workflow Languages 102
5.3 Graph Transformation Formalization of Connectors 103

5.3.1 The Graph Transformation Formalism 103
5.3.2 Graph Transformation Rules . 105
5.3.3 Analysis . 112

5.4 Petri Net Formalization of Concerns and Connectors 117
5.4.1 Existing Petri Net Formalizations of Workflows 117
5.4.2 Petri Net Formalization of Concerns 119
5.4.3 Petri Net Formalization of Connectors 126
5.4.4 Analysis . 138

5.5 Summary . 148

6 Modularizing Workflow Concerns using Concern-Specific Languages 151
6.1 Motivation . 151
6.2 From Domain-Specific to Concern-Specific Languages 152
6.3 General Methodology . 153
6.4 The Access Control CSL . 155

6.4.1 Language . 155
6.4.2 Translation to UNIFY . 157

6.5 The Parental Control CSL . 159
6.5.1 Language . 159
6.5.2 Translation to UNIFY . 161

6.6 Discussion . 164
6.7 Summary . 166

7 Implementation and Validation of UNIFY 167
7.1 Implementation . 167

7.1.1 JAVA Implementation of the UNIFY Base Language and Connector
Mechanism . 169

7.1.2 Instantiations of the UNIFY Framework 169
7.1.3 Connectors and Compositions . 170
7.1.4 The UNIFY Weaver . 170
7.1.5 The UNIFY Petri Net Engine . 171
7.1.6 Concern-Specific Languages . 171

7.2 Validation . 172
7.2.1 Expressiveness of UNIFY: Basic Connectors 172
7.2.2 Expressiveness of UNIFY: Advanced Connectors 181
7.2.3 Performance and Scalability of UNIFY 188
7.2.4 Discussion . 191

7.3 Summary . 192

8 Conclusions 195
8.1 Summary and Contributions . 195
8.2 Discussion and Future Work . 199

xiii

Table of Contents

A UNIFY Connector Syntax 203

B Soundness Proof for the After Connector 205

C Access Control and Parental Control CSL Syntax 209
C.1 Access Control CSL Syntax . 209
C.2 Parental Control CSL Syntax . 211

D Generated Parental Control Concerns 213

Bibliography 217

xiv

List of Figures

2.1 Common flowchart symbols . 10
2.2 Relationships between basic concepts (Workflow Management Coalition, 1999) 14
2.3 The business process management lifecycle (van der Aalst et al., 2003) 16
2.4 Screenshot of the Eclipse IDE with an example BPEL process in its XML rep-

resentation (left) and as visualized by the Eclipse BPEL Designer (right) 19
2.5 Example order handling workflow, expressed using BPMN 21
2.6 Main BPMN modeling elements . 22
2.7 Screenshot of the YAWL Editor with a YAWL representation of our example

order handling workflow . 23
2.8 YAWL language constructs (van der Aalst and ter Hofstede, 2005) 24
2.9 Modularization of two concerns in the implementation of the TOMCAT web

server. Figures adapted from Hilsdale et al. (2001). 26

3.1 PADUS weaver architecture . 50
3.2 Service Creation Environment architecture . 51
3.3 Service Creation Environment screenshot . 52
3.4 SCE guideline verification report . 54

4.1 Example order handling workflow, expressed using BPMN 59
4.2 The UNIFY base language meta-model . 64
4.3 Independently specified workflow concerns . 66
4.4 The UNIFY data meta-model for the no data passing approach 67
4.5 The “before” concern connection pattern . 71
4.6 The “after” concern connection pattern . 71
4.7 The “replace” concern connection pattern . 72
4.8 The “around” concern connection pattern . 72
4.9 The “parallel” concern connection pattern . 73
4.10 The “alternative” concern connection pattern . 74
4.11 The “iterating” concern connection pattern . 74
4.12 The “synchronizing parallel branches” concern connection pattern 76
4.13 The “switching alternative branches” concern connection pattern 77
4.14 The UNIFY connector language meta-model . 80
4.15 The augmented UNIFY data meta-model for the no data passing approach . . 84

xv

List of Figures

4.16 Example before connector . 85
4.17 Example conditional before connector . 85
4.18 Example after connector . 86
4.19 Example conditional after connector . 86
4.20 Example replace connector (inversion of control) 87
4.21 Example replace connector (hierarchical decomposition) 88
4.22 Example around connector . 88
4.23 Example conditional around connector . 89
4.24 Example parallel connector . 89
4.25 Example conditional parallel connector . 90
4.26 Example alternative connector . 90
4.27 Example iterating connector . 91
4.28 Example synchronizing connector . 92
4.29 Example switching connector . 94

5.1 Screenshot of UNIFY’s type graph (bottom) and Before rule (top) in AGG . . . 104
5.2 The Before graph transformation rule . 105
5.3 The After graph transformation rule . 106
5.4 The Replace graph transformation rule . 107
5.5 The Around graph transformation rule . 108
5.6 The Parallel graph transformation rule . 109
5.7 The Alternative graph transformation rule . 110
5.8 The Iterating graph transformation rule . 111
5.9 The Synchronizing graph transformation rule 112
5.10 The Switching graph transformation rule . 113
5.11 Numbers of mutual exclusions between graph transformation rules as com-

puted by AGG . 114
5.12 Numbers of causal dependencies between graph transformation rules as com-

puted by AGG . 116
5.13 Petri net patterns for workflow primitives (van der Aalst, 1998b) 117
5.14 Example workflow (top) and corresponding Petri net (bottom) (van der Aalst,

1998b) . 118
5.15 Expected corresponding Petri net for example workflow of Figure 5.14; note

the OR-join pattern at the right of the figure . 118
5.16 Construction of a Petri net N as a sequence of two Petri nets N1 and N2 ac-

cording to the mapping Mc : O1 7→ I2 = {〈o1
1, i 1

2〉, . . . ,〈ok
1 , i k

2 〉} 123
5.17 Mapping from UNIFY base language primitives to Petri net elements 125
5.18 Construction of the Petri net that corresponds to the example workflow at the

top of Figure 5.14 . 127
5.19 Construction of NWc by applying Cbefore to NWx 129
5.20 Construction of NWc by applying Cafter to NWx 130
5.21 Construction of NWc by applying Creplace to NWx 131
5.22 Construction of NWc by applying Caround to NWx 132
5.23 Construction of NWc by applying Cparallel to NWx 133
5.24 Construction of NWc by applying Calternative to NWx 135

xvi

List of Figures

5.25 Construction of NWc by applying Citerating to NWx 136
5.26 Construction of NWc by applying Csynchronizing to NWx 137
5.27 Construction of NWc by applying Cswitching to NWx 139

6.1 Independently specified workflow concerns . 152
6.2 Access Control CSL domain concepts and relations 156
6.3 Generated composite activity for the example access control concern 158
6.4 Parental Control CSL domain concepts and relations 160
6.5 Generated composite activity for the example parental control concern’s fil-

tering policy . 162
6.6 Generated composite activity for the example parental control concern’s deny

usage policy . 163
6.7 Generated composite activity for the example parental control concern’s refer

usage policy . 163
6.8 Generated composite activity for the example parental control concern’s mon-

itoring policy . 164

7.1 General architecture of the UNIFY implementation 168
7.2 Measurement of runtime and weaving overhead introduced by UNIFY after

connectors . 189
7.3 Measurement of runtime and weaving overhead introduced by UNIFY paral-

lel connectors . 191

xvii

List of Tables

2.1 Original control flow patterns (Russell et al., 2006a) 12
2.2 Atomic activities in BPEL . 18
2.3 Structured activities in BPEL . 19

3.1 State of the art in AOP for BPEL . 38
3.2 Behavioral joinpoints in PADUS . 39
3.3 Structural joinpoints in PADUS . 39
3.4 Main properties of invoking joinpoints . 40
3.5 Places where an in advice can be used . 42
3.6 Evaluation of PADUS . 56

4.1 Requirements for UNIFY . 62
4.2 Mapping from basic workflow patterns (Russell et al., 2006a) to correspond-

ing UNIFY constructs . 65
4.3 Concern connection patterns . 78
4.4 Pointcut predicates . 81
4.5 Comparison of ASPECTJ, AO4BPEL, Courbis and Finkelstein, PADUS, JASCO,

and UNIFY modularization approaches . 83
4.6 Overview of interactions between external connectors; the numbers refer to

the different kinds of interactions listed in Section 4.5.4. Because the com-
plete table is symmetric around its main diagonal, we only show its upper
right half. 95

5.1 Overview of the approach . 103

6.1 Mapping from CSL artifacts to UNIFY connectors 161

7.1 Comparison of lines of code required to implement the example concerns in
WS-BPEL, AO4BPEL, UNIFY, and UNIFY CSLs 177

7.2 Correlation results for our experiments regarding after connectors (cf. Fig-
ure 7.2(a)) . 190

7.3 Correlation results for our experiments regarding parallel connectors (cf. Fig-
ure 7.3(a)) . 191

xviii

List of Listings

2.1 Crosscutting tracing concern within a JAVA class 25
2.2 ASPECTJ pointcut that selects all method executions within the MyClass

class . 27
2.3 ASPECTJ advice that performs tracing around each joinpoint selected by

the myMethods() pointcut . 28
2.4 ASPECTJ tracing aspect . 29
2.5 An AO4BPEL aspect that logs all invocations of the SmsService web service 33
2.6 A process aspect in Courbis and Finkelstein’s approach that logs all invoca-

tions of the SmsService web service . 34

3.1 Bindings for the invoking pointcut predicate 40
3.2 Example pointcut in PADUS . 40
3.3 Example pointcut in PROLOG . 41
3.4 Pointcut predicates for exposing the context of a joinpoint 41
3.5 An advice that logs the start of all invocations of the SmsService web service 43
3.6 An advice that logs the start and end of all invocations of the SmsService

web service . 44
3.7 An advice that adds a fault handler to the CreateCall scope 44
3.8 An aspect that logs the start and end of all invocations of the SmsService

web service . 45
3.9 An aspect deployment specification . 46
3.10 Aspect defining generic billing concepts . 47
3.11 Aspect implementing a fixed fee billing scheme 48
3.12 Aspect implementing a duration billing scheme 49

4.1 An example composition consisting of a base concern and four other con-
cerns that are applied to the base concern using four connectors 97

6.1 Example access control concern . 157
6.2 Generated around connector for the example access control concern 158
6.3 Example parental control concern . 161
6.4 Generated after, alternative, and parallel connectors for the example parental

control concern . 162

xix

List of Listings

7.1 Report activity for order confirmation as implemented in WS-BPEL 173
7.2 Reporting aspect as implemented in AO4BPEL 174
7.3 Reporting concern as implemented in WS-BPEL for use by UNIFY 176
7.4 UNIFY connector for the reporting concern . 177

xx

List of Abbreviations

AOP Aspect-Oriented Programming
AOSD Aspect-Oriented Software Development
BNF Backus–Naur Form
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BPM Business Process Management
BPMN Business Process Modeling Notation

(later renamed to Business Process Model and Notation)
CBSD Component-Based Software Development
CSL Concern-Specific Language
DSL Domain-Specific Language
EBNF Extended Backus–Naur Form
HTTP Hypertext Transfer Protocol
OCL Object Constraint Language
OMG Object Management Group
SCE Service Creation Environment
SDP Service Delivery Platform
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
W3C World Wide Web Consortium
WfMC Workflow Management Coalition
WfMS Workflow Management System
WS-BPEL Web Services Business Process Execution Language
WSDL Web Service Description Language
XML Extensible Markup Language
XPATH XML Path Language
XSD XML SCHEMA Definition
YAWL Yet Another Workflow Language

xxi

Chapter 1

Introduction

1.1 Research Context

Workflow management systems (Workflow Management Coalition, 1999; van der Aalst
and van Hee, 2002) have become a widely accepted technique for automating processes
in many domains, ranging from high-level business process management (van der Aalst
et al., 2003) to low-level web service orchestration (Andrews et al., 2003). A workflow
is created by dividing a process into different activities, and specifying the ordering in
which these activities need to be performed. This ordering is called the control flow per-
spective (van der Aalst et al., 2000), as it describes how control flows between the ac-
tivities. Typically, control can be split into several branches and joined at a later time.
This allows specifying parallelism and choice. Research on many different facets of the
workflow paradigm has flourished during the past decade, resulting in, among others,
the identification of a multitude of control flow patterns (van der Aalst et al., 2000; Rus-
sell et al., 2006a) as well as additional perspectives such as data (Russell et al., 2004a),
resources (Russell et al., 2004b), and exception handling (Russell et al., 2006b). Popu-
lar current workflow languages include BPEL (Andrews et al., 2003; Jordan et al., 2007),
BPMN (White et al., 2004), and YAWL (van der Aalst and ter Hofstede, 2005).

Like any realistic software application, realistic workflows consist of several concerns
— parts that are relevant to a particular concept, goal, or purpose — which are con-
nected in order to achieve the desired behavior. The general software engineering notion
of separation of concerns (Dijkstra, 1982) refers to the ability to identify, encapsulate, and
manipulate such concerns in isolation of each other. Separation of concerns is tradi-
tionally accomplished by decomposing software into modules, which is associated with
benefits regarding development time, product flexibility, and comprehensibility (Parnas,
1972). However, many current workflow languages do not allow effectively decomposing
workflows into different modules: although most workflow languages allow decompos-
ing workflows into sub-workflows,1 this mechanism is typically aimed at grouping activ-
ities instead of facilitating the independent evolution and reuse of concerns. Moreover, a

1The most notable exception being BPEL, which does not allow modularizing workflows into separate
sub-workflows (Trickovic, 2005).

1

Chapter 1. Introduction

workflow can only be decomposed according to one dimension with this construct, and
concerns that do not align with this decomposition end up scattered across the work-
flow and tangled with one another.2 This lack of effective modularization mechanisms
makes it hard to add, maintain, remove, or reuse workflow concerns (Arsanjani et al.,
2003; Courbis and Finkelstein, 2004; Charfi and Mezini, 2004; Verheecke et al., 2006). In
order to improve separation of concerns in workflows, workflow languages should allow
concerns to be specified in isolation of each other.

However, allowing concerns to be specified in isolation of each other is not sufficient:
in order to obtain the desired workflow behavior, workflow languages should also pro-
vide a means of specifying how workflow concerns are connected to each other. In ex-
isting workflow languages, the only kind of connection that is generally supported is the
classic sub-workflow pattern:3 a main workflow explicitly specifies that a sub-workflow
is to be executed. The choice of which sub-workflow is to be executed is made at design
time, and it is hard to make a different choice afterwards. A mechanism that reduces the
coupling between main workflow and sub-workflow is therefore desirable.

A second kind of connection between concerns is useful when concerns crosscut
other concerns in a workflow: some concerns cannot be modularized cleanly using the
sub-workflow decomposition mechanism, because their implementation is spread out
over multiple locations in the workflow. The sub-workflow construct does not solve this
problem, since sub-workflows are called explicitly from within the main workflow. This
makes it especially hard to add, maintain, remove or reuse such crosscutting concerns.
This problem has been observed in general aspect-oriented research (Kiczales et al.,
1997). Aspect-oriented extensions to BPEL, such as AO4BPEL (Charfi and Mezini, 2004)
and the approach by Courbis and Finkelstein (2005a), allow specifying crosscutting con-
cerns in separate aspects. An aspect allows specifying that a certain workflow fragment,
called an advice, is to be executed before, after, or around a specified set of activities in
the base workflow.4 However, these aspect-oriented extensions use a new language con-
struct for specifying crosscutting concerns, i.e., aspects. This means that concerns which
are specified using the aspect construct can only be reused as an aspect, and not as a
sub-workflow. On the other hand, concerns which are specified using the sub-workflow
construct can only be reused as a sub-workflow, and not as an aspect. Furthermore,
AO4BPEL and the approach by Courbis and Finkelstein combine the specification of a
crosscutting concern’s behavior and the specification of its connection logic in the same
aspect construct, which precludes reuse of the behavior in situations where different
connection logic is required. An approach that allows modularizing all concerns’ behav-

2This problem, which is encountered in general software engineering, has been called the tyranny of the
dominant decomposition by Tarr et al. (1999).

3For example, La Rosa et al. (2011b) report on 11 current workflow languages’ support for various kinds
of modularization. Most workflow languages only support duplication (duplicating workflow elements if they
point to the same conceptual definition), vertical modularization (i.e., the sub-workflow pattern) and horizon-
tal modularization (concurrently executing workflows that invoke each other). If one disregards the specific
concern of exception handling, none of the languages natively supports orthogonal modularization (indepen-
dent modeling of crosscutting concerns).

4In aspect-oriented terminology, these locations are called joinpoints, which are typically selected using
declarative pointcut expressions.

2

1.2 Research Objectives

ior using the same language construct, and specifying connection logic separate from
this behavior, would remedy these problems.

In addition to introducing a new, specialized language construct for the modulariza-
tion of crosscutting concerns, existing aspect-oriented extensions only support the basic
concern connection patterns (before, after, or around) that were identified in general as-
pect-oriented research, and do not sufficiently consider the specific characteristics of
the workflow paradigm (Braem et al., 2006c; Joncheere and Van Der Straeten, 2011b).
They lack support for other patterns such as parallelism and choice. Furthermore, it is
completely impossible to specify more advanced connections between concerns, e.g.,
specifying that a certain concern is to be executed as a synchronization point between
two parallel branches of another concern. Workflow languages would benefit from sup-
port for such workflow-specific concern connection patterns.

Finally, the abstractions offered by existing modularization approaches — both in
general software engineering and in the domain of workflows — typically remain at the
same level as the base language: concerns are implemented using the constructs of the
base language, which may not be ideally suited for expressing the concern in question.
Although existing aspect-oriented extensions improve separation of concerns, they in-
troduce additional complexity in the implementation of a workflow. This complexity
must be bridged in order to communicate the implementation of a workflow to the do-
main experts who identified the process that is automated by the workflow. Further-
more, implementing new concerns requires detailed knowledge of how the relevant do-
main concepts are represented in the existing workflow implementation. Inspired by the
benefits of domain-specific languages in software engineering (cf. van Deursen et al.,
2000, for a general introduction to and an annotated bibliography of domain-specific
languages), we believe that a means of expressing workflow concerns using abstractions
that are close to the concerns’ domains can facilitate expressing workflow concerns, and
can improve communication with domain experts.

1.2 Research Objectives

The goal of this dissertation is to improve separation of concerns in workflows by devel-
oping a novel, comprehensive approach that fills the gaps left by existing work. The main
requirements for this approach are the following:

• The approach must facilitate the design, evolution, and reusability of individual
workflow concerns. We aim to accomplish this by allowing all workflow concerns,
be they crosscutting or not, to be specified in isolation of each other, with all of
these concerns being specified using the same language construct. These ideas
are inspired by symmetric aspect-oriented programming approaches (Tarr et al.,
1999; Suvée et al., 2006), and we call such an approach a uniform approach.

• The approach must provide a way of specifying rich connections between work-
flow concerns. We aim to accomplish this by identifying a coherent set of concern
connection patterns that are relevant in the context of the workflow paradigm, and

3

Chapter 1. Introduction

subsequently allowing workflow concerns to be connected according to these pat-
ters in a way that supports the reusability of the connected concerns. Inspired
by component-based software development (Shaw and Garlan, 1996) and some
general aspect-oriented approaches (Suvée and Vanderperren, 2003), we advocate
specifying the connections between our uniform workflow concerns in separate
connectors.

• The approach must facilitate the specification of concerns by offering support
for concern-specific abstractions, i.e., abstractions that are close to a given fam-
ily of concerns’ domain. We aim to accomplish this by enabling the definition of
concern-specific languages on top of our uniform workflow concerns and connec-
tors, and proposing a methodology to define such languages. These ideas are in-
spired by the benefits of domain-specific languages in software engineering (van
Deursen et al., 2000).

In addition to the above requirements that are directly derived from the research con-
text, we also recognize the following requirements:

• Because the correct execution of workflows is of vital importance to an organi-
zation, a long tradition of formal verification of workflows exists. For example,
the execution semantics of BPEL has been formalized using Petri nets (Lohmann,
2007), and YAWL has been developed by augmenting high-level Petri nets with
additional constructs (thus obtaining extended workflow nets; cf. van der Aalst and
ter Hofstede, 2005). Because new modularization mechanisms have a significant
impact on the semantics of their base language, it is important that our new mod-
ularization mechanisms fit into this existing formal tradition.

• Existing aspect-oriented extensions to workflow languages are all targeted at BPEL,
and cannot be applied easily to other workflow languages. Each of these exten-
sions also favors a specific implementation technique; for example, AO4BPEL and
the approach by Courbis and Finkelstein can only be executed using a dedicated
BPEL engine. Although this has the advantage that it facilitates adding dynamic
features to the modularization mechanism, it precludes compatibility with exist-
ing tool chains. We aim for our approach to be applicable to several existing work-
flow languages, and to be independent of any specific workflow engine.

1.3 Research Methodology

As can be expected in software languages research, we set out to fulfill our research ob-
jectives by iteratively developing new software languages and experimenting with them.
This dissertation will therefore describe two proposals for workflow languages of increas-
ing scope. The first proposal should thus be seen as a stepping stone towards our second,
final proposal which aims to fully address our research objectives, and which will be the
main topic of this dissertation.

4

1.3 Research Methodology

Our first experiment in facilitating the effective modularization of workflow concerns
has taken place in the specific context of the WIT-CASE project, which studied and val-
idated innovative solutions for the creation, deployment and runtime execution of ser-
vices on top of a novel Service Delivery Platform, which is the service infrastructure op-
erated by a telecom service provider or network operator. Based on the characteristics
of the telecom Service Delivery Platform and the goals of the WIT-CASE project, we have
compiled a list of requirements for our initial approach, which has taken the form of an
aspect-oriented extension to BPEL. The extension, which is called PADUS (Braem et al.,
2006c), improves separation of concerns in BPEL workflows by applying aspect-orient-
ed principles to BPEL: crosscutting concerns can be modularized as separate aspects,
which can be applied to certain locations in a workflow. PADUS has a rich joinpoint
model, which consists of all BPEL activities, and joinpoints can be selected using a high-
level, logic pointcut language. Based on the observation that workflow languages require
more advanced advice types than the classic before, after, and around advice types, PA-
DUS introduces the in advice type. Aspects are instantiated and applied to a workflow
using an explicit deployment construct, which allows specifying precedence among as-
pects. PADUS is implemented as a source code weaver which ensures full compatibility
with the existing BPEL tool chain.

As a second experiment, we have developed a framework named UNIFY (Joncheere
et al., 2008; Joncheere and Van Der Straeten, 2011b), which goes beyond the scope of
PADUS and aims to fulfill all of the objectives enumerated in Section 1.2. At the heart
of UNIFY lies a base language meta-model that allows uniform modularization of work-
flow concerns. Each workflow concern, be it regular or crosscutting, is independently
specified, using a single language construct. In this respect, UNIFY is related to sym-
metric aspect-oriented approaches such as HYPERJ (Tarr et al., 1999) and FUSEJ (Suvée
et al., 2006). We propose a coherent collection of workflow-specific patterns accord-
ing to which these independently specified concerns can connect to each other, and
allow specifying such connections using a connector language meta-model that com-
plements the base language meta-model. The patterns we identify correspond to more
expressive, workflow-specific advice types than those supported by general aspect-ori-
ented programming languages or by PADUS.

Because UNIFY’s connector mechanism constitutes a novel workflow modularization
mechanism, we ensure that the connector mechanism’s semantics is precisely described,
and that this semantics fits into the workflow community’s existing formal tradition.
Therefore, we provide a formalization of our approach that is compatible with existing
research on this topic within the workflow community (van der Aalst, 1997, 1998a, 2000;
van der Aalst et al., 2011), but also addresses the specific notion of connection patterns
introduced by UNIFY. In order to formalize the aspect-oriented workflow concepts in-
troduced by UNIFY, we employ two complementary formalisms. First, we augment the
static description of UNIFY’s workflows as provided by its base language and connec-
tor language meta-models with a static semantics for the weaving of UNIFY connectors
using the Graph Transformation formalism (Rozenberg, 1997; Ehrig et al., 2006). This
facilitates static reasoning over the applicability and effects of connectors, and provides
a foundation for implementing a static weaver for UNIFY connectors. Second, we pro-
vide a semantics for the operational properties of workflows by proposing a translation

5

Chapter 1. Introduction

to Petri nets (Petri and Reisig, 2008), and subsequently extend this semantics to support
the operational effects of connectors. This allows reasoning on the dynamics of UNIFY

workflow compositions, and provides a foundation for implementing a dedicated work-
flow engine for UNIFY.

With UNIFY, we introduce a novel approach that promotes separation of concerns
in workflow languages by offering an improved modularization mechanism. However,
the abstractions offered by existing modularization approaches for workflows and UNIFY

typically remain at the same level as the base workflow: concerns are implemented us-
ing the constructs of the base workflow language, which may not be ideally suited to
expressing the concern in question in an efficient, elegant or natural way. In order to fa-
cilitate expressing workflow concerns and improve communication with domain experts
by enabling the definition of workflow concerns using abstractions that are closer to the
concerns’ domains, we develop a methodology for specifying concern-specific languages
(CSLs) on top of UNIFY, and provide two examples of such CSLs, i.e., the Access Control
and Parental Control CSLs, respectively.

Finally, we implement a proof-of-concept of UNIFY in JAVA, and instantiate the frame-
work towards the BPEL and BPMN workflow languages. UNIFY workflows can be exe-
cuted either on our dedicated Petri net based workflow engine, or on any standard BPEL
workflow engine using our source code weaver. We perform a qualitative validation of
UNIFY’s expressiveness, and perform an initial quantitative validation of UNIFY’s perfor-
mance and scalability.

1.4 Contributions

Our contributions can be summarized as follows:

1. We develop a novel, comprehensive approach for modularizing workflow con-
cerns — UNIFY — which allows modularizing all workflow concerns using a single
language construct, and is thus a uniform approach. At the heart of UNIFY lies a
base language meta-model that is compatible with a wide range of existing work-
flow languages.

2. We propose a number of concern connection patterns for workflows — patterns ac-
cording to which workflow concerns can be connected — that go beyond the clas-
sic aspect-oriented patterns by taking into account the specific properties of the
workflow paradigm. In UNIFY, these patterns take the form of a connector mech-
anism that allows connecting independently specified workflow concerns accord-
ing to each of the concern connection patterns. This connector mechanism is de-
fined in terms of UNIFY’s base language meta-model.

3. We enable the definition of concern-specific languages (CSLs) on top of UNIFY,
which facilitate the definition of families of concerns using abstractions that are
close to the concerns’ domains. We propose a general methodology for CSL devel-
opment and exemplify the methodology using two example CSLs.

6

1.5 Outline

4. We propose a precise semantics for UNIFY. We enable the verification of static
properties and implementation of static weaving by proposing a semantics for our
concern connection patterns based on the Graph Transformation formalism, and
enable the verification of operational properties and implementation of dynamic
weaving by proposing a semantics based on Petri nets.

5. We provide a proof-of-concept implementation of UNIFY, which has been imple-
mented using JAVA, and which has been extended towards BPEL and BPMN. In
order to promote compatibility with existing tool chains, UNIFY does not impose
a modified workflow engine. We perform a qualitative validation of the expres-
siveness of UNIFY, and perform a quantitative validation of the performance and
scalability of UNIFY’s source code weaver.

These contributions have been partially presented in several research papers. Our
initial ideas on applying aspect-oriented principles to BPEL, which have taken the form
of the PADUS language and implementation, have been published in (Braem et al., 2006c).
In the context of the WIT-CASE project, we have built a Service Creation Environment
(SCE) around PADUS, and have reported on this in (Joncheere et al., 2006; Braem et al.,
2006b). We have also conducted some initial experiments in introducing concern-specific
languages into the SCE, and have reported on this in (Braem et al., 2006a; Joncheere,
2007). Our initial ideas on our final approach for modularizing workflow concerns —
UNIFY — have been published in (Joncheere et al., 2008), while a complete description
of the approach has been published in (Joncheere and Van Der Straeten, 2011b). As an
addition to the latter research paper, we have written a technical report (Joncheere and
Van Der Straeten, 2011a) on our Graph Transformation formalization of UNIFY connec-
tors.

1.5 Outline

The outline of this dissertation is as follows:

Chapter 2: Separation of Concerns in Workflows presents the context of this disserta-
tion. First, we introduce the workflow paradigm by describing its history, main con-
cepts, and terminology, and give an overview of the most well-known workflow lan-
guages. Next, we introduce the notion of separation of concerns, and how it is achieved
in object-oriented applications using aspect-oriented programming. Finally, we discuss
how separation of concerns is currently achieved in workflows by reviewing traditional
mechanisms for modularization of workflows as well as aspect-oriented approaches for
workflows.

Chapter 3: Modularization of Crosscutting Workflow Concerns using PADUS proposes
our first solution to the problem of separation of concerns in workflows. It describes PA-
DUS, an approach which is specifically aimed at modularizing crosscutting concerns in
the BPEL workflow language using aspect-oriented programming, and which provides
significant improvements on the state of the art in this focused scope.

7

Chapter 1. Introduction

Chapter 4: Uniform Modularization of Workflow Concerns using UNIFY builds upon
the lessons learned from Chapter 3 in order to propose a second solution to the problem
of separation of concerns in workflows. It describes UNIFY, a framework for uniform
modularization of workflow concerns, which improves on PADUS by addressing a wider
range of requirements: UNIFY is aimed at modularizing all workflow concerns (i.e., not
only crosscutting ones), providing advice types that recognize the specific characteristics
of the workflow paradigm, and supporting multiple workflow languages. We introduce
the approach itself, describe the meta-models that lie at the heart of the approach, and
propose a collection of concern connection patterns before describing the connector
mechanism that implements these patterns. Subsequent chapters explore additional
topics related to this approach.

Chapter 5: A Formal Semantics for Aspect-Oriented Workflow Languages provides a
formal semantics for the aspect-oriented workflow concepts that were introduced in
Chapter 4. This allows us to reason both on static properties and operational proper-
ties of workflows. Additionally, the formalization presented in this chapter supports the
implementation of the UNIFY framework.

Chapter 6: Modularizing Workflow Concerns using Concern-Specific Languages mo-
tivates and introduces the notion of concern-specific languages (CSLs). A CSL allows
implementing a family of concerns using constructs that closely correspond to the con-
cepts of the concerns’ domain. We propose a general methodology for building CSLs on
top of the UNIFY framework, and illustrate this methodology by introducing the Access
Control and Parental Control CSLs.

Chapter 7: Implementation and Validation of UNIFY provides an overview of UNIFY’s
implementation, and subsequently presents an initial validation of the approach with
respect to expressiveness, performance, and scalability.

Chapter 8: Conclusions concludes this dissertation by summarizing our problem state-
ment and contributions, presenting and discussing our conclusions, and identifying fu-
ture work.

8

Chapter 2

Context: Separation of Concerns
in Workflows

This chapter presents the context of this dissertation. First, we introduce the work-
flow paradigm by describing its history, main concepts, and terminology. We discuss
the two main application domains of workflows, and give an overview of three impor-
tant workflow languages: BPEL, BPMN, and YAWL. Second, we introduce the notion
of separation of concerns, and how it is achieved in object-oriented applications using
aspect-oriented programming. Finally, we discuss how separation of concerns is cur-
rently achieved in workflows by reviewing traditional mechanisms for modularization
of workflows as well as aspect-oriented approaches for workflows.

2.1 Workflows

2.1.1 History

The notion of business processes has a very long history: Adam Smith already described
a business process for manufacturing metal pins in his fundamental book on classical
economics (Smith, 1776, Paragraph I.1.3):

“The important business of making a pin is, in this manner, divided into
about eighteen distinct operations, which, in some manufactories, are all
performed by distinct hands, though in others the same man will sometimes
perform two or three of them.”

Indeed, the basic idea of a business process is already evident in this example: identi-
fying the different activities of which a process consists — as well as the ordering of these
activities — and assigning each of these activities to some resource. Nevertheless, doc-
umenting business processes in a structured way did not become common before the
beginning of the 20th century. The first structured notation for documenting processes
was introduced in the 1920s by Gilbreth (1922), and was aimed at specifying processes

9

Chapter 2. Context: Separation of Concerns in Workflows

Process

Start / Stop

DecisionManual
Operation

Manual
Input

Predefined
Process

I/O Data

Document

Operation Symbols Control Flow Symbols

Flow Line

I/O Symbols

Figure 2.1: Common flowchart symbols

in the manufacturing industry. By the end of the 1950s, several other business process
notations became prevalent, such as Control Flow Diagrams, Flowcharts, and Functional
Flow Block Diagrams.

For example, Figure 2.1 lists common flowchart symbols. A flowchart has a start sym-
bol and a stop symbol that denote the start and end of a process, respectively. Flow lines
represent a process’s flow of control, and ultimately connect the start symbol to the stop
symbol. In between, operation and input/output symbols may be specified, or the flow
of control may be split using decision symbols.

In the 1990s, the domain of Business Process Reengineering (Davenport and Short,
1990) constituted an increasing interest in documenting and analyzing business pro-
cesses in any organization, i.e., not limited to the manufacturing industry. In this con-
text, domain experts started modeling business processes using existing notations such
as flowcharts. However, the modeled business processes were still only used as docu-
mentation: there was a mismatch between the way in which an organization’s business
processes were modeled and the way in which software systems supported the organi-
zation, which hampered automation of business processes. By the beginning of the 21st
century, however, developments in workflow management made it possible to automate
business processes using executable workflows.

2.1.2 The Workflow Paradigm

In an attempt to facilitate the automation of business processes, workflows were intro-
duced as a means of describing business processes in such a way that they can be en-
acted by a dedicated software system, i.e., a workflow engine (Workflow Management
Coalition, 1999). A workflow language allows specifying the different units of work (i.e.,
activities) of which a process consists, as well as the ordering of these activities. This
is called the control flow perspective (Russell et al., 2006a) of the workflow. Typically,
workflow languages provide constructs for splitting a workflow’s control flow into sev-
eral branches, and joining these multiple branches afterwards. This allows specifying

10

2.1 Workflows

parallelism and choice. This focus on the specification of a business process’s control
flow is what mainly differentiates workflow languages from general-purpose program-
ming languages.

Defined on top of the control flow perspective, the data perspective (Russell et al.,
2004a) specifies how data is processed by the workflow. For example, a workflow lan-
guage may allow defining a hierarchy of scopes in which variables may be defined and
manipulated by a workflow’s activities. Alternatively, a workflow language may allow
defining explicit data channels between activities, which are distinct from the workflow’s
control flow. In addition to the control flow and data perspectives, the resource perspec-
tive (Russell et al., 2004b) consists of assigning a workflow’s work to specific resources,
the exception handling perspective (Russell et al., 2006b) specifies what should happen
when a workflow encounters an error, and the presentation perspective (La Rosa et al.,
2011a,b) defines how a workflow should be visually represented.

Workflow research typically focuses on the control flow perspective, as the effective
specification of business processes’ control flow is the main advantage of using work-
flows over traditional programming paradigms. The data perspective is usually consid-
ered in relation to the control flow perspective, while the other perspectives are ancillary
(van der Aalst and ter Hofstede, 2005). Within the workflow community, the Workflow
Patterns initiative (van der Aalst et al., 2012a) aims to provide a conceptual basis for
process technology by thoroughly examining the various perspectives that need to be
supported by a workflow system using a patterns-based approach. Thus, the following
perspectives are examined, with patterns being identified for each of them:

1. The control flow perspective (Russell et al., 2006a) defines how a workflow’s con-
trol flow can be specified. 43 control flow patterns have been identified, which
range from five basic control flow patterns such as sequence, parallel split and ex-
clusive choice, to advanced control flow patterns related to advanced branching
and synchronization, multiple instances, etc. The first 20 of these patterns, which
are known as the original control flow patterns, are listed in Table 2.1.

2. The data perspective (Russell et al., 2004a) defines how a workflow’s data can be
represented and manipulated. 40 data patterns have been identified, which deal
with data visibility, data interaction, data transfer, and data-based routing.

3. The resource perspective (Russell et al., 2004b) defines how resources, i.e., entities
that are capable of doing work, are represented and utilized in a workflow. 43 re-
source patterns have been identified, which deal with various aspects of creating
work items and organizing their execution.

4. The exception handling perspective (Russell et al., 2006b) defines how exceptions
are handled within a workflow. Five possible exception types have been identified.
Each exception needs to be handled at certain levels, and may give rise to a certain
recovery action. A number of exception handling patterns have been identified,
which cover all possible scenarios for the above.

5. The presentation perspective (La Rosa et al., 2011a,b) defines how workflows are vi-
sually represented. A number of presentation patterns have been identified, which

11

Chapter 2. Context: Separation of Concerns in Workflows

Basic control flow patterns
WCP-1. Sequence
WCP-2. Parallel split
WCP-3. Synchronization
WCP-4. Exclusive choice
WCP-5. Simple merge

Advanced branching and synchronization patterns
WCP-6. Multi-choice
WCP-7. Structured synchronizing merge
WCP-8. Multi-merge
WCP-9. Structured discriminator

Structural patterns
WCP-10. Arbitrary cycles
WCP-11. Implicit termination

Multiple instances patterns
WCP-12. Multiple instances without synchronization
WCP-13. Multiple instances with a priori design-time knowledge
WCP-14. Multiple instances with a priori runtime knowledge
WCP-15. Multiple instances without a priori runtime knowledge

State-based patterns
WCP-16. Deferred choice
WCP-17. Interleaved parallel routing
WCP-18. Milestone

Cancellation patterns
WCP-19. Cancel activity
WCP-20. Cancel case

Table 2.1: Original control flow patterns (Russell et al., 2006a)

constitute different ways of dealing with complexity in workflows when visually
representing them.

The above patterns are often used for systematically evaluating the expressiveness
of workflow languages with regard to a certain perspective (Vasko and Dustdar, 2004;
Mulyar, 2005; Loridan and Anguela Rosell, 2006; van der Aalst et al., 2012b,c).

2.1.3 Terminology

Over the years, many different terms have been used to refer to the various concepts
introduced by the workflow paradigm. In the workflow community, efforts have been
made to establish a standardized terminology. In this dissertation, we will use the termi-
nology that was standardized by the Workflow Management Coalition (1999), and which
is divided in terminology for basic concepts, process concepts, and wider concepts. In
Sections 2.1.3.1–2.1.3.3, we list the terms that are most relevant to this dissertation.

12

2.1 Workflows

2.1.3.1 Basic Concepts

Workflow The automation of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant to another for action,
according to a set of procedural rules.

Workflow Management System (WfMS) A system that defines, creates and manages the
execution of workflows through the use of software, running on one or more work-
flow engines, which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications.

Business Process A set of one or more linked procedures or activities which collectively
realize a business objective or policy goal.

Process Definition The representation of a business process in a form which supports
automated manipulation, such as modeling, or enactment by a workflow manage-
ment system. The process definition consists of a network of activities and their rela-
tionships, criteria to indicate the start and termination of the process, and informa-
tion about the individual activities, such as participants, associated IT applications
and data, etc.

Activity A description of a piece of work that forms one logical step within a process. An
activity may be a manual activity, which does not support computer automation,
or a workflow (automated) activity. A possible synonym for activity is task.

Instance The representation of a single enactment of a process, or activity within a pro-
cess, including its associated data. Each instance represents a separate thread of ex-
ecution of the process or activity. A possible synonym for process instance is case.

Workflow Participant A resource which performs the work represented by a workflow ac-
tivity instance.

Figure 2.2 (Workflow Management Coalition, 1999) gives a brief overview of most of
these basic concepts, as well as the relationships between them. Ironically, the workflow
concept is not explicitly present in this figure. Remember that a workflow is the automa-
tion of a business process, which is represented in a WfMS by a process definition.

2.1.3.2 Process Concepts

Process A formalized view of a business process, represented as a coordinated (sequen-
tial and/or parallel) set of process activities that are connected in order to achieve a
common goal.

Sub-Process A process that is enacted or called from another (initiating) process (or sub-
process), and which forms part of the overall (initiating) process. Multiple levels of
sub-processes may be supported.

13

Chapter 2. Context: Separation of Concerns in Workflows

Business Process
(what is intended to happen)

Process Definition
(a representation of what

is intended to happen)

Sub-Processes

Activities

Manual Activities
(which are not managed

as part of the WfMS)

Automated Activities

Workflow Management System (WfMS)
(controls automated aspects

of the business process)

Process Instances
(a representation of what

is actually happening)

Activity Instances

is defined in a is managed by a

is used to create
and manage via

include one
or more

is composed of

which may be

or

are represented
during execution by

Figure 2.2: Relationships between basic concepts (Workflow Management Coalition,
1999)

AND-Split A point within the workflow where a single thread of control splits into two or
more threads which are executed in parallel within the workflow, allowing multiple
activities to be executed simultaneously.

Note that this definition, as well as the following one, assume that the WfMS is ca-
pable of supporting parallelism within a single process instance. In general, AND-
splits and AND-joins merely specify concurrency within a process instance.

AND-Join A point in the workflow where two or more parallel executing activities con-
verge into a single common thread of control.

OR-Split A point within the workflow where a single thread of control makes a decision
upon which branch to take when encountered with multiple alternative workflow
branches.

OR-Join A point within the workflow where two or more alternative workflow branches
re-converge to a single common activity as the next step within the workflow.

A workflow in which every split has a corresponding join is called a structured
workflow; a workflow in which this is not the case is called an arbitrary workflow

14

2.1 Workflows

(Kiepuszewski et al., 2000). Some workflow languages only allow expressing struc-
tured workflows.

Iteration A workflow activity cycle involving the repetitive execution of one or more work-
flow activities until a condition is met.

Transition A point during the execution of a process instance where one activity com-
pletes and the thread of control passes to another, which starts.

2.1.3.3 Wider Concepts

Process Execution The time period during which the process is operational, with process
instances being created and managed.

Workflow Monitoring The ability to track and report on workflow events during work-
flow execution.

Workflow Engine A software service or “engine” that provides the runtime execution en-
vironment for a process instance.

2.1.4 Current Application Domains

This section introduces the two main application domains where workflows are cur-
rently being used. On the one hand, workflows are used to automate companies’ busi-
ness processes, which are typically coarse-grained, where on the other hand, workflows
are used to describe and execute orchestrations of web services, which are typically very
fine-grained. These two application domains are discussed in Sections 2.1.4.1 and 2.1.4.2,
respectively. In addition to these two application domains, the workflow paradigm is
gaining acceptance in some other domains, such as scientific computing (Oinn et al.,
2004; Ludäscher et al., 2006) and computer aided engineering (Noesis Solutions, 2006),
but these will not be considered further in this dissertation.

2.1.4.1 Business Process Management

Workflows were originally introduced in the context of business process management
(BPM), which is defined by van der Aalst et al. (2003) as follows:

“Supporting business processes using methods, techniques, and software to
design, enact, control, and analyze operational processes involving humans,
organizations, applications, documents and other sources of information.”

In this context, domain experts are concerned with modeling the processes used
within an enterprise using some modeling notation. This explicit modeling of business
processes facilitates analyzing and improving the processes, and verifying whether the
processes comply with applicable policies and regulations. Figure 2.3 illustrates the re-
lationship between workflow management and business process management: whereas

15

Chapter 2. Context: Separation of Concerns in Workflows

Diagnosis

Process
Enactment

System
Configuration

Process
Design

Workflow
Management

Business
Process

Management

Figure 2.3: The business process management lifecycle (van der Aalst et al., 2003)

BPM focuses on the entire cycle of process design, system configuration, process enact-
ment, and diagnosis (van der Aalst et al., 2003), workflow management only deals with
the former three.

Workflow management systems support the automation of business processes by al-
lowing workflow developers to translate the (non-executable) business process models
defined by domain experts into executable workflows, which are enacted by a workflow
engine. The workflow activities in this context often involve humans, e.g., to perform
some task or make some decision. Thus, workflows for BPM are typically more high-
level than workflows that only deal with software systems, such as workflows for web
service orchestration (cf. Section 2.1.4.2).

2.1.4.2 Web Service Orchestration

Services have become a popular means of grouping related software capabilities within
an enterprise architecture. Service-oriented architecture (SOA) is a paradigm for organiz-
ing and utilizing services in a way that promotes the visibility of services, the interaction
with services, and the effects of services (MacKenzie et al., 2006). Within a SOA, services
are loosely coupled, and the interaction between different services is typically described
using explicit service orchestrations that map well to the enterprise’s business processes.
SOAs are commonly implemented using web services (Alonso et al., 2004), which are de-
fined by the World Wide Web Consortium (W3C) as follows (Haas and Brown, 2004):

“A web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other sys-
tems interact with the web service in a manner prescribed by its description
using SOAP-messages, typically conveyed using HTTP with an XML serial-
ization in conjunction with other web-related standards.”

16

2.1 Workflows

Web services were developed as a means of facilitating interaction between possibly
heterogeneous software systems, by introducing a standard for describing the systems’
interfaces (WSDL; cf. Christensen et al., 2001) and a standard for describing the mes-
sages exchanged between the systems (SOAP; cf. Box et al., 2000). The actual function-
ality of a system can be implemented using one of many programming languages with
support for web services, and wrappers allow exposing legacy systems as web services.

The advent of web services has greatly facilitated invoking the functionality of ex-
ternal systems over a network. This has given rise to the development of programs that
invoke the functionality of several web services in order to offer some new functional-
ity. This is called orchestration of web services in common web services terminology.
Originally, the orchestration of web services was achieved using general-purpose pro-
gramming languages, which are not particularly well suited for manipulating the XML
data in which web services’ messages are expressed: the data manipulation code is in-
terleaved with the core logic of the orchestration, which can make such programs hard
to define and understand. This has given rise to dedicated languages for web service or-
chestration (such as BPEL; cf. Section 2.1.5), which build on earlier work on workflow
languages. They allow clearly defining an orchestration’s control flow by specifying the
ordering in which different activities, such as the invocation of a web service or the ma-
nipulation of a variable, must be performed. They are typically XML-based languages,
which thus interact well with WSDL, SOAP, and other related standards such as XML
SCHEMA (Fallside and Walmsley, 2004). Finally, they facilitate exposing a web service
orchestration as a new web service, which can in turn be invoked from other orchestra-
tions.

2.1.5 The Business Process Execution Language

The Business Process Execution Language (BPEL) is the de facto standard in workflow
languages for web service orchestration. It was originally introduced as the Business Pro-
cess Execution Language for Web Services (BPEL4WS) when IBM and Microsoft decided
to merge their existing workflow languages (WSFL and XLANG, respectively) into a new
standard, in collaboration with other industrial partners such as BEA Systems, SAP and
Siebel Systems (Andrews et al., 2003). The language was renamed to Web Services Busi-
ness Process Execution Language (WS-BPEL) when version 2.0 of its specification was
accepted as an OASIS standard (Jordan et al., 2007). Throughout this dissertation, we
will simply refer to the language as Business Process Execution Language (BPEL) when
the differences between the versions are not important.

The goal of BPEL is to provide a standardized way of specifying business processes.
A distinction is made between partially specified processes that are not intended to be
executed (and which are called abstract processes in BPEL terminology) and processes
that are fully specified and can thus be executed (and which are called executable pro-
cesses).1 An abstract process may contain opaque tokens (e.g., activities, expressions,

1Note that the term process in BPEL terminology corresponds to the term process definition as defined in
the terminology of the Workflow Management Coalition (cf. Section 2.1.3).

17

Chapter 2. Context: Separation of Concerns in Workflows

Activity Description
<receive> Waits for a matching message to arrive
<reply> Sends a message
<invoke> Invokes an operation of a certain partner
<assign> Assigns a certain variable
<throw> Generates a fault
<exit> Immediately ends the current process instance
<wait> Waits for a certain period of time, or until a certain point in time is

reached
<empty> Does nothing
<compensate> Starts compensation on all inner scopes that have completed suc-

cessfully
<compensateScope> Starts compensation on a certain inner scope that has completed suc-

cessfully
<rethrow> Rethrows a fault that was caught by the enclosing fault handler
<validate> Validates the value of a variable against its type

Table 2.2: Atomic activities in BPEL

and attributes) which act as placeholders for the corresponding executable constructs,
or they may simply omit parts of the process.

In practice, BPEL is mostly used for specifying executable processes. BPEL is an
XML-based language and interacts well with other XML-based web service standards
such as WSDL (for specifying web services’ interfaces), XML SCHEMA (for specifying
XML data), and XPATH (for querying XML data). A typical BPEL process contains the
following elements:

• A number of partner links, which represent the different partners with which the
process will interact, and thus correspond to a number of web services. Each part-
ner link has a type that is defined in the corresponding web service’s WSDL inter-
face specification.

• A number of variables, which represent the process’s global data. Each variable
has a type that is defined using XML SCHEMA.

• A main activity, which represents the process’s workflow. This is typically a struc-
tured activity, such as a <sequence>, that composes a number of other activities.

BPEL defines twenty activities, as listed in Tables 2.2 and 2.3. Twelve of these activ-
ities have an atomic behavior associated with them, while eight are used to compose a
number of activities in a control structure. Typically, a BPEL process’s main activity is
a <sequence> that starts with a <receive> activity that receives some input and ends
with a <reply> activity that returns some output. Between these two activities, other
activities are used to compute the output based on the input, while possibly invoking
operations of partners.

Figure 2.4 is a screenshot of the Eclipse IDE. The left half of the screen shows an ex-
ample BPEL process in its XML representation, while the right half of the screen shows
the same process as visualized by the Eclipse BPEL Designer (Eclipse Foundation, 2011).

18

2.1 Workflows

Activity Description
<sequence> Specifies a sequence of activities
<if> Specifies a conditional structure
<while> Specifies a while-do loop
<repeatUntil> Specifies a repeat-until loop
<forEach> Specifies a foreach loop
<pick> Specifies a choice between several possible activities based on the ar-

rival of a certain message
<flow> Specifies that several activities are to be performed in parallel
<scope> Specifies a nested activity with its own partner links, variables, etc.

Table 2.3: Structured activities in BPEL

Figure 2.4: Screenshot of the Eclipse IDE with an example BPEL process in its XML rep-
resentation (left) and as visualized by the Eclipse BPEL Designer (right)

The process was provided by the industrial partner of the WIT-CASE project (cf. Chap-
ter 3), and is used to create and subsequently close a conference call by invoking the
operations of an external web service.

BPEL is popular in industrial applications, and is supported by a wide range of work-
flow engines, such as ACTIVEBPEL (Active Endpoints, 2006) and ODE (Apache Software

19

Chapter 2. Context: Separation of Concerns in Workflows

Foundation, 2009).

2.1.6 The Business Process Model and Notation

The Business Process Model and Notation (BPMN) was originally introduced as the
Business Process Modeling Notation (White et al., 2004), and was thus mainly focused on
providing a standardized notation for business processes, though a mapping of BPMN
concepts to BPEL4WS was provided as part of the standard. In version 2.0 of its spec-
ification (Object Management Group, 2011), the name of the standard was changed to
Business Process Model and Notation, in order to reflect its increased focus on providing
a complete business process execution model that underlies the existing notation.

BPMN is based on the observation that XML-based workflow languages are opti-
mized for the operation of workflow management systems, and are therefore less suited
for direct use by humans, who require a more intuitive means of specifying workflows.
In business process management, flowcharts have long been used to facilitate reason-
ing about business processes by domain experts, but there is a significant technical gap
between flowcharts and executable workflow languages that must be bridged in order
to visualize workflows using flowcharts, or implement flowcharts using an executable
workflow language. BPMN aims to resolve this problem by offering a notation that is
well suited for reasoning about business processes by domain experts, but also provides
an underlying execution model.

There are four kinds of BPMN models: private processes, public processes, choreogra-
phies, and collaborations. In the context of this dissertation, only private processes are
relevant, as the latter three are not concerned with the complete automation of a single
business process, but only with the interactions between different business processes.
Private processes are either modeled for the purpose of being executed, or modeled for
the purpose of documentation. In Figure 2.5, we provide an example order handling
workflow that is expressed using BPMN. The main BPMN modeling elements, which
are illustrated in Figure 2.6, are the following:

• An Event is something that “happens” during the course of a process, and usually
has a cause (trigger) or impact (result).

– A Start Event represents the start of a process, which may be triggered, for
example, by receiving a message.

– An End Event represents the end of a process, which may result, for example,
in sending a message.

– An Intermediate Event represents something that happens while a process is
being executed, and allows, for example, waiting for a message to be received.

• An Activity is a unit of work to be performed during the course of a process. An
activity is either atomic or composite. In BPMN terminology, an atomic activity is
a Task, whereas common workflow terminology considers Activity and Task to be
synonymous, regardless of whether the unit of work is atomic.

20

2.1 Workflows

OrderHandling

SelectBooks

Search
Book

Confirm

AddBook
OrContinue

Confirm
OrContinue

Save
Preference

Report

Add
Book

Save
Preference

Login

Specify
Options

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment

Info

Wire
Transfer
Payment

Payment
Method

Report

Report

Report

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Report

Report

Process
Order

Process
Returns

Legend

Start event

End event

AND-split (one incoming
transition) or AND-join
(one outgoing transition)

XOR-split (one incoming
transition) or XOR-join
(one outgoing transition)

Transition

Activity

Send
Invoice

Verify
Bank

Account

Figure 2.5: Example order handling workflow, expressed using BPMN

• A Gateway is used to control the divergence and convergence of a process’s control
flow, and can thus introduce parallelism or choice. Thus, gateways correspond to
various kinds of Splits and Joins in common workflow terminology.

• A Sequence Flow is used to show the order in which a process’s activities will be
performed. Thus, sequence flows correspond to Transitions in common workflow
terminology.

Non-executable private processes are specified graphically by combining the above
modeling elements in a diagram. For executable private processes, most of the graphical
elements must be augmented with textual attributes that specify, for example, which
operation is invoked by a service task, or which message triggers a start event.

21

Chapter 2. Context: Separation of Concerns in Workflows

Start event

End event

Intermediate event

Task Name Task
(Atomic activity)

Expanded sub-process
(Composite activity)

Sub-Process
Name

+

Collapsed sub-process
(Composite activity)

Parallel gateway
(AND-split or -join)

Exclusive gateway
(XOR-split or -join)

Inclusive gateway
(OR-split or -join)

Sequence flow
(Transition)

Figure 2.6: Main BPMN modeling elements

2.1.7 Yet Another Workflow Language

Based on the observation that existing workflow languages lacked support for many
workflow patterns (cf. Section 2.1.2) and did not offer any formal semantics, van der
Aalst and ter Hofstede (2005) introduced Yet Another Workflow Language (YAWL) in or-
der to facilitate the use of all workflow patterns in a single workflow language with a solid
formal foundation.

Petri nets are well suited as a basis for workflow languages because (1) they have a
formal semantics in addition to their graphical nature, (2) they are state-based instead
of (just) event-based, and (3) there is an abundance of analysis techniques for Petri nets
(van der Aalst, 1998b). Workflow nets (WF-nets) (van der Aalst, 1998a) constitute a map-
ping of workflow management concepts to Petri nets, and thus introduce, among others,
notions of process definitions, routing constructs, and activities. Nevertheless, not all
workflow patterns can be expressed easily using WF-nets.2 Therefore, YAWL introduces
the notion of extended workflow nets (EWF-nets), which extend WF-nets with multiple
instances, composite tasks, OR-joins, removal of tokens, and directly connected tran-
sitions. A YAWL workflow is an EWF-net that may be hierarchically decomposed into
other EWF-nets.

Figure 2.7 is a screenshot of our order handling workflow as defined using the YAWL
Editor (YAWL Foundation, 2011). YAWL language constructs, which are illustrated in
Figure 2.8, can be divided into two main categories: Conditions (which can be inter-

2More specifically, patterns involving multiple instances, advanced synchronization patterns, and cancel-
lation patterns (Russell et al., 2006a) require considerable modeling effort.

22

2.2 Separation of Concerns

Figure 2.7: Screenshot of the YAWL Editor with a YAWL representation of our example
order handling workflow

preted as Petri net places) and Tasks (which can be interpreted roughly as Petri net tran-
sitions). Each EWF-net has a single Input Condition and a single Output Condition,
which represent the start and the end of the workflow, respectively. An Atomic Task rep-
resents an atomic activity, whereas a Composite Task represents a composite activity.3

Both atomic tasks and composite tasks may have multiple instances. Conditions and
tasks are connected using directed arcs, which represent the flow of control. This flow of
control may be routed using AND-Split Tasks, XOR-Split Tasks, OR-Split Tasks, AND-Join
Tasks, XOR-Join Tasks, and OR-Join Tasks. Finally, a task may remove tokens from certain
conditions.

2.2 Separation of Concerns

In the previous section, we have introduced the workflow paradigm and have given an
overview of three important workflow languages. In this section, we introduce the notion
of separation of concerns, and how it is achieved in object-oriented applications using
aspect-oriented programming.

2.2.1 General Principles

Most realistic software applications consist of several concerns — parts that are relevant
to a particular concept, goal, or purpose. Separation of concerns (Dijkstra, 1982) is a gen-
eral software engineering principle that refers to the ability to identify, encapsulate, and
manipulate concerns in isolation of each other. Separation of concerns is traditionally
accomplished by decomposing software into modules, which is associated with the fol-
lowing benefits (Parnas, 1972):

3EWF-net terminology uses the term Task as a synonym for Activity. This is consistent with common
workflow terminology.

23

Chapter 2. Context: Separation of Concerns in Workflows

Condition

Input condition

Output condition

Atomic task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

… Remove tokens

AND-join task

XOR-join task

OR-join task

AND-split task

XOR-split task

OR-split task

Figure 2.8: YAWL language constructs (van der Aalst and ter Hofstede, 2005)

1. Managerial — Development time should be shortened because separate groups
would work on each module with little need for communication;

2. Product flexibility — It should be possible to make drastic changes to one module
without a need to change others;

3. Comprehensibility — It should be possible to study the system one module at a time.
The whole system can therefore be better designed because it is better understood.

Indeed, these benefits have contributed to the development of many different mod-
ularization approaches, which typically allow some sort of hierarchical decomposition
of software into modules. However, not all concerns can be modularized by hierarchi-
cally decomposing software. More specifically, crosscutting concerns pose a problem, as
is recognized by the aspect-oriented programming community.

2.2.2 Aspect-Oriented Programming

Kiczales et al. (1997) argue that existing modularization approaches cannot cleanly en-
capsulate concerns that crosscut the decomposition hierarchy. According to Tarr et al.
(1999), this is due to the “tyranny of the dominant decomposition”: using existing mod-
ularization approaches, a program can only be modularized according to one dimension

24

2.2 Separation of Concerns

1 package com.my_package;
2
3 import org.apache.log4j.Logger;
4 ...
5
6 public class MyClass {
7
8 static Logger logger = Logger.getLogger(MyClass.class);
9

10 public void methodA() {
11
12 logger.debug("Executing methodA()...");
13 ...
14 logger.debug("Executed methodA()");
15 }
16
17 public void methodB() {
18
19 logger.debug("Executing methodB()...");
20 ...
21 logger.debug("Executed methodB()");
22 }
23
24 ...
25 }

Listing 2.1: Crosscutting tracing concern within a JAVA class

at a time, and concerns that do not align with this modularization end up scattered across
different modules and tangled with one another.

For example, most JAVA applications include some kind of tracing scheme that logs
information about the applications’ execution. This is often accomplished using logging
libraries such as LOG4J (Apache Software Foundation, 2002). In all classes whose meth-
ods are to be traced, a static variable is defined that initializes a Logger (cf. lines 3 and 8
in Listing 2.1). This static variable is then used to log a tracing message at the start (cf.
lines 12 and 19) and end (cf. lines 14 and 21) of each method. Clearly, the tracing concern
is crosscutting a class’s code. Similarly, the concern may crosscut the entire application.
This makes it hard to, for example, switch from one logging library to another, as this
would require modifying every class and every method where tracing is required. It also
means that tracing code must be added to every new class and method as the system
evolves. Figure 2.9 illustrates the problem of crosscutting concerns with a less simpli-
fied example, by comparing the modularization of the TOMCAT web server’s URL pattern
matching concern with the (lack of) modularization of its logging concern.

Aspect-oriented programming (AOP) (Kiczales et al., 1997) aims to support program-
mers in cleanly separating and encapsulating the different concerns of an application.
Although several mechanisms can be used to accomplish this goal,4 the pointcut/ad-

4Masuhara and Kiczales (2003) have identified four mechanisms: pointcuts and advice, traversal specifi-
cations, class composition, and open classes.

25

Chapter 2. Context: Separation of Concerns in Workflows

(a) URL pattern matching

(b) Logging

Figure 2.9: Modularization of two concerns in the implementation of the TOMCAT web
server. Figures adapted from Hilsdale et al. (2001).

26

2.2 Separation of Concerns

pointcut myMethods(): within(MyClass) && execution(* *.*(..));

Listing 2.2: ASPECTJ pointcut that selects all method executions within the MyClass class

vice mechanism is most widely used today. Typically, AOP languages complement a tra-
ditional base language by allowing crosscutting concerns to be encapsulated in aspects
that can be applied to a base program. An aspect allows selecting a number of locations
(named joinpoints) in a base program, and inserting a certain behavior (named advice)
at these locations. Sets of joinpoints can be selected using a declarative pointcut lan-
guage, and one can specify the position of the inserted behavior relative to the joinpoint
(e.g., before or after the joinpoint). The process of composing the independently modu-
larized base program and aspects in order to support their combined execution is called
weaving. We will now discuss the different parts of pointcut/advice approaches in more
detail. The structure of this discussion is based on the template for describing AOP lan-
guages proposed in AOSD-Europe’s survey on aspect-oriented programming languages
(Brichau and Haupt, 2005).

2.2.2.1 Joinpoint Model and Pointcut Language

The joinpoint model of an AOP language defines at which locations an aspect can change
a base program. Such joinpoints can be either static (points in the program’s structure)
or dynamic (runtime events). In ASPECTJ (Kiczales et al., 2001), a popular AOP lan-
guage that complements the JAVA base language, possible joinpoints are, among others,
method call, method execution, constructor call, constructor execution, field get, and
field set. For example, ASPECTJ allows us to apply an aspect to the execution of methodA
or methodB of the MyClass class defined in Listing 2.1. Because the base program does
not need to be aware of the fact that aspect behavior may be inserted at certain loca-
tions, the base program is said to be oblivious of the aspect behavior. This obliviousness
is considered one of the two essential characteristics of AOP mechanisms by Filman and
Friedman (2001).

An AOP language allows selecting one or more joinpoints using pointcut expressions.
Pointcuts are typically expressed using declarative pointcut languages. For example, AS-
PECTJ pointcuts are logic propositions that are constructed by connecting a number of
primitives such as call and execution for selecting method or constructor calls and exe-
cutions, respectively, and get and set for selecting field gets and sets, respectively. Thus,
one can select all method executions within the MyClass class of Listing 2.1 using the
myMethods() pointcut that is provided in Listing 2.2. The execution primitive’s method
pattern * *.*(..) should be read as: a method with any return type, of any class, with
any name, and any number of parameters. This quantification over elements of the base
program is considered the second essential characteristic of AOP mechanisms by Filman
and Friedman (2001).

27

Chapter 2. Context: Separation of Concerns in Workflows

Object around(): myMethods() {

MethodSignature ms = (MethodSignature)
thisJoinPointStaticPart.getSignature();

String mn = ms.getMethod().getName();
Logger logger = Logger.getLogger(ms.getDeclaringType());
logger.debug("Executing " + mn + "...");
Object result = proceed();
logger.debug("Executed " + mn);
return result;

}

Listing 2.3: ASPECTJ advice that performs tracing around each joinpoint selected by the
myMethods() pointcut

2.2.2.2 Advice Model and Language

The actual behavior to be inserted at a joinpoint is called the advice. The advice type
defines the position of the inserted behavior relative to the joinpoint. The three clas-
sic advice types are before, after, and around, which define that behavior should be in-
serted immediately before, immediately after, or around a joinpoint, respectively. An
advice is associated with a pointcut that selects the joinpoints where the advice is to
be inserted. The actual behavior is specified in the advice body. This body is usually
specified using the base language. However, in order to allow accessing the (runtime)
context in which the advice is executed, or defining the location where the original join-
point behavior should be executed, the base language may be extended with additional
language elements. For example, Listing 2.3 provides an ASPECTJ around advice that re-
trieves the name of the current joinpoint using the thisJoinPointStaticPart context
variable, logs an initial tracing message, executes the original joinpoint behavior using
the proceed() statement, and logs a final tracing message before returning the original
joinpoint behavior’s result.

2.2.2.3 Aspect Module Model

An aspect implements a crosscutting concern by grouping one or more advices, as well
as the pointcuts to which they refer. For example, Listing 2.4 shows an ASPECTJ aspect
named TracingAspect that implements the tracing concern by combining the point-
cut of Listing 2.2 (cf. line 8) with the advice of Listing 2.3 (cf. lines 10–19). Thus, the
tracing code that was originally crosscutting the MyClass class of Listing 2.1 may now
be removed from that class, as the TracingAspect aspect now encapsulates this code.
Similar to JAVA classes, an ASPECTJ aspect may define fields and/or methods, which may
be accessed from within the aspect’s advice.

In the example of Listing 2.4, the advice that implements the crosscutting behavior
is specified in the same file as the pointcut that selects where the crosscutting behav-
ior should be inserted and thus connects the advice to the base program. This ham-

28

2.2 Separation of Concerns

1 package com.my_package;
2
3 import org.apache.log4j.Logger;
4 import org.aspectj.lang.reflect.MethodSignature;
5
6 public aspect TracingAspect {
7
8 pointcut myMethods(): within(MyClass) && execution(* *.*(..));
9

10 Object around(): myMethods() {
11
12 MethodSignature ms = (MethodSignature) thisJoinPointStaticPart.getSignature();
13 String mn = ms.getMethod().getName();
14 Logger logger = Logger.getLogger(ms.getDeclaringType());
15 logger.debug("Executing " + mn + "...");
16 Object result = proceed();
17 logger.debug("Executed " + mn);
18 return result;
19 }
20 }

Listing 2.4: ASPECTJ tracing aspect

pers reuse of the advice, as it is tightly coupled with the locations to which it is ap-
plied. ASPECTJ addresses this issue by allowing the specification of abstract aspects that
specify abstract pointcuts. Using inheritance, an abstract aspect’s behavior can then be
reused in different sub-aspects by augmenting the abstract aspect with different con-
crete pointcuts. A second approach to address this issue is employed by JASCO (Suvée
and Vanderperren, 2003), and is inspired by component-based software development
(CBSD; cf. Shaw and Garlan, 1996). In this approach, a more conceptual distinction is
made between crosscutting behavior and connection logic, by specifying the crosscut-
ting behavior in a separate aspect bean, while specifying the connection logic in a sepa-
rate connector. A single aspect bean can then be reused by means of different connec-
tors. Thus, a connector encapsulates the deployment of an aspect within an application,
which consists of (1) connecting advices to concrete program points, (2) instatiating as-
pects, (3) configuring aspect instances, and (4) resolving aspect interactions (De Fraine,
2009).

2.2.2.4 Aspect Instantiation Model

When aspects may define a state that is shared between different executions of an advice,
the AOP language’s aspect instantiation model becomes relevant. The default approach
to aspect instantiation is to generate a single aspect instance for any given aspect spec-
ification. Such an approach is called implicit instantiation. Optionally, one can specify
that multiple aspect instances should be generated. For example, ASPECTJ allows gen-
erating one instance per object that contains an execution joinpoint, or one instance
per object that contains a call joinpoint. JASCO offers several such options as well, but
allows aspect instantiation to be specified in its connectors instead of its aspect beans,

29

Chapter 2. Context: Separation of Concerns in Workflows

thus allowing aspect beans to be instantiated differently by different connectors.

2.2.2.5 Aspect Composition Model

When multiple aspects are present within the same application, feature interaction prob-
lems may arise, most notably when different advices intercept the same joinpoint. For
example, one aspect may interfere with the correct execution of another aspect, or the
behavior of the application may differ depending on the order in which the aspects are
applied. Therefore, AOP languages typically allow specifying precedence strategies, which
define the order in which aspects are applied when multiple aspects are applicable to the
same joinpoint. In ASPECTJ, precedence is specified in the aspects, whereas in JASCO,
it is specified in the connectors. In addition to precedence strategies, JASCO allows the
definition of combination strategies, which allows filtering the list of applicable aspects
at a possible joinpoint.

2.2.2.6 Aspect Weaving Model

In order to support the complete execution of an aspect-oriented program, the program’s
independently modularized aspects should be combined with the base program at a cer-
tain point in time. This process is called weaving. There are two main approaches to
weaving:

• Static weaving. In a statically woven approach, the aspect and base code are merged
before runtime (e.g., at compile time using a dedicated compiler, or at load time
using a dedicated class loader). This merging can take place either at the source
code or the byte code level. At runtime, the aspects — like the base code — cannot
be redefined or removed, nor can new aspects be added.

• Dynamic weaving. A dynamically woven approach uses dedicated techniques
(e.g., byte code instrumentation or an aspect-aware VM) to allow weaving at run-
time. This allows dynamically adding, removing, and redefining aspects.

The ASPECTJ implementation originally employed static weaving at source code level,
but currently weaves byte code at compile or load time. JASCO was designed with dy-
namic weaving in mind.

Now that we have discussed the origins of separation of concerns and the way in
which it is addressed in aspect-oriented programming, we will continue this chapter
with discussing separation of concerns in the specific domain of workflows.

2.3 Separation of Concerns in Workflows

Just like any non-trivial software application, a workflow may consist of several concerns,
and the ability to identify, encapsulate, and manipulate these in isolation of each other
— i.e., separation of concerns — is thus beneficial to the development of the workflow.
Most workflow languages allow some separation of concerns by allowing hierarchical de-
composition of workflows into sub-workflows. Nevertheless, the problem of crosscutting

30

2.3 Separation of Concerns in Workflows

concerns arises in this context as well. This has led to the application of aspect-oriented
ideas to the workflow paradigm. In Section 2.3.1, we discuss the classic sub-workflow
mechanism. In Section 2.3.2, we discuss aspect-oriented programming for workflows.

2.3.1 The Sub-Workflow Mechanism

The notion of sub-processes is an old one: as is illustrated by Figure 2.1, flowcharts al-
ready offered a predefined process symbol that allows referencing a predefined flowchart
from another flowchart. Modern workflow languages offer a sub-workflow mechanism
as well:

• BPEL allows hierarchically decomposing processes into scopes, which may each
define their own partner links, variables, and main activity. However, scopes are
defined within the same XML document as the main process, and thus cannot
be reused independently. Reuse of BPEL code can be accomplished by exposing
a BPEL process as a web service, and then invoking this web service from other
BPEL processes, though this introduces significant overhead.

• BPMN allows hierarchically decomposing processes using sub-processes, which
are essentially composite activities, i.e., activities whose internal details are mod-
eled in the same way as the main process. A sub-process defines a scope that can,
for example, be used for exception handling. Sub-processes are defined within the
same BPMN diagram as the main processes, but can be reused by other BPMN
diagrams using the call activity construct.

• YAWL allows hierarchically decomposing workflow specifications using composite
tasks. Each composite task corresponds to a specific EWF-net, and thus the same
EWF-net can be referenced by different workflow specifications.

Various advantages are attributed to the use of this kind of hierarchical decomposi-
tion of workflows (Reijers and Mendling, 2008): at design time, sub-workflows facilitate
stepwise task refinement, stimulate reuse of workflows, and potentially speed up the
(concurrent) development of the overall workflow (Leymann and Roller, 1997; van der
Aalst and van Hee, 2002). At runtime, when a workflow is enacted, sub-workflows allow
for scaling advantages: each sub-workflow, for example, may be executed by a different
workflow engine (Leymann and Roller, 1997). Finally, sub-workflows are believed to fa-
cilitate the understanding of complex business processes by various stakeholders (Sharp
and McDermott, 2001; Dong and Chen, 2005).

2.3.2 Aspect-Oriented Programming for Workflows

Similar to software expressed using other paradigms, workflows may suffer from poor
separation of concerns due to the presence of crosscutting concerns (Arsanjani et al.,
2003; Courbis and Finkelstein, 2004; Charfi and Mezini, 2004; Verheecke et al., 2006).
For example, the order handling workflow in Figure 2.5 contains reporting activities at

31

Chapter 2. Context: Separation of Concerns in Workflows

several locations across the workflow. Similarly, such activities may occur across differ-
ent workflows. By applying the ideas of aspect-oriented programming to the workflow
paradigm, separation of concerns in workflows can be improved. The two main existing
AOP approaches for workflows are introduced below.

2.3.2.1 AO4BPEL

AO4BPEL (Charfi and Mezini, 2004, 2007) is the most well-known aspect-oriented ap-
proach for workflows, and adds aspect-oriented capabilities to the BPEL4WS workflow
language. AO4BPEL aims to support any BPEL activity as a joinpoint, though the origi-
nal implementation only supports <invoke> and <reply> activities. Pointcuts can be
specified using XPATH, which is a query language for XML documents, and thus al-
lows selecting activities based on the names and attributes of the corresponding XML
elements in the BPEL process definition. Because XPATH is already used within regu-
lar BPEL processes to select, for example, parts of structured XML data, it is a natural
choice as the pointcut language. On the other hand, this means the pointcut language is
strongly tied to the XML representation of the workflow. Advice can be specified using
regular BPEL activities, and can be inserted before, after, or around a joinpoint. AO4-
BPEL performs dynamic weaving using a custom BPEL4WS engine.

Listing 2.5 provides an example AO4BPEL aspect, which logs all invocations of the
SmsServiceweb service.5 An aspect is specified using the <aspect> element (cf. line 1),
which has a name attribute for specifying the aspect’s name. Optionally, an aspect may
introduce a number of partner links (cf. lines 2–4) and variables (cf. lines 5–7) for use by
the aspect’s advice. In the example, a partner link for a logging service is introduced, as
well as a variable that will serve as input for invoking this service. Finally, an aspect has a
<pointcutandadvice> element (cf. lines 8–23) that groups a <pointcut> element and
an <advice> element. The former (cf. lines 9–11) selects a number of BPEL activities
using XPATH, while the latter (cf. lines 12–22) specifies the BPEL code that should be ex-
ecuted at each of the selected activities. In the example, the advice is executed before the
selected activities, and sends a message that indicates which operation will be invoked
to the logging service.

2.3.2.2 Courbis and Finkelstein

Courbis and Finkelstein (2004, 2005a,b) were the first to propose an aspect-oriented ap-
proach for workflow languages, but this approach is less well-known than AO4BPEL.
Similar to AO4BPEL, the base language is BPEL4WS. Any BPEL activity (i.e., not only
<invoke> and <reply> activities) can be selected as a joinpoint, using XPATH as the
pointcut language. Advice can not only be specified using regular BPEL activities (in
so-called process aspects), but also using JAVA code (in so-called engine aspects). In this
latter case, the joinpoint activity is exposed to the advice using a JAVA representation of
BPEL’s abstract syntax. Advice can only be inserted before or after a joinpoint, i.e., the
around advice type is not supported. The approach performs dynamic weaving using a
custom BPEL4WS engine.

5We will use a similar example to illustrate our own approach in Chapter 3 (cf. Listing 3.8).

32

2.4 Summary

1 <aspect name="logSmsServiceInvocations">
2 <partnerLinks>
3 <partnerLink name="LoggingService" partnerLinkType="LoggingServicePLT"

myRole="caller" partnerRole="logger" />
4 </partnerLinks>
5 <variables>
6 <variable name="logMessageInput" messageType="ld:logMessageRequest" />
7 </variables>
8 <pointcutandadvice>
9 <pointcut name="smsServiceInvocations">

10 //invoke[@partnerLink="SmsService" and @portType="SmsServicePT"]
11 </pointcut>
12 <advice type="before">
13 <sequence>
14 <assign>
15 <copy>
16 <from expression="concat('Invoking operation ',

bpws:getVariableData('ThisJPActivity', 'operation', '/text()'))"
/>

17 <to variable="logMessageInput" part="payload" />
18 </copy>
19 </assign>
20 <invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageInput" />
21 </sequence>
22 </advice>
23 </pointcutandadvice>
24 </aspect>

Listing 2.5: An AO4BPEL aspect that logs all invocations of the SmsService web service

Listing 2.6 provides an example of a process aspect in Courbis and Finkelstein’s ap-
proach that logs all invocations of the SmsService web service. Line 1 indicates the
start of the aspect specification, and allows specifying the aspect’s name. The Members
declaration (cf. lines 3–7) allows adding, among others, partner links and variables to the
base BPEL process. In the example, a partner link for a logging service is introduced,
as well as a variable that will serve as input for invoking this service. The Pointcuts
declaration (cf. lines 9–12) allows attaching advices to pointcuts according to the before
or after advice types, using XPATH as the pointcut language. Finally, the Advices dec-
laration (cf. lines 14–26) specifies the actual BPEL code that should be inserted at the
joinpoints. In the example, the BPEL code merely sends the “Invoking operation” mes-
sage to the logging service, i.e., without the name of the actual operation to be invoked,
because it is not possible to access joinpoint information from Courbis and Finkelstein’s
process aspects (Courbis and Finkelstein, 2005a,b).

2.4 Summary

In this chapter, we present the context of our dissertation. First, we introduce the work-
flow paradigm by describing its history, main concepts, and terminology. We discuss the

33

Chapter 2. Context: Separation of Concerns in Workflows

1 Workflow aspect logSmsServiceInvocations
2
3 Members {
4
5 add <partnerLink name="LoggingService" partnerLinkType="LoggingServicePLT"

myRole="caller" partnerRole="logger" />
6 add <variable name="logMessageInput" messageType="ld:logMessageRequest" />
7 }
8
9 Pointcuts {

10
11 before "//invoke[@partnerLink=\"SmsService\" and @portType=\"SmsServicePT\"]"

insert logSmsServiceInvocations
12 }
13
14 Advices {
15
16 logSmsServiceInvocations
17 <sequence>
18 <assign>
19 <copy>
20 <from expression="'Invoking operation'" />
21 <to variable="logMessageInput" part="payload" />
22 </copy>
23 </assign>
24 <invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageInput" />
25 </sequence>
26 }

Listing 2.6: A process aspect in Courbis and Finkelstein’s approach that logs all
invocations of the SmsService web service

two main application domains of workflows, i.e., business process management and web
service orchestration, and give an overview of three important workflow languages, i.e.,
BPEL, BPMN, and YAWL. Second, we introduce the notion of separation of concerns,
and how it is achieved in object-oriented applications using aspect-oriented program-
ming. Finally, we discuss how separation of concerns is currently achieved in workflows
by reviewing traditional mechanisms for modularization of workflows as well as aspect-
oriented approaches for workflows. Thus, we have set the stage for our own research
in the domain of separation of concerns in workflows. In Chapter 3, we develop our
own extension to the BPEL workflow language that addresses a number of limitations of
the existing aspect-oriented approaches when applying them in the domain of telecom
service composition. In Chapter 4, we go beyond the scope of this initial approach by
developing a general framework for modularization of workflow concerns, which is the
main topic of this dissertation.

34

Chapter 3

Modularization of Crosscutting
Workflow Concerns using PADUS

This chapter presents our first experiments in developing an approach for modu-
larization of concerns in workflows. The approach, which is called PADUS, is specif-
ically aimed at modularizing crosscutting concerns in the BPEL workflow language,
and provides significant improvements on the state of the art in this focused scope.
Chapter 4 will build on the lessons learned from this chapter in order to develop an
approach with a wider scope.

3.1 Context: The WIT-CASE Project

The research described in this chapter has been performed in the context of the Work-
flow Innovations, Technologies and Capabilities for Service Enabling (WIT-CASE) project,
which studied and validated innovative solutions for the creation, deployment and run-
time execution of services on top of a novel Service Delivery Platform (SDP), which is
the service infrastructure operated by a telecom service provider or network operator.
The creation of services within this novel SDP is achieved by means of a Service Cre-
ation Environment (SCE), which enables the specification of new services by composing
generic service building blocks that are offered by the SDP. This SCE is a graphical envi-
ronment to be used by domain experts, which translates graphical service compositions
into an underlying service composition language. Service compositions expressed using
this service composition language can be deployed and executed by a distributed execu-
tion environment within the novel SDP. Our research within the WIT-CASE project was
mostly aimed at developing the SCE and its underlying service composition language.

It has been established that, similar to traditional programs, service compositions
may be burdened by crosscutting concerns that cannot be modularized (Arsanjani et al.,
2003; Courbis and Finkelstein, 2004; Charfi and Mezini, 2004; Verheecke et al., 2006).
Therefore, the service composition language was conceived to support aspect-oriented
mechanisms. Given the increasing popularity of web services technology and dedicated

35

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

web service composition languages such as BPEL, both in general industry and in the
specific telecom domain, the service composition language was designed as an aspect-
oriented extension to BPEL. Thus, we obtain an aspect-oriented workflow language,
which is named PADUS, in which crosscutting workflow concerns can be modularized
as separate aspects. The outline of this chapter is as follows. Section 3.2 introduces the
motivation and requirements for our web service composition language, and compares
these requirements to existing approaches. Section 3.3 describes our language along
five dimensions: joinpoint model and pointcut language, advice model and language,
aspect module model, aspect instantiation model, and aspect composition model. Sec-
tion 3.4 provides a case study that shows how one can implement the billing concern
using PADUS. Section 3.5 discusses the architecture and implementation of PADUS, and
Section 3.6 describes the SCE that is built on top of PADUS. Section 3.7 concludes this
chapter by summarizing our approach.

3.2 Motivation and Requirements

Throughout this chapter, we will illustrate and motivate our approach by providing ex-
amples from within the domain of the WIT-CASE project. Typical use cases for an SDP in-
clude setting up and executing a multi-party conference call. Such use cases mostly have
the same general characteristics. For example, the platform needs to check whether the
user is allowed to access the functionality he has requested before providing this func-
tionality (authorization), and the user needs to be billed for his usage according to some
billing scheme (billing). The authorization and billing concerns are typically crosscut-
ting. Therefore, an aspect-oriented approach can improve the modularization of web
service orchestrations in an SDP. Without support for aspect-orientation, nearly all of
the platform’s BPEL processes would start with some authorization code before execut-
ing their main functionality, and would perform some billing functionality before and/or
after certain resources are used. This means that, when some part of the authorization or
billing policies is changed, all these processes need to be changed as well. The presence
of more than one authorization or billing policy would further complicate this situation.
If, on the other hand, the platform would provide support for aspect-orientation, cross-
cutting concerns such as authorization and billing could be expressed separate from the
processes’ main functionality in dedicated aspects. If authorization or billing policies
would change, this would only require changes to the corresponding aspects, and not to
the main processes. If one would like to support more than one authorization or billing
policy (e.g., fixed fee billing as well as duration billing), it would suffice to implement an
additional aspect. Therefore, we propose an aspect-oriented extension to BPEL, named
PADUS, that provides better separation of concerns in BPEL processes by allowing cross-
cutting concerns to be specified in separate aspects.

Based on the characteristics of the telecom Service Delivery Platform, the goals of
the WIT-CASE project, and the state of the art in AOP for BPEL, we have compiled the
following list of requirements for our aspect-oriented extension to BPEL:

1. A rich joinpoint model. In order to offer the programmer as much freedom as
possible when applying aspects to a process, the language should have a joinpoint

36

3.2 Motivation and Requirements

model that allows selecting any BPEL activity as a joinpoint.

2. A high-level pointcut language. In order to allow the specification of expressive
pointcuts that are robust with respect to evolution of the base process, the lan-
guage should have a pointcut language that abstracts over the XML document tree
of BPEL processes and supports reuse of pointcut specifications.

3. Basic advice types. In order to be compatible with general aspect-oriented re-
search, the language should support the basic advice types that were introduced
there.

4. Workflow-specific advice types. The language should support advice types that
recognize the workflow paradigm’s focus on the control flow perspective, which
includes parallelism and choice, in addition to the classic sequential advice types
introduced by general aspect-oriented research.

5. BPEL as the advice language. In order to promote reuse of process code when
adopting the language, it should use BPEL as its advice language. This facilitates
the refactoring of process descriptions by moving process code into aspects.

6. An explicit deployment construct. In order to prevent undesirable interactions
when different aspects apply to the same joinpoint, the language should provide
an explicit deployment construct that instantiates and composes the aspects that
are applicable to a BPEL process.

7. An efficient implementation strategy. In order to prevent undesirable runtime
overhead, the language should support an efficient implementation strategy.

8. Compatibility with the existing tool chain. In order to facilitate adoption of the
language, it should disrupt the existing tool chain as little as possible, and should
thus not require a dedicated execution platform.

Table 3.1 gives an overview of the state of the art in AOP for workflows at the time of
the WIT-CASE project with respect to these requirements. The most well-known aspect-
oriented extensions to BPEL are AO4BPEL (Charfi and Mezini, 2004) and the approach
of Courbis and Finkelstein (2005a).

The original implementation of AO4BPEL only allows applying aspects to <invoke>
and <reply> activities, and thus lacks a rich joinpoint model. AO4BPEL’s pointcut lan-
guage is XPATH, which is tightly coupled to the XML document tree and does not sup-
port reuse of pointcut specifications. It supports all three basic advice types, but no ad-
ditional, workflow-specific advice types. It uses BPEL as the advice language, but does
not provide an explicit deployment construct. It uses a dedicated BPEL4WS engine as
its execution platform, which may not be compatible with existing tool chains.

The approach by Courbis and Finkelstein allows applying aspects to any BPEL ac-
tivity, and thus provides a rich joinpoint model. Similar to AO4BPEL, XPATH is used as
the pointcut language. Only the before and after advice types are supported: there are
no around or workflow-specific advice types. Either BPEL or JAVA can be used as the

37

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Courbis and
Requirement AO4BPEL Finkelstein
A rich joinpoint model − +
A high-level pointcut language − −
Basic advice types + ±
Workflow-specific advice types − −
BPEL as the advice language + +
An explicit deployment construct − −
An efficient implementation strategy ± ±
Compatibility with the existing tool chain − −

Table 3.1: State of the art in AOP for BPEL

advice language, but the approach does not provide an explicit deployment construct.
Like AO4BPEL, the approach uses a dedicated BPEL4WS engine.

3.3 Language

In this section, we present the PADUS language, an aspect-oriented extension to BPEL
that aims to overcome BPEL’s lack of support for modularization of crosscutting con-
cerns. It allows introducing crosscutting behavior to an existing BPEL process in a mod-
ularized way. Developers can augment BPEL processes with additional behavior at spe-
cific points during their execution. These points can be selected using a logic point-
cut language, and the PADUS weaver can be used to combine the behavior of the base
process with the behavior specified in the aspects. Using PADUS, the complexity of the
base process can be controlled by specifying crosscutting concerns like authorization
and billing in separate aspects.

In order to guide our description of the PADUS language, we follow the same template
we used in Chapter 2 to introduce aspect-oriented programming (i.e., the template pro-
posed in AOSD-Europe’s survey on aspect-oriented programming languages by Brichau
and Haupt, 2005). We describe the language along five dimensions: the joinpoint model
and pointcut language (Section 3.3.1), the advice model and language (Section 3.3.2), the
aspect module model (Section 3.3.3), the aspect instantiation model (Section 3.3.4), and
the aspect composition model (also in Section 3.3.4).

3.3.1 Joinpoint Model and Pointcut Language

Joinpoints are well-defined points during the execution of a program where extra func-
tionality can be inserted. In PADUS, these points correspond to the different activities
that are provided by BPEL. There are two kinds of joinpoints: behavioral joinpoints cor-
respond to BPEL activities that have an atomic behavior associated with them, as listed
in Table 3.2, and structural joinpoints correspond to BPEL activities that are used to
compose a number of other BPEL activities in a separate structure, as listed in Table 3.3.
In essence, PADUS allows selecting any activity in a BPEL process as a joinpoint.

38

3.3 Language

Joinpoint type Corresponding BPEL activity
receiving <receive>
replying <reply>
invoking <invoke>
assigning <assign>
throwing <throw>
exiting <exit>
waiting <wait>
doingNothing <empty>
compensating <compensate>
compensatingScope <compensateScope>
rethrowing <rethrow>
validating <validating>

Table 3.2: Behavioral joinpoints in PADUS

Joinpoint type Corresponding BPEL activity
executingSequence <sequence>
executingIf <if>
executingWhile <while>
executingRepeatUntil <repeatUntil>
executingForEach <forEach>
executingPick <pick>
executingFlow <flow>
executingScope <scope>

Table 3.3: Structural joinpoints in PADUS

Each joinpoint type is associated with a number of properties relevant to that partic-
ular joinpoint type:

• Each joinpoint has a property for each of the attributes of the corresponding BPEL
activity. For example, Table 3.4 lists these properties for invoking joinpoints.

• Each joinpoint has a Parent property that refers to the structured activity or BPEL
process in which it is defined.

• Each joinpoint has a Process property that refers to the BPEL process in which it is
defined.

• Each joinpoint has a (dynamic) ProcessInstance property that refers to the current
process instance.

A pointcut selects a specific set of joinpoints. Pointcuts are typically used to specify
the joinpoints where additional behavior should be inserted. The pointcut language of
PADUS is based on logic meta-programming (De Volder, 1998). A pointcut can be seen as
a collection of constraints on the types and properties of allowed joinpoints. In addition,

39

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Property name Type Description
name String The (optional) name of the <invoke> activity
partnerLink String The partner link to be used by the <invoke> activity
portType String The port type to be used by the <invoke> activity
operation String The operation to be invoked
inputVariable String The variable containing the request message
outputVariable String The variable that should contain the response message

Table 3.4: Main properties of invoking joinpoints

% Binds all possible joinpoint properties:
invoking(Joinpoint, Name, PartnerLink, PortType, Operation,

InputVariable, OutputVariable)

% Does not bind the input and output variable properties:
invoking(Joinpoint, Name, PartnerLink, PortType, Operation)

% Only binds the partner link, port type, and operation properties:
invoking(Joinpoint, PartnerLink, PortType, Operation)

Listing 3.1: Bindings for the invoking pointcut predicate

<pointcut name="smsServiceSendInvocations(Joinpoint, Operation)"
pointcut="invoking(Joinpoint, 'SmsService', 'SmsServicePT',
Operation), startsWith(Operation, 'send')" />

Listing 3.2: Example pointcut in PADUS

a pointcut is able to expose certain information (e.g., argument values) so that the advice
can exploit this.

The pointcut language defines a predicate for each type of joinpoint. The arguments
of the predicate refer to the properties of that specific type of joinpoint. Listing 3.1 lists
the exposed bindings of the invoking predicate. Only the first binding — with the most
arguments — is really required: the others can easily be written in function of the first
one, and are thus mainly offered for convenience.

Pointcuts are logic rules in which PADUS pointcut predicates may be combined with
standard PROLOG (Deransart et al., 1996) predicates using conjunctions, disjunctions,
and negations, e.g., in order to compare joinpoint properties. By constraining the ar-
guments of a pointcut predicate, a specific set of joinpoints can be selected. Listing 3.2
shows an example pointcut that selects all invoking joinpoints of operations on the
SmsServicePT port type of the SmsService partner link, of which the operation starts
with “send”. The name of a pointcut defines a new pointcut predicate by means of which
the pointcut can be used in aspects. Thus, the pointcut of Listing 3.2 is equivalent to the
PROLOG rule shown in Listing 3.3.

The pointcut language also offers predicates for constraining or exposing the other

40

3.3 Language

smsServiceSendInvocations(Joinpoint, Operation) :- invoking(Joinpoint,
'SmsService', 'SmsServicePT', Operation), startsWith(Operation,
'send').

Listing 3.3: Example pointcut in PROLOG

% Links a joinpoint to the structured activity or process in which it is
defined:

inStructure(Joinpoint, Structure)

% Links a joinpoint to the process in which it is defined:
inProcess(Joinpoint, Process)

% Links a joinpoint to the process instance in which it occurs:
inProcessInstance(Joinpoint, ProcessInstance)

% Links the name of a variable to its value in a specific process
instance:

variableValue(ProcessInstance, Name, Value)

Listing 3.4: Pointcut predicates for exposing the context of a joinpoint

(possibly dynamic) properties of joinpoints, such as a joinpoint’s parent, the process in
which a joinpoint is defined, or the process instance in which a joinpoint occurs. List-
ing 3.4 gives an overview of these predicates.

The use of a logic pointcut language offers significant advantages over more tradi-
tional approaches that use XPATH, and which impose a tight coupling between point-
cuts and the XML representation of the base BPEL process. Our pointcuts can use the
full power of unification of logic variables. Furthermore, since pointcuts are logic rules
that cover joinpoints, existing pointcuts can be reused in the definition of other point-
cuts. The logic engine supporting our pointcut language also allows writing recursive
pointcuts. The predicates offered by the pointcut language have well-chosen names,
which clearly express their intension and thus improve readability.

3.3.2 Advice Model and Language

An advice specifies how the behavior at the set of joinpoints defined by a pointcut is to be
altered. An advice can either add behavior to a joinpoint, or replace the original behav-
ior of a joinpoint. PADUS supports four advice types, three of which are the traditional
advice types introduced in general aspect-oriented programming by ASPECTJ (Kiczales
et al., 2001):

1. A before advice adds behavior sequentially before a joinpoint.

2. An after advice adds behavior sequentially after a joinpoint.

41

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Joinpoint Element Description
All types source Specify that the joinpoint is the source of a new link.

target Specify that the joinpoint is the target of a new link.
receiving correlation Add a new correlation element to the joinpoint.
replying correlation Add a new correlation element to the joinpoint.
invoking correlation Add a new correlation element to the joinpoint.

catch Add a new specific catcher to the joinpoint.
catchAll Add a new generic catcher to the joinpoint.
compensation-
Handlers Add compensation handlers to the joinpoint.

assigning copy Add a new copy element to the joinpoint.
executingIf elseif Add a new elseif element to the joinpoint.

else Add a new else element to the joinpoint.
executingPick onMessage Add a new message trigger to the joinpoint.

onAlarm Add a new timeout trigger to the joinpoint.
executingFlow Any activity Add a new parallel activity to the joinpoint.

link Add a new link to the joinpoint.
executingScope variable Add a new variable to the joinpoint.

correlationSet Add a new correlation set to the joinpoint.
faultHandlers Add fault handlers to the joinpoint.
compensation-
Handlers Add compensation handlers to the joinpoint.
eventHandlers Add event handlers to the joinpoint.

Table 3.5: Places where an in advice can be used

3. An around advice replaces the original behavior of a joinpoint, and (optionally)
allows invoking the original behavior using the new <proceed> activity.

These three advice types are well accepted both in general AOP and in AOP for work-
flows. However, current AOP approaches for workflows (e.g., AO4BPEL) do not offer
advice types in addition to these three. Nevertheless, workflow languages’ focus on the
control flow perspective, with native support for parallelism, may lead to the applica-
bility of more advice types than the three classic types. Therefore, PADUS introduces a
fourth advice type:

4. An in advice adds behavior inside a joinpoint, and is thus a new advice type intro-
duced by PADUS.

The in advice can be used to add new activities to existing structured BPEL activities.
For example, an in advice can be used to add an extra concurrent activity to an existing
<flow> activity. This cannot be achieved using a before, after, or around advice, as these
introduce behavior sequentially before and/or after a joinpoint. Additionally, the in ad-
vice can be used to customize the behavior of certain other BPEL activities, e.g., adding
variables to a scope or adding links to an activity. Table 3.5 gives an overview of all the
joinpoints where an in advice can be used, and explains the advice’s use at each of these
joinpoints.

Advice code is defined in an XML element that specifies the type of the advice. A logic
query that calls a pointcut predicate allows selecting the activities in the BPEL process
to which the advice applies. The extra behavior to be inserted is specified using standard

42

3.3 Language

1 <before joinpoint="Joinpoint" pointcut="invoking(Joinpoint, 'SmsService',
'SmsServicePT', Operation)">

2 <bpel:sequence>
3 <bpel:assign>
4 <bpel:copy>
5 <bpel:from>
6 <bpel:literal>Invoking operation $Operation...</bpel:literal>
7 </bpel:from>
8 <bpel:to variable="logMessageRequest" part="payload" />
9 </bpel:copy>

10 </bpel:assign>
11 <bpel:invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageRequest" />
12 </bpel:sequence>
13 </before>

Listing 3.5: An advice that logs the start of all invocations of the SmsService web service

BPEL code. For before, after, and around advices, this is a BPEL activity. For in advices,
other BPEL elements can be used as well, such as a <faultHandlers> element. In an
around advice, the <proceed> activity can be used to invoke the original behavior of the
joinpoint. In all cases, the pointcut’s arguments are exposed to the advice: these can be
accessed in the advice by prefixing their name with the ‘$’ character.

Listing 3.5 shows an example of a before advice that logs the start of all invocations
of the SmsService web service (cf. line 1). The behavior that is added is a sequence of
two activities: first, a log message containing the name of the operation to be invoked is
created (cf. lines 3–10), and second, the log message is sent to the LoggingService web
service (cf. line 11).

Listing 3.6 shows an example of an around advice that logs the start and end of all
invocations of the SmsService web service (cf. line 1). The behavior that is added is a
sequence of five activities: (1) a first log message containing the name of the operation
to be invoked is created (cf. lines 3–10); (2) the first log message is sent to the Logging-
Serviceweb service (cf. line 11); (3) the <proceed> activity indicates that the joinpoint’s
original behavior, i.e., the invocation of the SmsService, should be executed (cf. line 12);
(4) a second log message containing the name of the operation that has been invoked is
created (cf. lines 13–20); (5) the second log message is sent to the LoggingService web
service (cf. line 21).

Listing 3.7 shows an example of an in advice that adds a fault handler to the Create-
Call scope (cf. line 1). The fault handler catches all faults (cf. line 3) and handles these
using a sequence of two activities: first, a log message containing a brief error message is
created (cf. lines 4–11), and second, the log message is sent to the LoggingService web
service (cf. line 12).

3.3.3 Aspect Module Model

An aspect represents a single crosscutting concern. As such, aspects can contain sev-
eral before, after, around, and in advices. Listing 3.8 shows an example aspect that logs

43

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

1 <around joinpoint="Joinpoint" pointcut="invoking(Joinpoint, 'SmsService',
'SmsServicePT', Operation)">

2 <bpel:sequence>
3 <bpel:assign>
4 <bpel:copy>
5 <bpel:from>
6 <bpel:literal>Invoking operation $Operation...</bpel:literal>
7 </bpel:from>
8 <bpel:to variable="logMessageRequest" part="payload" />
9 </bpel:copy>

10 </bpel:assign>
11 <bpel:invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageRequest" />
12 <proceed />
13 <bpel:assign>
14 <bpel:copy>
15 <bpel:from>
16 <bpel:literal>Invoked operation $Operation</bpel:literal>
17 </bpel:from>
18 <bpel:to variable="logMessageRequest" part="payload" />
19 </bpel:copy>
20 </bpel:assign>
21 <bpel:invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageRequest" />
22 </bpel:sequence>
23 </around>

Listing 3.6: An advice that logs the start and end of all invocations of the SmsService
web service

1 <in joinpoint="Joinpoint" pointcut="executingScope(Joinpoint, 'CreateCall')">
2 <bpel:faultHandlers>
3 <bpel:catchAll>
4 <bpel:assign>
5 <bpel:copy>
6 <bpel:from>
7 <bpel:literal>A fault has been caught!</bpel:literal>
8 </bpel:from>
9 <bpel:to variable="logMessageRequest" part="payload" />

10 </bpel:copy>
11 </bpel:assign>
12 <bpel:invoke partnerLink="LoggingService" portType="LoggingServicePT"

operation="logMessage" inputVariable="logMessageRequest" />
13 </bpel:catchAll>
14 </bpel:faultHandlers>
15 </in>

Listing 3.7: An advice that adds a fault handler to the CreateCall scope

44

3.3 Language

1 <aspect name="logSmsServiceInvocations" xmlns:log="logging.example.com">
2 <using>
3 <bpel:partnerLink name="LoggingService"

partnerLinkType="log:LoggingServicePLT" />
4 <bpel:variable name="logMessageRequest" messageType="log:logMessageRequest" />
5 </using>
6 <pointcut name="smsServiceInvocations(Joinpoint, Operation)"

pointcut="invoking(Joinpoint, 'SmsService', 'SmsServicePT', Operation)" />
7 <advice name="logMessage(Message)">
8 <bpel:sequence>
9 <bpel:assign>

10 <bpel:copy>
11 <bpel:from>
12 <bpel:literal>$Message</bpel:literal>
13 </bpel:from>
14 <bpel:to variable="logMessageRequest" part="payload" />
15 </bpel:copy>
16 </bpel:assign>
17 <bpel:invoke partnerLink="LoggingService" portType="log:LoggingServicePT"

operation="logMessage" inputVariable="logMessageRequest" />
18 </bpel:sequence>
19 </advice>
20 <before joinpoint="Joinpoint" pointcut="smsServiceInvocations(Joinpoint,

Operation)">
21 <advice name="logMessage('Invoking operation $Operation...')" />
22 </before>
23 <after joinpoint="Joinpoint" pointcut="smsServiceInvocations(Joinpoint,

Operation)">
24 <advice name="logMessage('Invoked operation $Operation')" />
25 </after>
26 </aspect>

Listing 3.8: An aspect that logs the start and end of all invocations of the SmsService
web service

the start and end of all invocations of the SmsService web service using a before and
after advice, respectively.1 The main sections of an aspect are the <using> declaration
(lines 2–5), the pointcut (line 6) and advice definitions (lines 7–19), and the actual advices
(lines 20–25). In order to allow a rudimentary form of reuse of pointcuts and advices, as-
pects can include other aspect files using one or more <include> declarations (cf. our
case study in Section 3.4).

Adding new behavior to a process usually requires extending the information defined
at the process level in addition to adding the behavior itself. For example, adding a new
invocation to a process usually requires adding a partner link that specifies the inter-
face of the service to be invoked, and a new variable that will contain the message that
should be sent to that service. The <using> declaration (lines 2–5) allows the definition
of such additional process level information. These may include partner links, variables,
compensation handlers, fault handlers, termination handlers, and event handlers.

1Alternatively, the aspect could use a single around advice, such as the advice in Listing 3.6.

45

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

1 <deployment>
2 <!-- The following aspects need to be applied to the specified processes: -->
3 <aspect name="logSmsServiceInvocations" process="ConferenceCall"

id="ConferenceCallLogging" />
4 <aspect name="performFixedFeeBilling" process="ConferenceCall"

id="ConferenceCallFixedFeeBilling" />
5 <!-- The following precedence rules are valid for the specified process, or for

all processes if no process is specified: -->
6 <precedence process="ConferenceCall" />
7 <aspect id="ConferenceCallLogging" advice="before" />
8 <aspect id="ConferenceCallFixedFeeBilling" advice="before" />
9 <aspect id="ConferenceCallFixedFeeBilling" advice="after" />

10 <aspect id="ConferenceCallLogging" advice="after" />
11 </precedence>
12 </deployment>

Listing 3.9: An aspect deployment specification

Pointcuts can be reused by giving them a name and specifying their arguments (line 6),
which can either be further constrained when reusing the expression, or be referred to
from inside an advice that reuses the pointcut. Defining a pointcut like this gives rise to
a high-level pointcut predicate that can later be used in other pointcuts.

The extra behavior that is to be inserted using before, after, around, and in advices
can be reused as well (lines 7–19). The advice behavior is given a name and can be pa-
rametrized. These parameters can be referred to from inside the advice code using their
name prefixed with the ‘$’ character. The named advice behavior can be invoked from
within advice code using the <advice> element (lines 21 and 24).

3.3.4 Aspect Instantiation and Composition Models

An aspect represents a single crosscutting concern. Because more than one crosscutting
concern can be applicable to the same process, the instantiation and composition of a
process’s aspects should be performed in a way that prevents undesirable interactions
between aspects. Therefore, PADUS introduces an explicit deployment construct that
specifies how aspects should be applied to a base process (or base processes).

Listing 3.9 illustrates aspect deployment in PADUS. A PADUS aspect deployment con-
sists of two main parts: aspect instantiation (lines 3–4) and aspect composition (lines 6–
11). Aspect instantiation is responsible for instantiating aspects and applying them to
the appropriate processes. Processes are referenced using their name. The PADUS weaver
(cf. Section 3.5) will determine which aspects need to be applied to which processes
based on this part of the aspect deployment.

The second part of an aspect deployment, namely the aspect composition, is respon-
sible for specifying the precedence of aspects in case multiple aspects apply to the same
joinpoint. In case no precedence is specified, the advice is executed in the order in which
their corresponding aspects are specified. A precedence declaration overrides this de-
fault and is able to specify precedence on a per-advice-type basis. Aspect precedence
for a before advice can thus be different than precedence for an after advice, as is the

46

3.4 Case Study: The Billing Concern

1 <aspect name="performBilling" xmlns:bill="billing.example.com">
2 <using>
3 <bpel:partnerLink name="BillingService"

partnerLinkType="bill:BillingServicePLT" />
4 <bpel:variable name="billRequest" messageType="bill:billRequest" />
5 </using>
6 <pointcut name="confCallStarts(Joinpoint)" pointcut="invoking(Joinpoint,

'ConfCallService', 'ConfCallServicePT', 'createConfCall')" />
7 <pointcut name="confCallEnds(Joinpoint)" pointcut="invoking(Joinpoint,

'ConfCallService', 'ConfCallServicePT', 'closeConfCall')" />
8 <advice name="bill">
9 <bpel:invoke partnerLink="BillingService" portType="bill:BillingServicePT"

operation="bill" inputVariable="billRequest" />
10 </advice>
11 </aspect>

Listing 3.10: Aspect defining generic billing concepts

case in Listing 3.9. The precedence may also vary over several deployments of the same
aspect type, as it is bound to the aspect instance and not to the aspect type. Further-
more, the precedence specification can be limited to specific processes, allowing a cus-
tom precedence specification for each process or group of processes if necessary. This
aspect precedence scheme was influenced by the connector construct in JASCO (cf. Sec-
tion 2.2.2). PADUS’s explicit deployment construct is an improvement on existing AOP
approaches for workflows, where aspect deployment is implicit.

3.4 Case Study: The Billing Concern

In this section, we show how PADUS can be used to add the billing concern to a multi-
party conference call process. Two types of billing schemes are supported: a fixed fee
billing scheme where the end user should pay a fixed price at the end of the conference
call, and a duration billing scheme where the price is determined by the duration of the
conference call. Three aspects are used to represent these two billing schemes:

1. A generic billing aspect (cf. Listing 3.10) defines concepts common to both billing
schemes: the billing service partner link and message definitions (lines 2–5), the
pointcuts representing the start and end of a conference call (lines 6 and 7), and
an advice for invoking the billing service (lines 8–10).

2. The fixed fee billing aspect (cf. Listing 3.11) defines one advice, which invokes the
billing service with a fixed price of 1.50 EUR at the end of the conference call.

3. The duration billing aspect (cf. Listing 3.12) defines two advices: the first advice
(lines 6–13) stores the start time of the conference call in a new variable (line 4),
while the second advice (lines 14–29) uses this time to calculate the price of the
conference call based on its duration and then invokes the billing service.

47

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

1 <aspect name="performFixedFeeBilling">
2 <include name="performBilling" />
3 <after joinpoint="Joinpoint" pointcut="confCallEnds(Joinpoint)">
4 <bpel:sequence>
5 <bpel:assign>
6 <bpel:copy>
7 <bpel:from>
8 <bpel:literal>
9 <price currency="EUR" xmlns="billing.example.com/xsd">

10 1.50
11 </price>
12 </bpel:literal>
13 </bpel:from>
14 <bpel:to variable="billRequest" part="payload" />
15 </bpel:copy>
16 </bpel:assign>
17 <advice name="bill" />
18 </bpel:sequence>
19 </after>
20 </aspect>

Listing 3.11: Aspect implementing a fixed fee billing scheme

The logic needed for adding billing to the conference call process is now cleanly mod-
ularized in these aspects. Without an aspect mechanism, the BPEL code that is specified
in the aspects’ advice would need to be inserted at each of the joinpoints manually, re-
sulting in significant code duplication across the process. Thus, the aspect mechanism
helps to keep the complexity of the process under control. Any of the two concrete billing
aspects can now be combined with the conference call process, or any other process,
which facilitates reuse. The billing scheme can now be modified more easily, as well,
because all billing logic is encapsulated in just a few aspects.

The aspect deployment specification that was already provided in Listing 3.9 spec-
ifies how the above aspects should be instantiated and composed: both the logSms-
ServiceInvocations and performFixedFeeBilling aspects are applied to the Con-
ferenceCall process, and the precedence of both aspects’ before and after advices is
specified.

3.5 Architecture and Implementation

3.5.1 Architecture

The implementation of PADUS employs a statically woven approach, which guarantees
the absence of runtime overhead. This choice is guided by the application domain: be-
cause PADUS is used to describe real-time processes in a telecom Service Delivery Plat-
form, performance is important. Another important advantage is that a statically woven
approach does not require a dedicated execution platform, which could limit the com-
patibility of the implementation with existing tool chains.

48

3.5 Architecture and Implementation

1 <aspect name="performDurationBilling">
2 <include name="performBilling" />
3 <using>
4 <bpel:variable name="startTime" type="func:time" />
5 </using>
6 <before joinpoint="Joinpoint" pointcut="confCallStarts(Joinpoint)">
7 <bpel:assign>
8 <bpel:copy>
9 <bpel:from>func:getCurrentTime()</bpel:from>

10 <bpel:to variable="startTime" />
11 </bpel:copy>
12 </bpel:assign>
13 </before>
14 <after joinpoint="Joinpoint" pointcut="confCallEnds(Joinpoint)">
15 <bpel:sequence>
16 <bpel:assign>
17 <bpel:copy>
18 <bpel:from>
19 func:calculatePrice(
20 bpel:getVariableProperty("startTime", "func:time"),
21 "EUR",
22 "0.40")
23 </bpel:from>
24 <bpel:to variable="billRequest" part="payload" />
25 </bpel:copy>
26 </bpel:assign>
27 <advice name="bill" />
28 </bpel:sequence>
29 </after>
30 </aspect>

Listing 3.12: Aspect implementing a duration billing scheme

Figure 3.1 illustrates the architecture of the PADUS weaver. The weaver statically
weaves a number of aspects into a base BPEL process according to an aspect deploy-
ment specification. The result is a woven BPEL process that can be deployed on any
standard BPEL engine, such as ACTIVEBPEL (Active Endpoints, 2006) or ODE (Apache
Software Foundation, 2009). In the WIT-CASE project, the BPEL engine was a part of a
larger Service Delivery Platform, in which the engine was linked to existing telecom ser-
vices using an Enterprise Service Bus. A Service Creation Environment (SCE) has been
developed, which allows visual configuration of telecom service compositions based on
BPEL and PADUS. This SCE is discussed in detail in Section 3.6.

3.5.2 Weaver Implementation

The PADUS weaver can be downloaded from the PADUS website (Joncheere et al., 2009).
Because our pointcut language is based on logic concepts, we have opted to implement
our weaver using PROLOG. The weaver’s input are the path to an input directory (con-
taining a BPEL4WS process and any number of PADUS aspects), the name of a PADUS

deployment file, and the path to an output directory. The weaver will start by parsing the

49

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Standard BPEL engine
(e.g., ActiveBPEL or ODE)

Woven
BPEL

process

Static
weaver

Base
BPEL

process Aspects
Aspect

deployment
specification

Service Composition Environment

Service Delivery Platform

Figure 3.1: PADUS weaver architecture

deployment file. The referenced BPEL4WS process and each of the referenced PADUS

aspects are parsed using the SWI-PROLOG XML parser and are thus asserted as PROLOG

facts. The weaver will then iterate over each of the PADUS aspects’ advices in the order
specified by the deployment file, and will change the BPEL4WS process accordingly.

For each advice, the specified logic query is evaluated in order to determine the join-
points where the advice’s behavior should be added. It is at this point that the benefits
of using PROLOG for implementing our weaver are most evident, as it greatly facilitates
implementing our high-level pointcut language.2 After the query has been evaluated,
the behavior is added to the BPEL4WS process. When all the advices have been woven,
the modified BPEL4WS process is translated from PROLOG facts back to BPEL4WS XML
code, and the weaver terminates.

3.6 The Service Creation Environment

3.6.1 Overview

In the context of the WIT-CASE project, we have developed a Service Creation Environ-
ment (SCE) that allows user-friendly composition of services (Braem et al., 2006a,b). The

2The weaver could be implemented just as well in a more traditional language, but this would likely require
more effort to implement the pointcut language.

50

3.6 The Service Creation Environment

Documented
Services

Documented
Composition
Templates

S1

S2

A B

C

S1 S2

S3

Service composition
and creation

B1

B2

Adding, for example,
coordination or
billing concerns

Documented
Crosscutting

Concerns

Service execution
Check for feature interaction
and invoke "handling" code

dynamically

Figure 3.2: Service Creation Environment architecture

architecture of the SCE is illustrated by Figure 3.2. The SCE contains three repositories:

1. A set of documented services, which are the basic building blocks of the SCE. Each
service’s interface is documented by a WSDL description. Optionally, a service’s
WSDL description may specify a number of basic quality of service properties, or
a service’s external protocol may be documented by a BPEL4WS process.

2. A set of documented composition templates, which allow reusing predefined pat-
terns for composing services. Composition templates are represented by abstract
BPEL4WS processes, and can be generated from existing BPEL4WS processes or
BPMN diagrams. Composition templates are not yet bound to concrete services,
but instead contain service placeholders, which may specify quality of service con-
straints.

3. A set of documented crosscutting concerns, which allow applying predefined cross-
cutting behavior to service compositions. Crosscutting concerns are represented
by PADUS aspects. Similar to composition templates, crosscutting concerns are
not yet bound to concrete services, and may thus contain placeholders.

Figure 3.3 is a screenshot of the SCE. At the center of the screen, an editor view con-
tains a large canvas and a smaller palette. The canvas shows a graphical view of the
service composition that is being created. The palette lists the available services, com-
position templates and crosscutting concerns, and allows dragging these to the canvas.
Composition templates can be bound to concrete services by dragging services onto
their placeholders. Crosscutting concerns can be connected to composition templates
in order to apply crosscutting behavior such as billing. By double-clicking on a service
or composition template, the configured editor for that service or composition template

51

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Canvas

Properties & Verification Report

Palette Outline

Figure 3.3: Service Creation Environment screenshot

is launched. By default, a BPMN editor is used, but other process modeling notations
or languages can be used to visualize the internal representation of a service or compo-
sition template, as well. The outline view (at the right of the screen) shows a tree-based
overview of the composition, and the properties view (at the bottom of the screen) shows
the properties of the element that is currently selected in the editor view or in the outline
view.

Based on the documentation of the composed elements, the SCE can guide the user
in creating valid service compositions. In Section 3.6.2, we explain how this is accom-
plished.

3.6.2 Guiding the Service Composition Process

3.6.2.1 Protocol Verification

An important requirement of the SCE is that it supports and guides users in creating valid
compositions. The SCE accomplishes this by verifying whether compositions are valid
while they are created: when a service is dragged onto a placeholder, the SCE checks
whether the service’s protocol is compatible with the composition template’s protocol.
In case the service turns out to be incompatible, a report is generated that provides mis-
match feedback to the user. Compatibility checking based on protocols rather than plain
APIs is possible because every service is explicitly documented with a protocol specifi-
cation expressed in BPEL.

52

3.6 The Service Creation Environment

In literature, a wealth of research exists on the topic of protocol verification (Camp-
bell and Habermann, 1974; van den Bos and Laffra, 1991; Luckham et al., 1995; Yellin
and Strom, 1997; Reussner, 2003). Our verification engine is based on the PacoSuite ap-
proach (Wydaeghe, 2001), which introduces algorithms based on automata theory to
perform protocol verification. In order to provide protocol verification in the SCE, the
BPEL specifications of each service, aspect and composition template are translated into
deterministic finite automata (DFA). By applying the algorithms introduced by the Paco-
Suite approach, the SCE can decide whether the service’s protocol is compatible with the
composition template’s protocol. More specifically, the PacoSuite algorithm consists of
constructing an automaton that covers the complete composition by taking a special-
ized intersection of the composition template’s automaton with each service’s automa-
ton. The composition is invalid when the resulting automaton is empty (i.e., no path
from a start to stop state). In that case a report is generated that pinpoints which op-
erations of which service does not follow the composition template’s protocol. In case
more detail is required, the user can also view the generated automaton. Because the
algorithm is based on taking intersections of automatons, the resulting performance is
in the worst case exponential with respect to the size of the input automata. Notice that
the algorithm is only executed at composition time and thus does not interfere with the
running application.

It is possible that an aspect adapts the external protocol of an existing service (e.g., by
adding an invocation) so that it becomes incompatible with the composition template’s
protocol. Our tool therefore employs the PADUS weaver both on the composition tem-
plate and on the services’ BPEL protocol specification before translating them to DFAs.
As such, the effect of the aspect on the external protocol of the composition template
and services is visible and can be taken into account by the verification engine.

3.6.2.2 Guideline Verification

In the context of the WIT-CASE project, the partners have identified a non-exhaustive
list of conditions that can apply to service compositions in order to ensure efficient ex-
ecution. The SCE enables the implementation of guidelines that statically check these
conditions and detect bad smells in service compositions. These guidelines are optional
and can be enabled and disabled by the service designer in the SCE. We list some of these
guidelines here:

• Quality-of-service. In a composition template, execution time constraints may be
specified on placeholders for services, which limit the services that can be used to
those that have an execution time bounded within these constraints.

• Short-lived real-time processes. This guideline is closely related to the quality-
of-service guideline, but takes the execution time of the complete real-time part
of the composition (instead of operations on single services) into account. The
minimal execution time of the real-time process can be computed from the mod-
eled service composition, and the SCE generates a warning if this execution time
exceeds a certain predefined amount of time.

53

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Figure 3.4: SCE guideline verification report

• Concurrency. Handling tasks concurrently improves efficiency because indepen-
dent tasks do not have to wait for others to finish. This guideline verifies if activities
are situated in concurrent branches.

• Asynchrony. The asynchrony guideline verifies that the invocations used in the
composition are always asynchronous.

To illustrate the quality-of-service guideline we go back to the running example. The
composition template requires a messaging service to notify the participants of the con-
ference call of any errors. Imagine that the composition designer has two different ser-
vices available that handle messaging: one works by sending a text message to the par-
ticipants’ phones, the other by sending an email to the participants. In the documenta-
tion for these services, it is declared that sending an SMS message takes 10 time units,
while sending an email takes 5 time units. The composition templates states that using
the messaging service can take a maximum of 5 time units, so only the email messaging
service is accepted by the guideline.

Figure 3.4 shows a screenshot of the output of the guideline verification in the SCE.
Two warnings are shown. The first one reports the violation of the quality-of-service by
the concrete SMS service as explained above. The second warning indicates that the
asynchrony guideline is violated because a synchronous invocation is found in the com-
position specification of the conference call composition. The error shown in the screen-
shot in Figure 3.4 specifies that the composition is not complete because the “BCC”
placeholder is not yet filled in.

3.6.2.3 Code Generation and Deployment

When the composition is complete and verified, the user may choose to generate the re-
sulting composition and deploy it on a BPEL engine. This will start the code generation
process, which will bind the unbound partner links in the composition templates. An
aspect deployment is automatically generated for the aspects contained in the composi-
tion. The PADUS weaver is then employed to weave the aspects into the resulting BPEL
processes based on the aspect deployment specification. A resulting composition can
be imported back into the library as a new service. The generated BPEL process then
serves as documentation for the new service. Apart from specifying a name for the new
service, this process is also automated.

54

3.7 Summary

3.7 Summary

In this chapter, we present the PADUS language, an aspect-oriented extension to BPEL
that constitutes our first approach for modularization of concerns in workflows. Inspired
by the context of the WIT-CASE project, which addressed the orchestration of web ser-
vices in a telecom Service Delivery Platform using BPEL, the approach promotes sepa-
ration of concerns in BPEL processes by allowing crosscutting concerns to be specified
in separate aspects. It addresses the requirements listed in Section 3.2 as follows:

1. We provide a rich joinpoint model that consists of all BPEL activities.

2. We employ a high-level, logic pointcut language that makes pointcuts less depen-
dent on the concrete XML document structure of BPEL processes. The pointcuts
are thus less fragile with respect to evolution of the base processes. The pointcut
language allows reuse of user-defined pointcut predicates.

3. We support the three basic advice types that were identified in general aspect-ori-
ented research, i.e., before, after, and around.

4. We introduce the concept of an in advice to add new behavior to existing workflow
elements, and thus address some of the specifics of the workflow paradigm.

5. We use BPEL as the advice language.

6. We provide an explicit deployment construct that allows instantiating aspects and
applying them to BPEL processes. Aspect composition is tackled by a precedence
specification that may vary across different BPEL processes, aspect instances, and
advice types.

7. We provide an efficient implementation strategy, i.e., static weaving of BPEL pro-
cesses and PADUS aspects.

8. We promote compatibility with the existing tool chain, as we do not impose a ded-
icated BPEL engine.

Table 3.6 compares PADUS to the state of the art in AOP for BPEL as it was discussed
in Section 3.2. It should be clear that PADUS addresses our requirements significantly
better than AO4BPEL and the approach by Courbis and Finkelstein.

Although the above contributions imply a significant improvement over the state of
the art in aspect-oriented programming for workflows, we believe that by going beyond
the specific context of the WIT-CASE project and adding a number of features compared
to our first approach, we can obtain an approach that facilitates separation of concerns
in workflows even more. This second approach is developed in the following chapters.

55

Chapter 3. Modularization of Crosscutting Workflow Concerns using PADUS

Courbis and
Requirement AO4BPEL Finkelstein PADUS

A rich joinpoint model − + +
A high-level pointcut language − − +
Basic advice types + ± +
Workflow-specific advice types − − ±
BPEL as the advice language + + +
An explicit deployment construct − − +
An efficient implementation strategy ± ± +
Compatibility with the existing tool chain − − +

Table 3.6: Evaluation of PADUS

56

Chapter 4

Uniform Modularization of Workflow
Concerns using UNIFY

This chapter presents a more ambitious approach for modularization of concerns
in workflows than the one presented in the previous chapter. The approach, which is
called UNIFY, has a wider scope than PADUS in that it is aimed at modularizing all
workflow concerns (i.e., not only crosscutting ones), provides advice types that recog-
nize the specific characteristics of the workflow paradigm, and is applicable to multi-
ple workflow languages. In this chapter, we describe our motivation and requirements,
provide an overview of the approach, and introduce the meta-models that lie at the
heart of UNIFY. In Chapters 5–7, we discuss a number of other essential characteristics
of the approach, i.e., its execution semantics, domain-specific layer, and implementa-
tion, in more detail.

4.1 Motivation and Requirements

The specific context in which PADUS was developed, i.e., the WIT-CASE project, has
guided the design of the approach. When evaluating the scope of the approach, the fol-
lowing limitations can be observed:

• PADUS only targets modularization of crosscutting concerns.

• PADUS only provides one workflow-specific advice type, i.e., the in advice type.

• PADUS only targets BPEL, which — though the most popular — is not the only
workflow language available.

By addressing these limitations, we can obtain an approach that is more widely ap-
plicable and that tackles the problem of separation of concerns in workflows in a more
effective way. Therefore, this chapter will introduce our second approach for modular-
ization of concerns in workflows, which is significantly wider in scope than PADUS.

57

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Consider the order handling workflow in Figure 4.1, which we have already used in
Chapter 2. The workflow starts at the start event at the top of the figure. It first performs
the Login and SelectBooks activities in parallel. The workflow then proceeds with the
SpecifyOptions activity, after which the control flow is split again. A first branch contains
the Pay and SendInvoice activities, while a second branch contains the ProcessOrder and
Ship activities. The VerifyBankAccount activity synchronizes both branches: the Ship
activity cannot be executed before the Pay and VerifyBankAccount activities have been
executed. The last activity to be executed is the ProcessReturns activity, after which the
workflow ends at the end event. Note that only the contents of the SelectBooks, Pay, and
Ship activities are shown, whereas the contents of other activities are omitted in the in-
terest of clarity. In addition to its specification in BPMN, we have implemented the order
handling workflow in WS-BPEL.1 In this implementation, the workflow specification as
it is shown in Figure 4.1 is augmented with a data perspective and activities related to
user interaction.

Like any realistic software application, the workflow in Figure 4.1 consists of several
concerns — parts that are relevant to a particular concept, goal, or purpose — which are
connected in order to achieve the workflow’s desired behavior. The main concern is ob-
viously order handling. This concern has already been hierarchically decomposed into
sub-concerns — such as book selection, payment, and shipping — using the composite
activity construct. Other concerns are preference saving, reporting, and bank account
verification, which occur at various places across the workflow. The general software
engineering notion of separation of concerns (Dijkstra, 1982) refers to the ability to iden-
tify, encapsulate, and manipulate such concerns in isolation of each other. Separation of
concerns is traditionally accomplished by decomposing software into modules, which
is associated with benefits regarding development time, product flexibility, and com-
prehensibility (Parnas, 1972). However, many current workflow languages do not allow
effectively decomposing workflows into different modules. For example, a workflow ex-
pressed using BPEL is a single, monolithic XML file that cannot be straightforwardly
divided into sub-workflows. This lack of modularization mechanisms makes it hard to
add, maintain, remove, or reuse concerns. In order to improve separation of concerns
in workflows, workflow languages should allow concerns to be specified in isolation of
each other.

However, allowing concerns to be specified in isolation of each other is not sufficient:
in order to obtain the desired workflow behavior, workflow languages should also pro-
vide a means of specifying how workflow concerns are connected to each other. In ex-
isting workflow languages, the only kind of connection that is supported is typically the
classic sub-workflow pattern: a main workflow explicitly specifies that a sub-workflow
should be executed. The choice of which sub-workflow is to be executed is made at
design time, and it is hard to make a different choice afterwards. A mechanism that re-
duces the coupling between main workflow and sub-workflow is therefore desirable. In

1The size of the resulting XML document prevents us from providing it as an appendix to this dissertation.
The entire WS-BPEL specification, together with related documents such as WSDL descriptions of the work-
flow and any referenced web services, as well as the decomposition of the WS-BPEL specification into separate
concerns, can be downloaded from the UNIFY website at http://www.unify-framework.org/OrderBooks.
tgz.

58

http://www.unify-framework.org/OrderBooks.tgz
http://www.unify-framework.org/OrderBooks.tgz

4.1 Motivation and Requirements

OrderHandling

SelectBooks

Search
Book

Confirm

AddBook
OrContinue

Confirm
OrContinue

Save
Preference

Report

Add
Book

Save
Preference

Login

Specify
Options

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment

Info

Wire
Transfer
Payment

Payment
Method

Report

Report

Report

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Report

Report

Process
Order

Process
Returns

Legend

Start event

End event

AND-split (one incoming
transition) or AND-join
(one outgoing transition)

XOR-split (one incoming
transition) or XOR-join
(one outgoing transition)

Transition

Activity

Send
Invoice

Verify
Bank

Account

Figure 4.1: Example order handling workflow, expressed using BPMN

the workflow in Figure 4.1, one could for example vary the behavior of the workflow by
deploying a different Pay sub-workflow in different situations.

A second kind of connection between concerns is useful when concerns crosscut a
workflow: some concerns cannot be modularized cleanly using the sub-workflow de-
composition mechanism, because they are applicable at multiple locations in the work-
flow. The reporting concern, for example, is present at several locations in the work-
flow in Figure 4.1. The sub-workflow construct does not solve this problem, since sub-
workflows are called explicitly from within the main workflow. This makes it hard to add,
maintain, remove or reuse such crosscutting concerns. This problem has been observed
in general aspect-oriented research (Kiczales et al., 1997). Aspect-oriented extensions to
BPEL, such as AO4BPEL, the approach by Courbis and Finkelstein, and PADUS, allow
specifying crosscutting concerns in separate aspects. An aspect allows specifying that a
certain workflow fragment, called an advice, should be executed before, after, or around a
specified set of activities in the base workflow. In the workflow in Figure 4.1, one could for

59

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

example specify that the Report activity needs to be performed after the Confirm activity
and after each of the three Payment and two Ship activities, without explicitly invoking
the Report activity at each of those places. However, these aspect-oriented extensions
use a new language construct for specifying crosscutting concerns, i.e., aspects. This
means that concerns which are specified using the aspect construct can only be reused
as an aspect, and not as a sub-workflow. On the other hand, concerns which are speci-
fied using the sub-workflow construct can only be reused as a sub-workflow, and not as
an aspect. Thus, we identify the following requirement:

Requirement 1. A uniform modularization mechanism that allows specifying both reg-
ular and crosscutting concerns using the same language construct.

Moreover, existing aspect-oriented extensions only support the basic concern con-
nection patterns (before, after, or around) that were identified in general aspect-orient-
ed research, and do not sufficiently consider the specific characteristics of the workflow
paradigm. They lack support for other patterns such as parallelism and choice. For ex-
ample, the before, after, or around patterns do not provide an elegant way of specify-
ing that the SavePreference activity should be performed in parallel with the SearchBook
and AddBook activities. Furthermore, it is completely impossible to specify more ad-
vanced connections between concerns, e.g., specifying that the VerifyBankAccount ac-
tivity should be executed after the Pay activity has been executed and before the Ship
activity is executed, which would thus synchronize the two parallel branches by intro-
ducing a new AND-split and -join in the order handling workflow. Thus, we identify the
following requirements:

Requirement 2. A coherent collection of workflow-specific concern connection patterns.

Requirement 3. A means of connecting workflow concerns according to the above concern
connection patterns.

Because the correct execution of workflows is of vital importance to an organization,
a long tradition of formal verification of workflows exists. For example, the execution se-
mantics of WS-BPEL has been formalized using Petri nets (Lohmann, 2007), and YAWL
has been developed by augmenting high-level Petri nets with additional constructs (thus
obtaining extended workflow nets; cf. van der Aalst and ter Hofstede, 2005). Because new
modularization mechanisms have a significant impact on the semantics of their base
language, it is important that these modularization mechanisms fit into this existing for-
mal tradition. Thus, we identify the following requirement:

Requirement 4. An execution semantics that is compatible with existing research on exe-
cution semantics of workflow languages.

The abstractions offered by existing modularization approaches for workflows typ-
ically remain at the same level as the base workflow: concerns are implemented using
the constructs of the base workflow language, which may not be ideally suited for ex-
pressing the concern in question. Although existing aspect-oriented extensions improve
separation of concerns, they introduce additional complexity in the implementation of

60

4.2 Approach

a workflow. This complexity must be bridged in order to communicate the implemen-
tation of a workflow to the domain experts who identified the process that is automated
by the workflow. For example, if we were to add some kind of access control concern
to the workflow in Figure 4.1 that specifies that only premium customers are allowed to
specify options using the SpecifyOptions activity, we would need to introduce a new XOR-
split and XOR-join around the activity, with conditions that query the data perspective
of the workflow in order to find out whether the currently logged in user is a premium
customer or not. This requires detailed knowledge of how users are represented in the
workflow’s implementation. Inspired by the benefits of domain-specific languages in
software engineering (van Deursen et al., 2000), we believe that a means of expressing
workflow concerns using abstractions that are close to the concerns’ domains can fa-
cilitate expressing workflow concerns, and can improve communication with domain
experts. Thus, we identify the following requirement:

Requirement 5. A means of expressing workflow concerns using abstractions that are
close to the concerns’ domains.

An additional disadvantage of existing aspect-oriented extensions to workflow lan-
guages is that they are all targeted at BPEL, and cannot be applied easily to other work-
flow languages. Each of these extensions also favors a specific implementation tech-
nique; for example, AO4BPEL and the approach by Courbis and Finkelstein can only
be executed using a dedicated BPEL4WS engine. Although this has the advantage that it
facilitates adding dynamic features to the modularization mechanism, it precludes com-
patibility with existing tool chains. We aim for our approach to be applicable to several
concrete workflow languages, and to be independent of a dedicated workflow engine.
Thus, we identify the following requirements:

Requirement 6. A means of applying the modularization mechanism to several concrete
workflow languages.

Requirement 7. An implementation that is independent of a dedicated workflow engine.

This concludes the identification of our requirements. In the following section, we
introduce the approach taken to fulfill these requirements.

4.2 Approach

Our approach, which is called UNIFY, addresses each of the requirements we identified
in the previous section, and which are summarized in Table 4.1. At the heart of UNIFY

lies a base language meta-model that allows specifying both regular and crosscutting
concerns using the same construct (Requirement 1). We identify a coherent collection
of patterns that describe the ways in which such uniform workflow concerns can be
connected to each other (Requirement 2). We propose a connector mechanism that al-
lows connecting workflow concerns according to these patterns (Requirement 3). Both
our base language and our connection mechanism have an explicit execution seman-
tics based on Petri nets (Requirement 4). On top of the base language and connector

61

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Requirement Cf.
1. A uniform modularization mechanism Section 4.3
2. Workflow-specific concern connection patterns Section 4.4
3. A means of connecting workflow concerns Section 4.5
4. An explicit execution semantics Chapter 5
5. Support for concern-specific abstractions Chapter 6
6. Applicable to several concrete languages Chapter 7
7. Independent of a dedicated workflow engine Chapter 7

Table 4.1: Requirements for UNIFY

mechanism, we build a concern-specific layer that allows specifying concerns using ab-
stractions that map closely to the domain of the concern at hand (Requirement 5). The
base language meta-model is instantiated towards several concrete workflow languages
(Requirement 6), and our implementation is a pre-processor that is compatible with ex-
isting tool chains (Requirement 7).

In the following sections and chapters, we describe each of the above topics in more
detail. The UNIFY base language is described in Section 4.3. In Section 4.4, we identify a
coherent set of workflow-specific concern connection patterns, which are implemented
by our connector mechanism that is described in Section 4.5. Our semantics is described
in Chapter 5, our concern-specific layer is described in Chapter 6, and the instantiation
and implementation of UNIFY are described in Chapter 7. In Table 4.1, we specify the
mapping from each of our requirements to each of these sections and chapters.

4.3 Base Language

In this section, we describe the UNIFY base language, which defines how workflow con-
cerns are implemented as independent modules. The base language’s control flow per-
spective is introduced in Section 4.3.1, whereas the data perspective is introduced in
Section 4.3.2.

4.3.1 Control Flow Perspective

UNIFY is designed to be applicable to a range of concrete workflow languages, as long
as they conform to a number of basic assumptions. These assumptions are expressed
in UNIFY’s meta-model for implementing workflow concerns. We do not restrict our-
selves to any particular concrete workflow language as long as it can be defined as an
extension to this meta-model. The meta-model allows expressing arbitrary workflows
(Kiepuszewski et al., 2000), i.e., workflows in which every split does not necessarily need
to have a corresponding join, and is therefore also compatible with more restricted work-
flows such as structured workflows (Kiepuszewski et al., 2000).

Figure 4.2 provides the meta-model for the control flow perspective of the UNIFY

base language. The meta-model is expressed using UML class diagrams (Object Man-
agement Group, 2007), with further well-formedness constraints specified in OCL (Ob-

62

4.3 Base Language

ject Management Group, 2006). A workflow concern is modeled as a CompositeActivity.
Each CompositeActivity has the following children:

1. A StartEvent, which represents the point where the CompositeActivity’s execution
starts.

2. An EndEvent, which represents the point where the CompositeActivity’s execution
ends.

3. Any number of Activities, which are the units of work that are performed by the
CompositeActivity.

4. Any number of ControlNodes, which are used to route the CompositeActivity’s con-
trol flow.

5. One or more Transitions, which connect the StartEvent, the EndEvent, the Activi-
ties and the ControlNodes to each other.

An Activity is either a CompositeActivity or an AtomicActivity. Nested CompositeAc-
tivities can be used to hierarchically decompose a concern, similar to the classic sub-
workflow decomposition pattern. Each Activity has a name that is unique among its sib-
lings in the composition hierarchy, and has one ControlInputPort and one ControlOut-
putPort. A ControlInputPort represents the point where control enters an Activity, while
a ControlOutputPort represents the point where control exits an Activity. Each Con-
trolPort has a name that is unique among its siblings. Within a CompositeActivity, the
StartEvent is used to specify where the CompositeActivity’s execution should start when
its ControlInputPort is triggered. The EndEvent is used to specify where the Composite-
Activity’s execution should finish, and will cause the CompositeActivity’s ControlOutput-
Port to be triggered. Thus, a StartEvent only has a ControlOutputPort, and an EndEvent
only has a ControlInputPort.

Transitions define how control flows through a CompositeActivity. This is done by
connecting the ControlOutputPorts of the CompositeActivity’s Nodes to ControlInput-
Ports. ControlNodes can be used to route the control flow, and are either AndSplits, Xor-
Splits, AndJoins or XorJoins. A Split may have a corresponding Join. Together, Transi-
tions and ControlNodes define a CompositeActivity’s control flow perspective.

As is shown in Table 4.2, the meta-model supports the basic control flow patterns
(Russell et al., 2006a), which are sufficient for expressing most workflows. We do not aim
to support more advanced patterns such as cancellation patterns and multiple instances
patterns, as our focus lies with the expressiveness of the modularization mechanism
rather than with the expressiveness of the individual modules. Due to the generic na-
ture of the UNIFY base language meta-model, the cores of most workflow languages are
compatible with it. For example, we have extended the meta-model towards the cores of
the WS-BPEL and BPMN workflow languages, which are the two languages most pop-
ular in current workflow research (cf. Chapter 7).

63

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Tr
an
si
tio
n

de
st

in
at

io
n

C
om

po
si
te
A
ct
iv
ity

A
to
m
ic
A
ct
iv
ity

 na
m

e
co

nd
iti

on

C
on
tr
ol
Po
rt

C
on
tr
ol
In
pu
tP
or
t

C
on
tr
ol
O
ut
pu
tP
or
t

A
ct
iv
ity

0.
.*

0.
.*

0.
.1

St
ar
tE
ve
nt

En
dE
ve
nt

0.
.*

pa
re

nt

ch
ild

re
n

co
nt

ro
lIn

co
nt

ro
lO

ut
{o

rd
er

ed
}

Jo
in

Sp
lit

A
nd
Sp
lit

Xo
rS
pl
it

A
nd
Jo
in

Xo
rJ
oi
n

0.
.1

0.
.1

0.
.1

0.
.1

an
dJ

oi
n

xo
rJ

oi
n

xo
rS

pl
it

an
dS

pl
it

...
 c

or
re

sp
on

ds
 to

 ..
. ▶

...
 c

or
re

sp
on

ds
 to

 ..
. ▶

C
on
tr
ol
N
od
e

 na
m

eN
od
e

Ev
en
t

so
ur

ce 1
1

0.
.1

0.
.1

co
nt

ex
t

St
ar

tE
ve

nt
:

se
lf

.c
on

tr
ol

In
->

si
ze

()
 =

 0
an

d
se

lf
.c

on
tr

ol
Ou

t-
>s

iz
e(

)
=

1

co
nt

ex
t

En
dE

ve
nt

:
se

lf
.c

on
tr

ol
In

->
si

ze
()

 =
 1

an
d

se
lf

.c
on

tr
ol

Ou
t-

>s
iz

e(
)

=
0

co
nt

ex
t

Ac
ti

vi
ty

:
se

lf
.c

on
tr

ol
In

->
si

ze
()

 =
 1

an
d

se
lf

.c
on

tr
ol

Ou
t-

>s
iz

e(
)

=
1

co
nt

ex
t

Sp
li

t:
se

lf
.c

on
tr

ol
In

->
si

ze
()

 =
 1

an
d

se
lf

.c
on

tr
ol

Ou
t-

>s
iz

e(
)

>
0

co
nt

ex
t

Jo
in

:
se

lf
.c

on
tr

ol
In

->
si

ze
()

 >
 0

an
d

se
lf

.c
on

tr
ol

Ou
t-

>s
iz

e(
)

=
1

pa
re

nt
pa

re
nt

1
1

tra
ns

iti
on

tra
ns

iti
on

co
nt

ex
t

Co
mp

os
it

eA
ct

iv
it

y:
se

lf
.c

hi
ld

re
n-

>c
ou

nt
(c

 |
 c

.o
cl

Is
Ty

pe
Of

(S
ta

rt
Ev

en
t)

)
=

1
an

d
se

lf
.c

hi
ld

re
n-

>c
ou

nt
(c

 |
 c

.o
cl

Is
Ty

pe
Of

(E
nd

Ev
en

t)
)

=
1

an
d

se
lf

.c
hi

ld
re

n-
>f

or
Al

l(
c1

,
c2

 |

c1

 <
>

c2
 i

mp
li

es
 c

1.
na

me
 <

>
c2

.n
am

e)

co
nt

ex
t

No
de

:
se

lf
.c

on
tr

ol
In

->
un

io
n(

se
lf

.c
on

tr
ol

Ou
t)

->
fo

rA
ll

(c
1,

 c
2

|

c1

 <
>

c2
 i

mp
li

es
 c

1.
na

me
 <

>
c2

.n
am

e)

F
ig

u
re

4.
2:

T
h

e
U

N
IF

Y
b

as
e

la
n

gu
ag

e
m

et
a-

m
o

d
el

64

4.3 Base Language

Basic workflow pattern Corresponding UNIFY construct(s)
WCP-1. Sequence A Transition that connects a source Activity

to a destination Activity
WCP-2. Parallel split An AndSplit with its incoming Transition

and outgoing Transitions
WCP-3. Synchronization An AndJoin with its incoming Transitions

and outgoing Transition
WCP-4. Exclusive choice An XorSplit with its incoming Transition

and outgoing Transitions
WCP-5. Simple merge An XorJoin with its incoming Transitions

and outgoing Transition

Table 4.2: Mapping from basic workflow patterns (Russell et al., 2006a) to corresponding
UNIFY constructs

Using UNIFY’s base language, the different concerns that would otherwise have to be
specified in a single, monolithic workflow, can be implemented as separate modules.2

In the example from Figure 4.1, the concerns are, among others, order handling, book
selection, payment, shipping, preference saving, reporting, and bank account verification.
Figure 4.3 illustrates how these concerns could be specified separately. Note that each
of the composite activities in Figure 4.3 contains less activities than the corresponding
composite activity in Figure 4.1.

In Section 4.3.2, we describe how the control flow perspective of concerns can be
augmented with a data perspective. In Sections 4.4 and 4.5, we describe how indepen-
dently specified concerns can subsequently be connected to each other.

4.3.2 Data Perspective

In Section 4.3.1, we introduced the control flow perspective of UNIFY’s workflows. In
this section, we introduce UNIFY’s default data perspective, which is layered on top of
the control flow perspective. Existing research (Russell et al., 2004a) has identified the
following approaches for passing data from one activity to another:

• Integrated control and data channels. In this approach, control flow and data
are passed simultaneously between activities, and transitions are annotated with
which data elements must be passed. Activities can only access data that has been
passed to them by an incoming transition.

• Distinct control and data channels. In this approach, data is passed between ac-
tivities via explicit data links that are distinct from control flow links (i.e., transi-
tions). Activities can only access data that has been passed to them by an incoming
data link.

2Deciding which concerns should be modularized is partly a matter of personal preference, and is not the
focus of our research.

65

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

OrderHandling

Specify
Options

Process
Returns

Login

Select
Books

Pay

Process
Order Ship

SelectBooks

Search
Book Confirm

AddBook
OrContinue

Confirm
OrContinue

Add
Book

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Info

Wire
Transfer
Payment

Payment
Method

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Save
Preference Report

Verify
Bank

Account

Send
Invoice

Figure 4.3: Independently specified workflow concerns

• No data passing. In this approach, activities share the same data elements, typi-
cally via access to some common scope. Thus, no explicit data passing is required.
Activities can only access data that has been defined in a surrounding scope.

The no data passing approach is the most popular approach in current workflow lan-
guages, and most notably in BPEL. For example, BPEL activities can be grouped using
the <scope> activity, which allows defining a number of variables that can be accessed
from within the scope. Scopes can be nested in order to define elaborate hierarchies.

In the context of our instantiation towards WS-BPEL, we have defined an extension
to the UNIFY meta-model for the no data passing approach. This extension is provided
in Figure 4.4, and encompasses associating every CompositeActivity with a Scope, which
defines any number of Variables. These Variables can then be manipulated using a num-
ber of AtomicActivities. Scopes form a hierarchy that mimics the composition hierarchy
of their corresponding CompositeActivities. We do not foresee any fundamental obsta-
cles to defining extensions to the UNIFY meta-model for the other two approaches.

66

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

CompositeActivity Scope

name
Variable

AtomicActivity

... defines ... ▶
1 1

... uses ... ▶
0..* 0..*

1

0..*

/parent
0..10..*

Figure 4.4: The UNIFY data meta-model for the no data passing approach

4.4 A Coherent Collection of Workflow-Specific Concern Connection
Patterns

4.4.1 Existing Workflow Patterns

After identifying a number of workflow concerns and modeling them using the Compos-
iteActivity construct, these different concerns need to be composed according to certain
patterns. However, merely supporting patterns that correspond to the traditional aspect-
oriented advices (before, after, and around) does not suffice, as these are all inherently
sequential, whereas the workflow paradigm focuses heavily on parallelism and choice.
Therefore, we need a more elaborate collection of concern connection patterns that rec-
ognizes the specific characteristics of workflows. The goal of this section is to identify a
coherent set of such patterns.

Note that our focus on connection and composition of independently modularized
workflow concerns is different than that of existing research on workflow patterns, such
as the research of the Workflow Patterns initiative (cf. Section 2.1.2). For example, a
workflow language that supports certain advanced control flow patterns may facilitate
expressing certain workflows due to the increased expressivity of the language, but the
workflows that are thus created are not necessarily more modular, as few of these pat-
terns deal with modularization of concerns. The relation between the Workflow Patterns
initiative’s existing patterns and modularization of concerns is as follows:

1. None of the control flow patterns (Russell et al., 2006a) have a direct relation to
modularization of concerns: the patterns document different generic, recurring
constructs for specifying a workflow’s control flow, but do not address how a work-
flow might be divided into different modules.

2. Some of the data patterns (Russell et al., 2004a) are related to modularization of
concerns in the sense that they refer to the structure of a workflow: an execut-
ing instance of a workflow is called a process instance or case, which consists of
task instances, which are either atomic tasks, block tasks, multi-instance tasks, or
multi-instance block tasks. Block tasks and multi-instance block tasks correspond
to the execution of a certain sub-workflow. Thus, the data patterns assume a cer-
tain hierarchical decomposition of workflows into sub-workflows. The individual
data patterns deal with data visibility, data interaction, data transfer, and data-
based routing with regard to each of the above structural elements of a workflow.

67

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Our research goes beyond the purely hierarchical modularization that is assumed
in this existing research by supporting the specification of unanticipated concern
connections.

3. None of the resource patterns (Russell et al., 2004b) have a direct relation to mod-
ularization of concerns: they deal with creating work items that represent the work
to be done during the execution of certain tasks, and subsequently organizing the
execution of these work items, regardless of the modularization of the workflow to
which the tasks belong.

4. The way in which exceptions are handled within a certain workflow is defined
by its exception handling perspective. The exception handling patterns (Russell
et al., 2006b) describe different ways of handling certain types of exceptions. Sim-
ilar to the data perspective, a hierarchical decomposition of workflows into sub-
workflows is assumed. Each task (including block tasks) can be associated with ex-
ception handling strategies for the exception types that may arise during the task’s
execution. Although exception handling can be considered a different concern
than the workflow’s base concern, workflow languages typically require specifying
exception handling as part of the same module to which the exception handling
concern applies.

5. The presentation patterns (La Rosa et al., 2011a,b) deal with presenting workflows
in a way that promotes understandability by managing complexity. The verti-
cal modularization pattern refers to hierarchical decomposition of workflows into
sub-workflows. The horizontal modularization pattern refers to the partitioning of
workflows into separate workflows that are executed in parallel, with synchroniza-
tion being accomplished using message exchange between the parallel workflows.
The orthogonal modularization pattern refers to modularization of crosscutting
concerns using aspect-oriented mechanisms. UNIFY can be seen as an approach
that aims to facilitate the realization of the vertical modularization and orthogo-
nal modularization patterns. However, these presentation patterns are only con-
cerned with presenting this kind of modularization, and not with realizing it within
a workflow, e.g., using the most suitable advices.

Thus, none of the above patterns are well suited for specifying how independently
modularized workflow concerns may be connected, and the remainder of this section is
dedicated to identifying a coherent collection of workflow-specific concern connection
patterns.

4.4.2 Outline of Our Proposal

Before we commence with the description of our actual concern connection patterns,
we must briefly discuss the locations where different concerns can be connected to each
other. In aspect-oriented terminology, these locations are called joinpoints. Similar to
existing aspect-oriented workflow approaches such as AO4BPEL, we advocate the use
of workflow activities as joinpoints, because workflow activities constitute the “units of

68

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

work” to be performed by the workflow, and other workflow elements such as control
nodes and transitions merely serve to define the correct ordering of activities.

In some workflows, however, a certain unit of work may not have been modeled as
a single (composite) activity. For example, an order handling workflow may not contain
a single payment activity, but may instead contain a sequence of an activity that sends
a payment request and an activity that processes a customer’s payment. We advocate
that such groups of workflow elements can serve as joinpoints, too. However, not any
group of workflow elements makes sense in this regard: we require a certain form of
well-formedness within this group. We find this well-formedness in the notion of single-
entry single-exit (SESE) fragments proposed by Vanhatalo et al. (2007). Intuitively, a SESE
fragment is a subgraph of a workflow graph which, for the purposes of workflow decom-
position, could be replaced by a single activity. More formally, a SESE fragment is defined
as follows (Vanhatalo et al., 2007):

Definition 1. Let G = (N ,E) be a workflow graph. A SESE fragment (fragment for short)
F = (N ′,E ′) is a nonempty subgraph of G, i.e., N ′ ⊆ N and E ′ = E ∩ (N ′ × N ′) such that
there exist edges ei ,eo ∈ E with E ∩ ((N \ N ′)×N ′) = {ei } and E ∩ (N ′× (N \ N ′)) = {eo}; ei

and eo are called the entry and the exit edge of F , respectively.

Note that a single workflow activity is always a fragment. Thus, by employing frag-
ments as joinpoints, we support both single activities and well-formed groups of work-
flow elements as joinpoints.

In order to guide the description of our concern connection patterns, we distinguish
between two main categories of patterns based on whether the connected concerns’ be-
havior is inserted outside of joinpoint fragments or inside of joinpoint fragments. We
will call the former category external concern connection patterns and the latter inter-
nal concern connection patterns. For each of our patterns, we provide a motivation and
an example of its use. We also provide a textual description of the pattern, and illustrate
its weaving using a figure. The way in which our patterns are realized in existing work-
flow languages such as AO4BPEL, the approach by Courbis and Finkelstein, and PADUS

is discussed later in this chapter, in Section 4.4.5. The way in which our patterns are re-
alized in UNIFY’s connector mechanism is provided in Section 4.5, and the weaving of
UNIFY’s connectors is specified formally in Chapter 5.

4.4.3 External Concern Connection Patterns

External concern connection patterns are used to introduce behavior outside of join-
point fragments. Within this category of patterns, we distinguish between four sub-
categories, which correspond to the four basic kinds of control flow structures that are
prevalent in control flow patterns research and structured workflow languages such as
BPEL. These sub-categories are:

1. Sequential concern connection patterns, which express that concerns are to be
composed in sequence. We identify four patterns within this sub-category, i.e., the
before, after, replace, and around concern connection patterns.

69

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

2. Parallel concern connection patterns, which express that concerns are to be com-
posed in parallel with each other. We identify one pattern within this sub-category,
i.e., the parallel concern connection pattern.

3. Conditional concern connection patterns, which express that concerns are to be
composed as an alternative to each other. We identify one pattern within this sub-
category, i.e., the alternative concern connection pattern.

4. Iterating concern connection patterns, which express that concerns are to be
composed with each other in an iteration. We identify one pattern within this sub-
category, i.e., the iterating concern connection pattern.

We will now discuss each of these seven patterns in detail.

4.4.3.1 The “Before” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed before certain fragments
in a base workflow.

Example In an order handling workflow, a logging activity is to be executed before ev-
ery activity.

Description Activity A and composite activity B have been independently modular-
ized.3 During the execution of composite activity B , activity A is to be executed before
each member fragment of a joinpoint set JP. Figure 4.5 illustrates the weaving of activ-
ity A before a fragment JPx in composite activity B : activity A is inserted in composite
activity B between fragment JPx and its incoming transition t . Note that in our con-
cern connection pattern diagrams, black rounded rectangles represent the advice activ-
ity, dashed clouds represent pieces of workflow that are not relevant to the description
of the current pattern, gray rounded rectangles represent the joinpoint fragment, and
dashed arrows represent transitions that are not relevant to the description of the cur-
rent pattern. Although the workflows in our diagrams typically contain two clouds to
represent pieces of workflow that are not relevant to the description of the pattern, these
two pieces are not necessarily disjoint. In Figure 4.5, for example, composite activity B
may contain paths from its start event to its end event that bypass fragment JPx .

4.4.3.2 The “After” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed after certain fragments in
a base workflow.

Example In an order handling workflow, a reporting activity is to be executed after
activities that handle payment or shipment of books.

3Activity A can be either atomic or composite. Activity B must be composite.

70

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

B

A

JPx
t

B'

JPxA
t

Figure 4.5: The “before” concern connection pattern

B

A

JPx
t

B'

AJPx
t

Figure 4.6: The “after” concern connection pattern

Description Activity A and composite activity B have been independently modular-
ized. During the execution of composite activity B , activity A is to be executed after each
member fragment of a joinpoint set JP. Figure 4.6 illustrates the weaving of activity A
after a fragment JPx in composite activity B : activity A is inserted in composite activity
B between fragment JPx and its outgoing transition t .

4.4.3.3 The “Replace” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed instead of certain frag-
ments in a base workflow. This pattern can be used to adapt an existing base workflow
for use in different contexts, but it can also be used to achieve hierarchical decomposi-
tion by connecting abstract activities within a base workflow to concrete activities that
are modularized separately.

Example In an order handling workflow, a default payment activity may need to be
replaced by a variant before deploying the workflow for use by customers in another
country.

Description Activity A and composite activity B have been independently modular-
ized. During the execution of composite activity B , activity A is to be executed instead of
each member fragment of a joinpoint set JP. Figure 4.7 illustrates the weaving of activity
A instead of a fragment JPx in composite activity B : activity A is inserted in composite
activity B instead of fragment JPx .

71

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

B

JPx
ti to

A

B'

A
ti to

Figure 4.7: The “replace” concern connection pattern

A

P
tAi tAo B'

B

JPx
tBi tBo

A

JPx
tAi tAotBi tBo

Figure 4.8: The “around” concern connection pattern

4.4.3.4 The “Around” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed around certain fragments
in a base workflow. The concern may or may not cause the fragment to which it is applied
to be skipped.

Example In an order handling workflow, some authentication concern may need to
be applied to the activity that allows selecting books. The authentication concern will
control whether this activity is actually executed.

Description Composite activity A and composite activity B have been independently
modularized. Composite activity A contains a proceed activity P . During the execution
of composite activity B , composite activity A is to be executed instead of each mem-
ber fragment of a joinpoint set JP. When, during the execution of composite activity A,
proceed activity P is encountered, the member fragment is to be executed. Figure 4.8
illustrates the weaving of activity A around a fragment JPx in composite activity B : ac-
tivity A is inserted in composite activity B instead of fragment JPx , and within activity A,
proceed activity P is replaced by fragment JPx . Remember from Section 4.4.3.1 that the
pieces of workflow represented in our diagrams by clouds are not necessarily disjoint.
In Figure 4.8, composite activity A may thus contain paths from its start event to its end
event that bypass proceed activity P .

72

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

A

B

JPx

B'

ti to

A
ti to

JPx

Figure 4.9: The “parallel” concern connection pattern

4.4.3.5 The “Parallel” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed in parallel with certain
fragments in a base workflow.

Example In an order handling workflow, an activity that records user preferences may
need to be executed in parallel with activities that retrieve book information or add
books to the user’s shopping basket.

Description Activity A and composite activity B have been independently modular-
ized. During the execution of composite activity B , activity A is to be executed in parallel
with each member fragment of a joinpoint set JP. Figure 4.9 illustrates the weaving of
activity A in parallel with a fragment JPx in composite activity B : an AND-split is in-
serted between fragment JPx and its incoming transition ti , and an AND-join is inserted
between fragment JPx and its outgoing transition to , causing fragment JPx to act as a
parallel branch of the thus created control structure. Activity A is inserted as the second
parallel branch of this control structure.

4.4.3.6 The “Alternative” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed as an alternative to cer-
tain fragments in a base workflow.

Example In an order handling workflow, a different payment activity than the default
one may need to be executed if the user is underaged.

Description Activity A and composite activity B have been independently modular-
ized. During the execution of composite activity B , activity A is to be executed as an
alternative to each member fragment of a joinpoint set JP if condition c is satisfied. Fig-
ure 4.10 illustrates the weaving of activity A as an alternative to a fragment JPx in com-
posite activity B : an XOR-split is inserted between fragment JPx and its incoming tran-
sition ti , and an XOR-join is inserted between fragment JPx and its outgoing transition
to , causing fragment JPx to act as an alternative branch of the thus created control struc-
ture. Activity A is inserted as the second alternative branch of this control structure.
Condition c determines which of the alternative branches is taken.

73

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

A

B

JPx

B'

ti to

A
ti to

JPx¬c

c

Figure 4.10: The “alternative” concern connection pattern

A

B

JPx

B'

ti to

A
ti to

JPx

c

¬c

Figure 4.11: The “iterating” concern connection pattern

4.4.3.7 The “Iterating” Concern Connection Pattern

Motivation Specifying that a given concern is to be executed by iterating over certain
fragments in a base workflow.

Example In an order handling workflow, an activity that handles a failed login attempt
may be executed in an iteration with the existing login activity until login succeeds, in
order to implement the business’s account security policy.

Description Activity A and composite activity B have been independently modular-
ized. During the execution of composite activity B , activity A is to be executed in it-
erations with each member fragment of a joinpoint set JP until condition c is satisfied.
Figure 4.11 illustrates the weaving of activity A in an iteration with a fragment JPx in
composite activity B : an XOR-split is inserted between fragment JPx and its outgoing
transition to , and an XOR-join is inserted between fragment JPx and its incoming tran-
sition ti , causing fragment JPx to act as the forward branch of the thus created cycle.
Activity A is inserted as the returning branch of this cycle. The cycle will continue as
long as condition c is false.

Note that, by inserting the advice activity A as the returning branch of the cycle, we
obtain a control structure that is slightly different from traditional while or repeat con-
trol structures, in which the advice and the joinpoint fragment JPx might be expressed
together in the control structure’s body. Our approach has the advantage that the advice
is not executed when condition c is satisfied after the initial execution of the joinpoint,
and the advice is executed exactly once between all subsequent executions of the join-
point. This makes the advice suited for preparing the workflow for a next iteration, or
giving the user feedback on a previous iteration.

74

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

This concludes our description of the seven external concern connection patterns.
We will now describe the other main category of concern connection patterns, i.e., inter-
nal concern connection patterns.

4.4.4 Internal Concern Connection Patterns

Internal concern connection patterns are used to introduce behavior inside of joinpoint
fragments. More specifically, they introduce additional control flow dependencies be-
tween different nodes within a fragment. In order to control the effects of these patterns,
we restrict the allowed joinpoint fragments to (parallel or conditional) control structures,
i.e., the patterns introduce additional control flow dependencies within fragments that
either start with an AND-split and end with that split’s corresponding AND-join, or start
with an XOR-split and end with that split’s corresponding XOR-join. We propose two
patterns: the first allows synchronizing branches of a parallel control structure, while
the second allows switching branches of a conditional control structure.

4.4.4.1 The “Synchronizing Parallel Branches” Concern Connection Pattern

Motivation Specifying that a given concern is to perform a synchronization between
two branches in an existing parallel control structure of a base workflow.

Example In an order handling workflow, payment and shipping may be performed in
parallel branches. Depending on the type of customers that is expected to use the work-
flow, a verification activity may need to synchronize both branches, i.e., prevent ship-
ment before payment of the order has been verified.

Description Activity A and composite activity B have been independently modular-
ized. Composite activity B contains a fragment JP that is a parallel control structure.4

Activity A is to be executed after a fragment JPs (s stands for split) has been executed and
before a fragment JP j (j stands for join) is executed in order to synchronize two branches
of the control structure. Figure 4.12 illustrates the weaving of activity A in composite ac-
tivity B : a new AND-split is inserted between fragment JPs and its outgoing transition
to , a new AND-join is inserted between fragment JP j and its incoming transition ti , and
activity A is placed between the inserted AND-split and AND-join. Note that this implies
that the resulting workflow will no longer be structured.

4.4.4.2 The “Switching Alternative Branches” Concern Connection Pattern

Motivation Specifying that a given concern is to perform a switch between two bran-
ches in an existing conditional control structure of a base workflow.

4In these internal concern connection patterns, we no longer assume the existence of a set of joinpoints,
but rather restrict our description to a single joinpoint, as it is unlikely that the exact same synchronization or
switching will need to be performed at multiple locations within a workflow.

75

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

B'

JP

B

JP

JPj

A

JPs

A

JPj

JPs
to

ti

ti

to

Figure 4.12: The “synchronizing parallel branches” concern connection pattern

Example In an order handling workflow, shipment of a customer’s order by courier
and retrieval of an order by a customer at the store may be performed in alternative
branches. A dedicated activity could allow switching between both branches in order to
support situations where customers unexpectedly show up at the store to retrieve orders
that have not yet been handed over to a courier.

Description Activity A and composite activity B have been independently modular-
ized. Composite activity B contains a fragment JP that is a conditional control structure.
Activity A is to be executed after a fragment JPs has been executed if condition c is sat-
isfied, and before a fragment JP j is executed, in order to switch between two branches
of the control structure. Figure 4.13 illustrates the weaving of activity A in composite
activity B : a new XOR-split is inserted between fragment JPs and its outgoing transition
to , a new XOR-join is inserted between fragment JP j and its incoming transition ti , and
activity A is placed between the inserted XOR-split and XOR-join, with condition c de-
termining whether control flow will be switched towards activity A or not. Note that this
implies that the resulting workflow will no longer be structured.

4.4.5 Realization of Concern Connection Patterns in Existing Approaches

The “before” and “after” concern connection patterns are natively implemented by the
before and after advices offered by traditional aspect-oriented workflow languages such
as AO4BPEL, the approach by Courbis and Finkelstein, and PADUS. Similarly, the “around”

76

4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns

B'

JP

A

JPs

A

JPj
ti

to

B

JP

JPj

JPs
to

ti

¬c
c

Figure 4.13: The “switching alternative branches” concern connection pattern

concern connection pattern is natively implemented by the around advice offered by
AO4BPEL and PADUS (but which is not supported by Courbis and Finkelstein’s approach).
In fact, all external concern connection patterns can be implemented using the around
advice:

• The “before” pattern can be implemented using an around advice whose body is a
sequence of the actual advice behavior and a proceed activity.

• The “after” pattern can be implemented using an around advice whose body is a
sequence of a proceed activity and the actual advice behavior.

• The “replace” pattern can be implemented using an around advice whose body
does not contain a proceed activity.

• The “parallel” pattern can be implemented using an around advice whose body is
a parallel control structure of which one branch is the actual advice behavior and
another branch is a proceed activity.

• The “alternative” pattern can be implemented using an around advice whose body
is an alternative control structure of which one branch is the actual advice behav-
ior and another branch is a proceed activity.

• The “iterating” pattern can be implemented using an around advice whose body
is a sequence of a proceed activity and a while control structure that iterates over
a sequence of the actual advice behavior and a proceed activity.

77

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Category Pattern
External — sequential patterns CCP-1. Before

CCP-2. After
CCP-3. Replace
CCP-4. Around

External — parallel patterns CCP-5. Parallel
External — conditional patterns CCP-6. Alternative
External — iterating patterns CCP-7. Iterating
Internal patterns CCP-8. Synchronizing parallel branches

CCP-9. Switching alternative branches

Table 4.3: Concern connection patterns

However, using the around advice to express all these different patterns negatively
affects possible reuse of the advice behavior. For example, (1) when using an around
advice to express the “before” pattern, the advice body is a sequence of the actual ad-
vice behavior and a proceed activity. Thus, this advice cannot be reused in situations
where another pattern is required because the sequence and the proceed activity are
hard-coded into the advice body, whereas they are conceptually part of the connection
logic. (2) When using an around advice to express the “parallel” pattern, the advice can-
not be reused in situations where another pattern is required because the parallel control
structure and the proceed activity are hard-coded into the advice body, whereas they
are conceptually part of the connection logic. (3) When using an around advice to ex-
press the “alternative” pattern, the advice cannot be reused in situations where another
pattern is required because the conditional control structure — including the condition
that determines which branch is taken — and the proceed activity are hard-coded into
the advice body, whereas they are conceptually part of the connection logic. Therefore,
UNIFY makes a very clear distinction between the actual advice behavior, which is im-
plemented as a CompositeActivity, and the connection logic, which will be implemented
as a Connector. We believe that the concern connection patterns identified above form
a good basis for developing such a connector mechanism.

4.4.6 Conclusions

In this section, we have introduced a total of nine patterns according to which indepen-
dently modularized workflow concerns can be connected. These patterns are summa-
rized in Table 4.3. Although we do not claim that this is an exhaustive list of all concern
connection patterns that could ever be useful in a workflow context, we do think that our
patterns form a coherent collection that can be used to connect most workflow concerns
in an effective way. The patterns go beyond the traditional before, after and around ad-
vices that are common in traditional aspect-oriented programming by recognizing the
prevalence of parallel, conditional and iterating control structures in workflows.

78

4.5 Connector Mechanism

4.5 Connector Mechanism

In this section, we describe the UNIFY connector mechanism, which defines how work-
flow concerns that have been implemented using the UNIFY base language can be con-
nected to each other. The UNIFY connector mechanism is based on aspect-oriented
principles (Kiczales et al., 1997). Therefore, we will describe it using the same template
we used in Chapters 2 and 3, i.e., the template proposed in AOSD-Europe’s survey on
aspect-oriented programming languages by Brichau and Haupt (2005). Our connector
mechanism is defined using a meta-model that complements the base language meta-
model of Section 4.3. This connector language meta-model is shown in Figure 4.14, and
we will refer to this meta-model throughout our description.

4.5.1 Joinpoint Model and Pointcut Language

A UNIFY workflow is created by specifying a number of workflow concerns as indepen-
dent CompositeActivities, and subsequently composing these in a workflow composi-
tion. To this end, we introduce connectors that specify how two CompositeActivities
are to be composed. The behavior implemented by one CompositeActivity can be intro-
duced into another CompositeActivity at certain nodes, with the latter CompositeActivity
being oblivious of this possible introduction of behavior. Thus, the former CompositeAc-
tivity can be considered an advice, the latter CompositeActivity can be considered a base
workflow, and the locations where the former’s behavior is introduced into the latter can
be considered joinpoints.5

Remember that joinpoints are well-defined points within the specification of a con-
cern where extra functionality — the advice — can be inserted. Joinpoints in existing
aspect-oriented approaches for workflows are either the XML elements of the process
definition (as in AO4BPEL or the approach by Courbis and Finkelstein) or the workflow’s
activities (as in PADUS). UNIFY goes beyond these existing approaches by not only sup-
porting workflow activities as joinpoints, but also certain groups of workflow elements,
more specifically SESE fragments (fragments for short), as defined in Section 4.4.2. This
allows, for example, introducing an advice around a group of activities in a base work-
flow. Because single activities are merely a specific kind of fragment, fragments are the
only kind of joinpoints supported by UNIFY.

The joinpoint model is static, which has the advantage of allowing us to define a clear
weaving semantics using the Petri nets and Graph Transformation formalisms. UNIFY’s
semantics is discussed in detail in Chapter 5.

Pointcuts are expressions that resolve to a set of joinpoints, and are used to spec-
ify where in the base workflow a connector should add its functionality. Because all
workflow Nodes have names that are unique among their siblings, every Node can be
uniquely identified by prepending the name of the Node with the names of its ances-
tors (we will call this the canonical name of the Node). Because a workflow Fragment
has a single entry Node and a single exit Node, a Fragment can be uniquely identified

5In general, the advice can be any kind of Activity. In realistic situations, however, it will be a Composite-
Activity as described in this paragraph.

79

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

sp
lit

tin
gF

ra
gm

en
tP

oi
nt

cu
t

jo
in

in
gF

ra
gm

en
tP

oi
nt

cu
t

In
te

rn
al

C
on

ne
ct

or

A
ct

iv
ity

C
om

po
si
tio
n

 na
m

e
jo

in
po

in
tF

ra
gm

en
tP

oi
nt

cu
t

C
on

ne
ct

or

1ba
se

W
or

kfl
ow

0.
.*

co
nn

ec
to

rs
{o

rd
er

ed
}

0.
.*

1.
.*

0.
.*

1ad
vi

ce

co
m

po
si

tio
n

C
om

po
si
te
A
ct
iv
ity

Ex
te

rn
al

C
on

ne
ct

or
Fr
ag
m
en
t

1 st
ar

t

/jo
in

po
in

t

1 /s
pl

itt
in

g

Sy
nc
hr
on
iz
in
gC
on
ne
ct
or

 c
on

di
tio

n
Sw

itc
hi
ng
C
on
ne
ct
or

co
nt

ex
t

In
te

rn
al

Co
nn

ec
to

r:
se

lf
.c

om
po

si
ti

on
.b

as
eW

or
kf

lo
w-

>a
ll

No
de

s(
)

->
in

cl
ud

es
(s

el
f.

jo
in

po
in

t.
st

ar
t)

an
d

se
lf

.c
om

po
si

ti
on

.b
as

eW
or

kf
lo

w-
>a

ll
No

de
s(

)

->

in
cl

ud
es

(s
el

f.
jo

in
po

in
t.

en
d)

an

d
se

lf
.j

oi
np

oi
nt

->
al

lN
od

es
()

->
in

cl
ud

es
(s

el
f.

sp
li

tt
in

g.
st

ar
t)

an
d

se
lf

.j
oi

np
oi

nt
->

al
lN

od
es

()

->

in
cl

ud
es

(s
el

f.
sp

li
tt

in
g.

en
d)

an

d
se

lf
.j

oi
np

oi
nt

->
al

lN
od

es
()

->
in

cl
ud

es
(s

el
f.

jo
in

in
g.

st
ar

t)
an

d
se

lf
.j

oi
np

oi
nt

->
al

lN
od

es
()

->
in

cl
ud

es
(s

el
f.

jo
in

in
g.

en
d)

N
od

e

B
ef
or
eC
on
ne
ct
or

A
fte
rC
on
ne
ct
or

R
ep
la
ce
C
on
ne
ct
or

A
ro
un
dC
on
ne
ct
or

pr
oc

ee
d

0.
.1

co
nt

ex
t

Ar
ou

nd
Co

nn
ec

to
r:

se
lf

.a
dv

ic
e-

>a
ll

No
de

s(
)-

>i
nc

lu
de

s(
se

lf
.p

ro
ce

ed
)

Pa
ra
lle
lC
on
ne
ct
or

 c
on

di
tio

n
A
lte
rn
at
iv
eC
on
ne
ct
or

 c
on

di
tio

n
Ite
ra
tin
gC
on
ne
ct
or

0.
.*

/jo
in

po
in

t

1
1 /jo

in
in

g

1.
.*

no
de

s
1 en

d

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*co
nt

ex
t

Ex
te

rn
al

Co
nn

ec
to

r:
se

lf
.c

om
po

si
ti

on
.b

as
eW

or
kf

lo
w-

>a
ll

No
de

s(
)

->
in

cl
ud

es
(s

el
f.

jo
in

po
in

t.
st

ar
t)

an
d

se
lf

.c
om

po
si

ti
on

.b
as

eW
or

kf
lo

w-
>a

ll
No

de
s(

)

->

in
cl

ud
es

(s
el

f.
jo

in
po

in
t.

en
d)

0.
.*

F
ig

u
re

4.
14

:T
h

e
U

N
IF

Y
co

n
n

ec
to

r
la

n
gu

ag
e

m
et

a-
m

o
d

el

80

4.5 Connector Mechanism

Fragment pointcuts Description
fragment(EntryIdentifier, ExitIdentifier) Selects the Fragment which starts at the

Node specified by the first identifier, and
which ends at the Node specified by the
second identifier. If no such Fragment ex-
ists, an error is raised.

Activity pointcuts Description
activity(IdentifierPattern) Selects any Activity whose name matches

the identifier pattern.
compositeActivity(IdentifierPattern) Selects any CompositeActivity whose

name matches the identifier pattern.
atomicActivity(IdentifierPattern) Selects any AtomicActivity whose name

matches the identifier pattern.

Table 4.4: Pointcut predicates

by the canonical names of its entry and exit Nodes. As is shown in Table 4.4, we provide
the fragment(EntryIdentifier, ExitIdentifier) pointcut predicate for selecting
Fragments in this way.

Single Activities can be selected using the fragment predicate with the canonical
name of the activity as both the first and second argument of the predicate. However, be-
cause Activities are the most important kind of workflow element, we provide a number
of shorthand pointcut predicates for selecting single Activities, which eliminate the need
for this kind of repetition. Because the arguments of these pointcut predicates are actu-
ally identifier patterns that are matched to the canonical names of the Activities within a
workflow, they allow selecting sets of single Activities. Thus, UNIFY supports quantifica-
tion in Activity pointcuts.

Note that our Fragment pointcuts do not support quantification because of the com-
plexity of selecting sets of Fragments using a textual syntax: merely extending the frag-
ment(EntryIdentifier, ExitIdentifier)pointcut predicate towards identifier pat-
terns would not suffice, as both identifier patterns would resolve to a set of nodes, while
it would be difficult to determine which entry node corresponds to which exit node. In
order to support quantification in Fragment pointcuts, we essentially need a means of
specifying fragment patterns rather than identifier patterns. Existing research (Förster
et al., 2007) allows specifying patterns of workflow nodes in UML activity diagrams using
a visual language. Although this language is used to specify process constraints, it could
be used for the purpose of specifying pointcuts as well. Other existing research, by one
of our master students (Gheysels, 2007; Braem and Gheysels, 2007), extended the point-
cut language of PADUS with support for specifying protocols, and extended the advice
model and language of PADUS with support for stateful aspects by allowing to attach an
advice to a protocol. Patterns of workflow nodes, such as those offered by Förster et al.
(2007), could be used to specify protocols as well. We consider the extension of UNIFY

with support for quantification in Fragment pointcuts and support for stateful aspects to
be an interesting avenue of future work.

Unlike the PADUS pointcut language, the UNIFY pointcut language does not aim to
provide a full logic language. PADUS introduced such a logic language in order to abstract

81

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

over the specific language constructs of BPEL processes. In UNIFY, the base language
meta-model already abstracts over language constructs of specific workflow languages,
and a more traditional pointcut language is thus sufficient for the purposes of UNIFY.

4.5.2 Advice Model and Language

In order to offer a more expressive advice model than existing aspect-oriented workflow
approaches and go beyond the workflow-specific in advice offered by PADUS, UNIFY’s
advice model is based on the concern connection patterns we identified in Section 4.4.
More specifically, we offer one advice type for each of the concern connection patterns.
Thus, we obtain seven advice types for the external concern connection patterns, i.e.,
the before, after, replace, around, parallel, alternative, and iterating advice types, and
two advice types for the internal concern connection patterns, i.e., the synchronizing
and switching advice types. Additionally, variants of these advice types allow expressing
combinations of sequential and parallel concern connection patterns with conditional
and iterating patterns.

An essential characteristic of UNIFY is that advice code is not specified in a different
kind of module than base code: just like the base workflow, the advice is modularized
as a CompositeActivity. This makes UNIFY a uniform approach, as both aspect and base
modules have the same form. This implies that UNIFY does not offer additional language
constructs for use in advice modules, as is the case in traditional AOP approaches, e.g.,
to allow accessing the (runtime) context in which the advice is executed, or defining the
location where the original joinpoint behavior should be executed in an around advice.
Instead, this is accomplished using UNIFY’s connector construct, which is discussed in
Section 4.5.3. This approach is inspired by symmetric AOP approaches (Tarr et al., 1999;
Suvée et al., 2006), which prevent the introduction of specialized aspect modules by re-
moving the distinction between base concerns and advice concerns. However, we do
not consider UNIFY a perfectly symmetric approach, because there is still a notion of
base concerns and advice concerns within a given composition. We thus find the term
uniform more appropriate.

4.5.3 Aspect Module Model

Early aspect-oriented approaches offered a single language construct for modularizing
crosscutting concerns: the aspect. An aspect had two responsibilities: on the one hand,
the aspect’s advice body specified the modularized crosscutting behavior, while on the
other hand, the aspect’s advice type and pointcut specified how and where the behavior
should be composed with the base program. This approach has the disadvantage that
both responsibilities are tightly coupled, which precludes effective reuse of the modu-
larized behavior in different composition contexts.

Several approaches have been developed that address the above problem. A first ap-
proach is employed by ASPECTJ (Kiczales et al., 2001), which allows specifying abstract
aspects and pointcuts. By specifying crosscutting behavior in an abstract aspect which
specifies an abstract pointcut, and augmenting the abstract aspect with different con-
crete pointcuts using inheritance, the abstract aspect’s behavior can be reused in differ-

82

4.5 Connector Mechanism

Base code Crosscutting code Composition logic
specified in . . . specified in . . . specified in . . .

ASPECTJ JAVA classes Aspects (advice body) Aspects (advice type
and pointcut)

AO4BPEL BPEL processes Aspects (advice body) Aspects (advice type
and pointcut)

Courbis and BPEL processes Aspects (advice body) Aspects (advice type
Finkelstein and pointcut)
PADUS BPEL processes Aspects (advice body) Aspects (advice type

and pointcut)
JASCO JAVA classes Aspect beans Connectors
UNIFY CompositeActivities CompositeActivities Connectors

Table 4.5: Comparison of ASPECTJ, AO4BPEL, Courbis and Finkelstein, PADUS, JASCO,
and UNIFY modularization approaches

ent sub-aspects. A second approach is employed by JASCO (Suvée and Vanderperren,
2003) and aspectual components (Lieberherr et al., 1999), and is inspired by component-
based software development (CBSD; cf. Shaw and Garlan, 1996). In this approach, the
crosscutting behavior is specified in a separate aspect bean (JASCO) or aspectual compo-
nent (aspectual components), while its deployment is specified in a separate connector.
Thus, an aspect bean or aspectual component’s behavior can be reused in different con-
nectors.

In UNIFY, we have introduced a uniform modularization mechanism, which allows
expressing both regular and crosscutting behavior using the same language construct
(i.e., the CompositeActivity). The way in which different CompositeActivities should be
composed is specified in separate connectors. Connectors can specify both crosscutting
concern connection patterns (such as the before, after and around advice types of JAS-
CO), but also non-crosscutting connection patterns similar to the connection of compo-
nents in CBSD. Because the composition logic is no longer specified in the same module
as the crosscutting behavior, the crosscutting behavior can be reused effectively in dif-
ferent composition contexts. The differences between the modularization approaches
of ASPECTJ, AO4BPEL, Courbis and Finkelstein’s approach, PADUS, JASCO, and UNIFY

are summarized in Table 4.5.

As we already mentioned above, UNIFY’s connectors are used to allow accessing the
(runtime) context in which the crosscutting behavior is executed, or defining the loca-
tion where the original joinpoint behavior should be executed in an around advice, and
thus support the uniform modularization mechanism. The former is achieved by aug-
menting the UNIFY data meta-model of Figure 4.4 with a DataMapping concept, as is
shown in Figure 4.15. When a certain concern is connected to a base workflow using
one of UNIFY’s connectors, these data mappings will specify how the input and output
data of the connected concern is mapped to the data of the base workflow. We have
extended our connector syntax with such data mappings for BPEL workflows. In addi-
tion to these data mappings, the data perspective also arises within UNIFY’s connectors
when conditions are specified. However, in order to focus our discussion on the control

83

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

CompositeActivity Scope

name
Variable

AtomicActivity

... defines ... ▶
1 1

... uses ... ▶
0..* 0..*

1

0..*

/parent
0..10..*

name
Connector

DataMapping
1 0..*

... specifies ... ▶ 0..* 0..*

1 1/baseVariable /adviceVariable

Figure 4.15: The augmented UNIFY data meta-model for the no data passing approach

flow perspective, we will abstract from the concrete data perspective of the connected
workflows in the following description of UNIFY’s connectors.

UNIFY offers two main kinds of connectors: ExternalConnectors and InternalCon-
nectors (cf. the class hierarchy of the connector language meta-model of Figure 4.14).
The former are described in Section 4.5.3.1, whereas the latter are described in Sec-
tion 4.5.3.2.

4.5.3.1 External Connectors

ExternalConnectors implement the seven external concern connection patterns of Sec-
tion 4.4.3. Using a one-to-one mapping from concern connection patterns to connec-
tors, we obtain the before, after, replace, around, parallel, alternative, and iterating con-
nectors.

Before Connectors BeforeConnectors specify that the advice Activity should be intro-
duced into the base workflow before each of the joinpoints specified by the Connector’s
pointcut, which is represented in the connector language meta-model of Figure 4.14 as
the joinpointFragmentPointcut attribute. Thus, these connectors implement the “be-
fore” concern connection pattern (CCP-1; cf. Section 4.4.3.1). For example, the before
connector in Figure 4.16, which is named LoggingConnector, specifies that the Log-
ging activity should be executed before each activity in the OrderHandling base work-
flow. As is illustrated by this example, we have opted for a declarative text-based syntax
for our connector language, which is specified in Backus–Naur form in Appendix A. The
first line of each connector indicates the name of the connector, while the connector it-
self starts with the CONNECT keyword followed by the name of the advice Activity. Next,
one or more keywords indicate the concern connection pattern; in this example, the
BEFORE keyword indicates the “before” concern connection pattern. A pointcut selects
the joinpoint(s) to which the connector is to be applied. In our current implementa-
tion, the identifier pattern of the activity(IdentifierPattern) pointcut predicate

84

4.5 Connector Mechanism

OrderHandling

Logging Select Ship

Logging

OrderHandling

PaySelect Ship

LoggingConnector:
CONNECT Logging
BEFORE activity("OrderHandling\..*")

Logging Pay Logging

Figure 4.16: Example before connector

Logging

OrderHandling

PaySelect Ship

LoggingNewCustomersConnector:
CONNECT Logging
BEFORE activity("OrderHandling\.(Select|Pay)")
IF "$customer.isNew"

OrderHandling

Logging

Select ShipPay

Logging

¬c

c

¬c

c

Figure 4.17: Example conditional before connector

is specified using JAVA’s regular expression language.6 In our examples, we use Activity
pointcuts in order to illustrate the use of quantification, but Fragment pointcuts can be
used just as well.

In order to facilitate expressing combinations of the “before” pattern with other pat-
terns, we offer a conditional variant of this pattern. For example, in Figure 4.17, the
connector named LoggingNewCustomersConnector specifies that the Logging activ-
ity should be executed before the Select and Pay activities within the OrderHandling
base workflow if the customer is a new customer.7 To this end, the connector syntax of-
fers an optional if clause, which consists of the IF keyword followed by a condition that
queries the data perspective of the workflow.8 UNIFY does not impose a concrete lan-
guage for expressing the conditions; the language used in our examples is XPATH.9

6Thus, the OrderHandling\..* pattern used in Figure 4.16 will match any identifier that starts with
OrderHandling, followed by a single ‘.’ character, followed by any number of arbitrary characters.

7The OrderHandling\.(Select|Pay) pattern used in Figure 4.17 will match any identifier that starts
with OrderHandling, followed by a single ‘.’ character, followed by either Select or Pay.

8In our figures, this condition is represented in BPMN diagrams as c.
9Thus, the $customer.isNew query refers to the isNew part of the customer variable.

85

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Report

OrderHandling

PaySelect Ship

ReportConnector:
CONNECT Report
AFTER activity("OrderHandling\.(Pay|Ship)")

OrderHandling

Select Ship ReportPay Report

Figure 4.18: Example after connector

Report

OrderHandling

PaySelect Ship

ReportVatPaymentsConnector:
CONNECT Report
AFTER activity("OrderHandling\.Pay")
IF "$customer.isVatRegistered"

OrderHandling

Pay ShipSelect

Report

¬c

c

Figure 4.19: Example conditional after connector

After Connectors AfterConnectors specify that the advice Activity should be introduced
into the base workflow after each of the joinpoints specified by the joinpointFragment-
Pointcut. Thus, these connectors implement the “after” concern connection pattern
(CCP-2; cf. Section 4.4.3.2). For example, the after connector in Figure 4.18, which is
named ReportConnector, specifies that the Report activity should be executed after
the Pay and Ship activities within the OrderHandling base workflow.

In order to facilitate expressing combinations of the “after” pattern with other pat-
terns, we offer a conditional variant of this pattern. For example, in Figure 4.19, the con-
nector named ReportVatPaymentsConnector specifies that the Report activity should
be executed after the Pay activity within the OrderHandling base workflow if the cus-
tomer is registered for value added tax.

Replace Connectors UNIFY’s connectors, as well as the concern connection patterns
on which they are based, invert the traditional passing of control from a main workflow
into sub-workflows: they specify that a certain concern should be adapted, while this

86

4.5 Connector Mechanism

OrderHandling

Select Ship

Belgian
Pay

OrderHandling

PaySelect Ship

BelgianPaymentConnector:
CONNECT BelgianPay
INSTEAD OF activity("OrderHandling\.Pay")

Belgian
Pay

Figure 4.20: Example replace connector (inversion of control)

concern is not necessarily aware of this adaptation. In this way, connectors can be used
to add concerns that were not anticipated when the concern to which they are applied
was created, and thus constitute the constructs by means of which aspect-orientation is
introduced into UNIFY. As we mentioned in Section 4.4.3.3, however, the “replace” pat-
tern does not necessarily imply such inversion of control, as it can also be used to achieve
hierarchical decomposition by connecting abstract activities within a base workflow to
concrete activities that are modularized separately. Therefore, we will discuss two ex-
amples of ReplaceConnectors, which illustrate the two possible intentions with which
ReplaceConnectors can be used.

For example, consider the ReplaceConnector in Figure 4.20. It is applied to the Or-
derHandling base workflow, in which the Pay activity is assumed to be an activity that
handles payment within the base workflow. The ReplaceConnector, which is called Bel-
gianPaymentConnector, can be used to replace the Pay activity by the BelgianPay ac-
tivity, for example because the base workflow is not sufficiently tailored towards Belgian
customers. In this situation, the base workflow is not necessarily aware of possible adap-
tation by a connector.

As a second example, consider the ReplaceConnector in Figure 4.21. It is applied to
the AltOrderHandling workflow, in which the Pay activity is assumed to be a place-
holder activity (i.e., an Activity that is present in the base workflow, but performs no real
function other than indicating that it should be replaced by another Activity at some
point before execution). The ReplaceConnector, which is called CCPaymentConnector,
specifies that the Pay activity in the AltOrderHandling composite activity should be
implemented by executing the CreditCardPayment activity. In this situation, the Alt-
OrderHandling workflow is aware of the future adaptation by a connector (because the
workflow contains a placeholder activity). By specifying the link between the place-
holder activity and the activity that implements its functionality in a separate connec-
tor instead of inside the CompositeActivity itself, we reduce coupling between the main
concern and the sub-concern, thus promoting reuse.

87

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

AltOrderHandling

Select Ship
AltOrderHandling

PaySelect Ship

CCPaymentConnector:
CONNECT CreditCardPayment
INSTEAD OF activity("AltOrderHandling\.Pay")

CreditCardPayment

Confirm
Payment

Request
CCInfo

Process
Payment

CreditCardPayment

Confirm
Payment

Request
CCInfo

Process
Payment

Figure 4.21: Example replace connector (hierarchical decomposition)

OrderHandling

PaySelect Ship

AuthenticateConnector:
CONNECT Authenticate
AROUND activity("OrderHandling\.Select")
PROCEEDING AT activity("Authenticate\.Allow")

Authenticate

Check
Allow

Deny
OrderHandling

ShipPay

Authenticate

Check
Select

Deny

Figure 4.22: Example around connector

Around Connectors AroundConnectors specify that the advice Activity should be in-
troduced into the base workflow around each of the joinpoints specified by the join-
pointFragmentPointcut. Thus, these connectors implement the “around” concern con-
nection pattern (CCP-4; cf. Section 4.4.3.4). For example, the around connector in Fig-
ure 4.22, which is named AuthenticateConnector, specifies that the Authenticate
activity should be executed around the Select activity within the OrderHandling base
workflow. The relative position of the joinpoint activity or fragment within the advice
activity is specified using the proceeding clause, which consists of the PROCEEDING AT
keywords followed by an activity or fragment pointcut.

In order to facilitate expressing combinations of the “around” pattern with other pat-
terns, we offer a conditional variant of this pattern. For example, in Figure 4.23, the con-
nector named AuthenticateUnsecuredConnector specifies that the Authenticate
activity should be executed around the Select activity within the OrderHandling base
workflow if the current connection is unsecured.

88

4.5 Connector Mechanism

OrderHandling

ShipPay

Authenticate

Check
Select

Deny

Select

AuthenticateUnsecuredConnector:
CONNECT Authenticate
AROUND activity("OrderHandling\.Select")
IF "$connection.isUnsecured"
PROCEEDING AT activity("Authenticate\.Allow")

OrderHandling

PaySelect Ship

Authenticate

Check
Allow

Deny
¬c

c

Figure 4.23: Example conditional around connector

Record
Preference

OrderHandling

PaySelect Ship

RecordPrefsConnector:
CONNECT RecordPreference
PARALLEL TO activity("OrderHandling\.Select")

OrderHandling

Select ShipPay

Record
Preference

Figure 4.24: Example parallel connector

Parallel Connectors ParallelConnectors specify that the advice Activity should be in-
troduced into the base workflow in parallel with each of the joinpoints specified by the
joinpointFragmentPointcut. Thus, these connectors implement the “parallel” concern
connection pattern (CCP-5; cf. Section 4.4.3.5). For example, the parallel connector in
Figure 4.24, which is named RecordPrefsConnector, specifies that the RecordPref-
erence activity should be executed in parallel with the Select activity within the Or-
derHandling base workflow.

In order to facilitate expressing combinations of the “parallel” pattern with other pat-
terns, we offer a conditional variant of this pattern. For example, in Figure 4.25, the
connector named RecordPrefsIfOptedInConnector specifies that the RecordPref-
erence activity should be executed in parallel with the Select activity within the Or-
derHandling base workflow if the customer has opted in to the preferences recording
scheme.

89

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

RecordPrefsIfOptedInConnector:
CONNECT ReportPreference
PARALLEL TO activity("OrderHandling\.Select")
IF "$customer.recordPreferences"

Record
Preference

OrderHandling

PaySelect Ship

OrderHandling

Select ShipPay

Record
Preference

¬c

c

Figure 4.25: Example conditional parallel connector

ReferTo
Parent

OrderHandling

PaySelect Ship

ReferToParentConnector:
CONNECT ReferToParent
ALTERNATIVE TO activity("OrderHandling\.Pay")
IF "$user.isUnderaged"

OrderHandling

Select ShipPay

ReferTo
Parent

¬c

c

Figure 4.26: Example alternative connector

Alternative Connectors AlternativeConnectors specify that the advice Activity should
be introduced into the base workflow as an alternative to each of the joinpoints specified
by the joinpointFragmentPointcut. Thus, these connectors implement the “alternative”
concern connection pattern (CCP-6; cf. Section 4.4.3.6). For example, the alternative
connector in Figure 4.26, which is named ReferToParentConnector, specifies that the
ReferToParent activity should be executed as an alternative to the Pay activity within
the OrderHandling base workflow if the user is underaged.

Iterating Connectors IteratingConnectors specify that the advice Activity should be
introduced into the base workflow in an iteration with each of the joinpoints speci-
fied by the joinpointFragmentPointcut. Thus, these connectors implement the “iterat-
ing” concern connection pattern (CCP-7; cf. Section 4.4.3.7). For example, the iterat-
ing connector in Figure 4.27, which is named LoginFailureConnector, specifies that
the HandleFailure activity should be executed in an iteration with the Login activity
within the OrderHandling base workflow until login succeeds.

90

4.5 Connector Mechanism

OrderHandling

Ship

Handle
Failure

SelectLogin Pay

LoginFailureConnector:
CONNECT HandleFailure
ITERATING OVER activity("OrderHandling\.Login")
UNTIL "$login.isSuccessful"

OrderHandling

PaySelectLogin

Handle
Failure

Ship

¬c

c

Figure 4.27: Example iterating connector

4.5.3.2 Internal Connectors

InternalConnectors implement the two internal concern connection patterns of Section
4.4.4. Using a one-to-one mapping from concern connection patterns to connectors, we
obtain the synchronizing and switching connectors:

Synchronizing Connectors SynchronizingConnectors are used to specify that two bran-
ches of a parallel control structure should be synchronized through an advice activity.
SynchronizingConnectors have three joinpoints. The first joinpoint is the parallel con-
trol structure in which the synchronization will occur, and is selected by the joinpoint-
FragmentPointcut. The second joinpoint is the fragment in the first branch after which
the synchronization will occur, and is selected by the splittingFragmentPointcut. The
third joinpoint is the fragment in the second branch before which the synchronization
will occur, and is selected by the joiningFragmentPointcut. Thus, these connectors im-
plement the “synchronizing parallel branches” concern connection pattern (CCP-8; cf.
Section 4.4.4.1).

For example, the synchronizing connector in Figure 4.28, which is named Verify-
AccountConnector, specifies that the VerifyAccount activity should synchronize two
branches of the parallel control structure that starts at the OrderHandling base work-
flow’s Split node and ends at its Join node. The synchronization should occur after
the Pay activity in one branch and before the Ship activity in another branch. Synchro-
nizing these joinpoints implies that the control flow of the latter branch is blocked at its
joinpoint until the control flow of the former branch has reached its joinpoint. This is ac-
complished by inserting a new AND-split after the former joinpoint and a new AND-join
before the latter joinpoint, with the advice Activity in between.

Switching Connectors SwitchingConnectors are used to specify that two branches of a
conditional control structure should be switched through an advice activity. Switching-
Connectors have three joinpoints. The first joinpoint is the conditional control structure
in which the switch will occur, and is selected by the joinpointFragmentPointcut. The

91

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

Ve
rif

y
Ac

co
un

t

Ve
rif

yA
cc

ou
nt

C
on

ne
ct

or
:

C
O

N
N

EC
T

Ve
rif

yA
cc

ou
nt

IN
 fr

ag
m

en
t("

O
rd

er
H

an
dl

in
g.

Sp
lit

",
"O

rd
er

H
an

dl
in

g.
Jo

in
")

A
N

D
-S

PL
IT

TI
N

G
 A

T
ac

tiv
ity

("O
rd

er
H

an
dl

in
g.

Pa
y"

)
SY

N
C

H
R

O
N

IZ
IN

G
 A

T
ac

tiv
ity

("O
rd

er
H

an
dl

in
g.

Sh
ip

")

O
rd

er
H

an
dl

in
g

Se
le

ct
Se

nd
In

vo
ic

e
Pa

y

Pr
oc

es
s

O
rd

er
Sh

ip

O
rd

er
H

an
dl

in
g

Se
le

ct
Se

nd
In

vo
ic

e
Pa

y

Pr
oc

es
s

O
rd

er
Sh

ip

Ve
rif

y
Ac

co
un

t

Sp
lit

Jo
in

Sp
lit

Jo
in

F
ig

u
re

4.
28

:E
xa

m
p

le
sy

n
ch

ro
n

iz
in

g
co

n
n

ec
to

r

92

4.5 Connector Mechanism

second joinpoint is the fragment in the first branch after which the switch will occur,
and is selected by the splittingFragmentPointcut. The third joinpoint is the fragment in
the second branch before which the switch will occur, and is selected by the joiningFrag-
mentPointcut. Thus, these connectors implement the “switching alternative branches”
concern connection pattern (CCP-9; cf. Section 4.4.4.2).

For example, the switching connector in Figure 4.29, which is named CancelShip-
mentConnector, specifies that the CancelShipment activity should switch two bran-
ches of the conditional control structure that starts at the OrderHandling base work-
flow’s Splitnode and ends at its Joinnode. The switch should occur after the Prepare-
Shipment activity in one branch and before the HandOver activity in another branch.
Switching these joinpoints implies that the control flow of the former branch may need
to be redirected to the latter branch from/to their respective joinpoints. This is accom-
plished by inserting a new XOR-split after the former joinpoint and a new XOR-join be-
fore the latter joinpoint, with the advice Activity in between.

This concludes our description of the different connectors offered by UNIFY. The
complete syntax of the UNIFY connector language is specified in Backus–Naur form in
Appendix A.

4.5.4 Aspect Composition Model

A connector represents the composition of one concern with another concern. Because
more than one concern can be applicable to the same base workflow, the composition of
more than two concerns should be supported in a way that prevents undesirable inter-
actions between concerns. When analyzing these interactions, we observe that the join-
points of a connector determine where possible interactions may occur: because all of
our connectors give rise to the insertion of behavior directly around their joinpoints (for
ExternalConnectors) or somewhere inside their joinpoints (for InsideConnectors), con-
nectors can only interact with each other when their joinpoints intersect. Note that,
because UNIFY uses Fragments as joinpoints, two connectors’ joinpoints may be exactly
the same, one connector’s joinpoint may be completely contained in the other’s, or two
connectors’ joinpoints may have a group of Nodes in common without one connector’s
joinpoint being completely contained in the other’s.

We consider two main kinds of undesirable interactions. Firstly, when different con-
nectors are applicable to the same joinpoint, the execution of the woven workflow must
be deterministic, i.e., the relative ordering of the connectors’ advices must be the same
for each execution of the composition. Secondly, when different connectors are applica-
ble to the same joinpoint, the application of one connector must not prevent the appli-
cation of another connector or cancel the effects of another connector. In this section,
we will outline a strategy for dealing with both kinds of undesirable interactions.

In general, UNIFY supports the application of any number of connectors within a
workflow composition. However, for the purposes of investigating undesirable interac-
tions, we will focus on interactions between only two connectors. A composition con-
taining n connectors can then be analyzed by considering each of the n(n−1)/2 possible
pairs of connectors in this composition. Table 4.6 lists possible undesirable interactions

93

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

O
rd

er
Ha

nd
lin

g

Pr
oc

es
s

O
rd

er

O
rd

er
Ha

nd
lin

g

Ca
nc

el
Sh

ip
m

en
t

Ca
nc

el
Sh

ip
m

en
tC

on
ne

ct
or

:
CO

NN
EC

T
Ca

nc
el

Sh
ip

m
en

t
IN

 fr
ag

m
en

t("
O

rd
er

Ha
nd

lin
g.

Sp
lit"

, "
O

rd
er

Ha
nd

lin
g.

Jo
in

")
SW

IT
CH

IN
G

 A
T

ac
tiv

ity
("O

rd
er

Ha
nd

lin
g.

Pr
ep

ar
eS

hi
pm

en
t")

IF
 "$

sh
ip

m
en

t.c
an

ce
lla

tio
nR

eq
ue

st
ed

"
XO

R-
JO

IN
IN

G
 A

T
ac

tiv
ity

("O
rd

er
Ha

nd
lin

g.
Ha

nd
O

ve
r")

Se
le

ct
Sh

ip
Pr

ep
ar

e
Sh

ip
m

en
t

St
or

eF
or

Re
tri

ev
al

Ha
nd

O
ve

r

Pa
y

Se
le

ct
Sh

ip
Pr

ep
ar

e
Sh

ip
m

en
t

St
or

eF
or

Re
tri

ev
al

Ha
nd

O
ve

r

Pa
y

Ca
nc

el
Sh

ip
m

en
t

Sp
lit

Jo
in

Sp
lit

Jo
in

¬c c

Pr
oc

es
s

O
rd

er

F
ig

u
re

4.
29

:E
xa

m
p

le
sw

it
ch

in
g

co
n

n
ec

to
r

94

4.5 Connector Mechanism

Before After Replace Around Parallel Alt. Iter.
Before 1 (No int.) 2 1 3 4 5

After 1 2 1 3 4 5
Replace 2 2 2 2 2
Around 1, 6 3, 6 4, 6 5, 6
Parallel 3, 6 3, 4, 6 3, 5, 6

Alt. 4, 6 4, 5, 6
Iter. 5, 6

Table 4.6: Overview of interactions between external connectors; the numbers refer to
the different kinds of interactions listed in Section 4.5.4. Because the complete table is
symmetric around its main diagonal, we only show its upper right half.

between two ExternalConnectors that are applicable to the same joinpoint. These inter-
actions are discussed below.

Interaction 1. A composition with two BeforeConnectors or with a BeforeConnector and
an AroundConnector is problematic if the entry nodes of the two connectors’ joinpoint
fragments are the same. In this situation, the order in which the connectors are applied
determines the order in which the connectors’ advices will be executed. Similarly, a com-
position with two AfterConnectors or with an AfterConnector and an AroundConnector is
problematic if the exit nodes of the two connectors’ joinpoint fragments are the same, and
a composition with two AroundConnectors is problematic if the entry or exit nodes of the
two connectors’ joinpoint fragments are the same. A composition with two AroundCon-
nectors that introduce a control structure around their joinpoints is also problematic if
the two connectors’ joinpoints have a group of Nodes in common without one connector’s
joinpoint being completely contained in the other’s (cf. Interaction 6).

Interaction 2. A composition with a ReplaceConnector and another ExternalConnector is
always problematic if both are applicable to the same joinpoint: if the ReplaceConnector is
applied first, the joinpoint to which the other ExternalConnector is intended to be applied
may no longer exist at the time of application. If the ReplaceConnector is applied last, the
advice of the other ExternalConnector may be replaced.

Interaction 3. A composition with a ParallelConnector and a Before-, Around-, Alternative-
or IteratingConnector is problematic if the entry nodes of the two connectors’ joinpoint
fragments are the same. In this situation, the order in which the connectors are applied
determines whether the connectors’ advices will be executed sequentially or in parallel to
each other. Similarly, a composition with an After-, Around-, Alternative- or IteratingCon-
nector is problematic if the exit nodes of the two connectors’ joinpoint fragments are the
same. A composition with two ParallelConnectors is only problematic if the two connec-
tors’ joinpoints have a group of Nodes in common without one connector’s joinpoint being
completely contained in the other’s (cf. Interaction 6).

Interaction 4. A composition with an AlternativeConnector and a Before-, Around-, Par-
allel- or IteratingConnector is problematic if the entry nodes of the two connectors’ join-
point fragments are the same. In this situation, the order in which the connectors are

95

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

applied determines whether the connectors’ advices will be executed sequentially or as an
alternative to each other. Similarly, a composition with an After-, Around-, Parallel- or
IteratingConnector is problematic if the exit nodes of the two connectors’ joinpoint frag-
ments are the same. A composition with two AlternativeConnectors is only problematic if
the two connectors’ joinpoints have a group of Nodes in common without one connector’s
joinpoint being completely contained in the other’s (cf. Interaction 6).

Interaction 5. A composition with an IteratingConnector and a Before-, Around-, Parallel-
or AlternativeConnector is problematic if the entry nodes of the two connectors’ joinpoint
fragments are the same. In this situation, the order in which the connectors are applied
determines whether the non-IteratingConnector’s advice will be part of the IteratingCon-
nector’s iteration or not. Similarly, a composition with an After-, Around-, Parallel- or Al-
ternativeConnector is problematic if the exit nodes of the two connectors’ joinpoint frag-
ments are the same. A composition with two IteratingConnectors is only problematic if
the two connectors’ joinpoints have a group of Nodes in common without one connector’s
joinpoint being completely contained in the other’s (cf. Interaction 6).

Interaction 6. A composition with two ExternalConnectors that introduce a control struc-
ture around their joinpoints (i.e., AroundConnectors that introduce a control structure
around their joinpoints, ParallelConnectors, AlternativeConnectors and/or IteratingCon-
nectors) is always problematic if the two connectors’ joinpoints have a group of Nodes in
common without one connector’s joinpoint being completely contained in the other’s. In
this situation, the connector that is applied first will introduce an additional control flow
path around its joinpoint. Because the connector that is applied second selects a join-
point that starts or ends in the first connector’s joinpoint, the first connector will have
introduced additional incoming or outgoing edges into the fragment that is selected by the
second connector, and the group of nodes selected by the second connector’s pointcut will
thus no longer be a fragment by the time the second connector is applied.

Interactions 1, 3, 4 and 5 are related to the relative ordering of advices with respect
to connectors’ common joinpoints within a composition. Nondeterminism in the exe-
cution of the woven workflow can be prevented by requiring the workflow developer to
specify the ordering in which the composition’s connectors should be applied. There-
fore, UNIFY introduces an explicit deployment construct named Composition. Similar to
PADUS deployment specifications, UNIFY Compositions specify which process definition
will act as the base workflow (cf. the <BaseConcern> element in Listing 4.1), and which
behavior is applied to it. However, in PADUS, both the crosscutting behavior and its con-
nection logic were encapsulated in the same aspect. In UNIFY, the behavior is specified
as a regular CompositeActivity (cf. the <Concern> elements in Listing 4.1, which refer to
BPEL process definitions in this example), while the connection logic is specified in a
separate Connector (cf. the <Connector> elements in Listing 4.1). The order in which
the connectors are specified determines the order in which they will be applied to the
base workflow.

Interactions 2 and 6 are related to situations in which one connector may prevent
the application of another connector. This is addressed in UNIFY by generating warn-
ings during the weaving process when such interactions are detected. Further guidance

96

4.6 Discussion

1 <Composition name="OrderHandling" separatorChar="/">
2 <BaseConcern>../concerns/OrderHandling/OrderHandling.bpel</BaseConcern>
3 <Concern>../concerns/Select/Select.bpel</Concern>
4 <Concern>../concerns/Report/Report.bpel</Concern>
5 <Concern>../concerns/RecordPreference/RecordPreference.bpel</Concern>
6 <Concern>../concerns/VerifyBankAccount/VerifyBankAccount.bpel</Concern>
7 <Connector>Select.connector</Connector>
8 <Connector>Report.connector</Connector>
9 <Connector>RecordPrefs.connector</Connector>

10 <Connector>VerifyBankAccount.connector</Connector>
11 </Composition>

Listing 4.1: An example composition consisting of a base concern and four other
concerns that are applied to the base concern using four connectors

of the workflow developer in resolving such interactions is a field of research on itself and
is therefore subject to future work. Note that we did not yet consider interaction issues
of internal connectors. However, the above discussion can be extended towards inter-
nal connectors by considering their splitting joinpoint fragments as targets of an after
advice, and their joining joinpoint fragments as targets of a before advice.

4.6 Discussion

UNIFY as a composition system The discipline of software engineering has originated
in order to address the software crisis (Dijkstra, 1972) — the observation made in the late
1960s that the rapidly increasing size and complexity of software systems caused the de-
velopment of these systems using existing approaches to become unmanageable. Over
time, this has given rise to the construction of software by assembling existing (possi-
bly off-the-shelf) components rather than rewriting every new software application from
scratch. According to Aßmann (2003), component-based systems can be evaluated in
terms of three main requirements:

• The component model determines how components appear: how are compo-
nents defined, and what are their interfaces.

• The composition technique determines how components are composed: which
composition operators (or composers) can be used.

• The composition language determines how a software system can be built by
composing a number of components according to a certain composition specifi-
cation.

When all three requirements are satisfied, one obtains a composition system. It should
be clear that UNIFY can be considered a composition system: its components are the in-
dividual workflow concerns specified using the base language of Section 4.3. Its compo-
sition operators are the different connector types offered by the connector mechanism

97

Chapter 4. Uniform Modularization of Workflow Concerns using UNIFY

as described in Section 4.5.3. Composition specifications take the form of UNIFY’s con-
nectors (cf. Section 4.5.3) and compositions (cf. Section 4.5.4).

A distinction can be made between composition systems composing black-box com-
ponents and composition systems composing gray-box components. The latter can be
divided in three main categories: aspect systems (such as ASPECTJ), control-flow based
composition systems (such as composition filters; cf. Bergmans and Aksit, 2001), and
composition expression systems (such as HYPERJ). Invasive software composition (Aß-
mann, 2003) is a composition approach that introduces a number of concepts allowing
other composition approaches to be modeled as different variants of invasive software
composition techniques. The main concepts are the following:

• A fragment box is a set of program elements, which has a composition interface
that consists of a set of hooks. Thus, fragment boxes fulfill the role of components
in invasive software composition.

• A hook is a point of variability of a fragment box, a set of fragment boxes, or a set of
positions within fragment boxes subject to change. Hooks can be either declared
or implicit.

• A composer is a program transformer that transforms one or more hooks for a reuse
context.

It has already been shown that aspect systems can be considered a variant of inva-
sive software composition (cf. Aßmann, 2003, Chapter 10). One can perform a similar
exercise for UNIFY. CompositeActivities can be considered fragment boxes, every UNIFY

Fragment constitutes an implicit hook, and the weaving of each Connector type consti-
tutes a different composer. Nevertheless, integrating recent developments in compo-
sition operators and languages into UNIFY is subject to future work. For this purpose,
recent work in extending invasive software composition to graphs (Johannes, 2010) and
providing first-class composition operators for both aspectual and non-aspectual com-
positions (Havinga et al., 2010) seems promising.

4.7 Summary

UNIFY goes beyond the scope of PADUS by addressing a wider set of requirements, which
are listed at the beginning of this chapter (cf. Section 4.1). In this chapter, we focus on a
subset of these requirements:

1. We provide a uniform modularization mechanism that allows specifying both reg-
ular and crosscutting concerns using the same language construct, i.e., the Com-
positeActivity (Requirement 1).

2. We propose a coherent collection of seven external concern connection patterns
and two internal concern connection patterns that recognize the specific charac-
teristics of workflows, including the workflow paradigm’s heavy focus on paral-
lelism and choice (Requirement 2).

98

4.7 Summary

3. We provide a connector mechanism that allows independently modularized (regu-
lar and/or crosscutting) concerns to be connected according to the above concern
connection patterns (Requirement 3).

External connectors allow introducing behavior sequentially before, after, or around
joinpoints, in parallel with joinpoints, as an alternative to joinpoints, or in itera-
tions with joinpoints, while the workflow in which these joinpoints are located is
oblivious of the connectors that may be applied to it. Thus, these connectors al-
low augmenting a concern with other concerns that were not considered when
it was designed, which facilitates independent evolution and reuse of these con-
cerns. The joinpoints are not limited to single activities, but can also be groups of
workflow nodes that form a single-entry single exit (SESE) fragment. In addition
to the above connectors that are mainly influenced by aspect-oriented principles,
the replace connector allows expressing that an existing activity in one concern
should be implemented by executing another concern, in a way that minimizes
dependencies between these concerns and thus facilitates their independent evo-
lution and reuse. Thus, this connector is related to traditional component-based
software development (CBSD).

Next to these external connectors, internal connectors allow introducing additional
control flow dependencies within parallel or conditional control structures in or-
der to allow synchronizing parallel branches or switching alternative branches.

4. At the heart of the approach lies a base language meta-model that allows express-
ing arbitrary workflows, and which can be instantiated towards several concrete
workflow languages (Requirement 6).

In the following chapters, we focus on our other requirements: we provide our exe-
cution semantics (Requirement 4), build support for concern-specific abstractions (Re-
quirement 5), and show how the framework’s implementation is applicable to several
concrete workflow languages and independent of a dedicated workflow engine (Require-
ment 7).

99

Chapter 5

A Formal Semantics for Aspect-Oriented
Workflow Languages

In this chapter, we provide a formal semantics for the aspect-oriented workflow
concepts that were introduced in the previous chapters. This will allow us to reason
both on static and operational properties of workflows. Additionally, the formaliza-
tion presented in this chapter supports the implementation of the UNIFY framework,
which is presented in Chapter 7. Readers who are interested more in UNIFY’s complete
functionality than in its formalization may want to read Chapter 6 and onwards first,
and come back to this chapter later.

5.1 Motivation and Requirements

Because workflow management systems and business process management systems (cf.
Section 2.1.4.1) are driven by workflows, the correctness of workflows is essential to these
systems. Unfortunately, commercial systems typically do not support the verification of
workflows (van der Aalst et al., 2011). Moreover, as is shown in various case studies (e.g.,
Mendling et al., 2007), process designers tend to make many errors. Typical errors are
deadlocks (a case gets stuck), livelocks (a case cannot progress), and other anomalies.
Repairing such errors can be time consuming and costly. Therefore, workflow verifica-
tion is highly relevant (van der Aalst et al., 2011).

The topic of workflow verification has been researched for more than a decade. van der
Aalst (1997, 1998a, 2000) have proposed the notion of workflow nets (WF-nets), which
constitute a mapping of workflow management concepts to Petri nets (Petri and Reisig,
2008), and thus introduce, among others, notions of process definitions, routing con-
structs, and activities. Their approach allows verifying the property of soundness of WF-
nets. Classical soundness (van der Aalst, 1997, 1998a) is defined in terms of a workflow
having (1) the option to complete, (2) proper completion, and (3) no dead transitions
(van der Aalst et al., 2011).

101

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

van der Aalst (1998b) proposes three reasons for using Petri nets: (1) they have a
formal semantics in addition to their graphical nature, (2) they are state-based instead
of (just) event-based, and (3) there is an abundance of analysis techniques for Petri
nets. Indeed, approaches based on Petri nets have become a popular means of formal-
izing workflows and subsequently verifying properties such as soundness. For example,
Ouyang et al. (2007) and Lohmann (2007) have each formalized the execution semantics
of WS-BPEL using Petri nets, and Dijkman et al. (2008) have formalized the execution se-
mantics of BPMN. YAWL has been developed by augmenting high-level Petri nets with
additional constructs (thus obtaining extended workflow nets; cf. van der Aalst and ter
Hofstede, 2005).

Nevertheless, Petri nets aren’t the only formalization suited to our approach. In par-
ticular, when reviewing our base language meta-model as presented in Section 4.3, we
can consider a UNIFY workflow to be a graph consisting of certain types of nodes, each
of which may have certain attributes. We can then consider the application of a UNIFY

connector to be a transformation of such a graph. All of this maps naturally to the Graph
Transformation formalism (Rozenberg, 1997; Ehrig et al., 2006), which allows defining
a graph transformation system consisting of a type graph specifying the types and at-
tributes of possible graph nodes and edges, as well as a number of graph transformation
rules specifying how typed attributed graphs conforming to the type graph can be trans-
formed into another typed attributed graph. The formalism enables static verification of
these transformation rules based on critical pairs analysis, which allows the detection of
possible mutual exclusions and causal dependencies between transformation rules.

Because UNIFY’s connector mechanism constitutes a novel workflow modularization
mechanism, we must ensure that the connector mechanism’s semantics is precisely de-
scribed, and that this semantics fits into the workflow community’s existing formal tra-
dition. Therefore, we aim to provide a formalization of our approach that is compatible
with existing research on this topic within the workflow community, but also addresses
the specific notion of connection patterns introduced by UNIFY.

5.2 Towards a Formalization of Aspect-Oriented Workflow Languages

The goal of the work described in this chapter is twofold: on the one hand, we want
to be able to verify certain properties of workflows, which can be either static (e.g., ap-
plicability and effects of connectors) or dynamic (e.g., absence of possible deadlocks or
livelocks), while on the other hand, we want to provide a basis for implementing aspect-
oriented workflow languages.

In order to formalize the aspect-oriented workflow concepts introduced in the pre-
vious chapters, we employ two complementary formalisms. First, we augment the static
description of UNIFY’s workflows as provided by its base language and connector lan-
guage meta-models with a static semantics for the weaving of UNIFY connectors using
the Graph Transformation formalism. This facilitates static reasoning over the applica-
bility and effects of connectors, and can be used to implement a static weaver of UNIFY

connectors. Second, we provide a semantics for the operational properties of workflows
by proposing a translation to Petri nets, and subsequently extend this semantics to sup-

102

5.3 Graph Transformation Formalization of Connectors

Part of the approach Use for analysis Use for implementation

Graph Transformation formalization
of connectors (cf. Section 5.3)

Applicability and effects of
workflow connectors

Static weaver

Petri net formalization of concerns (cf.
Section 5.4.2)

Dynamics of workflow con-
cerns

Dedicated workflow engine

Petri net formalization of connectors
(cf. Section 5.4.3)

Dynamics of workflow con-
nectors

Dynamic weaver

Table 5.1: Overview of the approach

port the operational effects of connectors. This allows reasoning on the dynamics of
UNIFY workflow compositions, and can be used to implement a dedicated workflow en-
gine for UNIFY. Table 5.1 gives an overview of our approach.

5.3 Graph Transformation Formalization of Connectors

5.3.1 The Graph Transformation Formalism

The semantics of a connector, which connects an advice concern to a base concern, is
given by constructing a new concern that composes the base concern and the advice
concern according to the connector type and the pointcut specification. This is accom-
plished using graph transformation rules that work on the abstract syntax of the UNIFY

base language.
A graph consists of a set of nodes and a set of edges. A typed graph is a graph in

which each node and edge belong to a type defined in a type graph. An attributed graph
is a graph in which each node and edge may contain attributes where each attribute is a
(value, type) pair giving the value of the attribute and its type. Types can be structured
by inheritance relations.

A graph transformation rule is a rule used to modify a host graph G , and is defined
by two graphs (L,R). L is the left-hand side of the rule representing the pre-conditions of
the rule and R is the right-hand side representing the post-conditions of the rule. Note
that the left-hand side of the rule can be composed of a positive application condition
(presence of certain combinations of nodes and edges) and a set of negative application
conditions or NACs (absence of certain combinations of nodes and edges). The process
of applying the rule to a graph G involves finding a graph monomorphism h : L 7→G and
replacing h(L) in G with h(R). Further details can be found in (Rozenberg, 1997).

In our approach, the type graph represents the UNIFY base language meta-model
that was already presented earlier in Figure 4.2. The translation of this meta-model
to a type graph is straightforward: each meta-class corresponds to a typed node and
each meta-association corresponds to a typed edge. Attributes in the meta-model are
translated to corresponding node attributes. The wellformedness constraints can be for-
malized by graph constraints. Figure 5.1 shows a screenshot of UNIFY’s type graph and
Before rule in the state-of-the-art Graph Transformation analysis tool AGG (Taentzer
et al., 2009).

103

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

F
ig

u
re

5.
1:

Sc
re

en
sh

o
to

f
U

N
IF

Y
’s

ty
p

e
gr

ap
h

(b
o

tt
o

m
)

an
d
Be
fo
re

ru
le

(t
o

p
)

in
A

G
G

104

5.3 Graph Transformation Formalization of Connectors

9: ControlOutputPort

6: controlIn

8: controlOut

LHS RHS

Before(joinpointName : String, adviceName : String)

5: ControlInputPort

7: Activity
name = adviceName

4: Node
name = joinpointName

2: ControlInputPort

1: Transition

3: controlIn

destination

9: ControlOutputPort

6: controlIn

8: controlOut

5: ControlInputPort

7: Activity
name = adviceName

1: Transition
destination

: Transition
source

4: Node
name = joinpointName

2: ControlInputPort

3: controlIn

destination

Figure 5.2: The Before graph transformation rule

5.3.2 Graph Transformation Rules

Each UNIFY connector’s weaving semantics is specified by a graph transformation rule,
which is parametrized by the name of a joinpoint Activity and the name of the advice
Activity. Thus, a specific UNIFY connector application gives rise to the application of a
graph transformation rule for each of the joinpoint Activities selected by the connector’s
pointcut, with the advice being the same for each of these rule applications.

5.3.2.1 Before Connectors

The rule for the BeforeConnector is parametrized by the name of a joinpoint Activity,
and the name of the advice Activity that should be added before it. The evaluation of
the regular expressions used in the pointcut predicates executingactivity, execut-
ingcompositeactivity and executingatomicactivity results in a set of joinpoint
Activity names. Each name is the input for a rule application. Figure 5.2 shows the Be-
fore(joinpointName : String, adviceName : String) rule. The left-hand side of the rule
specifies the partial match of the workflow that will be augmented (i.e., an Activity whose
name is the value of the joinpointName parameter, together with its ControlInputPort
and the Transition that is connected to it) and the advice Activity named adviceName
with its input and output ports. The right-hand side of the rule shows the connection of
the original Transition to the advice Activity’s ControlInputPort, and of the advice Activ-
ity’s ControlOutputPort to the joinpoint Activity’s ControlInputPort through a new Tran-
sition.

5.3.2.2 After Connectors

The rule for the AfterConnector is similar to the rule for the BeforeConnector. It is pa-
rametrized by the name of a joinpoint Activity, and the name of the advice Activity that
should be added after it. The evaluation of the regular expressions used in the point-
cut predicates executingactivity, executingcompositeactivity and executing-
atomicactivity results in a set of joinpoint Activity names. Each name is the input

105

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

9: ControlOutputPort

6: controlIn

8: controlOut

LHS RHS

After(joinpointName : String, adviceName : String)

5: ControlInputPort

7: Activity
name = adviceName

1: Node
name = joinpointName

3: ControlOutputPort

4: Transition

2: controlOut

source

9: ControlOutputPort

6: controlIn

8: controlOut

5: ControlInputPort

7: Activity
name = adviceName: Transition

1: Node
name = joinpointName

3: ControlOutputPort

2: controlOut

source

destination

4: Transition
source

Figure 5.3: The After graph transformation rule

for a rule application. Figure 5.3 shows the After(joinpointName : String, adviceName
: String) rule. The left-hand side of the rule specifies the partial match of the workflow
that will be augmented (i.e., an Activity whose name is the value of the joinpointName
parameter, together with its ControlOutputPort and the Transition that is connected to
it) and the advice Activity named adviceNamewith its input and output ports. The right-
hand side of the rule shows the connection of the joinpoint Activity’s ControlOutputPort
to the advice Activity’s ControlInputPort through a new Transition, and of the advice Ac-
tivity’s ControlOutputPort to the original Transition.

5.3.2.3 Replace Connectors

The rule for the ReplaceConnector is parametrized by the name of a joinpoint Activ-
ity, and the name of the advice Activity that should replace it. The evaluation of the
regular expressions used in the pointcut predicates executingactivity, executing-
compositeactivity and executingatomicactivity results in a set of joinpoint Ac-
tivity names. Each name is the input for a rule application. Figure 5.4 shows the Re-
place(joinpointName : String, adviceName : String) rule. The left-hand side of the rule
specifies the partial match of the workflow that will be augmented: an Activity whose
name is the value of the joinpointName parameter (together with its ControlInputPort
and ControlOutputPort, and the Transitions that are connected to them), and the advice
Activity named adviceName with its control input and output ports. The right-hand
side of the rule shows the connection of the original incoming Transition to the advice
Activity’s ControlInputPort, and of the advice Activity’s ControlOutputPort to the original
outgoing Transition. The joinpoint Activity is thus removed from the graph.

5.3.2.4 Around Connectors

The rule for the AroundConnector is parametrized by the name of a joinpoint Activ-
ity, the name of the advice CompositeActivity that should be woven around it, and the
name of the proceed Activity (which is a child of the advice CompositeActivity and in-

106

5.3 Graph Transformation Formalization of Connectors

LHS

RHS

Replace(joinpointName : String, adviceName : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

10: Activity
name = adviceName

12: ControlOutputPort 7: Transition

11: controlOut source

8: ControlInputPort1: Transition

destination 9: controlIn

Figure 5.4: The Replace graph transformation rule

dicates where the joinpoint Activity should occur within the advice). The evaluation
of the regular expressions used in the pointcut predicates executingactivity, exe-
cutingcompositeactivity and executingatomicactivity results in a set of join-
point Activity names. Each name is the input for a rule application. Figure 5.5 shows
the Around(joinpointName : String, adviceName : String, proceedName : String) rule.
The left-hand side of the rule specifies the partial match of the workflow that will be aug-
mented: an Activity whose name is the value of the joinpointName parameter (together
with its ControlInputPort and ControlOutputPort, and the Transitions that are connected
to them), the advice CompositeActivity named adviceName with its control input and
output ports, and the advice CompositeActivity’s child Activity named proceedName (to-
gether with its ControlInputPort and ControlOutputPort, and the Transitions that are
connected to them). The right-hand side of the rule shows the connection of the original
incoming Transition to the advice Activity’s ControlInputPort, and of the advice Activity’s
ControlOutputPort to the original outgoing Transition. As a child of the advice Activity,
the proceed Activity is replaced by the joinpoint Activity.

5.3.2.5 Parallel Connectors

The rule for the ParallelConnector is parametrized by the name of a joinpoint Activ-
ity, and the name of the advice Activity that should be added parallel to it. The eval-
uation of the regular expressions used in the pointcut predicates executingactivi-
ty, executingcompositeactivity and executingatomicactivity results in a set of
joinpoint Activity names. Each name is the input for a rule application. Figure 5.6 shows
the Parallel(joinpointName : String, adviceName : String) rule. The left-hand side of
the rule specifies the partial match of the workflow that will be augmented (i.e., an Ac-
tivity whose name is the value of the joinpointName parameter, together with its Con-
trolInputPort and the incoming Transition that is connected to it, and its ControlOutput-
Port and the outgoing Transition that is connected to it) and the advice Activity named
adviceName with its input and output ports. The right-hand side of the rule shows the
connection of the original incoming Transition to a new AndSplit (through a new Con-
trolInputPort). The new AndSplit has two outgoing branches: the first connects the new

107

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

LHS

RHS

Around(joinpointName : String, adviceName : String, proceedName : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

10: Activity
name = adviceName

12: ControlOutputPort 7: Transition

11: controlOut source

8: ControlInputPort1: Transition

destination 9: controlIn

: Activity
name = proceedName

: ControlOutputPort 14: Transition

controlOut source

: ControlInputPort13: Transition

destination controlIn child

4: Activity
name = joinpointName

6: ControlOutputPort 14: Transition

5: controlOut source

2: ControlInputPort13: Transition

destination 3: controlIn child

Figure 5.5: The Around graph transformation rule

AndSplit to the joinpoint Activity’s ControlInputPort (through a new ControlOutputPort
and Transition), while the second connects the new AndSplit to the advice Activity’s Con-
trolInputPort (through a new ControlOutputPort and Transition). The joinpoint Activity’s
ControlOutputPort is connected to a new AndJoin (through a new Transition and Con-
trolInputPort), just like the advice Activity’s ControlOutputPort is connected to this new
AndJoin (through a new Transition and ControlInputPort). Finally, the new AndJoin is
connected to the joinpoint Activity’s original outgoing Transition (through a new Con-
trolOutputPort).

5.3.2.6 Alternative Connectors

The rule for the AlternativeConnector is similar to the rule for the ParallelConnector. It
is parametrized by the name of a joinpoint Activity, the name of the advice Activity that
should be added alternative to it, and the condition that decides whether the alterna-
tive branch should be followed or not. The evaluation of the regular expressions used in
the pointcut predicates executingactivity, executingcompositeactivity and ex-
ecutingatomicactivity results in a set of joinpoint Activity names. Each name is the
input for a rule application. Figure 5.7 shows the Alternative(joinpointName : String,
adviceName : String, condition : String) rule. The left-hand side of the rule specifies
the partial match of the workflow that will be augmented (i.e., an Activity whose name is
the value of the joinpointName parameter, together with its ControlInputPort and the
incoming Transition that is connected to it, and its ControlOutputPort and the outgoing
Transition that is connected to it) and the advice Activity named adviceName with its in-
put and output ports. The right-hand side of the rule shows the connection of the orig-
inal incoming Transition to a new XorSplit (through a new ControlInputPort). The new
XorSplit has two outgoing branches: the first connects the new XorSplit to the joinpoint

108

5.3 Graph Transformation Formalization of Connectors

LHS

RHS

Parallel(joinpointName : String, adviceName : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

7: Transition

: ControlInputPort

1: Transition

: AndSplit : ControlOutputPort

: ControlOutputPort

: Transition

4: Activity
name = joinpointName

6: ControlOutputPort

5: controlOut

2: ControlInputPort

3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

: Transition

destination

controlIn

controlOut

controlOut

source
destination

source

destination

: ControlOutputPort

: AndJoin: ControlInputPort

: Transition

: Transition

: ControlInputPort

source
destination

controlIn

controlOut

source

destination

source

controlIn

Figure 5.6: The Parallel graph transformation rule

Activity’s ControlInputPort (through a new ControlOutputPort and Transition), while the
second connects the new XorSplit to the advice Activity’s ControlInputPort (through a
new ControlOutputPort and Transition) using the specified condition. The joinpoint Ac-
tivity’s ControlOutputPort is connected to a new XorJoin (through a new Transition and
ControlInputPort), just like the advice Activity’s ControlOutputPort is connected to this
new XorJoin (through a new Transition and ControlInputPort). Finally, the new XorJoin
is connected to the joinpoint Activity’s original outgoing Transition (through a new Con-
trolOutputPort).

5.3.2.7 Iterating Connectors

The rule for the IteratingConnector is parametrized by the name of a joinpoint Activity,
the name of the advice Activity that should be added in an iteration with it, and the
condition that decides when the iteration should finish. The evaluation of the regu-
lar expressions used in the pointcut predicates executingactivity, executingcom-
positeactivity and executingatomicactivity results in a set of joinpoint Activ-
ity names. Each name is the input for a rule application. Figure 5.8 shows the Iterat-
ing(joinpointName : String, adviceName : String, condition : String) rule. The left-
hand side of the rule specifies the partial match of the workflow that will be augmented
(i.e., an Activity whose name is the value of the joinpointName parameter, together
with its ControlInputPort and the incoming Transition that is connected to it, and its

109

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

LHS

RHS

Alternative(joinpointName : String, adviceName : String, condition : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

7: Transition

: ControlInputPort

1: Transition

: XorSplit : ControlOutputPort

: Transition

4: Activity
name = joinpointName

6: ControlOutputPort

5: controlOut

2: ControlInputPort

3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

: Transition

destination

controlIn

controlOut

controlOut

source
destination

source

destination

: ControlOutputPort

: XorJoin: ControlInputPort

: Transition

: Transition

: ControlInputPort

source
destination

controlIn

controlOut

source

destination

source

controlIn

: ControlOutputPort
condition = condition

Figure 5.7: The Alternative graph transformation rule

ControlOutputPort and the outgoing Transition that is connected to it) and the advice
Activity named adviceName with its input and output ports. The right-hand side of the
rule shows the connection of the original incoming Transition to a new XorJoin (through
a new ControlInputPort). The XorJoin is connected to the joinpoint Activity’s ControlIn-
putPort (through a new ControlOutputPort and Transition). The joinpoint Activity’s Con-
trolOutputPort is connected (through a new Transition and ControlInputPort) to a new
XorSplit, which is connected to the original outgoing Transition (through a new Con-
trolOutputPort, which ensures this branch of the XorSplit is only taken when the spec-
ified condition evaluates to true). The XorSplit has a second outgoing branch which
connects (through a new ControlOutputPort and Transition) to the advice Activity’s Con-
trolInputPort. Finally, the advice Activity’s ControlOutputPort is connected (through a
new Transition and ControlInputPort) to the new XorJoin, thus completing a structured
loop in the control flow represented by this graph.

5.3.2.8 Synchronizing Connectors

The rule for the SynchronizingConnector is parametrized by the name of a splitting join-
point Activity, the name of a joining joinpoint Activity, and the name of the advice Ac-
tivity that should be inserted between these two. Figure 5.9 shows the Synchroniz-
ing(sJoinpointName : String, jJoinpointName : String, adviceName : String) rule. The
left-hand side of the rule specifies the partial match of the workflow that will be aug-

110

5.3 Graph Transformation Formalization of Connectors

: ControlOutputPort
condition = condition

LHS

RHS

Iterating(joinpointName : String, adviceName : String, condition : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

7: Transition

: ControlInputPort

1: Transition

: XorJoin : ControlOutputPort

: Transition

4: Activity
name = joinpointName

6: ControlOutputPort

5: controlOut

2: ControlInputPort

3: controlIn

10: Activity
name = adviceName

8: ControlInputPort

9: controlIn

12: ControlOutputPort

11: controlOut

: Transition

destination

controlIn

controlIn

controlOut

destination
source

source

destination

: XorSplit: ControlInputPort

: Transition

: Transition

: ControlOutputPort

destination
source

controlOut

controlOut

source

destination

source

controlIn

: ControlInputPort

Figure 5.8: The Iterating graph transformation rule

mented (i.e., an Activity whose name is the value of the sJoinpointName parameter,
together with its ControlOutputPort and the outgoing Transition that is connected to it,
and an Activity whose name is the value of the jJoinpointName parameter, together
with its ControlInputPort and the incoming Transition that is connected to it) and the
advice Activity named adviceName with its input and output ports. The right-hand side
of the rule shows the connection of the splitting joinpoint Activity to a new AndSplit
through a new Transition. The AndSplit has one outgoing Transition which connects
to the splitting joinpoint Activity’s original outgoing Transition, and another outgoing
Transition which connects to the advice Activity. The advice Activity is connected to a
new AndJoin through a new Transition; the AndJoin’s other incoming Transition is the
joining joinpoint Activity’s original incoming Transition. Finally, the AndJoin’s outgoing
Transition connects to the joining joinpoint Activity.

5.3.2.9 Switching Connectors

The Switching(sJoinpointName : String, jJoinpointName : String, adviceName : String,
condition : String) rule for the SwitchingConnector, which is shown in Figure 5.10, is
analogous to the rule for the SynchronizingConnector: the only difference is that it inserts
an XorSplit (with the appropriate condition) and an XorJoin instead of an AndSplit and
an AndJoin, respectively.

111

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Synchronizing(sJoinpointName : String, jJoinpointName : String, adviceName : String)

LHS

3: ControlOutputPort

6: ControlInputPort

4: Transition

5: Transition

source

destination

9: ControlInputPort

13: ControlOutputPort

10: controlIn

12: controlOut

11: Activity
name = adviceName

RHS

destination

source

9: ControlInputPort

13: ControlOutputPort

10: controlIn

12: controlOut

11: Activity
name = adviceName

8: Activity
name = jJoinpointName

7: controlIn

1: Activity
name = sJoinpointName

2: controlOut

3: ControlOutputPort

: AndSplit: ControlOutputPort

4: Transition

source
source

controlOut

: Transition

: Transition

: ControlInputPort

: ControlOutputPort

controlIn

controlOut

destination

source

: AndJoin

6: ControlInputPort

destination
: ControlInputPort

5: Transition

destination

controlIn

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

1: Activity
name = sJoinpointName

2: controlOut

8: Activity
name = jJoinpointName

7: controlIn

Figure 5.9: The Synchronizing graph transformation rule

5.3.3 Analysis

The graph transformation rules presented above constitute a precise specification for
the weaving of an advice Activity into a base workflow according to a Connector. As we
will discuss in Chapter 7, UNIFY’s source code weaver is a manual JAVA implementation
of the weaving semantics specified by each of these rules. However, the benefits of this
formalization are not limited to the implementation of such static weaving: it can also be
used to statically analyze the effects of UNIFY connectors. This analysis is based on the
formal notion of indepencence of graph transformations, which expresses the fact that,
in a given context, two transformations are neither mutually exclusive nor causally de-
pendent. Thus, a distinction can be made between the notions of parallel independence
(absence of mutual exclusions) and sequential independence (absence if causal depen-
dencies). A formal treatment of these concepts is provided by Ehrig et al. (2004), while a
good introduction to these concepts (and their application to the detection and resolu-
tion of model inconsistencies) is provided by Mens et al. (2006).

Based on the notion of independence, a potential parallel or sequential dependency
is defined as a pair of transformation rules for which a counterexample to parallel or se-
quential independence can be found. More precisely, two rules are mutually exclusive
if the application of the first prevents the application of the second, or vice versa. Two
rules are causally dependent if the application of the second requires prior application
of the first. Critical pairs analysis (Plump, 1993) can be used to compute all potential

112

5.3 Graph Transformation Formalization of Connectors

: ControlOutputPort
condition = condition

Switching(sJoinpointName : String, jJoinpointName : String, adviceName : String, condition : String)

LHS

3: ControlOutputPort

6: ControlInputPort

4: Transition

5: Transition

source

destination

9: ControlInputPort

13: ControlOutputPort

10: controlIn

12: controlOut

11: Activity
name = adviceName

RHS

destination

source

9: ControlInputPort

13: ControlOutputPort

10: controlIn

12: controlOut

11: Activity
name = adviceName

8: Activity
name = jJoinpointName

7: controlIn

1: Activity
name = sJoinpointName

2: controlOut

3: ControlOutputPort

: XorSplit: ControlOutputPort

4: Transition

source
source

controlOut

: Transition

: Transition

: ControlInputPort

controlIn

controlOut

destination

source

: XorJoin

6: ControlInputPort

destination
: ControlInputPort

5: Transition

destination

controlIn

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

1: Activity
name = sJoinpointName

2: controlOut

8: Activity
name = jJoinpointName

7: controlIn

Figure 5.10: The Switching graph transformation rule

mutual exclusions and causal dependencies for a given set of transformation rules by
pairwise comparison. Critical pairs formalize the idea of showing a conflicting situation
in a minimal context. Critical pairs identifying a mutual exclusion can be computed by
comparing the left-hand sides of two rules: a (partial) overlap between both indicates a
potential mutual exclusion. Critical pairs identifying a causal dependency can be com-
puted by comparing the right-hand side of one rule with the left-hand side of another:
a (partial) overlap between both indicates a potential causal dependency (Mens et al.,
2006). To perform such critical pairs analysis, we use the state-of-the-art Graph Trans-
formation analysis tool AGG (Taentzer et al., 2009).

In our initial experiments applying critical pairs analysis to our graph transformation
rules, we had some difficulty obtaining reasonable execution times for the computation
of critical pairs. After conferring with the authors of AGG, we concluded that this was
due to the fact that our rules are relatively large compared to the typical application
domains of the Graph Transformation formalism (with large rules giving rise to an ex-
plosion of the space of possible overlapping graphs). Therefore, we have simplified the
type graph and rules somewhat: (1) We have removed the ControlPort, ControlInputPort
and ControlOutputPort nodes from the type graph, and replaced these by direct associa-

113

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Figure 5.11: Numbers of mutual exclusions between graph transformation rules as com-
puted by AGG

tions between a Node and its incoming and outgoing Transitions.1 (2) We have removed
the ControlNode node from the type graph, as this abstract node can be replaced by di-
rect inheritance links between its children and its parent.2 These changes caused the
critical pairs analysis to finish within a more acceptable timeframe.3 Note that the type
graph and rules presented earlier in this chapter are the unsimplified ones. The final
AGG formalization of UNIFY, as well as the complete analysis of its critical pairs, can be
downloaded from the UNIFY website.4

Figure 5.11 shows the numbers of critical pairs identifying mutual exclusions as com-
puted by AGG. Note that these critical pairs are delete–use conflicts, as they are caused
by one rule deleting a part of a graph used in another rule’s left-hand side. We have
analyzed each of these conflicts. Summarizing this analysis, the conflicts include the
following main cases:

• The conflicts of most rule combinations indicate situations where the application

1Nevertheless, control ports remain an integral part of the UNIFY base language meta-model as presented
in Chapter 4. They are especially significant in view of the extensibility of the meta-model, e.g., towards the
data and exception handling perspectives, which may benefit from the notion of data and/or exception ports.

2Nevertheless, control nodes are an important conceptual element of the UNIFY base language meta-
model that clearly encapsulate the commonalities of splits and joins.

3Computing possible mutual exclusions takes about 15 minutes on an Intel Core i5-2500K processor with
2 GB of JAVA heap space. Computing possible causal dependencies takes several hours (due to the need to
include the — larger — right-hand sides in the comparison of rules).

4Cf. http://www.unify-framework.org/GraphTransformation.tgz.

114

http://www.unify-framework.org/GraphTransformation.tgz

5.3 Graph Transformation Formalization of Connectors

of one rule breaks the association between the joinpoint and its incoming and/or
outgoing transition (because an advice is being woven before, after, or around
the joinpoint). Thus, the second rule can no longer be applied, because its left-
hand side no longer exists in the graph. This case is not necessarily problematic in
UNIFY, because UNIFY pointcut expressions only refer to the joinpoint, and not to
its incoming and/or outgoing transition. Nevertheless, it indicates that the order-
ing of connector applications is important, which confirms the observations we
made in Section 4.5.4.

• The conflicts of rule combinations where the first rule is the Replace rule indicate
situations where the application of the first rule removes the joinpoint of the sec-
ond rule. This case is problematic in UNIFY, and is addressed in Section 4.5.4 by
generating warnings during the weaving process when such interactions are de-
tected.

• The many conflicts of the combination of two Synchronizing rules or the combi-
nation of two Switching rules are caused by the large size of these rules’ left-hand
sides, which gives rise to a large amount of overlaps between the rules’ joinpoints.
Nevertheless, these conflicts do not indicate problematic situations in UNIFY: in
UNIFY, applying a synchronizing or switching connector requires the existence of
a parallel or alternative control structure, respectively. The weaving of the connec-
tor breaks this control structure: because two of its branches are now connected,
it is no longer a control structure but rather an arbitrary workflow fragment. Thus,
it can no longer be the target of the application of a second synchronizing and
switching connector, and is similar to the above case involving the replace con-
nector: a warning can be generated during the weaving process when such an in-
teraction is detected.

Figure 5.12 shows the numbers of critical pairs identifying causal dependencies as
computed by AGG. Note that these critical pairs are produce–use dependencies, as they
are caused by one rule producing a part of a graph used in another rule’s left-hand side.
We have analyzed these dependencies, and have identified the following main cases:

• Nearly all rule applications — except the Replace rule — introduce new parts into
the graph, which enable the application of other rules. This is expected and not
necessarily problematic in UNIFY, as it merely signifies that the ordering of con-
nector applications is important, and thus again confirms the observations we
made in Section 4.5.4.

• Many critical pairs of this analysis constitute graphs that do not represent valid
UNIFY workflows, e.g., graphs where the advice and the joinpoint form a loop that
is separate from the rest of the workflow, graphs where two rules’ advice overlap,
graphs where two fragments have the same incoming or outgoing transition.

• The combination of two Synchronizing rules or two Switching rules, and — to
a lesser extent — the combination of a Synchronizing or Switching rule with an

115

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Figure 5.12: Numbers of causal dependencies between graph transformation rules as
computed by AGG

Around rule, lead to a large number of detected dependencies. Selectively analyz-
ing a number of these, we see a lot of invalid graphs as described in the previous
case. We also see some valid graphs where the application of the first rule enables
the application of the second, as described in the first case. The much larger num-
ber of such dependencies is due to the large size of these rules.

We can thus conclude that the critical pairs analysis does not reveal any significant
shortcomings to the UNIFY connector mechanism as presented in Chapter 4, as the criti-
cal pairs containing valid graphs indicate situations that are addressed by UNIFY’s point-
cut language (which is evaluated by a precise pointcut matching process based on the
names of the joinpoint activities), advice model (which allows introducing behavior into
a base workflow by weaving a copy of an advice activity) or composition model (which
allows specifying the precedence strategy according to which connectors should be wo-
ven, and addresses cases where one connector application prevents the application of
another connector). This confirms the observations we made in Section 4.5.4. Neverthe-
less, the Graph Transformation formalism does not seem perfectly well suited to some of
our larger rules, most notably the ones for the synchronizing and switching connectors.

116

5.4 Petri Net Formalization of Concerns and Connectors

t1

AND-join

t21

t22

OR-join

t3

t41

t42

t61 t62

AND-split

OR-split

Causality

Figure 5.13: Petri net patterns for workflow primitives (van der Aalst, 1998b)

5.4 Petri Net Formalization of Concerns and Connectors

5.4.1 Existing Petri Net Formalizations of Workflows

The most accepted track of existing research into formalizing workflows using Petri nets
is the research by van der Aalst et al. (van der Aalst, 1998a,b; van der Aalst and ter Hof-
stede, 2005), which has led to the development of workflow nets (WF-nets) and YAWL
(Yet Another Workflow Language). Their formalization consists of introducing Petri net
patterns for each of the workflow primitives, i.e., AND-join, AND-split, OR-join, OR-split,
and causality (or sequence). These patterns are shown in Figure 5.13. In YAWL (van der
Aalst and ter Hofstede, 2005), these primitives are augmented with additional primitives
for specifying multiple instances of workflow activities, and for canceling workflow ac-
tivities, but as UNIFY does not aim to support these, we will not consider these further.

We believe these patterns form an excellent basis for specifying a semantics for our
own UNIFY base language primitives. However, when reviewing the approach further, we
note the absence of a precise algorithm for applying these patterns to a workflow in order
to generate its corresponding Petri net in a way that provides a clear mapping between
workflow elements and their corresponding Petri net elements. For example, Figure 5.14
shows a workflow and its corresponding Petri net as provided by van der Aalst (1998b). In
this example, it is not trivial to see how transitions D, E, and F, together with their input
and output places, have been obtained in the corresponding Petri net: we would have
expected something more along the lines of Figure 5.15, in which the application of the
OR-join pattern to task F mirrors the application of the OR-split pattern to tasks B and C.

117

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

A

B

C

D

E

F

AND-join

AND-join

OR-split

OR-split

AND-split OR-join

A

B1

B2

C1

C2

D

E

F

Figure 5.14: Example workflow (top) and corresponding Petri net (bottom) (van der Aalst,
1998b)

A

B1

B2

C1

C2

D

E

F1

F2

Figure 5.15: Expected corresponding Petri net for example workflow of Figure 5.14; note
the OR-join pattern at the right of the figure

118

5.4 Petri Net Formalization of Concerns and Connectors

What we expect from our own Petri net semantics is therefore the following:

1. A precise algorithm for transforming a given workflow into its corresponding Petri
net.

2. A straightforward way of determining the workflow element to which a given Petri
net element corresponds.

In the following sections, we formally define UNIFY concerns as workflow graphs
which have a corresponding Petri net, formally define UNIFY connectors as composi-
tions of the connected concerns’ Petri nets, and analyze the effects of these connectors
on the correctness of workflows using classical soundness (van der Aalst, 2000) as the
main correctness criterion. We owe our gratitude to Gilles Geeraerts, assistant professor
at the Université Libre de Bruxelles and member of its formal methods and verification
group, for introducing us to the domain of Petri nets and sharing some of his knowledge
with us.

5.4.2 Petri Net Formalization of Concerns

5.4.2.1 Inductive Definition of UNIFY Workflow Graphs

As a starting point for our Petri net formalization of UNIFY workflows, we provide a num-
ber of definitions that formalize these workflows as directed graphs that consist of ver-
tices that correspond to UNIFY Events, Activities, or ControlNodes, and edges that cor-
respond to UNIFY Transitions. We define UNIFY workflow graphs inductively, as this will
facilitate defining the corresponding Petri nets in Section 5.4.2.2. Because UNIFY’s base
language meta-model allows defining arbitrary workflows, i.e., workflows whose control
flow is not restricted to a precisely defined set of control structures, we cannot base our
inductive definition on these control structures, but rather introduce the intermediary
notion of an n–m fragment: a fragment of a workflow graph which has n entry points and
m exit points. We can then (re)define the single-entry single-exit (SESE) fragments we
already introduced in Section 4.4.2 in terms of these n–m fragments, and define UNIFY

workflow graphs in terms of these SESE fragments.

Definition 2 (n–m Fragment). An n–m fragment is a directed graph 〈V ,E , I ,O〉 where V
is a finite set of vertices that are either events, activities, or control nodes, E ⊆ V ×V is a
set of edges, I ⊆V is a set of n input nodes that are all start events, and O ⊆V is a set of m
output nodes that are all end events, such that one of the following holds:

• (Activity) V = {i , v,o}, E = {〈i , v〉,〈v,o〉}, I = {i }, and O = {o}, with i being a start
event, v being an activity, and o being an end event

• (Sequence) There exists an n1–m1 fragment 〈V1,E1, I1,O1〉, an n2–m2 fragment 〈V2,
E2, I2,O2〉, and a mapping Mc ⊆ O1 × I2 = {〈o1

1, i 1
2〉, . . . ,〈ok

1 , i k
2 〉} that specifies where

the fragments should be connected in sequence into an n–m fragment (with n =
n1 +n2 −k and m = m1 +m2 −k), such that:

– V = (V1 ∪V2) \ {oi
1 ∈O1 | i ∈ {1, . . . ,k}} \ {i i

2 ∈ I2 | i ∈ {1, . . . ,k}},

119

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

– E =
(
E1 ∪E2 ∪

{〈
v i

1, v i
2

〉 ∈V1 ×V2 |
〈

v i
1,oi

1

〉 ∈ E1 ∧
〈

i i
2, v i

2

〉 ∈ E2 ∧ i ∈ {1, . . . ,k}
})

\{〈
v i

1,oi
1

〉 ∈ E1 | i ∈ {1, . . . ,k}
}

\
{〈

i i
2, v i

2

〉 ∈ E2 | i ∈ {1, . . . ,k}
}
,

– I = (I1 ∪ I2) \ {i i
2 ∈ I2 | i ∈ {1, . . . ,k}}, and

– O = (O1 ∪O2) \ {oi
1 ∈O1 | i ∈ {1, . . . ,k}}

• (Union) V = V1 ∪V2, E = E1 ∪E2, I = I1 ∪ I2, and O = O1 ∪O2, with 〈V1,E1, I1,O1〉
and 〈V2,E2, I2,O2〉 being n1–m1 and n2–m2 fragments, respectively, n = n1+n2, and
m = m1 +m2

• (Split) There exists an n1–m1 fragment 〈V1,E1, I1,O1〉, a start event i , a split v, and a
set {i 1

1 , . . . , i k
1 } ⊂ I1 that specifies where the split should be connected to the fragment

in order to obtain an n–m fragment (with n = n1 +1−k and m = m1), such that:

– V = (V1 ∪ {i , v}) \ {i i
1 ∈ I1 | i ∈ {1, . . . ,k}},

– E = (E1∪{〈i , v〉}∪{〈v, v i
1〉 ∈ {v}×V1 | 〈i i

1, v i
1〉 ∈ E1∧ i ∈ {1, . . . ,k}})\{〈i i

1, v i
1〉 ∈ E1 |

i ∈ {1, . . . ,k}},

– I = (I1 ∪ {i }) \ {i i
1 ∈ I1 | i ∈ {1, . . . ,k}}, and

– O =O1

• (Join) There exists an n1–m1 fragment 〈V1,E1, I1,O1〉, an end event o, a join v, and a
set {o1

1, . . . ,ok
1 } ⊂O1 that specifies where the join should be connected to the fragment

in order to obtain an n–m fragment (with n = n1 and m = m1 +1−k), such that:

– V = (V1 ∪ {o, v}) \ {oi
1 ∈O1 | i ∈ {1, . . . ,k}},

– E = (E1 ∪ {〈v,o〉}∪ {〈v i
1, v〉 ∈ V1 × {v} | 〈v i

1,oi
1〉 ∈ E1 ∧ i ∈ {1, . . . ,k}}) \ {〈v i

1,oi
1〉 ∈

E1 | i ∈ {1, . . . ,k}},

– I = I1, and

– O = (O1 ∪ {o}) \ {oi
1 ∈O1 | i ∈ {1, . . . ,k}}

Definition 3 (1–1 Fragment). A 1–1 fragment is an n–m fragment with 1 input node and
1 output node.

Definition 4 (Workflow Graph). A workflow graph is a 1–1 fragment.

5.4.2.2 Petri Net Formalization of UNIFY Workflow Graphs

A labeled Petri net is a tuple N = 〈P,T,Σ〉, where P is a finite set of places, T is a finite set
of transitions, and Σ is a finite alphabet. Each transition t ∈ T is a triple 〈It ,Ot ,`〉, where
It : P 7→N and Ot : P 7→N are respectively input and output multisets of places, and ` ∈Σ
is the transition label.

Definition 5 (Petri Net Formalization of an n–m Fragment). Each n–m fragment as for-
malized in Section 5.4.2.1 has a corresponding labeled Petri net and a mapping M : V 7→
(P ∪T) of UNIFY workflow graph vertices to Petri net places or transitions, which are de-
fined inductively as follows.

120

5.4 Petri Net Formalization of Concerns and Connectors

• (Activity) A fragment consisting of a start event i , a single activity v, and an end
event o is represented by a labeled Petri net N = 〈P,T,Σ〉, with P = {pi , po}, T = {t }
with t = 〈{pi }, {po}, v〉, and Σ= {v}. The mapping of UNIFY workflow graph vertices
to Petri net places or transitions is defined as M = {〈i , pi 〉,〈v, t〉,〈o, po〉}.

• (Sequence) As is illustrated in Figure 5.16, a sequence of two fragments 〈V1,E1, I1,O1〉
and 〈V2,E2, I2,O2〉, which are represented by labeled Petri nets N1 = 〈P1,T1,Σ1〉 and
N2 = 〈P2,T2,Σ2〉, respectively, which have mappings M1 and M2, respectively, and
which are to be connected according to the mapping Mc : O1 7→ I2 = {〈o1

1, i 1
2〉, . . . ,〈ok

1 ,
i k

2 〉}, is represented by a labeled Petri net N = 〈P,T,Σ〉, with

– P = P1 ∪P2 \ {p | 〈i i
2, p〉 ∈ M2 ∧ i ∈ {1, . . . ,k}}

– T = T1 ∪T2, where, for each t = 〈It ,Ot ,`〉 ∈ T2, for each p ∈ It , and for each
〈i i

2, p〉 ∈ M2 with i ∈ {1, . . . ,k}, the set It is changed such that p ∉ It and p ′ ∈ It ,
with 〈oi

1, p ′〉 ∈ M1 ∧〈oi
1, i i

2〉 ∈ Mc .

– Σ=Σ1 ∪Σ2

The mapping of UNIFY workflow graph vertices to Petri net places or transitions is
defined as M = M1∪M2\

{〈
oi

1, p
〉 | 〈oi

1, i i
2

〉 ∈ Mc∧p ∈ P1
}

\
{〈

i i
2, p

〉 | 〈oi
1, i i

2

〉 ∈ Mc∧p ∈
P2

}
.

• (Union) A union of two fragments 〈V1,E1, I1,O1〉 and 〈V2,E2, I2,O2〉, which are rep-
resented by labeled Petri nets N1 = 〈P1,T1,Σ1〉 and N2 = 〈P2,T2,Σ2〉, respectively,
and which have mappings M1 and M2, respectively, is represented by a labeled Petri
net N = 〈P,T,Σ〉, with P = P1]P2, T = T1]T2, and Σ = Σ1]Σ2. The mapping
of UNIFY workflow graph vertices to Petri net places or transitions is defined as
M = M1]M2.

• (AND-Split) A start event i and an AND-split s, which is to be connected to the start
events {i 1

1 , . . . , i k
1 } of a fragment 〈V1,E1, I1,O1〉, which is represented by a labeled Petri

net N1 = 〈P1,T1,Σ1〉 and which has mapping M1, are represented by a labeled Petri
net N = 〈P,T,Σ〉, with

– P = P1 ∪ {ps }

– T = T1 ∪ {ts }, where ts = 〈{ps }, {p | 〈i i
1, p〉 ∈ M1 ∧ i ∈ {1, . . . ,k}}, s〉

– Σ=Σ1 ∪ {s}

The mapping of UNIFY workflow graph vertices to Petri net places or transitions is
defined as M = M1 \ {〈i i

1, p〉 | i ∈ {1, . . . ,k}∧p ∈ P1}∪ {〈i , ps〉,〈s, ts〉}.

• (XOR-Split) A start event i and an XOR-split s, which is to be connected to the start
events {i 1

1 , . . . , i k
1 } of a fragment 〈V1,E1, I1,O1〉, which is represented by a labeled Petri

net N1 = 〈P1,T1,Σ1〉 and which has mapping M1, are represented by a labeled Petri
net N = 〈P,T,Σ〉, with

– P = P1 ∪ {ps }

121

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

– T = T1 ∪ {t i
s | t i

s = 〈{ps }, {p}, si 〉∧〈i i
1, p〉 ∈ M1 ∧ i ∈ {1, . . . ,k}}

– Σ=Σ1 ∪ {si | i ∈ {1, . . . ,k}}

The mapping of UNIFY workflow graph vertices to Petri net places or transitions is
defined as M = M1 \ {〈i i

1, p〉 | i ∈ {1, . . . ,k}∧p ∈ P1}∪ {〈i , ps〉}∪ {〈s, t i
s 〉 | i ∈ {1, . . . ,k}}.

• (AND-Join) An end event o and an AND-join j , which is to be connected to the end
events {o1

1, . . . ,ok
1 } of a fragment 〈V1,E1, I1,O1〉, which is represented by a labeled

Petri net N1 = 〈P1,T1,Σ1〉 and which has mapping M1, are represented by a labeled
Petri net N = 〈P,T,Σ〉, with

– P = P1 ∪ {p j }

– T = T1 ∪ {t j }, where t j = 〈{p | 〈oi
1, p〉 ∈ M1 ∧ i ∈ {1, . . . ,k}}, {p j }, j 〉

– Σ=Σ1 ∪ { j }

The mapping of UNIFY workflow graph vertices to Petri net places or transitions is
defined as M = M1 \ {〈oi

1, p〉 | i ∈ {1, . . . ,k}∧p ∈ P1}∪ {〈o, p j 〉,〈 j , t j 〉}.

• (XOR-Join) An end event o and an XOR-join j , which is to be connected to the end
events {o1

1, . . . ,ok
1 } of a fragment 〈V1,E1, I1,O1〉, which is represented by a labeled

Petri net N1 = 〈P1,T1,Σ1〉 and which has mapping M1, are represented by a labeled
Petri net N = 〈P,T,Σ〉, with

– P = P1 ∪ {p j }

– T = T1 ∪ {t i
j | t i

j = 〈{p}, {p j }, ji 〉∧〈oi
1, p〉 ∈ M1 ∧ i ∈ {1, . . . ,k}}

– Σ=Σ1 ∪ { ji | i ∈ {1, . . . ,k}}

The mapping of UNIFY workflow graph vertices to Petri net places or transitions is
defined as M = M1 \ {〈oi

1, p〉 | i ∈ {1, . . . ,k}∧p ∈ P1}∪ {〈o, p j 〉}∪ {〈 j , t i
j 〉 | i ∈ {1, . . . ,k}}.

As UNIFY workflow graphs are defined in terms of 1–1 fragments, and 1–1 fragments
are defined in terms of n–m fragments, the above definition constitutes a full formaliza-
tion of UNIFY workflow graphs using Petri nets. In conclusion of this formalization, let
us briefly discuss the above definition:

• Due to the Activity rule, every activity is represented by a Petri net transition la-
beled with the activity’s name. The transition has one input place and one output
place which represent the start and end events of the fragment.

• The Sequence rule does not add any new places or transitions, but rather removes
the input places which represent the start events of the second fragment where the
first fragment should be connected, and replaces these input places by the output
places which represent the end events of the first fragment. Thus, the graph edges
connecting the two fragments are represented in the Petri net as the former output
places of the first fragment.

• The Union rule adds nor removes places or transitions.

122

5.4 Petri Net Formalization of Concerns and Connectors

...

...

...

...

...

o11

ok1

om1

N1 N2

...

...

...

...

...

i12

ik2

in2
N

...

...

...

...

o11

ok1

...

t11

tk1

tm1

t11

tk1

t12

tk2

tn2

t12

tk2

...

...

...

ik+12

in2

tk+12

tn2

...

...

...

ok+11

om1

tk+11

tm1

Figure 5.16: Construction of a Petri net N as a sequence of two Petri nets N1 and N2

according to the mapping Mc : O1 7→ I2 = {〈o1
1, i 1

2〉, . . . ,〈ok
1 , i k

2 〉}

• Due to the AND-split and AND-join rules, every AND-split and AND-join is repre-
sented by a single Petri net transition labeled with the node’s name.

– An AND-split’s transition has a new input place representing the new frag-
ment’s start event, while its output places are the input places of the old frag-
ment to which the split should be connected. These places thus represent
the graph edges connecting the split to the nodes of the old fragment.

– An AND-join’s transition has a new output place representing the new frag-
ment’s end event, while its input places are the output places of the old frag-
ment to which the join should be connected. These places thus represent the
graph edges connecting the join to the nodes of the old fragment.

• Due to the XOR-split and XOR-join rules, every XOR-split and XOR-join is repre-
sented by k Petri net transitions labeled with the node’s name (k being the number
of outgoing/incoming edges of the XOR-split/XOR-join).

123

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

– Each of a XOR-split’s transitions has as its input place a new place represent-
ing the new fragment’s start event, while each transition’s single output place
is each of the input places of the old fragment to which the split should be
connected. These places thus represent the graph edges connecting the split
to the nodes of the old fragment.

– Each of a XOR-join’s transitions has as its output place a new place represent-
ing the new fragment’s end event, while each transition’s single input place is
each of the output places of the old fragment to which the join should be con-
nected. These places thus represent the graph edges connecting the join to
the nodes of the old fragment.

Informally, our translation from UNIFY base language primitives to Petri net ele-
ments can be visualized as in Figure 5.17. Note that this translation is compatible with
the Petri net patterns for workflow primitives of van der Aalst (1998b), which were al-
ready shown in Figure 5.13. Any UNIFY workflow can thus be translated into a Petri net
using the following algorithm:

1. For each UNIFY transition in the workflow, a Petri net place is generated. While do-
ing this, a mapping from UNIFY transitions to their corresponding Petri net places
is constructed, which will be used in the following steps of the algorithm.

2. For each UNIFY activity in the workflow, a Petri net transition is generated. The
Petri net transition’s input place is the place that corresponds to the UNIFY activ-
ity’s incoming transition. The Petri net transition’s output place is the place that
corresponds to the UNIFY activity’s outgoing transition.

3. For each UNIFY AND-split in the workflow, a Petri net transition is generated. The
Petri net transition’s input place is the place that corresponds to the UNIFY AND-
split’s incoming transition. The Petri net transition’s output places are the places
that correspond to the UNIFY AND-split’s outgoing transitions.

4. For each UNIFY AND-join in the workflow, a Petri net transition is generated. The
Petri net transition’s input places are the places that correspond to the UNIFY AND-
join’s incoming transitions. The Petri net transition’s output place is the place that
corresponds to the UNIFY AND-join’s outgoing transition.

5. For each UNIFY XOR-split’s outgoing transition, a Petri net transition is generated.
The Petri net transition’s input place is the place that corresponds to the UNIFY

XOR-split’s incoming transition. The Petri net transition’s output place is the place
that corresponds to the UNIFY XOR-split’s outgoing transition.

6. For each UNIFY XOR-join’s incoming transition, a Petri net transition is generated.
The Petri net transition’s input place is the place that corresponds to the UNIFY

XOR-join’s incoming transition. The Petri net transition’s output place is the place
that corresponds to the UNIFY XOR-split’s outgoing transition.

124

5.4 Petri Net Formalization of Concerns and Connectors

t1Activity

Start event p3

End event p4

p1 p2

Unify primitive Corresponding Petri net element(s)

AND-split

t2

p5

p6

p7

AND-join

t3p8

p9

p10

XOR-split

t4

p11

p12

p13

t5

XOR-join

t6

p14

p15

p16t7

Figure 5.17: Mapping from UNIFY base language primitives to Petri net elements

125

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Using this algorithm, it is straightforward to transform a given workflow into its cor-
responding Petri net. While performing steps 2–6 of the algorithm, it is possible to aug-
ment the mapping from UNIFY transitions to Petri net places constructed in step 1 with
a mapping from UNIFY activities, AND-splits, AND-joins, XOR-splits, and XOR-joins to
their corresponding Petri net transitions. Using this augmented mapping, any Petri net
element can easily be traced back to the UNIFY base language primitive to which it corre-
sponds. We have implemented the transformation algorithm as part of the UNIFY frame-
work, and allow exporting the resulting Petri net models as PNML files, PNML being a
standard for the exchange of Petri nets supported by existing Petri net editors and anal-
ysis tools.

Figure 5.18 illustrates the execution of the algorithm for an example UNIFY workflow,
which is shown at the top of Figure 5.18 and is equivalent to the workflow at the top of
Figure 5.14. Note that the generated Petri net contains more transitions and places than
the Petri net at the bottom of Figure 5.14, because each AND-split, AND-join, XOR-split,
and XOR-join gives rise to “dummy” transitions, i.e., transitions that do not represent
a workflow activity. However, now we have a clear algorithm for the transformation of
a workflow into a Petri net, and we have a means of tracing Petri net elements back to
workflow elements.

5.4.3 Petri Net Formalization of Connectors

We can now introduce a formalization of UNIFY connectors based purely on Petri nets.
We expect this formalization to provide the following benefits:

1. We aim to allow analyzing the effects of UNIFY connectors on a workflow’s oper-
ational properties without requiring the entire workflow composition to be trans-
lated to Petri nets. Thus, we will obtain a more compositional approach that is
better suited to traditional Petri net analysis tools, which may have trouble dealing
with large Petri nets.

2. Although our current experiments with UNIFY have primarily used source code
weaving for the implementation of our connector mechanism, and thus ensure
compatibility with existing tool chains, runtime weaving is a popular strategy in
general aspect-oriented research. Given that Petri nets offer a natural runtime se-
mantics for workflows, a Petri net formalization of UNIFY connectors forms a basis
for implementing runtime weaving of connectors.

We aim to ensure that our Petri net formalization of UNIFY connectors is equiva-
lent with the Graph Transformation formalization we presented in Section 5.3. An in-
tuition for this statement can be gained by comparing the Petri net composition rules
we present in the remainder of this section with the graph transformation rules we pre-
sented in Section 5.3.2. A formal proof for the equivalence of both formalizations is be-
yond our current scope.

For the definition of the semantics of UNIFY connectors, we start from:

126

5.4 Petri Net Formalization of Concerns and Connectors

A

B

C

D

E

F

Unify workflow

Generated Petri net - Step 1

A
B

C

D

E

F

Generated Petri net - Step 2

A
B

C

D

E

F

Generated Petri net - Step 3

A
B

C

D

E

F

Generated Petri net - Step 4

A
B

C

D

E

F

Generated Petri net - Step 5

A
B

C

D

E

F

Generated Petri net - Step 6

Figure 5.18: Construction of the Petri net that corresponds to the example workflow at
the top of Figure 5.14

127

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

• A finite set of Petri nets P = {NW1, . . . , NWn} of which each Petri net NWi = 〈Pi ,Ti ,Σi 〉
represents a UNIFY workflow Wi as defined in Definition 5. This is the set of Petri
nets to which connectors can apply.

• A finite set of connectors {C1, . . . ,Cm} of which each connector Ci is a triple 〈NWa,
type,places〉, with NWa = 〈Pa ,Ta ,Σa〉 being a Petri net representing the advice,
type ∈ {before, after, replace, around, parallel, alternative, iterating, synchronizing,
switching} being the type of the connector, and places = 〈ps , pe〉 being a couple of
places which are the start and end places of a (1–1) joinpoint fragment.

When applying a connector, the pointcut expression of a connector Ci will resolve to
a set of fragments, which each can be identified by a start and end place, that determine
where the advice NWa will be inserted. The location where the advice is inserted relative
to the joinpoint is determined by the connector type. In the remainder of this section,
we describe for each type of connector how the advice is inserted relative to a single
joinpoint fragment.

5.4.3.1 Sequential Concern Connection Patterns

Before Consider the connector Cbefore =
〈

NWa,before,〈ps , pe〉
〉

and the net NWx = 〈Px ,
Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start and end places 〈ps , pe〉.
The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′

s and as end place p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.19):

• Pc = Pa ∪Px

• Tc = Ta ∪T ′
x ∪ {tb}, where:

– t ′a = 〈Ia ,O′
a , a〉 ∈ T ′

x ⇐⇒ ta = 〈Ia ,Oa , a〉 ∈ Tx , where

O′
a =

{
Oa \ {ps }∪ {p ′

s } if ps ∈Oa

Oa if ps ∉Oa

– tb = 〈Ib ,Ob ,b〉, where Ib = {p ′
e } and Ob = {ps }

• Σc =Σa ∪Σx ∪ {b}

After Consider the connector Cafter =
〈

NWa,after,〈ps , pe〉
〉

and the net NWx = 〈Px ,Tx ,
Σx〉 ∈ P containing a joinpoint fragment identified by the start and end places 〈ps , pe〉.
The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′

s and as end place p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.20):

• Pc = Pa ∪Px

• Tc = Ta ∪T ′
x ∪ {ta}, where:

128

5.4 Petri Net Formalization of Concerns and Connectors

p’s p’e

NWa

ps pe

ta

NWx

p’s p’e

ta

NWc

NWa

ps pe

tb

Figure 5.19: Construction of NWc by applying Cbefore to NWx

– t ′b = 〈I ′b ,Ob ,b〉 ∈ T ′
x ⇐⇒ tb = 〈Ib ,Ob ,b〉 ∈ Tx , where

I ′b =
{

Ib \ {pe }∪ {p ′
e } if pe ∈ Ib

Ib if pe ∉ Ib

– ta = 〈Ia ,Oa , a〉, where Ia = {pe } and Oa = {p ′
s }

• Σc =Σa ∪Σx ∪ {a}

Replace Consider the connector Creplace = 〈
NWa,replace,〈ps , pe〉

〉
and the net NWx =

〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment characterized by the Petri net N j = 〈P j ,
T j ,Σ j 〉 and identified by the start and end places 〈ps , pe〉. The Petri net NWa = 〈Pa ,Ta ,Σa〉
has as start place p ′

s and as end place p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.21):

• Pc = (Pa ∪Px) \ P j

129

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

p’s p’e

NWa

ps pe

tb

NWx

tb

NWc

p’s p’e

NWa

ps pe

ta

pb

pb

Figure 5.20: Construction of NWc by applying Cafter to NWx

• Tc = (Ta ∪Tx) \ T j where for each ta = 〈Ia ,Oa , a〉 ∈ Tx with ps ∈ Oa the set Oa is
changed such that ps is replaced by p ′

s , and for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with pe ∈
Ib the set Ib is changed such that pe is replaced by p ′

e

• Σc = (Σa ∪Σx) \Σ j

Around Consider the connector Caround = 〈
NWa,around,〈ps , pe〉

〉
and the net NWx =

〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment characterized by the Petri net N j = 〈P j ,
T j ,Σ j 〉 and identified by the start and end places 〈ps , pe〉. The Petri net NWa = 〈Pa ,Ta ,Σa〉
has as start place p ′

s and as end place p ′
e and contains a proceed fragment characterized

by the Petri net Np = 〈Pp ,Tp ,Σp〉 and identified by the start and end places 〈p ′′
s , p ′′

e 〉.
The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.22):

• Pc = (Pa ∪Px) \ Pp

• Tc = (Ta ∪Tx) \ Tp , where:

130

5.4 Petri Net Formalization of Concerns and Connectors

p’s p’e

NWa

ps pe

tb

NWx

NWc

ta

Nj

p’s p’e

tbta

NWa

pb

pb

Figure 5.21: Construction of NWc by applying Creplace to NWx

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with ps ∈ Oa the set Oa is changed such that ps

is replaced by p ′
s

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with pe ∈ Ib the set Ib is changed such that pe is
replaced by p ′

e

– for each tc = 〈Ic ,Oc ,c〉 ∈ Ta with p ′′
s ∈Oc the set Oc is changed such that p ′′

s is
replaced by ps

– for each td = 〈Id ,Od ,d〉 ∈ Ta with p ′′
e ∈ Id the set Id is changed such that p ′′

e is
replaced by pe

• Σc = (Σa ∪Σx) \Σp

5.4.3.2 Parallel Concern Connection Patterns

Parallel Consider the connector Cparallel =
〈

NWa,parallel,〈ps , pe〉
〉

and the net NWx =
〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start and end places
〈ps , pe〉. The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′

s and as end place p ′
e .

131

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

p s
p e

t b

N
W
x

N
W
c

t a

p’
’ s

p’
’ e

t d

N
W
a

t c

N
p

N
j

p’
s

p’
e

t b
t a

p s
p e

t d

N
W
a

t c

N
j

p’
s

p’
e

F
ig

u
re

5.
22

:C
o

n
st

ru
ct

io
n

o
fN

W
c

b
y

ap
p

ly
in

g
C

ar
ou

n
d

to
N

W
x

132

5.4 Petri Net Formalization of Concerns and Connectors

ps pe

tb

NWx

NWc

ta

tbta tandjNWa

pandj

p’s p’e

NWa

pands

tands

ps pe

p’s p’e

Nj

Nj

Figure 5.23: Construction of NWc by applying Cparallel to NWx

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.23):

• Pc = Pa ∪Px ∪ {pands, pandj}

• Tc = Ta ∪Tx ∪ {tands, tandj}, where:

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with ps ∈Oa , the set Oa is changed such that ps

is replaced by pands

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with pe ∈ Ia , the set Ia is changed such that pe is
replaced by pandj

– tands = 〈Iands,Oands,ands〉, where Iands = {pands} and Oands = {ps , p ′
s }

– tandj = 〈Iandj,Oandj,andj 〉, where Iandj = {pe , p ′
e } and Oandj = {pandj}

• Σc =Σa ∪Σx ∪ {ands,andj}

133

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

5.4.3.3 Conditional Concern Connection Patterns

Alternative Consider the connector Calternative =
〈

NWa,alternative,〈ps , pe〉
〉

and the net
NWx = 〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start and end
places 〈ps , pe〉. The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′

s and as end place p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.24):

• Pc = Pa ∪Px ∪ {pxors, pxorj}

• Tc = Ta ∪Tx ∪ {txors1, txors2, txorj1, txorj2} where

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with ps ∈Oa , the set Oa is changed such that ps

is replaced by pxors

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with pe ∈ Ib , the set Ib is changed such that pe is
replaced by pxorj

– txors1 = 〈Ixors1,Oxors1,xors1〉, where Ixors1 = {pxors} and Oxors1 = {ps }

– txors2 = 〈Ixors2,Oxors2,xors2〉, where Ixors2 = {pxors} and Oxors2 = {p ′
s }

– txorj1 = 〈Ixorj1,Oxorj1,xorj1〉, where Ixorj1 = {pe } and Oxorj1 = {pxorj}

– txorj2 = 〈Ixorj2,Oxorj2,xorj2〉, where Ixorj2 = {p ′
e } and Oxorj2 = {pxorj}

• Σc =Σa ∪Σx ∪ {xors1,xors2,xorj1,xorj2}

5.4.3.4 Iterating Concern Connection Patterns

Iterating Consider the connector Citerating = 〈
NWa, iterating,〈ps , pe〉

〉
and the net NWx =

〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start and end places
〈ps , pe〉. The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′

s and as end place p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.25):

• Pc = Pa ∪Px ∪ {pxorj, pxors},

• Tc = Ta ∪Tx ∪ {tjs, tje, tse, tss}, where:

– tjs = 〈Ijs,Ojs, js〉, where Ijs = {pxorj} and Ojs = {ps }

– tje = 〈Ije,Oje, je 〉, where Ije = {p ′
e } and Oje = {ps }

– tse = 〈Ise,Ose,se 〉, where Ise = {pe } and Ose = {pxors},

– tss = 〈Iss,Oss,ss〉, where Iss = {pe } and Oss = {p ′
s }

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with ps ∈ Oa the set Oa is changed such that ps

is replaced by pxorj

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with pe ∈ Ib the set Ib is changed such that pe is
replaced by pxors

• Σc =Σa ∪Σx ∪ {js, je,se,ss}

134

5.4 Petri Net Formalization of Concerns and Connectors

ps pe

tb

NWx

NWc

ta

tbta

txorj1

NWa

pxorj

p’s p’e

NWa

pxors

txors1

ps pe

p’s p’e

txors2 txorj2

Nj

Nj

Figure 5.24: Construction of NWc by applying Calternative to NWx

5.4.3.5 Internal Concern Connection Patterns

Synchronizing Consider the connector Csynchronizing = 〈
NWa,synchronizing,〈ps , pe〉

〉
and the net NWx = 〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start
and end places 〈ps , pe〉. This fragment contains two other fragments, one identified by
the start place p ′′

s and the end place p ′′
e , and another identified by the start place p ′′′

s and
the end place p ′′′

e . The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′
s and as end place

p ′
e .

The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.26):

• Pc = Pa ∪Px ∪ {pands, pandj}

• Tc = Ta ∪Tx ∪ {tands, tandj}, where:

– tands = 〈Iands,Oands,ands〉, where Iands = {p ′′
e } and Oands = {pands, p ′

s }

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with p ′′
e ∈ Ia the set Ia is changed such that p ′′

e is
replaced by pands

– tandj = 〈Iandj,Oandj,andj 〉, where Iandj = {p ′
e , pandj} and Oandj = p ′′′

s

135

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

ps pe

tb

NWx

NWc

ta

tbta tse

NWa

pxors

p’s p’e

NWa

pxorj

tjs

ps pe

p’sp’e

tje tss

Nj

Nj

Figure 5.25: Construction of NWc by applying Citerating to NWx

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with p ′′′
s ∈Ob the set Ob is changed such that p ′′′

s
is replaced by pandj

• Σc =Σa ∪Σx ∪ {ands,andj}

Switching Consider the connector Cswitching = 〈
NWa,switching,〈ps , pe〉

〉
and the net

NWx = 〈Px ,Tx ,Σx〉 ∈ P containing a joinpoint fragment identified by the start and end
places 〈ps , pe〉. This fragment contains two other fragments, one identified by the start
place p ′′

s and the end place p ′′
e , and another identified by the start place p ′′′

s and the end
place p ′′′

e . The Petri net NWa = 〈Pa ,Ta ,Σa〉 has as start place p ′
s and as end place p ′

e .
The composed Petri net NWc = 〈Pc ,Tc ,Σc〉 is constructed as follows (cf. Figure 5.27):

• Pc = Pa ∪Px ∪ {pxors, pxorj}

• Tc = Ta ∪Tx ∪ {txors1, txors2, txorj1, txorj2}, where:

136

5.4 Petri Net Formalization of Concerns and Connectors

N W
x

p' s
p' e

N W
a

p e

t e

p s

t s

t a

t b

p''
e

p''
s

p''
' e

p''
' s

N W
c

p s

t s

p e

t e
p' s

p' e

N W
a

t an
ds

t a
p''
e

p''
s

p a
nd
s

t an
dj

t b
p''
' e

p''
' s

p a
nd
j

F
ig

u
re

5.
26

:C
o

n
st

ru
ct

io
n

o
fN

W
c

b
y

ap
p

ly
in

g
C

sy
n

ch
ro

n
iz

in
g

to
N

W
x

137

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

– txors1 = 〈Ixors1,Oxors1,xors1〉, where Ixors1 = {p ′′
e } and Oxors1 = {pxors}

– txors2 = 〈Ixors2,Oxors2,xors2〉, where Ixors2 = {p ′′
e } and Oxors2 = {p ′

s }

– for each ta = 〈Ia ,Oa , a〉 ∈ Tx with p ′′
e ∈ Ia the set Ia is changed such that p ′′

e is
replaced by pxors

– txorj1 = 〈Ixorj1,Oxorj1,xorj1〉, where Ixorj1 = {p ′
e } and Oxorj1 = {p ′′′

s }

– txorj2 = 〈Ixorj2,Oxorj2,xorj2〉, where Ixorj2 = {pxorj} and Oxorj2 = {p ′′′
s }

– for each tb = 〈Ib ,Ob ,b〉 ∈ Tx with p ′′′
s ∈Ob the set Ob is changed such that p ′′′

s
is replaced by pxorj

• Σc =Σa ∪Σx ∪ {xors1,xors2,xorj1,xorj2}

5.4.4 Analysis

Now that we have a clear Petri net specification of both UNIFY concerns and connec-
tors, we can start analyzing the composition of UNIFY concerns into a workflow using
the various connectors. Our main goal here is to prove that our composition mecha-
nism does not introduce any undesirable properties into the composed workflow, i.e.,
that the composed workflows are correct. Of course, this requires a clearly specified cor-
rectness criterion. Within the workflow community, there is a consensus around using
the soundness property as the main criterion for correctness of workflows (van der Aalst
et al., 2011). This property guarantees the absence of deadlocks (a case gets stuck), live-
locks (a case cannot progress), and other anomalies that can be detected without domain
knowledge. Before we provide a formal definition of soundness, let us briefly enumerate
some notations used throughout this section:

• [p] denotes the state (or marking) in which only the place p is marked with a token.

• Mi
t−→ M j denotes that state M j is reachable from state Mi by firing a single tran-

sition t .

• M1
∗−→ Mn denotes that state Mn is reachable from state M1 by sequentially firing

an arbitrary number of transitions.

• M1
σ−→ Mn denotes that state Mn is reachable from state M1 by sequentially firing

a specific sequence of transitions named σ.

• M1
σ−→
N

Mn denotes that state Mn is reachable from state M1 in a specific Petri net

N by sequentially firing a specific sequence of transitions named σ.

• M
∣∣
Px

denotes the projection of state M on the set of places Px .

Although there exist a number of alternative definitions of soundness (which are sur-
veyed in van der Aalst et al., 2011), we will use the definition of classical soundness by
van der Aalst (2000):

138

5.4 Petri Net Formalization of Concerns and Connectors

N W
x

p' s
p' e

N W
a

p e

t e1

p s

t s2

t a

t b

p''
e

p''
s

p''
' e

p''
' s

N W
c

p s

t s1

p e

t e1

p' s
p' e

N W
a

t xo
rs1

t a
p''
e

p''
s

p x
or
s

t xo
rj2

t b
p''
' e

p''
' s

p x
or
j

t s1

t e2

t s2

t e2

t xo
rs2

t xo
rj1

F
ig

u
re

5.
27

:C
o

n
st

ru
ct

io
n

o
fN

W
c

b
y

ap
p

ly
in

g
C

sw
it

ch
in

g
to

N
W

x

139

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Definition 6 (Classical Soundness). A workflow modeled by a Petri net N = 〈P,T,Σ〉 is
sound if and only if:

1. (Option to Complete) For every state M reachable from the initial state [i], there
exists a firing sequence leading from state M to the final state [o]. Formally:

∀M : ([i]
∗−→ M) ⇒ (M

∗−→ [o])

2. (Proper Completion) The final state [o] is the only state reachable from the initial
state [i] with at least one token in the final place o. Formally:

∀M : ([i]
∗−→ M ∧M ≥ [o]) ⇒ (M = [o]))

3. (No Dead Transitions) There are no dead transitions in N with initial state [i]. For-
mally:

∀t ∈ T ∃M , M ′ : [i]
∗−→ M

t−→ M ′

We can thus refine the goal of this section to be the following: we aim to enable prov-
ing that a connector, which connects a classically sound advice to a classically sound
workflow, gives rise to a composed workflow that is classically sound. Before present-
ing the outline of a prototypical proof, we will consider three important properties of the
Petri net compositions defined in Section 5.4.3, which can be established by induction
on the possible firing sequences of these Petri nets. In these properties, we assume a
situation similar to Figure 5.19, in which ps and pe are the initial and final places of the
Petri net representing the joinpoint, respectively, p ′

s and p ′
e are the initial and final places

of the Petri net representing the advice, respectively, and ta and tb are the transitions of
the Petri net representing the composed workflow that lead the Petri net representing the
base workflow into and out of the Petri net representing the advice, respectively (i.e., the
firing of ta indicates the “activation” of the advice in the composed workflow, whereas
the firing of tb indicates its “deactivation”).

Property A. Let M be a marking such that [i]
σ−→

NWc
M, i.e., M is reachable in NWc from its

initial marking [i] by some firing sequence σ. Assume σ = t1 . . . tn . Let j (resp. k) denote
the largest position inσ such that t j = ta (tk = tb). Assume t j = 0 (tk = 0) if ta (tb) does not
occur in σ. (Intuitively, j is the “last time” the advice has been entered in σ, and k is the
last time the advice has been left in σ.)

1. If k ≥ j (i.e., the advice is “inactive” in M), then M
∣∣
Px

is reachable in NWx.

2. If k < j (i.e., the advice is active in M), then M
∣∣
Pa

is reachable in NWa, and M ′ is
reachable in NWx where ∀p ∈ Px \ {ps } : M ′(p) = M(p)∧M ′(ps) = 1 (i.e., M ′ is the
marking we would have reached if we would not have entered the advice).

Property B. If σ is fireable from M in NWa then σ is fireable from all M ′ in NWc such that
∀p ∈ Pa : M ′(p) = M(p). Moreover,

M
σ−→

NWa
M1implies M ′ σ−→

NWc
M ′

1such that ∀p : M ′
1(p) =

{
M1(p) if p ∈ Pa

M ′(p) if p ∉ Pa

140

5.4 Petri Net Formalization of Concerns and Connectors

Property C. If σ is fireable from M in NWx and σ does not contain ta then σ is fireable
from all M ′ in NWc such that ∀p ∈ Px : M ′(p) = M(p). Moreover,

M
σ−→

NWx
M1implies M ′ σ−→

NWc
M ′

1such that ∀p : M ′
1(p) =

{
M1(p) if p ∈ Px

M ′(p) if p ∉ Px

In general, one can say that these properties formalize the relation between the mark-
ings and firing sequences of the base workflow’s Petri net, the advice’s Petri net, and the
composed Petri net. The properties are useful when proving the soundness of a com-
posed Petri net when the soundness of the base workflow’s Petri net and the advice’s
Petri net is assumed. We will now outline a proof for each of UNIFY’s connectors. We
start by introducing a prototypical proof for the soundness of a connector, and exem-
plify it using the before connector. The main idea is to prove each of the three necessary
and sufficient conditions for classical soundness as defined in Definition 6 (option to
complete, proper completion, and no dead transitions) by considering possible mark-
ings and firing sequences of the composed Petri net.

5.4.4.1 Soundness Proof for the Before Connector

Option to Complete Let M be a marking in NWc such that [i]
σ−→ M (with σ= t1 . . . tn).

Then we must prove that there exists a σ′ in NWc such that M
σ′
−→ [o]. Let j (resp. k) be

the largest position in σ such that t j = ta (tk = tb)

1. If k ≥ j (i.e., the advice is inactive in M)

• Since either the advice has never been activated inσ (j = k = 0) or it has been
activated but has finished (k > j > 0), and since the advice respects proper
completion, we know that ∀p ∈ Pa : M(p) = 0

• By Property A, M
∣∣
Px

is reachable in NWx

• Since NWx respects option to complete, there exists a σ in NWx such that

M
∣∣
Px

σ−→ [o]

• Let θ be the sequence of transitions obtained from σ by replacing each oc-
currence of ta by taσa tb , where σa is a sequence of transitions of NWa such

that [p ′
s]

σa−→ [p ′
e] (such a σa always exists because NWa respects option to

complete and proper completion).

That is ifσ=σ1taσ2ta . . . taσk where allσi do not contain ta , then θ =σ1taσa

tbσ2taσa tb . . . taσa tbσk

• It is easy to show that θ is fireable in NWc (due to Properties A, B, C) and that
it reaches [o]

2. If k < j (i.e., the advice is active in M)

• By Property A, M
∣∣
Pa

is reachable in NWa

141

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

• Since NWa respects option to complete, there exists a sequence σ′ in NWa

such that M
∣∣
Pa

σ′
−→ [p ′

e]

• By Property B, σ′ is fireable in NWc, and

M
σ′
−→ M ′ implies

M ′(p ′

e) = 1

M ′(p) = 0 ∀p ∈ Pa \ {p ′
e }

M ′(p) = M(p) ∀p ∈ Px

• Thus, tb is fireable from M ′ and moves the token from p ′
e to ps

• From there, we continue as in (1)

Proper Completion Let M be a marking that is reachable in NWc such that M ≥ [o].

Then we must prove that M = [o]. Assume [i]
σ−→ M , with σ=σ1taθ1tbσ2taθ2tb . . .σn ta

θn tbσn+1, every θi giving rise to marking Mi , and every subsequent tb giving rise to
marking M ′

i

• ∀i : Mi ≥ p ′
e . Since NWa respects proper completion, Mi

∣∣
Pa

= p ′
e , thus ∀p ∈ Pa :

M ′
i (p) = 0, ∀p ∈ Px \ {ps } : M ′

i (p) = Mi (p), and M ′
i (ps) = 1

• By Property A, M ′
n

∣∣
Px

is reachable in NWx and σn+1 is fireable in NWx (because

∀p ∈ Pa : M ′
n(p) = 0), and M ′

n

∣∣
Px

σn+1−→ M
∣∣
Px

• By hypothesis, M ≥ [o], and thus M
∣∣
Px

≥ [o] because o ∈ Px

• By hypothesis, NWx respects proper completion such that M
∣∣
Px

= [o]

• Moreover, since ∀p ∈ Pa : M ′
n(p) = 0 and σn+1 does not contain ta , ∀p ∈ Pa :

M(p) = 0

• Therefore, M = [o]

No Dead Transitions Given a transition t ∈ Tc , we must find a sequence σ such that

[i]
σ−→ M

t−→ M ′

1. If t ∈ Tx

• Since NWx respects no dead transitions, we know that there exists a θ such

that [i]
θ−→

NWx
M

t−→ M ′

• From θ, we can build θ by replacing each occurrence of ta by taσtb where σ

is a sequence of the advice such that [p ′
s]

σ−→
NWa

[p ′
e], which exists because NWa

respects option to complete.

• By Properties B and C, θ is fireable in NWc and reaches M such that M
∣∣
Px

= M

142

5.4 Petri Net Formalization of Concerns and Connectors

2. If t ∈ Ta

• We know that ta is not dead in NWx because it respects no dead transitions.

• By the same reasoning as in case 1, we can build θ such that [i]
θ−→

NWc
M ′′ ta−→

M ′′′ with M ′′′(p ′
s) = 1

• Since t is not dead in NWa because it respects no dead transitions, there ex-

ists a τ such that [p ′
s]

τ−→
NWa

M
t−→ M ′

• By Properties B and C, θtaτ is fireable in NWc and reaches M such that M
t−→

M ′

Q.E.D.

5.4.4.2 Soundness Proof for the After Connector

The proof for the after connector is completely analogous to the proof for the before
connector presented in Section 5.4.4.1; the only difference being that instead of referring
to the joinpoint’s incoming transition ta within the base workflow’s Petri net NWx, the
proof refers to the joinpoint’s outgoing transition tb . We therefore do not provide the
complete proof at this point in the dissertation, but rather refer the interested reader to
Appendix B.

5.4.4.3 Soundness Proof for the Replace Connector

The proof for the replace connector is roughly analogous to the proof for the before con-
nector. Nevertheless, there are important differences due to the need to remove the join-
point N j from the base workflow NWx (cf. Figure 5.21 on page 131). In a given firing se-
quence of NWx, we can detect the entering and exiting of the joinpoint by investigating
the occurrences of transitions ta and tb , similar to how we detected the entering and ex-
iting of the advice in the properties and proofs presented above. However, between the
firing of ta and tb , there may be an interleaving of transitions of T j and transitions of
Tx \ T j . For example, consider the following firing sequence leading from the joinpoint’s
initial state to its final state, with all t j i ∈ T j and all txi ∈ Tx \ T j :

[ps , . . .]
t j 1−→ M1

tx1−→ M2
tx2−→ M3

t j 2−→ M4
tx3−→ M5

t j 3−→ M6
t j 4−→ [pe , . . .]

It is essential to the current proof that we recognize that, because the joinpoint of a
replace connector is a single-entry single-exit fragment, ta and tb are the only transitions
of NWx leading into and out of the joinpoint, and the transitions of T j thus commute with
the transitions of Tx \T j . This means that, with respect to the reachable markings before
entering and after exiting the joinpoint, the example firing sequence is equivalent to:

[ps , . . .]
t j 1−→ M ′

1

t j 2−→ M ′
2

t j 3−→ M ′
3

t j 4−→ M ′
4

tx1−→ M ′
5

tx2−→ M ′
6

tx3−→ [pe , . . .]

We can now proceed with the actual proof for the replace connector.

143

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

Option to Complete Let M be a marking in NWc such that [i]
σ−→ M (with σ= t1 . . . tn).

Then we must prove that there exists a σ′ in NWc such that M
σ′
−→ [o]. Let j (resp. k) be

the largest position in σ such that t j = ta (tk = tb)

1. If k ≥ j (i.e., the advice is inactive in M)

• Since either the advice has never been activated inσ (j = k = 0) or it has been
activated but has finished (k > j > 0), and since the advice respects proper
completion, we know that ∀p ∈ Pa : M(p) = 0

• By Property A, M
∣∣
Px

is reachable in NWx

• Since NWx respects option to complete, there exists a σ in NWx such that

M
∣∣
Px

σ−→ [o]

• Consider the sequence of transitions σ, in which each pair of transitions ta

and tb surrounds an interleaving φi of transitions of T j and Tx \ T j . We can
reorder each φi in a way that places all transitions of T j at the front of the se-
quence, resulting in aσ′ that contains a number of occurrences of taφ j iφxi tb ,
where φ j i is the sequence of transitions of φi belonging to T j , and φxi is the
sequence of transitions of φi belonging to Tx \ T j .

• Let θ be the sequence of transitions obtained from σ′ by replacing each oc-
currence of taφ j iφxi tb by taσaφxi tb , where σa is a sequence of transitions

of NWa such that [p ′
s]

σa−→ [p ′
e] (such a σa always exists because NWa respects

option to complete and proper completion).5

That is if σ′ = σ1taφ j 1φx1tbσ2taφ j 2φx2tb . . . taφ j k−1φxk−1tbσk where all σi

do not contain ta (or tb), then θ =σ1taσaφx1tbσ2taσaφx2tb . . . taσaφxk−1tbσk

• It is easy to show that θ is fireable in NWc (due to Properties A, B, C) and that
it reaches [o]

2. If k < j (i.e., the advice is active in M)

• By Property A, M
∣∣
Pa

is reachable in NWa

• Since NWa respects option to complete, there exists a sequence σ′ in NWa

such that M
∣∣
Pa

σ′
−→ [p ′

e]

• By Property B, σ′ is fireable in NWc, and

M
σ′
−→ M ′ implies

M ′(p ′

e) = 1

M ′(p) = 0 ∀p ∈ Pa \ {p ′
e }

M ′(p) = M(p) ∀p ∈ Px

• Thus, tb is fireable from M ′ and moves the token from p ′
e to pb

• From there, we continue as in (1)

5Essentially, we extract all the firing sequences of T j out of σ′, and insert a valid firing sequence of the
advice after each occurrence of ta .

144

5.4 Petri Net Formalization of Concerns and Connectors

Proper Completion Let M be a marking that is reachable in NWc such that M ≥ [o].

Then we must prove that M = [o]. Assume [i]
σ−→ M , with σ=σ1taθ1tbσ2taθ2tb . . .σn ta

θn tbσn+1, every θi giving rise to marking Mi , and every subsequent tb giving rise to
marking M ′

i

• ∀i : Mi ≥ p ′
e . Since NWa respects proper completion, Mi

∣∣
Pa

= p ′
e , thus ∀p ∈ Pa :

M ′
i (p) = 0, ∀p ∈ Px \ {pb} : M ′

i (p) = Mi (p), and M ′
i (pb) = 1

• By Property A, M ′
n

∣∣
Px

is reachable in NWx and σn+1 is fireable in NWx (because

∀p ∈ Pa : M ′
n(p) = 0), and M ′

n

∣∣
Px

σn+1−→ M
∣∣
Px

• By hypothesis, M ≥ [o], and thus M
∣∣
Px

≥ [o] because o ∈ Px

• By hypothesis, NWx respects proper completion such that M
∣∣
Px

= [o]

• Moreover, since ∀p ∈ Pa : M ′
n(p) = 0 and σn+1 does not contain ta , ∀p ∈ Pa :

M(p) = 0

• Therefore, M = [o]

No Dead Transitions Given a transition t ∈ Tc , we must find a sequence σ such that

[i]
σ−→ M

t−→ M ′

1. If t ∈ Tx

• Since NWx respects no dead transitions, we know that there exists a θ such

that [i]
θ−→

NWx
M

t−→ M ′

• Consider the sequence of transitions θ, in which each pair of transitions ta

and tb surrounds an interleaving φi of transitions of T j and Tx \ T j . We can
reorder each φi in a way that places all transitions of T j at the front of the se-
quence, resulting in a θ′ that contains a number of occurrences of taφ j iφxi tb ,
where φ j i is the sequence of transitions of φi belonging to T j , and φxi is the
sequence of transitions of φi belonging to Tx \ T j .

• From θ′, we can build θ by replacing each occurrence of taφ j iφxi tb by taσφxi tb

where σ is a sequence of the advice such that [p ′
s]

σ−→
NWa

[p ′
e], which exists be-

cause NWa respects option to complete.6

• By Properties B and C, θ is fireable in NWc and reaches M such that M
∣∣
Px

= M

2. If t ∈ Ta

• We know that ta is not dead in NWx because it respects no dead transitions.

6Essentially, we extract all the firing sequences of T j out of θ′, and insert a valid firing sequence of the
advice after each occurrence of ta .

145

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

• By the same reasoning as in case 1, we can build θ such that [i]
θ−→

NWc
M ′′ ta−→

M ′′′ with M ′′′(p ′
s) = 1

• Since t is not dead in NWa because it respects no dead transitions, there ex-

ists a τ such that [p ′
s]

τ−→
NWa

M
t−→ M ′

• By Properties B and C, θtaτ is fireable in NWc and reaches M such that M
t−→

M ′

Q.E.D. It should now be clear that the proof follows the same general strategy as the
proofs for the before and after connectors, with the notable exception of reordering in-
terleavings in the joinpoint while proving the option to complete and no dead transi-
tions.

5.4.4.4 Soundness Proof for the Around Connector

Consider the around connector’s Petri net semantics as illustrated by Figure 5.22 (on
page 132). Similar to the proof for the replace connector, we can adapt our prototypical
proof to deal with the possible interleavings of transitions of T j , transitions of Tx \ T j ,
and transitions of Ta \ Tp . However, we can simplify our proof by considering that the
application of an around connector amounts to two applications of a replace connector.
Given the base workflow NWx containing the joinpoint fragment N j and the advice work-
flow NWa containing the proceed fragment Np , all of which are assumed to be sound, the
composed workflow NWc can be constructed as follows:

1. Consider NWa as illustrated at the top right of Figure 5.22. Apply a replace con-
nector to NWa (which thus acts as a base workflow) in order to replace fragment
Np (which acts as the joinpoint) by fragment N j (which acts as the advice). As-
suming the soundness of NWa, N j , and Np , the proof presented in Section 5.4.4.3
guarantees the soundness of the composed Petri net N ′

Wa.

2. Apply a replace connector to NWx in order to replace fragment N j by N ′
Wa. Assum-

ing the soundness of NWx and N j , and having proven the soundness of N ′
Wa, the

proof presented in Section 5.4.4.3 guarantees the soundness of the composed Petri
net N ′

Wx = NWc.

5.4.4.5 Soundness Proof for the Parallel Connector

Consider the parallel connector’s Petri net semantics as illustrated by Figure 5.23 (on
page 133). Once again, we can adapt our prototypical proof to deal with the possible
interleavings of transitions of different parts of the composed Petri net between each
firing of ta and each subsequent firing of tb . Whereas the replace connector essentially
extracted all the firing sequences of T j and inserted a valid firing sequence of the advice
after each occurrence of ta , the parallel connector does not extract any firing sequences
but only inserts tands, a valid firing sequence of the advice, and tandj at the appropriate
locations between ta and tb . Once again, such a proof benefits from the fact that the

146

5.4 Petri Net Formalization of Concerns and Connectors

joinpoint and the advice are single-entry single-exit fragments, and the transitions of T j ,
the transitions of Tx \ T j , and the transitions of Ta thus commute with each other.

5.4.4.6 Soundness Proof for the Alternative Connector

Consider the alternative connector’s Petri net semantics as illustrated by Figure 5.24 (on
page 135). The proof for this connector is easier than the proof for the parallel connector,
as every sequence of transitions of NWc starting with ta and ending with tb either has the
form ta txors1σ j txorj1tb , with σ j being an interleaving of transitions of T j and Tx \ T j (i.e.,
the sequence passes through the joinpoint, and not through the advice), or has the form
ta txors2σa txorj2tb , with σa being an interleaving of transitions of Ta and Tx \ T j (i.e., the
sequence passes through the advice, and not through the joinpoint). For the former
case, the proof is trivial, as all firing sequences are equal to the base workflow’s firing
sequences, with the minor exception of each ta being replaced by ta txors1 and each tb

being replaced by txorj1tb . The latter case corresponds to the application of a replace
connector, for which we have already proven soundness in Section 5.4.4.3.

5.4.4.7 Soundness Proof for the Iterating Connector

Consider the iterating connector’s Petri net semantics as illustrated by Figure 5.25 (on
page 136). In terms of the possible firing sequences of NWc, this connector does not
differ much from the cases already discussed in the previous sections. Suppose a given
firing sequence passes through N j only once, i.e., it does not pass through NWa. This case
is similar to an alternative connector in which the joinpoint branch is chosen instead of
the advice branch. Suppose a given firing sequence passes through NWa n ≥ 1 times.
This case is similar to n subsequent applications of an after connector that introduces
NWa followed by N j after the N j that is already present in the base workflow.

5.4.4.8 Soundness Proof for the Synchronizing Connector

Consider the synchronizing connector’s Petri net semantics as illustrated by Figure 5.26
(on page 137). Similar to the proofs for the replace and parallel connectors, the proof will
benefit from the fact that the joinpoints and the advice are single-entry single-exit frag-
ments, and each of these nets’ transitions thus commute with the transitions of the other
nets. Remember that the replace connector essentially extracted all the firing sequences
of its joinpoint and inserted a valid firing sequence of the advice after each occurrence
of ta , and the parallel connector did not extract any firing sequences but inserted tands,
a valid firing sequence of the advice, and tandj at the appropriate locations between ta

and tb . Similar to the proof for the parallel connector, we will now introduce tands before
each ta , tandj after each tb , and a valid firing sequence of the advice anywhere between
the inserted tands and tandj. Because the two branches are executed in parallel, it is pos-
sible that a given firing sequence of the base workflow passes through tb before passing
through ta . However, because of the commutation mentioned earlier in this paragraph,
we can rearrange the transitions of both branches relative to each other in order to pre-
vent this, thus obtaining a valid firing sequence for the composed workflow.

147

Chapter 5. A Formal Semantics for Aspect-Oriented Workflow Languages

5.4.4.9 Soundness Proof for the Switching Connector

Consider the switching connector’s Petri net semantics as illustrated by Figure 5.27 (on
page 139). Similar to what we observed when comparing the proof for the alternative
connector to the proof for the parallel connector, the proof for the switching connector
is easier than the proof for the synchronizing connector, as only one choice can be made
at each XOR-split at a time. We thus have the following four cases to consider:

1. We are in a branch in which neither the joining joinpoint nor the splitting join-
point is located. In this case, there is no difference to the situation in which the
connector would not have been applied to the composition.

2. We are in the branch in which the joining joinpoint is located (i.e., the bottom
branch of Figure 5.27). Except for the firing of transition txorj2, there is no differ-
ence to the situation in which the connector would not have been applied to the
composition.7

3. We are in the branch in which the splitting joinpoint is located (i.e., the top branch
of Figure 5.27). If transition txors1 is fired, there is no difference to the situation in
which the connector would not have been applied to the composition.8

4. We are in the branch in which the splitting joinpoint is located. If transition txors2

is fired, the token is removed from the branch and placed in the advice, which
we assume to be sound. The token must thus end up in place p ′

e . The firing of
transition txorj1 moves the token to place p ′′′

s , and we are in the same situation as
in case 2 after the firing of transition txorj2.9

This concludes our presentation of an outline of a proof for each of UNIFY’s connec-
tors.

5.5 Summary

The correctness of workflows is essential to workflow management systems and busi-
ness process management systems. Nevertheless, process designers tend to make many
errors. Typical errors are deadlocks (a case gets stuck), livelocks (a case cannot progress),
and other anomalies. Repairing such errors can be time consuming and costly. There-
fore, workflow verification is highly relevant (van der Aalst et al., 2011). In this chapter,
we provide a formalization of UNIFY that is compatible with existing research on this
topic within the workflow community, but also addresses the specific notion of connec-
tion patterns introduced by UNIFY. In order to formalize the aspect-oriented workflow

7In this case, transition txorj1 cannot be fired, because that would have required a different branch to be
chosen at the start of the control structure (cf. place ps and its outgoing transitions).

8In this case, transition txors2 cannot be fired, because transition txors1 has removed the token from place
p ′′

e .
9In this case, transition txorj2 cannot be fired, because that would have required a different branch to be

chosen at the start of the control structure.

148

5.5 Summary

concepts introduced by UNIFY, we employ two complementary formalisms. First, we
augment the static description of UNIFY’s workflows as provided by its base language
and connector language meta-models with a static semantics for the weaving of UNIFY

connectors using the Graph Transformation formalism. This facilitates static reasoning
over the applicability and effects of connectors, and can be used to implement a static
weaver of UNIFY connectors. Second, we provide a semantics for the operational prop-
erties of workflows by defining a translation to Petri nets, and subsequently extend this
semantics to support the operational effects of connectors. This allows reasoning on the
dynamics of UNIFY workflow compositions, and can be used to implement a dedicated
workflow engine for UNIFY.

In conclusion of this chapter, let us briefly enumerate its contributions:

• We formalize UNIFY’s base language meta-model as a type graph (Section 5.3.1),
and formalize each of UNIFY’s connectors as a graph transformation rule (Sec-
tion 5.3.2).

• We use the state-of-the-art Graph Transformation analysis tool AGG to perform
a critical pairs analysis of our graph transformation system, which allows inves-
tigating possible mutual exclusions and causal dependencies between rules (Sec-
tion 5.3.3).

• We formalize UNIFY workflow concerns as workflow graphs (Section 5.4.2.1), and
provide a formal definition of a given workflow graph’s corresponding Petri net
(Section 5.4.2.2). This definition is compatible with the Petri net patterns for work-
flow primitives proposed by van der Aalst (1998b).

• We implement the translation of UNIFY workflows to Petri nets as part of the UNIFY

implementation, and allow exporting the resulting Petri nets as PNML files sup-
ported by existing Petri net editors and analysis tools (Section 5.4.2.2).

• We formalize UNIFY connectors as compositions of the connected concerns’ cor-
responding Petri nets (Section 5.4.3).

• We identify three main properties of our Petri net compositions, and provide an
outline for proving the classical soundness of a composition, assuming classical
soundness of the composed Petri nets (Section 5.4.4).

149

Chapter 6

Modularizing Workflow Concerns using
Concern-Specific Languages

In this chapter, we describe how concern-specific languages (CSLs) can be built
on top of the UNIFY base language and connector mechanism which we presented
in Chapter 4. We motivate and introduce the notion of concern-specific languages,
which has its origins in the notion of domain-specific languages. We propose a gen-
eral methodology for building CSLs on top of the UNIFY approach, and illustrate this
methodology by introducing the Access Control and Parental Control CSLs, respec-
tively.

6.1 Motivation

With PADUS and UNIFY, we have already introduced two approaches that promote sepa-
ration of concerns in workflow languages by offering an improved modularization mech-
anism. However, the abstractions offered by existing modularization approaches for
workflows, including PADUS and UNIFY, typically remain at the same level as the base
workflow: concerns are implemented using the constructs of the base workflow lan-
guage, which may not be ideally suited to expressing the concern in question in an effi-
cient, elegant or natural way. Although aspect-oriented extensions improve separation
of concerns, they introduce an additional layer of complexity that must be bridged in or-
der to communicate about a workflow with domain experts. For example, consider the
independently specified workflow concerns of the order handling workflow in Figure 6.1,
which we have already used in Chapter 4. In order to augment these workflow concerns
with an access control concern that specifies that only premium customers are allowed
to specify options using the SpecifyOptions activity of the OrderHandling concern,
one needs to introduce a new XOR-split and XOR-join around the activity, with condi-
tions that query the data perspective of the workflow in order to find out whether the
currently logged in user is a premium customer or not. This requires detailed knowledge

151

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

OrderHandling

Specify
Options

Process
Returns

Login

Select
Books

Pay

Process
Order Ship

SelectBooks

Search
Book Confirm

AddBook
OrContinue

Confirm
OrContinue

Add
Book

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Info

Wire
Transfer
Payment

Payment
Method

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Save
Preference Report

Verify
Bank

Account

Send
Invoice

Figure 6.1: Independently specified workflow concerns

of how users are represented in the workflow’s implementation. Inspired by the ben-
efits of domain-specific languages in general software engineering (van Deursen et al.,
2000), we believe that a means of expressing workflow concerns using abstractions that
are closer to the concerns’ domains can facilitate expressing workflow concerns, and can
improve communication with domain experts. The goal of this chapter is to describe
how this is accomplished by building concern-specific languages on top of UNIFY.

6.2 From Domain-Specific to Concern-Specific Languages

Domain-specific languages (DSLs) have conceptual roots in the terms domain languages
(Neighbors, 1980) and little languages (Bentley, 1986). A domain language focuses on
introducing the concepts and operation of its domain as constructs of a declarative lan-
guage that can be processed further (Neighbors, 1980). A little language is focused on
making programming simple by providing a clean, user-centered syntax and a restricted
set of commands as compared to complete programming languages (Bentley, 1986). A
DSL is the combination of both concepts: it provides the domain-specific abstractions
and notations (Heering, 2000) that are based on the key concepts of its domain (Thibault

152

6.3 General Methodology

et al., 1997). From a technical viewpoint, DSLs can be either external, meaning that their
syntax and semantics are defined freely, or internal, meaning that they are embedded in
an existing host language (Günther, 2010). Using DSLs in application development in-
creases development productivity by efficient code reuse and a reduction of errors (Czar-
necki and Eisenecker, 2000; Greenfield et al., 2004).

Concern-specific languages (CSLs; cf. Bodden, 2005; Braem et al., 2006a) share the
goals of DSLs. A CSL facilitates separation of concerns by offering notations and ab-
stractions for expressing a family of concerns; typically, this family of concerns will be
crosscutting. The earliest aspect-oriented programming languages were each developed
for a particular family of crosscutting concerns. Examples of these early CSLs are COOL
(Lopes and Kiczales, 1997; Lopes, 1997), a language for expressing the aspect of synchro-
nization for programs written in Java, and RIDL (Lopes and Kiczales, 1997; Lopes, 1997),
a language for expressing the aspect of data serializability in distributed environments. A
more recent concern-specific language is KALA (Fabry, 2005), a language for describing
the use of advanced transaction models by an application, which also allows new mod-
els to be defined if needed. The use of aspect-oriented technology to implement CSLs
makes it especially easy to implicitly or explicitly quantify over events in the application’s
control flow (Bodden, 2005). In previous work (Braem et al., 2006a), we have introduced
a CSL for a family of concerns related to billing within web service orchestrations. By
defining a billing concern in a module-like entity, it becomes simpler to apply this con-
cern to several events within an orchestration without compromising its maintainability.
Inspired by our earlier research on enabling the definition of concern-specific languages
on top of PADUS (Braem et al., 2006a,c), our current objective is to enable the definition
of concern-specific languages on top of the UNIFY framework.

We introduce the concept of CSLs to the UNIFY framework in order to facilitate the
definition and application of concerns. In Section 6.3, we propose a general methodol-
ogy for building CSLs on top of the UNIFY approach. In Sections 6.4 and 6.5, we illustrate
this methodology by introducing the Access Control and Parental Control CSLs, respec-
tively.

6.3 General Methodology

In this section, we first describe the different actors involved in the development of a
CSL, and subsequently describe each of the three steps of our methodology.

Actors In general, three kinds of actors are involved in the development of a CSL:

• Domain experts. One of the main goals of adding CSLs on top of UNIFY is to in-
clude domain experts in the workflow development process.1 Thus, domain ex-
perts will be an important class of users of CSLs. Domain experts are also included
in the development of the actual CSLs, as their domain expertise is essential to
identifying the correct domain concepts and appropriate syntax for the CSLs.

1Whenever we use the term “domain” in the context of a CSL, we mean the domain of the CSL’s family of
concerns.

153

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

• Workflow developers. Although domain experts are the most important class of
users of CSLs, workflow developers may use CSLs as well because of their superior
suitability for expressing the concerns at hand. Workflow developers are also in-
cluded in the development of the actual CSLs, as their knowledge of the concrete
workflows used within the organization is essential to correctly translating domain
concepts to workflow concepts.

• CSL developers. In addition to domain experts and workflow developers, an ad-
ditional kind of actor is necessary to actually develop a new CSL before it can be
used: we expect CSLs to be developed by IT specialists who are familiar with both
the UNIFY API and the notion of concern-specific languages, based on discussions
with domain experts and workflow developers. Once a CSL has been developed,
both domain experts and workflow developers should be able to specify concerns
using CSL artifacts without further intervention of these CSL developers.

Step 1: Identifying domain concepts and relations The first step in developing a CSL
is identifying the relevant domain concepts and relations between these domain con-
cepts. Because the CSL developer typically has insufficient knowledge of the domain,
domain experts will provide valuable input for this step. This step will typically result in
a UML class diagram, which will be used during the following steps.

Step 2: Specifying a syntax for CSL artifacts The second step in developing a CSL is
specifying an appropriate syntax that matches the concepts and relations identified in
the previous step. Domain experts can be included in this step in order to ensure the
syntax meets their expectations. The kind of syntax (textual, XML, visual, . . .) determines
how it will be specified. For example, a textual syntax can be specified using BNF, an XML
syntax using XML SCHEMA, etc.

Step 3: Translating CSL artifacts to UNIFY artifacts The third step in developing a CSL
is providing a mechanism by means of which artifacts expressed using the above syn-
tax are translated into basic UNIFY artifacts such as CompositeActivities and Connectors.
This can be accomplished by implementing a preprocessor for CSL artifacts. During this
step, workflow developers will provide valuable input on how domain concepts are to be
translated to UNIFY workflow concepts.

In Sections 6.4 and 6.5, we introduce the Access Control and Parental Control CSLs,
respectively. For each of these CSLs, we follow the above methodology. We have used a
graphics editor to specify the UML class diagrams that define the domain concepts and
relations of the CSLs. Each of the CSLs has an XML syntax, which is specified using XML
SCHEMA. Each of the CSLs’ artifacts is translated to UNIFY artifacts using a preproces-
sor that has been implemented from scratch. This encompassed writing a parser for the
CSL’s artifacts that returns a JAVA representation of the CSL artifacts’ domain concepts,
and writing a code generator that generates the appropriate UNIFY CompositeActivity
and Connector for each CSL artifact using the JAVA representation of its domain concepts.
Günther et al. (2012) have identified a number of design dimensions that are relevant to

154

6.4 The Access Control CSL

the design of DSLs, i.e., (1) syntax, (2) language base, (3) artifact type, and (4) artifact ab-
straction. Along these dimensions, the CSLs we develop (1) use textual notations, (2) are
external DSLs, (3) use code artifacts, and (4) use internally structured artifacts, respec-
tively.

It is feasible to employ the above approach to develop new CSLs. However, inspired
by current tool support for development of domain-specific languages (such as Xtext2

and JetBrains MPS3), we envision that development of a CSL can be facilitated using tool
support as well. Such a CSL development tool would include a UML editor to model the
domain concepts and relations of a new CSL. The tool would then support creating a CSL
syntax in a user-friendly way based on this UML model. By allowing to map CSL concepts
to UNIFY workflow concepts, the tool would support semi-automatically generating a
preprocessor that translates CSL artifacts to UNIFY artifacts. Note that different concerns
expressed using the same CSL will typically have a similar structure. Therefore, one can
conceive schemes that allow specifying concerns based on concern-specific templates.
Such templates can be specified after defining the CSL syntax, and the definition of such
templates would thus be integrated in the CSL development tool, while their use would
be integrated in a CSL artifact specification tool. This tool support for CSL development
is subject to future work. Therefore, we now proceed with the introduction of our Access
Control CSL.

6.4 The Access Control CSL

Access control deals with specifying which operations can be performed by which users.
For example, one might want to specify that the execution of some workflow activities
is only allowed for certain users. In this section, we define an Access Control CSL that
accomplishes this. Our Access Control CSL is inspired by flat role-based access control
(Sandhu et al., 2000), which embodies the essential aspects of role-based access control
(RBAC). The basic concepts of RBAC are users, roles, and permissions. A user may be
associated with any number of roles, and a role may be associated with any number of
permissions. Thus, users acquire permissions by being associated with roles.

6.4.1 Language

The first step in developing a CSL is to identify the relevant domain concepts based on
discussions with domain experts. Figure 6.2 shows the domain concepts of our Access
Control CSL, as well as the relations between these concepts. At the top left of the figure,
we see that a User may belong to any number of Roles, and that a Role may group any
number of Users. Likewise, a Role may group any number of Permissions, and a Permis-
sion may belong to any number of Roles. Every Permission refers to a single Operation,
but an Operation may be referred to by any number of Permissions. A Permission is either
an AllowPermission, i.e., a permission that specifies that users with the given role may
perform the given operation, or a DenyPermission, i.e., a permission that specifies that

2Cf. http://www.eclipse.org/Xtext/
3Cf. http://www.jetbrains.com/mps/

155

http://www.eclipse.org/Xtext/
http://www.jetbrains.com/mps/

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

name
Role Permission

AllowPermission

Operation

DenyPermission DenyAction

SkipActionRaiseErrorAction

name
password

User * * * * * 1

1 1

Figure 6.2: Access Control CSL domain concepts and relations

users with the given role may not perform the given operation. Every DenyPermission
has a one-to-one association with a DenyAction, which specifies what should happen
when a user with the given role attempts to perform the given operation. This is either
raising an error (RaiseErrorAction) or skipping the operation (SkipAction). In the context
of workflows, the notion of a user is typically present in a workflow’s data perspective,
and operations correspond to the execution of workflow activities.

The second step in developing a CSL is to map the previously identified domain con-
cepts to a syntax that is appropriate — based on discussions with domain experts —
to specifying the concern at hand. For our Access Control CSL, we have opted for an
XML syntax, as we believe that of all textual syntaxes, XML will be most familiar to non-
programmers such as domain experts. Additionally, the use of XML is very common
in traditional workflow development, as most current workflow languages such as WS-
BPEL and BPMN have an XML representation. We have defined an XML syntax for our
Access Control CSL that closely matches the concepts and relations we identified above.
Listing 6.1 provides an example concern that is expressed using this syntax. The ex-
ample specifies how the access to the SpecifyOptions activity of the OrderHandling
concern in Figure 6.1 should be controlled. An access control concern is specified using
the <AccessControlConcern> element (cf. line 1). First, a default permission is spec-
ified, which is Allow in this example (cf. line 2). Next, a number of roles are specified
using <Role> elements (cf. lines 3–6). Each role may contain any number of permis-
sions, which are specified using the <Allow> and <Deny> elements (cf. line 5). Because
the default permission in this example is Allow, we only need to explicitly list the ac-
tivities to which access should be denied. Next, a number of users are specified using
<User> elements (cf. lines 7–12). Each user is assigned to one or more roles. Finally, the
<DefaultUser> element (cf. lines 13–15) specifies the roles of the default user, and the
<UsernameVariable> element (cf. line 16) specifies in what variable of the workflow the
name of the currently logged in user can be found.4 The full XML syntax of our Access
Control CSL is defined using XML SCHEMA, and is provided in Appendix C.

When we apply an access control concern to a workflow, new behavior will be exe-
cuted around each of the activities for which a “Deny” permission is specified. In our
example, this would be the SpecifyOptions activity. This new behavior will check

4We discuss the relation between concern-specific languages and the data perspective in Section 6.6.

156

6.4 The Access Control CSL

1 <AccessControlConcern name="Example1">
2 <DefaultPermission permission="Allow" />
3 <Role name="PremiumCustomer" />
4 <Role name="NormalCustomer">
5 <Deny activity="SpecifyOptions" action="Skip" />
6 </Role>
7 <User name="john">
8 <UserRole role="PremiumCustomer" />
9 </User>

10 <User name="mike">
11 <UserRole role="NormalCustomer" />
12 </User>
13 <DefaultUser>
14 <UserRole role="NormalCustomer" />
15 </DefaultUser>
16 <UsernameVariable name="username" />
17 </AccessControlConcern>

Listing 6.1: Example access control concern

whether the currently logged in user is allowed to execute the activity in question, and
will either raise an error or skip the activity if this is not the case. In our example, this
means that only premium customers (i.e., john) would be able to execute the Speci-
fyOptions activity, whereas the activity would be skipped for all other customers. All
of this is accomplished by generating UNIFY artifacts based on the CSL artifacts, as is
explained in Section 6.4.2.

6.4.2 Translation to UNIFY

The third and final step in developing a CSL is to implement a preprocessor that trans-
lates the CSL’s artifacts into UNIFY artifacts, based on discussions with workflow devel-
opers. The constructs offered by UNIFY are well suited to implementing CSLs such as
those we introduce in this chapter. For our Access Control CSL, the translation is per-
formed as follows. When translating a given access control concern, the translation pro-
cess makes a distinction between activities for which at least one “Deny” permission is
specified, and activities for which no “Deny” permission is specified.

Activities for which at least one “Deny” permission is specified Depending on the
permission of the currently logged in user, such activities may need to be skipped, or
the attempt to use such an activity may raise an error. An around connector (cf. Sec-
tion 4.5.3.1) is generated with a pointcut that selects each of the activities as joinpoints
(cf. GeneratedAccessControlConnector in Listing 6.2). The connector’s advice is a
new CompositeActivity, which is shown as a BPMN diagram in Figure 6.3. The corre-
sponding WS-BPEL code is listed in Listing 7.7 on page 180. The CompositeActivity’s
behavior is as follows:

157

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

GeneratedAccessControlConnector:
CONNECT GeneratedAccessControlActivity
AROUND activity("OrderHandling\.SpecifyOptions")
PROCEEDING AT

activity("GeneratedAccessControlActivity\.GeneratedDummyActivity")

Listing 6.2: Generated around connector for the example access control concern

GeneratedAccessControlActivity

Initialize
Permissions
Database

Initialize
Username

Verify
Permissions

$Action=
'DenyBySkipping'

DoNothing

$Action=
'DenyByRaisingError'

RaiseError

Generated
Dummy
Activity

Figure 6.3: Generated composite activity for the example access control concern

1. The InitializePermissionsDatabase activity initializes a variable with a map-
ping from activities and usernames to permissions, e.g., (“SpecifyOptions”, “mike”)
→ “DenyBySkipping”. This mapping is generated by reasoning about the User–Role
and Role–Permission relations of the access control concern.

2. The InitializeUsername activity initializes a variable with the value of the user-
name variable, whose name is specified in the access control concern. This is the
variable that contains the name of the currently logged in user.

3. The VerifyPermissions activity determines the action to performed for the cur-
rently logged in user by querying the variables initialized in the previous steps.

4. An XOR-split splits the control flow into three branches based on the action deter-
mined in the previous step.

• If the action to be performed is “DenyBySkipping”, control flow is directed to
a branch containing an activity that does nothing.

• If the action to be performed is “DenyByRaisingError”, control flow is directed
to a branch containing an activity that raises an error.

• Otherwise, control flow is directed to a branch containing a dummy activity.
The connector specifies that this activity is the advice’s proceed activity.

5. An XOR-join joins the above branches.

158

6.5 The Parental Control CSL

Finally, the generated UNIFY connector and CompositeActivity are applied to the
workflow, so that they can be woven as described in Section 4.5.

Activities for which no “Deny” permission is specified Such activities do not neces-
sarily need any additional behavior inserted around it, as the activity would never need
to be skipped, or the attempt to use it would never need to cause the raising of an error.
Therefore, we do not generate any UNIFY artifacts in this case. Alternatively, one could
employ the same connector and CompositeActivity as in the previous case; this would
simply mean that the proceed branch of the advice would be followed every time.

Based on the above, we can conclude that the around connector is sufficient for im-
plementing our Access Control CSL in terms of UNIFY. As we explain in the following
section, the Parental Control CSL will require other, more advanced connectors.

6.5 The Parental Control CSL

Parental control deals with ensuring that children can only access content or perform
operations that are appropriate to their age. Unlike access control, which is a topic of
significant interest in areas such as computer security and domain-specific languages,
parental control is not a common topic in computer science research. We thus cannot
base our concern-specific language for parental control on scientific articles, but rather
use information available on the world wide web.5 In general, one can identify three
main kinds of parental control: filtering allows restricting access to age appropriate con-
tent, usage control allows restricting the operations that a child may perform, and mon-
itoring allows reviewing the operations that are performed by a child.

6.5.1 Language

Figure 6.4 shows the domain concepts of our Parental Control CSL, as well as the rela-
tions between these concepts. Remember that these are typically identified based on
discussions with domain experts. At the top left of the figure, we see that a Parent may
have any number of Children, and a Child may have any number of Parents. At any point
in time, a Child has a single Age. Policies are expressed in terms of the Age of Children.
Each Policy refers to a single Operation. There are three kinds of Policies: FilteringPoli-
cies, UsagePolicies, and MonitoringPolicies. FilteringPolicies allow restricting Children’s
access to the given Operation’s results, UsagePolicies allow restricting the access to the
given Operation itself, and MonitoringPolicies allow monitoring the access to the given
Operation. A UsagePolicy is either a DenyUsagePolicy, which simply denies access to the
Operation, or a ReferUsagePolicy, which refers the Operation from a Child to one of its
Parents (e.g., payment by credit card should be performed by a parent rather than by the
child). In the context of workflows, the notions of children and parents correspond to
workflow users, and operations correspond to the execution of workflow activities.

5For example, Wikipedia’s article on “Parental controls”, cf. http://en.wikipedia.org/wiki/
Parental_controls

159

http://en.wikipedia.org/wiki/Parental_controls
http://en.wikipedia.org/wiki/Parental_controls

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

name
Child

FilteringPolicy

Operation

UsagePolicy

DenyUsagePolicy ReferUsagePolicy

name
Parent * *

Age Policy
* 1 1 *

MonitoringPolicy

* 1

Figure 6.4: Parental Control CSL domain concepts and relations

We have defined an XML syntax for our Parental Control CSL that closely matches
the concepts and relations we identified above. Remember that such a syntax is typi-
cally defined based on discussions with domain experts. Listing 6.3 provides an example
concern that is expressed using this syntax. The example specifies parental control poli-
cies for some of the activities of the concerns in Figure 6.1. A parental control concern
is specified using the <ParentalControlConcern> element (cf. line 1). First, a num-
ber of policies are specified. Filtering policies are specified using the <Filter> element
(cf. lines 3–6), usage policies are specified using the <Deny> and <ReferToParent> ele-
ments (cf. lines 7–8), and monitoring policies are specified using the <Monitor> element
(cf. line 9). Policies are grouped using one or more <Policies> elements (cf. lines 2–10),
which allow specifying the age of the children to which the policies apply. Any number
of <Child> elements (cf. lines 11–13) may be used to specify a number of children and
their parents, and the <AgeVariable> element (cf. line 14) specifies in what variable of
the workflow the age of the currently logged in user can be found. The full XML syntax of
our Parental Control CSL is defined using XML SCHEMA, and is provided in Appendix C.

When a parental control concern is applied to a workflow, new behavior will be ex-
ecuted around each of the activities for which a policy is specified. In our example, this
would be the SearchBook, SpecifyOptions, SpecifyPaymentInfo, and Confirm ac-
tivities. The actual new behavior depends on the kind of policy: the SearchBook activ-
ity’s results will thus be filtered according to the exclude declarations if the current user
is younger than 18; the execution of the SpecifyOptions activity will be denied (i.e.,
the activity will be skipped) if the current user is younger than 18; the execution of the
SpecifyPaymentInfo activity will be referred to the current user’s parent if he/she is
younger than 18; and the execution of the Confirm activity will be monitored if the cur-
rent user is younger than 18. All of this is accomplished by generating UNIFY artifacts
based on the CSL artifacts, as is explained in Section 6.5.2.

160

6.5 The Parental Control CSL

1 <ParentalControlConcern name="Example2">
2 <Policies youngerThan="18">
3 <Filter activity="SearchBook" resultVariable="books">
4 <Exclude property="Rating" value="Mature" />
5 <Exclude property="Genre" value="Horror" />
6 </Filter>
7 <Deny activity="SpecifyOptions" />
8 <ReferToParent activity="SpecifyPaymentInfo"

usernameVariable="username" />
9 <Monitor activity="Confirm" usernameVariable="username" />

10 </Policies>
11 <Child name="suzy">
12 <Parent name="george" />
13 </Child>
14 <AgeVariable name="age" />
15 </ParentalControlConcern>

Listing 6.3: Example parental control concern

CSL artifact UNIFY connector
Access control concern Around connector that applies to all activi-

ties for which a Deny permission is specified
Parental control concern — Filtering After connector that applies to all of the pol-

icy’s activities
Parental control concern — Deny usage Alternative connector that applies to all of

the policy’s activities
Parental control concern — Refer usage Alternative connector that applies to all of

the policy’s activities
Parental control concern — Monitoring Parallel connector that applies to all of the

policy’s activities

Table 6.1: Mapping from CSL artifacts to UNIFY connectors

6.5.2 Translation to UNIFY

Table 6.1 gives an overview of the UNIFY connectors to which parental control concerns
are translated.6 Remember that this translation is typically based on discussions with
workflow developers. The translation from parental control concerns to UNIFY is per-
formed as follows. When translating a given parental control concern, the translation
process makes a distinction between the different policies defined by the concern.

Activities for which a filtering policy is specified For each filtering policy, an after con-
nector (cf. Section 4.5.3.1) is generated with a pointcut that selects the activity whose
results need to be filtered (cf. GeneratedFilteringConnector in Listing 6.4). The con-

6For comparison, we also include the UNIFY connectors to which access control concerns are translated
(cf. Section 6.4.2).

161

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

GeneratedFilteringConnector:
CONNECT GeneratedFilteringActivity
AFTER activity("SelectBooks\.SearchBook")

GeneratedDenyUsageConnector:
CONNECT GeneratedDenyUsageActivity
ALTERNATIVE TO activity("OrderHandling\.SpecifyOptions")
IF "$age < 18"

GeneratedReferUsageConnector:
CONNECT GeneratedReferUsageActivity
ALTERNATIVE TO activity("Pay\.SpecifyPaymentInfo")
IF "$age < 18"

GeneratedMonitoringConnector:
CONNECT GeneratedMonitoringActivity
PARALLEL TO activity("SelectBooks\.Confirm")

Listing 6.4: Generated after, alternative, and parallel connectors for the example parental
control concern

GeneratedFilteringActivity

$user/age<18

Prepare
Filtering
Input

DoNothing

Invoke
Filtering
Service

Process
Filtering
Output

Figure 6.5: Generated composite activity for the example parental control concern’s fil-
tering policy

nector’s advice is a new CompositeActivity, which is shown as a BPMN diagram in Fig-
ure 6.5. The corresponding WS-BPEL code is listed in Section D.1. The CompositeActiv-
ity starts with an XOR-split. One branch is followed when the value of the age variable
is lower than the policy’s age limit. This branch performs the filtering by invoking an
external service: a first activity prepares the input for the external service by copying the
contents of the policy’s result variable and the exclude statements to the service invoca-
tion’s input variable, a second activity actually invokes the service, and a third activity
copies the service’s output back to the policy’s result variable. The XOR-split’s second
branch does nothing. Both branches are joined by an XOR-join.

Activities for which a deny usage policy is specified For each deny usage policy, an
alternative connector (cf. Section 4.5.3.1) is generated with a pointcut that selects the
activity whose results need to be denied (cf. GeneratedDenyUsageConnector in List-

162

6.5 The Parental Control CSL

GeneratedDenyUsageActivity

DoNothing

Figure 6.6: Generated composite activity for the example parental control concern’s deny
usage policy

GeneratedReferUsageActivity

Initialize
Parents
Database

Backup
Username

Replace
Username

Restore
Username

Specify
Payment
Info

Figure 6.7: Generated composite activity for the example parental control concern’s refer
usage policy

ing 6.4). The connector’s condition specifies that the advice is executed when the value
of the age variable is lower than the policy’s age limit. The connector’s advice is a new
CompositeActivity, which is shown as a BPMN diagram in Figure 6.6. The correspond-
ing WS-BPEL code is listed in Section D.2. The CompositeActivity merely does nothing.
Thus, the joinpoint activity will be skipped if the currently logged in user’s age is lower
than the policy’s age limit.

Activities for which a refer usage policy is specified For each refer usage policy, an
alternative connector (cf. Section 4.5.3.1) is generated with a pointcut that selects the
activity whose results need to be referred (cf. GeneratedReferUsageConnector in List-
ing 6.4). The connector’s condition specifies that the advice is executed when the value
of the age variable is lower than the policy’s age limit. The connector’s advice is a new
CompositeActivity, which is shown as a BPMN diagram in Figure 6.7. The corresponding
WS-BPEL code is listed in Section D.3. The CompositeActivity’s behavior is as follows.
First, a variable is initialized with a mapping from children to their parents. Second, the
current value of the username variable is saved in a new, temporary variable. Third, the
username variable is assigned with the name of the currently logged in user’s parent.
Fourth, a copy of the joinpoint activity is executed, and finally, the username variable is
assigned with its old value that was saved in the temporary variable. Because the user-
name variable of the joinpoint activity is changed, the joinpoint activity will now refer to
the parent instead of the child.

Activities for which a monitoring policy is specified For each monitoring policy, a par-
allel connector (cf. Section 4.5.3.1) is generated that selects the activity that needs to be
monitored (cf. GeneratedMonitoringConnector in Listing 6.4). The connector’s ad-
vice is a new CompositeActivity, which is shown as a BPMN diagram in Figure 6.8. The
corresponding WS-BPEL code is listed in Section D.4. The CompositeActivity starts with

163

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

GeneratedMonitoringActivity

$user/age<18

Prepare
Monitoring

Info

DoNothing

Invoke
Monitoring
Service

Figure 6.8: Generated composite activity for the example parental control concern’s
monitoring policy

an XOR-split. One branch, which is followed when the value of the age variable is lower
than the policy’s age limit, consists of an activity that prepares the monitoring informa-
tion (the name of the joinpoint activity and the name of the currently logged in user), and
an activity that invokes a monitoring service with the monitoring information as input.
A second branch, which is followed in all other cases, consists of an activity that simply
does nothing. Both branches are joined by an XOR-join.

This concludes the development of our example CSLs. We will now discuss a number
of important issues regarding our concern-specific layer.

6.6 Discussion

Focus of our research The main focus of our research is the improvement of modu-
larity in workflows. Thus, we investigate the suitability of concern-specific languages for
this purpose. We are explicitly not focusing on how one can create the best concern-
specific language for a given concern, as this would lead us too far into the research area
of domain-specific languages. We do not claim that the example CSLs we develop in
this chapter are the best CSLs for workflows, or the most typical ones; they are merely
well suited for the running example we use throughout this chapter. Other CSLs may be
appropriate in other workflows. In the past, we have researched the billing concern in
web service orchestrations, and have made an initial attempt at developing a concern-
specific language for it (Braem et al., 2006c,a). A similar CSL can be developed on top of
UNIFY.

Benefits of CSLs to workflow development We observe the following benefits when
applying concern-specific languages to workflow development:

• Concerns are defined at an abstraction level that is closer to the domain of the
concern. Thus, less technical knowledge is required to specify concerns, which
allows including domain experts in specifying the concerns. This may facilitate
the implementation of workflows that conform to business requirements. For ex-
ample, the access control concern of Listing 6.1 refers mostly to domain concepts,

164

6.6 Discussion

whereas its corresponding UNIFY implementation refers only to general workflow
concepts such as activities and data (cf. Listing 7.7 on page 180 for the actual code,
and Section 7.2.1 for its discussion).

• Concern-specific languages hide the complexity of the underlying implementa-
tion by adopting a more declarative approach. Because the different concerns ex-
pressed using a given CSL by definition have much in common, this commonality
can be implemented in advance in the CSL infrastructure, and only the variability
must be specified by the users of the CSL in the CSL’s artifacts. Thus, less code is re-
quired to specify concerns. For example, the access control concern of Listing 6.1
is specified in 17 lines of code using the Access Control CSL, compared to 67 lines
of code using standard UNIFY (cf. Listing 7.7 on page 180 for the actual code, and
Section 7.2.1 for its discussion).

These benefits are currently only validated by our initial case studies, but are consis-
tent with findings in more general research on domain-specific languages (van Deursen
et al., 2000). A more extensive investigation of these and other issues (such as usability)
based on a real-life case study would provide more conclusive results.

Benefits of UNIFY to CSL implementation Concern-specific languages have originated
in the research domain of aspect-oriented programming, which focuses on modular-
izing crosscutting concerns. The workflow concerns for which we introduced CSLs in
Chapter 6 are typically crosscutting, too. Thus, the implementation of the CSLs is facili-
tated when the underlying technology supports applying behavior at different places in
a workflow, which is the case in UNIFY due to its ExternalConnectors. The novel connec-
tors offered by UNIFY, such as the parallel and alternative connectors, allow implement-
ing the concerns in a way that is less cumbersome than aspect-oriented approaches that
only offer the traditional before, after and around advices. We compare UNIFY’s novel
connectors with existing approaches in more detail in Section 7.2.2.

Concern-specific languages and the data perspective The CSLs we present in Chap-
ter 6 abstract over the concrete control flow details of the expressed concerns: with re-
gard to the control flow perspective, the persons who specify concerns using CSLs merely
need to decide what activities in the base workflow the concerns should be applied to.
Given the prevalence of workflow models in business process management, it seems fea-
sible that domain experts perform this task. With regard to the data perspective, how-
ever, this may not be the case: our current CSLs reference variables of the base workflow,
which are not necessarily modeled in the abstract workflow models with which domain
experts are familiar. This issue can be tackled by providing tool support for specifying
concerns using CSLs. For example, a tool could provide an overview of the base work-
flow’s data model, and allow viewing the list of variables used by each of the workflow’s
activities, perhaps showing some additional documentation of the base workflow’s data
perspective that was prepared by workflow developers. A more conceptual approach
could comprise a mapping from the actual base workflow’s data model to a higher-level

165

Chapter 6. Modularizing Workflow Concerns using Concern-Specific Languages

representation of data in terms of domain concepts.7 This, however, is beyond the scope
of our current approach.

6.7 Summary

Because workflows are well suited to representing processes, e.g., in a visual form, they
are often used for communicating with domain experts. However, domain experts typ-
ically do not develop workflows by themselves, as specific technical knowledge is re-
quired for augmenting high-level process descriptions with low-level implementation
details. Workflow developers fulfill this latter role and thus perform most of the workflow
development. In this chapter, we aim to bridge the gap between the domain level and
the implementation level of workflows in order to facilitate the definition of workflow
concerns and improve communication with domain experts. This is accomplished by
building concern-specific languages — languages which are specifically tailored towards
expressing a single family of concerns — on top of the UNIFY framework. In order to
illustrate how this can be done, we develop two example CSLs, one for the family of ac-
cess control concerns, and one for the family of parental control concerns. We propose
a methodology for developing concern-specific languages, which consists of three main
steps: (1) identifying domain concepts and relations, (2) specifying a syntax for CSL ar-
tifacts, and (3) translating CSL artifacts to UNIFY artifacts. Finally, we outline how this
methodology can be further supported by additional tool support.

7For an approach that addresses similar issues in the context of business rules for object-oriented appli-
cations, see the work by Cibrán (2007).

166

Chapter 7

Implementation and Validation
of UNIFY

In this chapter, we provide an overview of UNIFY’s implementation, and subse-
quently present a validation of the approach with respect to expressiveness, perfor-
mance, and scalability.

7.1 Implementation

We have created a proof-of-concept implementation for UNIFY, which is available for
download from the UNIFY website (Joncheere et al., 2012). The general architecture of
this implementation is shown in Figure 7.1. At the heart of the architecture lies a JAVA im-
plementation of the UNIFY base language (cf. Figures 4.2 and 4.4) and connector mech-
anism (cf. Figure 4.14). The UNIFY API allows constructing and manipulating composite
activities in-memory, while instantiations of the UNIFY framework provide parsers and
serializers for existing concrete workflow languages, i.e., WS-BPEL and BPMN. A com-
position specifies which composite activities are to be loaded and which connectors are
to be applied to them. One by one, the UNIFY weaver applies the connectors to the base
workflow (which is a composite activity) in the order specified by the composition. For
each connector, the base workflow is modified accordingly. The final woven composite
activity is transformed into a Petri net execution model if one wants to use UNIFY’s built-
in execution engine, or is exported back to the workflow language in which the original
composite activities were specified. The concern-specific layer allows CSL artifacts to be
applied to a base workflow. The CSL artifacts are parsed into a JAVA representation of the
CSLs’ concepts. These are subsequently translated into standard UNIFY connectors and
composite activities, which are woven as described above.

167

Chapter 7. Implementation and Validation of UNIFY

C
on

ce
rn

-s
pe

ci
fic

 la
ye

r

W
S-

BP
EL

 in
st

an
tia

tio
n

BP
M

N
 in

st
an

tia
tio

n

Ba
se

 la
ng

ua
ge

 a
nd

 c
on

ne
ct

or
 m

ec
ha

ni
sm

W
S-

BP
EL

pr
oc

es
se

s

BP
M

N
pr

oc
es

se
s

U
ni

fy
co

m
po

si
tio

n
an

d
co

nn
ec

to
rs

C
SL

ar
tif

ac
ts

W
S-

B
PE

L
pa

rs
er

(J
av

a)

B
PM

N
pa

rs
er

(J
av

a)

C
om

po
si

tio
n

an
d

co
nn

ec
to

rs
pa

rs
er

(J
av

a,
 A

N
TL

R
)

C
SL

pa
rs

er
s

(J
av

a)

U
ni

fy
co

m
po

si
tio

n
an

d
co

nn
ec

to
rs

(J
av

a)

U
ni

fy
co

m
po

si
te

ac

tiv
iti

es
(J

av
a)

C
SL

co
nc

ep
ts

(J
av

a)

C
SL

tr
an

sl
at

or
s

(J
av

a)

U
ni

fy
w

ea
ve

r
(J

av
a)

Pe
tr

i n
et

ex
ec

ut
io

n
en

gi
ne

(J
av

a)

B
PM

N
se

ria
liz

er
(J

av
a)

W
S-

B
PE

L
se

ria
liz

er
(J

av
a)

or

W
ov

en
 U

ni
fy

co
m

po
si

te
ac

tiv
ity

(J
av

a)

W
ov

en
 W

S-
BP

EL
pr

oc
es

s

W
ov

en
 B

PM
N

pr
oc

es
s

or

F
ig

u
re

7.
1:

G
en

er
al

ar
ch

it
ec

tu
re

o
ft

h
e

U
N

IF
Y

im
p

le
m

en
ta

ti
o

n

168

7.1 Implementation

7.1.1 JAVA Implementation of the UNIFY Base Language and Connector
Mechanism

In Section 4.3, we presented UNIFY’s base language meta-model (cf. Figures 4.2 and 4.4),
and in Section 4.5, we presented UNIFY’s connector language meta-model (cf. Figure 4.14).
At the heart of the UNIFY framework implementation lies a JAVA implementation of these
meta-models. The base language’s interface is implemented using 29 interfaces and a to-
tal of 239 lines of code, while a default implementation is provided using 29 classes and
a total of 1488 lines of code. The connector language is implemented using 31 classes
and a total of 817 lines of code. UNIFY activities (as well as their composition using con-
nectors) can be visualized by supporting the translation of UNIFY activities to GRAPHVIZ

files.1

7.1.2 Instantiations of the UNIFY Framework

We instantiated the UNIFY framework towards two concrete workflow languages. As a
first language, we chose WS-BPEL, which is the de facto standard in executable work-
flow languages, and can be considered representative of block-structured workflow lan-
guages. As a second language, we chose the Business Process Model and Notation (BPMN),
which is the de facto standard notation for graphically specifying workflows, and has re-
cently been extended with an underlying execution model. BPMN can be considered
representative of graph-based workflow languages. The framework is instantiated by im-
plementing the interfaces and/or extending the classes of Section 7.1.1. For WS-BPEL,
this is accomplished using 35 classes and a total of 1082 lines of code. For BPMN, this is
accomplished using 13 classes and a total of 368 lines of code. Parsers and serializers for
each workflow language ensure that existing artifacts can be imported and new artifacts
can be exported. The WS-BPEL parser consists of 749 lines of code, the BPMN parser of
217 lines of code, the WS-BPEL serializer of 845 lines of code, and the BPMN serializer
of 239 lines of code.

Instantiating UNIFY towards concrete workflow languages is straightforward for com-
mon workflow concepts, i.e., activities and basic control flow concepts. However, three
limitations may arise when instantiating UNIFY:

1. Workflow languages are typically either graph-based (such as BPMN and YAWL),
block-structured (such as the part of WS-BPEL that is most commonly used), or
both (such as the complete WS-BPEL language). UNIFY is graph-based: a work-
flow consist of nodes that are connected to each other using transitions, with con-
trol nodes being used to split and join control flow. Block-structured constructs
such as the sequential, parallel, conditional and iterating control structures en-
countered in WS-BPEL can be straightforwardly mapped to UNIFY’s graph-based
constructs. However, mapping UNIFY’s graph-based constructs to block-structured
constructs requires the UNIFY workflow to be structured (i.e., every split must have
a corresponding join).

1Cf. http://www.graphviz.org

169

http://www.graphviz.org

Chapter 7. Implementation and Validation of UNIFY

2. The UNIFY base language only provides the basic control flow patterns identified
in existing research (cf. Table 4.2 on page 65). These basic control flow patterns
are the ones that are supported by most workflow languages (Russell et al., 2006a).
Support for more advanced control flow patterns such as those encountered in
YAWL (van der Aalst and ter Hofstede, 2005) is subject to future work. However,
we do not foresee any fundamental obstacles to extending UNIFY with support for
additional control flow patterns.

3. The UNIFY base language focuses on the control flow and data perspectives. It
does not currently address other perspectives, such as the exception handling per-
spective (Russell et al., 2006b). Support for these perspectives is subject to future
work. Again, we do not foresee any fundamental obstacles to extending UNIFY

with support for additional perspectives.

These limitations are the result of the deliberate choice to focus on the expressive-
ness of the modularization mechanism rather than on the expressiveness of the individ-
ual modules, and can be addressed by iterating over the base language meta-model. We
believe that the current meta-model is sufficient for demonstrating our contributions to
the modularization of workflow concerns.

7.1.3 Connectors and Compositions

In Section 4.5, we presented UNIFY’s connector mechanism, which introduces the con-
nector and composition constructs. Connectors are defined in plain text files using the
syntax discussed in Section 4.5.3 and listed in Appendix A. They are parsed using a parser
and tree parser generated using the ANTLR parser generator,2 based on two ANTLR
grammar files of 139 and 237 lines of code, respectively. Compositions are defined in
XML files using the syntax discussed in Section 4.5.4, and are parsed using a manually
implemented JAXP SAX parser of 133 lines of code.

7.1.4 The UNIFY Weaver

After creating a number of concerns using the JAVA classes of Section 7.1.1 or importing a
number of concerns using the WS-BPEL or BPMN parsers of Section 7.1.2, they can be
used in the UNIFY connectors and compositions of Section 7.1.3. These concerns, con-
nectors and compositions are the input for the UNIFY weaver, whose goal is to generate
a single woven workflow for each input workflow composition. We have implemented
this weaver in JAVA. In order to weave a composition, the weaver will process each of the
composition’s connectors one at a time, according to the order specified in the composi-
tion. To this end, we have implemented each of the connectors of Section 4.5 in JAVA: for
each connector, the base concern’s JAVA representation is modified to include the advice
concern at the joinpoints selected by the connector’s pointcut. At the end of the weaving
process, the modified base concern is returned as the woven workflow. The weaver class
consists of 360 lines of code. As part of the instantiation of UNIFY towards WS-BPEL

2Cf. http://www.antlr.org/

170

http://www.antlr.org/

7.1 Implementation

and BPMN, the weaver has been extended to two classes consisting of 282 and 61 lines
of code, respectively.

7.1.5 The UNIFY Petri Net Engine

In addition to executing a woven workflow composition using a standard workflow en-
gine, UNIFY supports executing a workflow composition using a custom Petri net based
workflow engine, based on the Petri net semantics we proposed in Chapter 5. To this
end, we implemented the transformation of a UNIFY workflow to a Petri net model in
JAVA, according to the algorithm proposed in Section 5.4.2. The Petri net model is im-
plemented using a total of 14 classes and 541 lines of code, while the transformation is
implemented using a visitor of 168 lines of code. The Petri net model can be executed
using a total of 3 classes and 221 lines of code (with most of the execution logic being
implemented in the Petri net model itself). We have implemented a visitor of 157 lines
of code that allows exporting the Petri net model as a PNML file, which is a standard
for the exchange of Petri nets supported by existing Petri net editors and analysis tools.
Note that the current implementation of our Petri net engine uses the UNIFY weaver to
weave the process before transforming it to a Petri net. Extending the Petri net engine
with support for run-time weaving is subject to future work, but the semantics proposed
in Chapter 5 is an ideal basis for this.

7.1.6 Concern-Specific Languages

We already described a methodology for developing CSLs in Section 6.3. We followed
this methodology for both of the CSLs we implemented on top of UNIFY:

• For the Access Control CSL, we implemented the domain concepts and relations
of Figure 6.2 on page 156 in JAVA. This required a total of 8 classes and 230 lines of
code. A parser of 116 lines of code is used to parse the CSL’s artifacts, and a code
generator of 116 lines of code is used to generate UNIFY artifacts.

• For the Parental Control CSL, we implemented the domain concepts and relations
of Figure 6.4 on page 160 in JAVA. This required a total of 10 classes and 149 lines
of code. A parser of 109 lines of code is used to parse the CSL’s artifacts, and a code
generator of 214 lines of code is used to generate UNIFY artifacts.

There is currently little code reuse between the different CSLs (only 1 shared class of
15 lines of code). This can be improved through the future work we identified in Sec-
tion 6.3.

This concludes our discussion of the UNIFY implementation. In the remainder of this
chapter, we present a validation of our approach.

171

Chapter 7. Implementation and Validation of UNIFY

7.2 Validation

Over the years, WS-BPEL has become the de facto standard for specifying executable
workflows. Therefore, we will use a WS-BPEL implementation of the order handling
workflow (cf. Figure 4.1 on page 59) as the basis for our validation. In Section 7.2.1, we
evaluate the expressiveness of UNIFY’s basic connectors by comparing the UNIFY im-
plementation of two concerns (which are to be performed after and around a number
of activities, respectively) with their corresponding implementations in standard WS-
BPEL and in AO4BPEL. In Section 7.2.2, we evaluate the expressiveness of UNIFY’s more
advanced connectors by comparing the UNIFY implementation of two more concerns
(which are to be performed in parallel with a number of activities and by synchronizing
two branches of a parallel control structure, respectively) with their corresponding im-
plementations in standard WS-BPEL and in AO4BPEL. Finally, in Section 7.2.3, we eval-
uate the performance and scalability of UNIFY by measuring the weaving and execution
times of a number of example compositions of increasing complexity, and comparing
the execution times with the corresponding standard WS-BPEL processes’ execution
times.

7.2.1 Expressiveness of UNIFY: Basic Connectors

In this section, we show the implementation in UNIFY of two basic connectors, i.e.,
connectors that correspond to accepted advice types in aspect-oriented workflow lan-
guages, and compare this implementation with other approaches. For these other ap-
proaches, we choose standard WS-BPEL as representative of traditional workflow lan-
guages, and AO4BPEL as representative of existing aspect-oriented workflow languages.

In our discussion, we will focus both on quantitative (lines of code) and qualitative
aspects of the compared artifacts. With regard to the quantitative aspects, we expect an
improvement when adopting an aspect-oriented approach such as AO4BPEL or UNIFY

instead of standard WS-BPEL. Quantitative differences between AO4BPEL and UNIFY

are expected to be small. UNIFY is intended to offer the same quantitative advantages
as AO4BPEL, but to differentiate itself from AO4BPEL by improving on it with regard to
qualitative aspects such as separation of concerns and reusability of artifacts.

7.2.1.1 The Reporting Concern

As a first example, let us consider the order handling workflow’s reporting concern. As is
shown in the BPMN diagram in Figure 4.1, a Report activity has to be executed after the
user has confirmed his/her order, after any of the payment activities has been executed,
or after any of the shipment activities has been performed. Each of these Report activ-
ities is actually a composite activity, which consists of several atomic activities. In our
WS-BPEL implementation of the order handling workflow, each Report activity is im-
plemented as a WS-BPEL <scope> activity that defines a variable that will contain some
input to a reporting service, an <assign> activity that copies context information to this
variable, and an <invoke> activity that invokes the reporting service with the variable as
its input. Listing 7.1 shows the Report activity for the order confirmation. The activity

172

7.2 Validation

consists of 39 lines of WS-BPEL code.3 The other Report activities are similar to the one
for the order confirmation; the main difference is the context information that is copied
to the variable. The reporting concern is thus obviously crosscutting, with code dupli-
cation as a result. In total, the reporting concern is implemented in standard WS-BPEL
using 6∗39 = 234 lines of code.

1 <scope name="ReportOrderConfirmation">
2 <partnerLinks>
3 <partnerLink name="ReportingBackEndPartnerLink"
4 partnerLinkType="rbe:ReportingBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndReportInput" messageType="rbe:reportRequest" />
8 <variable name="backEndReportOutput" messageType="rbe:reportResponse" />
9 </variables>

10 <sequence>
11 <assign>
12 <copy>
13 <from>
14 <literal>
15 <report xmlns="http://back_end.reporting.examples
16 .unify_framework.org/xsd">
17 <message>Confirm has been executed</message>
18 <username />
19 </report>
20 </literal>
21 </from>
22 <to variable="backEndReportInput" part="parameters" />
23 </copy>
24 <copy>
25 <from variable="user">
26 <query xmlns:bed="http://back_end.order_books.examples
27 .unify_framework.org/xsd">//bed:username</query>
28 </from>
29 <to variable="backEndReportInput" part="parameters">
30 <query xmlns:rbed="http://back_end.reporting.examples
31 .unify_framework.org/xsd">//rbed:report/rbed:username</query>
32 </to>
33 </copy>
34 </assign>
35 <invoke name="Report" partnerLink="ReportingBackEndPartnerLink"
36 portType="rbe:ReportingBackEndPortType" operation="report"
37 inputVariable="backEndReportInput" outputVariable="backEndReportOutput" />
38 </sequence>
39 </scope>

Listing 7.1: Report activity for order confirmation as implemented in WS-BPEL

Existing aspect-oriented approaches for workflows address crosscutting concerns by
enabling the definition of aspects that modularize previously crosscutting behavior. This
behavior (called advice) can be inserted at certain locations (called joinpoints) in the
base workflow, by selecting these joinpoints using a pointcut. Thus, AO4BPEL can be
used to define an aspect that contains the reporting code. Because the exact same code
is then being used at every joinpoint, we need a means of accessing each joinpoint’s
context information. This is accomplished using AO4BPEL’s ThisJPActivity variable,
which is available for use within an aspect’s advice, and will contain the joinpoint activ-
ity’s context information at runtime.

3Due to the use of XML, most of the examples in this chapter will be rather verbose.

173

Chapter 7. Implementation and Validation of UNIFY

Listing 7.2 shows the AO4BPEL aspect that implements the reporting concern. Lines
2–9 define a number of partner links and variables that will be added to the base work-
flow. Lines 11–15 define a pointcut, and lines 16–57 define the corresponding advice.
Because the advice is no longer duplicated throughout the base workflow, the reporting
concern is now implemented using a total of 59 lines of code. However, note that the
concern is now implemented using a different kind of module, i.e., an aspect, than the
kind of module offered by the base language, i.e., the activity. Within an aspect, new lan-
guage elements introduced by AO4BPEL (cf. the <aspect> element on lines 1 and 59,
the <pointcutandadvice> element on lines 10 and 58, the <pointcut> element on
lines 11–15, and the <advice> element on lines 16 and 57) are intertwined with exist-
ing BPEL language elements (cf. the <partnerLinks> and <variables> elements on
lines 2–9, and the advice body on lines 17–56). Even in the advice body, which consists
of standard BPEL code, the use of the AO4BPEL-specific ThisJPActivity variable (cf.
line 32) constitutes a strong dependency on the AO4BPEL approach.
1 <aspect name="ReportingAspect">
2 <partnerLinks>
3 <partnerLink name="ReportingBackEndPartnerLink"
4 partnerLinkType="rbe:ReportingBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndReportInput" messageType="rbe:reportRequest" />
8 <variable name="backEndReportOutput" messageType="rbe:reportResponse" />
9 </variables>

10 <pointcutandadvice>
11 <pointcut name="ActivitiesToBeReported">
12 //invoke[@name="Confirm" or @name="CreditCardPayment"
13 or @name="PayPalPayment" or @name="WireTransferPayment"
14 or @name="ShipByMail" or @name="ShipByCourier"]
15 </pointcut>
16 <advice type="after">
17 <sequence>
18 <assign>
19 <copy>
20 <from>
21 <literal>
22 <report xmlns="http://back_end.reporting.examples
23 .unify_framework.org/xsd">
24 <message />
25 <username />
26 </report>
27 </literal>
28 </from>
29 <to variable="backEndReportInput" part="parameters" />
30 </copy>
31 <copy>
32 <from>concat($ThisJPActivity.name,
33 ' has been executed')</from>
34 <to variable="backEndReportInput" part="parameters">
35 <query xmlns:rbed="http://back_end.reporting.examples
36 .unify_framework.org/xsd">
37 //rbed:report/rbed:message</query>
38 </to>
39 </copy>
40 <copy>
41 <from variable="user">
42 <query xmlns:bed="http://back_end.order_books.examples
43 .unify_framework.org/xsd">//bed:username</query>
44 </from>
45 <to variable="backEndReportInput" part="parameters">
46 <query xmlns:rbed="http://back_end.reporting.examples

174

7.2 Validation

47 .unify_framework.org/xsd">
48 //rbed:report/rbed:username</query>
49 </to>
50 </copy>
51 </assign>
52 <invoke name="Report" partnerLink="ReportingBackEndPartnerLink"
53 portType="rbe:ReportingBackEndPortType" operation="report"
54 inputVariable="backEndReportInput"
55 outputVariable="backEndReportOutput" />
56 </sequence>
57 </advice>
58 </pointcutandadvice>
59 </aspect>

Listing 7.2: Reporting aspect as implemented in AO4BPEL

All of this has an impact on possibilities for reuse of aspects in AO4BPEL. Assume
that we want to invoke the reporting concern explicitly in another base workflow (i.e., we
do not want to implicitly apply the concern using an aspect). This is impossible in AO-
4BPEL due to the introduction of a separate aspect module, and UNIFY will address this
limitation by removing the distinction between the modules of the base language and
those of the aspect mechanism. Assume that we want to apply the aspect implementing
the reporting concern to another base workflow. This is impossible in AO4BPEL due
to the pointcut and advice being tightly coupled to each other by being specified in the
same aspect, and due to the lack of support for aspect inheritance or invoking an existing
advice from within another aspect. UNIFY will address this limitation by making a clear
distinction between a concern’s behavior (implemented as a CompositeActivity) and a
concern’s deployment within a concrete context (implemented as a Connector).4

UNIFY differentiates itself from existing aspect-oriented approaches for workflows by
offering a uniform modularization mechanism, in which crosscutting code is specified
using the existing language constructs of the base language. Thus, the reporting concern
is not implemented using a separate aspect construct, but using the existing WS-BPEL
constructs for specifying composite activities, i.e., separate WS-BPEL processes or WS-
BPEL <scope> activities. For example, Listing 7.3 shows the reporting concern as im-
plemented in WS-BPEL for use by UNIFY.5 Thus, specifying code that will be used in
an aspect-oriented way is no different than specifying other code, except that the code
is no longer crosscutting. The actual connection between the base workflow and the
other modules that are to be applied to it, is specified in separate connectors. For ex-
ample, the connector in Listing 7.4 specifies that the Report activity of Listing 7.3 has
to be inserted after each joinpoint of a certain pointcut. In UNIFY, context information
of the base workflow is provided to the connected concern using a data mapping. Be-
cause the actual workflow behavior and the connection logic are now cleanly separated,
the workflow behavior can be reused, both by regular workflows or by other connec-
tors. When comparing the lines of code of the reporting concern as implemented using
UNIFY, i.e., 43+8 = 51, we obtain a significant improvement compared to standard WS-

4In PADUS, we addressed this limitation in another way, i.e., by supporting a rudimentary form of reuse of
pointcuts and advices through <include> declarations (cf. Section 3.3.3).

5This code is the same as the WS-BPEL code from Listing 7.1, except that the message and username
which will be reported are now assigned from the reportInput variable, which is not defined within the scope
and will thus need to be mapped to an existing variable by the connector in Listing 7.4.

175

Chapter 7. Implementation and Validation of UNIFY

BPEL. We need about the same amount of code than AO4BPEL, but also get a reusable
implementation: the previously crosscutting behavior is now nicely modularized in a
separate CompositeActivity (the WS-BPEL <scope> activity of Listing 7.3), while its de-
ployment is modularized in a separate Connector (the after connector of Listing 7.4). The
same concern can be reused in different contexts by simply writing a new Connector that
applies the existing CompositeActivity to another base workflow. Table 7.1 provides an
overview of the lines of code in each implementation.

1 <scope name="Report">
2 <partnerLinks>
3 <partnerLink name="ReportingBackEndPartnerLink"
4 partnerLinkType="rbe:ReportingBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndReportInput" messageType="rbe:reportRequest" />
8 <variable name="backEndReportOutput" messageType="rbe:reportResponse" />
9 </variables>

10 <sequence>
11 <assign>
12 <copy>
13 <from>
14 <literal>
15 <report xmlns="http://back_end.reporting.examples
16 .unify_framework.org/xsd">
17 <message />
18 <username />
19 </report>
20 </literal>
21 </from>
22 <to variable="backEndReportInput" part="parameters" />
23 </copy>
24 <copy>
25 <from variable="reportInput" part="message" />
26 <to variable="backEndReportInput" part="parameters">
27 <query xmlns:rbed="http://back_end.reporting.examples
28 .unify_framework.org/xsd">//rbed:report/rbed:message</query>
29 </to>
30 </copy>
31 <copy>
32 <from variable="reportInput" part="username" />
33 <to variable="backEndReportInput" part="parameters">
34 <query xmlns:rbed="http://back_end.reporting.examples
35 .unify_framework.org/xsd">//rbed:report/rbed:username</query>
36 </to>
37 </copy>
38 </assign>
39 <invoke name="Report" partnerLink="ReportingBackEndPartnerLink"
40 portType="rbe:ReportingBackEndPortType" operation="report"
41 inputVariable="backEndReportInput" outputVariable="backEndReportOutput" />
42 </sequence>
43 </scope>

Listing 7.3: Reporting concern as implemented in WS-BPEL for use by UNIFY

7.2.1.2 The Access Control Concern

As a second example, let us consider the order handling workflow’s access control con-
cern, which we used as an example for our Access Control CSL in Section 6.4. The ac-
cess control concern specifies that only premium customers are allowed to execute the
SpecifyOptions activity, and that this activity has to be skipped for other customers.

176

7.2 Validation

1 ReportConnector:
2 CONNECT Report
3 AFTER activity("SelectBooks\.Confirm|Pay\..*Payment|Ship\.ShipBy.*")
4 WITH messageTypeVariable(reportInput, message)
5 = "{$thisJoinPoint.activityName} has been executed",
6 messageTypeVariable(reportInput, username)
7 = typeVariable(user, "//bed:username", "bed",
8 "http://back_end.order_books.examples.unify_framework.org/xsd")

Listing 7.4: UNIFY connector for the reporting concern

WS-BPEL AO4BPEL UNIFY UNIFY CSLs
Reporting 234 59 51 n/a

Access control 61 68 67 17
Preference saving 106 73 66 n/a

Bank account verification 58 n/a 45 n/a

Table 7.1: Comparison of lines of code required to implement the example concerns in
WS-BPEL, AO4BPEL, UNIFY, and UNIFY CSLs

The access control concern also assigned these “premium customer” and “normal cus-
tomer” roles to users. This concern can be implemented in WS-BPEL as listed in List-
ing 7.5 by inserting a<scope> activity around the SpecifyOptions activity. The <scope>
activity will define and assign a variable containing a mapping from activities and user-
names to permissions, and will subsequently use this mapping to decide whether the
SpecifyOptions activity has to be executed or not. This is accomplished using 61 lines
of WS-BPEL code.6

1 <scope name="AccessControlledSpecifyOptions">
2 <variables>
3 <variable element="nd:nestedDictionary" name="PermissionsDb"
4 xmlns:nd="http://unify-framework.org/Util/NestedDictionary"/>
5 <variable name="Action" type="xsd:string"/>
6 <variable name="Username" type="xsd:string"/>
7 </variables>
8 <sequence>
9 <assign name="InitializePermissionsDatabase">

10 <copy>
11 <from>
12 <literal>
13 <nestedDictionary
14 xmlns="http://unify-framework.org/Util/NestedDictionary">
15 <firstKey key="SpecifyOptions">
16 <secondKey key="john">
17 <value value="Allow"/>
18 </secondKey>
19 <secondKey key="mike">
20 <value value="DenyBySkipping"/>
21 </secondKey>
22 </firstKey>
23 </nestedDictionary>
24 </literal>
25 </from>

6Listing 7.5 lists 62 lines of code, of which 1 is a placeholder for the SpecifyOptions activity, so 62−1 = 61
lines of code define the access control concern proper.

177

Chapter 7. Implementation and Validation of UNIFY

26 <to variable="PermissionsDb"/>
27 </copy>
28 </assign>
29 <assign name="InitializeUsername">
30 <copy>
31 <from>$user/bed:username</from>
32 <to variable="Username"/>
33 </copy>
34 </assign>
35 <assign name="VerifyPermissions">
36 <copy>
37 <from xmlns:nd="http://unify-framework.org/Util/NestedDictionary">
38 $PermissionsDb/nd:firstKey[@key='SpecifyOptions']
39 /nd:secondKey[@key=$Username]/nd:value/@value
40 </from>
41 <to variable="Action"/>
42 </copy>
43 </assign>
44 <if name="AC">
45 <condition>$Action='DenyBySkipping'</condition>
46 <sequence>
47 <empty name="DoNothing"/>
48 </sequence>
49 <elseif>
50 <condition>$Action='DenyByRaisingError'</condition>
51 <sequence>
52 <throw faultName="PermissionDenied" name="RaiseError"/>
53 </sequence>
54 </elseif>
55 <else>
56 <sequence>
57 <!-- ACTIVITY TO WHICH ACCESS SHOULD BE CONTROLLED (i.e., SpecifyOptions) -->
58 </sequence>
59 </else>
60 </if>
61 </sequence>
62 </scope>

Listing 7.5: Access control concern as implemented in WS-BPEL

The same can be accomplished using AO4BPEL as listed in Listing 7.6. In this case,
the access control behavior is implemented as the body of the advice, which is inserted
around the SpecifyOptions joinpoint. Within the body of the advice, the <proceed>
activity that is offered by AO4BPEL can be used to specify where the joinpoint’s original
behavior has to be executed. This is all accomplished using 68 lines of AO4BPEL code.
Using this approach, the access control concern is nicely modularized in a separate as-
pect. However, the concern is again implemented using a different kind of module — an
aspect — which may hamper reuse as discussed above.

1 <aspect name="AccessControlAspect">
2 <variables>
3 <variable element="nd:nestedDictionary" name="PermissionsDb"
4 xmlns:nd="http://unify-framework.org/Util/NestedDictionary"/>
5 <variable name="Action" type="xsd:string"/>
6 <variable name="Username" type="xsd:string"/>
7 </variables>
8 <pointcutandadvice>
9 <pointcut name="ActivitiesToWhichAccessShouldBeControlled">

10 //scope[@name="SpecifyOptions"]
11 </pointcut>
12 <advice type="around">
13 <sequence>
14 <assign name="InitializePermissionsDatabase">

178

7.2 Validation

15 <copy>
16 <from>
17 <literal>
18 <nestedDictionary
19 xmlns="http://unify-framework.org/Util/NestedDictionary">
20 <firstKey key="SpecifyOptions">
21 <secondKey key="john">
22 <value value="Allow"/>
23 </secondKey>
24 <secondKey key="mike">
25 <value value="DenyBySkipping"/>
26 </secondKey>
27 </firstKey>
28 </nestedDictionary>
29 </literal>
30 </from>
31 <to variable="PermissionsDb"/>
32 </copy>
33 </assign>
34 <assign name="InitializeUsername">
35 <copy>
36 <from>$user/bed:username</from>
37 <to variable="Username"/>
38 </copy>
39 </assign>
40 <assign name="VerifyPermissions">
41 <copy>
42 <from xmlns:nd="http://unify-framework.org/Util/NestedDictionary">
43 $PermissionsDb/nd:firstKey[@key=$ThisJPActivity.name]
44 /nd:secondKey[@key=$Username]/nd:value/@value</from>
45 <to variable="Action"/>
46 </copy>
47 </assign>
48 <if name="AC">
49 <condition>$Action='DenyBySkipping'</condition>
50 <sequence>
51 <empty name="DoNothing"/>
52 </sequence>
53 <elseif>
54 <condition>$Action='DenyByRaisingError'</condition>
55 <sequence>
56 <throw faultName="PermissionDenied" name="RaiseError"/>
57 </sequence>
58 </elseif>
59 <else>
60 <sequence>
61 <proceed />
62 </sequence>
63 </else>
64 </if>
65 </sequence>
66 </advice>
67 </pointcutandadvice>
68 </aspect>

Listing 7.6: Access control concern as implemented in AO4BPEL

UNIFY can be used to implement the access control concern by specifying a compos-
ite activity and a connector, with the advantages we already mentioned while discussing
the reporting concern above. However, we can also use our Access Control CSL to imple-
ment this concern, as was shown in Listing 6.1 in Section 6.4. This requires only 17 lines
of XML code, which is more closely related to the domain concepts of the concern than
the corresponding WS-BPEL, AO4BPEL or UNIFY implementations. This UNIFY im-
plementation can be generated by the Access Control CSL preprocessor. For the access

179

Chapter 7. Implementation and Validation of UNIFY

control concern’s behavior, a WS-BPEL <scope> activity is generated that consists of 61
lines of WS-BPEL code (cf. Listing 7.7). Note that this is all standard WS-BPEL code:
unlike AO4BPEL, the behavior does not contain custom activities such as <proceed>.
For the connection logic, a UNIFY around connector is generated that consists of 6 lines
of code (i.e., the connector that was already provided in Listing 6.2, augmented with 2
lines to map data; cf. Listing 7.8). When comparing the lines of code of the access control
concern as implemented using UNIFY, i.e., 61+6 = 67, with the standard WS-BPEL im-
plementation, we do not achieve an improvement because the access control concern
was only applied to one activity, i.e., SpecifyOptions. The same holds for the AO4-
BPEL implementation. However, both AO4BPEL and UNIFY offer improved separation
of concerns. With UNIFY, we need about the same amount of code than AO4BPEL, but
also get a reusable implementation. The Access Control CSL implementation, however,
requires less code than all of these. Table 7.1 provides an overview of the lines of code in
each implementation.
1 <scope name="GeneratedAccessControlActivity">
2 <variables>
3 <variable element="nd:nestedDictionary" name="PermissionsDb"
4 xmlns:nd="http://unify-framework.org/Util/NestedDictionary"/>
5 <variable name="Action" type="xsd:string"/>
6 <variable name="Username" type="xsd:string"/>
7 </variables>
8 <sequence>
9 <assign name="InitializePermissionsDatabase">

10 <copy>
11 <from>
12 <literal>
13 <nestedDictionary
14 xmlns="http://unify-framework.org/Util/NestedDictionary">
15 <firstKey key="SpecifyOptions">
16 <secondKey key="john">
17 <value value="Allow"/>
18 </secondKey>
19 <secondKey key="mike">
20 <value value="DenyBySkipping"/>
21 </secondKey>
22 </firstKey>
23 </nestedDictionary>
24 </literal>
25 </from>
26 <to variable="PermissionsDb"/>
27 </copy>
28 </assign>
29 <assign name="InitializeUsername">
30 <copy>
31 <from>$user/bed:username</from>
32 <to variable="Username"/>
33 </copy>
34 </assign>
35 <assign name="VerifyPermissions">
36 <copy>
37 <from xmlns:nd="http://unify-framework.org/Util/NestedDictionary">
38 $PermissionsDb/nd:firstKey[@key=$Activity]
39 /nd:secondKey[@key=$Username]/nd:value/@value</from>
40 <to variable="Action"/>
41 </copy>
42 </assign>
43 <if name="AC">
44 <condition>$Action='DenyBySkipping'</condition>
45 <sequence>
46 <empty name="DoNothing"/>

180

7.2 Validation

47 </sequence>
48 <elseif>
49 <condition>$Action='DenyByRaisingError'</condition>
50 <sequence>
51 <throw faultName="PermissionDenied" name="RaiseError"/>
52 </sequence>
53 </elseif>
54 <else>
55 <sequence>
56 <empty name="GeneratedDummyActivity" />
57 </sequence>
58 </else>
59 </if>
60 </sequence>
61 </scope>

Listing 7.7: Access control concern as implemented in WS-BPEL for use by UNIFY

1 GeneratedAccessControlConnector:
2 CONNECT GeneratedAccessControlActivity
3 AROUND activity("OrderHandling\.SpecifyOptions")
4 PROCEEDING AT activity("GeneratedAccessControlActivity\.GeneratedDummyActivity")
5 WITH typeVariable(Activity)
6 = messageTypeVariable(thisJoinPoint, activityName)

Listing 7.8: UNIFY connector for the access control concern

7.2.2 Expressiveness of UNIFY: Advanced Connectors

In this section, we show the implementation in UNIFY of two advanced connectors, i.e.,
connectors that constitute novel advice types with regard to existing aspect-oriented
workflow languages, and compare this implementation with other approaches. Once
again, we choose standard WS-BPEL as representative of traditional workflow languages,
and AO4BPEL as representative of existing aspect-oriented workflow languages.

7.2.2.1 The Preference Saving Concern

As a first example of an advanced connector, we consider the order handling workflow’s
preference saving concern. As is shown in the BPMN diagram in Figure 4.1, a SavePrefer-
ence activity has to be executed in parallel with searching for a book and adding a book
to the shopping basket. Each of these two SavePreference activities is actually a compos-
ite activity, which consists of several atomic activities. In our WS-BPEL implementation
of the order handling workflow, a SavePreference activity is implemented as a WS-BPEL
<scope> activity that defines a variable that will contain some input to a preferences
service, an <assign> activity that copies context information to this variable, and an
<invoke> activity that invokes the preferences service with the variable as its input. The
activity consists of 53 lines of WS-BPEL code (cf. Listing 7.9). The SavePreference activity
for searching a book is similar to the one for adding a book; the main difference is the
context information that is copied to the variable. The preference saving concern is thus
crosscutting, with code duplication as a result. In total, the preference saving concern is
implemented in standard WS-BPEL using 2∗53 = 106 lines of code.

181

Chapter 7. Implementation and Validation of UNIFY

1 <scope name="SavePreferenceForAddedBook"
2 <partnerLinks>
3 <partnerLink name="PreferencesBackEndPartnerLink"
4 partnerLinkType="pbe:PreferencesBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndSaveUserOperationInput"
8 messageType="pbe:saveUserOperationRequest" />
9 <variable name="backEndSaveUserOperationOutput"

10 messageType="pbe:saveUserOperationResponse" />
11 </variables>
12 <sequence>
13 <assign>
14 <copy>
15 <from>
16 <literal>
17 <report xmlns="http://back_end.preferences.examples
18 .unify_framework.org/xsd">
19 <username />
20 <operation>AddBook</operation>
21 <bookId />
22 </report>
23 </literal>
24 </from>
25 <to variable="backEndSaveUserOperationInput" part="parameters" />
26 </copy>
27 <copy>
28 <from variable="user">
29 <query xmlns:bed="http://back_end.order_books.examples
30 .unify_framework.org/xsd">//bed:username</query>
31 </from>
32 <to variable="backEndSaveUserOperationInput" part="parameters">
33 <query xmlns:pbed="http://back_end.preferences.examples
34 .unify_framework.org/xsd">//pbed:saveUserOperation/pbed:username</query>
35 </to>
36 </copy>
37 <copy>
38 <from variable="addBookInput" part="parameters">
39 <query xmlns:bed="http://back_end.order_books.examples
40 .unify_framework.org/xsd">//bed:addBook/bed:id</query>
41 </from>
42 <to variable="backEndSaveUserOperationInput" part="parameters">
43 <query xmlns:pbed="http://back_end.preferences.examples
44 .unify_framework.org/xsd">//pbed:saveUserOperation/pbed:bookId</query>
45 </to>
46 </copy>
47 </assign>
48 <invoke name="SaveUserOperation" partnerLink="PreferencesBackEndPartnerLink"
49 portType="pbe:PreferencesBackEndPortType" operation="saveUserOperation"
50 inputVariable="backEndSaveUserOperationInput"
51 outputVariable="backEndSaveUserOperationOutput" />
52 </sequence>
53 </scope>

Listing 7.9: Preference saving concern as implemented in WS-BPEL

The same can be accomplished using AO4BPEL. In this case, the preference saving
behavior is implemented as the body of the advice, which is inserted in parallel with
the SavePreference joinpoint using an around advice that defines a new parallel control
structure. This is all accomplished using 73 lines of AO4BPEL code (cf. Listing 7.10).
Using this approach, the preference saving concern is nicely modularized in a separate
aspect. However, this aspect contains both the behavior that is to be inserted, and the
connection logic that specifies where the behavior has to be inserted. For example, this

182

7.2 Validation

aspect cannot be reused to perform preference saving before or after a joinpoint.

1 <aspect name="PreferenceSavingAspect">
2 <partnerLinks>
3 <partnerLink name="PreferencesBackEndPartnerLink"
4 partnerLinkType="pbe:PreferencesBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndSaveUserOperationInput"
8 messageType="pbe:saveUserOperationRequest" />
9 <variable name="backEndSaveUserOperationOutput"

10 messageType="pbe:saveUserOperationResponse" />
11 </variables>
12 <pointcutandadvice>
13 <pointcut name="ActivitiesForWhichPreferencesMustBeSaved">
14 //invoke[@name="SearchBook" or @name="AddBook"]
15 </pointcut>
16 <advice type="around">
17 <flow>
18 <proceed />
19 <sequence>
20 <assign>
21 <copy>
22 <from>
23 <literal>
24 <report xmlns="http://back_end.preferences.examples
25 .unify_framework.org/xsd">
26 <username />
27 <operation />
28 <bookId />
29 </report>
30 </literal>
31 </from>
32 <to variable="backEndSaveUserOperationInput" part="parameters" />
33 </copy>
34 <copy>
35 <from variable="user">
36 <query xmlns:bed="http://back_end.order_books.examples
37 .unify_framework.org/xsd">//bed:username</query>
38 </from>
39 <to variable="backEndSaveUserOperationInput" part="parameters">
40 <query xmlns:pbed="http://back_end.preferences.examples
41 .unify_framework.org/xsd">
42 //pbed:saveUserOperation/pbed:username</query>
43 </to>
44 </copy>
45 <copy>
46 <from variable="ThisJPActivity" part="name" />
47 <to variable="backEndSaveUserOperationInput" part="parameters">
48 <query xmlns:pbed="http://back_end.preferences.examples
49 .unify_framework.org/xsd">
50 //pbed:saveUserOperation/pbed:operation</query>
51 </to>
52 </copy>
53 <copy>
54 <from variable="addBookInput" part="parameters">
55 <query xmlns:bed="http://back_end.order_books.examples
56 .unify_framework.org/xsd">//bed:addBook/bed:id</query>
57 </from>
58 <to variable="backEndSaveUserOperationInput" part="parameters">
59 <query xmlns:pbed="http://back_end.preferences.examples
60 .unify_framework.org/xsd">
61 //pbed:saveUserOperation/pbed:bookId</query>
62 </to>
63 </copy>
64 </assign>
65 <invoke name="SaveUserOperation" partnerLink="PreferencesBackEndPartnerLink"

183

Chapter 7. Implementation and Validation of UNIFY

66 portType="pbe:PreferencesBackEndPortType" operation="saveUserOperation"
67 inputVariable="backEndSaveUserOperationInput"
68 outputVariable="backEndSaveUserOperationOutput" />
69 </sequence>
70 </flow>
71 </advice>
72 </pointcutandadvice>
73 </aspect>

Listing 7.10: Preference saving concern as implemented in AO4BPEL

UNIFY can be used to implement the access control concern by specifying a compos-
ite activity and a connector. The composite activity is a WS-BPEL <scope> activity that
consists of 57 lines of WS-BPEL code (cf. Listing 7.11). Once again, note that this is all
standard WS-BPEL code: unlike AO4BPEL, the behavior does not contain custom ac-
tivities such as <proceed>. The code also does not define the connection logic that was
present in AO4BPEL’s advice body. The connection logic is specified in a separate paral-
lel connector that consists of 9 lines of code (cf. Listing 7.12). When comparing the lines
of code of the preference saving concern as implemented using UNIFY, i.e., 57+9 = 66, we
obtain a significant improvement compared to standard WS-BPEL. We need about the
same amount of code than AO4BPEL, but also get a reusable implementation. Table 7.1
provides an overview of the lines of code in each implementation.

1 <scope name="SavePreference">
2 <partnerLinks>
3 <partnerLink name="PreferencesBackEndPartnerLink"
4 partnerLinkType="pbe:PreferencesBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndSaveUserOperationInput"
8 messageType="pbe:saveUserOperationRequest" />
9 <variable name="backEndSaveUserOperationOutput"

10 messageType="pbe:saveUserOperationResponse" />
11 </variables>
12 <sequence>
13 <assign>
14 <copy>
15 <from>
16 <literal>
17 <report xmlns="http://back_end.preferences.examples
18 .unify_framework.org/xsd">
19 <username />
20 <operation />
21 <bookId />
22 </report>
23 </literal>
24 </from>
25 <to variable="backEndSaveUserOperationInput" part="parameters" />
26 </copy>
27 <copy>
28 <from variable="saveUserOperationInput" part="username" />
29 <to variable="backEndSaveUserOperationInput" part="parameters">
30 <query xmlns:pbed="http://back_end.preferences.examples
31 .unify_framework.org/xsd">
32 //pbed:saveUserOperation/pbed:username</query>
33 </to>
34 </copy>
35 <copy>
36 <from variable="saveUserOperationInput" part="operation" />
37 <to variable="backEndSaveUserOperationInput" part="parameters">
38 <query xmlns:pbed="http://back_end.preferences.examples
39 .unify_framework.org/xsd">

184

7.2 Validation

40 //pbed:saveUserOperation/pbed:operation</query>
41 </to>
42 </copy>
43 <copy>
44 <from variable="saveUserOperationInput" part="bookId" />
45 <to variable="backEndSaveUserOperationInput" part="parameters">
46 <query xmlns:pbed="http://back_end.preferences.examples
47 .unify_framework.org/xsd">
48 //pbed:saveUserOperation/pbed:bookId</query>
49 </to>
50 </copy>
51 </assign>
52 <invoke name="SaveUserOperation" partnerLink="PreferencesBackEndPartnerLink"
53 portType="pbe:PreferencesBackEndPortType" operation="saveUserOperation"
54 inputVariable="backEndSaveUserOperationInput"
55 outputVariable="backEndSaveUserOperationOutput" />
56 </sequence>
57 </process>

Listing 7.11: Preference saving concern as implemented in WS-BPEL for use by UNIFY

1 SavePreferenceConnector:
2 CONNECT SavePreference
3 PARALLEL TO activity("SelectBooks\..*Book")
4 WITH messageTypeVariable(saveUserOperationInput, username)
5 = typeVariable(user, "//bed:username", "bed",

"http://back_end.order_books.examples.unify_framework.org/xsd"),
6 messageTypeVariable(saveUserOperationInput, operation)
7 = "{$thisJoinPoint.activityName}",
8 messageTypeVariable(saveUserOperationInput, bookId)
9 = messageTypeVariable(selectBookOutput, parameters,

"//ud:selectBookResponse/ud:return/ud:id", "ud",
"http://user.order_books.examples.unify_framework.org/xsd")

Listing 7.12: UNIFY connector for the preference saving concern

7.2.2.2 The Bank Account Verification Concern

As a second example of an advanced connector, we consider the order handling work-
flow’s bank account verification concern. As is shown in the BPMN diagram in Figure 4.1,
the VerifyBankAccount activity has to be executed after the Pay activity and before the
Ship activity, in a way that synchronizes the two parallel branches in which these ac-
tivities are present. Once again, the VerifyBankAccount activity is actually a composite
activity, which consist of several atomic activities. In our WS-BPEL implementation of
the order handling workflow, the VerifyBankAccount activity is implemented as a WS-
BPEL <scope> activity that defines a variable that will contain some input to a verifica-
tion service, an <assign> activity that copies context information to this variable, and
an <invoke> activity that invokes the preferences service with the variable as its input.
WS-BPEL is traditionally used to create workflows in a block-structured way. In order
to synchronize two branches of a parallel control structure, the block-structured con-
structs are not sufficient and we must thus use the WS-BPEL <link> construct which
allows creating workflows in a graph-based way. The VerifyBankAccount activity is thus
added as a third branch to the existing parallel control structure, with two links specify-
ing that the VerifyBankAccount activity has to be started after the Pay activity has been

185

Chapter 7. Implementation and Validation of UNIFY

executed, and that the Ship activity can only be executed after the VerifyBankAccount ac-
tivity has been executed. All of this is implemented using a total of 58 lines of WS-BPEL
code (cf. Listing 7.13).7

1 <flow>
2 <links>
3 <link name="LinkA"/>
4 <link name="LinkB"/>
5 </links>
6 <scope name="VerifyBankAccount">
7 <sources>
8 <source linkName="LinkB"/>
9 </sources>

10 <targets>
11 <target linkName="LinkA"/>
12 </targets>
13 <partnerLinks>
14 <partnerLink name="OrderBooksBackEndPartnerLink"
15 partnerLinkType="be:OrderBooksBackEndPartnerLinkType" partnerRole="me"/>
16 </partnerLinks>
17 <variables>
18 <variable messageType="be:verifyBankAccountRequest"
19 name="backEndVerifyBankAccountInput"/>
20 <variable messageType="be:verifyBankAccountResponse"
21 name="backEndVerifyBankAccountOutput"/>
22 </variables>
23 <sequence>
24 <assign>
25 <copy>
26 <from>
27 <literal>
28 <verifyBankAccount xmlns="http://back_end.order_books.examples
29 .unify_framework.org/xsd">
30 <username/>
31 </verifyBankAccount>
32 </literal>
33 </from>
34 <to part="parameters" variable="backEndVerifyBankAccountInput"/>
35 </copy>
36 <copy>
37 <from variable="user">
38 <query xmlns:bed="http://back_end.order_books.examples
39 .unify_framework.org/xsd">//bed:username</query>
40 </from>
41 <to part="parameters" variable="backEndVerifyBankAccountInput">
42 <query xmlns:bed="http://back_end.order_books.examples
43 .unify_framework.org/xsd">
44 //bed:verifyBankAccount/bed:username</query>
45 </to>
46 </copy>
47 </assign>
48 <invoke name="VerifyBankAccount" partnerLink="OrderBooksBackEndPartnerLink"
49 portType="be:OrderBooksBackEndPortType" operation="verifyBankAccount"
50 inputVariable="backEndVerifyBankAccountInput"
51 outputVariable="backEndVerifyBankAccountOutput" />
52 </sequence>
53 </scope>
54 <sequence>
55 <empty name="Pay">
56 <sources>

7Listing 7.13 lists 70 lines of code, of which 2 define the <flow> activity surrounding the bank account
verification concern, 5 define the sequence containing placeholders for the Pay and SendInvoice activities,
and 5 define the sequence containing placeholders for the ProcessOrder and Ship activities, so 70−2−5−5 =
58 lines of code define the bank account verification concern proper.

186

7.2 Validation

57 <source linkName="LinkA"/>
58 </sources>
59 </empty>
60 <empty name="SendInvoice" />
61 </sequence>
62 <sequence>
63 <empty name="ProcessOrder" />
64 <empty name="Ship">
65 <targets>
66 <target linkName="LinkB"/>
67 </targets>
68 </empty>
69 </sequence>
70 </flow>

Listing 7.13: Bank account verification concern as implemented in WS-BPEL

This behavior cannot be modularized in a separate aspect using AO4BPEL. UNIFY,
however, does support this using its synchronizing connector. Once again, the actual
behavior is implemented as a composite activity, which is a WS-BPEL <scope> activ-
ity that consists of 38 lines of WS-BPEL code (cf. Listing 7.14). The connection logic is
specified in a separate synchronizing connector that consists of 7 lines of code (cf. List-
ing 7.15). When comparing the lines of code of the bank account verification concern
as implemented using UNIFY, i.e., 38+ 7 = 45, we achieve an improvement over stan-
dard WS-BPEL, because the way in which WS-BPEL <link> constructs are specified is
rather verbose, whereas our connector construct abstracts over this. Additionally, UNIFY

offers full separation of concerns because the concern is now nicely modularized.

1 <scope name="VerifyBankAccount">
2 <partnerLinks>
3 <partnerLink name="OrderBooksBackEndPartnerLink"
4 partnerLinkType="be:OrderBooksBackEndPartnerLinkType" partnerRole="me" />
5 </partnerLinks>
6 <variables>
7 <variable name="backEndVerifyBankAccountInput"
8 messageType="be:verifyBankAccountRequest" />
9 <variable name="backEndVerifyBankAccountOutput"

10 messageType="be:verifyBankAccountResponse" />
11 </variables>
12 <sequence>
13 <assign>
14 <copy>
15 <from>
16 <literal>
17 <verifyBankAccount xmlns="http://back_end.order_books.examples
18 .unify_framework.org/xsd">
19 <username />
20 </verifyBankAccount>
21 </literal>
22 </from>
23 <to variable="backEndVerifyBankAccountInput" part="parameters" />
24 </copy>
25 <copy>
26 <from variable="verifyBankAccountInput" part="username" />
27 <to variable="backEndVerifyBankAccountInput" part="parameters">
28 <query xmlns:bed="http://back_end.order_books.examples
29 .unify_framework.org/xsd">//bed:verifyBankAccount/bed:username</query>
30 </to>
31 </copy>
32 </assign>
33 <invoke name="VerifyBankAccount" partnerLink="OrderBooksBackEndPartnerLink"
34 portType="be:OrderBooksBackEndPortType" operation="verifyBankAccount"

187

Chapter 7. Implementation and Validation of UNIFY

35 inputVariable="backEndVerifyBankAccountInput"
36 outputVariable="backEndVerifyBankAccountOutput" />
37 </sequence>
38 </scope>

Listing 7.14: Bank account verification concern as implemented in WS-BPEL for use by
UNIFY

1 VerifyBankAccountConnector:
2 CONNECT VerifyBankAccount
3 IN fragment(OrderHandling.PaymentAndShipmentSplit, OrderHandling.PaymentAndShipmentJoin)
4 AND-SPLITTING AT activity("OrderHandling\.Pay")
5 SYNCHRONIZING AT activity("OrderHandling\.Ship")
6 WITH messageTypeVariable(verifyBankAccountInput, username)
7 = typeVariable(user, "//bed:username", "bed",

"http://back_end.order_books.examples.unify_framework.org/xsd")

Listing 7.15: UNIFY connector for the bank account verification concern

7.2.3 Performance and Scalability of UNIFY

In this section, we measure the performance and scalability of the UNIFY framework.
We compare the execution time of two UNIFY workflow compositions — one contain-
ing after connectors, and one containing parallel connectors — with their equivalent
implementations in standard WS-BPEL for increasing amounts of connectors. Because
AO4BPEL uses a modified WS-BPEL engine, we do not include it in this comparison.
We also measure the weaving time of the UNIFY workflow compositions.

Our experiments are performed on an Apple MacBook Pro with a 2.66 GHz Intel Core
i7-620M processor and 8 GB of 1066 MHz DDR3 RAM. The operating system is Max OS
X (version 10.7.3), the installed Java VM is version 1.6.0 update 33, and the workflows
are executed using the Apache ODE WS-BPEL engine (version 1.3.5), deployed as a web
application on Apache Tomcat (version 7.0.28). The execution time is measured by a
separate Java application that invokes the workflows that are deployed on ODE. Each
workflow’s execution is measured 10 times, the median of which is included in our final
results. Before measuring is commenced, all workflows are invoked 10 times in order
to “warm-up” the Java VM. Results are analyzed using the R environment for statistical
computing.8

7.2.3.1 Scalability of Basic Connectors

In order to gauge the scalability of UNIFY’s basic connectors, we perform several experi-
ments in which an increasing number of after connectors (i.e., 1, 10, 20, 30, 40, 60, and 80
connectors) are used to insert an advice activity after the same activity in a base work-
flow. We then compare the execution time of the woven composition with a standard
WS-BPEL workflow in which all these activities have been combined manually. The ac-
tivities are all invocations of a single service that immediately returns a response. Thus,

8Cf. http://www.r-project.org/

188

http://www.r-project.org/

7.2 Validation

●
●

●
●

●

●

●

Number of after connectors (Unify)
or sequential activities (standard WS−BPEL)

E
xe

cu
tio

n
tim

e
(m

s)

0 10 20 30 40 50 60 70 80

0

250

500

750

1000

1250

1500

1750

2000

●

Legend

Unify
Standard WS−BPEL

(a) Comparing the execution time of workflows
created using an increasing number of UNIFY af-
ter connectors with the equivalent manually im-
plemented WS-BPEL workflows

Number of after connectors
W

ea
vi

ng
 ti

m
e

(m
s)

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

40

45

50

(b) Weaving time for compositions with an in-
creasing number of UNIFY after connectors

Figure 7.2: Measurement of runtime and weaving overhead introduced by UNIFY after
connectors

the amount of actual work to be performed by the workflow is the same in both the
UNIFY implementation and the standard WS-BPEL implementation, and differences in
measured time can thus be attributed to the time spent on the control flow of the exper-
iments’ workflows.

Figure 7.2(a) plots the measurements for our experiments regarding after connec-
tors. For both UNIFY and standard WS-BPEL, there exists a linear correlation between
the workflow execution time and the number of connectors or sequential activities. The
corresponding linear models are plotted in Figure 7.2(a) as dashed lines, and Table 7.2
lists the models’ values for R2, a, and b, where R2 is the squared correlation coefficient
and the linear model is defined as ax +b. The linear correlation between the number of
connectors/activities and the execution time shows that the weaving of our after connec-
tors is scalable, although UNIFY introduces an overhead (of a factor 2.58) in comparison
to standard WS-BPEL, which can be attributed to the fact that the advice code inserted
by a connector is always enclosed in a new WS-BPEL <scope> activity, whereas this ad-
ditional structuring of the workflow is not present in the manually specified standard
WS-BPEL workflows.

In addition to the runtime overhead introduced by UNIFY, we must also consider the
overhead introduced by the weaving process. Therefore, we also measured the time re-
quired to weave the compositions used in the above experiments. These measurements
are plotted in Figure 7.2(b). Once again, UNIFY is scalable, with R2 being 0.9669, and the
linear model being 0.48137x +6.35578. The weaving time overhead is very small (about

189

Chapter 7. Implementation and Validation of UNIFY

Standard
UNIFY WS-BPEL

R2 0.9974 0.9995
a 12.9011 4.99695
b 20.2612 54.39080

Table 7.2: Correlation results for our experiments regarding after connectors (cf. Fig-
ure 7.2(a))

half a millisecond per connector).

7.2.3.2 Scalability of Advanced Connectors

In order to gauge the scalability of UNIFY’s advanced connectors, we perform several
experiments in which an increasing number of parallel connectors (i.e., 1, 10, 20, 30,
40, 60, and 80 connectors) are used to insert an advice activity in parallel with the same
activity in a base workflow. We then compare the execution time of the woven composi-
tion with a standard WS-BPEL workflow in which all these activities have been specified
manually. The activities are all invocations of a single service that immediately returns
a response. Thus, the amount of actual work to be performed by the workflow is the
same in both the UNIFY implementation and the standard WS-BPEL implementation,
and differences in measured time can thus be attributed to the time spent on the control
flow of the experiments’ workflows.

Figure 7.3(a) plots the measurements for our experiments regarding parallel connec-
tors. For both UNIFY and standard WS-BPEL, there exists a linear correlation between
the workflow execution time and the number of connectors or parallel activities. The
corresponding linear models are plotted in Figure 7.3(a) as dashed lines, and Table 7.3
lists the models’ values for R2, a, and b. The linear correlation between the number
of connectors/activities and the execution time shows that the weaving of our paral-
lel connectors is scalable, although UNIFY introduces an overhead (of a factor 3.07) in
comparison to standard WS-BPEL, which again can be attributed to the fact that the
advice code inserted by a connector is always enclosed in a new WS-BPEL <scope> ac-
tivity, whereas this additional structuring of the workflow is not present in the manually
specified standard WS-BPEL workflows. Additionally, the advice code inserted by a par-
allel connector is always enclosed in a new WS-BPEL <flow> activity, i.e., a new parallel
control structure is inserted for every connector, thus obtaining a nesting of parallel con-
trol structures instead of only one control structure as in the manually specified standard
WS-BPEL workflows. This latter issue, which may explain the larger overhead of parallel
connectors compared to after connectors, can be improved by optimizing the weaving
process to generate only one parallel control structure per joinpoint activity.

Once again, we also consider the overhead introduced by the weaving process. These
measurements are plotted in Figure 7.3(b). UNIFY is scalable, with R2 being 0.9845, and
the linear model being 0.53859x + 5.67152. The weaving time overhead is very small
(about half a millisecond per connector).

190

7.2 Validation

●
●

●
●

●

●

●

Number of parallel connectors (Unify)
or parallel activities (standard WS−BPEL)

E
xe

cu
tio

n
tim

e
(m

s)

0 10 20 30 40 50 60 70 80

0

250

500

750

1000

1250

1500

1750

2000

●

Legend

Unify
Standard WS−BPEL

(a) Comparing the execution time of workflows
created using an increasing number of UNIFY

parallel connectors with the equivalent manually
implemented WS-BPEL workflows

Number of parallel connectors
W

ea
vi

ng
 ti

m
e

(m
s)

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

40

45

50

(b) Weaving time for compositions with an in-
creasing number of UNIFY parallel connectors

Figure 7.3: Measurement of runtime and weaving overhead introduced by UNIFY parallel
connectors

Standard
UNIFY WS-BPEL

R2 0.9898 0.9963
a 20.195 6.5875
b −21.015 25.8457

Table 7.3: Correlation results for our experiments regarding parallel connectors (cf. Fig-
ure 7.3(a))

7.2.4 Discussion

In the previous sections, we have provided an initial attempt at measuring the expres-
siveness and scalability of UNIFY. With regard to the expressiveness, we can conclude
that, when implementing a given concern, UNIFY requires less code than standard WS-
BPEL if the concern is crosscutting, i.e., the concern is to be applied at several locations
in the base workflow. This is due to the fact that such concerns give rise to code du-
plication in WS-BPEL. If the concern is not crosscutting, UNIFY may require slightly
more code because of the need to specify a separate concern and connector. In both of
these cases, however, UNIFY has the advantage of better separation of concerns, as the
concern is modularized in a separate module. Such decomposition is traditionally asso-
ciated with managerial benefits and improved product flexibility and comprehensibility
(Parnas, 1972). However, further experiments are required to verify whether these ben-

191

Chapter 7. Implementation and Validation of UNIFY

efits also apply to UNIFY. When comparing UNIFY to AO4BPEL, we can conclude that
although both approaches require the same amount of code to implement a given con-
cern, UNIFY concerns have the advantage of being more reusable, because of the strict
separation between the actual concern’s behavior and the connection logic. Both ap-
proaches, however, require the workflow developer to have some notion of the aspect-
oriented programming paradigm. Further experiments are required to gauge whether
this influences the usability of the approaches as experienced by workflow developers.
When comparing our CSLs with the above approaches, we can conclude that at least the
Access Control CSL requires much less code to implement a given concern, and that the
abstraction level of the CSL artifact is much closer to the domain of the concern. How-
ever, further experiments are required in order to validate the usability of CSLs in our
context.

With regard to the scalability, we can conclude that a composition consisting of af-
ter connectors scales with an increasing number of connectors. A linear runtime over-
head is induced by the UNIFY weaver, because it gives rise to workflows that contain
more structural information that a manually implemented workflow. The UNIFY weaver
also induces a weaving time overhead, which is also linear, and is much smaller than the
runtime overhead. The same observations were made with regard to our experiments in-
volving parallel connectors, with the difference that the linear runtime overhead is larger
than the one for after connectors. This difference could be mitigated by optimizing the
UNIFY weaver. Although these initial experiments have a positive outcome, further ex-
periments are required in order to verify whether compositions remain scalable when
other types of connectors or combinations of different types of connectors are used, or
when connectors are applied to multiple joinpoints. We also did not include CSLs in our
scalability experiments, because they give rise to regular UNIFY concerns and connec-
tors. However, the CSL preprocessors will induce an additional weaving time overhead.

Finally, all of our experiments were targeted at WS-BPEL. Further experiments should
include other workflow languages such as BPMN or YAWL. Also, our current implemen-
tation is a proof-of-concept in JAVA; this implementation can be fine-tuned in order to
achieve better results.

7.3 Summary

In this chapter, we first present the implementation of the UNIFY framework. At the
heart of the framework lies a JAVA implementation of the base language and connector
mechanism presented in Chapter 4. Instantiations towards WS-BPEL and BPMN allow
importing/exporting WS-BPEL and BPMN code to/from UNIFY. The concern-specific
layer built on top of UNIFY allow transforming CSL artifacts into UNIFY concerns and
connectors.

Second, we perform a validation of UNIFY with respect to expressivity, performance
and scalability. We discuss four example concerns and compare their implementations
in standard WS-BPEL (as representative of current workflow languages), AO4BPEL (as
representative of aspect-oriented workflow languages), and UNIFY (with or without CSLs).
In comparison to WS-BPEL, UNIFY requires less code for implementing crosscutting

192

7.3 Summary

concerns. For both crosscutting and non-crosscutting concerns, UNIFY improves sep-
aration of concerns. In comparison to AO4BPEL, UNIFY offers improved separation of
concerns and facilitates reuse of modularized code. We compare the execution time of
standard WS-BPEL workflows with UNIFY workflows, and measure the weaving time of
UNIFY workflows. In both cases, UNIFY scales linearly with the amount of connectors
applied to the workflow.

193

Chapter 8

Conclusions

8.1 Summary and Contributions

In this dissertation, we focus on improving separation of concerns in workflow languages
by developing an approach that allows specifying workflow concerns in isolation of each
other, and subsequently composing these concerns according to a coherent collection
of concern connection patterns.

We give an overview of the history of the workflow paradigm, describe the paradigm
itself as well as its terminology, present business process management and web ser-
vice orchestration as two important application domains, and present BPEL, BPMN
and YAWL as three well-accepted workflow languages before delving into the topic of
separation of concerns in workflows. We analyze the state of the art in modularization
mechanisms in workflow languages, and conclude that these mechanisms fail to ensure
separation of concerns, as they typically require all workflow concerns to be specified in
a single, monolithic workflow specification, which precludes effective maintenance and
reuse of workflow concerns. Although existing aspect-oriented approaches for work-
flows remedy this problem to some extent, the concern connection patterns offered by
these approaches do not recognize the prevalence of elementary control flow concepts
within the workflow paradigm, such as parallelism and choice. The existing approaches
apply the accepted ideas of aspect-oriented programming to workflows, but do not go
far beyond these ideas. We, on the other hand, propose and implement a comprehen-
sive vision on modularization of workflow concerns by reconsidering the elementary
modularization constructs of workflow languages. We thus refine our main goal into
five requirements: (1) the approach must facilitate the design, evolution, and reusability
of individual workflow concerns by allowing these concerns to be specified in isolation
of each other, (2) the approach must allow composing these concerns according to a
coherent set of workflow-specific concern connection patterns, (3) the approach must
support the definition of concerns using constructs that are close to the concerns’ do-
mains, (4) the approach must be underpinned with a solid semantical foundation, and
(5) the approach must be applicable to several existing workflow languages, and inde-
pendent of any specific workflow engine. We iteratively fulfill these requirements during

195

Chapter 8. Conclusions

the course of two main experiments.
Our first experiment in facilitating the effective modularization of workflow concerns

has taken place in the specific context of the WIT-CASE project, which studied and val-
idated innovative solutions for the creation, deployment and runtime execution of ser-
vices on top of a novel Service Delivery Platform, which is the service infrastructure op-
erated by a telecom service provider or network operator. Based on the characteristics
of the telecom Service Delivery Platform and the goals of the WIT-CASE project, our first
solution, which is named PADUS, only addresses the modularization of crosscutting con-
cerns in BPEL workflows by allowing these to be specified in isolation of each other, as
separate aspects. PADUS differentiates itself from existing aspect-oriented approaches
for workflows, most notably the ones that are applicable to BPEL, by reconsidering es-
sential language properties such as the joinpoint model, pointcut language, advice lan-
guage, and aspect deployment, and by supporting an entirely different implementation
strategy. In addition to the traditional aspect-oriented concern connection patterns of-
fered by existing approaches, PADUS offers the in advice type that is specifically useful
in a workflow context, as it allows introducing an advice activity as a parallel branch of
a base workflow, as an alternative branch of a base workflow, as a fault handler or com-
pensation handler of a base workflow, etc. All of these patterns can be applied to a rich
joinpoint model that consists of all BPEL activities (i.e., not only <invoke> activities)
using a high-level, logic pointcut language that allows selecting joinpoints in a way that
alleviates, among others, the pointcut fragility problem associated with existing pointcut
languages. Aspects are instantiated and applied to a workflow using an explicit deploy-
ment construct, which allows specifying precedence among aspects and thus prevents
possible aspect composition problems. Finally, PADUS is implemented as a source code
weaver which ensures full compatibility with the existing BPEL tool chain. Thus, PADUS

effectively addresses the scope we identified in relation to the goals of the WIT-CASE
project.

As a second experiment, we have developed a framework named UNIFY, which goes
beyond the scope of PADUS and fulfills all of the requirements enumerated above. At
the heart of UNIFY lies a base language meta-model that allows uniform modularization
of all workflow concerns. Every workflow concern, be it regular or crosscutting, is in-
dependently specified, using the same language construct, i.e., the CompositeActivity.
In this respect, UNIFY is related to symmetric aspect-oriented approaches such as HY-
PERJ (Tarr et al., 1999) and FUSEJ (Suvée et al., 2006). The base language meta-model
allows expressing arbitrary workflows, and can be instantiated towards several concrete
workflow languages. We introduce a coherent collection of seven external concern con-
nection patterns (i.e., the before, after, replace, around, parallel, alternative, and iterating
patterns) and two internal concern connection patterns (i.e., the synchronizing parallel
branches and switching alternative branches patterns) that recognize the specific char-
acteristics of workflows, including the workflow paradigm’s heavy focus on parallelism
and choice. We provide a connector mechanism that allows independently modularized
(regular and/or crosscutting) concerns to be connected according to the above concern
connection patterns. External connectors allow introducing behavior sequentially be-
fore, after, or around joinpoints, in parallel with joinpoints, as an alternative to join-
points, or in iterations with joinpoints, while the workflow in which these joinpoints are

196

8.1 Summary and Contributions

located is oblivious of the connectors that may be applied to it. Thus, these connec-
tors allow augmenting a concern with other concerns that were not considered when it
was designed, which facilitates independent evolution and reuse of these concerns. The
joinpoints are not limited to single activities, but can also be groups of workflow nodes
that form a single-entry single exit (SESE) fragment. This allows connecting concerns
to parts of the workflow that were not modularized as a separate activity, and thus re-
duces coupling between concerns. In addition to the above connectors that are mainly
influenced by aspect-oriented principles, the replace connector allows expressing that
an existing activity in one concern should be implemented by executing another con-
cern, in a way that minimizes dependencies between these concerns and thus facilitates
their independent evolution and reuse. Thus, this connector is related to traditional
component-based software development (CBSD). Next to these external connectors, in-
ternal connectors allow introducing additional control flow dependencies within parallel
or conditional control structures in order to allow synchronizing parallel branches or
switching alternative branches, which is useful in certain situations. By allowing every
concern connection pattern to be natively specified using a dedicated connector, UNIFY

enables specifying all of a concern’s connection logic as a connector, while the concern’s
behavior is modularized in a CompositeActivity, which can be reused in other contexts
by simply referencing it in a different connector.

Because UNIFY’s connector mechanism constitutes a novel workflow modularization
mechanism, we must ensure that the connector mechanism’s semantics be precisely de-
scribed, and that this semantics fits into the workflow community’s existing formal tra-
dition. Therefore, we provide a formalization of our approach that is compatible with ex-
isting research on this topic within the workflow community (van der Aalst, 1997, 1998a,
2000; van der Aalst et al., 2011), but also addresses the specific notion of connection pat-
terns introduced by UNIFY. In order to formalize the aspect-oriented workflow concepts
introduced by UNIFY, we employ two complementary formalisms. First, we augment
the static description of UNIFY’s workflows as provided by its base language and connec-
tor language meta-models with a static semantics for the weaving of UNIFY connectors
using the Graph Transformation formalism (Rozenberg, 1997; Ehrig et al., 2006). This fa-
cilitates static reasoning over the applicability and effects of connectors, and can be used
to implement a static weaver of UNIFY connectors. Second, we provide a semantics for
the operational properties of workflows by defining a translation to Petri nets (Petri and
Reisig, 2008), and subsequently extend this semantics to support the operational effects
of connectors. This allows reasoning on the dynamics of UNIFY workflow compositions,
and can be used to implement a dedicated workflow engine for UNIFY.

With PADUS and UNIFY, we have introduced two approaches that promote separa-
tion of concerns in workflow languages by offering an improved modularization mech-
anism. However, the abstractions offered by existing modularization approaches for
workflows — and by PADUS and UNIFY — typically remain at the same level as the base
workflow: concerns are implemented using the constructs of the base workflow lan-
guage, which may not be ideally suited to expressing the concern in question in an effi-
cient, elegant or natural way. Although aspect-oriented extensions improve separation
of concerns, they introduce an additional layer of complexity that must be bridged in
order to communicate about a workflow with domain experts. Inspired by the bene-

197

Chapter 8. Conclusions

fits of domain-specific languages in general software engineering (van Deursen et al.,
2000), we believe that a means of expressing workflow concerns using abstractions that
are closer to the concerns’ domains can facilitate expressing workflow concerns, and
can improve communication with domain experts. Therefore, we develop a method-
ology for specifying concern-specific languages (CSLs) on top of UNIFY, and exemplify
this methodology by developing two example CSLs, i.e., the Access Control and Parental
Control CSLs, respectively. For each of these languages, we first identify the relevant do-
main concepts and relations, which results in a UML class diagram. Next, we specify an
appropriate syntax that matches the concepts and relations identified in the previous
step. Finally, we provide a mechanism by means of which artifacts expressed using the
above syntax are translated into basic UNIFY artifacts by implementing a preprocessor
for CSL artifacts. We provide example artifacts for both CSLs, and compare these with
the corresponding UNIFY implementations in order to demonstrate the advantages of
using concern-specific languages for workflow development.

Finally, we have implemented a proof-of-concept of PADUS in PROLOG, and have
performed a qualitative validation of PADUS by showing how it can be used to add the
billing concern to a multi-party conference call process. We have implemented a proof-
of-concept of UNIFY in JAVA, and have instantiated the framework towards the WS-BPEL
and BPMN workflow languages. We have performed a qualitative validation of UNIFY

by comparing a number of concerns’ UNIFY implementations with the equivalent im-
plementations in standard WS-BPEL and AO4BPEL, respectively. We have performed
an initial quantitative validation of UNIFY’s performance and scalability by measuring
the execution time of a number of example UNIFY workflows and comparing these mea-
surements with measurements of the equivalent standard WS-BPEL workflows. In these
experiments, UNIFY scales linearly with the amount of connectors applied to the work-
flow.

In conclusion of this section, we further summarize the above by reiterating our con-
tributions:

1. We develop a novel, comprehensive approach for modularizing workflow con-
cerns — UNIFY — which allows modularizing all workflow concerns using a single
language construct, and is thus a uniform approach. At the heart of UNIFY lies a
base language meta-model that is compatible with a wide range of existing work-
flow languages.

2. We introduce a number of concern connection patterns for workflows, which go
beyond the classic aspect-oriented patterns by taking into account the specific
properties of the workflow paradigm. In UNIFY, these patterns take the form of
a connector mechanism that allows connecting independently specified workflow
concerns according to each of the concern connection patterns. This connector
mechanism is defined in terms of UNIFY’s base language meta-model.

3. We enable the definition of concern-specific languages (CSLs) on top of UNIFY,
which facilitate the definition of families of concerns using abstractions that are
close to the concerns’ domains. We provide a general methodology for CSL devel-
opment and exemplify the methodology using two example CSLs.

198

8.2 Discussion and Future Work

4. We provide a precise semantics for UNIFY. We enable the verification of static
properties and implementation of static weaving by defining a semantics for our
concern connection patterns based on the Graph Transformation formalism, and
enable the verification of operational properties and implementation of dynamic
weaving by defining a semantics based on Petri nets.

5. We provide a proof-of-concept implementation of UNIFY, which has been imple-
mented using JAVA, and which has been extended towards BPEL and BPMN. In
order to promote compatibility with existing tool chains, UNIFY does not impose
a modified workflow engine. We perform a qualitative validation of the expres-
siveness of UNIFY, and perform a quantitative validation of the performance and
scalability of UNIFY’s source code weaver.

8.2 Discussion and Future Work

Instantiating the UNIFY framework In our current implementation, we have instan-
tiated the UNIFY framework towards the core concepts of WS-BPEL and BPMN, the de
facto standards in executable workflows and graphical workflow modeling, respectively.
This existing implementation can be extended with complete support for all language
concepts of these languages, such as additional control flow patterns or workflow per-
spectives (e.g., exception handling). The existing implementation can also be extended
with instantiations towards other workflow languages, such as YAWL. We have opted not
to do this at this time, as we believe our current instantiations sufficiently illustrate the
benefits of the UNIFY approach. Nevertheless, these extensions, as well as their impact
on UNIFY’s meta-models, constitute an interesting avenue of future work.

An environment for defining, composing, verifying and executing modular workflows
Because neither PADUS nor UNIFY introduces incompatibilities with existing tool chains,
either can be applied without using new tools to define, verify or execute workflows or
workflow concerns. BPEL workflows or workflow concerns are currently specified us-
ing standard BPEL editors. The composition of workflow concerns is currently done in
a text editor by specifying PADUS deployments or UNIFY compositions. Workflows are
verified using standard tools, and are executed using standard engines. Nevertheless,
we believe a dedicated environment, in which workflow concerns can be defined, com-
posed, verified and executed according to the principles described in this dissertation
could be beneficial to the adoption of our approach.

Leveraging our Petri net semantics in a dynamic weaver Although this dissertation
provides a comprehensive semantics for the modularization concepts introduced by the
UNIFY framework, we currently do not exploit the full potential of this semantics in our
implementation. Because we were focusing on ensuring compatibility with existing tool
chains, UNIFY’s connector mechanism is currently implemented as a source code weaver
that is invoked by our current workflow engine before executing the woven workflow us-
ing our Petri net semantics for UNIFY’s base language. Moving away from the source code

199

Chapter 8. Conclusions

weaver, towards a workflow engine that weaves UNIFY concerns at runtime according to
our our Petri net semantics for UNIFY’s connector mechanism, enables supporting novel
features that cannot easily be implemented in our current implementation. Most no-
tably, these features include stateful aspects: workflow concerns that execute only when
a certain sequence of events within the base workflow has occured. One of our Master’s
students has extended PADUS with support for stateful aspects that are statically woven
(Braem and Gheysels, 2007), but we consider dynamic weaving of stateful UNIFY con-
cerns an interesting avenue for future research as well.

Tools for defining and using concern-specific languages In this dissertation, we have
provided a methodology for developing concern-specific languages (CSLs) on top of the
UNIFY framework, based on the different actors involved in workflow development and
on current practice in the related research domain of domain-specific languages. We
currently employ this methodology in combination with rudimentary tools such as a
graphics editor for specifying UML class diagrams and a text editor for editing XML doc-
uments. The parser and code generator for a new CSL are currently implemented in JAVA

from scratch. Although it is feasible to employ the above approach to develop new CSLs,
we envision a CSL development tool that reduces the effort of developing new CSLs. This
tool would include a UML editor to model the domain concepts and relations of a new
CSL. The tool would then support creating a CSL syntax in a user-friendly way based on
this UML model. By allowing to map CSL concepts to UNIFY workflow concepts, the tool
would support semi-automatically generating a preprocessor that translates CSL arti-
facts to UNIFY artifacts. Note that different concerns expressed using the same CSL will
typically have a similar structure. Therefore, one can conceive schemes that allow spec-
ifying concerns based on concern-specific templates. Such templates can be specified
after defining the CSL syntax, and the definition of such templates would thus be inte-
grated in the CSL development tool, while their use would be integrated in a CSL artifact
specification tool. This tool support for CSL development is subject to future work.

Further validating the impact of UNIFY on workflow development In this disserta-
tion, we have reported on an initial qualitative validation of UNIFY with respect to ex-
pressiveness based on our running example, and an initial quantitative validation of
UNIFY with respect to performance and scalability of the UNIFY source code weaver
based on synthetic example workflows. The scope of this validation can be extended
by considering larger workflows as input for a qualitative study. We intend to collaborate
with an industrial partner who can provide such a workflow, as large real-life workflows
are typically not publicly available. We will also validate our concern-specific languages
as part of this extended study. With regard to quantitative properties, further experi-
ments are required in order to verify whether compositions remain scalable when other
types of connectors are used than those in our current validation, when combinations
of multiple types of connectors are used, or when connectors are applied to multiple
joinpoints.

200

8.2 Discussion and Future Work

UNIFY in the cloud In our current implementation of UNIFY, we assume a workflow is
executed by a traditional workflow engine, which is typically part of an application server
hosted inside of an organization. However, within many organizations there is a trend
towards viewing Software as a Service, and adopting cloud computing (Armbrust et al.,
2010) as a means towards achieving this goal. Similar to other IT applications, moving
workflows into the cloud could offer benefits such as the possibility of scaling the max-
imum number of concurrently running workflow instances up or down depending on
the organization’s current needs. There is already some interest in deploying workflows
in the cloud,1 but separation of concerns remains a relevant issue in this context. There-
fore, it would be interesting to see how UNIFY could support the execution of workflows
within the cloud, and thus enable Workflow as a Service.

A vehicle for research on modularization of workflows Finally, we believe UNIFY’s fo-
cus on improving separation of concerns in workflows through novel modularization
mechanisms, its reliance on general meta-models that can be instantiated towards ex-
isting concrete workflow languages, and its solid formal foundations provide a good ba-
sis for a vehicle for further research on modularization of workflows. Therefore, we aim
to extend and expose the framework further in order to attract other researchers in the
domain of workflow modularization towards using UNIFY to conduct their own experi-
ments.

1For example, Amazon Simple Workflow Service (beta), cf. http://aws.amazon.com/swf/.

201

http://aws.amazon.com/swf/

Appendix A

UNIFY Connector Syntax

This appendix lists the concrete syntax of the UNIFY connector language in Backus–Naur
form.

<connector> ::= <external-connector>
| <internal-connector>

<external-connector> ::= <before-connector>
| <after-connector>
| <replace-connector>
| <around-connector>
| <parallel-connector>
| <alternative-connector>
| <iterating-connector>

<internal-connector> ::= <synchronizing-connector>
| <switching-connector>

<before-connector> ::= "CONNECT" <activity>
"BEFORE" <pointcut>
("" | "IF" <condition>)

<after-connector> ::= "CONNECT" <activity>
"AFTER" <pointcut>
("" | "IF" <condition>)

<replace-connector> ::= "CONNECT" <activity>
"INSTEAD OF" <pointcut>

<around-connector> ::= "CONNECT" <activity>
"AROUND" <pointcut>
("" | "IF" <condition>)
("" | "PROCEEDING AT" <pointcut>)

<parallel-connector> ::= "CONNECT" <activity>
"PARALLEL TO" <pointcut>
("" | "IF" <condition>)

<alternative-connector> ::= "CONNECT" <activity>
"ALTERNATIVE TO" <pointcut>

203

Chapter A. UNIFY Connector Syntax

"IF" <condition>

<iterating-connector> ::= "CONNECT" <activity>
"ITERATING OVER" <pointcut>
"UNTIL" <condition>

<synchronizing-connector> ::= "CONNECT" <activity>
"IN" <pointcut>
"AND-SPLITTING AT" <pointcut>
"SYNCHRONIZING AT" <pointcut>

<switching-connector> ::= "CONNECT" <activity>
"IN" <pointcut>
"SWITCHING AT" <pointcut>
"IF" <condition>
"XOR-JOINING AT" <pointcut>

204

Appendix B

Soundness Proof
for the After Connector

This appendix proves the soundness of UNIFY’s after connector. The proof is analogous
to the proof for the before connector presented in Section 5.4.4.1, and refers to the after
connector’s Petri net semantics as illustrated by Figure 5.20 (on page 130).

Option to Complete Let M be a marking in NWc such that [i]
σ−→ M (with σ= t1 . . . tn).

Then we must prove that there exists a σ′ in NWc such that M
σ′
−→ [o]. Let j (resp. k) be

the largest position in σ such that t j = ta (tk = tb)

1. If k ≥ j (i.e., the advice is inactive in M)

• Since either the advice has never been activated inσ (j = k = 0) or it has been
activated but has finished (k > j > 0), and since the advice respects proper
completion, we know that ∀p ∈ Pa : M(p) = 0

• By Property A, M
∣∣
Px

is reachable in NWx

• Since NWx respects option to complete, there exists a σ in NWx such that

M
∣∣
Px

σ−→ [o]

• Let θ be the sequence of transitions obtained from σ by replacing each oc-
currence of tb by taσa tb , where σa is a sequence of transitions of NWa such

that [p ′
s]

σa−→ [p ′
e] (such a σa always exists because NWa respects option to

complete and proper completion).

That is ifσ=σ1tbσ2tb . . . tbσk where allσi do not contain tb , then θ =σ1taσa

tbσ2taσa tb . . . taσa tbσk

• It is easy to show that θ is fireable in NWc (due to Properties A, B, C) and that
it reaches [o]

2. If k < j (i.e., the advice is active in M)

205

Chapter B. Soundness Proof for the After Connector

• By Property A, M
∣∣
Pa

is reachable in NWa

• Since NWa respects option to complete, there exists a sequence σ′ in NWa

such that M
∣∣
Pa

σ′
−→ [p ′

e]

• By Property B, σ′ is fireable in NWc, and

M
σ′
−→ M ′ implies

M ′(p ′

e) = 1

M ′(p) = 0 ∀p ∈ Pa \ {p ′
e }

M ′(p) = M(p) ∀p ∈ Px

• Thus, tb is fireable from M ′ and moves the token from p ′
e to pb

• From there, we continue as in (1)

Proper Completion Let M be a marking that is reachable in NWc such that M ≥ [o].

Then we must prove that M = [o]. Assume [i]
σ−→ M , with σ=σ1taθ1tbσ2taθ2tb . . .σn ta

θn tbσn+1, every θi giving rise to marking Mi , and every subsequent tb giving rise to
marking M ′

i

• ∀i : Mi ≥ p ′
e . Since NWa respects proper completion, Mi

∣∣
Pa

= p ′
e , thus ∀p ∈ Pa :

M ′
i (p) = 0, ∀p ∈ Px \ {pb} : M ′

i (p) = Mi (p), and M ′
i (pb) = 1

• By Property A, M ′
n

∣∣
Px

is reachable in NWx and σn+1 is fireable in NWx (because

∀p ∈ Pa : M ′
n(p) = 0), and M ′

n

∣∣
Px

σn+1−→ M
∣∣
Px

• By hypothesis, M ≥ [o], and thus M
∣∣
Px

≥ [o] because o ∈ Px

• By hypothesis, NWx respects proper completion such that M
∣∣
Px

= [o]

• Moreover, since ∀p ∈ Pa : M ′
n(p) = 0 and σn+1 does not contain ta , ∀p ∈ Pa :

M(p) = 0

• Therefore, M = [o]

No Dead Transitions Given a transition t ∈ Tc , we must find a sequence σ such that

[i]
σ−→ M

t−→ M ′

1. If t ∈ Tx

• Since NWx respects no dead transitions, we know that there exists a θ such

that [i]
θ−→

NWx
M

t−→ M ′

• From θ, we can build θ by replacing each occurrence of tb by taσtb where σ

is a sequence of the advice such that [p ′
s]

σ−→
NWa

[p ′
e], which exists because NWa

respects option to complete.

206

• By Properties B and C, θ is fireable in NWc and reaches M such that M
∣∣
Px

= M

2. If t ∈ Ta

• We know that tb is not dead in NWx because it respects no dead transitions.

• By the same reasoning as in case 1, we can build θ such that [i]
θ−→

NWc
M ′′ ta−→

M ′′′ with M ′′′(p ′
s) = 1

• Since t is not dead in NWa because it respects no dead transitions, there ex-

ists a τ such that [p ′
s]

τ−→
NWa

M
t−→ M ′

• By Properties B and C, θtaτ is fireable in NWc and reaches M such that M
t−→

M ′

Q.E.D.

207

Appendix C

Access Control and Parental Control CSL
Syntax

This appendix lists the concrete syntax of the Access Control and Parental Control CSLs,
which is defined using XML SCHEMA.

C.1 Access Control CSL Syntax

<?xml version="1.0" ?>
<xs:schema elementFormDefault="qualified"

targetNamespace="http://unify-framework.org/DSLs/AccessControl"
xmlns="http://unify-framework.org/DSLs/AccessControl"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="AccessControlConcern">
<xs:complexType>
<xs:sequence>
<xs:element name="DefaultPermission" type="DefaultPermissionType"

minOccurs="0" maxOccurs="1" />
<xs:element name="DefaultAction" type="DefaultActionType" minOccurs="0"

maxOccurs="1" />
<xs:element name="Role" type="RoleType" minOccurs="1"

maxOccurs="unbounded" />
<xs:element name="User" type="UserType" minOccurs="1"

maxOccurs="unbounded" />
<xs:element name="DefaultUser" type="DefaultUserType" minOccurs="0"

maxOccurs="1" />
<xs:element name="UsernameVariable" type="UsernameVariableType"

minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" />

</xs:complexType>
</xs:element>

<xs:complexType name="DefaultPermissionType">
<xs:attribute name="permission" use="required">
<xs:simpleType>

209

Chapter C. Access Control and Parental Control CSL Syntax

<xs:restriction base="xs:string">
<xs:pattern value="Allow|Deny"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

<xs:complexType name="DefaultActionType">
<xs:attribute name="action" type="ActionType" use="required" />

</xs:complexType>

<xs:simpleType name="ActionType">
<xs:restriction base="xs:string">
<xs:pattern value="RaiseError|Skip"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="RoleType">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Allow" type="AllowType" />
<xs:element name="Deny" type="DenyType" />

</xs:choice>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="AllowType">
<xs:attribute name="activity" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="DenyType">
<xs:attribute name="activity" type="xs:string" use="required" />
<xs:attribute name="action" type="ActionType" />

</xs:complexType>

<xs:complexType name="DefaultUserType">
<xs:sequence>
<xs:element name="UserRole" type="UserRoleType" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>

<xs:complexType name="UserRoleType">
<xs:attribute name="role" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="UserType">
<xs:sequence>
<xs:element name="UserRole" type="UserRoleType" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="password" type="xs:string" />

</xs:complexType>

<xs:complexType name="UsernameVariableType">
<xs:attribute name="expression" type="xs:string" use="required" />

210

C.2 Parental Control CSL Syntax

</xs:complexType>

</xs:schema>

C.2 Parental Control CSL Syntax

<?xml version="1.0" ?>
<xs:schema elementFormDefault="qualified"

targetNamespace="http://unify-framework.org/DSLs/ParentalControl"
xmlns="http://unify-framework.org/DSLs/ParentalControl"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ParentalControlConcern">
<xs:complexType>
<xs:sequence>
<xs:element name="Policies" type="PoliciesType" minOccurs="1"

maxOccurs="unbounded" />
<xs:element name="Child" type="ChildType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="AgeVariable" type="AgeVariableType" minOccurs="1"

maxOccurs="1" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" />

</xs:complexType>
</xs:element>

<xs:complexType name="PoliciesType">
<xs:sequence>
<xs:element name="Filter" type="FilterType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="Deny" type="DenyType" minOccurs="0" maxOccurs="unbounded"

/>
<xs:element name="ReferToParent" type="ReferToParentType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="Monitor" type="MonitorType" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="youngerThan" type="xs:integer" />

</xs:complexType>

<xs:complexType name="FilterType">
<xs:sequence>
<xs:element name="Exclude" type="ExcludeType" minOccurs="1"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="activity" type="xs:string" />
<xs:attribute name="resultVariableExpression" type="xs:string" />

</xs:complexType>

<xs:complexType name="ExcludeType">
<xs:attribute name="property" type="xs:string" />
<xs:attribute name="value" type="xs:string" />

</xs:complexType>

<xs:complexType name="DenyType">
<xs:attribute name="activity" type="xs:string" />

211

Chapter C. Access Control and Parental Control CSL Syntax

</xs:complexType>

<xs:complexType name="ReferToParentType">
<xs:attribute name="activity" type="xs:string" />
<xs:attribute name="usernameVariableExpression" type="xs:string" />

</xs:complexType>

<xs:complexType name="MonitorType">
<xs:attribute name="activity" type="xs:string" />
<xs:attribute name="usernameVariableExpression" type="xs:string" />

</xs:complexType>

<xs:complexType name="ChildType">
<xs:sequence>
<xs:element name="Parent" type="ParentType" minOccurs="1"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<xs:complexType name="ParentType">
<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<xs:complexType name="AgeVariableType">
<xs:attribute name="expression" type="xs:string" />

</xs:complexType>

</xs:schema>

212

Appendix D

Generated Parental Control Concerns

This appendix lists the WS-BPEL concerns generated by the Parental Control CSL code
generator for the example concerns of Section 6.5.

D.1 Generated Filtering Concern

<scope name="GeneratedFilteringActivity"
xmlns:bed="http://back_end.order_books.examples.unify_framework.org/xsd"
xmlns:fbe="http://back_end.filtering.examples.unify_framework.org/"
xmlns:fbed="http://back_end.filtering.examples.unify_framework.org/xsd">

<partnerLinks>
<partnerLink name="FilteringBackEndPartnerLink"

partnerLinkType="fbe:FilteringBackEndPartnerLinkType"
partnerRole="me" />

</partnerLinks>
<variables>
<variable messageType="fbe:filterRequest" name="backEndFilterInput" />
<variable messageType="fbe:filterResponse" name="backEndFilterOutput" />

</variables>
<sequence>
<if>
<condition>$user/bed:age<18</condition>
<sequence>
<assign name="PrepareFilteringInput">
<copy>
<from>
<literal>
<filter xmlns="http://back_end.filtering.examples

.unify_framework.org/xsd">
<data>
<books />

</data>
<criterion property="Rating" value="Mature" />
<criterion property="Genre" value="Horror" />

</filter>
</literal>

</from>

213

Chapter D. Generated Parental Control Concerns

<to part="parameters" variable="backEndFilterInput" />
</copy>
<copy>
<from variable="books" />
<to part="parameters" variable="backEndFilterInput">
<query>//fbed:filter/fbed:data/fbed:books</query>

</to>
</copy>

</assign>
<invoke inputVariable="backEndFilterInput"

name="InvokeFilteringService" operation="filter"
outputVariable="backEndFilterOutput"
partnerLink="FilteringBackEndPartnerLink"
portType="fbe:FilteringBackEndPortType" />

<assign name="ProcessFilteringOutput">
<copy>
<from part="parameters" variable="backEndFilterOutput">
<query>//fbed:filterResponse/fbed:return/fbed:books</query>

</from>
<to variable="books" />

</copy>
</assign>

</sequence>
<else>
<sequence>
<empty name="DoNothing" />

</sequence>
</else>

</if>
</sequence>

</scope>

D.2 Generated Deny Usage Concern

<scope name="GeneratedDenyUsageActivity">
<partnerLinks />
<variables />
<sequence>
<empty name="DoNothing" />

</sequence>
</scope>

D.3 Generated Refer Usage Concern

<scope name="GeneratedReferUsageActivity">
<partnerLinks />
<variables>
<variable name="UsernameBackup" type="xsd:string" />
<variable element="d:dictionary" name="ParentsDb"
xmlns:d="http://unify-framework.org/Util/Dictionary" />

</variables>
<sequence>
<assign name="InitializeParentsDatabase">
<copy>
<from>

214

D.4 Generated Monitoring Concern

<literal>
<dictionary xmlns="http://unify-framework.org/Util/Dictionary">
<key key="suzy">

<value value="george" />
</key>

</dictionary>
</literal>

</from>
<to variable="ParentsDb" />

</copy>
</assign>
<assign name="BackupUsername">
<copy>
<from>$user/bed:username</from>
<to variable="UsernameBackup" />

</copy>
</assign>
<assign name="ReplaceUsername">
<copy>
<from xmlns:d="http://unify-framework.org/Util/Dictionary">
$ParentsDb/d:key[@key=$UsernameBackup]/d:value/@value

</from>
<to>$user/bed:username</to>

</copy>
</assign>
<scope name="SpecifyPaymentInfo">
<!-- This is a copy of the joinpoint activity -->

</scope>
<assign name="RestoreUsername">
<copy>
<from>$UsernameBackup</from>
<to>$user/bed:username</to>

</copy>
</assign>

</sequence>
</scope>

D.4 Generated Monitoring Concern

<scope name="GeneratedMonitoringActivity"
xmlns:bed="http://back_end.order_books.examples.unify_framework.org/xsd"
xmlns:mbe="http://back_end.monitoring.examples.unify_framework.org/"
xmlns:mbed="http://back_end.monitoring.examples.unify_framework.org/xsd">

<partnerLinks>
<partnerLink name="MonitoringBackEndPartnerLink"

partnerLinkType="mbe:MonitoringBackEndPartnerLinkType"
partnerRole="me" />

</partnerLinks>
<variables>
<variable messageType="mbe:monitorRequest" name="backEndMonitorInput" />
<variable messageType="mbe:monitorResponse" name="backEndMonitorOutput" />

</variables>
<sequence>
<if>
<condition>$user/bed:age<18</condition>
<sequence>

215

Chapter D. Generated Parental Control Concerns

<assign name="PrepareMonitoringInfo">
<copy>
<from>
<literal>
<monitor xmlns="http://back_end.monitoring.examples

.unify_framework.org/xsd">
<message>Underage user is executing activity

OrderBooks.SelectBooks.Confirm</message>
<username />

</monitor>
</literal>

</from>
<to part="parameters" variable="backEndMonitorInput" />

</copy>
<copy>
<from>$user/bed:username/text()</from>
<to part="parameters" variable="backEndMonitorInput">
<query>//mbed:monitor/mbed:username/text()</query>

</to>
</copy>

</assign>
<invoke inputVariable="backEndMonitorInput"

name="InvokeMonitoringService" operation="monitor"
outputVariable="backEndMonitorOutput"
partnerLink="MonitoringBackEndPartnerLink"
portType="mbe:MonitoringBackEndPortType" />

</sequence>
<else>
<sequence>
<empty name="DoNothing" />

</sequence>
</else>

</if>
</sequence>

</scope>

216

Bibliography

Active Endpoints. ActiveBPEL, version 2.1, June 2006. URL http://www.activebpel.
org/. Cited on pages 19 and 49.

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Con-
cepts, Architectures and Applications. Springer, Heidelberg, Germany, 2004. ISBN 978-
3-540-44008-6. Cited on page 16.

Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic,
and Sanjiva Weerawarana. Business Process Execution Language for Web Services,
version 1.1, May 2003. URL http://www.ibm.com/developerworks/library/
specification/ws-bpel/. Cited on pages 1 and 17.

Apache Software Foundation. Apache log4j, version 1.2, May 2002. URL http://http:
//logging.apache.org/log4j/. Cited on page 25.

Apache Software Foundation. Orchestration Director Engine (ODE), version 1.3.3, Au-
gust 2009. URL http://ode.apache.org/. Cited on pages 19 and 49.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Communications of the ACM, 53(4):50–58, April 2010. Cited
on page 201.

Ali Arsanjani, Brent Hailpern, Joanne Martin, and Peri Tarr. Web services: Promises and
compromises. ACM Queue, 1(1):48–58, March 2003. Cited on pages 2, 31, and 35.

Uwe Aßmann. Invasive Software Composition. Springer, Heidelberg, Germany, 2003.
Cited on pages 97 and 98.

Jon Bentley. Programming pearls: Little languages. Communications of the ACM, 29(8):
711–721, August 1986. Cited on page 152.

Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using com-
position filters. Communications of the ACM, 44(10):51–57, October 2001. Cited on
page 98.

217

http://www.activebpel.org/
http://www.activebpel.org/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://http://logging.apache.org/log4j/
http://http://logging.apache.org/log4j/
http://ode.apache.org/

Bibliography

Eric Bodden. Concern-specific languages and their implementation with abc. In Pro-
ceedings of the 3rd International Workshop on Software Engineering Properties of Lan-
guages and Aspect Technologies (SPLAT 2005), Chicago, IL, USA, March 2005. Cited on
page 153.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol
(SOAP), version 1.1. W3C Note 08 May 2000, World Wide Web Consortium, May 2000.
URL http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. Cited on page 17.

Mathieu Braem and Dimitri Gheysels. History-based aspect weaving for WS-BPEL using
Padus. In Proceedings of the 5th IEEE European Conference on Web Services (ECOWS
2007), pages 159–167, Halle (Saale), Germany, November 2007. Cited on pages 81
and 200.

Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten, and Vi-
viane Jonckers. Concern-specific languages in a visual web service creation environ-
ment. In Proceedings of the 2nd International Workshop on Aspect-based and Model-
based Separation of Concerns in Software Systems (ABMB 2006), volume 163(2) of Elec-
tronic Notes in Theoretical Computer Science, pages 3–17, Bilbao, Spain, July 2006a.
Elsevier. Cited on pages 7, 50, 153, and 164.

Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten, and Vi-
viane Jonckers. Guiding service composition in a visual service creation environment.
In Proceedings of the 4th IEEE European Conference on Web Services (ECOWS 2006),
pages 13–22, Zürich, Switzerland, December 2006b. IEEE Computer Society. Cited on
pages 7 and 50.

Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der
Straeten, Eddy Truyen, Wouter Joosen, and Viviane Jonckers. Isolating process-level
concerns using Padus. In Proceedings of the 4th International Conference on Business
Process Management (BPM 2006), volume 4102 of Lecture Notes in Computer Science,
pages 113–128, Vienna, Austria, September 2006c. Springer. Cited on pages 3, 5, 7,
153, and 164.

Johan Brichau and Michael Haupt. Survey of aspect-oriented languages and execution
models. AOSD-Europe Deliverable D12: AOSD-Europe-VUB-01, AOSD-Europe Net-
work of Excellence, May 2005. URL http://www.aosd-europe.net/deliverables/
d12.pdf. Cited on pages 27, 38, and 79.

R. Campbell and A. Habermann. The specification of process synchronisation by path
expressions. In Proceedings of an International Symposium on Operating Systems,
pages 89–102, April 1974. Cited on page 53.

Anis Charfi and Mira Mezini. Aspect-oriented web service composition with AO4BPEL.
In Proceedings of the 2nd European Conference on Web Services (ECOWS 2004), volume
3250 of Lecture Notes in Computer Science, pages 168–182, Erfurt, Germany, Septem-
ber 2004. Springer. Cited on pages 2, 31, 32, 35, and 37.

218

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.aosd-europe.net/deliverables/d12.pdf
http://www.aosd-europe.net/deliverables/d12.pdf

Bibliography

Anis Charfi and Mira Mezini. AO4BPEL: An aspect-oriented extension to BPEL. World
Wide Web, 10(3):309–344, September 2007. Cited on page 32.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL), version 1.1. W3C Note 15 March 2001,
World Wide Web Consortium, March 2001. URL http://www.w3.org/TR/2001/
NOTE-wsdl-20010315. Cited on page 17.

María Agustina Cibrán. Connecting High-Level Business Rules with Object-Oriented Ap-
plications. PhD thesis, Vrije Universiteit Brussel, System and Software Engineering
Lab, Brussels, Belgium, June 2007. Cited on page 166.

Carine Courbis and Anthony Finkelstein. Towards an aspect weaving BPEL engine. In
Proceedings of the 3rd International Workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACP4IS 2004), Lancaster, United Kingdom, March 2004.
Cited on pages 2, 31, 32, and 35.

Carine Courbis and Anthony Finkelstein. Towards aspect weaving applications. In Pro-
ceedings of the 27th International Conference on Software Engineering (ICSE 2005),
pages 69–77, St. Louis, MO, USA, May 2005a. ACM Press. Cited on pages 2, 32, 33,
and 37.

Carine Courbis and Anthony Finkelstein. Weaving aspects into web service orchestra-
tions. In Proceedings of the 3rd IEEE International Conference on Web Services (ICWS
2005), pages 69–77, Orlando, FL, USA, July 2005b. IEEE Computer Society. Cited on
pages 32 and 33.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, Boston, MA, USA, 2000. ISBN 978-0-201-30977-5.
Cited on page 153.

Thomas H. Davenport and James E. Short. The new industrial engineering: Information
technology and business process redesign. Sloan Management Review, 31(4):11–27,
Summer 1990. Cited on page 10.

Bruno De Fraine. Language Facilities for the Deployment of Reusable Aspects. PhD the-
sis, Vrije Universiteit Brussel, Software Languages Lab, Brussels, Belgium, June 2009.
Cited on page 29.

Kris De Volder. Aspect-oriented logic meta programming. In Proceedings of the Aspect
Oriented Programming Workshop at ECOOP 1998, Brussels, Belgium, June 1998. Cited
on page 39.

Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni, editors. Prolog: The Standard.
Springer, Heidelberg, Germany, 1996. ISBN 978-3-540-59304-1. Cited on page 40.

Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of busi-
ness process models in bpmn. Information and Software Technology, 50(12):1281–
1294, November 2008. Cited on page 102.

219

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Bibliography

Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15(10):859–
866, October 1972. Cited on page 97.

Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on Comput-
ing: A Personal Perspective. Springer, New York, NY, USA, 1982. ISBN 0-387-90652-5.
Originally published as EWD447, August 1974. Cited on pages 1, 23, and 58.

Ming Dong and F. Frank Chen. Petri net-based workflow modelling and analysis of the
integrated manufacturing business processes. The International Journal of Advanced
Manufacturing Technology, 26(9):1163–1172, 2005. Cited on page 31.

Eclipse Foundation. Eclipse BPEL Designer, version 0.5.0, June 2011. URL http://www.
eclipse.org/bpel/. Cited on page 18.

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory for typed at-
tributed graph transformation. In Proceedings of the 2nd International Conference on
Graph Transformation (ICGT 2004), volume 3256 of Lecture Notes in Computer Science,
pages 161–177. Springer, 2004. Cited on page 112.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation. Monographs in Theoretical Computer Science.
Springer, Heidelberg, Germany, 2006. ISBN 978-3-540-31187-4. Cited on pages 5, 102,
and 197.

Johan Fabry. Modularizing Advanced Transaction Management: Tackling Tangled Aspect
Code. PhD thesis, Vrije Universiteit Brussel, Programming Technology Lab, Brussels,
Belgium, 2005. Cited on page 153.

David C. Fallside and Priscilla Walmsley. XML Schema part 0: Primer, second edition.
W3C Recommendation 28 October 2004, World Wide Web Consortium, October 2004.
URL http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/. Cited on page
17.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantifica-
tion and obliviousness. Technical Report 01.12, Research Institute for Advanced Com-
puter Science, May 2001. Cited on page 27.

Alexander Förster, Gregor Engels, Tim Schattkowsky, and Ragnhild Van Der Straeten.
Verification of business process quality constraints based on visual process patterns.
In Proceedings of the 1st IEEE/IFIP International Symposium on Theoretical Aspects of
Software Engineering (TASE 2007), pages 197–208, Shanghai, China, June 2007. IEEE
Computer Society. Cited on page 81.

Dimitri Gheysels. Implementation of stateful aspects in Padus. Master’s thesis, Vrije
Universiteit Brussel, System and Software Engineering Lab, June 2007. URL http:
//soft.vub.ac.be/~njonchee/theses/thesis_dimitri.pdf. Cited on page 81.

Frank B. Gilbreth. Process charts: First steps in finding the one best way to do work.
ASME Transactions, 43, 1922. Cited on page 9.

220

http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://soft.vub.ac.be/~njonchee/theses/thesis_dimitri.pdf
http://soft.vub.ac.be/~njonchee/theses/thesis_dimitri.pdf

Bibliography

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley, Indianapolis, IN,
USA, 2004. ISBN 978-0-471-20284-4. Cited on page 153.

Sebastian Günther. Development and Utilization of Internal Domain-Specific Languages.
PhD thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2010.
Cited on page 153.

Sebastian Günther, Thomas Cleenewerck, and Viviane Jonckers. Software variability:
The design space of configuration languages. In Proceedings of the 6th Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems, pages 157–
164, Leipzig, Germany, January 2012. ACM Press. Cited on page 154.

Hugo Haas and Allen Brown. Web services glossary. W3C Working Group Note 11 Febru-
ary 2004, World Wide Web Consortium, February 2004. URL http://www.w3.org/
TR/2004/NOTE-ws-gloss-20040211/. Cited on page 16.

Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. A model for composable compo-
sition operators: Expressing object and aspect compositions with first-class operators.
In Proceedings of the 9th International Conference on Aspect-Oriented Software De-
velopment (AOSD 2010), pages 145–156, Saint-Malo, France, March 2010. ACM Press.
Cited on page 98.

Jan Heering. Application software, domain-specific languages, and language design as-
sistants. Technical Report SEN-R0010, Centrum Wiskunde & Informatica, Amsterdam,
Netherlands, May 2000. URL http://oai.cwi.nl/oai/asset/4444/04444D.pdf.
Cited on page 152.

Erik Hilsdale, Jim Hugunin, Mik Kersten, Gregor Kiczales, and Jeffrey Palm. Aspect-
oriented programming in Java with AspectJ. Presented at the O’Reilly Conference on
Enterprise Java, March 2001. Cited on pages xv and 26.

Jendrik Johannes. Component-Based Model-Driven Software Development. PhD thesis,
Technische Universität Dresden, December 2010. Cited on page 98.

Niels Joncheere. The Service Creation Environment: A telecom case study. In Proceedings
of the 5th International Workshop on Software Engineering Properties of Languages
and Aspect Technologies (SPLAT 2007), Vancouver, BC, Canada, March 2007. Cited
on page 7.

Niels Joncheere and Ragnhild Van Der Straeten. Semantics of the Unify composition
mechanism. Technical Report SOFT-TR-2011.04.15, Vrije Universiteit Brussel, Soft-
ware Languages Lab, Brussels, Belgium, April 2011a. URL http://soft.vub.ac.be/
~njonchee/publications/TR20110415.pdf. Cited on page 7.

Niels Joncheere and Ragnhild Van Der Straeten. Uniform modularization of workflow
concerns using Unify. In Proceedings of the 4th International Conference on Software
Language Engineering (SLE 2011), volume 6940 of Lecture Notes in Computer Science,
pages 77–96, Braga, Portugal, July 2011b. Springer. Cited on pages 3, 5, and 7.

221

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://oai.cwi.nl/oai/asset/4444/04444D.pdf
http://soft.vub.ac.be/~njonchee/publications/TR20110415.pdf
http://soft.vub.ac.be/~njonchee/publications/TR20110415.pdf

Bibliography

Niels Joncheere, Wim Vanderperren, Mathieu Braem, and Ragnhild Van Der Straeten.
Supporting user-friendly composition of web services in the Eclipse platform. In Pro-
ceedings of the Eclipse Technology Exchange Workshop at ECOOP 2006, Nantes, France,
July 2006. Cited on page 7.

Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten, and Viviane Jonckers. A
framework for advanced modularization and data flow in workflow systems. In Pro-
ceedings of the 6th International Conference on Service-Oriented Computing (ICSOC
2008), volume 5364 of Lecture Notes in Computer Science, pages 592–598, Sydney, NSW,
Australia, December 2008. Springer. Cited on pages 5 and 7.

Niels Joncheere et al. The Padus weaver, build 2009.09.15, September 2009. URL http:
//www.padus.org/. Cited on page 49.

Niels Joncheere et al. The Unify framework, 2012. URL http://www.
unify-framework.org/. Cited on page 167.

Diane Jordan, John Evdemon, et al. Web Services Business Process Execution Language,
version 2.0. OASIS Standard, OASIS, April 2007. URL http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. Cited on pages 1 and 17.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Proceedings of the
11th European Conference on Object-Oriented Programming (ECOOP 97), volume 1241
of Lecture Notes in Computer Science, pages 220–242, Jyväskylä, Finland, June 1997.
Springer. Cited on pages 2, 24, 25, 59, and 79.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP 2001), volume 2072 of Lecture Notes in Com-
puter Science, pages 327–354, Budapest, Hungary, June 2001. Springer. Cited on pages
27, 41, and 82.

Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler. On structured
workflow modelling. In Proceedings of the 12th International Conference on Advanced
Information Systems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Com-
puter Science, pages 431–445, Stockholm, Sweden, June 2000. Springer. Cited on pages
15 and 62.

Marcello La Rosa, Arthur H. M. ter Hofstede, Petia Wohed, Hajo A. Reijers, Jan Mendling,
and Wil M. P. van der Aalst. Managing process model complexity via concrete syntax
modifications. IEEE Transactions on Industrial Informatics, 7(2):255–265, May 2011a.
Cited on pages 11 and 68.

Marcello La Rosa, Petia Wohed, Jan Mendling, Arthur H. M. ter Hofstede, Hajo A. Reijers,
and Wil M. P. van der Aalst. Managing process model complexity via abstract syntax
modifications. IEEE Transactions on Industrial Informatics, 7(4):614–629, November
2011b. Cited on pages 2, 11, and 68.

222

http://www.padus.org/
http://www.padus.org/
http://www.unify-framework.org/
http://www.unify-framework.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Bibliography

Frank Leymann and Dieter Roller. Workflow-based applications. IBM Systems Journal,
36(1):102–123, 1997. Cited on page 31.

Karl Lieberherr, David H. Lorenz, and Mira Mezini. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, Northeastern University, College of Com-
puter Science, Boston, MA, USA, March 1999. URL http://www.cs.virginia.edu/
~lorenz/papers/reports/NU-CCS-99-01.html. Cited on page 83.

Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0 and its com-
piler BPEL2oWFN. In Proceedings of the 4th International Workshop on Web Services
and Formal Methods (WS-FM 2007), volume 4937 of Lecture Notes in Computer Sci-
ence, pages 77–91, Brisbane, QLD, Australia, September 2007. Springer. Cited on pages
4, 60, and 102.

Cristina Videira Lopes. D: A Language Framework for Distributed Programming. PhD
thesis, Northeastern University, College of Computer Science, Boston, MA, USA,
November 1997. Cited on page 153.

Cristina Videira Lopes and Gregor Kiczales. D: A language framework for distributed
programming. Technical Report SPL97-010, Xerox Palo Alto Research Center, Palo
Alto, CA, USA, February 1997. URL http://www2.parc.com/csl/groups/sda/
publications/papers/PARC-AOP-D97/for-web.pdf. Cited on page 153.

Christophe Loridan and Jordi Anguela Rosell. BONITA: Workflow patterns support.
Technical report, Bull R&D, May 2006. URL http://www.workflowpatterns.com/
vendors/documentation/bonita_patterns.pdf. Cited on page 12.

D. Luckham, J. Kenney, L. Augustin, D. Vera, D. Bryan, and W. Mann. Specification and
analysis of system architecture using Rapide. IEEE Transactions on Software Engineer-
ing, 21, 1995. Cited on page 53.

Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and
the Kepler system. Concurrency and Computation: Practice and Experience, 18(10):
1039–1065, August 2006. Cited on page 15.

C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown, and Rebekah Metz.
Reference model for service oriented architecture, version 1.0. OASIS Standard, OASIS,
October 2006. URL http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.
Cited on page 16.

Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in aspect-oriented
mechanisms. In Proceedings of the 17th European Conference on Object-Oriented Pro-
gramming (ECOOP 2003), volume 2743 of Lecture Notes in Computer Science, pages
2–28, Darmstadt, Germany, July 2003. Springer. Cited on page 25.

Jan Mendling, Gustaf Neumann, and Wil M. P. van der Aalst. Understanding the occur-
rence of errors in process models based on metrics. In Proceedings of the 15th Interna-
tional Conference on Cooperative Information Systems (CoopIS 2007), pages 113–130,
Vilamoura, Portugal, 2007. Springer. Cited on page 101.

223

http://www.cs.virginia.edu/~lorenz/papers/reports/NU-CCS-99-01.html
http://www.cs.virginia.edu/~lorenz/papers/reports/NU-CCS-99-01.html
http://www2.parc.com/csl/groups/sda/publications/papers/PARC-AOP-D97/for-web.pdf
http://www2.parc.com/csl/groups/sda/publications/papers/PARC-AOP-D97/for-web.pdf
http://www.workflowpatterns.com/vendors/documentation/bonita_patterns.pdf
http://www.workflowpatterns.com/vendors/documentation/bonita_patterns.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

Bibliography

Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and resolving
model inconsistencies using transformation dependency analysis. In Proceedings of
the 9th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2006), volume 4199 of Lecture Notes in Computer Science, pages 200–214.
Springer, 2006. Cited on pages 112 and 113.

Nataliya Mulyar. Pattern-based evaluation of Oracle-BPEL (v.10.1.2). BPM Center Re-
port BPM-05-24, BPM Center, 2005. URL http://www.workflowpatterns.com/
vendors/documentation/Oracle_BPEL_v.10.1.2.pdf. Cited on page 12.

James M. Neighbors. Software Construction using Components. PhD thesis, University
of California, Berkeley, Berkeley, CA, USA, 1980. Cited on page 152.

Noesis Solutions. OPTIMUS, version 5.2, 2006. URL http://www.noesissolutions.
com/. Cited on page 15.

Object Management Group. Object Constraint Language, version 2.0, May 2006. URL
http://www.omg.org/technology/documents/formal/ocl.htm. Cited on page
62.

Object Management Group. Unified Modeling Language, superstructure, version 2.1.2,
November 2007. URL http://www.omg.org/spec/UML/2.1.2/Superstructure/
PDF/. Cited on page 62.

Object Management Group. Business Process Model and Notation, version 2.0, January
2011. URL http://www.omg.org/spec/BPMN/2.0/. Cited on page 20.

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Green-
wood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna:
A tool for the composition and enactment of bioinformatics workflows. Bioinformat-
ics, 20(17):3045–3054, June 2004. Cited on page 15.

Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon Dumas, and
Arthur H. M. ter Hofstede. Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming, 67(2-3):162–198, July 2007. Cited on page 102.

David L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, December 1972. Cited on pages 1, 23, 58,
and 191.

Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477, 2008. Cited on
pages 6, 101, and 197.

Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of confluence. In
Term Graph Rewriting, pages 201–213. Wiley, 1993. Cited on page 112.

Hajo A. Reijers and Jan Mendling. Modularity in process models: Review and effects.
In Proceedings of the 6th International Conference on Business Process Management
(BPM 2008), volume 5240 of Lecture Notes in Computer Science, pages 20–35, Milan,
Italy, September 2008. Springer. Cited on page 31.

224

http://www.workflowpatterns.com/vendors/documentation/Oracle_BPEL_v.10.1.2.pdf
http://www.workflowpatterns.com/vendors/documentation/Oracle_BPEL_v.10.1.2.pdf
http://www.noesissolutions.com/
http://www.noesissolutions.com/
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/BPMN/2.0/

Bibliography

Ralf H. Reussner. Automatic component protocol adaptation with the CoCoNut tool
suite. Future Generation Computer Systems, 19(5):627–639, 2003. Cited on page 53.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, River Edge, NJ, USA, 1997.
ISBN 978-981-02-2884-2. Cited on pages 5, 102, 103, and 197.

Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Workflow data patterns. QUT Technical Report FIT-TR-2004-01,
Queensland University of Technology, Brisbane, QLD, Australia, 2004a. URL
http://www.workflowpatterns.com/documentation/documents/data_
patterns%20BETA%20TR.pdf. Cited on pages 1, 11, 65, and 67.

Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der Aalst.
Workflow resource patterns. BETA Working Paper 127, Eindhoven University of Tech-
nology, Eindhoven, Netherlands, 2004b. URL http://www.workflowpatterns.com/
documentation/documents/Resource%20Patterns%20BETA%20TR.pdf. Cited on
pages 1, 11, and 68.

Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and Nataliya Mulyar.
Workflow control-flow patterns: A revised view. BPM Center Report BPM-06-22,
BPM Center, 2006a. URL http://www.workflowpatterns.com/documentation/
documents/BPM-06-22.pdf. Cited on pages xviii, 1, 10, 11, 12, 22, 63, 65, 67, and 170.

Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Exception handling
patterns in process-aware information systems. BPM Center Report BPM-06-04, BPM
Center, 2006b. URL http://workflowpatterns.com/documentation/documents/
BPM-06-04.pdf. Cited on pages 1, 11, 68, and 170.

Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for role-based ac-
cess control: Towards a unified standard. In Proceedings of the 5th ACM International
Workshop on Role-based Access Control (RBAC 2000), pages 47–63, Berlin, Germany,
July 2000. Cited on page 155.

Alec Sharp and Patrick McDermott. Workflow Modeling: Tools for Process Improvement
and Application Development. Artech House, Norwood, MA, USA, 2001. ISBN 978-1-
58053-021-7. Cited on page 31.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, Upper Saddle River, NJ, USA, 1996. ISBN 978-0-13-182957-2.
Cited on pages 4, 29, and 83.

Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan
and T. Cadell, London, United Kingdom, 1776. Cited on page 9.

Davy Suvée and Wim Vanderperren. JAsCo: An aspect-oriented approach tailored for
component based software development. In Proceedings of the 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD 2003), pages 21–29, Boston,
MA, USA, March 2003. ACM Press. Cited on pages 4, 29, and 83.

225

http://www.workflowpatterns.com/documentation/documents/data_patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/data_patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/Resource%20Patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/Resource%20Patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://workflowpatterns.com/documentation/documents/BPM-06-04.pdf
http://workflowpatterns.com/documentation/documents/BPM-06-04.pdf

Bibliography

Davy Suvée, Bruno De Fraine, and Wim Vanderperren. A symmetric and unified ap-
proach towards combining aspect-oriented and component-based software develop-
ment. In Proceedings of the 9th International SIGSOFT Symposium on Component-
Based Software Engineering (CBSE 2006), volume 4063 of Lecture Notes in Computer
Science, pages 114–122, Västerås, Sweden, June 2006. Springer. Cited on pages 3, 5,
82, and 196.

Gabriele Taentzer et al. The Attributed Graph Grammar system: A development envi-
ronment for attributed graph transformation systems, version 1.6.4, 2009. Cited on
pages 103 and 113.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of sep-
aration: Multi-dimensional separation of concerns. In Proceedings of the 21st Inter-
national Conference on Software Engineering (ICSE 1999), pages 107–119, Los Angeles,
CA, USA, May 1999. IEEE Computer Society. Cited on pages 2, 3, 5, 24, 82, and 196.

Scott Thibault, Renaud Marlet, and Charles Consel. A domain-specific language for
video device drivers: From design to implementation. In Proceedings of the 1st Inter-
national Conference on Domain-Specific Languages (DSL 1997), pages 11–26, October
1997. Cited on page 152.

Ivana Trickovic. Modularization and reuse in WS-BPEL. Sap community contribution,
SAP AG, October 2005. URL http://scn.sap.com/docs/DOC-1297. Cited on page
1.

J. van den Bos and C. Laffra. PROCOL: A concurrent object-oriented language with pro-
tocols delegation and constraints. Acta Informatica, 28:511–538, June 1991. Cited on
page 53.

Wil M. P. van der Aalst. Verification of workflow nets. In Proceedings of the 18th In-
ternational Conference on the Application and Theory of Petri Nets (ICATPN 1997), vol-
ume 1248 of Lecture Notes in Computer Science, pages 407–426, Toulouse, France, June
1997. Springer. Cited on pages 5, 101, and 197.

Wil M. P. van der Aalst. The application of Petri nets to workflow management. Journal
of Circuits, Systems, and Computers, 8(1):21–66, February 1998a. Cited on pages 5, 22,
101, 117, and 197.

Wil M. P. van der Aalst. Three good reasons for using a Petri-net-based workflow man-
agement system. In Toshiro Wakayama, Srikanth Kannapan, Chan Meng Khoong,
Shamkant Navathe, and JoAnne Yates, editors, Information and Process Integration in
Enterprises, volume 428 of The Kluwer International Series in Engineering and Com-
puter Science, chapter 10, pages 161–182. Kluwer Academic Publishers, Boston, MA,
USA, 1998b. ISBN 978-1-4615-5499-8. Cited on pages xvi, 22, 101, 117, 118, 124,
and 149.

Wil M. P. van der Aalst. Workflow verification: Finding control-flow errors using petri-
net-based techniques. In Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis,

226

http://scn.sap.com/docs/DOC-1297

Bibliography

editors, Business Process Management: Models, Techniques, and Empirical Studies, vol-
ume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer, 2000. ISBN
3-540-67454-3. Cited on pages 5, 101, 119, 138, and 197.

Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Information Systems, 30(4):245–275, June 2005. Cited on pages xv, 1, 4, 11, 22,
24, 60, 102, 117, and 170.

Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. Cooperative Information Systems. MIT Press, Cambridge, MA, USA,
2002. ISBN 978-0-262-01189-1. Cited on pages 1 and 31.

Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M. ter Hofstede, and Bartek Kie-
puszewski. Advanced workflow patterns. In Proceedings of the 7th International Con-
ference on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture
Notes in Computer Science, pages 18–29, Eilat, Israel, September 2000. Springer. Cited
on page 1.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. Business process
management: A survey. In Proceedings of the 1st International Conference on Business
Process Management (BPM 2003), number 2678 in Lecture Notes in Computer Science,
pages 1–12, Eindhoven, Netherlands, June 2003. Springer. Cited on pages xv, 1, 15,
and 16.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, et al. The Workflow Patterns initiative,
2012a. URL http://www.workflowpatterns.com/. Cited on page 11.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, et al. The Workflow Patterns initiative:
Evaluations, 2012b. URL http://www.workflowpatterns.com/evaluations/.
Cited on page 12.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, et al. The Workflow Patterns initiative:
Vendors, 2012c. URL http://www.workflowpatterns.com/vendors/. Cited on
page 12.

Wil M.P. van der Aalst, Kees M. van Hee, Arthur H.M. ter Hofstede, N. Sidorova, Eric Ver-
beek, Marc Voorhoeve, and Moe Thandar Wynn. Soundness of workflow nets: Classi-
fication, decidability, and analysis. Formal Aspects of Computing, 23(3):333–363, May
2011. ISSN 0934-5043. Cited on pages 5, 101, 138, 148, and 197.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000. Cited on pages 3, 4, 61,
152, 165, and 198.

Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more focused control-
flow analysis for business process models through SESE decomposition. In Proceed-
ings of the 5th International Conference on Service-Oriented Computing (ICSOC 2007),
volume 4749 of Lecture Notes in Computer Science, pages 43–55, Vienna, Austria,
September 2007. Springer. Cited on page 69.

227

http://www.workflowpatterns.com/
http://www.workflowpatterns.com/evaluations/
http://www.workflowpatterns.com/vendors/

Bibliography

Martin Vasko and Schahram Dustdar. An analysis of web services workflow patterns
in Collaxa. In Proceedings of the 2nd European Conference on Web Services (ECOWS
2004), volume 3250 of Lecture Notes in Computer Science, pages 1–14, Växjö, Sweden,
September 2004. Springer. Cited on page 12.

Bart Verheecke, Wim Vanderperren, and Viviane Jonckers. Unraveling crosscutting con-
cerns in web services middleware. IEEE Software, 23(1):42–50, 2006. Cited on pages
2, 31, and 35.

Stephen A. White et al. Business Process Modeling Notation, version 1.0, May 2004. URL
http://www.bpmn.org/. Cited on pages 1 and 20.

Workflow Management Coalition. Workflow Management Coalition terminology
and glossary. Document Number WFMC-TC-1011, Workflow Management Coali-
tion, Winchester, United Kingdom, February 1999. URL http://www.wfmc.org/
standards/docs/TC-1011_term_glossary_v3.pdf. Cited on pages xv, 1, 10, 12,
13, and 14.

Bart Wydaeghe. PacoSuite: Component Composition Based on Composition Patterns and
Usage Scenarios. PhD thesis, Vrije Universiteit Brussel, System and Software Engineer-
ing Lab, Brussels, Belgium, November 2001. Cited on page 53.

YAWL Foundation. YAWL Editor, version 2.2.01, September 2011. URL http://www.
yawlfoundation.org/. Cited on page 22.

Daniel M. Yellin and Robert E. Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, March
1997. Cited on page 53.

228

http://www.bpmn.org/
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.yawlfoundation.org/
http://www.yawlfoundation.org/

	Abstract
	Samenvatting
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Research Context
	1.2 Research Objectives
	1.3 Research Methodology
	1.4 Contributions
	1.5 Outline

	2 Context: Separation of Concerns in Workflows
	2.1 Workflows
	2.1.1 History
	2.1.2 The Workflow Paradigm
	2.1.3 Terminology
	2.1.4 Current Application Domains
	2.1.5 The Business Process Execution Language
	2.1.6 The Business Process Model and Notation
	2.1.7 Yet Another Workflow Language

	2.2 Separation of Concerns
	2.2.1 General Principles
	2.2.2 Aspect-Oriented Programming

	2.3 Separation of Concerns in Workflows
	2.3.1 The Sub-Workflow Mechanism
	2.3.2 Aspect-Oriented Programming for Workflows

	2.4 Summary

	3 Modularization of Crosscutting Workflow Concerns using Padus
	3.1 Context: The WIT-CASE Project
	3.2 Motivation and Requirements
	3.3 Language
	3.3.1 Joinpoint Model and Pointcut Language
	3.3.2 Advice Model and Language
	3.3.3 Aspect Module Model
	3.3.4 Aspect Instantiation and Composition Models

	3.4 Case Study: The Billing Concern
	3.5 Architecture and Implementation
	3.5.1 Architecture
	3.5.2 Weaver Implementation

	3.6 The Service Creation Environment
	3.6.1 Overview
	3.6.2 Guiding the Service Composition Process

	3.7 Summary

	4 Uniform Modularization of Workflow Concerns using Unify
	4.1 Motivation and Requirements
	4.2 Approach
	4.3 Base Language
	4.3.1 Control Flow Perspective
	4.3.2 Data Perspective

	4.4 A Coherent Collection of Workflow-Specific Concern Connection Patterns
	4.4.1 Existing Workflow Patterns
	4.4.2 Outline of Our Proposal
	4.4.3 External Concern Connection Patterns
	4.4.4 Internal Concern Connection Patterns
	4.4.5 Realization of Concern Connection Patterns in Existing Approaches
	4.4.6 Conclusions

	4.5 Connector Mechanism
	4.5.1 Joinpoint Model and Pointcut Language
	4.5.2 Advice Model and Language
	4.5.3 Aspect Module Model
	4.5.4 Aspect Composition Model

	4.6 Discussion
	4.7 Summary

	5 A Formal Semantics for Aspect-Oriented Workflow Languages
	5.1 Motivation and Requirements
	5.2 Towards a Formalization of Aspect-Oriented Workflow Languages
	5.3 Graph Transformation Formalization of Connectors
	5.3.1 The Graph Transformation Formalism
	5.3.2 Graph Transformation Rules
	5.3.3 Analysis

	5.4 Petri Net Formalization of Concerns and Connectors
	5.4.1 Existing Petri Net Formalizations of Workflows
	5.4.2 Petri Net Formalization of Concerns
	5.4.3 Petri Net Formalization of Connectors
	5.4.4 Analysis

	5.5 Summary

	6 Modularizing Workflow Concerns using Concern-Specific Languages
	6.1 Motivation
	6.2 From Domain-Specific to Concern-Specific Languages
	6.3 General Methodology
	6.4 The Access Control CSL
	6.4.1 Language
	6.4.2 Translation to Unify

	6.5 The Parental Control CSL
	6.5.1 Language
	6.5.2 Translation to Unify

	6.6 Discussion
	6.7 Summary

	7 Implementation and Validation of Unify
	7.1 Implementation
	7.1.1 Java Implementation of the Unify Base Language and Connector Mechanism
	7.1.2 Instantiations of the Unify Framework
	7.1.3 Connectors and Compositions
	7.1.4 The Unify Weaver
	7.1.5 The Unify Petri Net Engine
	7.1.6 Concern-Specific Languages

	7.2 Validation
	7.2.1 Expressiveness of Unify: Basic Connectors
	7.2.2 Expressiveness of Unify: Advanced Connectors
	7.2.3 Performance and Scalability of Unify
	7.2.4 Discussion

	7.3 Summary

	8 Conclusions
	8.1 Summary and Contributions
	8.2 Discussion and Future Work

	A Unify Connector Syntax
	B Soundness Proof for the After Connector
	C Access Control and Parental Control CSL Syntax
	C.1 Access Control CSL Syntax
	C.2 Parental Control CSL Syntax

	D Generated Parental Control Concerns
	Bibliography

