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Abstract
Computing devices now enable access to rich information about their surround-
ing execution environment gathered through sensor networks or system mon-
itors. This ability allows software systems to be conceived with context in
mind, instead of being created in isolation as in traditional approaches for soft-
ware development. Services provided by software systems can be adapted to
sensed conditions rendering such services more appropriate to the surrounding
execution environment. Adaptations to the system’s behavior take place unan-
nounced over time. However, if not dealt with carefully, the behavior provided
by such adaptations could lead to inconsistencies in the system’s behavior. In
order to avoid such inconsistencies, dependencies between adaptations must be
carefully managed so that interactions gathered for the surrounding execution
environment are not rendered incompatible.
This dissertation investigates how to provide more guarantees about the pre-

dictability of the system’s behavior when it is adapted dynamically at run time.
Based on the observation of different dynamically adaptive software systems,
we put forward a set of requirements that software systems should satisfy to
ensure consistency of its behavioral adaptations. We propose a formal basis
to support the development of consistent software systems in the presence of
dynamic behavioral adaptations, called context Petri nets. This formal basis
complies with the requirements for consistent dynamically adaptive software
systems, and in particular context-oriented programming, on three levels: for-
malization, execution, and analysis.
Context Petri nets offer a formalization for the definition of adaptations,

the interactions between them, and the notion of consistency of a system in
the presence of dynamic behavioral adaptations. Interactions between adapta-
tions are formalized by a well-defined set of rules that capture the intention of
programmers at a high-level, while enabling the low-level representation and
automatic verification of those rules. Consistency verification of the system
is provided at two levels. At design-time, system properties can be analyzed
for the identification of possible incoherence in the definition of interactions
between adaptations. At run-time the satisfiability of all interaction rules be-
tween adaptations is verified, hence, it can be ensured that no inconsistencies
occur. Based on the proposed formal basis, we offer a tool for the design, ma-
nipulation, and simulation of adaptations and their interactions. This work is
validated by demonstrating its usefulness in analyzing existing context-aware
applications, its appropriateness in broadening the frontiers of context-oriented
programming, and its extensibility by expanding the formal basis itself.





Samenvatting
Rekenkrachtige apparaten hebben tegenwoordig toegang tot een rijke hoeveel-
heid aan informatie over hun omliggende omgeving, waargenomen door netwerk-
sensoren en systeemmonitors. Dit laat toe om software-systemen te ontwerpen
die zich aanpassen aan hun context, in tegenstelling tot meer traditionele syste-
men die veelal worden ontwikkeld in isolatie van omgevingsfactoren. Diensten
aangeboden door dergelijke software-systemen kunnen zich aanpassen aan de
waargenomen omstandigheden, waardoor deze diensten beter aangepast zijn
aan de omliggende omgeving. Aanpassingen aan het gedrag van het systeem
kunnen onaangekondigd plaatsvinden op om het even welk ogenblik. Indien
niet met de nodige omzichtigheid wordt opgetreden, kunnen dergelijke aan-
passingen daarom leiden tot inconsistenties in het gedrag van het systeem. Om
dergelijke inconsistenties te vermijden, moeten afhankelijkheden tussen moge-
lijke aanpassingen degelijk gedocumenteerd en zorgvuldig beheerd worden, om
er aldus voor te zorgen dat de mogelijke interacties tussen deze aanpassingen
niet onverenigbaar zijn voor de omliggende omgevingsfactoren.
Dit proefschrift onderzoekt welke garanties kunnen geboden worden omtrent

de voorspelbaarheid van het gedrag van software-systemen die dynamisch kun-
nen aangepast worden tijdens hun uitvoering. Op basis van een studie van ver-
schillende dynamisch adaptieve software-systemen stellen wij de nodige vereis-
ten op waaraan software-systemen moeten voldoen om de consistentie van
gedragsaanpassingen van dergelijke systemen te garanderen. We stellen een
formele basis voor, genaamd contextuele Petri netten, ter ondersteuning van de
ontwikkeling van consistente softwaresystemen in de aanwezigheid van dynami-
sche gedragsaanpassingen. Deze formele basis voldoet aan de eerder opgestelde
vereisten voor consistente dynamisch adaptieve software-systemen, en context
georiënteerde programma’s in het bijzonder, op drie niveaus: formalisering,
uitvoering en analyse.
Contextuele Petri netten bieden een formalisering aan voor de definitie van

dynamische gedragsaanpassingen, de interactie daartussen, en de notie van een
consistent systeem in de aanwezigheid van dergelijke dynamische gedragsaan-
passingen. Interacties tussen aanpassingen worden geformaliseerd door wel-
bepaalde regels die enerzijds de intentie van een programmeur op een hoog
niveau weten te vatten, en anderzijds een representatie op laag niveau bieden
die een automatische verificatie van de regels toelaten. Verificatie van de consis-
tentie van een dynamisch adaptief software-systeem kan dan worden voorzien op
twee niveaus. Enerzijds kunnen tijdens het ontwerp en de ontwikkeling van het
systeem bepaalde systeemeigenschappen geanalyseerd worden, om in een vroeg
stadium mogelijke incoherenties in de definitie van interacties tussen aanpassin-
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gen te identificeren. Anderzijds kunnen tijdens de uitvoering van een dergelijk
systeem de gedefinieerde interactieregels tussen aanpassingen continue geveri-
fieerd worden om aldus te garanderen dat er zich geen inconsistenties zullen
voordoen. Met deze voorgestelde formele basis als fundament bieden we een
hulpmiddel aan voor het ontwerp, het beheer de de simulatie van dynamische
aanpassingen en hun interacties.
Dit werk wordt gevalideerd door het nut aan te tonen van de aanpak bij het

analyseren van bestaande context georiënteerde toepassingen, door de gren-
zen van context georiënteerd programmeren te verruimen, en door de uitbreid-
baarheid van de formele basis te illustreren.
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Chapter1
Introduction

1.1 Research Context
Over the last couple of decades software systems have come to pervade our
daily lives. Software systems can be found everywhere in our surroundings, on
desktop computers, mobile devices, on-board systems, household appliances,
and in intelligent city environments. Software systems are spreading out as
utilities to aid in our daily lives, where they are rapidly becoming more ubiqui-
tous. That is, software systems are gaining the capacity to perform and manage
their tasks without requiring user interaction or supervision; robo-train subway
systems and self-balancing web servers are a case in point. As a matter of fact,
following the vision of ubiquitous computing [193], software systems are able to
gather information about their surrounding environment, and use it to adapt
their behavior.
Software development is shifting from systems conceived in isolation to sys-

tems that are aware of, and interact seamlessly with their environment. Such
interactive software systems are able to provide their users with smarter ser-
vices, while remaining oblivious to them. Systems become smarter thanks to
their awareness of their surroundings. The services provided by such software
systems are not one-size-fits-all services. Rather, they can use the information
about their surrounding execution environment—that is, the internal and
external conditions of the system at run time. This information is made avail-
able at any moment in time, to provide “tailor-made” services that are deemed
more appropriate. For example, a system could provide optimized algorithms
when additional computing resources are available in the surrounding execu-
tion environment, or delegated services when less resources become available.
Current-day software systems can easily gather such information, thanks to
the proliferation of hardware devices equipped with a variety of sensors able
to constantly retrieve information about their surrounding environment. Soft-
ware systems are now able to access rich information about their surrounding
environment. Changes to the services offered by such system are not required
to be explicitly introduced by users. Instead software systems can be refined
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automatically, expanding the frontiers of such systems.
The work presented hereinafter proposes a formal basis for the development

of dynamically adaptive software systems, presented for the particular case of
Context-Oriented Programming; that is, we focus on software systems that are
able to interact with their surrounding execution environment and appropri-
ately adapt their behavior at run time. The particular objective of developing
such a formal basis, is to enable the analysis and management of such software
systems, in order to prevent inconsistent behavior in the presence of dynamic
adaptations.
Different approaches have been proposed to enable the dynamic adaptivity

of the behavior of a software system [117, 152, 149]. In particular, over the
last few years there has been a particular increase in the development of pro-
gramming languages that enable a class of highly dynamic software systems,
allowing behavioral adaptations with respect to their surrounding execution
environment [44, 74, 185, 103, 163, 9]. This class of systems, known as Context-
Oriented Programming (COP) systems, envision highly dynamic environments
where the conditions under which software systems execute change constantly
and, hence, influence the behavior of the system. Information about the sur-
rounding execution environment of the system is usually enabled via sensor
networks or system monitors. Example situations for which a system can have
behavioral adaptations using the information gathered from its surrounding ex-
ecution environment include: the global positioning of a user gathered through
a GPS antenna, the amount of light in a room gathered through an integrated
luminosity sensor, the number of idle cores in a multi-core system gathered
through an active monitor, the language displayed on a user interface gath-
ered through user-defined preferences, or the availability of external services
gathered through a service discovery monitor.
Highly dynamic and adaptive software systems, as proposed by COP open the

possibility to new application domains, new opportunities to extend software
services functionality, and to improve their quality. Software systems now have
the possibility of defining dedicated behavior, objects, services, or properties
specific to particular situations of their surrounding execution environment,
turning such systems into constantly evolving software systems. We notice,
however, that these type of systems do not truly exist yet. In a truly open en-
vironment, where software systems may interact with each other at their own
will, important questions about such interactions are raised. Who is responsi-
ble for verifying the correctness of adapted behavior coming from other systems?
How do multiple behavioral adaptations take place whenever the situations lead-
ing up to them are present in the surrounding execution environment? Even
though the programming technology to enable dynamic adaptations of software
systems with respect to their surrounding environment already exists, it still
lags with respect to the support offered to address the aforementioned questions.
Furthermore, two different trends are seen in the development of dynamically
adaptive software systems. One trend focuses on offering novel and efficient
techniques for dynamically changing the behavior of a system [159, 160]. The
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second trend focuses on the definition, representation, and propagation of sit-
uations in the surrounding execution environment to which the system should
adapt [158, 175]. Currently there is a mismatch between the technological
advancement in these two trends.
The purpose of this dissertation is to propose a formal basis for dynamically

adaptive software systems that can be realized in a single programming model
thus, addressing the existing shortcomings in the technology for developing
dynamically adaptive software systems. In particular, we propose a new pro-
gramming model focused on the interaction between behavioral adaptations,
facilitating the development of dynamically adaptive software systems by pre-
venting inconsistencies in their behavior. We introduce context Petri nets,
a formal theory and execution model for Dynamically Adaptive Software Sys-
tems (DASS) based on the low-level formalism of Petri nets [137], which allows to
bridge the gap between system design and development. Moreover, having such
a formal foundation makes it possible to use the model as a reasoning engine for
the analysis and verification of behavioral adaptations and their interactions.

1.2 Problem Statement
The paradigm of Context-Oriented Programming currently offers one of the
most dynamical approaches to adapt the behavior of software systems (see Sec-
tion 3.1 for support of this statement). As consequence, these systems are most
prone to behavioral inconsistencies. Therefore, we focus on such systems as our
main object of study. In order to support the dynamic adaptation of a system’s
behavior according to the surrounding execution environment, COP languages
are currently characterized by allowing us: the definition of semantically rel-
evant situations in the surrounding execution environment, the association of
behavioral adaptations with such situations, and the scope in which each be-
havioral adaptation has to take place. The term adaptation is hereafter used
to refer to the dynamically introduced behavior presenting the aforementioned
set of characteristics. Existing COP languages have also explored aspects of
distribution [185, 163], response and propagation of changes in the surround-
ing execution environment [103, 9], and definition of interaction rules between
behavioral adaptations [77], the principal concern of COP languages has been
to prove the means to effectively modify a system’s behavior at run time. Lit-
tle attention has been paid to correctness or consistency between behavioral
adaptations.
One of the most important requirements for dynamically adaptive software

systems, mostly overlooked by existing COP languages, is to be able to ensure
that the observed behavior of the system takes place as predicted during its
conception, even in the presence of behavioral adaptations. That is, it must
be ensured that all changes in the surrounding execution environment of the
system propagate into a consistent composition of the system and its adapted
behavior. As systems grow, the complexity of keeping track of the defined be-
havioral adaptations, and managing the scope and situations in which they are
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applied increases, potentially leading to unpredicted behavior or behavioral
inconsistencies. Behavioral inconsistencies are due to three main reasons [33].
First, adaptations are multi-dimensional. That is, different behavioral adap-
tations may be associated to the same situation of the surrounding execution
environment, and a particular behavior (system functionality) may be adapted
differently in different situations of the surrounding execution environment.
Second, adaptations suffer from accidental interaction. There is little support
provided during the software development process for the definition of allowed
and disallowed interactions between behavioral adaptations. Interaction be-
tween adaptations can only de defined at a high-abstraction level, causing a
mismatch between the intended interactions of adaptations and their imple-
mentation, which can lead to an accidental interaction between adaptations.
Moreover, there is little support for verifying the interaction between adap-
tations. Third, adaptations are volatile. Behavioral adaptations may surface
within the system unexpectedly at run time —that is, it cannot be predicted
when the conditions of the surrounding execution environment will trigger a
behavioral adaptation. Hence it is unfeasible to foresee all possible cases of
interaction between behavioral adaptations.
The programming facilities currently provided by the COP paradigm still

lack a programming model that allows to soundly analyze, prevent and man-
age behavioral inconsistencies. This increases the difficulty of developing such
Dynamically Adaptive Software Systems. The challenges programmers of such
systems are faced with include:

• Awareness of the correspondence and coherence between adaptations —
that is behavioral adaptations, and the situations to which these apply.

• Awareness of all defined situations for which the system presents behav-
ioral adaptations, and the run-time interaction between them —that is,
what is the expected behavior of the system when behavioral adaptations
are continuously being introduced to or withdrawn from the system.

• Manual exploration and simulation of all possible situations in which be-
havioral adaptations may be introduced to or withdrawn from the system.

Obviously, the presence of behavioral inconsistencies hinders the development
of Dynamically Adaptive Software Systems. On the one hand, they encumber
the usability and user acceptance of such systems. On the other hand, they im-
pose difficulties on the conception and construction of robust and well-behaving
Dynamically Adaptive Software Systems

1.3 Research Goals
This dissertation takes the definition of behavioral adaptations and the man-
agement of their interaction as a platform for the definition of a sound pro-
gramming model for Dynamically Adaptive Software Systems. With this goal
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in mind, we investigate different aspects of the software development process
of Dynamically Adaptive Software Systems. More specifically, we provide the
necessary formalization, investigate how this affects the programming language
and run-time execution, and tool support. Based on these aspects, the principal
research question addressed throughout the dissertation is:

How to ensure the consistency and predictability of dynamically adaptive
software systems, in the presence of multiple behavioral adaptations,
continuously being introduced to and withdrawn from the system?

The subsequent subgoals follow naturally from this initial research question:

G.1 Lack of interaction definition. The development of our work is to pro-
vide a means to express the type of interactions that adaptations should
or should not exhibit between each other at run time. Specifying such
interactions is important to ensure that the behavior of the system is
always the most appropriate for its surrounding execution environment.
Adaptations are not isolated at run time. Adaptations interact with each
other, and their associated behavior may be influenced by the behavior
associated to other adaptations. However, behavioral adaptations are usu-
ally developed independently, they can be defined at different times, or
even by different programmers. A concise model expressing allowed and
disallowed interactions between adaptations is needed.

G.2 Accidental interaction of adaptations. The development of our work
is to allow the definition of interactions between adaptations in such a way
that accidental interactions are avoided. Interactions between adaptations
may be accidental by two main reasons. On the one hand interactions
might be missed by not specifying them explicitly. On the other hand
interactions may exist as adaptations become simultaneously available, if
this was not foreseen. Defining all possible interaction rules between all
adaptations can become cumbersome and error prone as systems grow.

G.3 Lack of verification. The development of our work is to integrate the
verification of defined interactions between adaptations. Currently, there
is little support provided for the verification of defined interactions be-
tween adaptations, diminishing the reliability on Dynamically Adaptive
Software Systems.

G.4 Lack of property analysis. The development of our work is to enable
the analysis of system properties for the introduction and withdrawal of
adaptations. In order to allow for a lightweight verification process at run
time, a complementing design/compile time analysis process is required.
Such, a design-time analysis of the system is used for the early identi-
fication of errors, thus reducing the number of possible inconsistencies
at run time. Moreover, a design-time analysis of the system could relief
part of the run-time verification, which might be too heavyweight for the
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small-powered devices that Dynamically Adaptive Software Systems are
envisioned for.

G.5 Lack of a comprehensive programming model. The development
of our work is to provide a comprehensive programming model for the
development of Dynamically Adaptive Software Systems. Development
of such systems currently lacks the means to define of adaptations, their
behavior, and the situations of the surrounding execution environment in
which they take place, rendering the development of such systems more
complex.

1.4 Approach
Current COP languages suffer from a mismatch between the definition of behav-
ioral adaptations and the situations in which they are applicable. Normally in
current COP languages, behavioral adaptations are typically described within
the programming language, while the situations in which behavioral adaptations
should occur are defined using external frameworks, if defined at all. Addition-
ally, interactions between behavioral adaptations are often specified through
a high-level description of rules describing the intended interaction. Unfortu-
nately, it is not possible to verify the correctness of such high-level definitions
often presenting a mismatch between high-level specifications and the run-time
representation. This creates inconsistencies between the expected and observed
behavior of adaptation interactions.
In order to provide a sound programming model for the development of Dy-

namically Adaptive Software Systems, we begin by providing support for the
interaction between behavioral adaptations. Such interactions must be defined
formally and as close as possible to their run-time representation, in order to
ease their verification and avoid the mismatch between formalization and im-
plementation. Having a formal definition of the interaction between behavioral
adaptations implies providing a formal definition of the adaptations themselves.
Such a formalization is beneficial for three reasons. First of all, formally defining
the interaction between behavioral adaptations allows reasoning about system
properties and their correctness. Additionally, the formal definition could be
used to capture any kind of accidental interaction that programmers may not
have foreseen, facilitating their work and protecting the system from potential
behavioral inconsistencies. Secondly, a formal definition of behavioral adapta-
tions and their interactions that remains close to their run-time representation
would eliminate the existing mismatch between the two. Such a formaliza-
tion could provide a uniform foundation for different COP languages. Finally,
since adaptations are already formally defined, the definition of the situations
in which they are applicable can be included in the same formalism, instead of
using an external framework. We argue that building a formalism with these
characteristics, which can also be used as run-time representation of the system
and its adaptations, suffices to have a sound programming model for Dynami-
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cally Adaptive Software Systems.
The formalism allows to define adaptations, their interactions, and their be-

havior closely to the run-time representation of the system. Using the formal
foundation as a run-time model of the system already covers most of the require-
ments for a sound programming model. The remaining aspect to be explored is
then the definition of the situations of the surrounding execution environment
in which adaptation are to take place, providing a sound and uniform basis that
fosters Context-Oriented Programming systems.
In our exploration of a formal foundation for Dynamically Adaptive Software

Systems we opted for a formalism based on Petri nets, which provides a formal
description of the behavior of software systems, and is close to the their execu-
tion. The intrinsic operational and formal specification of Petri nets allows us
to straightforwardly model, execute and reason about software systems. Other
formal specifications, like Boolean logic or automata require to be combined
with additional models or external tools to cover all three aspects. In addition,
the Petri net model provides different extensions that can be used to support
the dynamic and reactive characteristics of Dynamically Adaptive Software
Systems; extensions that would otherwise have to be implemented using other
formal specification. As we will later show in Section 3.2, the use of Petri nets
for the development of our programming basis is motivated because, different
from the other surveyed approaches, Petri nets (and their extensions) satisfy
the requirements for a conflict resolution model and provide additional support
for designing Dynamically Adaptive Software Systems. Moreover, we argue in
favor of the appropriateness of Petri nets because the definition, execution and
analysis of the system all remain within the same formal domain, easing the
adoption and extension of such formalization as a basis of Context-Oriented
Programming.
Our approach consists of shifting the concepts of Petri nets to the setting

of Dynamically Adaptive Software Systems and using the Petri net model as a
formal model for defining and executing behavioral adaptations. As a result,
we are able to profit from the existing machinery of Petri nets (formal proofs
and analysis tools) for the development, analysis, execution, and simulation of
dynamically adaptive software systems.
To validate the appropriateness and effectiveness of the model we couple

it to the Subjective-C COP language [33]. Our variation of the programming
language is effectively used to develop applications that change dynamically
according to their surrounding execution environment.

1.5 Contributions
This section highlights the main contributions of this dissertation.
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Formalizing COP systems

Up until now, little work has been done in the formalization of COP languages.
A formal semantics has only been defined for the execution and composition
of behavioral adaptations [74, 38, 165, 2, 96, 105]. This dissertation develops
a more comprehensive formalization that effectively comprises several other
aspects of COP systems. That is, the definition of adaptations, the composi-
tion of their associated behavior, the context dependency relations defining the
interaction between adaptations, and the activation of adaptations —that is,
(de)composing behavioral adaptations with the system.

Run-time verification of inconsistencies

To deal with behavioral inconsistencies, we introduce a language-integrated
model that allows defining interaction rules between adaptations. The spec-
ification of context dependency relations unequivocally defines the way
adaptations interact with one another. Even more, context dependency rela-
tions are defined as transitive relations between adaptations. The transitive
properties of context dependency relations is beneficial because it does not re-
quire programmers to foresee all possible interactions between adaptations, but
only consider a more limited set of directly related adaptations.
Context dependency relations are used at run time to keep track of adapta-

tions and their state, in order to ensure that there are no inconsistencies with
respect to the defined context dependency relations during the system’s execu-
tion. At run time, whenever the state of an adaptation is requested to change,
the system automatically verifies that all constraints imposed by all context
dependency relations are satisfied. If this is not the case, the system disallows
the state change for the adaptation.

Identification of inconsistencies

Currently, there are no means to reason about COP systems, their properties,
or their correctness. We propose an analysis engine to reason about system
properties, in particular, about coherence and correctness of adaptations with
respect to their context dependency relations. At design time, our programming
model offers the possibility to analyze certain properties of the defined context
dependency relations. The objective of such analysis, is to detect adaptations
that cannot occur in the system, due to the constraints imposed by the context
dependency relations.

Comprehensive programming model

Alongside the basis for developing Dynamically Adaptive Software Systems pre-
sented in the dissertation, accompanying tool support is introduced to facilitate
the development of dynamically adaptive software systems. The most impor-
tant technical contribution of the developed tools, lies in the provisioning of
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a simulation environment in which programmers can test the interaction be-
tween adaptations without requiring a full-fletched application. Additionally,
we facilitate the development process of COP systems by allowing the definition
and introduction of adaptations and context dependency relations dynamically
at run time. These features are not presented in any other COP programming
model.
The formal basis for the development of Dynamically Adaptive Software Sys-

tems presented throughout these contributions is reified in our proposed pro-
gramming model for COP systems, called context Petri nets. Context Petri nets
enable programmers to easily design and develop different aspects of COP sys-
tems, such as the definition of adaptations, situations the system should adapt
to, interaction between behavioral adaptations, and the system’s reaction to
changing situations from the surrounding environment; all while ensuring that
the system is free of inconsistencies. Context Petri nets are the missing link,
represented in Figure 1.1, between the formalization, execution, and analysis
required to have a sound programming model for dynamically adaptive software
systems, and Context-Oriented Programming in particular.

CoPN

Formalization

AnalysisExecution

Figure 1.1: Positioning CoPN with respect to the programming model require-
ments of dynamically adaptive software systems.

1.6 Supporting Publications
The following (co-)authored publications support the key ideas in this disser-
tation:

• Context Petri Nets: Enabling Consistent Composition of Context-
Dependent Behavior [33]
Nicolás Cardozo, Jorge Vallejos, Sebastián González, Kim Mens, and
Theo D’Hondt
6th International Workshop on Petri Nets and Software Engineering
(PNSE 2012)
This paper proposes our Petri net based programming model for COP
languages for the management of interactions between adaptations, de-
tailed in Section 6.3 . The paper also presents the language API provided



10 Introduction

to developers for the use of context Petri nets (detailed in Section 6.4).
Additionally, this paper presents the maps application described in Sec-
tion 2.3.3.

• Uniting Global and Local Context Behavior with Context Petri
Nets [32]
Nicolás Cardozo, Sebastián González and Kim Mens
4th International Workshop on Context-Oriented Programming (COP 2012)
This papers presents different scoping techniques used in COP, and uni-
fies them in the programming model of context Petri nets with the in-
troduction of colored tokens. This interaction is presented as part of our
validation in Section 9.2.

• Modeling and Analyzing Self-Adaptive Systems with Context
Petri Nets [30]
Nicolás Cardozo, Sebastián González, Kim Mens, Ragnhild Van Der
Straeten and Theo D’Hondt
7th International Symposium on Theoretical Aspects of Software Engi-
neering (TASE 2013)
This paper presents the formalization of context Petri nets which con-
stitutes the core of Chapter 6. The paper also presents the main ideas
behind the design-time analysis implemented in context Petri nets, as
presented in detail in Chapter 7. Additionally, the paper presents the
mobile city guide case study used as part of our validation in Section 9.1.

• Context-Oriented Programming for customizable SaaS Applica-
tions [184]
Eddy Truyen, Nicolás Cardozo, Stefan Walraven, Jorge Vallejos, Engineer
Bainomugisha, Sebastian Günther, Theo D’Hondt and Wouter Joosen
27th Symposium on Applied Computing (SAC 2012)
This paper presents a comparison between the adaptability provided by
COP and that provided by the dependency injection design pattern, which
is used as a basis of the discussion presented in Section 10.2. Addition-
ally, the paper introduces the web booking application described in Sec-
tion 2.3.2.

• Subjective-C: Bringing Context to Mobile Platform Programming [77]
Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-
Christophe Libbrecht and Julien Goffaux
3rd International Conference on Software Language Engineering (SLE
2010)
This paper presents Subjective-C, the COP language we use in this dis-
sertation as a platform to prove the ideas of context Petri nets. The
paper also presents our initial informal definition of context dependency
relations. Finally, this paper presents the home automation application
described in Section 2.3.1
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1.7 Roadmap
The main contribution of this dissertation is the proposal of a theory for the
development of systems that can dynamically adapt to their surrounding exe-
cution environment. Bellow we summarize the chapters of this dissertation.

Chapter 2: Requirements for consistent DASS provides an overview of the the-
oretical context in which this dissertation is developed. This chapter is
used to describe the general characteristics of the kinds of systems we are
interested in, and the situations that can give rise to behavioral inconsis-
tencies. The chapters presents an overview of the characteristics of the
inconsistency management process. We provide a set of examples of ap-
plications that adapt dynamically, motivating the requirements for highly
dynamic adaptive software systems, and an execution model to manage
inconsistencies in such systems.

Chapter 3: State-of-the-art in DASS and inconsistency management models
presents the state-of-the-art in existing systems that enable dynamic adap-
tations of their behavior. This chapter also presents existing conflict
resolution models that can be used for the run-time management of in-
consistencies in Dynamically Adaptive Software Systems.

Chapter 4: Context-oriented programming provides an in-depth look into a
particular class of Dynamically Adaptive Software Systems that fulfill
all requirements listed in Chapter 2, namely Context-Oriented Progra-
mming (COP). We survey all existing COP languages, taking into account
their main characteristics and the support they provide for managing in-
consistencies. We then continue by presenting our laboratory language,
Subjective-C, and its main characteristics.

Chapter 5: Petri nets provides an in-depth look into Petri nets, a particular
formal model that realizes the requirements listed in Chapter 2 for conflict
resolution models. We present existing analysis techniques used to reason
about the properties of systems modeled with Petri nets. Additionally,
we describe different extensions of the basic Petri net model that are later
used in the definition of context Petri net.

Chapter 6: Modeling and managing DASS introduces context Petri net, giv-
ing the basics of its formal definition and the mapping between COP and
Petri nets concepts. This chapter also describes the formal definition of
context dependency relations and how these are used to generate com-
plete COP applications. Moreover, we also describe the run-time semantics
used to verify the system’s consistency. This chapter is concluded by pre-
senting the programming interface for using the model from within the
Subjective-C COP language.

Chapter 7: Analysis and verification of DASS describes the analysis engine that
comes with our context Petri net model for reasoning about the correct-
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ness and coherence of adaptations and their associated behavior. This
chapter describes the Petri nets analysis techniques available for context
Petri net.

Chapter 8: A comprehensive programming model for DASS describes the pro-
gramming model that comes with context Petri net. This chapter presents
the details of the different components of the context Petri net progra-
mming model, and how these comply with the development process of
Dynamically Adaptive Software Systems. Finally, the supporting tools
developed with context Petri net for the acquisition of contexts and the
simulation of context activations are presented in this chapter.

Chapter 9: Context Petri nets at work evaluates the theory developed with
context Petri net in three main axes. First, we evaluate the usefulness
of context Petri net as a reasoning engine for existing COP applications.
Second, we evaluate the appropriateness of context Petri net as a theory
for COP systems, by extending the COP model within context Petri net.
Third, we present the extensibility of the model itself, by providing two
new context dependency relations. Additionally, through tailored bench-
marks, we provide a discussion about the efficiency of context Petri net
at run time.

Chapter 10: Putting context Petri nets in perspective broadens the formal
basis of context Petri net again by putting it in perspective with the
larger context of Dynamically Adaptive Software Systems. This chapter
thus opens the context Petri net model to Dynamically Adaptive Soft-
ware Systems and discusses its appropriateness and usefulness for such
domains.

Chapter 11: Conclusions wraps up the dissertation by restating the contribu-
tions in a fine-grained and more technical manner. The chapter discusses
the current limitations of our work and then suggests other avenues in
which research in context Petri net could be further developed.



Chapter2
Requirements for Consistent Dynamically Adaptive Software Systems

This dissertation focusses on managing inconsistencies in Dynamically Adaptive
Software Systems. Hence, we divide our work in two main fronts. On the
one hand, we are interested in software systems that can adapt their behavior
dynamically according to the changing conditions of their surrounding execution
environment. This is motivated by the observation that nowadays software
systems have nearly unlimited access to an immense variety of information. To
benefit from this information, software systems may be customized or adapted
dynamically providing a richer experience and usability to their users, even
more so when adaptations take place as the system runs. On the other hand,
to increase robustness of such systems, we are interested in identifying and
managing behavioral inconsistencies that may occur due to adaptations taking
place at run time.
The development of software systems that adapt dynamically their behavior

according to the situations of their surrounding execution environment is not
without challenge. One particular concern that becomes apparent in such a
setting is the predictability of the system behavior . It is particularly difficult to
know when a system is supposed or allowed to adapt to particular information
received from its environment, since information is received unannounced and
it is very hard to anticipate all possible changes before hand. Current soft-
ware development technology is not well-equipped to deal with such situations.
A process to manage the behavior of the system in the presence of run-time
adaptations is required to preserve its predictability.
This chapter continues in Section 2.1 by providing a definition of Dynami-

cally Adaptive Software Systems and describing different types of dynamicity
and adaptability. Section 2.2 presents the inconsistency management process.
Section 2.3 presents different scenarios that illustrate situations in which in-
consistencies may be yield by the system. Such situations put in evidence the
symptoms of behavioral inconsistencies, motivating the requirements for con-
sistent Dynamically Adaptive Software Systems described in Section 2.4.
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2.1 Dynamically Adaptive Software Systems
Long-lived software systems need to take software evolution into account [122],
since such software systems are being adapted in order to cope with their chang-
ing requirements; even more so when software evolution occurs continuously at
run time. Some of the reasons why the requirements of software systems may
change during their execution are the need for introducing and removing func-
tionality, optimizing algorithms, or customizing the system for particular users.
In the following we precise the notions of dynamic adaptation, inconsistencies,
and the situations in which unpredicted behavior can arise, as a frame of refer-
ence for the rest of this dissertation.
An adaptation is referred to as a system modification that has an intrin-

sic impact on its behavior. Adaptations can take place at different moments
in the life cycle of a software system such as design, development, or mainte-
nance. In this dissertation we are interested in dynamic adaptations —that
is, adaptations that occur while the system is executing. Note also that our
notion of dynamicity includes the interaction of the system with its surrounding
execution environment.

Definition 2.1. Dynamically Adaptive Software Systems are defined as
software systems that can automatically trigger pre-defined behavioral adapta-
tions of the system,1 as a result of information acquired via, for example, sensor
networks or system monitors.

Each adaptation defined on the system concerns one specific situation of its
surrounding execution environment. An adaptation may cover different units
of functionality, or different fragments of behavior (e.g., methods or functions).
An example adaptation is the rotation of a mobile device from portrait to land-
scape and vice versa. In such a case, the situation to adapt to is the change in
the orientation of the device (information gathered throughout an integrated
motion sensor), and the behavioral adaptations associated with this situation
are, a modification in the displayed information and an update of the functions
drawing of the device’s layout. Nonetheless, when adaptations occur unan-
nounced over time, unforeseen behavior of the system may arise. For example,
if a behavioral adaptation is removed, and this was supposed to be used by
an adaptation already composed with the base system. In the device orien-
tation example this could occur if the redrawing adaptation is removed, but
the adaptation modifying the information is not. An example of an undesired
interaction between adaptations is that of two different adaptations modifying
the same functionality. These can occur at the same time in the system when
the specific situation defining them are signaled by the sensor network as simul-
taneously present in the surrounding execution environment. We distinguish
between various situations in which inconsistencies may arise:

1Pre-defined behavior in this context means that the adaptation is not inferred, for example
by means of artificial intelligence techniques, but rather that the behavior has been defined
by programmers but is not yet composed into the system.
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• If there is no defined order in which behavioral adaptations should take
place, any of the available adaptations could be applied, possibly pro-
viding a different behavior for different instances of the system. The
predictability of the behavior is compromised in this situation.

• Even when the order in which behavioral adaptations execute is defined,
and assuming they are all executed (e.g., executing one after the other),
the behavior provided by the adaptations may be contradictory. That is,
one adaptation may undo the actions performed or expected by another.
Such behavior is not desired.

• The dynamic introduction and withdrawal of behavioral adaptations may
affect the consistency of the system’s behavior. Withdrawing a behav-
ioral adaptation from the system can cause a behavioral inconsistency if
removed behavioral adaptations are expected to be used by other adap-
tations currently executing. For example, let us order behavioral adap-
tations based on the functionality increment each adaptation provides to
the basic behavior, where the behavioral adaptations that provides the
smallest functionality increment to the basic behavior is executed last.
If during the execution of the system, one of the adaptations is removed
dynamically, a mismatch could exist between the expected system state
the succeeding behavioral adaptation expects and the state provided af-
ter the execution of the preceding behavioral adaptation. The behavior
of the system can then lead to erroneous or undesired states.
Introducing a behavioral adaptation into the system can cause an incon-
sistency of its behavior if the introduced behavioral adaptation interposes
the current execution order of other behavioral adaptations already com-
posed into the system. For example, the inserted behavioral adaptation
could modify the state of the system in a way not expect by succeeding
behavioral adaptations, causing an inconsistent or erroneous system state
when the later behavioral adaptation executes.

These examples of interactions between adaptations are regarded as inconsis-
tencies because it is either not possible to predict the behavior of the application
when the adaptations are combined, or because the observed behavior is not
the expected one.

Definition 2.2. Inconsistencies are defined as situations in which the appli-
cation shows unpredicted behavior (functionality with contradictory or erroneous
behavior). Inconsistencies may not necessarily break or crash the system, but
rather only show unexpected behavior.

Clearly, inconsistencies need to be dealt with carefully. The following section
presents the process of dealing with inconsistencies.
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2.2 Inconsistency Management Process
To deal with inconsistencies of Dynamically Adaptive Software Systems, as
presented in the previous section, we take inspiration from the inconsistency
management process defined for other domains such as Model-Driven Engi-
neering (MDE) [132, 189] or requirements engineering. In this section we define
exactly what we mean by identifying and managing inconsistencies.
The problem of managing inconsistencies between software artifacts has been

widely addressed in the modeling community. In the context of MDE, in partic-
ular, a vast body of research has been conducted around the topic of managing
inconsistencies between different model artifacts (e.g., activity diagrams, se-
quence diagrams, and other uml diagrams) describing a software system. The
process proposed for the management of inconsistencies in software engineer-
ing [176] consists of:

• A detection of inconsistencies activity which systematically checks the
different model artifacts of a software system, for example, for overlapping
descriptions of the system, or violations of predefined consistency rules for
a particular model. Detection of inconsistencies is typically done by means
of logic-based rule semantics, model checking, or specialized automated
analysis.

• A diagnosis of inconsistencies activity which identifies the source, cause,
and impact of an inconsistency. Inconsistency diagnosis is related to the
inconsistency detection step in the sense that, in order to diagnose the
presence of an inconsistency, it needs to take into account the predefined
set of consistency rules that models need to comply with. Diagnosis of
inconsistencies is usually performed by generating an abstraction of the
system —that is, an abstract model covering all concrete model artifacts.
Such models are then used to automatically verify some consistency rules
defined about the system. If the verification fails, the source of the incon-
sistency should be revealed; which is a challenging problem on its own.

• A handling of inconsistencies activity which evaluates the various cor-
rective actions that could be taken to solve an inconsistency once it is
identified and diagnosed. The process of handling inconsistencies usually
takes into account the evaluation of the costs, benefits, or risks of apply-
ing a corrective action. Inconsistency handling can be performed at run
time or at earlier stages of the software development process.

In this dissertation we do not undertake the complete process of inconsistency
management as presented above, but focus only on the detection and handling
of inconsistencies activities. The diagnosis activity will be the focus of further
research.

Definition 2.3. Herein inconsistency management is referred to as the ac-
tivity of avoiding situations in which inconsistencies can arise, and the activity
of verifying satisfiability of interaction rules between adaptations at run time.
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Inconsistency management in Dynamically Adaptive Software Systems is
achieved by means of the definition of a semantically sound set of rules for
the interaction between software adaptations, and a programming model that
enables the run-time verification of said rules.

2.3 Motivating Examples
This section presents example situations in which software systems could benefit
from the dynamic adaptation of their behavior. The different examples are used
as witnesses of behavioral inconsistencies yield in the system. The examples
presented on this section serve as motivation for the definition of the require-
ments for a consistent Dynamically Adaptive Software Systems presented later
in Section 2.4, and are also used throughout this dissertation to put different
aspects of Dynamically Adaptive Software Systems into perspective.

2.3.1 Home Automation
Home automation systems are common examples used in the setting of Dynam-
ically Adaptive Software Systems [34, 77]. Home automation systems allow to
regulate different household appliances and services such as a stereo or a tv,
or room temperature or lighting. The services offered by the room can be cus-
tomized according to the room equipment (e.g., configuration of windows) or
the user currently in the room (e.g., through user preferences about lightning
and temperature).
We take as a concrete example the user detection system in the setting of

a home automation environment. Throughout the house a sensor network is
deployed to detect users, for example, by the identity of their mobile devices
or specific RFID tags. The house appliances are adapted to the user require-
ments and specifications. For example, use the room speakers to play the user’s
playlist, call the authorities in case of burglary, or inform the authorities in case
of an emergency in the house (e.g., fire or flood), or medical emergencies for
one of the hose inhabitants.
Using the home automation scenario and its desired adaptation for the user

detection concrete example, it is possible to identified the desired requirements
for the application.

Reaction to changes The application should react to changes in its surround-
ing execution environment in order to adapt its behavior accordingly. As
users enter a room, the behavior of the services and appliances deployed
in the room should adapt to the user preferences.

Customization Home environments are not static environments. Rather they
evolve over time, for example by introducing new services, new appli-
ances, or new users. Customizations with respect to such changes to the
environment should be able to be introduced with ease. For example,
introducing an air conditioning service for all rooms in the house requires
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other services (e.g., the heating service) already deployed in the applica-
tion to adapt to the behavior of the air conditioning service. Moreover,
the air conditioning service needs to adapt to the user preferences.

Transience Adaptations can be introduced at any moment during the system’s
execution. As a consequence adaptations should be prepared to interact
with other adaptations as they are introduced, as well as with the base
behavior of the application. Moreover, adaptations can not only be in-
troduced, but it is also possible to remove them from the application.
This means adaptations are only available for a defined period of time,
for example, the time a user is in a room.

2.3.2 Web Booking
The web booking application is a highly configurable service that travel agencies
can use for booking hotels on behalf of their customers [184]. Employees of the
travel agency are offered a customized user interface and customers of the travel
agency can login to check the status of the travel items through a url with a
custom-made domain-name that corresponds with the travel agency. A special
administrator role is assigned to someone who is responsible for configuring the
application, setting up the application data and monitoring the overall service,
for example an staff member of the travel agency.
Take the case of a particular travel agency that wants to be able to offer dis-

counts to their returning customers or during the low season. The web booking
application should be extended with an additional service for managing cus-
tomer profiles and an adaptation on the service for calculating booking prices.
Let us assume furthermore that the base application is offered to customers
at no or low cost, but travel agencies incur an additional price for additional
services. Based on this simple customization scenario, we can derive require-
ments with respect to application development, configuration, adaptation, and
run-time support.

Isolated software adaptations The application should be offered a simple way
to manage the different travel agency-specific adaptations as separate
units of deployment that can be selectively bound to the core architecture
of the application.

Configuration facility With respect to customization, travel agency adminis-
trators should be offered a configuration facility to select what software
variations should be enabled for them (e.g., the price calculation service).
In addition, this facility should also allow to specify specific configuration
parameters (e.g., business rules for the price calculation service). These
configuration data should be isolated within the application from the in-
formation of other travel agencies.

Run-time activation of adaptations Run-time support is needed to provide
support for activating behavioral adaptations for each of the travel agen-
cies or for each of their customers. When a user (either customer or
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employee) logs in, the travel agency to which the user belongs should
be determined. Based on the acquired travel agency ID, the run-time
support should then activate the appropriate behavioral adaptations to
process the requests of the user. Another key requirement of the run-
time support is that the agency-specific behavioral adaptations should be
applied in an isolated way without affecting the service behavior that is
delivered to other travel agencies or users of that agency.

2.3.3 Context-Aware Maps
The context-aware maps example is small enough to be easily grasped, yet
complete enough to capture the intuition of the dynamic aspects of behavioral
adaptations and their interactions [33].
The context-aware maps application consists of a basic map visualization

service decorated with information about different places, public transportation
stops and buildings. By adapting the basic map system with a Positioning
service context, the system can provide an enhanced map experience by taking
into account the current geographical location of the user.
The general Positioning service context can be further refined by more

specific positioning services. For example, a GPSAntenna service retrieves the
current location using the device’s GPS, a GSMLocation service calculates the
current position with methods like the time difference of arrival (TDOA) us-
ing the GSM signal from cellular network cells, or near location based services
(NLBS) which are used to calculate the current location indoors (e.g. buildings).
Near location positioning services are defined for the context-aware maps ap-
plication to represent each of the available connection services of the device,
WLAN, Infrared, or Bluetooth to mention some examples.
The current geographical location of the user can be calculated by using one

(or a collection) of the positioning services described above. How the actual
method is chosen to calculate the position is unimportant to users. Positioning
services are automatically chosen based on the gathered data through the sensor
network the device is associated with. For example, the WLAN and GSMLocation
methods can be used when the application is running on a mobile phone with
access enabled for wireless connections.
The user is implicitly aware of the positioning service used through the appli-

cation’s graphical interface. The service to display the user’s current location
takes into account the service to calculate the user location by placing the lo-
cation in a colored circled area. The area surrounding the user’s location is
displayed in function of the accuracy of the positioning service used.
The maps application also defines a Private adaptation to protect the user’s

information. User information, such as its location or identity, is undisclosed
when this adaptation is active. The Private adaptation is useful, for example,
when the user has an insecure connection. The Private adaptation provides
the behavior to conceal all sensitive information regardless of the surround-
ing available services or incoming/outgoing communications. In particular, it
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conceals the user’s position by not providing the exact location (e.g., “at the
bank”) and by not displaying the identity of the user (i.e., the display image
only shows a pin with no further information).
The fact that adaptations can be simultaneously active causes a number

of difficulties for the design and implementation of applications that adapt
dynamically at run time. Consider for example the following situations:

Adaptations interactions The NLBS location service provided by the applica-
tion is not standalone. In order to offer the NLBS service, the system
must first be able to offer a Connectivity service through, for example,
a Bluetooth or WLAN connection. This condition needs to be checked ev-
ery time the NLBS service is to become available. The system must track
and coordinate adaptation interactions.

Multiple activations of behavioral adaptations Adaptations interactions can
be used to define services that enable other services. This is the case for
the Positioning adaptation, which can be made enabled every time one
of the geographical location services becomes available. Conceptually,
this means that if two geographical location services are available, the
Positioning adaptation is enabled two times. We refer to the fact that
adaptations can be activated several times as multiple adaptation activa-
tions, implementation of this capability is referred to in the literature as
activation counters [74, 31]. The concept of multiple adaptations activa-
tions is introduced to enable interaction between adaptations, where the
system must ensure that adaptations remain enabled as long as at least
one of the services enabling it. For example, the Positioning adaptation
should remain active as long as there is at least one geographical location
service is available.

Conflicting behavior interaction Behavioral adaptations that provide contra-
dictory behavior may be simultaneously available in the system. For
example, the behavior associated to the Private adaptation conceals the
user’s location, while the behavior associated to the Positioning ad-
aptation broadcasts the user’s location. When the two adaptations are
simultaneously available it is unclear if the user’s position should be dis-
closed or not (i.e., which of the two behavioral adaptations should be
used). This kind of conflicting behavior interaction must be avoided.

2.4 Requirements for the Consistency of
Dynamically Adaptive Software Systems

This section describes the requirements for a programming model that allows
managing inconsistencies in the context of Dynamically Adaptive Software Sys-
tems. The requirements are defined around the initial research goals described
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in the problem statement (Section 1.3). How to ensure the consistency and pre-
dictability of the system behavior, in the presence of multiple behavioral adap-
tations, continuously being introduced to and withdrawn from the system?
To answer this question, we divide the requirements into two sets. First,

we define the requirements for highly dynamic adaptive software systems (D.)
supported by the requirements found in the different application scenarios de-
scribed in Section 2.3, and using requirements previously defined for differ-
ent Dynamically Adaptive Software Systems such as, dynamic software up-
grades [114, 87], and self-adaptive systems [159].

D.1 Timeliness: Dynamically Adaptive Software Systems must allow adap-
tations to occur at any moment in time. This is due to the fact that
adaptations occur as a result of the information gathered about the sur-
rounding execution environment of the system. Since the system, has no
control over gathered information in the general case it is not possible to
predict when adaptations must be applied, neither whether an adaptation
is safe (i.e., its composition with the system does not yield inconsistent
states). Nonetheless, given that adaptations correspond to situations in
the surrounding execution environment, we require Dynamically Adap-
tive Software Systems to reflect these situations by applying adaptations
as promptly as possible. This requirement is motivated by the reaction to
changes of Section 2.3.1 and the timeliness property of software upgrade
systems [114].

D.2 Granularity: Dynamically Adaptive Software Systems must offer the pos-
sibility to adapt all entities of the system, from the most atomic operations,
to the most coarse components and everything in between. Adaptations
may vary in their level of specificity. On the one hand, one adaptation
may completely replace a basic functionality provided by the system. In
such a case, the corresponding adaptation would replace the whole com-
ponent in charge of such functionality. On the other hand, an adaptation
may only require a small increment of an already existing functionality.
In such a case, the adaptation should only modify this functionality. This
requirement is motivated by the configuration facility of Section 2.3.2 and
the flexibility property of software upgrade systems [87].

D.3 Independence: Adaptations should normally be defined independently
from the basic behavior provided by the system. Adaptations could be
seen as overwriting or complementing the behavior already provided by
the system. Definition of adaptations must be cleanly separated from the
base logic of the system and isolated from other adaptations. This require-
ment is motivated by the isolated software adaptations of Section 2.3.2 and
the conflicting behavior interaction of Section 2.3.3.

D.4 Compatibility: Adaptations react to situations in their surrounding execu-
tion environment. This allows us to define “temporal” adaptations —that
is, adaptations that do not persist through the whole life of the system,
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but that are only observable during a limited period of time. Moreover,
during the time an adaptation is applicable, other adaptations may also be
so. Dynamically Adaptive Software Systems must ensure that all adap-
tations are compatible with each other, as they are introduced to and
withdrawn from the system. This requirement is motivated by the the in-
dependence of adaptations one in Section 2.3.1, adaptations interactions
of Section 2.3.3, and the what question of self-adaptive systems [159].

D.5 Extensibility: The definition of an adaptation does not necessarily have
to be known beforehand by the system. New adaptations could be de-
fined and introduced while the system is running. Dynamically Adaptive
Software Systems must allow the introduction of new adaptations with-
out conflicting with those already defined. This requirement is motivated
by the customization of Section 2.3.1 and configuration facility of Sec-
tion 2.3.2.

Having defined the requirements for Dynamically Adaptive Software Systems,
we use the process for inconsistency management presented in Section 2.2 to
define the requirements (M.) for conflict resolution models of such systems
—that is, models used for the management of software systems and the identifi-
cation of inconsistencies. This requirements are to be applied to the particular
case of Dynamically Adaptive Software Systems as defined in Definition 2.3.

M.1 Interaction: Interaction is central to dynamic adaptability. If adaptations
do not interact with each other, the system is but a set of independent
pieces of consistent behavior. However, if interaction between adaptations
exists and is unaccounted for, the system may yield inconsistent states.
Dynamically Adaptive Software Systems require a model that expresses
the interaction between their adaptations. However, models that man-
age interaction between adaptations usually suffer from a state explosion
problem due to the fact that all possible interactions must be defined be-
forehand. Whenever possible, interactions between adaptations should be
transitive, in the sense that not all interactions must be explicitly defined,
reducing the state expansion problem.

M.2 Safety: Adaptation definitions may be unknown by the system at the
moment of its deployment. Adding new adaptations that the system
has not previously taken into account can be harmful. Newly introduced
adaptations may break the behavior provided by already existing ones, for
example, by providing a contradictory behavior. Whenever an adaptation
is introduced into the system, it should be ensured that this does not lead
to inconsistent system states. A model for Dynamically Adaptive Software
Systems must provide the means to verify the safety of the system.

M.3 Abstraction: The abstraction property of a model refers to the capabil-
ity to successfully represent (at run time) the system and its states (e.g.,
adaptations, relevant information from the surrounding execution envi-
ronment, interactions between adaptations and so on) in a way that they
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can be used for the verification of properties of the system. To support the
identification and management of inconsistencies in Dynamically Adap-
tive Software Systems a good abstraction model must be able to concisely
express the different states of the system and the transitions (actions) be-
tween such states.

M.4 Decision: The decision property of the model refers to the analysis capa-
bility of the model to determine the satisfaction of system properties. A
model for Dynamically Adaptive Software Systems must be able to reason
about the consistency of system behavior even in the presence of dynamic
adaptations.

2.5 Conclusion
This chapter overviews the domain of Dynamically Adaptive Software Systems
bringing forward its principal characteristics and the situations in which the
dynamic adaptation of the system’s behavior may yield inconsistencies. To
address such inconsistencies we overview the process of inconsistency manage-
ment.
This chapter sets the requirements for highly dynamic software systems. Re-

quirementsD.1 through D.5 are defined according to the neecesities discovered
in the development of different case studies using dynamic adaptations (Sec-
tion 2.3), and existing requirements in the literature of Dynamically Adaptive
Software Systems. To address the situations that may yield inconsistencies in
the execution of Dynamically Adaptive Software Systems, Requirements M.1
throughM.4 are defined taking inspiration from the inconsistency management
process.
A programming model for Dynamically Adaptive Software Systems that con-

forms to the requirements put forward in this chapter renders such system
highly dynamic, while preserving a consistent behavior of the system in pres-
ence of adaptations.





Chapter3
Dynamically Adaptive Software Systems and Models for Inconsistency
Management

This dissertation addresses the problem of managing behavioral inconsistencies
in DASS. For this purpose we develop a formal basis for the development soft-
ware systems that allows a consistent and dynamic adaptation of their behavior
with respect to their surrounding execution environment. The objective of the
formal basis is to avoid unpredictable system behavior in presence of dynamic
adaptations, and to aid programmers in identifying situations which could yield
inconsistent behavior. This chapter explores the two domains in which our re-
search takes place. Therefore, we divide the problem of managing behavioral
inconsistencies in Dynamically Adaptive Software Systems into two main bod-
ies of work: approaches that realize Dynamically Adaptive Software Systems,
and approaches that propose models for conflict resolution and inconsistency
management of software systems. Each of these domains comprise a vast body
of work. We limit the scope of this background section by focusing on those
approaches that are explicitly concerned with consistent adaptation of behavior
at run time.
In what follows we first provide an overview of the design space of Dynam-

ically Adaptive Software Systems. We explore state-of-the-art techniques that
allow behavior adaptation at run time, ranging from high-level architectural
techniques, to language-specific techniques. Each of the presented techniques is
evaluated with respect to the requirements D.1 through D.5. The objective is
to identify Dynamically Adaptive Software Systems that are highly flexible and
dynamic, the work developed in this dissertation concentrates in these kinds of
systems. Second, we present an overview of the design space of conflict resolu-
tion, and behavior management models for software systems. State-of-the-art
approaches are divided into three categories covering high-level abstractions and
frameworks, formalization approaches, and models for the structural represen-
tation and dynamic execution of systems. Each of the presented approaches
is evaluated with respect to requirements M.1 through M.4. The objective
is to identify the models that can effectively manage inconsistencies when the
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behavior of software systems is adapted at run time.
For each of the surveyed approaches we discuss their limitations and strengths

with respect to the development of highly dynamic software systems that adapt
to their surrounding execution environment. The formal basis for the manage-
ment of Dynamically Adaptive Software Systems established in this dissertation
(cf. Chapters 6 and 7) addresses the problems found in the surveyed approaches.
Chapter 10 evaluates our work with respect to the surveyed approaches.
This chapter is rounded off by relating the surveyed techniques and mod-

els for the realization of consistent behavioral adaptations at run time to the
requirements described in Section 2.4.

3.1 Realizing Dynamically Adaptive Software
Systems

This section explores both the state-of-the-art, and well established mechanisms
used in software systems to enable the adaptation of their behavior dynamically.
In this dissertation we aim to address highly dynamic software systems, where
different system entities (e.g., variables, processes, components) can be adapted
at any moment in time as a response to changing events from external (or
internal) events in the execution environment of the system. We start with the
observation that adaptations of the system can take place at any moment during
its execution; adaptations respond to unannounced changes. Furthermore, an
adaptation should be able to be combined with any other adaptation without
compromising the expected functionality of the system. Moreover, it is desired
for the system to be able to incorporate with ease new adaptations as it evolves
over time. This section presents an overview of the design space of Dynamically
Adaptive Software Systems.
To evaluate the design space of Dynamically Adaptive Software Systems, we

divide it in three categories according to the abstraction level in which partic-
ular mechanisms enabling dynamic behavior adaptation are implemented. The
categories are: architectural solutions, middleware solutions, and programming
language solutions. For each of these categories we explore different techniques
implementing dynamic adaptive behavior. For each technique we discuss the
challenges or shortcomings of the mechanism with respect to the five main
requirements for Dynamically Adaptive Software Systems: timeliness, granu-
larity, independence, compatibility, and extensibility of adaptive behavior.

3.1.1 Architectural Solutions
The category of architectural solutions explores well established techniques for
the implementation of software systems which offer structured and reusable
solutions to enable adaptation of behavior at run time.
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Design patterns

Design patterns are widely used to structure, modularize and define architec-
tures of software systems [68, 25, 66]. Different patterns allow the adaptation of
behavior at run time by requiring the definition of adaptations to be integrated
in the structure of the system. For example, adaptations are introduced as
part of the class hierarchy, in the case of object-oriented systems. Although de-
sign patterns allow behavioral adaptations of the system, systems implemented
using these solutions are rigid. Adaptations are required to be foreseen and
need to adhere to the structure of the system, which is not always possible.
This makes the conception of behavioral adaptations through design patterns
cumbersome, and difficult to maintain. Among the patterns used for enabling
dynamic adaptation, the most prominent are: state pattern, strategy pattern,
decorator, abstract factories, and dynamic proxies.
We do not discuss design patterns in detail here because their shortcomings

in providing behavioral adaptations at run time have been addressed using
language solutions [72, 161], which we discuss later in Section 3.1.3.

Dynamic software upgrades

Software upgrades are commonly performed for introducing new features, bug
fixes, or patches to a software system. In order to provide an update, normally
the system has to be stopped and restarted with the new functionality. For
many software systems downtimes are critical or even unaccepable. Whenever
this is the case, a new approach called dynamic software upgrades [78, 187] is
used, addressing the need to upgrade the behavior of software systems without
stopping them. Dynamic software upgrades ensure correspondence and safety
between different program versions. Four requirements have been proposed to
support these properties of dynamic software upgrades [114, 87, 152], namely
timeliness, robustness, flexibility, and practicality, in addition to other non-
functional requirements such as platform independence, performance overhead,
or non-intrusion of the program architecture.
Remember that the requirements defined for Dynamically Adaptive Software

Systems are inspired in some of the requirements for dynamic software upgrades.
However, most approaches for dynamic software upgrades only allow forward
evolution of adaptations —that is, adaptations can be introduced to but not
removed from the system. This presents a mismatch with respect to the vision
of Dynamically Adaptive Software Systems where adaptations are composed in
and out of the system according to the surrounding execution environment. As
a result the two sets of requirements are different.

Timeliness: Timeliness stands at the core of dynamic software upgrades.
When an upgrade is taking place, the system itself should continue work-
ing normally. As far as possible, upgrades should take place immediately
after they are requested.
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Flexibility: System upgrades can take place for any element defined in the
system at any time.

Robustness: When upgrading a system it needs to be verified that no pro-
gram inconsistencies arise, for example, by accessing one of the elements
being upgraded while the upgrade is taking place. Normally, to avoid
inconsistencies software upgrades must wait until a quiescense state to be
composed in the system [114].

Practicality: Definition and installation of software upgrades should be as
transparent as possible for programmers —that is, without disrupting the
architecture of the base system. Programmers must be oblivious to the
process in which upgrades are installed. In addition, if it is not possible
to perform the upgrade, programmers should be notified about the error
and (if possible) its cause.

Different approaches implementing dynamic software upgrades exist ranging
from specific virtual machines, Bytecode manipulation [101], or software trans-
actional memory [145]. Most of the existing approaches concentrate only on
a subset of the characteristics given here, thus presenting weaknesses in other
ones [87]. We highlight the main difficulties when implementing a system for
dynamic software upgrades. Since ensuring the consistency or safety conditions
for any kind of upgrade is a challenging task, many systems restrict the kinds of
upgrades that are allowed. For example, by disallowing the modification of the
class hierarchy, or modification of objects that have already been used. Behav-
ior adaptations must always be planned ahead in dynamic software upgrades.
Additionally, dynamic software upgrades are usually conceived to go forward
in time, thus not providing support to revert upgrades previously introduced.
Even more, approaches that provide such support, can only revert the current
upgrade to its prior version. Finally, most dynamic upgrade systems provide
either fine or coarse granularity for behavioral adaptations, but not both. As
there exist cases that could benefit from having both approaches, this is a short-
coming of current dynamic software upgrade approaches. For these reasons we
claim that dynamic software upgrades are not ideal for the implementation of
Dynamically Adaptive Software Systems.
Section 10.1 discusses how the formal basis for the development of Dynam-

ically Adaptive Software Systems presented in this dissertation could be used
in the setting of dynamic software upgrades.

Software product lines

Software Product Lines (SPLs) are a structured approach to product design and
customization [35]. SPLs allow defining adaptations of a product with ease, by
transforming components of the system at run time.
In SPLs, definition of adaptations (usually called variations in the literature)

is included as part of the regular software development process. Adaptations
are expressed in a variability model (usually resembling feature diagrams [125])
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and can be applied to the base system by means of model transformations. The
design and customization process of SPLs includes the definition and transfor-
mation of the system’s models —that is, adaptations are defined at design time,
and model transformations are pre-processed at compile time. However, more
and more SPLs approaches are shifting to allow adaptation and generation of
products at run time. These approaches are named dynamic SPLs [82]. In a
dynamic SPLs component transformations take place at run time. There are
different techniques enabling such transformations, for example, regenerative,
composable components construction, or incremental-move [35]. These tech-
niques can be characterized mainly by performing the model transformation in
two steps, synthesis and modification. In the synthesis step, a new base model
is generated using the new configuration that gathers applicable adaptations.
Each of the adaptations indicates a particular module to be replaced. Each
substitution is updated in the original base model. In the modification step,
the differences between the original base model and the generated base model
are calculated. These two steps are supported by an internal rule engine of the
system, gathering all substitution rules, evaluating from the space of possible
adaptations, which of them are feasible.
Figure 3.1 shows an example of the high level design of the home automa-

tion application described in Section 2.3.1 alongside its variability model for
emergency and burglar situations. Each of the situations (triangles denoted as
variation points (vp)) is represented in Figure 3.1 by an independent variability
model with two adaptations (squares denoted as variations (v)). The model
in Figure 3.1 takes inspiration from the home automation system presented
by Cetina et al. [34] and the adaptation model of Hallsteinsen et al. [82]. The
lines going from adaptations to the base model denote, for each adaptation, the
point where it is applicable.

Base model

SurveillanceEmergencySystem Alarm

CameraMonitorDetector

Phone

Variability model

security

vp

Photograph
User

v
Motion
Detection

v

Variability model

emergency
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MonitorUser
v

MotionDetection
v

DetectionRange
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Information

Figure 3.1: Base and variability models for the user detection system.

Using dynamic SPLs effectively allows the reconfiguration of systems at run
time. However, system adaptations need to be foreseen in order to create the
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variability model and specify the concrete transformation strategy. Moreover,
the points of the program in which adaptations should take place must also be
defined beforehand. Definition of variations and substitution rules can become
cumbersome as complexity of the system increases. Interaction between adap-
tations becomes an issue when multiple substitutions can be applicable. The
order in which substitutions take place needs to be manually encoded in the
rule engine, where rules can be missed, or be too general not applying to partic-
ularly exceptional situations. Hence, SPLs are not ideal for the implementations
of Dynamically Adaptive Software Systems.

Conclusion

Architectural solutions have as a main drawback the requirement of defining
all adaptations beforehand. This may be unfeasible for the setting of highly
changing environments. Additionally, adaptations are usually expressed in a
coarse-grained or fine-grained fashion, but not both, restricting the kind of
adaptations that can be defined by the system. Nonetheless, since adaptations
are known beforehand, they can be introduced timely into the system. Similarly,
architectural solutions are usually developed within the base system architec-
ture, rendering these adaptations highly compatible between each other, and
the base system.

3.1.2 Middleware Solutions
The category of middleware solutions explores platforms or systems focused
on reducing the complexity of building software systems that can dynamically
adapt their behavior, by shifting this complexity from the application design
towards a reusable middleware architecture. Most of the existing middleware
approaches that deal with adaptation of a system at run time are targeted to
work in a distributed environment. That is, they take into account communica-
tion issues between different components of the system. Since communication
between remote components is outside the scope of this dissertation, in this
section we only discuss the aspects of the middleware related to dynamic ad-
aptation of a system. Readers interested in the communication aspects of the
middleware presented in this section, are encouraged to follow the references
given to each of the approaches.

Dependency injection

Dependency injection, sometimes referred to in the literature as Inversion of
Control [67], is a well-known design pattern for component-based applications
that separates the management of component dependencies from the applica-
tion base code.
Dependency injection increases component reusability by reducing the de-

pendencies among them. Dependency injection is most commonly used in the
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case of component composition, by enabling reusability of components. Sub-
components may freely change as long as they respect a common interface.
Dependency injection is used as a middleware to dynamically adapt the behav-
ior of a software system, by implementing it as a Platform-as-a-Service (PaaS)
solution [191]. That is, platforms natively provide the means to inject behav-
ior dynamically, for example, using dedicated language constructs. However,
the inherited component-based composition mechanisms used in dependency
injection approaches still present some limitations.
Figure 3.2 shows a schematic version of the web booking application presented

in Section 2.3.2.

adaptive behavior

<<interface>>
PriceCalculator+ createBooking()

CreateBooking

+ calculatePrice()
VIPCalculator

+ calculatePrice()
RegularCalculator

+ calculatePrice()
LowSeasonCalculator

Figure 3.2: Dependency (interface) injection diagram for the web booking ap-
plication.

There are three main techniques to enable dependency injection, namely con-
struct injection, setter injection, or interface injection.1 These three techniques
require similar modifications to the structure of the system. Snippet 3.1 shows
the case for interface injection as it is performed in Guice,2 A lightweight de-
pendency injection framework for Java 5 . First, objects need to include an
instance variable to define the injected component, the configuration vari-
able in Line 3. Second, provide a method through which the component can
be injected into the instance variable (the class constructor, the variable set-
ter, or the interface injection method, depending on the used injection tech-
nique), example injection methods are shown in Lines 16 and 21 where the
calculatePrice method is defined. Third, the possible components to be in-
jected in the instance variable need to be defined through a configuration step,
shown by the method in Lines 11 through 14.
Dependency injection can effectively provide different behavior of a software

system through the management and dynamic injection of application compo-
nents. In the web booking application, this is done by the injection of different
price calculation components based on specific conditions, for example, type
of user, time of the year for which the booking is made, and so on. Different
components are dynamically injected into the application according to such
conditions.
Essentially, using dependency injection, systems are designed as SPLs with

1The interface injection technique is closely related to the abstract factory design pat-
tern [68].

2http://code.google.com/p/google-guice/

http://code.google.com/p/google-guice/
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1 // Calling the price c a l c u l a t i o n service
2 public void createBooking ( ) {
3 i f ( c o n f i g u r a t i o n == LOW_SEASON) {
4 LowSeasonCalculator c a l c u l a t o r = new LowSeasonCalculator ( ) ;
5 I n j e c t o r i n j e c t o r = Guice . c r e a t e I n j e c t o r ( c a l c u l a t o r ) ;
6 P r i c e C a l c u l a t o r pc=i n j e c t o r . g e t I n s t a n c e ( P r i c e C a l c u l a t o r . class ) ;
7 bookingPr ice = pc . c a l c u l a t e P r i c e ( ) ;
8 } else i f ( c o n f i g u r a t i o n == VIP_USER) { . . . }
9 }

10 // P r i c e C a l c u l a t o r c o n f i g u r a t i o n
11 protected void c o n f i g u r e ( ) {
12 bind ( P r i c e C a l c u l a t o r . class ) . to ( LowSeasonCalculator . class ) ;
13 . . .
14 }
15 // C a l c u l a t e P r i c e in L o w S e a s o n C a l c u l a t o r
16 public double c a l c u l a t e P r i c e ( ) {
17 // return the c a l c u l a t i o n with a low season d is c o un t
18 return pr icePerNight ∗ Math . c e i l ( ( end . getTime ( ) − s t a r t . getTime ( ) )←↩

/(1000∗3600∗24D) ) ∗(1 − lowSeasonDiscount /100) ;
19 }
20 // C a l c u l a t e P r i c e in R e g u l a r C a l c u l a t o r
21 public double c a l c u l a t e P r i c e ( ) {
22 return pr icePerNight ∗ Math . c e i l ( ( end . getTime ( ) − s t a r t . getTime ( ) )←↩

/(1000∗3600∗24D) ) ;
23 }

Snippet 3.1: Dependency injection implementation of the web booking
application [184].

run-time binding of the behavioral adaptations. Behavioral adaptations must
be decomposed according to multiple localized points in the application, sim-
ilarly to hot spots in Object-Oriented Programming frameworks. Moreover,
at most one behavioral adaptation can be activated per localized point. How-
ever, in the general case of Dynamically Adaptive Software Systems it would
be desirable to combine multiple adaptations.
The use of dependency injection for dynamic behavior adaptation of software

systems poses some difficulties. Similarly to the problems observed for the de-
sign patterns, behavior adaptations must be foreseen by programmers. In order
to provide new behavior adaptations, a new component and its respective con-
figuration need to be added to the system, which can become cumbersome and
time consuming as the system grows. Additionally, a full component needs to
be created for dedicated adaptations of every behavior, however small, mak-
ing dependency injection ill suited for the definition of fine-grained behavior
adaptations. Dependency injection is not designed to foster interaction be-
tween injected components. Rather they are supposed to stand alone for each
independent request. Composition of behavioral adaptations is thus not pos-
sible using dependency injection, leading to code duplication between different
components.

Service-oriented architecture

A Service-Oriented Architecture (SOA) [59] is a middleware approach for the
constructions of loosely coupled service systems. Each component of behavioral
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functionality is designed and provided as an independent service of the system.
Inter-service communication in a Service-Oriented Architecture takes places
through a standard interface, usually using XML or Web Services Description
Languages (WSDL), facilitating the interchange of services for other similar
services when appropriate. The flexibility to adapt the behavior of services is
only restricted by the requirement that the respective WSDL complies with each
of the interacting services. In SOA adaptations are defined at a coarse-grained
level. The drawback of such approach is that only complete services can be
adapted.
In recent years different approaches have been proposed allowing the dynamic

interchange of services in SOA. Mashups are a technique for creating web service
hybrids by adding value to services offered to users by associating the requested
service with other complementing services. To choose the particular services to
be used in a mashup, information about the user’s current situation (gathered
from available sensor networks) is used [24]. Using so called context-aware
mashups, services are offered according to the available services and not only
whenever all of the services defined for the mashup are available. Mashups could
also be used to provide user customization, offering dedicated mashups to sets
of users based on their surrounding environment. Cloud computing [8] has
become increasingly popular as a service provider infrastructure where storage
and computation services are leased to users. Web services are automatically
scaled up and down according to particular situations in which the service is
being used (e.g., user load, available computation resources). Cloud computing
has opened the door to a new trend in computing known as Software-as-a-
Service (SaaS) [183]. In the SaaS model, software products are not provided
to end users as off-the-shelf products, but accessible services. SaaS is used in
combination with cloud computing to provide highly scalable services to users.
It also uses mashups techniques to provide added value and customized services
to different users. SaaS systems envision the delivery of one single customizable
service to their users. Customization is usually managed in SaaS by means of
dependency injection or other software architectures that embrace behavioral
adaptations [184].
Figure 3.3 shows an overview of the components of a SaaS architecture. SaaS

systems are supported by a back-end in the cloud, where storage space and
resources are allocated as needed. The SaaS system itself can be configured
as the aggregation of other software services, for example using mashups, and
client specific customizations provided by means of a customization module, for
example using dependency injection or dynamic proxies. Finally the system is
delivered to the final user as a web application running in a web browser or as
native (web) App.3
As mentioned previously, software adaptation approaches like dependency

injection face challenges supporting adaptation interaction —that is, applying
multiple adaptations at a single application point. This problem translates to
the impossibility of composing adaptation behavior in SaaS systems. Addition-

3Web applications that look and behave like native Mobile applications.
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Figure 3.3: SaaS component architecture overview [8, 24].

ally, complete services must be modified for the adaptation of localized behav-
ior, hence, we discard SOA as an ideal for the implementation of Dynamically
Adaptive Software Systems.

Event systems

Event systems [188] provide a middleware platform to ease the programming
of systems that reify interaction (between system components, or with the
user) as the core concern of the system. Event systems allow the definition
of events in terms of event conditions and event behavior . Event conditions
dictate the state of the system (e.g., sensor information, or state variables) in
which the event should take place. Event behavior defines the actions that are
executed whenever the event conditions are satisfied. The behavior associated
with an event is automatically executed as soon as the corresponding event
conditions are satisfied. These characteristics of event systems set them as
a candidate to support dynamic adaptations. However, these systems also
present drawbacks for defining adaptations at different levels of granularity,
and for defining adaptation events independently of the base system.
Event systems have been used to enable adaptive behavior of software sys-

tems as a response to external events or inter-component interaction [92, 121].
As an example of how an event system can be used to develop dynamic adap-
tive software systems, we consider the user detection system embedded in home
automation application. The example is based on INI, a programming language
that facilitates dynamic adaptation through event reconfiguration [121]. Snip-
pet 3.2 shows the definition and use of events and their reconfiguration in INI.
User-defined events have the structure described in Lines 4 through 9. Events
are bound to an event definition by their name, list of input variables, and
list of outputs, as shown in Line 2. Events can be accessed by describing the
situations that synchronize with a particular event, giving the event definition
binding (possibly preceded by its id) and the initial values of the parameters.
Lines 12 through 16 show the dynamic reconfiguration of an event in response
to a particular set of conditions. In this case, the conditions refer to the de-
tection of an unknown user in the room while the house is empty. The event
is then reconfigured to capture information more frequently and take pictures
of the user. Such information can be used to report the presence of a burglar
to the authorities. Events can be directly executed as shown in Line 19 for the
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case in which there is a problem with the vital signs of the user.

1 // Event d e f i n i t i o n binding
2 @userDetect ion [ f requency : Intege r , imaging : Bool ] ( Pos i t ion , User , ←↩

V i t a l S i g n s ) => " i n i . ext . events . UserDetect ion "
3 // U s e r D e t e c t i o n event d e f i n i t i o n
4 public c lass UserDetect ion extends i n i . event . Event {
5 Thread objectDetect ionThread ;
6 @Override public void e v a l ( f i n a l I n i E v a l e v a l ) {
7 // generic event be h a vi o r d e f i n i t i o n
8 }
9 }

10 // event used to detect a user
11 $ ( burglar , emergency ) d e t e c t i o n : @userDetect ion [ f requency =1, f a l s e ] ( pos←↩

, user , s i g n s ) {
12 case {
13 user . unknown ( ) && house . isEmpty ( ) {
14 stop_event ( d e t e c t i o n )
15 r e c o n f i g u r e ( d e t e c t i o n , [ f requency = 0 . 5 , imaging=true ] )
16 r e s t a r t _ e v e n t ( d e t e c t i o n )
17 execute ( burglar , pos , true )
18 } s i g n s . c r i t i c a l ( ) {
19 execute ( emergency , user , pos )
20 }
21 }
22 }

Snippet 3.2: User detection and information retrieval system.

The user detection example for the home automation application confirms
that event systems can be effectively used for the development of Dynamically
Adaptive Software Systems. However, such development has three main draw-
backs. First, in event systems the control flow of the application is driven by
the input of external events rather than specified by the programmer. This is
commonly known as the inversion of control problem, which can make main-
tenance and debugging of the system difficult [81]. Second, as a consequence
of the inversion of control problem, event systems typically use hook methods
or callbacks (e.g., Lines 19 or 11 in Snippet 3.2), which can turn the definition,
use and maintenance of event systems into cumbersome and time consuming
tasks. Third, event combinations and interaction must be manually specified
within (or by interleaving) callbacks (e.g., Lines 12 through 21). As systems
grow larger, more conditions need to be added and combined into callbacks,
which become monolithic pieces of behavior, making the management of event
systems cumbersome and time consuming.
Event systems provide a good framework for the timeliness and compatibility

requirements of behavioral adaptations. However, event systems are rarely
aware of their surrounding execution environment, usually they can only react
to events that were defined beforehand. Upfront definition of all possible events
that the system could respond to is unfeasible. Furthermore, event systems only
manage one level of granularity, normally behavior responding to the events,
restricting the type of adaptations allowed in the system.
Section 10.4 discusses how the formal basis for the development of Dynam-

ically Adaptive Software Systems presented in this dissertation could be used
in the setting of event systems.
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Self-adaptive systems

Self-adaptive systems [117], also know in the literature as autonomic computing
or self-managing systems, are conceived as closed-loop systems with feedback
from self and the context —that is, from the whole software system, and the
surrounding execution environment that affects the system’ properties and be-
havior. The cornerstone of self-adaptive systems is that their life cycle should
not be stopped once the system is running. The system should effectively re-
spond to changes in its surrounding execution environment by improving its
functionality or performance for the situation at hand. Self-adaptive systems,
as a whole, satisfied the requirements of Dynamically Adaptive Software Sys-
tems (D.1 through D.5). However, there is no single implementation of a
self-adaptive system that satisfies all requirements.
In order to respond to changes in the surrounding execution environment,

self-adaptive systems must provide certain characteristics known as self-* prop-
erties.4 Self-* properties can be categorized in three levels [159]:

• The general level is identified by two main properties, self-adaptiveness
(consisting of self-managing, self-governance, self-maintenance, self-control,
self-evaluating) and self-organizing (emphasizing emergent functionality
and decentralization). General level properties are exhibited by systems
with interactive components which have partial (or no) knowledge about
the global system.

• The major level consists of the de facto properties of self-adaptive systems.
The following properties are part of the major level: self-configuring (the
capability of automatically and dynamically responding to changes in
the environment), self-healing (the capability to discover and diagnose
potential problems, also known in the literature as self-repairing or self-
diagnosing), self-optimizing (the capability of managing performance and
resources, also known in the literature as self-tuning or self-adjusting), and
self-protecting (the capability of detecting and recovering from security
breaches).

• The primitive level is identified by two main properties: self-awareness
(the capability of reasoning about self), context-awareness (the capability
of reasoning about the context).

The design of self-adaptive systems requires the consideration of four main
characteristics [159]:

Adaptation unit: Adaptations can take place for different entities of the sys-
tem, at different granularity levels, and to different scope extents. The
entities that can be adapted as a response to changes in the environment
depend on the abstraction level allowed by the underlying technology.
Examples of adaptable entities include: methods, services, components,

4http://www.research.ibm.com/autonomic/overview/elements.html

http://www.research.ibm.com/autonomic/overview/elements.html
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or parameters. The scope of adaptations is measured in terms of their
impact on the system. For example, parameter adaptation (referred to
as weak adaptation) or the adaptation of complete system components
(referred to as strong adaptation).

Realization strategy: Adaptations can be realized statically or dynamically.
Dynamic realization of adaptations consists of a defined set of rules al-
lowing adaptation of the system at run time. Management of adaptations
can be internal or external. In the external management model, the sys-
tem is composed of an adaptation engine and the software it adapts. Using
an external management approach facilitates the reusability of the adap-
tation rules and logic. Adaptation logic is often realized by engineering
the logic into the application architecture. This method is referred to as
making adaptation. An alternative method is to use adaptive learning, in
which artificial intelligence is used to render the adaptive behavior. This
method is referred to as achieving adaptation. The realization strategy
additionally comprises how generic and open the adaptation model is.

Adaptation time: Adaptations can take place reactively or proactively, respec-
tively depending on whether or not adaptations take place due to a change
in the surrounding execution environment, or whether the system can pre-
dict when a change must occur. Additionally, adaptations may take place
based on a continuous stream of data (in which the system changes when-
ever the gathered data changes), or defining specific monitoring points in
which data is gathered and analyzed to identify and respond to anomalies.

Adaptation interaction: Adaptations inevitably interact with each other and
other agents (e.g., users, software systems). This characteristic concerns
the automation level of the interaction between agents and the level of
trust between interacting entities.

Self-adaptive systems present a high degree of flexibility and dynamicity for
the realization of Dynamically Adaptive Software Systems. However, the devel-
opment of such systems requires addressing some challenges for the realization
of sound Dynamically Adaptive Software Systems [118, 159]. We start from the
observation that currently there is no single programming model for the de-
velopment of self-adaptive systems. These systems are developed, in their ma-
jority, using external frameworks usually only addressing one particular self-*
property. Self-adaptive systems should provide support for all self-* proper-
ties. Additionally, most self-adaptive systems provide a static mechanism for
the decision of which behavioral adaptations to take as changes are perceived
in the surrounding execution environment. This raises questions about how
to ensure that behavioral adaptations be consistent and provide a behavior as
expected. Such a problem can relate to the problem of defining policies for the
management of adaptations at run time.
Section 10.3 discusses how the formal basis for the development of Dynam-

ically Adaptive Software Systems presented in this dissertation could be used
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in the setting of self-adaptive systems.

Conclusion

Middleware solutions present two major drawbacks. First these solutions nor-
mally offer adaptability at a fine-grained or coarse-grained granularity level but
not both. Second, these solutions normally interleave the definition of adap-
tations and adaptation logic within the base behavior of the system. This
hinders the flexibility of the system as it evolves. Nonetheless, middleware so-
lutions mostly focus on the reactivity of systems, so adaptation timeliness is
ensured using such solutions. Actually, self-adaptive systems, as a whole, pro-
vide support for timeliness, granularity, flexibility, compatibility and indepen-
dence. However, we note that there is no single implementation of self-adaptive
systems that enables all five requirements.

3.1.3 Language Solutions
To round up the design space of Dynamically Adaptive Software Systems, the
category of language solutions explores programming paradigms that provide
language facilities to empower and ease the definition and introduction of adap-
tive behavior in software systems.

Metaprogramming

Many programming languages offer a Metaobject Protocol (MOP) to program-
mers, that is, a set of features to provide a way to, within the scope and limi-
tations of the language, reason about and modify its run-time properties [110].
The features offered to programmers are introspection or reflection, to observe
the state and properties of the system, and intercession, to catch and alter the
state and behavior of the system. Using MOP capabilities provided by a lan-
guage is often referred to as metaprogramming. Metaprogramming can be very
useful for the dynamic modification of a system’s behavior. However, this tech-
nique only allows gathering information about the internal state of the system.
In order to reason about the surrounding execution environment it is necessary
to change the base behavior of the system.
How and to what extent the MOP of a certain language could be used to attain

dynamic adaptive behavior of a software system depends on the particular
reflective API offered by the language. Here, we present an example of how the
metaprogramming facilities of Objective-C,5 for example, can be used to define
behavioral adaptations and introduce them dynamically at run time.
One possibility to introduce adaptive behavior at run time using the MOP is

inspecting the system state to check if the conditions for which an adaptation
is defined are valid (introspect the state of the system at run time). For those

5We use Objective-C because the work of this dissertation is developed in this language.
However, similar implementations can take place in other languages like Smalltalk or the
Common Lisp Object System (CLOS).
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cases in which an adaptation should be applied, messages should be redirected
to the appropriate adaptive behavior (intercession of message calls and dynamic
message re-invocations).
As an example let us take the web booking application (Section 2.3.2). The

basic behavior in this example is to book hotels at a full rate. Calculation of the
booking price is done via the calculatePriceMethod:. Let us suppose that be-
havioral adaptations and the base behavior are defined in an Adaptations class
and the standard interface for the calculatePrice: method is empty. Such
adaptations are enabled according to the state of the booking, whether it is done
for the low season, or for a VIP user. The definition of these methods is shown
in Snippet 3.3, in Lines 2 through 12. Note, however, that three methods are
accessed using the same interface, that is, calling the same calculatePrice:
method. To do so, we take advantage of the method forwarding facility available
in the MOP of Objective-C. Method forwarding works by providing an imple-
mentation of the forwardInvocation: method in the class responsible for re-
sponding to the calculatePrice: base behavior.6 The forwardInvocation:
method, defined in Line 14, is called every time a message not understood by
the class is received. Inside this method, we can reason about the state of the
system to know to which method the system should respond. Lines 15 and 16
take the state variables we are interested in, and use their values. Lines 17
through 19 show how the decision of which method to apply is made.

1 // Adaptations class
2 - (double) calculatePriceBase : {
3 return pricePerNight ;
4 }
5 // calculatePrice when for VIP user bookings
6 - (double) calculatePriceVIP : {
7 return pricePerNight * Math.ceil (( end. getTime () - start . getTime ())←↩

/(1000*3600*24 D))*(1 - VIPDiscount /100) ;
8 }
9 // calculatePrice when booking low season

10 - (double) calculatePriceLowSeason : {
11 return pricePerNight * Math.ceil (( end. getTime () - start . getTime ())←↩

/(1000*3600*24 D))*(1 - lowSeasonDiscount /100) ;
12 }
13 // Price managing class
14 - (void) forwardInvocation :( NSInvocation *) anInvocation {
15 IVar lowSeason = class_getClassVariable ( Adaptation , " lowSeason ");
16 IVar vip = class_getClassVariable ( Adaptation , " vipUser ");
17 i f ( lowSeason . value == true) {
18 objc_msgSend ( Adaptation , @selector(" calculatePriceLowSeason "));
19 } // Similar cases for methods calculatePriceVIP and calculatePriceBase
20 }

Snippet 3.3: Definition and use of adaptive behavior of the mobile file sharing
application using metaprogramming.

Adapting the behavior of software systems can successfully be done via the
MOP of the language. However, defining and introducing behavioral adaptations
in such a way, can become quite cumbersome. As the application grows and

6This technique can also be used in Smalltalk by means of implementing the
MessageNotUnderstood method.
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more adaptations are defined for a particular method, the forwardInvocation:
method becomes monolithic and harder to maintain, especially, if the different
methods must be adapted with respect to a particular state of the system.
The use of the MOP provides programmers the liberty of composing different
adaptations by forwarding messages. However, this needs to be done manually
by programmers, which has two main disadvantages: First, manually composing
behavior is error-prone and difficult to maintain. Second, manual composition
of adaptations hinders the dynamicity of the approach, because composition of
behavior needs to be defined statically in the source code, and thus adaptations
will always be composed in the same fashion. This encumbers the dynamicity
and flexibility requirements of Dynamically Adaptive Software Systems.

Reactive programming

Reactive programming is a programming paradigm for the development of
event-driven systems allowing the definition of events that continuously change
over time [10]. In particular, reactive programming is proposed as a solution
that tackles the problems of inversion of control and callback management
existing in conventional event systems. Reactive programming eases the de-
velopment of event systems by enabling the definition of system behavior, and
automatically taking care of the execution of such behavior whenever appro-
priate (e.g., whenever a change is perceived). In response to such changes
the behavior of the system could be adapted automatically, reducing the com-
plexity of developing and maintaining event systems with callbacks. Reactive
programming facilitates the introduction of fine-grained behavioral adaptations
as a response to changes of reactive values. However, these changes need to be
known statically in order to provide the respective behavioral adaptations.
Reactive programming languages are mainly characterized by two concepts:

behaviors and events. Behaviors are first-class entities to represent continuous
change over time. Events are first-class values describing discrete event occur-
rences over time. Similar to event systems, reactive programming can be used
for the development of Dynamically Adaptive Software Systems. As an exam-
ple we rework the user detection system in Snippet 3.4, by using Flapjax [133],
a reactive programming language embedded in JavaScript.
Unlike with event systems, the complexity of managing event callbacks is

reduced by the automatic execution of event dependent behavior provided by
reactive languages. For example, variables at Line 1 (an event changing dis-
cretely over time) and Line 2 (a behavior changing continuously over time) are
automatically updated whenever they change (or according to specific times-
tamps). Likewise, every function that depends on any of these variables is
recalculated whenever their values change. However, the complexity of manag-
ing the conditions for the execution of specific behavior persists. This is shown
in the userDetection(..) function at Line 4, which plays the role of a man-
ual method dispatcher. Whenever a user is detected by the movement sensors,
one of the functions defined at Lines 19 through 21 are automatically called
according to the specific situation of the user. Managing such complexity can
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1 var userE = extractEventE ( m_sensor , " movement−d e t e c t e d " ) ;
2 var houseB = extractValueB ( " house−s t a t e " ) ;
3
4 function u s e r D e t e c t i o n ( userE , houseB ) {
5 var user = db . t r a n s a c t i o n ( function tx ) { tx . e x e c u t e S q l ( . . . ) ; }
6 var posB = startsWith ( userE , user . g e t P o s i t i o n ( ) ) ;
7 i f ( user == null && houseB ) {
8 var userPhotoB = startsWith ( null , " photo " ) ;
9 b u r g l a r ( user , posB , userPhotoB ) ;

10 } else {
11 var s ignsB = startsWith ( userE , user . s i g n s ( ) ) ;
12 i f ( s ignsB . c r i t i c a l ( ) )
13 emergency ( user , posB , s ignsB ) ;
14 else
15 userRoomAdaptation ( user , posB ) ;
16 }
17 }
18
19 function b u r g l a r ( user , pos , userPhotoE ) { . . . }
20 function emergency ( user , pos , s ignsB ) { . . . }
21 function userRoomAdaptation ( user , pos ) { . . . }

Snippet 3.4: Reactive implementation of the user detection system.

be cumbersome as a dispatching function like the one at Line 4 is needed for
every adaptable behavior. Moreover, as systems grow larger, these functions
undergo a combinatorial explosion of the conditions for which specific behav-
ior must be applied, due to interaction between adaptations, but also to new
adaptation conditions being introduced into the system. For these reasons we
argue that reactive programming is not an ideal programming paradigm for the
development of Dynamically Adaptive Software Systems.
Section 10.5 discusses how the formal basis for the development of Dynam-

ically Adaptive Software Systems presented in this dissertation could be used
in the setting of reactive programming.

Aspect-Oriented Programming

The Aspect-Oriented Programming (AOP) paradigm tackles the problem of
modularizing behavior that cuts across the base modules of the system [111].
When a functionality of the system cannot be cleanly modularized within the
main structural composition of the system (e.g., hierarchical decomposition in
OOP languages), such functionality is said to be a crosscutting concern or an as-
pect of the system. Moreover, when different crosscutting concerns are present
in the system interacting with each other (and with the base functionality of
the system), they are said to be tangled. AOP provides a structured way to
modularize system functionality such that behavioral adaptations do not cut
across, or that is tangled with that base functionality. AOP provides a mod-
ular approach for the definition and introduction of behavioral adaptations.
However, this approach poses limitations with respect to the composition be-
tween aspects and their respective behavioral adaptations, which can give rise
to behavioral inconsistencies.
One of the most widely used mechanisms used in AOP to address the prob-
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lems of tangled functionality and crosscutting concerns is the use of advice and
pointcuts. Advices specify whether the aspect’s behavior precedes, succeeds,
or replaces the behavior specified in the base system. Using advices, different
localized behavioral concerns in the system can be either extended (by means
of preceding or succeeding advices), or completely concealed (by means of the
replacement advices). Pointcuts are a declarative way to select different join
points in the system’s execution. Each advice is defined alongside a pointcut
specifying the points of the program execution in which the advice is joined with
the base behavior of the system. The mechanism of pointcuts and advices can
also serve as a mechanism to introduce behavioral adaptations into the system,
for example, if we use replace advices. However, application of advices into the
base functionality of the system according to pointcuts is not always done at
run time, but at aspect weaving time. Different mechanisms for dynamic as-
pect weaving have been proposed. CaesarJ [7] is an AOP language that allows
dynamically scoped activation of program definitions. Nonetheless, declaration
of pointcuts is performed statically, making it ill-suited for the maintenance
of multiple advices. JAsCO [181] is an aspect language tailored for the devel-
opment of component-based software. JAsCO enables the runtime application
and removal of aspects by means of connectors. Connectors specify the con-
text and order in which aspects are deployed into the system. Every time the
context conditions specified in the connector are satisfied, its defined aspects
are deployed into the system and are applied in the order of their definition.
Ordering of applicable aspects addresses the feature interaction problem [28].
PROSE [149] is an AOP system introducing dynamic aspect weaving. Aspects
can be woven and unwoven at run time through an aspect extension manager.
Dynamic aspect weaving can be used, for example, for adaptation of services
in response to event changes in the environment. Dynamic aspect weaving
fosters system flexibility, for instance, the ability to express join points that
capture only certain invocations of a given method, or application of aspects to
particular contexts of execution.
Take for example the behavior adaptations introduced in the web booking

application (Section 2.3.2). These adaptations to the booking behavior can be
dynamically introduced using AOP as shown in Snippet 3.5. Line 4 shows the
definition of an advice which replaces the original method implementation (this
is dictated by the METHOD_ARGS definition). Initially the advice matches all
method invocations that return a double. This is specialized by the pointcut
defined in Line 8, which specifies to only match methods (members of any class)
that are named calculatePrice.
Aspect instances are dynamically introduced and withdrawn via the PROSE

aspect manager as it is shown in Lines 14 and 15 of Snippet 3.5. To man-
age interaction between aspects, PROSE offers two additional constructs. The
proceed() construct allows to escape from the advice’s execution and return
to the base functionality. proceed() is often used to extend the behavior of
the base system by performing additional computation, and then continue with
the regular flow of the system (i.e., without aspects woven into it). It might
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1 class LowSeasonDiscountAspect extends Aspect {
2 private s t a t i c double lowSeasonDiscount = 2 0 ;
3 Crosscut lowSeason = new DiscountCrosscut ( ) {
4 public double METHOD_ARGS( ) {
5 return pr icePerNight ∗Math . c e i l ( ( end . getTime ( )−s t a r t . getTime ( ) )←↩

/(1000∗3600∗24D) ) ∗(1− lowSeasonDiscount /100) ;
6 }
7 // s p e c i a l i z a t i o n matches the c a l c u l a t e P r i c e method
8 protected abstract PointCutter pointCutter ( ) {
9 return ( Within . method ( " c a l c u l a t e P r i c e " ) ) ;

10 }
11 }
12 // Aspect i n s e r t i o n and w it h d ra w
13 LowSeasonDiscountAspect asp = new LowSeasonDiscountAspect ( ) ;
14 Prose . getAspectManager ( ) . i n s e r t ( asp ) ;
15 Prose . getAspectManager ( ) . withdraw ( asp ) ;
16 }

Snippet 3.5: Implementation of the web booking application using PROSE.

be the case that multiple aspects can be applied to a particular join point.
The setPriority(int) construct is introduced to resolve the order in which
aspects are applied. Aspects defined with a lower priority are applied before
those with a higher priority. If no priority is defined, it is assumed that aspects
have a priority of 0. Whenever multiple aspects are applicable to a particular
join point, the use of proceed() does not immediately escape from the aspect
execution to the base level, but rather, the aspect escapes to the next applicable
aspect according to their ordering.

AOP, and in particular the dynamic weaving incarnation of AOP, provides the
necessary functionality to allow dynamic adaptation of system behavior in re-
sponse to changes in the system’s environment. However, two major challenges
can be identified. Aspects are not meant to be composable units of behavior.
Behavior provided by aspects is devised to adapt (and maybe reuse) the be-
havior defined in the base application. When multiple aspects (with the same
priority) are applied to a same join point, the order in which they execute is usu-
ally non-deterministic —that is, the order in which aspects execute can change
from one execution to the next.7 The second problem AOP poses for applying
dynamic adaptation of software systems is that aspects are woven into every
join point matching its pointcuts. There are particular situations in which we
do not want to weave the aspect for a particular point-cut, while in all other sit-
uations the aspect should be woven. This problem is eased by the introduction
of an aspect manager in dynamic aspect weaving. In such a case we recognize
that the management of the conditions for inserting or withdrawing an aspect
can become complex as the number of aspects and special situations increases,
possibly leading to inconsistencies in the observed behavior. Therefore, AOP is
not an appropriate paradigm for the development of DASS.

7This is the case of AspectJ, other AOP languages, such as JAsCO, use a defined ordering
for the application of aspects, based on the order in which they are declared. However,
this ordering may not be desired for all possible cases of interaction between aspects.
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Context-Oriented Programming

Context-Oriented Programming (COP) [90] is an emerging programming par-
adigm similar to the AOP paradigm, addressing the modularity problem of
separating the base behavior of a system from its adaptive behavior. This par-
adigm provides a high level of dynamicity for the introduction and withdrawal
of fine-grained behavioral adaptations. The COP paradigm also addresses the
problems of compositionality and interaction of behavioral adaptations. For
these reasons we chose COP as our experimentation platform in the setting of
Dynamically Adaptive Software Systems. An extended introduction and expla-
nation of the COP paradigm is presented in Chapter 4.

Conclusion

In this dissertation we are interested in providing support to develop software
systems that provide a fine-grained adaptability (not excluding more coarse-
grained types adaptability) while enabling a high level dynamicity. As evi-
denced by this overview, the solutions realizing Dynamically Adaptive Software
Systems that most closely approximate these requirements are those offered di-
rectly within the programming languages. In particular, one solution that seems
to provide the most flexibility for the definition, introduction, and dynamicity
of adaptations, is Context-Oriented Programming.

3.2 Models for Conflict Resolution and
Inconsistency Management

The ability to dynamically adapt their behavior empowers software systems to
become ever smarter and flexible. However, with such great power comes the
great responsibility of ensuring that the system behaves “correctly” in every
possible situation —that is, the observed behavior of the system at run time
can be predicted during its design and development.
Section 3.1 already mentioned different situations in which unpredicted be-

havior could be observed, for example, whenever certain adaptations are com-
bined or interact with each other. Adaptation interaction may give rise to in-
consistencies in the system behavior (i.e., the behavior observed by the system
is not as predicted). For example, in the web booking application whenever
a booking is done by a VIP user during the low season, it is unclear which
discount is applied to the flat rate of the booking. To avoid inconsistencies,
systems must provide a way to coordinate or manage interaction and composi-
tion of adaptations at run time. In this section we explore state of the art in
coordination models for software systems at run time.
Before exploring existing approaches for the coordination or management

of software systems later in this section, we provide a definition for run-time
models (also called execution models), alongside key criteria to evaluate their
appropriateness with respect to Dynamically Adaptive Software Systems. A
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model is understood as a set of formal elements describing a software system,
designed to analyze particular characteristics or subparts of the system. Ex-
ample analyses are: checking for completeness of the system, transformation
of the model into code, or formal abstraction of the system [132]. A run-time
model extends the initial definition of model to also describe dynamic aspects
of the system under study. Definition 3.1 presents our definition of a run-time
model, which is based on the definition given in Bobbio [20].

Definition 3.1. A run-time model is an abstraction of the state of a system at
run time —a snapshot of the system. A run-time model can be represented as
an abstraction of the system’s state space and the different paths of executing
actions between these states.

The purpose of abstracting the system’s dynamic semantics by a run-time
model is to allow reasoning about the dynamic properties of the system by
means of analysis techniques. For example, satisfiability of invariant properties
on all states, or possible reachable states at run time, can be verified by ana-
lyzing safety or liveness, or reachability of the system, respectively. However,
state spaces can be unbound. The choice of the abstraction level of the model is
crucial to avoid an explosion of the number of states during the system analysis.
In what follows we explore state-of-the-art approaches proposed for the man-

agement of software systems. We divide the design space of conflict resolution
models for software systems into four categories according to the formalism
behind each approach. These are, architectural modeling approaches, logic ap-
proaches, rule-based approaches, and state machine approaches. Each of the
presented models is evaluated with respect to the interaction, safety, abstrac-
tion, and decision requirements for inconsistency management of Section 2.4.

3.2.1 Architectural Modeling Approaches
Modeling artifacts has been widely used in the software engineering process to
describe systems by abstracting specifics of their implementation and providing
a high-level view of the system. Normally, software models are used solely for
the design of the system or for its documentation. However, more and more
interest is seen in the use of models actively support the development and
execution of the system. In the category of architectural models we discuss
some of the existing artifacts used to model adaptive software.

Modeling transformations

Software system models as understood by the MDE community are a series of
artifacts used to describe (parts of) a system. Within the modeling community
a large body of research has been applied to the management of consistency
among the models describing a system, and throughout the evolution of the
system [178, 146]. Model artifacts are normally treated statically. Whenever
the model changes, the changes are independent of the current state of the
system and its dynamics. To apply changes made to a model, the system must
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be stopped and re-compiled. Various approaches, however, allow the evolution
of models at run time, usually by means of techniques such as aspect weaving
or dynamic SPL [135].
Here we discuss a transformation-based technique for the description of Dy-

namically Adaptive Software Systems using models. The idea behind this ap-
proach is that the system is described by a modeling language (like UML),
whereas particular parts of the system that should adapt to specific situations
are described as independent models. The adaptation of the system at run
time is realized by means of graph transformation rules [165, 46]. The Context-
Aware Application (CAA) model proposed by Degrandsart et al. [46] defines
adaptations as a multi-dimensional space representing all of the situations in
the surrounding execution environment that are relevant for the system. An
adaptation is an instantiation of the space by giving specific values to each
dimension in an adaptation vector. Each value of an adaptation is represented
by a specific model. Adaptation of the system is performed by means of a
transformation function, which given an initial model and a model adaptation,
produces an adapted model.
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Figure 3.4: A model transformation for the web booking application.

We revisit the web booking application example using the model transfor-
mation approach introduced by Degrandsart et al. [46]. For this example
our adaptation vector consists of one dimension with two possible values —
the discount adaptation with values “low season” and “VIP client”. Figure 3.4
shows in the lower left-hand corner the basic model of the system, identified
as Mc, which provides the behavior to create a booking and calculate its price;
where the behavior is triggered by a button being clicked in the user inter-
face. The model identified by L provides the initial adaptation where there
is no discount. The right-hand side of Figure 3.4 shows the adapted model
after a transformation takes place. The R model adapts the event sent by
the UI button and extends the PriceCalculator class with the addition of
method calculateVIPPrice(). The model corresponding to this adaptation
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is the model Md. The arrows labeled m and m′ represent the match functions
linking the elements of the adaptation models to the corresponding elements of
the system’s model. Arrow rc,d denotes the transformation rule, and arrow tc,d

denotes the actual graph transformation.
Graph transformation rules can conflict with each other, for example, when

one rule deletes a model element required by the second rule as an input, or
when a transformation rule changes attribute values of the adaptation vector,
such that a second transformation rule is no longer applicable. The CAA model
provides an analysis method to identify these type of conflicts between graph
transformation rules by means of the executable language AGG [182]. The
CAA model can be used to identify conflicts between transformation rules by
analyzing the coverability property of adaptations defined in the system —that
is, analyzing if all adaptations defined in the system can be reached from the
initial state of the system by means of graph transformation rules.
The transformation-based CAA model provides support for both abstraction

and decision properties, thus it can serve as a run-time model for Dynamically
Adaptive Software Systems. Although the CAA model has been successfully
used for the development of Dynamically Adaptive Software Systems it still
has some rough edges which discourage its use. First, the system is not repre-
sented by a single model, but by a set of models (both the basic representation
of the system and its adaptations). Such proliferation of models can become
complex to manage as the application grows and more entities and adaptation
situations are added to the system. Moreover, due to the exponential growth of
transformation rules as the number of adaptation situations and their values in-
crease, the definition of transformation rules can become cumbersome. Second,
there is no way to express interaction between adaptation dimensions (or their
values), this can cause an unintentional covering of one dimension by another
—that is, the value space of one dimension is contained in the value space of
another dimension (during the reduction and transitive closure calculation).

Feature-Oriented Domain Analysis

Features initially emerged with the goal of expressing distinct functionality
of a software system. This concept of a feature is referred to as conceptual,
because it only regards observable behavior of the system but not its imple-
mentation. The Feature-Oriented Programming (FOP) paradigm [151] arose to
consider the implementation aspects of conceptual features. A system consists
of a set of artifacts describing the program’s functionality. Features encompass
parts of these artifacts, distinguishing between coarse-grained and fine-grained
features [108].
In the setting of FOP, software systems are usually considered as aggregation

of features, describing the main modules of functional behavior of the system.
To represent such modules and their sub-parts, the Feature-Oriented Domain
Analysis (FODA) methodology was proposed as a modeling technique [106].
Feature models, as shown in Figure 3.5 for the case of the web booking ap-
plication, can also be used to identify the different possibilities, or variations,
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providing the behavior of a functional model. Additionally, feature diagrams
make it possible to model the interactions between different features.
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Figure 3.5: Feature model aggregation for the web booking application.

Feature models have been traditionally used in a static setting, where given
a feature model, it is possible to reason about its composition and behavior
beforehand. Reasoning techniques in FOP allow the identification of configu-
rations of features that cannot occur in the composition of a software system
—that is, the identification of features that cannot be deployed together in a
software system.
In the setting of feature modeling the concept of feature interaction [28] was

introduced with the objective of identifying inconsistencies that may arise from
the activation and interaction of different features, based on the defined depen-
dencies between them. In the general case, feature interaction is a challenging
problem. This problem becomes even harder when addressed at run time.
Techniques for the identification of feature interaction at run time have been
developed over the years. However, for the majority of cases the problem of
run-time feature interaction is undecidable. To overcome this problem, recent
approaches address the dynamic feature interaction problem by the upfront
definition of policy rules between features that may interact at run time [126].
Whenever a feature is included in the program at run time, the policies are ver-
ified. In case there is an interaction problem, the associated corrective process
defined by the policy is applied.
Feature diagrams effectively abstract software systems and provide support

to analyze system properties. However a main drawback is that policy and res-
olution rules need to be predefined. Therefore, they may not cover all possible
interactions of features that can appear during the system execution. More-
over, verification of policies and application of conflict resolution techniques
have been reported as costly operations, making these analysis techniques less
suitable for highly dynamic settings.

Conclusion

Architectural approaches provide a high level abstraction for modeling software
systems, presenting their main components and their principal interactions. In
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the case of Dynamically Adaptive Software Systems, such abstractions of the
system could be used at run time to manage the interaction between the differ-
ent components of the system. Run-time interaction is normally managed by
means of transformation rules or contracts which explicitly specify the allowed
and disallowed interactions between the system adaptations. These approaches
only allow to reason about the correctness or safety properties of interactions
beforehand. To provide such support these models rely on external models or
formalisms (usually using external tools as AGG or SAT solvers as Promela)
that allow reasoning over different properties about the model and the inter-
action policies. Such additional specification burdens the development of the
system, making the approaches inappropriate as models for the inconsistency
management of Dynamically Adaptive Software Systems.

3.2.2 Formal Approaches
Analysis of software systems is normally supported by means of formal ap-
proaches. Software systems can be modeled by raising their level of abstraction
to an appropriate mathematical formalism. Formal models are normally used
at early stages of the development process to benefit from the mathematical
model, using it to prove or identify interesting properties of the system.

Logic programming languages

Over the years different programming languages that implement logic formalisms,
such as Prolog [58] or Soul [195], have been developed to create bridges between
software systems and logic reasoning engines. The use of such logic languages
allows programmers to reason about software systems by querying the system
for particular properties using logic expressions.
The general way in which logic programming languages reason about system

properties consists of the following steps:

1. A representation of the system to be analyzed is (automatically) ex-
tracted, for example, a model of the program’s object structure, the con-
trol flow graph of the system, or the Abstract Syntax Tree (AST) of the
system.

2. The property of the system that we want to analyze is expressed as a
logic expression (in the logic language), over the extracted system repre-
sentation.

3. The logic expression is evaluated as a query over the system representation
until an answer, or a counterexample is obtained.

The added value of using dedicated query (logic) languages to analyze sys-
tem properties is that it facilitates reasoning about properties that should be
satisfied over a period of time (using CTL or LTL logic), or to reason about
properties holding up in an entire path of execution (using regular path expres-
sions). Logic programming languages are commonly used for analyzing system
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properties. Such analysis is performed on an abstract model of the system,
where the state and transitions of the system are represented, according to the
needs of the properties to be analyzed.
Logic programming languages provide an abstract representation of a system,

and the means to reason about system properties by querying such representa-
tion. In order to use these programming languages for the modeling and man-
agement of Dynamically Adaptive Software Systems, they must be extended to
support reactivity and express interactions between program entities (similarly
to the extensions required to reason over source-code). Since the languages
must be extended and modified, reasoning about them must be revisited, to
take into account the introduced concept. Thus, logic programming languages
cannot be used straightforwardly as conflict resolution models.

Algebras and logic

Different mathematical formalisms have also been used to model and foster
formal reasoning about software systems and their properties. The idea in these
approaches is to make abstractions of the system within the boundaries of a
specific mathematical formalism and to decide about certain system properties
within such formalism. We discuss here more suitable formalisms to reason
about Dynamically Adaptive Software Systems.
Modal logics [19] have been used to represent necessity and possibility condi-

tions for system properties. Modal logics are mostly used to express temporal
conditions, but they can also be used to express conditions like termination of
programs, in the case of the propositional dynamic logic. Using modal logics
it is easy to reason about past or future states of a system by means of modal
formulas, for example, expressing concerns like “does property x holds for every
state following the current state” or “has property x held at any point in the
past”. In the context of Dynamically Adaptive Software Systems such reasoning
could be used to identify if a particular (set of) functionality is provided for
all applicable adaptations of the system. For example to express situations like
“will method foo be applicable in the future”.
Process algebras [86, 52] are used to model concurrent processes, providing

high-level abstractions for operations between processes such as parallel com-
position, communication, replication, restriction, and synchronization. The
most prominent representative of process algebras is the π-calculus specifica-
tion [134]. In particular, in π-calculus it is possible to express the conditions
under which two processes communicate (via restrictions) which can be used
to restrict how and when the main process of the system communicates with
a particular adaptation. Specifically, it would be possible to compose different
adaptations to a particular process. In the web booking application the parallel
composition of processes is expressed in π-calculus as:

{} ` Booking p−→ {p} ` F |(νl)(p̄− LSP )|(νv)(p̄− V IPP )

This expression represents the request for a booking price carried through
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the p channel; the price is calculated by the full price process F and can be
composed with either the reduction price for low season -LSP - or a VIP user
price -V IPP - processes whenever their restrictions apply.
Coalgebras, and in particular coalgebraic specification [97], has been used

to express the dynamic behavior of systems. Coalgebraic specifications are
structured using inheritance and aggregation from Object-Oriented Progra-
mming (OOP), which are used to model state-based systems (where the state
is considered as a black box). Dynamic behavior can then be expressed speci-
fying conditions in which particular behavior should take place or not, hence,
specifying system adaptations. The use of coalgebraic specifications allows us
to reason about dynamic behavior in terms of invariance and bisimilarity. Ad-
ditionally, modal operators may be used within the coalgebraic specifications
as invariants for reasoning about future states, and safety of progress/modal
formulas among other system properties.
These three formalisms are used on their own as an abstract model to prove

consistency or decidability properties about the systems they model. However,
these models are used to represent program properties, rather than represent-
ing the actual program, (consequently they are not used at run time). To
represent the program state and transitions, concrete models based on the for-
malisms are defined. Examples of these concrete models are: abstract state
machines [23], algebraic petri nets [55], alternating automata [179] or com-
putational tree logic [40]. Regardless of the concrete model used, verification
and analysis of system properties are often done by means of model checking
techniques, requiring two specifications of the system.

Model checking

Model checking is an analysis and verification technique that is orthogonal to
all formal approaches described in this section. Model checking verification
provides information about system properties based on a logic formulae speci-
fication of it. Model checking techniques for the verification of logic formulae
include abstract interpretation, partial order reduction, or automated theo-
rem proving. The most prominent model checking technique is based on the
boolean SATisfiability problem (SAT), which is commonly used to decide if a
system satisfies a set of logic formulae [150].
Model checking, and in particular SAT solvers, could be used in the setting of

Dynamically Adaptive Software Systems to verify if adaptations of the system
only take place as initially specified. This can be done through logic formulae
describing the conditions in which adaptations and their interaction could take
place. Formulae are used to express the disallowed states of the system. Each
formula is verified by the SAT solver. If the formula is satisfiable, then the
behavior of the system is incorrect.
In order to use model checking techniques, it is usual to describe the state

space of the system by means of a state machine like approach (e.g., an au-
tomaton). System properties are verified by means of logic formulae on such
state space. Using two specifications of the system (i.e., the state space and its
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property formulae) could be error prone, as both representations must change
simultaneously over time. Additional support should therefore be provided to
automate the generation of the logic formulae from the initial state space of the
system.

3.2.3 Conclusion
Formal approaches are introduced for the abstraction or verification of software
systems. These usually consists of two parts, a formal specification and a ver-
ification model (e.g., a model checker). These approaches usually combine an
abstract model of the system and a verification model to reason about the sys-
tem, satisfying the abstraction and decision requirements. The representation
of the system state by means of, for example, logic variables, also requires a
way of composing the adaptations such that all allowed combinations of adapta-
tions are taken into account. Not having such a composition mechanism would
hinder the safety property of introducing new adaptations (Requirement M.2).
Formal approaches provide a means to model interactions between adaptations
in Dynamically Adaptive Software Systems. However, such definitions remain
abstractions of the system. Additional development efforts are required to use
such interactions (and other specifications of the system) at run time.

3.2.4 Rule-Based Approaches
Rule-based approaches consist of (external) production rule systems managing
and coordinating the behavior of a software system. In this section we only
consider rule engines based on forward-chaining. Rule engines that infer the
validity of rules describing the system and take the actions described by those
rules, based on the available data. We do not take into account backward-
chaining rule engines, because they infer validity of rules based the goal system
which in the setting of Dynamically Adaptive Software Systems may not always
be known beforehand. Defining all possible configurations of adaptation (goals)
to be verified can become cumbersome, making backward chaining rule engines
not appropriate for modeling Dynamically Adaptive Software Systems.
Rule based engines are used as coordination models providing a consistent

view of a software system. The view of the system can be generated, for exam-
ple, by means of a fact space [136]. That is, by a model gathering state data
of the system, or facts. Rules describe possible actions that can be taken by
the system whenever a set of conditions becomes valid. A rule, or fact is then
described as a tuple of conditions on the state of the system, and the actions
to be taken.
As an example Snippet 3.6 shows the description of different facts (Lines

2 and 3) as well as two rules (at Line 5 and Line 8) describing the pricing
conditions in the web booking application. The :vipPricing rule is used to
regulate the price charged for VIP users. This rule is applicable if and only if
there is a user fact in the current (fact space) session, for which its status is
vip. Note that fact spaces allow us to restrict the domain in which production
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rules are applicable. For example, the :vipPricing production rule is only
applicable when the user is logged into a session (modeled as a fact space).
However, it is also possible to define rules that are expressed for the totality of
the system. This is the case for low season bookings. The :lowSeasonPricing
fact would also be applicable because the season fact is contained in the public
fact space.

1 // f a c t s
2 season ( low ) .
3 user ( vip ) .
4 // r u l e s
5 : lowSeasonPrice (? p r i c e ) :−
6 p u b l i c −> season (? season ) ,
7 ? season == low
8 : v i p P r i c e (? p r i c e ) :−
9 s e s s i o n −> user (? s t a t u t s ) ,

10 ? s t a t u s == vip

Snippet 3.6: Facts and production rules for the web booking application.

Forward chaining rule-based engines are commonly implemented using the
rete algorithm [65]. The rete algorithm provides a pattern matching implemen-
tation for rule-based engines. The algorithm consists of a network of nodes,
where each node represents a pattern of conditions describing the different
production rules. Moreover, each node also keeps track of the facts that it sat-
isfies. Facts are propagated in the network according to their matching node.
Whenever a fact satisfies all the conditions of a rule, a leaf node (a node with
no successors) is reached and the action described by the production rule is
executed.
Such rule-based engines provide support for the realization of Dynamically

Adaptive Software Systems by introducing adaptations as actions of production
rules, and by adding the facts matching the rule to the fact space, whenever
the action is supposed to take place and withdrawing it when the action is
not supposed to be present in the system. The type of rule-based engines
presented here effectively fulfill the abstraction and safety requirements for run-
time models. Even if rule-based engines ensure consistency of the system by
ensuring that production rules actions only take place whenever their conditions
are satisfied, it is still up to the programmer to ensure that the provided facts
are correct and there is no accidental interactions or starvation of production
rules. Rule-based engines do not provide support for the decision requirement
(M.4) of conflict resolution models described in Section 2.4.

3.2.5 State Machines
State machines are commonly used approaches for the abstraction of a system
by expressing its different states and actions. Normally, state machines can
be represented as a graph, where nodes represent the states of the system and
labeled edges represent actions that take place between different states. Here
we overview some of the existing and widely use state machines approaches.
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Automata & Labeled Transition Systems

Automata [94] are graph-based models used to describe system behavior based
on their possible states, and the set of actions to be taken for each state. Au-
tomata are normally used to verify system properties, such as program termi-
nation. Moreover, automata are preferred as modeling techniques for software
systems because the model itself is easy to operate, for example, for the merging,
intersection, and parallel composition of software systems. Labeled Transition
Systems (LTS) are rule-based systems describing the states and actions of a
system. Since LTS are normally represented by means of automata we consider
them jointly in the following.

lowSeason

fullPrice

fullPrice vipUser

vipUser

lowSeason

regularSeason

regularUser

FullPrice

VIPPrice

lowSeasonPrice

VIPPrice
+

lowSeasonPrice

Figure 3.6: Automata model for the web booking application.

Figure 3.6 shows an automata representation of the adaptations in the web
booking system. In Figure 3.6 states are represented as circles, actions are rep-
resented as labeled arcs between states, final states are represented as double-
circle states, and the initial state of the system is represented as the arrow
adjacent to only one state.
Representing dynamic behavioral adaptations of a system by means of au-

tomata focuses on one particular state of the system at a time —that is, only
one of the states of the automaton is “active” at a time. This means that it is
required to express all possible combinations of states in the system, leading to
an explosion in the number of states as the system grows. As it is possible to
see in Figure 3.6, it is possible to reach all states from any other state defined
in the web booking application, making the automata cluttered and difficult
to manage. To manage such complexity automata are often expressed as the
product of simpler automata.

Statecharts

Statecharts formalisms provide a specification of the internal behavior of sys-
tem components as well as the interactions between components in the setting
of reactive and event-based systems [83]. Statecharts are an extension of state
transition diagrams (e.g., automaton and LTS) proposed to tackle the state ex-
plosion problem. Statecharts model systems by successfully modularizing their
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various components in a hierarchical way. Additionally, the model enables us to
easily express general properties such as clustering, orthogonality, or refinement.
Figure 3.7 shows the example of a statecharts diagram describing the user

detection system in the home automation environment, where states are rep-
resented as rounded rectangles, events are represented as labeled arcs between
states, and conditionals are represented as circle elements. Figure 3.7 illus-
trates these properties of statecharts for the home automation application (Sec-
tion 2.3.1). Clustering is depicted by the containment of the different states
within each other, the hierarchy of the states is represented by the containment
relation, inner states have a higher hierarchy than outer states. Orthogonal-
ity is depicted between the Detect user and Emergency states by means of
the dotted line separating the two states. Whenever the container state is ac-
cessed, the two sub-states work independently of each other, by applying the
User adaptations state in the first case, and the Monitoring state in the
second case. Refinement is the property of statecharts to capture the different
components of which the system consists of. For example, Figure 3.7 repre-
sents one of the components (the refinement) of the complete home automation
system.

User detection

Detected user Security

Idle
C

Reporting

C

Monitoring

User 
adaptation

Emergency Photographing

Emergency 
protocol

no motion 
for 1 min

motion 
detection

user id known

else

vital signs 
check

reporting 
authorities every 
5 minutes

@end@end

Figure 3.7: Statecharts model for the user detection service.

In addition to the visual representation of the system, statecharts models
also offer a formalization and analysis of the system [120]. Together with the
formalization, statecharts enable the abstraction of software systems by giving
a semantic meaning to the model layout, for example, to express clustering
or orthogonality properties. These properties cannot be expressed with other
formalisms as automata. Moreover, since the model can be easily extended,
more complex systems can be expressed without raising the complexity of the
model or yielding a state explosion problem. For example, it is possible to
express timeouts or temporal notions in the execution of events, as shown in
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Figure 3.7 with conditions as “no motion for 1 min”. Regarding the decision
power, via their formalization, statecharts offer the possibility to analyze the
system beforehand by means of model checking techniques, since statecharts
explicitly model the system behavior and state changes as reactions to event
changes. In order to satisfy the safety requirement, statecharts have to be
extended to by, for example, adding support to introduce new states via event
triggering.

Dataflow graphs

Dataflow programming [100] originated from the exploration of parallel sys-
tems. The motivation behind dataflow programming is that programs are rep-
resented as directed graphs where data flows between nodes along the graph’s
arcs. Nodes of the graph represent program entities (e.g., modules, objects,
instructions according to the level of abstraction used). Directed arcs of the
graph represent data dependencies between program entities. Dataflow graphs
are used to specify the computation of the system (i.e., are the program), as
well as its coordination or management.
Figure 3.8 shows how the movement detection service example could be ex-

pressed as a dataflow graph, for the example we take inspiration in the way
dataflow graphs are defined in AmbientTalk/RV [129]. The management model
of dataflow systems consists of operators processing input data (e.g., node
RFIDSensor processing the movementDetected event in Figure 3.8) and pro-
ducing output data (e.g., node HouseEmpty producing the empty boolean value
in Figure 3.8). Dependencies between nodes are explicitly represented by edges
in the graph. Data always flows from the outputs generated by a node to the
input of another node. A node in a dataflow graph is said to be enabled to
fire if there are values available for all of its inputs. Node fire (execution) can
take place at one of two moments. Once all of its inputs have received a (new)
value, or whenever one of its input values changes. These two approaches are
referred to as synchronous dataflow and asynchronous dataflow, respectively.
Arcs for nodes like RFIDSensor are called forking arcs. Whenever data

reaches a forking arc it is duplicated and sent to each of its subsequent nodes.
Dataflow graphs enable the parallel execution of processes. As an example,
Figure 3.8 depicts the tasks that can be computed in parallel by the Hi doted
lines. All operations in the same line can fire in parallel (as long as they can
fire). That is, nodes UserIdentification and MonitorUser can be computed
in parallel if RFIDSensor produces output data.
Dataflow graphs have been successfully used as visual programming lan-

guages, where the dataflow graph is not only a representation of the system, but
it is indeed the execution model of the system. Moreover, dataflow graphs are
also successfully used as management modules of the system, meeting the mod-
eling power criteria for run-time models, as it is the case in AmbientTalk/RV .
Unfortunately, dataflow graphs do not provide a direct way to analyze proper-
ties of the system. However, some dataflow programming languages, like NL,
allow using the dataflow graph itself as a visual debugger [84].
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MovementSensor

RFIDSensor ->
  whenever: { | tag |
   getUser(tag);
  };

UserIdentification ->
  whenever: user becomes: { | u |
    u.userPreferences();
  };

movementDetected

MonitorUser ->
  //if the user vital signs are
  not recognized start an
  emergency protocol

Burglar ->
  callPolice(pos, photo)

position

useruser

unknownUser

HouseEmpty ->
  //activated whenever 
there is no inhabitant 
present in the house

empty

H0

H1

H2

H3

Figure 3.8: A dataflow graph for the user detection system

Petri nets

In contrast with the different approaches mentioned before, an approach that
fulfills all the requirements for conflict resolution models described in Sec-
tion 2.4, among other interesting properties, is the Petri net model [137]. Petri
nets are used to model the states and dynamics of a system. Petri nets com-
bine the modeling power of automata and dataflow graphs allowing us to define
adaptations as particular states (places) of the system, satisfying the abstrac-
tion requirements.8 Interactions between them through the firing of actions
(transitions) follow the operational semantics of Petri nets, satisfying the inter-
action requirement. New adaptations could be introduced by means of Petri net
composition, satisfying the safety requirement. Additionally, Petri nets provide
a series of analyses that allow us to reason about different system properties,
satisfying the decision requirement. Since Petri nets satisfy the four require-
ments for inconsistency management models, we decided to use Petri nets as
our platform for the modeling of Dynamically Adaptive Software Systems. An
in-depth description about Petri nets is given in Chapter 5.

Conclusion

This section described different models and formalisms that could be used as
run-time support for Dynamically Adaptive Software Systems. We argue that
state machine approaches, and in particular Petri nets, are among the most ap-
propriate for the representation and run-time execution of Dynamically Adap-
tive Software Systems, since they satisfy the requirements M.1 through M.4

8Note that in Petri nets there is no state explosion problem,a s its inherent support for
concurrency allows to model different states being active simultaneously by means of the
Petri net marking.
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described in Chapter 2. In addition to the abstraction and decision proper-
ties that the majority of these approaches have, we also took other criteria
into consideration to serve as inspiration for the modeling and specification of
Dynamically Adaptive Software Systems. These criteria are:

• Having a single representation for modeling different aspects of the sys-
tem.

• Having a well-defined behavioral semantics of the system, generality for
the modeling of different types of systems.

• Being able to visualize the system, in particular, the interaction between
adaptations and possible actions over adaptations.

• Being able to support for interactive simulations.

Although it would also be possible to extend the other approaches presented
in this section in order to satisfy all requirements for inconsistency management
models, taking into account all these characteristics, we believe out Petri nets to
be the most appropriate approach for managing inconsistencies in Dynamically
Adaptive Software Systems.

3.3 Conclusion
This chapter presents an overview of Dynamically Adaptive Software Systems
from two different viewpoints, serving as background to our end goal of de-
veloping software systems that are highly dynamic and predictable. The first
viewpoint, presents the state-of-the-art in implementation techniques of dy-
namic adaptations to a system’s behavior. The second view point, presents
various models used for conflict resolution in Dynamically Adaptive Software
Systems.
Table 3.1 provides an overview of the surveyed approaches with respect to

the requirements defined in Section 2.4. For each of the surveyed approaches
we take into account all the requirements, this is due to the fact that some
approaches indirectly provide support for the requirements specified for both
categories —that is, for Dynamically Adaptive Software Systems and conflict
resolution models. Supported requirements for each approach are marked as
black cells in Table 3.1. Requirements which are satisfied partially, or that
are commonly satisfied by the combination of the studied model with another
model are marked as gray cells. unsatisfied requirements are white cells.

D.1 Timeliness: The timeliness requirement refers to the ability of software
systems to adapt their behavior, as a reaction to changes in the infor-
mation gathered from their surrounding execution environment —that
is, how promptly is the adapted behavior observed in the system with
respect to its surrounding execution environment.
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All surveyed solutions focus on the prompt composition of behavioral
adaptations with the base behavior of the system. The only solution not
fully providing a timely application of adaptations is dynamic software
upgrades. Dynamic software upgrades may not be prompt because, the
system must reach a quiescence before applying the system upgrades.
Both, architectural and language solutions are appropriate for the devel-
opment of timely Dynamically Adaptive Software Systems.

D.2 Granularity: The granularity requirement refers to the ability of software
systems to adapt the behavior of various program entities such as vari-
ables, objects, processes, components, and the like.
Adaptations are mostly handled at a fine-grained or coarse-grained level,
but not both. In general, architectural and middleware solutions offer
the possibility to adapt the system entities at the level of granularity
the solutions were envisioned for. Architectural solutions provide ad-
aptation of coarse-grained entities such as objects or components, and
middleware solutions provide adaptation of fine-grained entities such as
methods. Nonetheless, we observe that language solutions support the
definition of adaptations at both levels of granularity. In language solu-
tions is possible to adapt methods, objects, or components according to
the requirements of the surrounding execution environment.
Language solutions are then more appropriate for the development of
Dynamically Adaptive Software Systems with adaptations taking place
at different levels of granularity.

D.3 Independence: The independence requirement refers to the characteri-
zation of adaptations without interfering with the base functionality or
other adaptations defined in the system.
For most of the solutions, adaptations can be defined independently of the
base behavior of the system. In middleware solutions adaptations can be
defined independently of the base system, however, these solutions require
modification of the base system to specify the places in the system in
which adaptations can be composed with the system. Language solutions,
on the other hand, preserve independence between adaptations and the
base system. Language solutions use dedicated abstractions to specify
how and where are adaptations composed with the system without having
to modify its base behavior.
Language solutions are then more appropriate for the development of
independent adaptations in Dynamically Adaptive Software Systems.

D.4 Compatibility: The compatibility requirement refers to how faithful soft-
ware systems are to their surrounding execution environment —that is,
if the behavior observed in the system is always the most appropriate
according to the surrounding execution environment. Compatibility also
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includes the ability of the system to reflect time-based features of adap-
tations (retract adaptations that are no longer used).
Architectural solutions normally define adaptations of the system as part
of its normal evolution process —that is, always moving forward in time.
Hence, most adaptations are built on top of previously defined adapta-
tions. As a consequence adaptations persist during the whole life cycle of
the system. Nonetheless, behavior of adaptations could be shadowed by
new adaptations as a way to retract unused adaptations. Regarding the
faithfulness of the solutions to the surrounding execution environment,
we note that whenever adaptations are known beforehand, the technique
is faithful, however, if adaptations are not known, faithfulness is compro-
mised in order to ensure safety.
Middleware solutions, given their inherent reactivity, are highly compat-
ible with the surrounding execution environment. Moreover, events have
an intrinsic notion of temporality, thus adaptations are only available as
long as the events they respond to are available.
Language solutions provide adaptations as responses to requests from the
surrounding execution environment (e.g., method calls), automatically
providing a correspondence with the situation in it. However, adaptations
that are no longer in use remain part of the system.
Middleware solutions are appropriate for the development of adaptations
compatible with the surrounding execution environment of Dynamically
Adaptive Software Systems.

D.5 Extensibility: The extensibility requirement refers to the ability to incor-
porate adaptations into a software system, even if these are not known
beforehand. These new adaptations should not depend on those already
defined in the system.
Architectural solutions mainly provide a structure of the system with
specific system modules representing the different adaptations. Hence,
adaptations are normally known beforehand, and incorporation of new
adaptations in the system would have an impact on the architecture of the
whole system. Techniques like software upgrades are specifically tailored
for the introduction of new adaptations. Similarly, middleware solutions
require the modification of the base system in order to respond to new
events or adaptations introduced in the system. Likewise, language so-
lutions also need to define all the conditions for which adapted behavior
is applicable. Adaptations cannot be incorporated without knowing first
the conditions for the adaptation to be applied, and the interaction with
other adaptations.
From the three solution categories, none of them seems to fully cover the
extensibility requirement. However, specific approaches such as reactive,
programming, self-adaptive systems or COP provide support for seamless
introduction of adaptations in Dynamically Adaptive Software Systems.
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From all surveyed solutions only self-adaptive systems and context-oriented
programming support all requirements for Dynamically Adaptive Software Sys-
tems. However, as noted in the introduction of self-adaptive systems, these sys-
tems comply with the requirements as a whole, but no single implementation
complies with all requirements. Context-Oriented Programming implementa-
tions comply with all requirements. Hence, this is the chosen solution we use
in this dissertation for the development of Dynamically Adaptive Software Sys-
tems.

M.1 Interaction: The interaction requirement refers to the ability of defining
adaptations to seamlessly interact and be composed with other adapta-
tions defined in the system.
Modeling approaches normally provide a means to specify the interaction
between different adaptations. Interaction is often defined by means of
dedicated rule systems, where interaction between adaptations is usually
described explicitly. This requires to express out all possible interactions
beforehand.
Formal approaches are conceived as a way to specify the state of the
system and its properties. Interaction between adaptations would be
expressed by different formulae, requiring to model every possible inter-
action by a formulae, which can become cumbersome for large systems if
no automated support to generate such formulae is provided.
Rule-based approaches normally only provide the means for the definition
of production rules and the facts to match those rules. However, there is
not a defined way in which different production rules interact whenever
their facts are matched for a same situation.
Both modeling and state machine approaches are appropriate for the mod-
eling of interaction between adaptations when developing Dynamically
Adaptive Software Systems.

M.2 Safety: The safety requirement refers to the ability of software systems
to ensure that newly introduced adaptations do not break the behavior
already provided by other adaptations.
In order to satisfy this requirement we observed that the majority of sur-
veyed approaches must be extended, allowing the run time introduction
of adaptations. Modeling approaches are often static, where all the adap-
tations are defined during the design of the system.
However, rule-based approaches allow the publication of facts and produc-
tion rules at any moment in time. Once a production rule is published into
the fact space, it is automatically evaluated with all the other production
rules, as information is gathered by the system.
Formal approaches usually express the state space of the system by means
of state machines, which can introduce new adaptations by means of au-
tomata composition (e.g., automata product), and then be verified using
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a formal specification of the system properties. In Petri nets too, adapta-
tions can be introduced by means of composition and once composed, all
adaptations can be verified by means of property analysis to ensure that
the system definition is still correct.
Given the correct extension or composition mechanism, most of the sur-
veyed approaches are thus appropriate to ensure safety of adaptations in
Dynamically Adaptive Software Systems.

M.3 Abstraction: The abstraction requirement refers to the ability of the ap-
proach to abstract the run-time state of the system in a meaningful fash-
ion. The system should also clearly specify the possible actions in each
of the system states, and the interaction between adaptations.
Architectural modeling approaches are abstractions of the system to be
used at design time. Normally these abstractions only provide a view
of the system structure, but can be complemented (through other model
entities) to represent the state and actions of the system. We consider
these complements as different models, and hence there is no single rep-
resentation of totality of the system.
Formal approaches represent the system state by expressing it in terms
of formulae or (formal) models. In either case they effectively provide an
abstraction of the system states, and the transitions between such states.
Rule-based approaches (partially) abstract the state of the system by the
use of facts. The state of the system is guarded within the rete algorithm
itself, however, models that explicitly exposed the state of the system.
Transitions between states are automatically obtained by the matching
of facts in the algorithm.
State machine approaches effectively abstract the states and actions of
the system by representing them as a graph-flavored model, where states
are nodes of the graph and actions are edges between nodes.
Formal, rule-based, or state machine approaches could all be used as ab-
straction models of Dynamically Adaptive Software Systems. We decided
for Petri nets because, unlike the other approaches, its implicit notions
of concurrent states of the model reduces the number of combination of
states that need to be represented in the system.

M.4 Decision: The decision requirement refers to the ability of the software
system to reason about its run-time properties (be they at run time or at
earlier stages of the development cycle).
Architectural modeling approaches are introduced with the sole purpose
of providing the means to reason about system properties by means of
dedicated analyses.
Formal approaches are by definition reasoning frameworks. The ability
to analyze system properties is an inherent property of these approaches,
be it by formal verification or theorem proving. It is however unclear,
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in some cases, how to capture the run-time properties of the system by
means of a formal model. In particular if the model’s main focus is not
on the run-time behavior of the system.
Rule-based approaches are not concerned with the analysis of system
properties, so no decision support for any kind of system property is
provided.
State machine approaches provide support for structural system proper-
ties, such as composition or hierarchization. Even though they provide
only limited support for the analysis of run-time properties of the system,
the supported analyses could be used to reason about different properties
of the system.
All approaches could be used to analyze different properties about Dy-
namically Adaptive Software Systems.

From all surveyed approaches, only Petri nets satisfy all the requirements
defined for conflict resolution models for Dynamically Adaptive Software Sys-
tems and the additional properties presented in Section 3.2.5. Hence, this is the
chosen approach we use in this dissertation to model and manage Dynamically
Adaptive Software Systems. After having made that choice, the study of how
other approaches could be adapted for this purpose was out of the scope of this
dissertation.
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Dynamically Adaptive Software Systems

Architectural Solutions
Design Patterns
Dynamic Software Up-
grades
Software Product Lines

Middleware Solutions

Dependency Injection
Service-Oriented Archi-
tecture
Event Systems
Self-Adaptive Systems

Language Solutions

Metaprogramming
Reactive Programming
Aspect-Oriented Pro-
gramming
Context-Oriented Pro-
gramming

Models for Inconsistency Management

Modeling Approaches Model Transformations
Feature-Oriented Do-
main Analysis

Formal Approaches
Logic Programming
Languages
Algebras & Logic
Model Checking

Rule-Based Approaches Fact Spaces

State Machine Approaches

Automata
Statecharts
Dataflow Graphs
Petri nets

Table 3.1: Compliance of surveyed approaches with the requirements of Dy-
namically Adaptive Software Systems.



Chapter4
Context-Oriented Programming

In this chapter we provide an overview of the COP, a language approach for
the implementation of Dynamically Adaptive Software Systems. Systems im-
plemented using COP, usually called context-aware systems, are characterized
by the provision of run-time behavior adaptations to the surrounding execu-
tion environment of the system. We argue that context aware systems provide
the highest dynamicity among the techniques realizing Dynamically Adaptive
Software Systems.
The COP paradigm [44] is an emerging programming paradigm for the de-

velopment of context-aware systems. The COP paradigm introduces dedicated
language abstractions to facilitate the definition and modularization of dynamic
adaptations in a software system. The motivation behind COP systems is to
provide a programming model that embraces pervasive and ubiquitous comput-
ing [194], by sensing and effectively using information about the surrounding
execution environment of a software system (e.g., location and hardware diag-
nostic services). The hypothesis of COP is that the environment in which sys-
tems execute changes constantly. For example, computer components, and the
services they provide appear and disappear constantly as users move around,
changing the needs and uses of software systems. Context-aware systems adapt
to their surrounding execution environment by means of dedicated behavior
(i.e., behavioral adaptations) defined for each of the software services that may
profit from it, while keeping users oblivious to the dynamic adaptations of be-
havior and their interactions.
The overview of the COP paradigm provided in this chapter begins with

the description of its characteristic features. Additionally, we evaluate exist-
ing COP approaches with respect to support they provide for consistency and
predictability. These characteristics are made concrete by means of a concrete
implementation of a COP language, Subjective-C [77], which we will later use
as our language laboratory for the development of highly dynamic software
systems while remaining predictable. This chapter concludes by a summary of
the characteristics of COP systems in perspective to the requirements defined
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in Section 2.4.

4.1 Introduction to Context-Oriented Programming
Context-Oriented Programming (COP) [44] allows software systems to be easily
modularized into program adaptations that can be activated and deactivated
dynamically at run time. Each adaptation represents a set of particular behav-
iors, or behavioral adaptations, that depend on specific properties or situations
observable in the surrounding execution environment of the system. In the
seminal work on COP, Hirschfeld et al. [90] identified four essential properties
of COP languages. These languages should provide: (1) the means to specify
behavioral adaptations, (2) the means to group adaptations into layers, (3) dy-
namic activation and deactivation of layers based on context, and (4) the means
to explicitly and dynamically control the scope of layers.
Two notions are key for the development of of COP systems, namely behav-

ioral adaptations and contexts. Before going further we make precise these
definitions.

Definition 4.1. We define a behavioral adaptation as a pice of behavior
modifying (replacing or adapting) a particular method defined for the system.

Different definitions of context have been given in the past [69, 109, 70, 90].
Through this dissertation we use a refined version of context based on the
definition originally presented by Dey [53].

Definition 4.2 (Context). A context is an abstraction or a reification of
a particular property characterizing a situation in the surrounding execution
environment that is semantically relevant for the system.

Definition 4.3. An adaptation is composed of two main elements: a par-
ticular situation of the surrounding execution environment of the system, a
context, and a set of behavioral adaptations exhibiting specific system behavior
associated with that particular context.

This separation of program adaptations into contexts and behavioral adap-
tations follows the definition initially given by Loke [127] with respect to the
non interchangeability of context situations and activities.
It is worth noting that many COP languages introduce the concept of lay-

ers [174] as originally proposed by Hirschfeld et al. [90] in order to represent
contexts. The difference between contexts and layers is subtle but inessential
for our work. Throughout this dissertation we will use the term context to
denote both contexts and layers without distinction.
The situations that can be represented by contexts can be logical (to the

system), physical (to the surrounding environment), endogenous, or exoge-
nous. Examples of contexts are: (1) In a mobile application, the battery level
property of the device could be used to describe situations as LowBattery or
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HighBattery (physical, endogenous), (2) Web browsers can defined user pref-
erences to determine how to display web pages according to UserPreferences.
The browser could adapt, for example, to the UserFontSize or UserLanguage
(logical, endogenous), (3) In program optimization systems, results of pat-
tern matching algorithms could be used to choose the type of parallelization
technique to be used in situations like NRecursiveProcess or I/OHybridLoop
(logical, exogenous), and (4) In a weather forecast application, the weather
information could be displayed based on a service to retrieve the user location
represented by geographical situations Brussels or Louvain-la-Neuve (phys-
ical, exogenous).
Various COP languages have been proposed. These languages are developed

either as extensions of existing languages, or as entirely new languages [4, 160].
Existing COP languages in one way or another all support the four basic prop-
erties [90] initially described, based on the underlying technology or implemen-
tation techniques used.
From the different existing implementation we noticed that adaptations con-

stitute an important concern of the system’s development. Usefulness of dy-
namic adaptations is proven by their interaction with the base behavior of the
system. The dynamics of adaptation are seen in how behavioral adaptations are
included to or withdrawn from the system as a consequence of changes in the
surrounding execution environment, the extent to which behavioral adaptations
impact the system, and how behavioral adaptations are composed. In order to
describe the main characteristics of COP systems we broaden the four initial
properties taking into account adaptation interaction. A COP language is then
characterized by the definition of: (1) Modularity of adaptations, (2) Selection
of adaptations, (3) Scoping of adaptations, and (4) Composition of adapta-
tions. In addition we discuss an extra dimension about (5) Existing support
provided in COP languages to manage consistency and predictability of behav-
ior. The following sections describe each of these characteristics and how they
are reified in different COP languages. A summary of COP implementations and
their properties is provided later in Table 4.1.

4.1.1 Modularity of Adaptations
COP allows expressing behavior that is specific to a particular situation. Hence,
any COP language not only must offer the possibility to define multiple behav-
iors to a given situation in the surrounding execution environment of the system,
but it also must be able to define adaptations of the same behavior to differ-
ent situations in the surrounding execution environment. Adaptations could
be structured as independent modules grouping contexts and their associated
behavioral adaptations, or as a particular specializations into the respective
modules in which the base behavior of the system is defined.
Modularization of adaptations can be divided into two: the way in which

adaptations interact with the base system and underlying language, and the
way in which adaptations are defined.
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COP.1 The adaptation modularization property describes the way in which a
particular adaptation relates to the base application and to the lan-
guage underlying the COP abstractions. Two ways of interaction are
most prominent in the literature, class-in-layer and layer-in-class [4].

1. The class-in-layer (CIL) modularization defines adaptations as stand
alone modules of the system. Each of such modules constitute the
context and all its associated behavioral adaptations. This modular-
ization strategy is good for rapid prototyping, easing the extension
of the base application behavior and clean separation of concerns,
between the base application and other adaptations. Example imple-
mentations of this modularization technique are: ContextL [44], Am-
bience [74], PyContext [190], ContextS [89], cj [164], ContextJ [6],
ContextLua [192], ContextJS [124], SCopJ [98], CoPN [33], Phenom-
enalGem [148], Flute [9], Context Traits [73].

2. The layer-in-class (LIC) modularization defines behavioral adapta-
tions within the application entity they adapt. Each of the base
system modules contains all corresponding behavioral adaptations.
This modularization strategy is good for preserving the cohesion
of base modules and avoiding scattering of application functional-
ity. Example implementations of this modularization technique are:
ContextL [44], ContextLogicAJ [3], ContextR [166], ContextPy [172],
cj [164], ContextJ [5], Lambic [185], ContextErlang [71], JCop [6],
Subjective-C [77], EventCJ [103], JavaCtx [162], ContextJS [124],
CoPN [33].

COP.2 The definition mechanism modularization property describes the way
and granularity in which adaptations are defined. Adaptations are nor-
mally represented as first-class entities of the program.
1. Layers define groups of behavioral adaptations related to a same

situation in surrounding environment of the system. Layer-based
languages are: ContextL [44], PyContext [190], ContextS [89], Con-
textLogicAJ [3], ContextR [166], ContextPy [172], cj [164], Con-
textJ [5], JCop [6], ContextLua [192], EventCJ [103], JavaCtx [162],
ContextJS [124].

2. Contexts, similar to layers, group behavioral adaptations related to a
same situation of the surrounding environment of the system. Con-
texts differ from layers in that they are stateful. That is, contexts
have a state that dictate if and how many times the contexts has been
activated. Context-based languages are: Ambience [74], Subjective-
C [77], JCop [6], SCopJ [98], CoPN [33], PhenomenalGem [148], Con-
text Traits [73].

3. Predicate methods are used to capture the global state of the sys-
tem, not via an explicit program entity, but rather by associating
a predicate with a particular behavioral adaptation. Whenever the
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predicate becomes true, the method is applied. Lambic [185] and
Flute [9] provide support for such technique.

4. Other modularizations techniques similar to those provided by con-
texts, are defined by the concepts of modules and behaviors. Be-
haviors define different behavioral adaptations, and modules group
a set of behaviors. These modularization techniques are realized by
ContextErlang [71] (as modules and variations), and Flute [9] (as
modals and modes).

4.1.2 Selection of Adaptations
COP allows us to adapt application behavior according to specific situations of
the surrounding execution environment. Hence, any COP approach must offer
the means to dynamically choose the adaptations that are to be executed, such
that the behavior accommodates to the circumstances in which the system runs.
To this end, the selection of the different behavioral adaptations must be late
bound —that is, adaptation of behavior cannot happen a priori.1
Adaptations are chosen based on changes in the surrounding execution envi-

ronment of the system. When an adaptation is chosen, its behavioral adapta-
tions are composed with the base system. The process of choosing and com-
posing adaptations is known as context activation. That is, the process
of selecting an adaptation and composing its behavioral adaptations into the
base application, or deselecting an adaptation and withdrawing its behavioral
adaptations from the base application. Most COP languages offer specialized
language constructs to express activation and deactivation of contexts. In this
dissertation we will use the general term of context activation to refer to both
introduction and withdrawal of behavior adaptations unless specified otherwise.
Whenever a context activation takes place in the system, four perspectives

are taken into account. How does the selection of the adaptation takes place,
who is responsible for selecting the adaptation, when is the adaptation selected,
and how timely is the adaptation deployed.

COP.3 The adaptation activation property describes how a behavioral adap-
tation comes about in the system. Adaptations are selected in two
ways:
1. The implicit technique is based on the automatic selection of adap-

tations as the surrounding execution environment of the system
changes —that is, every time there is a change in the surround-
ing execution environment of the system the behavioral adaptations
associated to such situation are made available. Languages present-
ing an implicit selection of adaptations are: PyContext [190], Lam-
bic [185], EventCJ [103], SCopJ [98], CoPN [33], Flute [9], Context
Traits [73].

1If software “adaptation” takes place at deployment time, it is called configuration, and if
it takes place at build time, it is called customization. In earlier stages it is called design.
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2. The explicit technique explicitly enables manual selection of adap-
tations. Usually behavioral adaptations are expressed explicitly as
a block of code embedded in the base application (as in layered-
based), or by tangling specific language constructs for adaptation
activation with the base application (as in context-based languages).
The languages presenting an explicit selection of adaptations are:
ContextL[44], Ambience [74], PyContext [190], ContextS [89], Con-
textLogicAJ [3], ContextR [166], ContextPy [172], cj [164], Con-
textJ [5], ContextErlang [71], JCop [6], Subjective-C [77], Con-
textLua [192], JavaCtx [162], ContextJS [124], CoPN [33], Phenom-
enalGem [148].

COP.4 The activation actor property describes the actor responsible for the
selection of an adaptation. The activation actor is closely related to
the adaptation activation property. Three main actors exist in current
COP approaches.
1. Adaptation activation is managed by the client when the adaptation

activation takes place through explicit language constructs at pro-
gram points specified by the developer. Languages providing a client
actor are: ContextL [44], Ambience [74], PyContext [190], Con-
textS [89], ContextLogicAJ [3], ContextR [166], ContextPy [172],
cj [164], ContextJ [5], JCop [6], ContextLua [192], Subjective-C [77],
JavaCtx [162], ContextJS [124], PhenomenalGem [148].

2. Adaptation activation is managed by a service when adaptation ac-
tivation is defined based on a generic set of conditions that need to
be satisfied in order to provide the behavioral adaptations. For ex-
ample, by processing external events, or by matching of predicates
describing adaptations. Languages providing a service actor are:
Lambic [185], JCop [6], EventCJ [103], Flute [9], CoPN [33], Context
Traits [73].

3. Adaptation activation is managed by a context manager when the
responsibility of adaptation activation is left to a third-party entity
of the system that verifies if all conditions required for the activa-
tion are satisfied. For example, interactions between adaptations
are verified whenever they are activated. Languages presenting a
context manager actor are: Ambience [74], PyContext [190], Con-
textErlang [71], Subjective-C [77], SCopJ [98], CoPN [33].

COP.5 The binding time property describes the moment in which behavioral
adaptations are applied from the set of available adaptations. When
an adaptation is selected, the behavioral adaptations associated to the
adaptation can be bound at one of three different moments.
1. The context activation binding time is used when all of the behav-

ioral adaptations associated with a context are applied as soon as
the context is activated —that is, every time the state of a context
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changes (from active to inactive or vice versa) all behavioral adapta-
tion associated with the context are made available (or unavailable)
in the base application. Languages presenting a context activation
binding time are: ContextL [44], PyContext [190],ContextS [89],
ContextLogicAJ [3], ContextR [166], ContextPy [172], cj [164], Con-
textJ [5], JCop [6], ContextLua [192], Subjective-C [77], EventCJ [103],
JavaCtx [162], SCopJ [98], CoPN [33], Context Traits [73].

2. The method dispatch binding time is used when behavioral adapta-
tions are applied as soon as the method they adapt is called. Every
time a method is called, the most appropriate behavioral adaptation
corresponding to that method is looked up among the available adap-
tations. Languages providing a method dispatch binding time are:
Ambience [74], Lambic [185], ContextErlang [71], ContextJS [124],
PhenomenalGem [148].

3. The reactive method dispatch binding time is used when behavioral
adaptations are looked up among the set of available adaptations.
However, whenever a context activation takes place, the behavior
currently executed is suspended/paused, and the application con-
tinues with the associated behavior appropriate to the newly active
context. The new behavior can resume from a previous state or
restart the computation. Flute [9] provides a reactive method dis-
patch binding time.

COP.6 The adaptation timeliness property describes how timely the selection
of adaptations is. That is, if the behavior of the system exactly rep-
resents the situations of the surrounding execution environment, or if
it respects the conditions in which method executions started. Three
notions of compatibility exist for the timeliness of adaptation selection.
1. The loyal method for adaptation selection ensures that the execution

of behavioral adaptations completely take place in the same con-
figuration of contexts in which it started. Execution of behavioral
adaptations using the loyal adaptation selection may not always rep-
resent the situations currently taking place in the surrounding exe-
cution environment, but rather the situation in which the observable
behavior started. Languages providing a loyal selection are: Con-
textL [44], ContextS [89], ContextLogicAJ [3], cj [164], ContextJ [5],
ContextLua [192], JavaCtx [162], ContextJS [124].

2. The prompt method for adaptation selection ensures that behav-
ioral adaptations are made available to the system as soon as their
contexts are activated. Languages providing a prompt selection
are: Ambience [74], PyContext [190], Lambic [185], ContextEr-
lang [71], ContextJ [6], Subjective-C [77], EventCJ [103], SCopJ [98],
CoPN [33], PhenomenalGem [148], Context Traits [73].

3. The prompt-loyal method for adaptation selection is a combination
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of the loyal and prompt methods. In this method behavioral adapta-
tions currently executing finish in the same configuration of contexts
in which they started. However all new method calls take into ac-
count the new configuration of contexts. Prompt-loyal selection is
introduced in Ambience [74, 31], however Flute [9] also provides this
property. In Flute adaptation selection is prompt because the most
appropriate behavioral adaptations is used for every method call.
Adaptation selection is loyal in the sense that computation can be
paused and resumed, providing full compatibility with the surround-
ing execution environment is guaranteed.

4.1.3 Delimitation of Adaptations
COP allows to define adaptive behavior that only reaches specific parts of the
system. Hence any COP approach must provide a means to define the de-
limitation of adaptations. Scoping of adaptations is important to ensure that
adaptations only affect well-defined parts of the program.
Adaptations can be delimited according to three perspectives: the moment

in which adaptations are defined, how adaptations are processed, and how
adaptations are confined.

COP.7 The delimitation definition property describes when the delimitation
of adaptations is determined. COP languages provide means for defin-
ing the parts of the program for which an adaptation has an effect.
Delimitation of adaptations is achieved in two ways.
1. The static adaptation delimitation technique explicitly delimits the

parts of the application in which the behavioral adaptation defined
for a context take place —that is, defined language abstractions
clearly delimit the program blocks presenting particular adapta-
tions. Languages presenting a static delimitation definition are:
ContextL [44], PyContext [190], ContextS [89], ContextLogicAJ [3],
ContextPy [172], cj [164], ContextJ [5], JCop [6], ContextLua [192],
JavaCtx [162].

2. The dynamic adaptation delimitation technique implicitly uses the
set of active contexts to invoke the appropriate behavioral adapta-
tions —that is, behavioral adaptations are available as long as their
associated contexts are active. Languages providing a dynamic de-
limitation definition are: Ambience [74], Lambic [185], ContextEr-
lang [71], EventCJ [103], ContextJS [124], SCopJ [98], CoPN [33],
PhenomenalGem [148], Flute [9], Context Traits [73].

COP.8 The delimitation specificity property describes the processing unit to
which an adaptation is applicable.
1. In a local delimitation, behavioral adaptations are only available in

the thread in which the activation of the associated context occurred.
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Languages providing a local delimitation are: ContextL [44], Py-
Context [190], ContextS [89], ContextR [166], ContextPy [172], Con-
textJ [5], JCop [6], ContextLua [192], Subjective-C [77], JavaCtx [162],
ContextJS [124], CoPN [33].

2. In a global delimitation, behavioral adaptations are made available
for all the running threads in the system. Languages providing a
global delimitation are: Ambience [74], ContextLogicAJ [3], cj [164],
Lambic [185], ContextErlang [71], Subjective-C [77], EventCJ [103],
ContextJS [124], SCopJ [98], CoPN [33], PhenomentalGem [148],
Flute [9], Context Traits [73].

COP.9 The delimitation confinement property describes the unit in the system
which adaptations are applied to. Adaptations can be delimited to
particular object instances or to complete families of objects.
1. In per class adaptation scoping, behavioral adaptations are effective

for all instances of the class in which the context activation occurs.
Languages providing per class confinement are: ContextL [44], Am-
bience [74], PyContext [190], ContextS [89], ContextLogicAJ [3],
ContextR [172], cj [164], ContextJ [5], Lambic [185], ContextEr-
lang [71], JCop [6], ContextLua [192], Subjective-C [77], JavaCtx [162],
SCopJ [98], CoPN [33], Flute [9].

2. In per instance adaptation scoping, behavioral adaptations are effec-
tive only for a particular object instance. Languages providing per
instance confinement are: EventCJ [103], ContextJS [124], Context
Traits [73].

4.1.4 Composition of Adaptations
COP allows the adaptation of systems to their surrounding execution environ-
ment by allowing selection and delimitation of adaptations. However, any such
technique would be ineffective if adaptations would be too burdensome to pro-
duce. Hence any COP approach must provide the means to define new adap-
tations as increments of previous ones. By combining adaptations in flexible
ways, it is easier to obtain different useful behaviors that can then be chosen
flexibly.
Multiple contexts can be simultaneously active in the surrounding execution

environment. In order to provide new and useful behavior from these contexts,
it is possible to combine them by means of reuse. Similarly to stratification
of objects into object hierarchies or combination qualifiers [21], COP needs to
provide a way to define which behavioral adaptations reuse behavior from which
others.
Adaptations can be composed based on two mechanisms: ordering of behav-

ioral adaptations through disambiguation, and the declaration of interaction
between adaptations.
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COP.10 The disambiguation composition property describes a common way of
combining different pieces of behavior by ordering them. The ordering
in which behavior adaptations are selected is usually provided before-
hand by the user or the developer, but can also be decided upon at run
time. Defining a simple ordering of behavior adaptations is fairly rigid,
since orderings need to be anticipated and have a coarse level of granu-
larity (e.g., classes or behavioral modules). More dynamic possibilities
of orderings include the following:
1. The activation order technique defines the order of behavioral adap-

tations according to a timestamp property. That is, whenever adap-
tations are selected the activation is annotated with a timestamp.
When a method is called the behavioral adaptations associated with
more recently activated contexts will be applied first. This order-
ing technique is particularly flexible, as the observed behavior may
change by changing the order in which variations are selected. Lan-
guages providing activation order disambiguation are: Subjective-
C [77], CoPN [33], PhenomentalGem [148], Context Traits [73].

2. The explicit priorities technique orders behavioral adaptations by
annotating them with a priority value. This priority defines the se-
quence in which adaptations are combined. For example, numerical
priorities from greatest to smallest, or by the ordering of combination
qualifiers [21]. Definition of priorities may yield a rigid combination
technique of adaptations. However, at such a fine level of gran-
ularity, behavioral adaptations can be combined according to the
particular needs of every method. Languages providing priorities
disambiguation are: ContextL [44, 49], ContextS [89], ContextLogi-
cAJ [3], Subjective-C [77, 123], CoPN [33].

3. The selection technique dynamically orders behavioral adaptations
by exploiting an activation order-like strategy. In a selection strat-
egy behavioral adaptations are combined in a stack-like structure.
The observed behavior of the application is that of the adaptation
closer to the top of the stack (i.e., the one that has been selected
most recently). Languages providing selection disambiguation are:
ContextlogicAJ [3], ContextR [166], ContextPy [172], ContextJ [5],
ContextErlang [71], ContextLua [192], EventCJ [103], SCopJ [98],
PhenomenalGem [148].

4. The declaration order technique orders behavioral adaptations ac-
cording to the lexical order in which they were defined in the ap-
plication. The definition can be either the definition of the first-
class entity itself (e.g., context), or the definition of the adaptations
associated to that entity. Whichever the case, at run time the be-
havior is combined by choosing the first adaptation defined in the
application. Languages providing a hierarchical disambiguation are:
ContextL [44], Ambience [74], PyContext [190], ContextS [89], Con-
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textlogicAJ [3], cj [164], ContextJ [5], ContextErlang [71], JCop [6],
JavaCtx [162], ContextJS [98].

COP.11 The adaptation interaction composition property describes the way in
which adaptations may relate to each other. Relations can be structural
or logical. A structural relation is given by the structure of system en-
tities and modules for which adaptations are defined. A logical relation
is given by a set of constraints an adaptation must satisfy with respect
to one another. Such relations can be used at run time to influence the
way in which adaptations are composed.
1. The delegation interaction between adaptations is implemented by

allowing to reuse the behavioral adaptations provided other adap-
tations. Whenever an adaptation is defined as an increment of an
existing one, a delegation relation is set between them. In such a
scenario, the later adaptation can override the behavior of former
adaptations, or it can increment it. In case the behavior provided
by the former adaptation is needed, it can be accessed by means
of a dedicated language constructs. This technique of adaptation
composition resembles that of code reuse provided by means of del-
egation in prototype-based languages, or inheritance in class-based
languages. Languages providing a delegation interaction are: Con-
textL [44], Ambience [74].

2. Dependencies are used to define interactions among adaptations.
Such interactions determine how adaptations are selected. Depen-
dencies can be expressed by means of rules or transformations spec-
ifying how adaptations interact. Normally, dependencies define the
conditions under which a group of adaptations is combined for a
given change in the surrounding execution environment. For exam-
ple, allowing or denying adaptations activations based on the state
of other adaptations. Languages providing dependencies interac-
tion are: ContextL [44], Subjective-C [77], EventCJ [103], Contex-
tJS [124], SCopJ [98], CoPN [33], PhenomenalGem [148], Context
Traits [73].

3. ADT can be introduced to describe the way in which adaptations
interact with each other. The Abstract Data Type (ADT) encapsu-
lates the adaptations that can be made available, organizing explic-
itly all allowed combinations. For example by stating that at least
one of two adaptations must be available at all times. ContextEr-
lang [71, 163] provides an ADT combination of adaptations.

4. A state change configuration is used to express the way in which
adaptations interact with the surrounding execution environment
rather than with each other. Such a configuration definitions when
adaptations are suspended, resume, restarted or stopped. Flute [9]
provides a state change configuration of adaptations.
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Table 4.1 summarizes currently existing COP languages and their differences
with respect to the four characteristics of adaptations described in this section.
The languages are ordered chronologically by first date of publication.
Note from Table 4.1 most COP languages do not provide any support to man-

age the interaction between adaptations (the adaptation interaction property
COP.11 consisting of delegation, dependencies, ADT, and change configura-
tion). This lack of support for the interaction between adaptations partially
motivates the approach taken in this dissertation for the study of Context-
Oriented Programming, and Dynamically Adaptive Software Systems in gen-
eral, from an interaction management view point. In Section 4.2 we provide a
more in-depth outlook of the existing support to manage a consistent interac-
tion between adaptations in COP languages.

4.2 Consistency Management in COP Languages
Orthogonally to the characteristics of COP systems given in the previous sec-
tion, we identify an additional characteristic: the consistency and predictability
of the observable behavior of the system. Recent advance in different COP lan-
guages have identified the importance of maintaining a consistent execution of
the system functionality in the presence or absence of behavioral adaptations
during system execution. The interest in system predictability arises from the
observation that interaction between adaptations and the base application is
not always described, as it is possible to see form property COP.11 in Table 4.1.
As systems grow and more complex it becomes harder to foresee all such inter-
actions, possibly leading to conflicting or contradicting behavioral adaptations
being simultaneously available in the system. We refer to these situations as
behavioral inconsistencies.
Remember from Section 2.3.3 that already in the small example of the maps

application it is possible to spot situations in which behavioral inconsistencies
could occur. These situations serve as inspiration to define three sources of
behavioral inconsistencies. This list is not meant to cover all possible cases for
all different language features from all existing COP languages, but it aims to
select situations that are common to all.

Dynamicity: Adaptations are introduced to and withdrawn from the system
arbitrarily over time as a consequence of changes in the surrounding exe-
cution environment of the system. In the maps application the dynamicity
property can be seen in the activation of the Wifi context. This context
can be activated intermittently as the user roams around and wireless net-
works are joined and left behind, making its provided services constantly
available and unavailable. Behavioral inconsistencies may arise due to dy-
namicity whenever behavioral adaptations occur when they should not,
for example, if the location of the user is requested for the Positioning
adaptation whenever there is no service (NLBS or GPSAntenna) providing

2http://www.p-cos.net/context-scheme.html

http://www.p-cos.net/context-scheme.html
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such method, or when they do not occur when they should, for example
not enabling the NLBS service when there is a Wifi connection. We refer
to these situations as the adaptation fragility problem.

Interaction: Multiple adaptations can be active simultaneously, thus their be-
havioral adaptations may be accidentally rendered incorrect by the pres-
ence of other available behavioral adaptations. As an example of such
undesired interaction, consider the activation of the Positioning service
(by the availability of the GPSAntenna) which broadcasts the position of
users, and the activation of the Private context (by manual configuration
of the user) which conceals all user information in the maps application.
When the two contexts are active simultaneously, their behavioral adap-
tations are in conflict.

Multiplicity: Situations in which an adaptation may become available can arise
in different ways, for example via their interaction. Hence, context objects
can be activated more than once. Semantics of context activations should
consider the multiplicity of context activations into account to ensure that
behavioral adaptations associated with contexts are available as long as
they are needed (i.e., by some other adaptation or are available in the
surrounding execution environment). As an example of multiplicity, con-
sider the Positioning context which can be activated four times: it can
be directly activated, or indirectly by the activation of the GPSAntenna,
GSMLocation and NLBS contexts. Disconnection of any of these services
should not immediately disable availability of the Positioning service as
long as it is still needed to be active via other context. For example, if
only the NLBS service disappears, Positioning can still happen through
one (or a combination of) the other services.

Different proposals have been made to ensure a consistent and predictable
behavior of COP systems. Unfortunately most of these proposals are language-
specific and no general consensus has been reached regarding which situations
impact all context approaches and which ones occur due to design choices made
in a specific language.
An initial proposal to manage consistency of COP systems was to incorporate

contexts in the software design process by means of CODA [49]. CODA considers
software systems as an aggregation of features describing the application be-
havior, which can be adapted according to the context in which the system is
used. CODA defines a set of relationships that can be declared between adapta-
tions in order to deal with the problem of unanticipated adaptation interaction.
These relationships extend the existing relationships (e.g., and, optional, or
mandatory) of feature diagrams [106], for example, by means of inclusion and
exclusion relations between adaptations expressing respectively that adapta-
tions must co-exist with each other, and adaptations cannot co-exist with each
other. Additionally, CODA implements different resolution strategies to order
behavioral adaptation in case of adaptations interactions. The work on CODA
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is extended in two directions. On the one hand ContextL introduced declara-
tive layer constraints [43] and the use of the reflective meta layer of ContextL
to constrain activation of contexts [48, 45]. On the other hand, based on the
interaction resolution strategies, a set of policy rules can be implemented and
verified when contexts are activated [51, 50].
An example of a CODA diagram and its resolution strategies for the maps

application Section 2.3.3 is given in Figure 4.1. In the figure rounded squares
represent the varaition points of the system, and squares are their available
adaptations. In case multiple adaptations are enabled simultaneously, as it
is the case for the GPSAntenna, GSMLocation, and NLBS adaptations, a prior-
ity is given to each of them. Priorities are represented by a annotating the
relationship between adaptations with a number, as shown in the figure.

GSMLocation
Private

Bluetooth

Calculate 
Position

Context-aware 
Maps

Consists of 
relationship

Inclusion

GPSAntenna

Private 
Mode

network=Mobile device=GPS

type=Bluetooth
0...1

Exclusion Choice

0...1

1

1

Priority

2

NLBS

WLAN

3

type=Wifi

place=Indoors

Figure 4.1: CODA diagram for the maps application.

The approaches introduced in ContextL to ensure consistency have an impor-
tant drawback. As systems grow it becomes harder to see interaction between
adaptations. Moreover, the diagram and the required knowledge behind it could
get cluttered. Introduction of new interactions between adaptations requires
the definition of new notations. In addition, due to the difference between the
high-level definition of relationships in the diagram and their implementation,
interaction between adaptations could be missed raising inconsistencies at run
time.
Similarly to the verification of policy rules introduced in ContextL, external

rule engines could be used for the verification of specified rules, as explained in
Section 3.2.4. In particular forward chaining engines such as Crime [136], could
be used for the evaluation of predicates associated with context activation.
Such predicates could be used (but are not currently in use) in languages that
explicitly exploit context changes by means of predicates such as Lambic [185]
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or Flute [11]. Flute provides instead a declarative way to describe the different
situations that could take place when a context change occurs while a behavioral
adaptation is being executed. The programming model used in Flute is based
on the concept of continuations [85]. Following the ideas of continuations,
activation constraints that can be declared in a context refer to whether the
process should suspend, abort, restart or resume the execution of a behavioral
adaptation.
EventCJ also allows the definition of context transition rules [103] which,

similarly to policy rules in ContextL, allow to change the set of active contexts
(of an object instance in EventCJ) as a consequence of an event associated
with contextual information. Transition rules can enforce constraints for the
activation of different contexts. Context transition rules in EventCJ are mod-
eled with a finite automaton which allows to verify safety properties of context
transition rules by means of model checking techniques.
Snippet 4.1 shows an example of the definition of events, and the declara-

tion of transition rules between adaptations for some of the adaptations of the
maps application introduced in Section 2.3.3. Events are triggered by partic-
ular situations in the surrounding execution environment of the system, for
example, the NLBSEvent defined in Line 7 is triggered whenever a connection
is detected. Triggering of events activates events according to the definitions
given for each event (Lines 13 through 19). The first transition rules expresses
that if the Private adaptation is not active, then it is possible to activate the
PositioningEvent. The second rule expresses that the NLBS adaptation can
be activated if the GPSAntenna or GSMLocation adaptations are not active.

1 d i r e c t i o n C a l c u l a t e P o s i t i o n {
2 de c l a r e event P o s i t i o n i n g E v e n t ( Object o , i n t s )
3 : a f t e r c a l l ( vo id onEventRece i ved ( s ) )
4 &&t a r g e t ( o )&&a rgs ( s )
5 && i f ( s==BROADCASTING)
6 : sendTo ( o ) ;
7 de c l a r e event NLBSEvent ( Object o , i n t s )
8 : a f t e r c a l l ( vo id onEventRece i ved ( s ) )
9 &&t a r g e t ( o )&&a rgs ( s )

10 && i f ( s == CONNECTED)
11 : sendTo ( o ) ;
12 //Transit ion ru les
13 t r a n s i t i o n P o s i t i o n i n g E v e n t :
14 not Private a c t i v a t e Positioning ;
15 t r a n s i t i o n NLBSEvent :
16 not GPSAntenna a c t i v a t e NLBS |
17 not GSMLocation a c t i v a t e NLBS ;
18 t r a n s i t i o n C o n n e c t i v i t y E v e n t :
19 Bluethooth switchTo WLAN ;
20 }

Snippet 4.1: Event declarations and layer transition rules for the maps
application in EventCJ.

Having defined the transition rules, EventCJ allows to automate the transi-
tion of such rules into Promela [93], a language for the specification of processes.
Such a specification is used for the verification of consistency properties about
the layer transition rules. Snippet 4.2 shows an example of the transition rules
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specification using Promela. The first process (Lines 1 through 16) describes
the transition rules for each event. Events are gathered via a channel| variable.
The second process (Lines 17 through 25) describes the environment of the base
application. In this example description PrivateEvent can be triggered at any
time, PositioningEvent can only be triggered if the GSMLocationEvent event
was triggered before.

1 a c t i v e proctype Object ( ) {
2 do
3 : : channe l ? NLBSEvent −>
4 S0 : i f
5 : : (GPSAntena==I n a c t i v e ) −>
6 atomic {NLBS=A c t i v e }
7 : : (GSMLocation==I n a c t i v e ) −>
8 atomic {NLBS=A c t i v e }
9 f i

10 : : channe l ? C o n n e c t i v i t y E v e n t −>
11 S1 : i f
12 : : (Bluetooth==A c t i v e ) −>
13 atomic {Bluetooth=I n a c t i v e ; NLBS=A c t i v e }
14 f i
15 od
16 }
17 a c t i v e proctype Env ( ) {
18 do
19 : : channe l ! P r i v a t e E v e n t
20 : : channe l ! GSMLocationEvent −>
21 do
22 : : channe l ! P o s i t i o n i n g E v e n t
23 od
24 od
25 }

Snippet 4.2: Layer transition rules translated to Promela.

Once the system specification has been generated, it is necessary to write the
properties to be verified by the model checker. The Linear Temporal Logic (LTL)
formulae shown in Snippet 4.3 express the conditions that should be satisfied
in the system. The [], V, and U denote the temporal operators globally, release
and until, respectively.

1 [ ] ! (GPSAntenna && GSMLocation && NLBS)
2 [ ] ! (Bluetooth && WLAN)
3 [ ] ! (Private && Positioning)
4 [ ] (Positioning U (GPSAntenna | | GSMLocation | | NLBS) )

Snippet 4.3: System properties specification in LTL.

The adaptation transition rules provided in EventCJ are a step forward from
those initially presented in ContextL because the safety of rules can be verified
beforehand. However, transition rules still have to be specified as part of the
EventCJ program, and the properties transition rules should satisfy as LTL for-
mulae (for their verification using a model checker, such as SPIN [93]). This
requirement of a multiple specification of the system makes its development
cumbersome and error prone, as there could be inconsistencies between the
specifications. Additionally, note that EventCJ has a problem coping with the
multiplicity of behavioral adaptations. The automaton model of transition rules
only allows to deal with binary states of contexts, thus adaptations that interact
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with each other cannot be active simultaneously in the system. Composite lay-
ers have been introduced in EventCJ to deal with adaptation interactions [104],
however, this approach requires the definition of new adaptations making up
the interaction.
A recent proposal based on context ADTs is used in ContextErlang [71, 163]

to manage contexts. Unlike previous approaches, ADTs do not deal with con-
texts independently, rather ADTs gather sets of valid adaptation combinations.
Contexts that interact with each other are encapsulated into an ADT which al-
lows to easily check if such interactions are safe. ADTs are represented as a fixed
size stack structure, where each slot in the stack can have one of three types:
adaptable, switch, or free. Each slot specifies which activations are valid for a
group of adaptations. An example of the ADT syntax and a concrete example
using the maps application are shown in Snippet 4.4. In Snippet 4.4(b) the
activation of the WLAN adaptation is left as a free_slot (Line 1), the Private
and Positioning adaptations are defined so that only one of them can be ac-
tive at a time defined as a switch slot (Line 2), and the GPSAntenna, NLBS,
GSMLocation adaptations are defined as activatable slots that can be active or
not (Line 3). The las two lines in Snippet 4.4(b) are used to create and start
the corresponding Erlang agents.

CONTEXT_SPEC : := [ SLOT_SPEC∗ ]
SLOT_SPEC : := { Slotname , SLOT }
SLOT ::= SWITCH_SLOT

| ACTIVATABLE_SLOT
| FREE_SLOT

SWITCH_SLOT ::= [ (Varname1 , ) ∗
{Varname2 , activate}
( , Varname3 ) ∗ ]

ACTIVATABLE_SLOT ::= {Varname}
| {Varname ,active}

FREE_SLOT ::= free_slot

(a)

1Spec = [ {wlan , free_slot} ,
2{ broadcast ing , [ {Private , active }←↩

, positioning ] } ,
3{ c o n n e c t i v i t y , {Bluetooth , active←↩

}}} ,
4{ p o s i t i o n i n g , {GPSAntenna , NLBS , ←↩

GSMLocation}} ] ,
5
6
7Context = context_ADT : c r e a t e ( Spec ) ,
8user : s t a r t _ l i n k ( AgentId , Context )

(b)

Snippet 4.4: (a) Syntax specification of the ContextErlang ADT [163]. (b) Con-
text ADT for the web booking application.

The use of ADTs for the consistency management of adaptation activation
presents a fresh look with respect to previously proposed approaches. However,
this approach evidences the same problems as those proposed before. That is,
the definition of the ADT and the state of its slots needs to be known beforehand
by programmers, even more, currently there is no automated way to verify
the validity of defined rules. Additionally, whenever adaptations are tightly
coupled, their interactions will become part of one single ADT, which boils
down to having a set of transition rules.
González et al. [77] propose context dependency relations in Subjective-C to

define interaction between contexts. Context dependency relations take inspi-
ration from those defined in CODA and the association of context activation
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events with specific constraints defined by the dependency relations. Context
dependency relations are implemented in Subjective-C, which Section 4.3.3 ex-
plains in depth.
Finally, Context Traits [73] offer an approach oriented to context composi-

tion. In Context Traits, traits encapsulate coherent sets of methods. Each trait
can be seen as a specification of methods appropriate to execute in a particular
context of the surrounding execution environment. Objects are then realized as
composition of traits. However, different traits may provide definition for the
same behavior (i.e., they provide behavioral adaptations of the same method)
yielding a conflict in the composition, which will be the method used at run
time? To solve this problem Context Traits allows the definition of composition
policies. Objects are composed by means of a composition policy P (S). Mul-
tiple policies can be defined in the system. Composition policies are functions
that, given a set of traits S, provide a trait without method conflicts. Each res-
olution trait is unequivocally defined by its composition policy P (S). In case no
composition policy is defined by programmers, Context Traits provide a default
composition policy that consists in the activation time of each trait in a set S
of traits —that is, the default composition policy corresponds to the activation
order disambiguation composition property of COP systems (COP.10).
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Table 4.2: Consistency approaches in COP systems.

Table 4.2 shows a summary of the existing approaches for the consistency
management in COP languages, and the problems not yet tackled by each of the
approaches. It is apparent from the table that the recurrent problems through
the approaches for consistency management in COP systems are verification,
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support for multiplicity of contexts, and the fragile method problem. We argue
that a programming model for the consistency management of COP systems
must address all of this problems. Chapters 6 and 7 discuss how the basis
proposed for the development of consistent Dynamically Adaptive Software
Systems proposed in this dissertation addresses such problems.

4.3 Context-Oriented Programming in Subjective-C
Subjective-C is a language extension of the Objective-C language3 that enables
COP. Subjective-C was designed with the purpose of enabling the development
of context-aware applications for mobile devices [77]. Subjective-C is a full COP
language, which means that it provides all the functionality for the definition
of modular adaptations, their selection, scoping, and composition. In the fol-
lowing we describe which of the properties for these concepts are implemented
in Subjective-C.

4.3.1 Context Objects: Modularity of Adaptations
In Subjective-C adaptations are modularized by means of context objects. A
context object, or context for short, is a first-class program entity defined as
an abstraction of the particular situation in which the system executes. Con-
texts normally provide a semantically meaningful definition of a situation in
the surrounding execution environment of the system, for which specific be-
havior should be provided. For example, having a phone charge of 150mAh, is
represented as a LowBattery context for a particular system, or a positioning
coordinate 50◦50′N 4◦21′E, represented as the Brussels context.
In Subjective-C contexts are chosen as the definition mechanism for the mod-

ularity property (COP.2). Using contexts behavioral adaptations can be intro-
duced using a dedicated language construct, @context(context-name). This
construct takes the name of the context as a parameter and returns the cor-
responding context object. Snippet 4.5 shows as example the definition of the
WLAN context described for the maps application (Section 2.3.3).

SCContext *wlan = @context(WLAN);

Snippet 4.5: Subjective-C definition of a WLAN context

Context objects reify situations of the surrounding execution environment by
associating behavioral adaptations to them.4 In Subjective-C behavioral adap-
tations are essentially regular Objective-C methods with a special @contexts
annotation, followed by the name(s) of the context(s) associated with such be-
havior. Thus, Subjective-C provides a layer-in-class adaptation modularization

3https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/Introduction/Introduction.html

4In the literature behavioral adaptations are sometimes referred to as partial behavior defi-
nitions, behavior variations, or context-dependent methods.

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
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property (COP.1). Snippet 4.6 shows a behavior adaptation defined for the
method broadcastPosition, which is associated with the WLAN context.

@contexts WLAN
-( CLLocation *) broadcastPosition {

// Get the position from the available service
sel f .pos = [ WLANConnector calculatePosition ];
return pos;

}

Snippet 4.6: Behavioral adaptation definition for the WLAN context in
Subjective-C.

In most cases behavioral adaptations do not re-implement the base behavior
of the system in its entirety, but only require to adapt part of the behavior
and reuse the previously defined behavior. To access such existing behavior
Subjective-C defines the @resend() language construct. A @resend() invoca-
tion works much like a super call in object-orientated languages. Whenever
a @resend() is called, the next applicable method for the current message
call (the exact meaning of this “next applicable method” is explained in Sec-
tion 4.3.3). An example of the use of @resend() is shown in Snippet 4.7 for the
maps application. Here the call to @resend() of Line 17 will call the method
defined in Line 2.

1 @contexts Positioning
2 -( CLLocation *) broadcastPosition {
3 // Draws the calculated position in the map
4 i f ( pos == nil)
5 pos = [ sel f dummyPosition ];
6 return pos;
7 }
8
9 @contexts NLBS

10 -( CLLocation *) broadcastPosition {
11 // Get the position from the available service
12 CLLocation * temppos = [[ NLBS service ] calculatePosition ];
13 i f ( sel f .pos)
14 sel f .pos = [ sel f refinePositionWith : temppos ];
15 else
16 sel f .pos = temppos ;
17 return @resend();
18 }

Snippet 4.7: Method resend in Subjective-C.

In Subjective-C adaptations are composed of a context and a list of the
behavioral adaptations associated with it.

4.3.2 Context Activation: Selection and Scoping of
Adaptations

In Subjective-C adaptation selection takes place based on the state of the ad-
aptation’s context object. A context object can have one of two states, active
or inactive. A context is said to be active if its defining situation is part of the
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surrounding execution environment. A context is said to be inactive, if the
situation for which it is defined is not longer part of the surrounding execution
environment.
In Subjective-C adaptations are confined using the per class delimitation

confinement property (COP.9). that is, whenever a context becomes active
(i.e., an adaptation is selected) its associated behavioral adaptations need to
be composed with the running system. Similarly, if a context becomes inactive
(i.e., an adaptation becomes deselected) its associated behavioral adaptations
need to be withdrawn from the running system.
For example, in the maps application, whenever the device detects a wireless

local area network to which it can connect, the corresponding WLAN context
is made active. Similarly, if the device moves to a place where there are no
detected WLAN’s, the context is made inactive. Subjective-C implements an ex-
plicit adaptation activation property (COP.3), where context activations and
deactivations are signaled explicitly by means of the @activate(context-name)
and @deactivate(context-name) constructs, respectively. These constructs are
used directly by the programmers within the base application, adaptation ac-
tivations are managed by the client (COP.4). Snippet 4.8 shows how these
constructs are used in the case of the WLAN context.

// If Wifi connection is detected
@activate(WLAN);
// If no Wifi connection is detected
@deactivate(WLAN);

Snippet 4.8: Activation and deactivation of context WLAN in Subjective-C.

Context activations can also be managed by a context manager (cf. Sec-
tion 4.4.1) activation actor (COP.4) that tracks the set of active contexts in
the system by using activation counters [74]. Activation counters work simi-
larly to the retain/release logic of memory management systems based on refer-
ence counting. Every time a context is activated by means of an @activate()
message, its activation counter is incremented by 1. If the context is sent a
@deactivate() message, then its activation counter is decremented by 1 (if
the counter is already zero, the activation counter is not decremented). The
set of active contexts in the system is composed of the contexts for which their
activation counter is greater than zero; the set of inactive contexts is composed
of the contexts for which their activation counter is exactly zero.
Behavioral adaptations are selected using the context activation binding time

property (COP.5). That is, whenever a context becomes active, all of its asso-
ciated behavioral adaptations are made available to the system. For example,
when context NLBS is activated, its associated broadcastPosition method is
made available to the system —that is, it will be the method called when re-
questing the position of the user. Whenever the NLBS context is deactivated,
its associated behavioral adaptations are made unavailable to the system. In
particular the broadcastPosition method defined for the NLBS context will no
longer be called.
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Adaptations are scoped twofold by taking into account the set of active con-
texts. First, since the set of active contexts is unique and accessible to the
whole system whenever a context is active, its associated behavioral adapta-
tions are made available to all executing threads in the system. Such behavioral
adaptations are globally scoped. Second, the set of active contexts is also used
to determine the correct behavior to be selected whenever a method is called.
Method calls are always looked up first among the behavioral adaptations pro-
vided by active contexts (e.g., in the current context). If there are behavioral
adaptations for the method, these are called, otherwise the base method be-
havior is called. This implementation of the introduction and withdrawal of
adaptations accounts for a prompt adaptation timeliness property (COP.6)
and a dynamic delimitation definition property (COP.7). In addition to this
basic behavior for global context scoping, Subjective-C recently introduced an
additional scoping mechanism that allows the scoping of contexts local to a
particular thread of execution. Subjective-C enables both local and global de-
limitation properties (COP.8). However, this extension requires a modification
of the context representation, selection and scoping mechanisms. We further
discuss in Section 9.2 how local context scoping works in Subjective-C.

4.3.3 Context Interaction: Composition of Adaptations
In this section we discuss the last piece of the COP characteristics in Subjective-
C, how adaptations compose, and interact with each other. Three methods
are provided for the composition of contexts and their interaction. The first
method, context dependency relations is used to define interaction between
contexts, enabling their composition. Context dependency relations describe
which contexts may be used in combination with other contexts, and which
contexts should not, following the dependencies adaptation interaction property
(COP.11). The other two composition methods, context activation time and
method priorities which correspond to the disambiguation property (COP.10)
and are used to define how behavioral adaptations are composed at run time.
When a context activation takes place, context dependency relations define

the restrictions and effects of such activation with respect to other contexts de-
fined in the system. In the general case, a context dependency relation between
two contexts A and B imposes conditions on the activation and deactivation of
both contexts with respect to each other. However, not all context dependency
relations necessarily define conditions for both activation and deactivation of
the two contexts.
Context objects are composed in the system by means of context dependency

relations in a so called context dependency graph data structure. The nodes
in the graph are connected to each other through edges expressing the semantics
of the context dependency relation between two nodes. If no direct context
dependency relation exists, the context objects may still be indirectly related,
for example, via a third context which has a context dependency relations with
both.
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Figure 4.3: Context dependency graph for the maps application.

Figure 4.3 shows an example of the context dependency graph for the
maps application. Each of the named nodes in Figure 4.3 represents a con-
text, and the decorated edges represent the 4 existing dependency relations in
Subjective-C [77]. These context dependency relations are:

Exclusion represents the situation in which two contexts cannot be active at the
same time. That is, activation of a context is disallowed if its excluding
context is already active. However, both contexts may be simultaneously
inactive. An exclusion dependency relation between two contexts is rep-
resented graphically by edges with empty squares at both ends (�–�),
as is for instance the case for the Private and Positioning contexts in
Figure 4.3.

Weak inclusion represents the situation in which the activation and deactiva-
tion of the source context automatically triggers the respective activation
and deactivation of the target context. However, the dependency is weak
in the sense that the target context can still be activated or deactivated
independently of the source context. A weak inclusion dependency re-
lation is represented graphically by edges ending with empty triangles
(–B), as for instance the case for the WLAN (source) context which weakly
includes the Connectivity (target) context (WLAN–BConnectivity) in
Figure 4.3.

Strong inclusion represents the situation in which, similarly to a weak inclu-
sion, the activation (deactivation) of the source context automatically
triggers the activation (deactivation) of the target context. In this case
however, the inclusion is said to be strong because the deactivation of
the target context automatically triggers the deactivation of the source
context. However, the target context can still be activated independently
of the source context. A strong inclusion dependency relation is rep-
resented graphically by edges ending with full triangles (–I), as is for
instance the case for the NLBS (source) context which strongly includes
the Positioning (target) context (NLBS–IPositioning) in Figure 4.3.
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Requirement represents the situation in which the activation of the source con-
text is possible only if the target context is already active. This restriction
implies that if the target context is inactive, the source context must nec-
essarily be inactive. A requirement dependency relation is represented
graphically by edges ending with inverse full triangles (–J), as is for in-
stance the case for the NLBS (source) which requires the Connectivity
(target) context (NLBS–JConnectivity) in Figure 4.3.

When a context is to be activated or deactivated, a request is sent to each
related context in order to check its state. Based on the constraints imposed
by the dependency relation between contexts, the (de)activation request is ac-
cepted or not. Note that, since activation of a context may trigger that of
another context, every request made to a context must be forwarded to all
other contexts with which it has a context dependency relation.
Example 4.1. As an example of the interaction of contexts under the influ-
ence of context dependency relations we explain the process different contexts
in the maps application with a context configuration as shown in Figure 4.3.
Suppose that no context is active in the application, and there is a request to
activate context WLAN by a call to @activate(WLAN). Context WLAN has only one
related context in the context dependency graph, context Connectivity. To
activate WLAN we must activate Connectivity. Connectivity has three con-
text dependency relations, two weak inclusion dependencies with Bluetooth
and WLAN as the target, and a requirement dependency with Connectivity as
the target. None of these relations impose constraints on the activation of the
target context, nor does the activation of the target lead to any consequences.
Context Connectivity is then activated. As this is the only dependent context
for WLAN, can then also be activated.
Suppose now that the NLBS context is requested for activation by calling

@activate(NLBS). Context NLBS has two context dependency relations, a re-
quirement dependency with Connectivity as the source, and a strong inclu-
sion dependency with Positioning for which it is the source. According to the
constraints imposed by the requirement dependency the source context can be
activated only if the target context is. A message is sent to the target context to
verify if it is active or not, since the Connectivity context was previously ac-
tivated, NLBS could be activated. The strong inclusion dependency imposes the
constraint that every activation of the source must activate the target. Hence
an activation message is sent to the Positioning context. The Positioning
contexts has four context dependency relations, three strong inclusion depen-
dencies with contexts NLBS, GSMLocation, and GPSAntenna for which it is the
target, and an exclusion dependency with the Private context. The strong
inclusion dependencies do not impose constraints on the activation of the tar-
get context. The exclusion dependency constraints the contexts where at most
one of them can be active. Hence a message is sent to the Private context to
verify whether it is active or not. Since the Private context is not active, the
Positioning context can be activated, this means that the NLBS context can
be activated.
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After these two activation requests, the active contexts in the system are
WLAN, Connectivity, NLBS, and Positioning. All other contexts remain inac-
tive.

Note from Example 4.1 that forwarding activation requests may be a costly
operation at run time when contexts graphs are fully connected (i.e., there is a
path between every two nodes of the graph). In a fully connected context graph
every activation request is forwarded to all contexts available in the system.
Different active contexts may however define behavioral adaptations for the

same method. Such behavioral adaptation definitions are then in conflict with
each other in the sense that it is unclear which is the actual behavior that
should be used.
To solve this question, Subjective-C implements twomethod resolution strate-

gies. Method resolution strategies give a concrete composition order for behav-
ioral adaptation definitions in the presence of multiple active contexts. Such
strategies have an impact in the way methods are chosen. The Subjective-C
method look-up mechanism supports two method resolution strategies.
The first implemented method resolution in Subjective-C is the activation

order technique. This technique provides a dynamic order of behavioral adap-
tation definitions as their associated contexts become active. This ordering is
based on the idea that those contexts that have been activated recently are more
relevant than those that have been activated at an earlier time. Subjective-C
assigns an activation timestamp to a context whenever this is activated. Be-
havioral adaptation definitions are ordered by timestamp. When a method is
called, the first observable behavior is that provided by the most recently ac-
tivated context. In case of behavior reuse, the next observable behavior will
be that provided by the context activated immediately before that, and so on,
until the base behavior of the system is reached.

Example 4.2. (Activation timestamp) In the maps application, take the
setting where no context is active. Whenever the broadcastPosition method
is called, the system executes the base method definition of the method. Fig-
ure 4.4a shows this. In that setting we activate the NLBS context. As a con-
sequence of such activation the Positioning context is activated, due to the
strong inclusion dependency between the contexts. Each of these contexts pro-
vides a behavioral adaptation definition for the broadcastPosition method
(Snippet 4.7). As the contexts are activated, a timestamp is given to each of
them, first to Positioning and then to NLBS, as described in the context compo-
sition process (see Example 4.1). Since context NLBS is activated more recently
its associated behavioral adaptation for the broadcastPosition method is the
first observable behavior. Behavior is reused in the NLBS context by sending a
@resend() message. Sending such a message generates a call to the behavioral
adaptation associated with the Positioning context. Figure 4.4b shows this
process. Numbers next to the arrows denote the order in which behavioral
adaptations are called until the base behavior is reached.
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 @contexts NLBS
 -(CLLocation *) broadcastPosition {
   CLLocation *temppos = [[nlbs activeService] 
                                calculatePosition];
   if(self.pos) self.pos = temppos;
   else self.pos = [self refinePositionWith: temppos];  
   return @resend();
 }

 @contexts GPSAntenna
 -(CLLocation *) broadcastPosition { 
   CLLocation *temppos = [CLLocation alloc] 
                       initWithLatitude:[gps latitude] 
                       longitude:[gps longitude]];
   if(self.pos) self.pos = temppos;
   else [self refinePositionWith:temppos];
   return @resend();
 }

 -(CLLocation *) broadcastPosition { 
   //Default void implementation
 }

base behavior

[app broadcastPosition]

 @contexts Positioning
 -(CLLocation *) broadcastPosition { 
   if( pos == nil)
     pos = [self dummyPosition];
   @resend();
     return pos;
 }

(a) Method call with no active contexts

1

2

 -(CLLocation *) broadcastPosition { 
   //Default void implementation
 }

base behavior

 @contexts Positioning
 -(CLLocation *) broadcastPosition { 
   if( pos == nil)
     pos = [self dummyPosition];
   @resend();
   return pos;
 }

 @contexts GPSAntenna
 -(CLLocation *) broadcastPosition { 
   CLLocation *temppos = [CLLocation alloc] 
                       initWithLatitude:[gps latitude] 
                       longitude:[gps longitude]];
   if(self.pos) self.pos = temppos;
   else [self refinePositionWith:temppos];
   return @resend();
 }

 @contexts NLBS
 -(CLLocation *) broadcastPosition {
   CLLocation *temppos = [[nlbs activeService] 
                                calculatePosition];
   if(self.pos) self.pos = temppos;
   else self.pos = [self refinePositionWith: temppos];  
   return @resend();
 }

[app broadcastPosition]

2

(b) Method call with multiple active contexts and timestamps
[app broadcastPosition]

1

 -(CLLocation *) broadcastPosition { 
   //Default void implementation
 }

base behavior

 @contexts Positioning
 -(CLLocation *) broadcastPosition { 
   if( pos == nil)
     pos = [self dummyPosition];
   @resend();
   return pos;
 }

 @contexts GPSAntenna
 -(CLLocation *) broadcastPosition { 
   CLLocation *temppos = [CLLocation alloc] 
                       initWithLatitude:[gps latitude] 
                       longitude:[gps longitude]];
   if(self.pos) self.pos = temppos;
   else [self refinePositionWith:temppos];
   return @resend();
 }

 @contexts NLBS
 -(CLLocation *) broadcastPosition {
   CLLocation *temppos = [[nlbs activeService] 
                                calculatePosition];
   if(self.pos) self.pos = temppos;
   else self.pos = [self refinePositionWith: temppos];  
   return @resend();
 }

1

(c) Method call with one active context

[app broadcastPosition]

1

 -(CLLocation *) broadcastPosition { 
   //Default void implementation
 }

base behavior

 @contexts NLBS
 @priority 10
 -(CLLocation *) broadcastPosition {
   CLLocation *temppos = [[nlbs activeService] 
                                calculatePosition];
   if(self.pos) self.pos = temppos;
   else self.pos = [self refinePositionWith: temppos];  
   return @resend();
 }

 @contexts GPSAntenna
 @priority 30
 -(CLLocation *) broadcastPosition { 
   CLLocation *temppos = [CLLocation alloc] 
                       initWithLatitude:[gps latitude] 
                       longitude:[gps longitude]];
   if(self.pos) self.pos = temppos;
   else [self refinePositionWith:temppos];
   return @resend();
 }

 @contexts Positioning
 -(CLLocation *) broadcastPosition { 
   if( pos == nil)
     pos = [self dummyPosition];
   @resend();
   return pos;
 }

3

2

(d) Method call with multiple active contexts and method priorities

Figure 4.4: Subjective-C behavioral adaptations composition ordering.
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There are situations in which a predefined (even if dynamic) method order-
ing based on activation timestamps of contexts is insufficient to achieve the
desired behavior of the software system. For example, in the maps application
given multiple positioning provider services such as GSMLocation, GPSAntenna,
or NLBS, we would like to always order them by reliability of the positioning
service, taking the most reliable first. To provide this behavior, Subjective-C
implements a second method resolution technique, method priorities. This tech-
nique consists of annotating methods with a priority value dictating the order
in which they should be executed. To give priority to a method, Subjective-
C uses the @priority value keyword annotation. In the presence of method
priorities, behavioral adaptations are always composed based on the method
priorities. The method priority composition orders methods by their priority
decreasingly, partial methods for which no priority is specified are assumed to
have the lowest priority. If two behavioral adaptations have the same priority
they are ordered according to their activation timestamps.

Example 4.3. (Explicit priorities) In the maps application, suppose there
is only one active context in the application, context Positioning. The be-
havioral adaptations associated with the Positioning context are visible to
the system, because behavioral adaptations are always given priority over base
method definitions. The reasoning behind this is that behavioral adaptations
are supposed to be more appropriate than the base behavior of the system,
according to its surrounding execution environment. For example, a call to
the broadcastPosition method in the maps application, is always resolved by
one of the available behavioral adaptations (the behavioral adaptation associ-
ated with the Positioning context in Figure 4.4c). Figure 4.4c illustrates this
method calling process when context Positioning is deactivated, its behavioral
adaptations are withdrawn from the system and thus no longer accessible.
Let us define priorities for the broadcastPosition behavioral adaptations,

where the behavioral adaptation with highest priority is that associated with
the GPSAntenna context.5 In this situation, regardless of the order in which the
contexts are activated, the first executed method is that associated with the
GPSAntenna. The following observable behavior would be the method associ-
ated with the NLBS context, and so on. Figure 4.4d shows the method execution
ordering for all active contexts in the system. The numbers decorating the ar-
rows show the execution order.

4.4 Subjective-C Internals
In Section 4.3 we provided an overview of the different properties of COP lan-
guages (COP.1–COP.11) supported by Subjective-C.This section provides a
detailed view about Subjective-C’s internals [123, 153], explaining how it works

5In Subjective-C the methods with highest priority are those annotated with the highest
priority value.
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and illustrating some of the behavioral inconsistencies we have detected in the
language.

4.4.1 Architecture and Implementation
Subjective-C’s implementation follows a modular architecture proposed for context-
awareness in ambient intelligence and ubiquitous systems [74, 27]. Nonetheless,
Subjective-C does not deal with distribution and remote interaction with ex-
ternal devices. Rather, Subjective-C is only concerned with the dynamic adap-
tation to contextual situations. This can be seen in the general architecture for
context-awareness of Figure 4.5. Subjective-C currently provides an implemen-
tation for the three highlighted modules, for which we explain their purpose
and internal design in the following.

Actuators

context
information arbitrated

context changes

context 
effect

internal

Context
Representation

Context 
Management

Sensors

external

Context 
Discovery

Application 
Behavior

World

Figure 4.5: General context-awareness architecture [27] of Subjective-C.

Context Representation Module

The context representation module is used to provide a concrete representation
of the ensemble of contexts defined in the system. Such an ensemble is used to
oversee the relations and interactions between different context objects, provide
a direct access to behavioral adaptations, and query and modify the state and
behavior of contexts. It is common to embody the context representation as a
dedicated data structure of the system. However, the COP languages [74, 77,
98, 163] that provide an explicit representation of contexts as first class entities
of the system define two instantiations of the context representation (two data
structures): an instantiation of all contexts defined in the system, which we
will refer to as the context dependency graph, and an instantiation consisting of
the subset of contexts that are currently active, which we will refer to as the
active context of the system.
Subjective-C takes inspiration from the representation of contexts as a con-

text graph introduced in Ambience [75]. Subjective-C represents contexts by
means of context dependency graphs. A graph consisting of contexts as nodes,
and dependency relations as edges. Each of the edges in the graph has a type



94 Context-Oriented Programming

representing the semantics of the interaction between contexts (e.g., exclusion
or requirement).
In Subjective-C the context dependency graph is expressed by means of ad-

jacency lists.6 Each context contains a list of all of its context dependency
relations —that is, a list of triplets < R, c1, c2 >, where R is the type of the
context dependency relation, and c1 and c2 are the two context objects in-
teracting through the context dependency relation. The Subjective-C context
graph is a directed graph, this means that edges represented by the triplets
< R, c1, c2 > and < R, c2, c1 > are different. Every context has a reference
to all its context dependency relations. This means that for every dependency
relation R defined between two contexts c1 and c2, the triplet < R, c1, c2 > is
associated with the two contexts. For example, in the maps application, if we
assume a weak inclusion to be of type C, the edge < C, WLAN, Connectivity >
will be an entry in the adjacency list of both the WLAN and Connectivity
contexts.
In the implementation of Subjective-C, the set of active context is represented

as a list. Whenever a context is activated, it is added to the list of active
contexts (if it was not there before). Whenever a context is deactivated (if its
activation counter is zero), it is removed from the active contexts list.

Application Behavior Module

The application behavior module, is responsible for providing the behavior of
the system after behavioral adaptations are composed. As mentioned earlier
in this section, the context representation module, and in particular the active
context, can be used to decide the behavior to be executed when a method
is called. Section 4.3.3 introduced the composition of behavioral adaptations
in Subjective-C. Behavioral adaptations are composed according to the order
given by the available disambiguation techniques. The observed behavior of the
system is that provided by the first method of the ordering.
Instead of literally introducing and withdrawing methods, Subjective-C uses

a special technique for the dynamic adaptation of system behavior, namely
method swizzling,7 or method replacement. The idea behind method swizzling
is that the implementations the base method and its behavioral adaptation are
interchanged by swapping their pointers, whenever contexts are activated. To
accomplish this, all behavioral adaptations defined in Subjective-C are “pre-
loaded” with the rest of the application. Behavioral adaptations and their
corresponding base behavior are implemented as Subjective-C methods follow-
ing the definition given in Snippet 4.9. That is, each behavioral adaptation is
characterized (among others) by its selector (Line 4), implementation (Line 11)
and a list of the related behavioral adaptations (Line 7).
The process of “pre-loading” behavioral adaptations in Subjective-C is de-

scribed as follows: (1) Subjective-C precompiles the application before deploy-

6http://www.ics.uci.edu/~eppstein/161/960201.html.
7 http://cocoadev.com/wiki/MethodSwizzling.

http://www.ics.uci.edu/~eppstein/161/960201.html
http://cocoadev.com/wiki/MethodSwizzling
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ing it onto a mobile device, (2) the pre-compilation phase is in charge of gather-
ing all method definitions annotated by a @contexts keyword, (3) each behav-
ioral adaptation is renamed by prepending the name of the context to which is
associated, (4) the respective Subjective-C method is created with such a name
(following the skeleton of Snippet 4.9), finally (5) these methods are then com-
piled with the rest of the application using the regular Objective-C compiler.8

1 @interface SCMethod : NSObject {
2 @public
3 Method methodStructure ;
4 SEL selector ;
5 Class relatedClass ;
6 BOOL instanceMethod ;
7 NSMutableArray * contextMethods ;
8 SCDispatchMode dispatchMode ;
9 SCArgProcessor * argsProcessors ;

10 NSUInteger numberOfArguments ;
11 IMP localDispatcher ;
12 NSMethodSignature * methodSignature ;
13 NSMutableSet * contextsSet ;
14 }

Snippet 4.9: Subjective-C method definition.

Every time a context is activated in the system, its associated behavioral
adaptations replace the implementations of the base methods by swizzling the
behavioral adaptation implementation with that of the base method, or the im-
plementation corresponding to the active context. Then the new implementa-
tion registers the old implementation as the next method to be called according
to the given order. Normally this is the first behavioral adaptation in the order
before the context activation (unless method priorities are used). Whenever
@resend() is called within a method, a swizzling process takes place replacing
the current method implementation with that registered in the SCMethod as
the next method, and the method is called again. After this call is made the
methods are swizzled back into place.
Similarly, every time a context is deactivated in the system, its associated

behavioral adaptations are withdrawn from the system by swizzling their im-
plementation with that of the next method, so that the behavioral adaptation
is not linked anymore to the method ordering of the base behavior.

Context Management Module

The purpose of the context management module is to orchestrate context acti-
vations, so that changes in the surrounding execution environment do not lead
to behavioral inconsistencies. Context orchestration is realized by adaptation
policies [50]. Adaptation policies lay down the conditions for which context ac-
tivations can or cannot be performed taking into account the current context of
the application. Whenever a context activation takes place, adaptation policies
are first checked for satisfiability (i.e., the system makes sure that the context

8The LLVM 2.0 compiler for the release 2.0 of Subjective-C.
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activation does not violate any of the adaptation policies, leading to contradic-
tory behavior). Second, adaptation policies may associate context activations
with specific actions to be performed.
Previous COP language implementations propose approaches similar to the

use of a context management system [50, 51, 76]. However, Subjective-C is the
first language where the use of a context manager has been made explicit. Cur-
rently the context management module of Subjective-C consists of two tightly
related submodules. The first module is in charge of structuring contexts based
on the definition of context dependency relations as a reification of adaptation
policies. The second module is in charge of updating context states as de-
scribed by the context dependency relations. Currently Subjective-C manages
context interaction through the four context dependency relations described in
Section 4.3.3, where every context is aware of the contexts related to it. For
example, in the maps application the context NLBS contains a list of two el-
ements (the requirement dependency relation NLBS–JConnectivity and the
strong inclusion dependency relation NLBS–IPositioning).
When an @activate() or @deactivate() message is sent to a context in

order to respectively activate or deactivate it, the context is not immediately
activated, rather the context activation is requested. The context activation
is effectively performed if and only if all of the constraints imposed by all of
the context dependency relations of the context are validated. Every context
activation is received by the context manager and forwarded to be resolved
by the specific context object. The context object is activated only if none of
its context dependency relations restrict its activation. For example, a strong
inclusion dependency relation activation of the source context requests the ac-
tivation of the target context. In such a case, the context activation can take
place only if all of the forwarded activation requests are also valid. The process
of activating a context part of a strong inclusion dependency relation is shown
in Snippet 4.10.

Example 4.4. Snippet 4.10 illustrates the process for context activation. In
the maps application, assume that context Connectivity is active due to a
WLAN network being available. Suppose further that we activate the NLBS con-
text. When the @activate(NLBS) message is sent for the activation of NLBS,
this message is resolved by the context manager through the method defined
in Line 2, which forwards the request to activate the context to the object
representing that context, by calling the method in Line 6. This method is
in charge of activating the context if and only if it can be activated, a veri-
fication which is carried out by the method described in Line 18. Note that
Lines 25 to 26 check the possibility to activate the context for all of its context
dependency relations. In the case of NLBS this means checking its require-
ment and strong inclusion dependency relations. The method in Line 30 shows
the process of verifying the activation for a context dependency relation of
type strong inclusion.9 Processing the strong inclusion dependency relation of

9The process to verify the deactivation, as well as the verification of the other context
dependency relation types is similar.
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1 // Receiver method of @activate () in the context manager
2 - (BOOL) activateContext :( SCContext *) aContext {
3 return [ aContext activate ];
4 }
5 // Activation methods of context objects
6 - (BOOL) activate {
7 // One activation at a time
8 @synchronized ([ SCContext class ]) {
9 i f (![ sel f canBeActivated ])

10 return NO;
11 NSMutableSet * contextsSet = [[ NSMutableSet alloc ] init ];
12 BOOL canActivate =[ sel f activateExceptContexts : contextsSet ];
13 [ contextsSet release ];
14 return canActivate ;
15 }
16 }
17 // Verification of the conditions for the exclusion dependency relation
18 - (BOOL) activateExceptContexts :( NSMutableSet *) contextsSet {
19 NSParameterAssert ( contextsSet != nil);
20 i f ([ contextsSet containsObject : sel f ])
21 return YES;
22 [ contextsSet addObject : sel f ];
23 sel f . activationCount + = 1;
24 [ sel f processActivation ];
25 for ( SCDependencyRelation * aLink in links )
26 [ aLink processSourceActivationExcept : contextsSet ];
27 return YES;
28 }
29 // Process activation for the strong inclusion dependency
30 - (BOOL) processSourceActivationExcept :( NSMutableSet *) contextSet {
31 i f (![ target activateExceptContexts : contextSet ])
32 return NO;
33 return YES;
34 }

Snippet 4.10: Context activation method in Subjective-C.

context NLBS forwards the request of activation to the target context (in this
case Positioning), as shown in Line 31. Notice that now we have to ver-
ify if the activation of context Positioning is possible by means of method
activateExceptContexts in Line 18. All dependency relations defined for
the Positioning context (GSMLocation–IPositioning, NLBS–IPositioning,
GPSAntenna–IPositioning, Private�–�Positioning) must be verified in or-
der to decide whether the activation of Positioning is possible or not. The
definition of the strong inclusion dependency relation does not impose any re-
strictions on the activation of the target context, so it is only necessary to verify
that the Private context is inactive. Since by assumption the only active con-
text in our initial configuration for the example was Connectivity, context
Positioning can be (and is) activated. Secondly the requirement dependency
NLBS–JConnectivity is to be verified. The definition of the requirement de-
pendency relation states that the source context of the relation can be activated
only if the target context is already active. Since we assumed Connectivity to
be active, context NLBS can thus be activated. As the conditions imposed by
all of the context dependency relations associated with NLBS are verified, the
context can be effectively activated.
Note that in the case context Connectivity is inactive, the activation of NLBS
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would be denied, denying the activation of all the contexts requested to be acti-
vated in the process described here, in particular not activating Positioning.

4.4.2 Programming Support
Throughout Section 4.3 we showed how Subjective-C modularizes, selects, scopes,
and composes adaptations by means of the definition of context objects, context
activation and context interaction. In this section we present a synopsis of the
programming facilities provided by Subjective-C to aid the development of COP
systems. Table 4.3 summarizes the minimal set of language facilities used in
Subjective-C in order to enable dynamic adaptation to context. Comprehensive
examples on how to use these (and similar) constructs in practice can be found
in Chapter 9.

Context declaration ::= @context( context-name )
Context activation ::= @activate( context-name [in thread-name {, thread-name }] )
Context deactivation ::= @deactivate( context-name [in thread-name {, thread-name }] )
Context method annotation ::= @contexts context-name { context-name }
Method priority declaration ::= @priority priority
Behavior reuse ::= @resend()
Dependency relations declaration ::=

[addExclusionBetween: context-name and: context-name] |
[addWeakInclusionFrom: context-name to: context-name] |
[addStrongInclusionFrom: context-name to: context-name] |
[addRequirementTo: context-name of: context-name]

Table 4.3: Subjective-C syntax for Context-Oriented Programming.

In addition to these COP language abstractions, Subjective-C provides a
Domain-Specific Language (DSL) to facilitate the definition of contexts and
context dependency relations. The Extended Backus-Naur Form (EBNF) of the
context declaration DSL is shown in Table 4.4. The definition of context ob-
jects and their context dependency relations is given by providing a list of con-
text names, and a list of context dependency relations between those contexts.
Context dependency relations can be defined between two or more contexts.
For example, E => F defines a strong inclusion dependency E–IF, whereas
(A B) => (C D) defines the strong inclusion dependencies A–IC, A–ID, B–IC,
and B–ID.

Context Declaration File ::= Contexts: { ContextName } Links: { DependencyDefinitions } END
ContextName ::= context-name
DependencyDefinitions ::= ( {ContextNames} ) DependencyConnector ( {ContextNames} ) |

><( ContextNames )
DependencyConnector ::= -> | => | =< | ><

Table 4.4: Subjective-C DSL syntax.
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To illustrate this syntax, Snippet 4.11 shows the contexts and context de-
pendency relations defined in the maps application, where Line 11 defines an
exclusion, Lines 12 and 13 define a weak inclusion, Lines 14 through 16 definesa
strong inclusion, and Line 17 defines a requirement.

1 Contexts:
2 Private
3 Positioning
4 NLBS
5 GPSAntenna
6 GSMLocation
7 Connectivity
8 WLAN
9 Bluetooth

10 Links:
11 Positioning >< Private
12 WLAN -> Connectivity
13 Bluetooth -> Connectivity
14 GSMLocation => Positioning
15 GPSAntenna => Positioning
16 NLBS => Positioning
17 NLBS =< Connectivity
18 END

Snippet 4.11: Contexts and context dependency relations DSL specification.

4.4.3 Behavioral Inconsistencies
In Section 4.2 we presented different situations in which inconsistencies may
arise in COP systems due to the informal definition of how contexts interact
when they are activated, and the mismatch between their high level representa-
tion as a context graph and their implementation. Subjective-C was developed
with the intention of avoiding inconsistencies in the behavior of COP systems. In
particular, to deal with dynamicity of adaptations, Subjective-C implements the
context representation module by means of a context dependency graph and a
set of active contexts. To deal with the interaction of adaptations, Subjective-C
implements a context management module by introducing context dependency
relations. To deal with multiplicity of adaptations, Subjective-C uses activation
counters. However useful all these are, the language still leaves room for some
behavior inconsistencies. In this section we discuss the inconsistencies specific
to the programming model of Subjective-C.
Subjective-C provides a first attempt to manage behavior consistency. Subjective-

C, in particular, has three behavioral inconsistencies that were overlooked by
the designers and implementors of the language.
The first inconsistency is present in the deactivation of contexts in a strong

inclusion relation, as follows:

Example 4.5. (Strong inclusion deactivation cycle) Consider the inter-
action between contexts in a strong inclusion dependency relation in the maps
application (i.e., GPSAntenna–IPositioning). This means that activation of
the former context implies activation of the latter (as soon as there is GPS
signal reception, the positioning service becomes automatically available), and
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deactivation of the latter implies deactivation of the former (when the position-
ing service is turned off, there is no longer a need for GPS signal reception which
is turned off, for example, to save battery). Similarly, GSMLocation and NLBS
also strongly include Positioning. Table 4.5 shows the original specification
of these interactions between the source and target contexts.

message source behavior target behavior
canActivate target canActivate YES

canDeactivate YES source canDeactivate
activate target activate —
deactivate target deactivate source deactivate

Table 4.5: Strong inclusion relation specification [77].

Suppose that both GSMLocation and GPSAntenna are activated. This will
cause two activations of Positioning, because of the activation counters. Fol-
lowing the semantics of strong inclusion, deactivation of any concrete location
service, for instance GSMLocation, should cause one corresponding deactivation
of Positioning. Context Positioning should still have a remaining activation
coming from GPSAntenna. However this is not the case as it can be seen by the
last row of Table 4.5. The implementors of Subjective-C initially overlooked
multiple activation in their informal definition of the strong inclusion depen-
dency relation, which caused context Positioning to be deactivated immedi-
ately in the previous scenario, even though in theory it should have remained
active.

A second inconsistency, also present in the strong inclusion dependency re-
lation, exists whenever different contexts strongly include the same context, as
follows:

Example 4.6. (Strong inclusion accidental interaction) Consider again
the case of the Positioning context of the maps application. Such a service
can be made available, for example, via the activation of the GPSAntenna of the
device (GPSAntenna–IPositioning), or the use of the mobile network via the
GSMLocation context (GSMLocation–IPositioning). Let us assume now the
situation where both the GPSAntenna and GSMLocation contexts are active, for
example by executing @activate(GPSAntenna) and @activate(GSMLocation).
According to the semantics of the strong inclusion dependency (Table 4.5),
each time the source context is activated, the activation request is forwarded
to the target. So the state of the system after the two activations will consist
of GSPAntenna and GSMLocation activated one time each, and Positioning
activated 2 times. Further, let us suppose that we activate the positioning
context independently @activate(Positioning), so that context is activated
3 times. Now suppose that the connection with the GPSAntenna is lost, for
example because the user enters a building, so that a request to deactivate
the context is sent. We know from Example 4.5 that both Positioning and
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GPSAntenna will be inactive. However, since the deactivation of Positioning
requests the deactivation of all of its sources, additional requests to deacti-
vate context GSMLocation will be sent, causing it to be deactivated unintend-
edly. In theory the GSMLocation context should remain active (just as the
Positioning service should remain active) since there is no relation between
it and GPSAntenna. The deactivation of GPSAntenna should be independent of
that of the GSMLocation context, as it is the case for their activation.

The final design error in Subjective-C due to the informal specification of
context dependency relations can be seen in the inconsistent behavior of the
requirement dependency relation.

Example 4.7. (Required context deactivation) Consider the interaction
between contexts in a requirement dependency relation in the maps application
(i.e., NLBS–JConnectivity). This means that the former context can only be
activated if the latter has been previously activated (a near location base service
can only be provided if there is a short range network connection available).
Consequently if the latter context is no longer active, the former should be
deactivated (when connectivity is turned off, the available services needed for
NLBS are no longer available and the service should become unavailable).

message source behavior target behavior
canActivate target isActivate YES

canDeactivate YES source canDeactivate
activate — —
deactivate — source deactivate

Table 4.6: Requirement relation specification [77].

Suppose that contexts WLAN and Bluetooth are active. Since these two con-
text have a weak inclusion dependency with Connectivity, this context is
activated twice. Suppose further that the NLBS context is activated (e.g., by di-
rectly turning the service on). If the user loses connectivity of the device because
the Bluetooth connection is no longer in range, a deactivation is requested to
the Connectivity context. This deactivation also triggers the deactivation of
the NLBS context. However, following the semantics of the requirement depen-
dency relation, the NLBS context is only deactivated if Connectivity is inactive,
which is not the case since WLAN is still active. The implementors of Subjective-
C initially overlooked multiple activations in their informal definition of the
requirement dependency relation, which caused triggering the deactivation of
context NLBS when Connectivity was deactivated (shown in the last row of
Table 4.6), even though in theory it should remain active.

Examples 4.5 through 4.7 provide a compelling illustration of the need for a
formal specification of COP systems and in particular of the interaction between
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contexts. Such formal specification could be used to define a notion of system
consistency and to ensure that a particular system is indeed consistent. Chap-
ter 6 presents a model for such a specification, which beyond serving as formal
foundation is also implemented and integrated with the host programming lan-
guage to serve as run-time mechanism for the management of consistency in
Dynamically Adaptive Software Systems.

4.5 Conclusion
In this chapter we presented context-aware systems as a particular class of
Dynamically Adaptive Software Systems, which are characterized by their high
dynamicity and the fine granularity of the software adaptations they provide.
The chapter presents the Context-Oriented Programming (COP) paradigm, a
programming paradigm tailored to the development of context-aware systems.

COP systems were selected as the focus of our study because they satisfy
all the requirements (alongside self-adaptive systems) defined for Dynamically
Adaptive Software Systems in Chapter 2. Timelines (D.1) is satisfied by the
selection characteristic of COP. Context activation takes place unannounced
as a consequence of changes in the surrounding execution environment of the
system. Granularity (D.2) is satisfied by the possibility of adapting entities
of the system at different levels of granularity. Here we only discussed the
adaptation of methods; however, languages like ContextL or Ambience also
allow the adaptation of fields or even complete objects. Flexibility (D.3) is
satisfied by the modularization characteristic of COP systems. Adaptations are
defined independently from the base system. Compatibility (D.4) is satisfied
by means of the activation constructs provided by COP languages. Every time
there is a change in the surrounding execution environment of the system,
the context reifying the situation change is activated. Independence (D.5) is
satisfied by the modularity characteristic of COP systems. Each adaptation is
defined as an independent module of the system which can be deployed at any
time during the execution of the system.
To provide a more detailed description of COP systems, we focussed on

four characteristic properties which describe the dynamicity and modularity
of software adaptations in COP systems: (1) modularity of adaptations (Sec-
tion 4.1.1), which describes how adaptations are defined and structured (at the
programming level) with respect to the base logic of the system, (2) selection
of adaptations (Section 4.1.2), which describes how adaptations are selected to
be included or withdrawn from the system, (3) scoping of adaptations (Sec-
tion 4.1.3), which describes the period during which an adaptation is available,
and (4) composition of adaptations (Section 4.1.4), which describes how adap-
tations interact with each other and how behavioral adaptations are composed
between each other and the base logic of the system. The properties presented
for each of the four characteristics were extracted from currently existing COP
languages, and were rendered explicit in an incarnation of one of such lan-
guages, Subjective-C, which is used as the language laboratory throughout this
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dissertation.
In addition to these four characteristics of COP systems, we presented three

characteristics of COP systems (dynamicity, interaction, and multiplicity of
adaptations) that can give rise to behavioral inconsistencies or unpredictability
due to the dynamicity of adaptations. With these in mind we presented current
approaches to manage consistency in COP languages, providing an overview of
their strengths and shortcomings.
Besides the analysis of consistency management in existing COP languages

(Table 4.2), we pinpointed two problems common to all approaches: the lack of
a formal definition of adaptation interactions, and the obligation for developers
to manually verify if the constraints established for adaptation interaction are
safe.
In the following chapters we introduce a formal model that can be used for

the specification and management of dynamic adaptations, which will evolve
in Chapter 6 into the development of a theory setting the foundations for the
definition of consistent Dynamically Adaptive Software Systems.





Chapter5
Petri Nets

In Chapter 3 we discussed the main problems for the realization of Dynamically
Adaptive Software Systems. In particular we discussed different models that
could be used for maintaining the consistency of software systems in general,
and the shortcomings of such models in a dynamic setting. In this chapter we
present a descriptive model of software systems that provides a sound repre-
sentation of the system’s structure and dynamics. This model complies with
the conflict resolution model requirements (M.1 through M.4) we presented in
Chapter 2 for the consistency management of Dynamically Adaptive Software
Systems.
The proposed model is the Petri net model. Petri nets [144] have been

extensively used to model different kinds of systems ranging from chemistry
processes to communication processes or synchronization control of software
systems. Petri nets provide a mathematical representation of the systems they
model. Using this representation, systems can be analyzed to reveal informa-
tion about their structure and dynamics. The advantage of Petri nets over
other modeling approaches is that they cover the specification, execution and
analysis of the system within the same formalism. Petri nets were introduced
as an answer to other modeling approaches, such as automata or transition
systems, that could not describe the data flow of systems. Petri nets deal with
the interaction of concurrent components in computing systems, where inter-
actions between components can occur non-deterministically. In the setting of
Dynamically Adaptive Software Systems, dynamic adaptations to the system
behavior or interaction between system components can take place at any mo-
ment in time, thus these can be modeled as Petri nets. For this reason, Petri
nets seem to be a good fit to model Dynamically Adaptive Software Systems,
and in particular COP systems, where the system’s behavior adapts to events
or situations in its surrounding execution environment.
In this chapter we provide a general introduction to Petri net theory, we

also explain some extensions to the basic model which have been used for the
modeling of specific concerns in different domains of computing. This chapter
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is rounded off by a discussion on how these extensions can be used for the
modeling of dynamically adaptive systems, and in particular, context-aware
systems.

5.1 Introduction to Petri Nets
Petri nets are defined as directed bipartite graphs, with places and transitions
as disjoint node sets [156, 137].

Definition 5.1. A Petri net is a quadruple P = 〈P, T, f,m0〉, where:
P is a finite set of places, T is a finite set of transitions, and P ∩ T = φ,
f : (P × T ) ∪ (T × P ) −→ Z∗ is the flow function, and m0 is a function
assigning tokens to places which describes the initial marking of the Petri net
m0 : P −→ Z∗.1

The flow function defines the number of tokens that pass through between
a place and a transition, and vice versa. There cannot be any arcs between
two places or two transitions. A marking is a distribution of tokens over the
places representing the state of the system. Intuitively, the tokens described
by the initial marking start to flow through the network according to the arcs
described by the flow function, yielding a new marking at every step. The
marking function allows for multiple tokens to be assigned to a single place.
Figure 5.1 shows an example of a Petri net P, where P = {p1, p2}, T =
{t1, t2, t3}, m0(p1) = 2, m0(p2) = 0, and the flow function f is defined by the
table in the left-hand side of Figure 5.1. The rows in this table correspond with
the first argument of the flow function, whereas the columns correspond with
the second argument of the flow function. For example, for row t2 and column
p2, f(t2, p2) = 2, meaning that there are 2 arcs from transition t2 to place p2. A
zero-entry in the table, for example, f(p1, t1) = 0 means that there are no arcs
between place p1 and transition t1. Arcs in the right-hand side of Figure 5.1
are labeled with their weight —that is, the number of tokens that they carry.
To increase the readability of Petri net visualizations, if arcs have a weight of
1, the corresponding label will be omitted from figures hereafter.

f t1 t2 t3 p1 p2
p1 0 1 0 - -
p2 0 0 1 - -
t1 - - - 1 0
t2 - - - 1 2
t3 - - - 0 0

p1t1

1

p2

t2

1
2

1

t3
1

Figure 5.1: Petri net. Definition of its flow function (left), and visual represen-
tation (right).

1Z∗ represents the set of non-negative integers
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Places usually represent conditions or states of a system, like “battery is
low”. A state is valid (active) if there is at least one token in the respective
place. Transitions usually represent events or actions to be performed on states.
Transitions modify the state of a system by the flow of tokens from one place to
another after firing the transition. Given a transition t, its set of input places
is defined by •t = {pin ∈ P | f(pin, t) > 0}, similarly, its set of output places is
defined by t• = {pout ∈ P | f(t, pout) > 0}.

Definition 5.2. A transition t ∈ T is enabled at a marking m, written m[t〉,
if and only if ∀pin ∈ P such that pin ∈ •t, m(pin) ≥ f(pin, t).

Once transitions become enabled, they may fire. Firing transitions (also
known in the literature as transition triggering [61] or the token game [144])
describes the dynamics of the Petri net by modifying the marking.

Definition 5.3. A transition firing modifies marking m of a Petri net to a new
marking m′, written m[t〉m′. Firing of transition modifies the state of the Petri
net such that ∀p ∈ P, m′(p) = m(p)− f(p, t) + f(t, p).

In the example of Figure 5.1, firing transition t2 will yield a new marking
m1, from m0, where m1(p1) = 2, m1(p2) = 2, that is, m0[t2〉m1.

Definition 5.4. A step, or firing step, Υ is defined as a sequence of transition
firings. If the sequence of transitions is finite, that is, ∃ t0, . . . , tn ∈ T , and
m1, . . . ,mn markings of P, such thatm[t0〉m1[t1〉 . . .mn[tn〉m′ for two markings
m and m′, we say that m′ is reachable from m via step Υ, and write m[Υ〉m′.

Note that multiple transitions may be enabled in a Petri net at any given
moment in time. Being a non-deterministic model, Petri nets allow firing any
of them.
Transitions such as t1 in Figure 5.1 with no input places are called sources.

They are always enabled. Transitions such as t3 in Figure 5.1 with no output
places are called sinks. Tokens are removed from the Petri net after their firing.
Resources in a system are generally finite, to represent a scarce resource, like

“buffer capacity is 512KB.” Petri nets introduce the concept of place capacities.
Petri nets with place capacities allow us to define the maximum number of
tokens (resources) that a place can hold.

3

p1t1

2

p2

t2

2

t3

Figure 5.2: A Petri net with place capacities.
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Definition 5.5. A Petri net with place capacities is defined as a 5-tuple P =
〈P, T, f,K,m0〉, where P = 〈P, T, f,m0〉 is a regular Petri net, and K : P → Z∗
is a function assigning a capacity k ∈ Z∗ to every place p ∈ P . The capacity
function represents the restriction that a place p ∈ P can hold at most k tokens.
A Petri net P is said to have a k-capacity if there exists a k ∈ Z∗ such that
∀ p ∈ P, K(p) ≤ k.

Capacities are assigned statically to Petri nets —that is, once a place is
given a capacity, this will be set forever. The use of place capacities have as
a consequence a modification in the semantics of firing rules for Petri nets. A
transition t is said to be enabled for a marking m, m[t〉, if and only if:

1. ∀ pin ∈ •t, m(pin) ≥ f(pin, t).

2. ∀ pout ∈ t•, m(pout) + f(t, pout)− f(pout, t) ≤ k.

Figure 5.2 illustrates an example of a 3-capacity Petri net. In this figure place
capacities are the small numbers decorating the places. p1 has a capacity of 3
and p2 has a capacity of 2. If a place does not have an associated capacity, then
it can hold as many tokens as desired. Note that transition t1 in Figure 5.2
is not enabled since its output place p1 has reached its maximum capacity. In
the remainder of this text we will treat places as having infinite capacity unless
explicitly stated otherwise.

5.1.1 Petri Net Properties
Providing a formal model of a system just for the sake of modeling or formaliz-
ing the system is of little utility. The purpose of having a conceptual model of
a system is to be able to abstract the system and reason about its properties.
Petri nets find their strength in providing different analysis techniques about
the system’s structure and its behavior [143]. We discuss here the most promi-
nent behavioral properties of Petri nets that could be used in the context of
Dynamically Adaptive Software Systems. An unabridged list of the structural
and behavioral properties can be found in [137].

Reachability and Coverability

The reachability and coverability properties study the different states in which
the system could be, based on its initial state (initial marking). Reachability can
be used to study if specified resources of the system will be in use simultaneously
or not. The reachability problem in Petri nets is concerned with deciding if given
a marking of the system, that marking is reachable from the initial marking.
Coverability is used to study whether the availability of a particular resource

in the system is sufficient or not for a given Petri net state or not. The cover-
ability problem is closely related to the reachability problem in the sense that it
is also about finding reachable markings of the system. The coverability prob-
lem is concerned with given a reachable marking m from the initial marking
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of the Petri net, finding other reachable markings m′ from the initial marking
covering m such that the number of tokens at state m′ is greater or equal than
the number of tokens at state m for every place of the Petri net. If there is a
marking covering the desired capacity of a given resource, we will say that the
resource is sufficiently available.

Definition 5.6. Given a marking m′ of a Petri net P, m′ is said to be cov-
erable if there exist a marking m reachable from the initial marking, such that
∀ p ∈ P, m(p) ≤ m′(p).

Liveness

The liveness property is used to study the presence of deadlocks in a system,
that is, to analyze if certain resource can never be available (resp. freed) because
its associated input (resp. output) transitions can no longer fire from a given
reachable marking on.

Definition 5.7. Given a Petri net P, we say that P is live if and only if ∀m
reachable marking from the initial marking and ∀ t ∈ T , there is a finite step
Υ, where m[Υ〉m′ such that m′[t〉.

Coupled with the notion of liveness is the notion of deadlocks. A deadlock
occurs in a system if for a reachable markingm, there are transitions in the Petri
net which never become enabled. This is defined formally in Definition 5.8.

Definition 5.8. Given a Petri net P, we say that a transition t ∈ T is dead
if there exists no step Υ, where m0[Υ〉m such that m[t〉.

Liveness is an ideal property for the different actions that can be executed in
the system. In our approach (cf. Chapter 7) we will use the notion of deadlocks
to analyze the system actions. That is, for each of the possible actions defined
in the system, we will analyze whether the action can be in a deadlock according
to Definition 5.8.

Fairness

The fairness property is used to analyze the starvation of resources of the sys-
tem. Different notions of fairness have been proposed in the literature [15,
173, 113, 119, 196]. Here we present two basic concepts, bounded-fairness and
unconditional (global) fairness [137].

Definition 5.9. Given a Petri net P, two transitions t, t′ ∈ T , are said to be
bounded-fair (or B-fair) if and only if for any given step Υ = m[t0〉m1[t1〉m2 . . .
∃ k ∈ Z∗, a bound such that t fires maximum k times before the first firing of
t′. A Petri net is called B-fair if for every pair of transitions, the transitions
are B-fair.

Notation 5.1.
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- Given a step Υ, the symbol Υ�t
represents the restriction of the step to tran-

sition t —that is, a sequence of firings of transition t.

Definition 5.10. In a Petri net P a step Υ is said to be unconditionally
(globally) fair if and only if |Υ| < ω (the step is finite), or ∀ t ∈ T, t ∈ Υ and
|Υ�t | = ω (every t occurs an infinite number of times in Υ). The Petri net is
said to be fair, if for every step Υ, Υ is fair.

Persistence

The persistency property is used to analyze the control flow of the system,
specifically to see if the execution of a process in the system will inhibit that of
another process.

Definition 5.11. A Petri net P is said to be persistent if and only if ∀ t, t′ ∈ T
if m[t〉 and m[t′〉 for m a marking of P, the firing of any of the transitions does
not disable the other one. In a persistent Petri net, once a transition is enabled,
it remains enabled until it fires.

Other properties of the system such as home markings or safeness can be
analyzed with Petri nets. We do not present these properties in this text because
they will not be used in the immediate development of our approach, although
they could be integrated for future extensions.

5.1.2 Petri Net Analysis Techniques
After observing the different properties that a Petri net may present, the ques-
tion at hand is, how can we analyze a Petri net to reason about a particular
property? Different techniques exist for the analysis of Petri net properties.
Some of these techniques include the reachability tree (or coverability graph),
and matrix equations [143, 137, 54]. Using such techniques exploring the Petri
nets for a particular behavior can become difficult as systems grow. Differ-
ent reduction rules are introduced to facilitate the exploration of the Petri net
properties. Here we only mention the existing techniques without going into
their detailed exploration, since this falls outside the scope of this dissertation.
The existing reduction rules include: place/transition fusion [137], stubborn
sets [167], symmetries [170], sweep-line [115], cycle coverage [171], coverability
graph [54], attracted execution, and invariant-based compression [171].
These techniques are used by specialized analysis tools in order to reason

about properties of the system. Section 5.1.3 describes which properties are sup-
ported by the analysis techniques for the specific Petri net analyzer LoLA [169].

5.1.3 A Petri Nets Analysis Tool
Several tools for the analysis of Petri net properties have been proposed [177].
These vary from specific algorithms used for the validation of a single property,
to general purpose tools allowing the analysis of multiple properties. This
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section presents an overview of the Low Level Petri net Analyzer (LoLA) [169],2
an analysis tool widely used in the Petri net community for the comprehensive
analysis techniques it provides, as well as for its extensibility and integration
with other tools. In Chapter 7 we use LoLA to reason about properties of
Dynamically Adaptive Software Systems in order to identify any inconsistencies
that they may contain.
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Place/Transition Fusion [137]
Stubborn Sets [167]
Symmetries [170]
Sweep-line Method [115]
Cycle Coverage [171]
Coverability Graph [107]
Attracted Execution
Invariant Based Compression [171]

Table 5.1: Supported reduction rules for each available analysis in LoLA.

We chose LoLA as a supporting analysis tool because it supports the analysis
of different properties of a Petri net, hence extending the possibility to reason
about different aspects of Dynamically Adaptive Software Systems. Table 5.1
shows a summary of the different Petri net properties that can be analyzed
using LoLA (reachability, liveness, deadlocks, safeness [137], boundedness [62],
reversibility [47], and home markings [131]) alongside the implemented reduc-
tion rules that can be (jointly) applied for such analyses. The cells marked
in black in Table 5.1 represent the reduction rules applicable to the Petri net
analyses. Gray cells represent properties that can be analyzed for one single
element of the Petri net (i.e., one transition or one place).3 For example, the
symmetries reduction rule can be used when analyzing liveness for a single tran-
sition (not the complete Petri net). Analyses marked by a white cell cannot
apply the reduction method.

LoLA introduces a simple (text-based) net syntax for the representation of
Petri nets and the analysis to be performed. Snippet 5.1 shows the textual
representation for the Petri net of Figure 5.2. Snippet 5.2 shows the definition
of a particular property to be checked in this Petri net.

1 PLACE
2 SAFE 3 : p1 ;

2Available at: http://service-technology.org/lola
3http://www.informatik.uni-rostock.de/tpp/lola/documentation.htm

http://service-technology.org/lola
http://www.informatik.uni-rostock.de/tpp/lola/documentation.htm
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3 SAFE 2 : p2 ;
4 MARKING p1 : 3 ;
5 TRANSITION SAFE t1
6 CONSUME;
7 PRODUCE p1 : 1 ;
8 TRANSITION SAFE t2
9 CONSUME p1 : 1 ;

10 PRODUCE p1 : 1 , p2 : 2 ;
11 TRANSITION SAFE t3
12 CONSUME p2 : 1 ;
13 PRODUCE;

Snippet 5.1: LoLA textual representation of a Petri net.

1 // R e a c h a b i l i t y - is there a r e a c h a b l e state where p1 is not marked ?
2 ANALYSE MARKING p1 : 0
3 // L iv e n es s - will t r a n s i t i o n t3 ever be enabled ?
4 ANALYSE TRANSITION t3

Snippet 5.2: LoLA representation of Petri net reachability and liveness analyses.

The two different specifications (a specification for reachability and a specifi-
cation for liveness) shown in Snippet 5.2 are the simplest types of specification
available in LoLA. Analyses of the complete Petri net are performed simply
using the net definition and the desired configuration for the analysis. More
complex specifications can be provided as extensively explained in by Schmidt
[169].
Based on reported testing scenarios in LoLA [63, 88], the tool is able to analyze

medium-sized Petri nets —that is, Petri nets of an average size of 500 places and
1000 transitions. For Petri nets of such size, the reported times of performing
the analyses vary between 14 to 96 minutes depending on the type of analysis
performed and the reduction rules used for each analysis.

5.2 Petri Net Model Extensions
Since their introduction in the early 60’s, Petri nets have been extended with
the purpose of modeling more and more complex systems. Examples among
such extensions are task planning [29] or manufacturing systems [154], and
providing more expressive Petri net models such as stochastic Petri nets [79],
fuzzy Petri nets [141], or nested Petri nets [128], to mention some examples.
Additionally, Petri nets have also been extended to serve as a modeling language
for different programming paradigms, for example, OOP [18], FOP [138] and
workflow management [186]. Naturally, Petri net extensions do not stop with an
extension of the modeling formalism to provide a structural pattern definition
and a semantics for a particular kind of system. The ultimate goal of extending
the basic Petri net model is to provide specific analyses of system properties
within specific domains. In this section we introduce some extensions to the
structure and semantics of the basic Petri net model. These extensions become
useful in Section 6.1 when we provide our own extension of the Petri net to
model Dynamically Adaptive Software Systems, and in particular COP systems.



5.2 Petri Net Model Extensions 113

5.2.1 Static Priorities
Static priorities extend the basic Petri net model by fixing a firing order for
groups of transitions [12, 16]. Establishing priorities among groups of transi-
tions can be used, for example, for modeling systems of scheduling processes
or performance analysis systems. The use of priorities explicitly sets an order
for transition firing. A Petri net with static priorities is non-deterministic in
the sense that within a group of transitions with the same priority, their firing
occurs none-deterministically.

Definition 5.12 (Static priorities). A Petri net with static priorities is de-
fined as a 5-tuple P = 〈P, T, f, ρ,m0〉, where 〈P, T, f,m0〉 is a Petri net and the
function ρ : T → Z∗ decorates transitions with a weight denoting their firing
order.

Given a Petri net with static priorities P, an ordering of its transition is given
by the relation ≥. If ∀t, t′ ∈ T such that for a marking m m[t〉 and m[t′〉, and
ρ(t) ≥ ρ(t′), then t always fires before t′. If ∀t, t′ ∈ T such that for a marking
m m[t〉 and m[t′〉, and ρ(t) = ρ(t′), then firing of t and t′ is non-deterministic.

Definition 5.13. Given a Petri net P with static priorities, a transition t ∈ T
is enabled at a marking m if and only if ∀pin ∈ •t, m(pin) ≥ f(pin, t) ∧ @ t′ ∈ T ,
with ρ(t′) > ρ(t) such that m[t′〉.

An example of a Petri net with static priorities is shown in Figure 5.3. Pri-
orities are shown as small italic numbers decorating each transition.

p1

p2

t1

1

t2

2

p3 t3

2

Figure 5.3: A Petri net with static priorities

In the example of Figure 5.3 both t2, and t3 can fire. t1 cannot fire because
it has a lower priority than both t2 and t3, which are enabled. Only after t2 has
fired twice and t3 three times (regardless of the order in which they are fired),
t1 becomes enabled and can fire.
The semantics of Petri nets with static priorities are equivalent to the seman-

tics of regular Petri nets under the conditions given by Definition 5.14.

Definition 5.14 (EQUAL-conflict [12]). A Petri net with static priorities
satisfies the EQUAL-conflict condition if and only if ∀t, t′ ∈ T : •t ∩ •t′ 6=
φ implies that (a) t, t′ have equal priority, and (b)∃ p ∈ •t ∩ •t′ : f(p, t) 6=
f(p, t′)⇒ t, t′ both have the lowest priority.
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p1

t1

p2

p3

t2 p4

t3

t4

t6
p5

p6 t5

t7

p7

p8

t8

2
t9t10

p9

Figure 5.4: Example of Petri net with static priorities satisfying the EQUAL-
conflict condition [12].

Example 5.1. To show an example of Petri net that satisfies the EQUAL-
conflict condition, let us reuse the Petri net with static priorities P, shown Fig-
ure 5.4 and originally presented in Bause [12]. The Petri net has two priority
classes: ρ1 = {t1, t2, t4, t8} the set of transitions with lower priority represented
by white squares in Figure 5.3, and ρ2 = {t5, t6, t7, t8, t9, t10} the set of tran-
sitions with higher priority represented by gray squares in Figure 5.4. Note
that this net satisfies the EQUAL-conflict condition. The only transitions with
non-empty intersection of their inputs are t1 and t2, and t7 and t9. In the first
case •t1 ∩•t2 = {p1}. Transitions t1 and t2 have the same priority so condition
(a) is satisfied. Since f(p1, t1) = f(p1, t2) condition (b) is also satisfied (by the
empty condition property). In the second case •t7∩•t9 = {p5}. Similarly to the
previous case, transitions t7 and t9 have the same priority, satisfying condition
(a). Since f(p5, t7) = f(p5, t9), condition (b) is also satisfied.

The Equal-conflict condition is used to relate the token game semantics of
regular Petri nets with that of Petri nets with static transition priorities. In
Figure 5.4 let us consider the firing step Υ = m0[t1t3t6t5t7〉m, starting from
the initial marking m0(p1) = 1. Under the regular token game semantics step
Υ reaches the marking m, m0[Υ〉m, where m(p8) = 2,m(p7) = 1. Nonethe-
less, Υ is not a firing step of P under the semantics of Petri nets with static
priorities because, transition t3 is fired before transition t6, which has a higher
priority. However, a permutation of Υ, Υ′ = t1t6t5t7t3 is a firing step under
the Petri nets semantics with static priorities such that m0[Υ′〉m. Theorem 5.1
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generalizes the result observed in this example. The proof to this theorem can
be found in [12].

Theorem 5.1. Let P be a Petri net with static priorities that satisfies the
EQUAL-conflict condition. Let m and m′ be two markings and Υ a step such
that m[Υ〉m′ under the regular token game semantics. If ∀t ∈ T such that
m′[t〉 ⇒ @ t′ ∈ T such that ρ(t′) < ρ(t), then ∃Υ′ permutation of Υ such that
m[Υ′〉 under the semantics of Petri nets with static transition priorities.

5.2.2 Reactive Petri Nets
Reactive Petri nets [61] extend the basic Petri net model by introducing re-
activity to it. To make the system reactive it must be opened up such that
it interacts with its environment. Since Petri nets are used to model closed
systems, the model is extended by allowing transitions to respond to stimuli
from the system environment, and by allowing the automatic firing of (a class of
extended) transitions once they are enabled. Such interaction with the system
environment is desired for systems such as reactive systems, workflow processes,
or context-aware systems.

Definition 5.15 (Reactive Petri nets). A reactive Petri net is defined as a
5-tuple P = 〈P, Te, Ti, f,m0〉, where the set of transitions is split up into two
disjoint sets of external and internal transitions T = Te ∪ Ti.

The introduction of transitions that can fire automatically modifies the tran-
sition firing semantics as follows:

Definition 5.16. External transitions (Te) are fired according to the regular
may fire semantics of Petri nets. That is, if a transition is enabled, it may
fire. External transitions are fired as a consequence of an external input source.
Internal transitions (Ti) are fired according to a must fire semantics. That is,
if an internal transition is enabled, it must fire. Internal transitions process
internal actions of the system.

t0i

p0

p1

t1

t2

p2

p3

t3

t4

p4

p5

t6

t7

p7

p8

t5 o

Figure 5.5: A Reactive Petri net [61].

Figure 5.5 shows an example of a reactive Petri net. In the figure, exter-
nal transitions are represented by white squares, and internal transitions are
represented by black ones. Transitions t3, t4 and t5 are fired as soon as they
become enabled, all other transitions are fired as a consequence of an action
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in the environment. Whenever multiple internal transitions are simultaneously
enabled they fire non-deterministically.
However, if both an internal and an external transitions are enabled at a

certain marking, a conflict may arise. To avoid conflicts, internal transitions
are required to fire with a higher priority than external transitions —that is,
internal transitions will always fire before external transitions. This assumption
corresponds to the perfect synchrony hypothesis [14] of reactive systems. The
introduction of priorities in reactive Petri nets corresponds to the notion of
static transition priorities of Section 5.2.1 —that is, reactive Petri nets are
Petri nets with static priorities in which classes of transition priorities can fire
reactively. A consequence of the introduction of transition priorities is that no
external transition may fire until all enabled internal transitions have fired.

Definition 5.17 (Net stability). A reactive Petri net, P is said to be stable
at a marking m if and only if ∀ti ∈ Ti, ti is not enabled at m.

Taken from Definition 5.17 we can deduce that a reactive Petri net can be-
come unstable only by an external transition firing. In order to return to a
stable reactive Petri net, enabled internal transitions must be fired. If after
firing all enabled internal transitions a stable state is not reached, the system
is said to diverge. Note that if a system diverges, that means that there must
exists a loop where a set of internal transitions get infinitely enabled, and thus
must fire. Otherwise it would be possible to reach a marking in which an
external transition can fire as the result of an external state of the system.
The semantics of reactive Petri nets is equivalent to that of regular Petri nets

if and only if the reactive Petri net satisfies the following constraints: (RC1)
internal and external transitions do not have conflicts. (RC2) internal transi-
tions with input places in common are free choice (i.e., can fire independently
of each other), or there is no reachable marking enabling the two transitions.

RC1 : ∀ti ∈ Ti, te ∈ Te • ti ∩ •te = φ
RC2 : ∀t, t′ ∈ Ti if • t ∩ •t′ 6= φ, then either • t = •t′ or @m reachable

marking, such that m[t〉 and m[t′〉 under the regular token game
semantics

Conditions RC1 and RC2 are used to prove the equivalence between the
semantics of regular Petri nets and the semantics of reactive Petri nets. Theo-
rem 5.2 states that, for a given sequence of transition firings under the regular
token game semantics of Petri nets, a permutation of the firing sequence reaches
a stable state under the semantics of reactive Petri nets. The proof of the the-
orem can be found in Eshuis and Dehnert [61].

Theorem 5.2. Given a reactive Petri net that satisfies constraints RC1 and
RC2, suppose under the token games semantics, ∃Υ = t0 . . . tn a step and m,m′
stable states such that m[t0〉m1[t1〉m2 · · ·mn−1[tn〉m′ and for 1 ≤ i ≤ n− 1 the
markings mi are unstable, written m[Υ〉m′. Then, a permutation Υ′ of Υ is
such that m[Υ′〉m′ under the reactive semantics.
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5.2.3 Inhibitor Arcs
Inhibiting systems [142, 37] provide a means to explicitly express the absence
of tokens in a Petri net place. Such conditions are introduced in Petri nets by
adding zero-testing or inhibitor arcs. The extension of Petri nets with inhibitor
arcs increases the computational power of Petri nets, making them equivalent
to Turing machines [155].

Definition 5.18 (Inhibiting Petri nets). A Petri net with inhibitor arcs
is defined as 5-tuple P = 〈P, T, f, f◦,m0〉, where the flow function f◦ : P ×
T → {0, 1} defines the inhibitor arcs. There can be maximum one inhibitor arc
between a place and a transition.

To account for inhibitor arcs the transition enabling rules are modified. For a
given transition t, we make a distinction between the inputs coming from normal
arcs (•t), and the inputs coming from inhibitor arcs, ◦t = {pin ∈ P | f◦(pin, t) =
1}. Input places coming from inhibitor arcs are often referred to as the inhibit-
ing places of a transition.

Definition 5.19. Given a Petri net P with inhibitor arcs, a transition t ∈ T
is said to be enabled at a marking m if and only if, ∀ pin ∈ •t, m(Pin) >
f(pin, t) ∧ ∀ p◦in ∈ ◦t, m(p◦in) = 0.

Figure 5.6 shows an example of a Petri net with one inhibitor arc such that
f◦(p2, t3) = 1. Inhibitor arcs are decorated as circle-ended arcs ((). In this
Petri net, the enabling of transitions t2 and t3 depends on the marking of p2.
Only if p2 is marked t2 can be enabled; on the other hand, t3 can be enabled
only if p2 is not marked. Because of this, t2 is said to have priority over t3.

p1

t1
p3 p4t2 t3

p2

Figure 5.6: A Petri net with inhibitor arcs

Petri nets with inhibitor arcs are very useful for modeling systems for which
the absence of resources needs to be explicitly expressed. Unfortunately, they
also present the inconvenience that, in the general case, most of the Petri net
properties (Section 5.1.1) become undecidable for Petri nets with inhibitor arcs.
This is due to the equivalence of Petri nets with inhibitor arcs to Turing ma-
chines. Deciding if a certain marking is reachable in a Petri net with inhibitor
arcs would be equivalent to deciding program termination for a Turing machine,
which is undecidable.
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Nonetheless, there are special cases in which it is possible to analyze the
reachability problem for Petri nets with inhibitor arcs. Busi [26] studied primi-
tive systems, a sub-class of Petri nets with inhibitor arcs for which it is possible
to perform such analyses by means of reducing the primitive system to an equiv-
alent Petri net without inhibitor arcs. This same kind of reduction could be
applied to a general Petri net with place capacities and inhibitor arcs. Rein-
hardt [155] has also shown that the reachability problem is decidable for Petri
net with inhibitor arcs if there exists an ordering of the places in the Petri
net, such that a place only has an inhibitor arc to transitions which have an
inhibitor arc from a preceding place.

5.2.4 Colored Petri Nets
Colored Petri nets (CPN) [99] are a Petri net extension aimed at combining Petri
nets’ description of concurrent processes with the definition of data types. The
CPN extension maintains Petri net models simple and straightforward while it
allows us to express more complex systems.

Definition 5.20 (Multiset). A multiset g over a set L is a function
g : L −→ Z∗ assigning a weight (a non-negative integer) to each element of L.
Definition 5.21 (Marking multiset). Given sets A and L, a marking mul-
tiset m : A×L −→ Z∗, is defined as a multiset assigning a weight for each pair
of elements (a, l) where a ∈ A and l ∈ L.
Definition 5.22 (Colored Petri nets). Colored Petri nets are defined as a
5-tuple P = 〈P, T, f,L,m0〉, where P, T are defined as in regular Petri nets, L is
the set of data types (colors) a place can hold, f : (P×T×L)∪(T×P×L) −→ Z∗
is a relation describing the flow over a multiset of tokens between two places by
a transition firing, and m0 is the initial marking multiset for places over the
set of colors, m0 : P × L −→ Z∗.
The flow of tokens through an arc defined by the flow function suggests that

there can be as many arcs between a place and a transition as combinations of
input token colors to output color tokens. Clearly, the definition of token colors
requires a color-based definition of transition enabling.

Definition 5.23. Given a CPN P and a marking multiset m, a transition t ∈ T
is said to be enabled for color l ∈ L if and only if ∀ p ∈ •t, m(p, l) ≥ f(p, t, l).
If t is enabled for every color in L, we simply say that t is enabled.
Notation 5.2.
- In order to facilitate the visualization of CPN, we label arcs by means of
formulae expressing which colored tokens flow through the arc.

Example 5.2. Figure 5.7 shows an example of a CPN describing the prob-
lem of the dining philosophers4 (for a set of 4 philosophers ph and 4 chop-
sticks cs), where place think represents the thinking state of philosophers,

4http://cpntools.org/documentation/examples/dining_philosophers

http://cpntools.org/documentation/examples/dining_philosophers
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place eat represents the eating state of philosophers, place free-chopsticks rep-
resents that chopsticks are free, transition take-chopsticks represents a state
change from thinking to eating, and transition put-chopsticks represents a
state change from eating to thinking. The color set for the Petri net is L =
{ph0, . . . , ph3, cs0, . . . , cs3}. In Figure 5.7 each philosopher is depicted by a blue
colored token inscribed with the number of the philosopher (from 0 to 3), and
each chopstick is depicted by a orange colored token inscribed with the number
of the chopstick (from 0 to 3). In Figure 5.7, each place is sub-labeled with
the accepted set of colors by the place (e.g., the set of the four philosophers in
place think). Additionally, each arc is labeled with the token colors that flow
through it when their adjacent transition is fired (e.g., csi, csi+1 for the arc
between place free-chopsticks and take-chopsticks).

ph0..ph3

think
2

0 3

take-chopsticks

phi

ph0..ph3

eat

1
phi

put-chopsticks
phi

phi

cs0..cs3

free-chopsticks

0 3

csi, csi+1csi, csi+1

Figure 5.7: Colored Petri net for the 4 dining philosophers problem.

As an example execution of the Petri net, take the initial marking m0 such
that all philosophers are thinking and all chopsticks are free. For philosopher
ph1 to start eating, transition t0 is fired taking the token of color ph1 from place
think and tokens of color cs1, cs2 from place free-chopsticks. The firing of this
transition adds a token of color ph1 to place eat as Figure 5.7 illustrates.

While CPNs allow to express complex systems with more ease than regular
Petri nets, the two modeling approaches have the same expressive power —that
is, it is always possible to get a regular Petri net from a CPN and vice versa.
If the color set L is finite, the equivalent regular Petri net is also finite. If the
color set L is infinite, the equivalent regular Petri net is infinite (i.e., it has an
infinite set of places and transitions), we only deal with finite Petri nets in this
dissertation (Definition 5.1).
Intuitively, the mapping from CPN to regular Petri nets takes every place p

in the CPN and replaces it by a set of places pl in the regular Petri net where
l ∈ L. A token of color l in place p in the CPN is represented by a regular token
in place pl in the regular Petri net. Every transition t in the CPN is replaced
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by a set of transitions tl in the regular Petri net. If there is an arc moving
tokens of colors l1, . . . , ln from place p to transition t in the CPN, in the regular
Petri net these arcs are represented by incoming arcs from place plk

to place tl,
where k = 1, . . . , n. Similarly, an outgoing arc carries tokens of colors l′1, . . . , l′h
from transition t to place p in the CPN, this is represented by several arcs from
transition tl′ to place pl′

k
in the regular Petri net.

5.3 Conclusion
In this chapter we presented the generalities of the Petri net model, a math-
ematical model that effectively formalizes the structure and dynamics of the
systems they represent. These two characteristics of Petri nets are key in the
setting of Dynamically Adaptive Software Systems. Through the fine-grained
definition of system states and actions, Petri nets provide a first hand view of
the totality of the system structure. This characteristic of Petri nets is useful
to define different system components and their relations soundly. Petri nets
also provide a concrete view of the system dynamics and the live interaction
between components by means of the token-game semantics. The Petri net
marking represents the current state of the system at every step, and transition
firing shows the information flow and component interaction as tokens move
around.
Furthermore, modeling Dynamically Adaptive Software Systems using Petri

nets allows us to reuse the analyses of system properties already existing for
Petri nets. Petri nets are able to provide insightful information about future
reachable states or possible system deadlocks. This characteristic of Petri nets
is useful to aid the consistency management of dynamic adaptations in the
system.
Taking these characteristics into consideration, it is safe to assert that Petri

nets effectively satisfy the Requirements M.1 to M.4 defined in Chapter 2 for
conflict resolution models.
However, on its own, the basic Petri net model does not exactly satisfy all

requirements put forward for Dynamically Adaptive Software Systems in Chap-
ter 2. Luckily enough, Petri net extensions exist that do address particular
characteristics of systems that are not covered by the basic model. In this
chapter we have only presented a couple of such extensions. It is important to
notice that a vast variety of extensions exist. The extensions presented here
were chosen under the light of Requirements D.1–D.5 for Dynamically Adap-
tive Software Systems. We explain here which of these requirements are covered
by the Petri net extensions:

Static priorities are used to establish an order between sets of transitions. Pro-
viding an order to the firing of sets of transitions can be used to separate
the way in which system components interact. For example, static pri-
orities can be used to separate the execution of environment-wide events
to that of internal system events. In the case of COP, priorities can be
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used to ensure that internal interactions between context objects are ver-
ified before any subsequent interaction with the surrounding execution
environment takes place —that is, context activation and deactivation
will have lower priority than triggering their internal interactions. Static
priorities, thus, can be used to address Requirement D.1.

Reactive Petri nets are used to introduce reactivity to a system, allowing it to
interact with other systems or system components. Providing a reactive
semantics for Petri net transitions allows us to describe autonomic or pro-
active systems. Autonomy is a key requirement of Dynamically Adaptive
Software Systems, which can adapt their behavior automatically as a con-
sequence of changes in their surrounding execution environment. In the
case of COP, the system must react to context activations and deactiva-
tions by adapting its behavior. Reactive Petri nets, thus, can be used to
address Requirements D.1 and D.4.

Inhibitor arcs are used to model systems where the state of a particular re-
source, absence or presence of it, dictates the kind of action the system
can take. In the case of COP, testing if a context is active or not would
be equivalent to testing for the absence of a resource. Using such a test
it is possible to model different types of interaction between adaptations,
allowing to activate or deactivate a particular context as long as another
context is inactive. Inhibitor arcs, thus, can be used to address Require-
ment D.5.

Colored Petri nets are used to introduce the notion of types to the system,
allowing us to deal with different types of events. In the case of COP the
types introduced by CPN are used to differentiate between scoping mech-
anisms for for the system’s behavioral adaptation. Scoping mechanisms
can be used to adapt the system at different granularity levels such as
object instances or full classes (Requirement D.2), or to isolate groups of
behavioral adaptations that should not interact with each other under cer-
tain situations of the surrounding execution environment (Requirement
D.3).





Chapter6
Modeling and Managing Dynamically Adaptive Software Systems

In previous chapters we presented a specific class of Dynamically Adaptive Soft-
ware Systems, and a model for the coordination and management of such soft-
ware systems. We singled out context-aware systems as a highly dynamic class
of software systems that allow us to adapt the system’s behavior to changing
situations at run time. Chapter 4 describes existing challenges in COP regarding
the predictability of system behavior in the presence of run-time adaptations
to the surrounding execution environment. Petri nets were presented in Chap-
ter 5 as a model that captures the formal, structural and dynamic aspects of
the software systems they represent. We provided the definition of the basic
Petri nets model and different extensions that could be used for the coordina-
tion and management of behavioral adaptations to the surrounding execution
environment.
The purpose of this chapter is to develop a formal basis for COP systems as a

stepping stone for the development of a broader class of Dynamically Adaptive
Software Systems such as the ones described in Section 3.1. The development
of such a basis introduces context Petri nets [33], a Petri net-based formalism
and programming model for COP systems.
The purpose of context Petri nets is threefold. First of all, we are interested

in providing a formal and sound definition of COP systems, building up a basis
for their development. Our proposed formal basis covers all aspects of COP,
from the definition of contexts, their interactions and behavioral adaptations,
to the selection of behavior, and composition of adaptations. This is achieved
by using the structural definition of Petri nets and existing extensions thereof
(i.e., inhibitor arcs and static priorities) which allow us to model the context
states and their interactions. The benefit of having a common basis for COP is
that it could facilitate the interoperability between different COP approaches,
languages, or internal system modules. Additionally, a sound foundation of
COP systems would facilitate their extensibility. Extensions can be proposed
by modifying or building on top of developed tools and the initial formaliza-
tion. Secondly, context Petri nets can help to ensure consistency of behavioral
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adaptations at run-time as they are dynamically introduced to and withdrawn
from the system. This is achieved by abstracting the state of adaptations in
the system as the set of Petri net places, and providing a full representation of
the adaptations’ dynamicity as the set of Petri net transitions. Finally, taking
advantage of the structural and formal definition of COP systems in terms of
context Petri nets, we can reuse existing Petri net analysis techniques. Using
such techniques, it is possible to analyze adaptations and their interactions at
design time, with the objective of identifying possible inconsistencies between
adaptations. This process is further explained in Chapter 7.
The next sections provide a definition of the model of context Petri nets

presenting (1) their structure and formal definition Section 6.1, (2) their com-
position in order to represent a COP system Section 6.2, (3) their dynamic
semantics to ensure a consistent interaction between adaptations Section 6.3,
and (4) their programming interface with a COP language Section 6.4.

6.1 Context Petri Nets
In this section we provide the definition of context Petri nets (CoPNs) (read co-
pen), as reactive Petri nets with inhibitor arcs and static transition priorities.
We begin by providing the formal definition of CoPNs and a mapping of the
main representative concepts of CoPN onto the corresponding concepts of COP
languages.

Definition 6.1 (Context Petri net). A context Petri net (CoPN) is de-
fined as a 11-tuple P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, where Pc is a finite
set of context places, Pt is a finite set of temporary places, Te is a finite set of
external transitions, Ti is a finite set of internal transitions, f is the flow func-
tion defining regular arcs between places and transitions, f◦ is the flow function
defining inhibitor arcs from places to transitions, ρ is a function defining tran-
sition priorities, L is a non-empty set of token colors, m0 is the initial marking
multiset of tokens to places, Σ is a non-empty finite set of labels, and λ is a
function assigning labels to the places and transitions. The components of a
CoPN are such that:

(1) Pc ∩ Pt = φ (6) ρ : T −→ Z∗
(2) Te ∩ Ti = φ (7) ∀ t ∈ Te, ρ(t) = 0
(3) (Pc ∪ Pt) ∩ (Te ∪ Ti) = φ (8) ∀ t ∈ Ti, ρ(t) > 0
(4) f : (P × T × L) ∪ (T × P × L) −→ Z∗ (9) λ : (Pc ∪ Pt) ∪ (Te ∪ Ti)→ Σ
(5) f◦ : P × T −→ {0, 1} (10) m0 : P × L −→ Z∗

The components of a CoPN are characterized by: (1) The set of context
places Pc, and the set of temporary places Pt are disjoint. At this point,
the difference between context places and temporary places is syntactic. The
usefulness of making such an explicit difference will become clear later in this
section. (2) The set of external transitions Te and the set of internal
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transitions Ti are disjoint. (3) The sets of all places (Pc∪Pt) and all transitions
(Te ∪ Ti) are disjoint. (4) There cannot be arcs between two places or two
transitions. Each arc defines how many tokens of each color flow from, or
to places.1 (5) There can be at most one inhibitor arc between a place and
a transition. (6) Transitions are given a firing order priority. Higher priority
transitions fire before lower priority ones, transitions with the same priority fire
nondeterministically. (7) All external transitions have a priority of 0. (8) All
internal transitions have a priority greater than 0. Transition priorities are
defined in this way to comply with the semantics of reactive Petri nets —that
is, internal transitions must fire before external transitions whenever they are
enabled. (9) Every place and transition in the context Petri net is decorated
with a label from Σ. (10) Finally, tokens are assigned to places by means of
the initial marking multiset m0.

Notation 6.1.

- The set of all CoPNs is denoted as P.

Notation 6.2. For a context A, the CoPN describing this context is given a
set of labels ΣA = {A, Pr(A), Pr(¬A), req(A), req(¬A), act(A), deac(A)}, for its
places and transitions, capturing the following intuition:

- External transitions, labeled req(A) or req(¬A), respectively represent a request
for activating or deactivating context A.

- Internal transitions, labeled act(A) or deac(A), respectively represent the ac-
tivation or deactivation of context A.

- The context place is labeled by the name of the context A it represents.

- Temporary places, labeled Pr(A) or Pr(¬A), respectively represent the states
of preparing to activate or preparing to deactivate context A.

In this dissertation we will use these labels of CoPN elements as a means to
easily refer to them.
In general, a CoPN as described by Definition 6.1 is composed of many con-

texts, each described by a specific type of singleton CoPN as given in Defini-
tion 6.2.

Definition 6.2. Given a context A, the singleton CoPN representing that
context is defined as a unique CoPN structure
CA = 〈PcA

, PtA
, TeA

, TiA
, fA, f◦A

, ρA,LA,m0A
,ΣA, λA〉, with:

• Label set ΣA = {A, Pr(A), Pr(¬A), req(A), req(¬A), act(A), deac(A)}.

• Context place PcA
= {p} where λA(p) = A.

1Even though in CoPN arcs carry exactly 1 token, here we provide a more general definition
to enable the model to be easily extensible.
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• Temporary places PtA
= {p1, p2} where λA(p1) = Pr(A) and λA(p2) =

Pr(¬A).

• External transitions TeA
= {te1, te2} where λA(te1) = req(A) and λA(te2) =

req(¬A).

• Internal transitions TiA
= {ti1, ti2} where λA(ti1) = act(A) and λA(ti2) =

deac(A).

• A finite set of colors LA = {l1, . . . , ln}.

• ∀p ∈ PcA
∪ PtA

and ∀t ∈ TeA
∪ TiA

, f◦A
(p, t) = 0.

• ρA is such that ∀ te ∈ TeA
, ρ(te) = 0, and ∀ ti ∈ TiA

, ρ(ti) = 2. The
specific value of 2 is assigned to internal transitions to facilitate the ex-
tension of the model with another kind of internal transitions that have
a lower priority with a value of 1 later in Section 9.3.2. Any other value
greater than zero could be used to define the priority of internal transitions
as given in Definition 6.1.

• ∀ l ∈ LA, fA is defined as: fA(te1, p1, l) = 1, fA(p1, ti1, l) = 1, fA(ti1, p, l) =
1, fA(p, ti2, l) = 1, fA(te2, p2, l) = 1, fA(p2, ti2, l) = 1 and 0 otherwise.

• m0 an initial marking multiset of the places.

Definition 6.2 defines the structure of a CoPN for a particular context A. The
actual state of the context is represented by multiple instances of the CoPN
according to its specific marking in a particular moment in time.

Notation 6.3.

- We use C to denote a singleton CoPN, as defined in Definition 6.2.

- We use S to denote the set of all singleton CoPNs.

Pr(A)

req(A)

0

act(A)

2
A

req(¬A)

0
Pr(¬A)

deac(A)

2

Figure 6.1: CoPN PA visual representations for a single context A.

Figure 6.1 shows the visual representation of the CoPN for a single context
A. In the particular case of this figure, the initial marking multiset is given
by m0A

(A, black) = 1 and m0A
= 0 otherwise. Transition priorities are shown

for each of the transitions in Figure 6.1. In the remainder of this dissertation,
priorities are omitted from the figures, as they can be deduced from the color
of the transitions: the darker the color the higher their priority. The following
notation is assumed for the figures in the rest of this dissertation.
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Notation 6.4.
- External transitions are drawn as white squares (�) and have a priority of 0.

- Internal transitions are drawn as black squares (�) and have a priority of 2.

- Context places are drawn as circles with a solid edge (©).

- Temporary places are drawn as circles with a dashed edge ( ).

- For a given CoPN, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, with |L| = 1, the
specification of the color is removed from the definition of flow functions and
marking multisets. As a notation in this dissertation we will then use a black
colored token, however any other color could be used.
We now explain the correspondence between CoPN concepts and COP con-

cepts. The mapping between concepts is defined with general CoPNs and COP
systems in mind —that is, it takes into account systems where multiple inter-
active contexts are defined. However, to make the concepts clear we use the
singleton CoPN shown in Figure 6.1 as a particular example.

Places in a CoPN are used to capture the possible states of contexts in the COP
system.

• Context places represent a context and its state, such as the NLBS or
Positioning contexts being active or inactive in the maps applica-
tion example of Section 2.3.3.

• Temporary places express preparatory states for a context, facilitat-
ing consistency management and composition processes. For exam-
ple, in Figure 6.1, the temporary places labeled Pr(A) or Pr(¬A) are
used to process requests to respectively activate or deactivate the
context A. Later in Section 6.3.1 we show the need for introducing
temporary places for managing the consistent activation of contexts.

Transitions represent actions that can be taken on the states of the system.
In the case of CoPN, these actions correspond to context activations and
deactivations. To avoid inconsistencies among different contexts defined
in the system, activation and deactivation of contexts do not occur imme-
diately. Context (de)activations need to be requested first and processed
carefully, since the request may be denied if the activation or deactiva-
tion would violate constraints imposed by other contexts defined in the
system.

• External transitions are used to request a context activation or de-
activation in response to changes in the surrounding execution envi-
ronment.

• Internal transitions deal with the constraints imposed by other con-
texts defined in the system (this will become clear in Section 6.2.2).
Internal transitions trigger the actual activation or deactivation of
contexts (i.e., they change the state of the context place).
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Tokens represent context activations. The state of contexts is determined by
the current marking of the CoPN. For example in Figure 6.1, context A
is active if the place labeled A contains at least one token; preparing for
activation if place labeled Pr(A) contains a token, preparing for deactiva-
tion if place labeled Pr(¬ A) contains a token. The number of tokens in a
context place represent the activation count for that context, accounting
for the interaction with other contexts defined in the system (Section 4.2).

Inhibitor arcs provide the possibility to verify the absence of tokens in a place.
As we will se later, in CoPNs inhibitor arcs will be used to model interac-
tions between contexts. For example, inhibitor arcs can be used to express
that a context can be activated only if some other context is not active,
as is the case for the exclusion dependency relation (Definition 6.13), or
to express that a context must be deactivated if another context is no
longer active, as in the case of the requirement dependency relation (Def-
inition 6.16).

Up to this point we have provided a CoPN formalization that allows the defi-
nition of a single context and the possible actions on that context —that is, the
activation and deactivation of a context through transition firings. Generally,
a COP system is composed of multiple contexts —that is multiple instances of
singleton CoPNs C such as the one shown in Figure 6.1. Thus, we need a means
to compose multiple singleton CoPNs into a single CoPN with multiple contexts.
The composition operator for CoPNs is defined in Section 6.2. Furthermore,
context activations can depend on other contexts. Section 6.2.2 formalizes the
semantics of interactions between contexts via context dependency relations.
Section 6.3.1 then addresses the activation and deactivation interplay of con-
texts.

6.2 Building Context-Aware Systems
In the previous section we provided the formal definition of CoPNs and explained
the intuition behind the mapping between CoPN and COP concepts. However,
up to this point it is only possible to model independent contexts. In this
section we provide the formal machinery to model more complex COP systems,
composed of multiple contexts.
In a COP system, contexts can depend on each other. That is, a context

activation can take place, or be refused, as a consequence of the activation, or
activation state, of other contexts. The constraints that regulate such interac-
tions are called context dependency relations. Intuitively, context depen-
dency relations can be seen as a set of constraints on the state and dynamics
(activation and deactivation) between contexts. Such constraints are expressed
as rules that must be satisfied by a CoPN in order to respect the dependency
relation. For example, to represent a context activation as a consequence of an-
other context becoming active. Taking advantage of the fine-grained definition
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of contexts provided by CoPNs, such an interaction can be modeled by connect-
ing internal transitions of one context to the context places or temporary places
of another context, via regular or inhibitor arcs. Each arc expresses (part of) a
dependency constraint describing an interaction between two contexts.

Definition 6.3 (Context dependency relations). A context dependency
relation is defined as a tuple 〈R, C1, . . . , Cn〉, where R is a symbol represent-
ing the type of the relation defining the interaction between the singleton CoPNs
C1, . . . , Cn. With each context dependency relation type R an extension function
(extR) and constraining function (consR) is associated, describing the inter-
action between the contexts.

Notation 6.5.

- The set of all context dependency relations is denoted as R.

Definition 6.4. For a context dependency relation 〈R, C1, . . . , Cn〉 the extR

extension function is extR : P × R → P and it is well defined for a given
input pair (P, R) if and only if Ci ⊂ P for 1 ≤ i ≤ n.

Definition 6.5. For a context dependency relation 〈R, C1, . . . , Cn〉 the consR

constraining function is consR : P ×R →P and it is well defined for a given
input pair (P, R) if and only if Ci ⊂ P for 1 ≤ i ≤ n.

The detailed definitions of the actual extR and consR function for the dif-
ferent types of context dependency relations are given in Section 6.2.2.

Definition 6.6. The composition operator of CoPN is defined as a function
◦ : ℘(S ) × ℘(R) → P, such that for a set of singleton CoPNs, S ⊆ S and
a set of dependency relations R ⊆ R between those contexts in S, ◦(S,R) =
cons(ext(union(S),R),R).

Each of the auxiliary functions union (union), ext (extension) and cons
(constraining) are explained in detail in the following subsections. Intuitively,
the composition operator of CoPNs takes as input a set of contexts and context
dependency relations between those contexts, and generates a CoPN composed
of all those contexts (union function) and satisfying all context dependency
relations. Context dependency relations are defined in a two-phase process.
First, the ext function adds the places and transitions to the CoPN that are
required to deal with specific cases of the interaction between the contexts
(e.g., activate a context only if some other context is inactive). Second, the
cons function adds additional arcs that may be required to deal with general
cases of the interaction between contexts, (e.g., every deactivation of a context
requests the deactivation of another context).

6.2.1 Unifying CoPNs

Let us start by presenting the union function, which allows us to obtain one
single CoPN composed of a set of singleton CoPNs, following the ideas of place
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fusion and transition fusion [130] of Petri nets. Given two CoPNs their union
fuses together places and transitions that are equal in both CoPNs. Therefore,
we first present the notion of equality for singleton CoPNs, places and transitions
before presenting the definition of the union function.

Definition 6.7. Given two places p, p′ in a CoPN, they are said to be equal if
and only if λ(p) = λ(p′).

Definition 6.8. Given two transitions t, t′ in a CoPN, they are said to be equal
if and only if:

• λ(t) = λ(t′), and

• •t = •t′ ∧ ◦t = ◦t′ ∧ t• = t′•

Definition 6.9. We define the equality between two singleton CoPNs, C1 =
〈Pc1 , Pt1 , Te1 , Ti1 , f1, f◦1 , ρ1,L1,m01 ,Σ1, λ1〉 and
C2 = 〈Pc2 , Pt2 , Te2 , Ti2 , f2, f◦2 , ρ2,L2,m02 ,Σ2, λ2〉, if and only if
Pc1 = Pc2 , Pt1 = Pt2 , Te1 = Te2 , and Ti1 = Ti2 .

Definition 6.10 (Union). The function union: ℘(S ) → P is defined such
that, for a given S = {C1, . . . , Cn} ⊆ S finite set of singleton CoPNs, in
which Cj=〈Pcj

, Ptj
, Tej

, Tij
, fj , f◦j

, ρj ,Lj ,m0j
,Σj , λj〉, for 1 ≤ j ≤ n, then

union(S)=P, where P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 is the CoPN defined
by:

Pc =
⋃

1≤j≤n

Pcj

Ti =
⋃

1≤j≤n

Tij

Pt =
⋃

1≤j≤n

Ptj

L =
⋃

1≤j≤n

Lj

m0(p, l) = max
1≤j≤n

{m0j
(p, l)}

Te =
⋃

1≤j≤n

Tej

Σ =
⋃

1≤j≤n

Σj

ρ(t) = ρj(t) if t ∈ Tej
∪ Tij

, for 1 ≤ j ≤ n

λ(e) = λj(e) if e ∈ Pcj
∪ Ptj

∪ Tej
∪ Tij

, for 1 ≤ j ≤ n

f(p, t, l) =
{
fj(p, t, l) if (p, t, l) ∈ Dom(fj) for 1 ≤ j ≤ n
0 otherwise

f(t, p, l) =
{
fj(t, p, l) if (p, t, l) ∈ Dom(fj) for 1 ≤ j ≤ n
0 otherwise

f◦(p, t) =
{
f◦j

(p, t) if (p, t, l) ∈ Dom(fj) for 1 ≤ j ≤ n
0 otherwise
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It is possible to unify different singleton CoPNs which represent one same
context. If this is the case, the two CoPNs are merged together into one single-
ton CoPN by means of place and transition fusion. Places are fused whenever
they have the same label, and transitions are fused whenever they are equal
according to Definition 6.8. To ensure that interactions between contexts are
not compromised as places are fused, the initial marking of the unified CoPN
is defined as the maximum of the respective initial markings for each singleton
CoPN. All the situations for which the context was activated are preserved by
taking the maximum number of tokens between the initial singleton CoPNs. Ex-
ample 6.2, later in this chapter, illustrates this choice of the marking multiset
when taking the union of CoPNs. This choice allows for a correct interaction of
contexts and their multiple activations.

Example 6.1. As an example of the union function, let us take two sin-
gleton CoPNs CA = 〈PcA

, PtA
, TeA

, TiA
, fA, f◦A

, ρA,LA,m0A
,ΣA, λA〉 and CB =

〈PcB
, PtB

, TeB
, TiB

, fB , f◦B
, ρB ,LB ,m0B

,ΣB , λB〉 as shown in Figure 6.2a. Fig-
ure 6.2b shows the CoPN representing their union, union(CA, CB).

CA

CB

Pr(A)

req(A) act(A) A req(¬A)

Pr(¬A) deac(A)

Pr(B)

req(B) act(B)

B

req(¬B)

Pr(¬B)

deac(B)

(a) Two singleton CoPNs.

union(CA, CB)

Pr(A)

req(A) act(A) A req(¬A)

Pr(¬A) deac(A)

Pr(B)

req(B) act(B)

B

req(¬B)

Pr(¬B)

deac(B)

(b) A CoPN generated by the union of the
two singleton CoPNs on the left.

Figure 6.2: Application of the union function to two singleton CoPNs.

6.2.2 Extending and Constraining CoPNs

In this section we investigate how to define interactions between contexts. As
mentioned in Definition 6.3, context dependency relations impose constraints
on the way contexts should and should not interact with each other. A con-
text activation can take place, or be refused, as a consequence of the activation
of other contexts. Context dependency relations extend (ext) and constrain
(cons) a CoPN by adding extra places, transitions, and arcs. Such added ele-
ments are used, for example, to request the activation of a context every time
another context is activated (e.g., in the case of a causality dependency rela-
tion). Such dependencies are expressed by connecting internal transitions of
one context to the context places or temporary places of another context, via
regular or inhibitor arcs.
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Definition 6.11 (Extension). The function ext: P × ℘(R) → P is de-
fined such that, for a CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 ∈ P and
R = {〈R1, C11 , . . . , Cq1〉, . . . , 〈Rn, C1n

, . . . , Cqn
〉} ⊆ R a finite set of context de-

pendency relations over the singleton CoPNs in P,
ext(P,R) = extR1(extR2(extR3(. . .), 〈R2, C12 , . . . , Cq2〉), 〈R1, C11 , . . . , Cq1〉).

The definitions of the extR functions specific to each of the context depen-
dency relations currently defined in CoPNs are given in Definitions 6.13 through
6.17. Theorem 6.1 demonstrates that the order in which the extR functions
are applied does not affect the result of applying the function.

Definition 6.12 (Constraining). The function cons: P × ℘(R) → P is
defined such that, for a CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 ∈ P and
R = {〈R1, C11 , . . . , Cq1〉, . . . , 〈Rn, C1n , . . . , Cqn〉} ⊆ R a finite set of context de-
pendency relations over the singleton CoPNs in P,
cons(P,R) = consR1(consR2(consR3(. . .), 〈R2, C12 , . . . , Cq2〉), 〈R1, C11 , . . . , Cq1〉).

The definitions of the consR functions specific to each of the context depen-
dency relations currently defined in CoPNs are given in Definitions 6.13 through
6.17. Theorem 6.1 demonstrates that the order in which the consR functions
are applied does not affect the result of applying the function.
The CoPN model currently supports seven types of context dependency re-

lations, among which the four types of context dependency relations initially
defined in Subjective-C [77]: exclusion, causality (called weak inclusion in
Subjective-C), implication (called strong inclusion in Subjective-C), and re-
quirement. An additional conjunction dependency relation is also added (this
type of relation has been informally introduced in Ambience [75] and more re-
cently has also been formally added as part of EventCJ [104, 105]). We argue
that other context dependency relations could be defined in a similar fashion.
Section 9.3 is a case in point by introducing two context dependency relations,
suggestion and disjunction. We now define the initial five context dependency
relations and their associated ext and cons functions. For each context de-
pendency relation we also provide a visual representation of the corresponding
CoPN. The maps application is used as an example to demonstrate the interac-
tion between contexts for each context dependency relation.

Notation 6.6.

- CoPNs currently support 5 types of context dependency relations {E,C, I,Q,∧},
for the exclusion, causality, implication, requirement, and conjunction depen-
dency relations.

Notation 6.7. The following notation is used for the visualization of CoPNs,
P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉:

- Given a place p ∈ Pc ∪ Pt, a transition t ∈ Ti, and two arcs f(p, t, l) and
f(t, p, l), visually these arcs are represented as a double arrow arc (e.g.,
t p ).
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- For every context dependency relation, the elements added to the CoPN by the
ext function are depicted in blue (e.g., deac(A)A ).

- For every context dependency relation, the arcs added to the CoPN by the cons
function are depicted in purple (e.g., act(A) Pr(B) ).

- To simplify the conditions of the formulae defining context dependency rela-
tions in what follows we refer to specific places and transitions by their labels,
for example, the formula “pt ∈ t • where λ(pt) = Pr(A)” is simplified as
“Pr(A) ∈ t•”.

Exclusion dependency relation

An exclusion dependency relation between two contexts A and B represents
a restriction such that the two contexts cannot be active at the same time.
However, both contexts may be simultaneously inactive.

Definition 6.13 (Exclusion). The exclusion dependency relation between two
contexts (A�–�B) is defined as the tuple 〈E, CA, CB〉, where CA and CB are two
different singleton CoPNs. The composed CoPN defining an exclusion dependency
relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 is obtained by the union of the
singleton CoPNs, P = union({CA, CB}), and the application of the extE and
consE functions to P.
The extE function is defined as extE(P, 〈E, CA, CB〉) = P. That is, this

function does not modify the definition of the CoPN P.
This is because, from the intended interaction defined by the exclusion depen-

dency relation, there is no particular case to take into account for the inter-
action between the two contexts involved in the dependency relation, thus there
is no need to add any elements with the extE function. The interaction only
expresses that every time a context is to be activated, it must be ensured that
the other context is not active; such a case is dealt with by the consE function.
The consE function is defined as consE(P, 〈E, CA, CB〉) = P ′, between two

singleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, Ti, f, f
′
◦, ρ,L,m0,Σ, λ〉,

such that

f ′◦(p, t) =


1 if λ(p) = B ∧ A ∈ t • ∧ A /∈ •t (6.1)
1 if λ(p) = A ∧ B ∈ t • ∧ B /∈ •t (6.2)
f◦(p, t) otherwise (6.3)

The inhibitor arcs introduced by consE represent the condition that only one
of the contexts can be active at a time. Transitions activating a context are
enabled if and only if the other context is inactive (Equations (6.1) and (6.2)).
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Figure 6.3 illustrates the CoPN representing the exclusion dependency relation
〈E, CPriv, CPos〉 between the Private (Priv) and Positioning (Pos) contexts
of the maps application (Section 2.3.3).

Pr(Priv)

req(Priv) act(Priv)

act(Pos)

Priv

req(¬Priv)

Pr(¬Priv)

deac(Priv)

Pr(Pos)

req(Pos)

Pos

req(¬Pos)

Pr(¬Pos)

deac(Pos)

Figure 6.3: Exclusion dependency relation (Priv�–�Pos).

Exclusion dependency relations are used to model situations that should not
occur simultaneously. In the maps application, the Private and Positioning
contexts should not be active at the same time, given their conflicting behavior
(concealing user information and broadcasting the user’s position, respectively).
Hence, an exclusion dependency relation is defined between the two contexts,
as Figure 6.3 illustrates. The consequence of such a relation is that the ex-
change between the Private and Positioning contexts must occur by first
deactivating the currently active context and then activating the other one.

Causality dependency relation

A causality dependency relation between two contexts A and B represents the
situation in which the (de)activation of the source context A automatically
triggers the (de)activation of the target context B. However, (de)activation of
the target context B is independent from the source context.

Definition 6.14 (Causality). The causality dependency relation between two
contexts (A–BB) is defined as the tuple 〈C, CA, CB〉, where CA and CB are two
different singleton CoPNs. The composed CoPN defining a causality dependency
relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 is obtained by the union of the
singleton CoPNs, P = union({CA, CB}), and the application of the extC and
consC functions to P.
The extC function is defined as extC(P, 〈C, CA, CB〉) = P ′, between two sin-

gleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, T
′
i , f
′, f ′◦, ρ

′,L,m0,Σ, λ′〉,
such that:
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T ′i = Ti ∪ {t′}

λ′(e) =
{
λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

deac(A) if e = t′

ρ′(t) =
{
ρ(t) if t ∈ Te ∪ Ti

2 if t = t′

f ′(t, p, l) =
{
f(t, p, l) if t ∈ Te ∪ Ti ∧ p ∈ Pc ∪ Pt ∧ l ∈ L
0 otherwise

f ′(p, t, l) =


f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if λ(p) = A ∧ t = t′ ∧ l ∈ L
1 if λ(p) = Pr(¬A) ∧ t = t′ ∧ l ∈ L
0 otherwise

f ′◦(p, t) =


f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

1 if λ(p) = B ∧ t = t′

0 otherwise
The transition introduced by the extC function manages the interaction for

the deactivation of the source context whenever the target context is inactive.
This case can arise through the deactivation of the target context, since it is
independent of the source context.
The consC function is defined as consC(P, 〈C, CA, CB〉) = P ′, between two

singleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, Ti, f
′, f◦, ρ,L,m0,Σ, λ〉,

such that:

f ′(p, t, l) =


1 if λ(p) = B ∧ A ∈ •t ∧ A /∈ t • ∧

B /∈ ◦t ∧ l ∈ L (6.4)
f(p, t, l) otherwise (6.5)

f ′(t, p, l) =



1 if λ(p) = B ∧ A ∈ •t ∧ A /∈ t • ∧
B /∈ ◦t ∧ l ∈ L (6.6)

1 if λ(p) = Pr(¬B) ∧ A ∈ •t ∧ A /∈ t • ∧
B /∈ ◦t ∧ l ∈ L (6.7)

1 if λ(p) = Pr(B) ∧ A ∈ t • ∧ A /∈ •t ∧ l ∈ L(6.8)
f(p, t, l) otherwise (6.9)

The arcs introduced by the consC function are used to forward the deacti-
vation of the source context to the target context, whenever the source context
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is deactivated and the target context is active, cf. Equations (6.4), (6.6), and
(6.7). The behavior provided by these constraints complements the deactiva-
tion rule for the source context introduced by the extC function. Additionally,
every activation of the source context requests the activation of the target con-
text, given that the source context is not an input place for such transition, cf.
Equation (6.8).

Figure 6.4 illustrates the CoPN representing the causality dependency relation
〈C, CW, CC〉 between the WLAN (W) and Connectivity (C) contexts of the maps
application (Section 2.3.3).

Pr(W)

req(W)

act(W)

deac(W)

W

req(¬W)

Pr(¬W)

deac(W)

Pr(C)req(C) act(C) C req(¬C) Pr(¬C)

deac(C)

Figure 6.4: Causality dependency relation (W–BC).

Implication dependency relation

An implication dependency relation between two contexts A and B, similarly to
the causality dependency relation, represents a situation in which the (de)activation
of the source context A automatically triggers the (de)activation of the target
context B. The relation is said to be an implication because it follows the seman-
tics of the implication logic operator (⇒) by ensuring that whenever context
B is inactive, context A will automatically become inactive. Note that as long
as context B is not made inactive, its deactivation is independent from that of
context A.

Definition 6.15 (Implication). The implication dependency relation between
two contexts (A–IB) is defined as the tuple 〈I, CA, CB〉, where CA and CB are two
different singleton CoPNs. The composed CoPN defining an implication depen-
dency relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 is obtained by the union
of each of the singleton CoPNs, P = union({CA, CB}), and the application of
the extI and consI functions to P.
The extI function is defined as extI(P, 〈I, CA, CB〉) = P ′, between two sin-

gleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =
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〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, T
′
i , f
′, f ′◦, ρ

′,L,m0,Σ, λ′〉,
such that:

T ′i = Ti ∪ {t′}

λ′(e) =
{
λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

deac(A) if e = t′

ρ′(t) =
{
ρ(t) if t ∈ Te ∪ Ti

2 if t = t′

f ′(t, p, l) =


f(t, p, l) if t ∈ Te ∪ Ti ∧ p ∈ Pc ∪ Pt ∧ l ∈ L
1 if t = t′ ∧ λ(p) = A ∧ l ∈ L
1 if t = t′ ∧ λ(p) = Pr(¬A) ∧ l ∈ L
0 otherwise

f ′(p, t, l) =


f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if λ(p) = A ∧ t = t′ ∧ l ∈ L
0 otherwise

f ′◦(p, t) =



f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

1 if λ(p) = B ∧ t = t′

1 if λ(p) = Pr(B) ∧ t = t′

1 if λ(p) = Pr(¬A) ∧ t = t′

0 otherwise

As for the causality dependency relation, the extI function also introduces
a deactivation transition, t′ for the source context of the dependency relation.
This transition manages the interaction case in which whenever the target con-
texts becomes inactive, the source context is requested for deactivation as as
long as it remains active. This transition is only enabled if the target context is
not preparing to activate, to avoid deactivating the source context if the target
context will become active.
The consI function is defined as consI(P, 〈I, CA, CB〉) = P ′, between two sin-

gleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, Ti, f
′, f◦, ρ,L,m0,Σ, λ〉,

such that:
∀ p ∈ Pc ∪ Pt, ∀ t ∈ Te ∪ Ti and ∀ l ∈ L

f ′(p, t, l) = f(p, t, l)
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f ′(t, p, l) =



1 if λ(p) = Pr(B) ∧ A ∈ t • ∧ A /∈ •t
∧ l ∈ L (6.10)

1 if λ(p) = Pr(¬B) ∧ A ∈ •t ∧ A /∈ t•
∧ B /∈ ◦t ∧ l ∈ L (6.11)

f(t, p, l) otherwise (6.12)

The arcs introduced by consI define that for every activation of the source
context A, for which A is not an input, the target context B is requested for
activation, cf. Equation (6.10), and for every deactivation of A for which B is
not an inhibitor, B is requested for deactivation, cf. Equation (6.11).

Figure 6.5 illustrates the CoPN representing the implication dependency re-
lation 〈I, CN, CPos〉 between the NLBS (N) and Positioning (Pos) contexts of
the maps application (Section 2.3.3).

Pr(N)req(N)

act(N)

deac(N)

N req(¬N) Pr(¬N)

deac(N)

Pr(Pos)req(Pos) act(Pos)

deac(Pos)

Pos req(¬Pos) Pr(¬Pos)

deac(Pos)

Figure 6.5: Implication dependency relation (N–IPos).

The formal definition of the implication dependency relation solves the de-
activation cycle and accidental interaction problems explained in Section 4.4.3.
The loop between the deactivation of the source context and the deactivation of
the target context no longer exists because, deactivations of the target context
no longer request the deactivation of the source context. This was an im-
precision in the informal description given to the context dependency relation
(Table 4.5). The accidental interaction no longer exists because deactivation
requests of the target context are not forwarded to the source context. The
transition introduced by the extI function ensures that the source context be-
comes inactive whenever the target context is inactive and it is not preparing
to activate (this constraint is necessary to ensure that the target context can
be activated).
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Implication dependency relations can be used, for example, in situations
where a containment interaction exists between contexts in the real world, or
in situations where services provided by one context can be used by another
context. The maps application can retrieve the user position based on different
available services. As NBLS provides services that are explicitly used by context
Positioning, every time the former context is activated, it can be ensured
that the services of the latter context remain available. Conversely, if we are no
longer in the Positioning context, the services of NBLS are no longer needed
and thus can be turned off, for example, to save battery life.

Requirement dependency relation

A requirement dependency relation between two contexts A and B represents
the situation in which the activation of the source context A is possible only
if the target context B is already active. The deactivation of the two contexts
can occur independently. However, if the target context B becomes inactive, it
must be ensured that the source context A becomes inactive as well.

Definition 6.16 (Requirement). The requirement dependency relation be-
tween two contexts (A–JB) is defined as a tuple 〈Q, CA, CB〉, where CA and CB

are two different singleton CoPNs. The composed CoPN defining a requirement
dependency relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0〉 is obtained by the union
of each of the singleton CoPNs, P = union({CA, CB}), and the application of
the extQ and consQ functions to P.
The extQ function is defined as extQ(P, 〈Q, CA, CB〉) = P ′, between two sin-

gleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P =

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, T
′
i , f
′, f ′◦, ρ

′,L,m0,Σ, λ′〉,
such that:

T ′i = Ti ∪ {t′}

λ′(e) =
{
λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

deac(A) if e = t′

ρ′(t) =
{
ρ(t) if t ∈ Te ∪ Ti

2 if t = t′

f ′(t, p, l) =


f(t, p, l) if t ∈ Te ∪ Ti ∧ p ∈ Pc ∪ Pt ∧ l ∈ L
1 if t = t′ ∧ λ(p) = Pr(¬A) ∧ l ∈ L
1 if t = t′ ∧ λ(p) = A ∧ l ∈ L
0 otherwise

f ′(p, t, l) =


f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if λ(p) = A ∧ t = t′ ∧ l ∈ L
0 otherwise



140 Modeling and Managing Dynamically Adaptive Software Systems

f ′◦(p, t) =


f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

1 if λ(p) = B ∧ t = t′

1 if λ(p) = Pr(¬A) ∧ t = t′

0 otherwise

The extQ function introduces a deactivation transition, t′, for the target con-
text. This transition requests the deactivation of the target A whenever the
source context B is inactive and A remains active.
The consQ function is defined as consQ(P, 〈Q, CA, CB〉) = P ′, between two

singleton CoPNs CA = 〈PcA
, PtA

, TeA
, TiA

, fA, f◦A
, ρA,LA,m0A

,ΣA, λA〉 and CB =
〈PcB

, PtB
, TeB

, TiB
, fB , f◦B

, ρB ,LB ,m0B
,ΣB , λB〉, where CA, CB ⊂ P

〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′=〈Pc, Pt, Te, Ti, f
′, f◦, ρ,L,m0,Σ, λ〉, such

that

f ′(p, t, l) =
{ 1 if A ∈ t • ∧ A /∈ •t ∧ λ(p) = B ∧ l ∈ L (6.13)
f(p, t, l) otherwise (6.14)

f ′(t, p, l) =
{ 1 if A ∈ t • ∧ A /∈ •t ∧ λ(p) = B ∧ l ∈ L (6.15)
f(t, p, l) otherwise (6.16)

The arcs introduced by consQ represent that, for every transition activating
A, the transition is enabled if and only if B is active.

Figure 6.6 illustrates a CoPN representing the requirement dependency rela-
tion 〈Q, CN, CC〉 between the NLBS (N) and Connectivity (C) contexts of the
maps application (Section 2.3.3).

Pr(N)req(N)

act(N)

deac(N)

N

req(¬N) Pr(¬N)

deac(N)

Pr(C)req(C) act(C) C req(¬C) Pr(¬C)

deac(C)

Figure 6.6: Requirement dependency relation (N–JC).

Requirement dependency relations are commonly used when one situation
can occur only if another is already taking place. In the maps application, the
position calculation of the NLBS service is based on the location inferred from
a local network connection. Hence, NLBS requires Connectivity, as shown
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in Figure 6.6. If there is no connectivity available, then it is not possible to
retrieve the position from the local network and another positioning service
must be used.

Conjunction dependency relation

A conjunction dependency relation is somewhat different from the previously
presented dependency relations. A conjunction dependency relation is defined
for a given finite set of contexts, making behavioral adaptations associated to
all of the contexts in the set become available only when all contexts in the
set are active, otherwise the adaptations are not available. The conjunction
dependency relation has a similar semantics as the logic and (∧) operator.
The conjunction dependency relation gathers the interaction between a set of

contexts. To mange such interaction we introduce a new context place, labeled
A1 · · · An, representing the contexts involved in the dependency relation as a
unit. The context place A1 · · · An cannot be directly manipulated —that is,
it cannot be activated by firing its external transitions. Instead the context
place is automatically activated whenever all contexts Aj become active. As
a consequence if either of the source contexts Aj involved in the dependency
relation are deactivated, it must be ensured that the context place A1 · · · An also
becomes inactive.

Definition 6.17 (Conjunction). The conjunction dependency relation for a
set of contexts (→ (A1 · · · An)) is defined as a tuple 〈∧, CA1 , . . . , CAn〉, where CAj

are pairwise different singleton CoPNs, for 1 ≤ j ≤ n. The composed CoPN defin-
ing the conjunction dependency relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉,
is obtained by the union of all singleton CoPNs, P = union({CA1 , . . . , CAn

}),
followed by the application of the ext∧ and cons∧ functions to P.
The ext∧ function is defined as ext∧(P, 〈∧, CAi , . . . , CAn〉) = P ′, between the

singleton CoPNs CAj = 〈PcAj
, PtAj

, TeAj
, TiAj

, fAj , f◦Aj
, ρAj ,LAj ,m0Aj

,ΣAj , λAj 〉,
such that for 1 ≤ j ≤ n, CAj

⊂ P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and
P ′ = 〈P ′c, P ′t , Te, T

′
i , f
′, f ′◦, ρ

′,L,m0,Σ′, λ′〉, where:

Σ′ = Σ ∪ {A1 · · · An, P r(¬A1 · · · An), act(A1 · · · An), deac(A1 · · · An)}

P ′c = Pc ∪ {p′}

P ′t = Pt ∪ {p′′}

T ′i = Ti ∪ {t′, t′′, t′′′}
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λ′(e) =



λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

deac(A1 · · · An) if e = t′′ ∨ e = t′′′

act(A1 · · ·An) if e = t′

A1 · · ·An if e = p′

Pr(¬A1 · · ·An) if e = p′′

ρ′(t) =
{
ρ(t) if t ∈ Te ∪ Ti

2 if t = t′ ∨ t = t′′ ∨ t = t′′′

f ′(p, t, l) =



f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if λ(p) = Aj for 1 ≤ j ≤ n ∧ t = t′ ∧ l ∈ L
1 if p = p′′ ∧ t = t′′ ∧ l ∈ L
1 if p = p′ ∧ t = t′′ ∧ l ∈ L
1 if p = p′′ ∧ t = t′′′ ∧ l ∈ L
0 otherwise

f ′(t, p, l) =


f(t, p, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if t = t′ ∧ λ(p) = Aj for 1 ≤ j ≤ n ∧ l ∈ L
1 if t = t′ ∧ p = p′ ∧ l ∈ L
0 otherwise

f ′◦(p, t) =


f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

1 if p = p′ ∧ t = t′

1 if p = p′ ∧ t = t′′′

0 otherwise

The ext∧ function introduces a new context place, p′ (labeled A1 · · · An) to
represent that all contexts involved in the dependency relation are currently
active. The introduced internal transitions and temporary place are used to
manage the activation and deactivation of the new context place. The activation
transition is enabled whenever all of the contexts composing the conjunction
are marked, and the new context place is not (this is done to avoid an infinite
sequence of firings of thet′ transition).
The cons∧ function is defined as cons∧(P, 〈∧, CA1 , . . . , CAn

〉) = P ′, for the
singleton CoPNs CAj

=〈PcAj
, PtAj

, TeAj
, TiAj

, fAj
, f◦Aj

, ρAj ,LAj ,m0Aj
,ΣAj , λAj 〉,

where for 1 ≤ j ≤ n, CAj ⊂ P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and
P ′ = 〈Pc, Pt, Te, Ti, f

′, f◦, ρ,L,m0,Σ, λ〉, such that:
∀ p ∈ Pc ∪ Pt,∀ t ∈ Te ∪ Ti and ∀l ∈ L,

f ′(p, t, l) = f(p, t, l)
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f ′(t, p, l) =


1 if Aj ∈ t • ∧Aj /∈ •t for 1 ≤ j ≤ n

∧ p = p′′ ∧ l ∈ L (6.17)
f(t, p, l) otherwise (6.18)

The cons∧ function adds an arc from the deactivation of each of the compo-
nent contexts involved in the of the conjunction dependency relation to prepare
to deactivate the temporary place of the context place representing the conjunc-
tion of all contexts. If such a context place is marked the enabled deactivation
the new introduced transition t′′ by the ext∧ function, the right-most transition
labeled deac(A1 · · ·An), in Figure 6.7. Transition t′′′ introduced by the ext∧
function, the bottom-most transitions labeled deac(A1 · · ·An) in Figure 6.7, is
enabled if the context place is not marked. These interaction states that if one of
the component contexts becomes inactive, the conjunction is also made inactive.

Figure 6.7 illustrates the CoPN representing the conjunction dependency re-
lation 〈∧, CF, CC〉 between the Friends (F) and Connectivity (C) contexts of
the maps application (Section 2.3.3).

Pr(F)

req(F)

act(F) F

req(¬F)

Pr(¬F)

deac(F)

act(FC)

deac(FC)

FC

Pr(¬FC) deac(FC)

Pr(C)req(C) act(C) C req(¬C) Pr(¬C)

deac(C)

Figure 6.7: Conjunction dependency relation (→(F C)).

Composing general CoPNs

The context dependency relations defined in Definitions 6.13 through 6.17 de-
scribe how to generate a composed CoPN from several existing singleton CoPNs.
The composition operator ◦ of CoPNs given in Definition 6.6 describes how more
general CoPNs can be obtained by the application of the ext (Definition 6.11)
and cons (Definition 6.12) functions over any finite set of singleton CoPN and
any finite set of context dependency relations defined over such contexts. The-
orem 6.1 demonstrates that the obtained CoPN from the composition of a set of
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singleton CoPNs and context dependency relations is always the same regardless
of the order in which the ext, cons functions are applied for each of the context
dependency relations.

Theorem 6.1. Given S ⊂ S a set of singleton CoPNs and R ⊂ R a set of
dependency relations between the CoPNs in S. The CoPN P = ◦(S,R) is always
the same regardless of the order in which the functions extR and consR are
applied for the context dependency relations 〈R, C1, . . . , Cn〉 in R.

Proof. Let us suppose a context dependency relation 〈R, CA1 , . . . , CAn
, CB〉 with

associated functions extR and consR, where the singleton CoPNs CAj are the
source contexts of the dependency relation for 1 ≤ j ≤ n, and CB is the target
singleton CoPN of the dependency relation.

1. The extR functions add transitions and places specific to each context
dependency relation R. Note from Definitions 6.13 through 6.17, that there
are no restrictions imposed on the addition of such elements. This implies
that all elements specified for the context dependency relations R ∈ R
are always added regardless of the order in which the functions extR are
applied.

2. The consR functions add arcs between places and transitions of a CoPN P.
However, as the addition of such arcs is restricted by the characteristics of
the input and output sets of transitions, we prove that for every context
dependency relation, if for a transition t the function consR introduces
an arc, then there is is no other context dependency relation that adds
arcs to t which would cause consR not to add this arc any longer. From
Definitions 6.13 through 6.17 it is possible to differentiate two kinds of
enabling conditions over the transitions.

Aj ∈ t • ∧ Aj /∈ •t: This enabling condition is applicable for the transitions
t for which a source context place Aj is an output and is not an input.
This is the enabling condition of Equations (6.1), (6.2), (6.8), (6.11),
(6.13), (6.13), and (6.17).
Equations (6.1) and (6.2), used in consE , only add an inhibitor arc
from context places to transitions. Adding such arcs does not validates
or invalidates the enabling condition.
Equations (6.8) and (6.7) for the consC function, (6.10) and (6.11)
for the consI , and (6.17) for the cons∧ respectively add arcs to the
preparing to activate or preparing to deactivate temporary places of
the target context. Thus they do not invalidate enabling condition.
Equations (6.6) from the consC and (6.15) from consR define the
target context place B as an output of the transition. Application of
this function could enable this condition (Aj ∈ t • ∧ Aj /∈ •t) on the
transition for subsequent applications of the consR functions. However
we recognize this is not possible because every time Equations (6.6)
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and (6.15) are applied, so are Equations (6.4) and (6.13), which also
define the target context place B as an input of the transition, thus
invalidating the enabling condition. If there is a transition for which
this enabling condition is valid, application of Equations (6.4), (6.13),
(6.6) or (6.15) does not invalidate it. This is due to the arcs are being
added over the target context, while the restriction is valid over output
transition of the source context places.
The application of the consE , consC , consI , consQ, and cons∧ func-
tions does not invalidate the enabling condition Aj ∈ t • ∧ Aj /∈ •t.

Aj ∈ •t ∧ Aj /∈ t • ∧ B /∈ ◦t: This enabling function is applicable for the tran-
sitions t for which a source context place Aj is an input and not an
output, and the target context place B is not an inhibitor input. This
is the enabling condition of Equations (6.4), (6.6), (6.7), and (6.11).
Equations (6.1) and (6.2), used in consE , add an inhibitor arc from
context places to transitions for which the source context is an output.
Hence, adding such arcs does not invalidates this enabling condition.
None of the Equations (6.4) through (6.17) are used in functions
consC , consI , consQ, or cons∧ to introduce regular arcs to the CoPN,
thus they do not invalidate the enabling condition of the target context
not being an inhibitor input of a transition. Therefore, similar to the
previous case, only Equations (6.4), (6.13), (6.6) or (6.15) from consC

and consQ add arcs to the CoPN such that context places become in-
puts of a transition or outputs of a transition. We can then use the
same argument used for the previous enabling condition to guarantee
that these equations do not invalidate Aj /∈ t•, nor do they validate
the Aj ∈ •t enabling condition.
The application of the consE , consC , consI , consQ, and cons∧ func-
tions does not invalidate the enabling condition Aj ∈ •t ∧Aj /∈ t• ∧ B /∈
◦t

Then the extE , extC , extI , extQ, and ext∧ and the consE , consC , consI ,
consQ, and cons∧ functions can be applied in any order without changing the
outcome of the ext and cons functions.

Examples 6.2 and 6.3 illustrate the composition process CoPN for different
sets of context dependency relations.

Example 6.2. Let us consider three contexts A, B, and C and two context
dependency relations R1 = 〈I, CA, CB〉 and R2 = 〈C, CA, CC〉 with corresponding
CoPNs P1 = ◦({CA, CC}, {R1}) and P2 = ◦({CA, CC}, {R2}). Suppose that for the
implication dependency relation context A is activated three times (and hence
context B), and that for the causality dependency relation context A is activated
one time (and hence context C). Let us take the composition of these two con-
text dependency relations into a single CoPN, P = ◦({CA, CB, CA, CC}, {R1, R2}).
Note that in this case, the transition introduced by the extC function (i.e., the
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Pr(A)

req(A)

act(A)

deac(A)

deac(A)

A

req(¬A)

Pr(¬A)

deac(A)

Pr(C)req(C) act(C) C req(¬C) Pr(¬C)

deac(C)

Pr(B)

req(B)

act(B)

deac(B)

B

req(¬B) Pr(¬B)

deac(B)

Figure 6.8: Multiple activations unification.

bottom-most deac(A) transition) is a transition deactivating the source context
of the implication dependency relation, and hence it must request the deactiva-
tion of the target context B. This is guaranteed by the consI function with the
introduction of the (deac(A), Pr(¬B)), shown with a dashed line in Figure 6.8.2
Figure 6.8 shows the composed CoPN P. Note that context place A is marked

with 3 tokens in P according to the definition of the initial marking given in
Definition 6.10, where m0(A, black)=max{m01(A, black),m02(A, black)}. This
marking of A allows to successfully respond to all request for deactivations of
A as for each of the independent CoPNs.
If we request the deactivation of A, a token will be added to place Pr(¬A) en-

abling the right-most deac(A) transition. Firing of this transition adds tokens
to Pr(¬ B) and Pr(¬C), which respectively enables the deac(B) and deac(C)
transitions. Firing of each of these transitions removes a token for each of
the context places B and C reaching a marking m, where m(A, black) = 2,
m(B, black) = 2, and m(C, black) = 0. An additional request to deactivate A,
as before, adds a token to place Pr(¬A), enabling the bottom most deac(A)
transition (the right-most deac(A) transition is not enabled because C is not
active anymore). Firing of this transition adds a token place Pr(¬ B) en-
abling transition deac(B). Firing this transition leads to a marking m2 where
m2(A, black) = 1 and m2(A, black) = 1. An extra deactivation of A follows the
same process, leading to an empty marking.

2Here the arc is dashed as a means to identify it easily, this convention has no semantics in
CoPN.
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As this example shows, taking the maximum of the markings for places when
taking the union of singleton CoPNs preserves the intended interaction between
the contexts.
This example also illustrates the importance of defining the composition op-

erator as a composition of the union, ext, and cons functions. Firstly, the
union function fuses all singleton CoPNs that dependency relations may have in
common, and thus unifies all singleton CoPNs in a single CoPN definition. Sec-
ondly, the ext function ensures that all transitions and places are added for the
specific cases of interaction specified by context dependency relations. Thirdly,
the cons function adds required arcs for the general interactions specified by
context dependency relations.
Note that if we would add required places, arcs, and transition for each

context dependency relation in one single function, the CoPN in Figure 6.8
would not have the dashed arc if the constraining function of the implication
dependency relation would be applied prior to that of the causality dependency
relation, which would cause an inconsistency in the system. Indeed, in such a
case, it would be possible to reach a situation in which the source context of
the implication dependency relation, A, is not active, but the target context B
is, for example, by activating A twice and deactivating C once, and deactivating
A twice. The second deactivation of A would not request the deactivation of B,
even when the activation of the later context was due to a situation in which
both A and B should be active. Behavioral inconsistencies could arise if the
behavior introduced by context B reuses that introduced by context A.

Example 6.3. As an illustration of composing general CoPNs, let us take two
CoPNs. A first CoPN P1 composed of two contexts NLBS (N) and Positioning
(Pos), with respective singleton CoPNs CN and CPos, and an implication depen-
dency relation 〈I, CN, CPos〉, and a second CoPN P2 composed of two contexts
NLBS (N) and Connectivity (C), with respective singleton CoPNs CN and CC,
and a requirement dependency relation 〈Q, CN, CC〉. For the purpose of these
example, let us assume that the two CoPNs P1 and P2 have an empty initial
marking. These two CoPNs can be composed into a single CoPN, P, following
the definition of the ◦ composition operator, the composed CoPN is defined by
P = ◦({CN, CPos, CC}, {〈I, CN, CPos〉, 〈Q, CN, CC〉}) is obtained by the composition
of the two existing CoPNs. The visual representation of the resulting CoPN is
shown in Figure 6.9.
As there is a singleton context that is shared by both context dependency

relations, the first step in the composition is to fuse the two corresponding
singleton CoPNs into a single context. Second, we add all required transitions
and arcs by both context dependency relations using the functions extQ and
extI . Each of these functions add a transition labeled deac(N), the top-most
transition for extQ and the bottom-most transition for extI . Finally, we add
additional arcs by the application of the consI and consQ functions. The
former function adds the two arcs (act(N), Pr(Pos)) and (deac(N), Pr(¬Pos))
according to Equations (6.10) and (6.11), while the later function adds the arcs
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Pr(C)

req(C) act(C)

deac(N)

C req(¬C) Pr(¬C)

deac(C)

Pr(N)

req(N) act(N)

deac(N)

N
req(¬N) Pr(¬N)

deac(N)

Pr(Pos)req(Pos) act(Pos)

deac(Pos)

Pos req(¬Pos) Pr(¬Pos)

deac(Pos)

Figure 6.9: Composition of two CoPNs P1 = ◦({CN, CPos}, {〈I, CN, CPos〉}) and
P2 = ◦({CN, CC}, {〈Q, CN, CC〉}) with an implication (N–IPos) and
a requirement (N–JC).

(act(N), C) and (C, act(N)) according to Equations 6.13 and 6.15. Note that in
this particular case there are no introduced transitions by the extI or extQ

such that new arcs need to be added than those already existing for each of the
individual CoPNs P1 and P2.

Correctness of the composition operator

Definitions 6.13 through 6.17 described how for each of the context dependency
relations, the functions extR and consR introduce places, transitions, and arcs
to a CoPN. Such new elements are added in order to provide the desired behavior
of each context dependency relation.
The question that still remains is whether the extR and consR functions

effectively exhibit the intended behavior of the context dependency relations
〈R, C1, . . . , Cn〉, for any given CoPN. Below, we provide an informal argumenta-
tion about the validity of this statement. Chapter 7 introduces analysis tech-
niques for CoPNs, which allow a CoPN to be tested, for example to verify if it
satisfies the expected behavior of the context dependency relations composing
it.
To guarantee the behavior of context dependency relations for any CoPN

we divided their composition in two. For any context dependency relation
〈R, C1, . . . , Cn〉, the extR functions add the necessary elements between the
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singleton CoPNs involved in such a context dependency relation. The added
elements take into account specific cases of the interaction between the input
singleton CoPNs. The consR functions add the necessary arcs to the complete
CoPN, such that the general behavior of each context dependency relation is
satisfied.

Exclusion dependency relations do not require any specific interaction between
the contexts involved in the context dependency relation. The only im-
posed constraint is that the contexts involved in an exclusion dependency
relation cannot be active simultaneously. The consE function ensures
this interaction by adding inhibitor arcs from the context place of each
context to all activation transitions of context places of the other context.
This property can be seen in Equation (6.1) (and equivalently in Equa-
tion (6.2)), where for every transition for which the source (resp. target)
context place is an output place and not an input place an inhibitor arc
is added from the target (resp. source) context place. This property is
verified after all transitions have been added in the CoPN, thus we know
that it takes into account all possible activations of each context, thus
ensuring that the transition is enabled if and only if the other context is
not active.

Causality dependency relations add a transition by means of the extC func-
tion to deactivate the source context of the dependency relation if the
target context is inactive. This can occur because the target context can
be deactivated independently from the source context. The introduction
of this transition is needed because it might be possible that the source
context is active and the target context is not. The consC function adds
arcs to request the activation or deactivation of the target context every
time the source context is activated or deactivated. This means that for
every transition for which the source context place is an output and not
an input (i.e., transitions adding tokens to the context place) an arc is
added to the preparing to activate temporary place of the target context
(Equation (6.8)). Similarly, for every transition of the CoPN for which
the source context place is an input and not an output (i.e., transitions
removing tokens from the context place) an arc is added to the preparing
to deactivate temporary place of the target context (Equation (6.7)). Ad-
ditionally, to ensure that the target context it is actually active and the
request to deactivate it can be processed, all transitions of the CoPN de-
activating the source context are enabled if and only if the target context
place is marked (Equations (6.4) and (6.6)).

Implication dependency relations add a transition by means of the extI func-
tion to deactivate the source context of the context dependency relation
if the target context is not active nor preparing to activate. The target
context of the implication dependency relation can be activated indepen-
dently from the source context. As a result, it is not possible to assert
that every deactivation of the target context should deactivate the source
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context. Remember from Example 4.5 that such an assertion caused a
cycle in the deactivation transitions of the source and target contexts in-
volved in an implication dependency relation. However it is possible to
assert that if the target context is inactive, the source context should also
become inactive, as specified by the introduced deactivation transition.
As it is the case for the causality dependency relation, the consI function
also adds arcs to request the activation and deactivation of the target con-
text with every activation and deactivation of the source context. This is
respectively managed by Equations (6.10) and (6.11).

Requirement dependency relations add a transition to automatically trigger
the deactivation of the source context whenever the target context is in-
active. This transition, introduced by the extQ function, guarantees that
the source context cannot be activated if the target context is inactive.
The consQ function ensures that all transitions for which the source con-
text place is an output and not an input (i.e., transitions adding tokens to
the source context place) are enabled if and only if the target context is
active. This is ensured by adding the arcs described in Equations (6.13)
and (6.15).

Conjunction dependency relations add the places and transitions by means of
the ext∧ function to manage the activation state of all the contexts in-
volved in the dependency relation. The state of all contexts is represented
by a new context place, labeled A1 · · ·An. Tokens are added to this place
only if all of the source context places are active. This situation is repre-
sented by a new activation transition in which each of the context places
for the source contexts is an input and an output. The transition also has
the new context place as an inhibitor input to ensure that the transition
is only fired once. Deactivation of the new context place is done by re-
questing it through a newly introduced preparing to deactivate temporary
place. Two transitions are added to handle the deactivations of the new
context place. A first transition removes the tokens from the new context
place whenever it is preparing to deactivate. If the new context place is
not marked, then a second transition removes the token from the new
preparing to deactivate temporary place. The cons∧ function introduces
arcs to ensure that for every transition deactivating one of the source
contexts involved in the conjunction dependency relation, the request to
deactivate the new context place is forwarded by adding a token to the
new preparing to deactivate temporary place. These new arcs ensure that
if one of the source contexts becomes inactive, then the new context place
is also made inactive.

6.3 Managing Dynamic Behavioral Adaptations
CoPNs are not static structures. On the contrary, CoPNs make it possible to rep-
resent and track the changes that occur in the system’s surrounding execution
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environment. CoPNs can thus be used as run-time representation of contexts
and their dynamic changes. The following description summarize how the state
of contexts is encoded in a CoPN, and how it evolves according to its firing
semantics (Section 6.1).

• In CoPNs changes in the surrounding execution environment of the system
trigger changes in the activation state of its contexts. Such changes are
associated with external transitions to activate or deactivate a context,
depending on what is required by the sensed situation.

• External transition firings (may) enable internal transitions, which are
processed using the semantics of reactive Petri nets and transition prior-
ities. Eventually a marking is reached where no internal transitions can
fire. Infinite sequences of internal transition firings cause inconsistencies
in the system behavior, and are hence not allowed in CoPNs. Chapter 7
discusses how to identify context configurations in which this is possible,
as a means to remove them from the application.

• After there are no more internal transitions to be fired, if there are marked
temporary places, it means that one or more of the constraints imposed by
context dependency relations are not satisfied, and therefore that context
activation or deactivation may raise inconsistencies in the system behav-
ior. To avoid this, the CoPN consequently rolls back all state changes
made to the contexts since the firing of the external transition.

• After there are no more internal transitions to be fired, if on the other
hand, there are no marked temporary places, then the context activation
or deactivation does not lead to inconsistencies, and can be processed
successfully.

• Other requests to activate and deactivate contexts can then be processed
in response to external transition firings.

The internal semantics of CoPNs are processed according to the semantics of
Colored Petri nets, reactive Petri nets, inhibitor arcs and transition priorities
as follows:

• External transitions are always enabled since they are source transitions
(i.e., they do not have any input places).

• An internal transition t is enabled for a color l if its input places pin from
regular arcs contain at least f(pin, t, l) tokens, its input places p◦ from
inhibitor arcs are empty, and no other transition t′ with a higher priority,
ρ(t′) > ρ(t), is enabled.

• Internal transitions are fired with a must fire semantics. That is, if an
internal transition is enabled it must fire. Whenever two internal transi-
tions (with the same priority) are enabled simultaneously they fire non-
deterministically.
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• Firing of a transition t for a given color l modifies the state of the
CoPN by removing f(pin, t, l) tokens from its input places pin, and adding
f(t, pout, l) tokens to its output places pout.

6.3.1 Context Activation Semantics
In this section we formalize the activation semantics of CoPNs. As we will see,
this semantics respects the intended interactions between contexts as defined by
context dependency relations, and automatically manages inconsistencies that
may arise through context activation or deactivation.
Every external transition firing may be followed by a sequence of internal

transition firings, called a step. The reactive semantics of CoPNs force internal
transitions to fire whenever they become active.

Definition 6.18. Given two reachable marking multisets m,m′ of a CoPN P =
〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉. If t0 ∈ Te and for j = 1, . . . , n, tj ∈ Ti, are
such that m[t0〉m1[t1〉 . . .mn[tn〉m′, the sequence of transitions Υ = t0t1 . . . tn,
is called an step between m and m′.

For two marking multisets m and m′, if m[Υ〉m′ we say that m′ is reachable
from m via the step Υ.

Definition 6.19. Given a CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, and
m a reachable marking multiset of P. If there exist an infinite sequence of
internal transitions t1t2 . . ., such that for an external transition firing t0 ∈
Te, m[t0〉m′[t1〉 . . .. The sequence Υ = t0t1t2 . . ., is called an unstable step.3

In the remainder of this dissertation we will assume to have stable firing steps
unless explicitly said otherwise.

Definition 6.20. Given a CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, a
marking multiset m̃ of P is said to be consistent if and only if ∀p ∈ Pt

and ∀ l ∈ L, m(p, l) = 0.

Definition 6.21. Let m̃ be a consistent marking of a CoPN P. A step Υ, from
m̃ to a marking multiset m′, m̃[Υ〉m′, is called a consistent step if and only if
m′ is a consistent marking multiset of P.

The state of a CoPN can only be modified after an external request to activate
or deactivate a context. Whenever one of these actions is triggered in the system
for a particular context, A, the corresponding external transition (i.e., req(A) for
activation, or req(¬A) for deactivation) is fired in the CoPN. The semantics of
transitions priorities of CoPNs ensure that no other external transition is fired
until the step has finished —that is, until there are no more internal transitions
to be fired. The general process of context activation is intuitively described as
follows:

3The concept of unstable step corresponds with that of divergent firing sequences of reactive
Petri nets [61].
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1. Before external transitions are fired, the set of currently active contexts
(i.e., the consistent state of the CoPN) is saved as the current marking of
the system.

2. Internal transitions are fired until no internal transition remains enabled.
This process follows the reactive (Definition 5.16) and priority transitions
(Definition 5.13) semantics of CoPNs. In addition, the state of every tran-
sition firing (marked contexts and enabled transitions) is saved as a means
to backtrack in case of inconsistencies.

3. Once no internal transitions remain enabled, two possibilities of execution
exist:
a) If some temporary places remain marked this means there are in-

consistencies, since not all initially enabled internal transitions have
been fired. In that case the state of the CoPN is reverted to the first
state of internal transition firings saved in step 2. Another sequence
of internal transition firings is tried.

b) If an inconsistency exists after firing all initially enabled internal
transitions, all modifications made since the external transition fir-
ing are rolled back to the current marking saved in step 1. Another
context activation or deactivation request corresponding to an exter-
nal transition can be processed then. If after processing all possible
sequences of the initially enabled internal transitions an inconsis-
tency still exists, the reason why the activation or deactivation could
not take place is saved.

4. If the system reaches a consistent state —no temporary places remain
marked, then the saved current marking is updated with the marking of
the CoPN. A trace of the fired internal transitions to reach the state is
saved as a means of logging to track the interactions between contexts.
Other context activation or deactivation requests corresponding to an
external transition can then be processed.

Transition firing semantics in CoPNs are designed to ensure that given a par-
ticular state and action over a context, the result of executing such an action
is always the same. This is corroborated later in this section by Theorem 6.4.
We now formalize the firing semantics of CoPNs.

Definition 6.22. The state of a COP system is defined as a 5-tuple
〈P, E , T ,T , m̃〉, where P is the CoPN of the system, E ⊆ Ti is the set of enabled
internal transitions, T ⊆ Ti is a stack of fired transitions of the system, m̃ is
the consistent marking multiset of P, and T = 〈t, Ẽ ,m〉 is the initial state of
the system before the internal transition t is fired, where Ẽ is the set of enabled
transitions and m is the marking multiset of P before firing t.

Notation 6.8. To facilitate the definition of our semantics rules, we introduce
the following notation.
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- markedm(P ) = {p ∈ P |m(p, l) > 0 for l ∈ L} is the subset of marked places
of a set P ⊆ Pc ∪ Pt.

- enabledm(T ) = {t ∈ T |m[t〉} is the subset of enabled transitions of a set
T ⊆ Te ∪ Ti at a marking multiset m.

- T / t appends transition t to the stack T .

- m and m′ represent marking multisets of the CoPN P.

- πi(T ) is the ith projection of tuple T .

Notation 6.9.

- The notation [m/m′]P is used to represent a replacement of the marking m
in the Petri net P for marking m′.

External transition firing: occurs only at the beginning of a step Υ when
P is in a consistent state m̃ (i.e., the marking of P is consistent) and E is empty
(i.e., i.e. no internal transitions are enabled). After firing an external transition,
the marking of the CoPN is modified, possibly enabling transitions in Ti. Such
transitions become the elements in the priority set E .

t ∈ Te, m̃[t〉m′

〈P, φ, φ, φ, m̃〉 → 〈P, enabledm′(Ti), φ, φ, m̃〉
(6.19)

Internal transition firing: If the set E is not empty, firing one of the
internal transitions with highest priority yields a new marking m′ of the CoPN
P. The state of the CoPN before firing transition t is saved (as a means to
facilitate backtracking in case of inconsistencies). The new marking possibly
enables some internal transitions in Ti, which become the elements of E .

t ∈ E , t /∈ T , m[t〉m′

〈P, E , T ,T , m̃〉 → 〈P, enabledm′(Ti), T / t, 〈t, E ,m〉, m̃〉
(6.20)

Evaluation termination: When there are no more internal transitions to
be fired in the set E , three cases are possible:
1. The first case occurs when for m′ marking multiset of P there are marked

temporary places and not all initially enabled internal transitions have been
fired. In such a case all changes are rolled back to the state of the CoPN m
saved before the firing of the first internal transition t:

markedm′(Pt) 6= φ, m = π3(T ), π2(T ) * T
〈P, φ, T ,T , m̃〉 → 〈[m′/m]P, φ, T , φ, m̃〉 (6.21)

2. The second case occurs when for m′ marking multiset of P there are
temporary places marked and all transitions initially enabled have been fired,
the CoPN is rolled back to its last consistent state m̃ and the firing request is
signaled as denied:
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markedm′(Pt) 6= φ, π2(T ) ⊆ T
〈P, φ, T ,T , m̃〉 → 〈[m′/m̃]P, φ, φ, φ, m̃〉 (6.22)

3. The third case occurs when for m′ marking multiset of P no temporary
places remain marked, we finish the step by turning the current marking m′ of
the CoPN into the new consistent state m̃:

markedm′(Pt) = φ

〈P, φ, T ,T , m̃〉 → 〈P, φ, φ, φ,m′〉
(6.23)

The following result demonstrates that given a consistent state of a CoPN P,
every step Υ enabled at such state is consistent.

Theorem 6.2. Let P be a consistent CoPN. Every finite step Υ, triggered by
a request to activate or deactivate a context A ⊆ P, is a consistent step.

Proof. After firing the initial external transition labeled req(A) or req(¬A),
Reduction rule 6.19 marks one of the temporary places labeled Pr(A) or Pr(¬A)
respectively. When temporary places are marked we have one of two cases:

1) If no internal transition is enabled after the external transition firing (that is
if E = φ), Reduction rule 6.22 is applied, which rolls back P to its original
consistent state (m̃). By hypothesis, m̃ is a consistent state, thus Υ is a
consistent step.

2) If on the contrary, there are internal transitions to be fired, one of them
is fired by applying Reduction rule 6.20. Every time this rule is applied,
the marking of P is updated to a new marking m′, and the state of the
system is saved. When eventually the set E becomes empty, one of the three
Reduction rules 6.21 through 6.23 can by applied:
case 1: Reduction rule 6.21 is applied when there are marked temporary

places. However, not all internal transitions initially enabled have fired.
In this case the state of the CoPN is rolled back to the initial state m
(where the internal transitions were enabled). The initial fired transi-
tions is saved in the set of fired transitions not to visit such a firing
sequence again. Other transitions not in the set of fired transitions
from the initial enabled internal transitions is fired.

case 2: Reduction rule 6.22 is applied when there are marked temporary
places and all internal transitions initially enabled have fired. The
CoPN is then rolled back to its original consistent state, m̃, which by
hypothesis is a consistent state. Thus, Υ is a consistent (empty) step.

case 3: Reduction rule 6.23 is applied when no temporary places are marked.
Then, the marking of the system is updated to the marking of the CoPN
m′. Marking m′ is consistent by Definition 6.20 (i.e., no temporary
places are marked). Thus, Υ is a consistent step.
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If a step Υ leads to an inconsistent state —it leads to reduction rule 6.22—
then the system is oblivious to the step and the CoPN is rolled back to its initial
state. Whenever a context activation or deactivation is disregarded because it
leads to an inconsistent state, the reason why the context (de)activation did not
take place is signaled. For example in the case of the requirement dependency
relation between NLBS (N) and Connectivity (C), if the latter context is not
active, the outcome of a request to activate the former context would be “con-
text NLBS cannot be activated because context NLBS is preparing to activate
and cannot complete the operation (context Connectivity is inactive)”.

Example 6.4. To demonstrate the dynamics of context activation and de-
activation in CoPN, consider the sequence of commands σ = { @activate(N),
@activate(C), @activate(N), @activate(N), @deactivate(C) } for the CoPN
composed of an implication and a requirement context dependency relations
shown in Figure 6.9.
Let us begin with an empty initial marking of the system, m0(p) = 0 ∀p ∈ P .

The @activate(N) message triggers the firing of the external transition req(N),
which when fired leads to a markingm such thatm(Pr(N)) = 1. In this marking
none of the internal transitions is enabled. In particular act(N) is not enabled,
since context C is not active. At this stage Reduction rule 6.22 is applicable
and marking m is reverted to the last consistent marking of the system, the
initial marking m0.
From the initial marking, let us take a state of the system in which the

context activations @activate(C), @activate(N), and @activate(N) have been
processed completely. The CoPN reaches a consistent state m (illustrated in
Figure 6.9), where m(C) = 1, m(N)=2 and m(Pos)=2. Execution of the
@deactivate(C) command, triggers the firing of external transition req(¬C).
This yields a new marking m1, where m1(Pr(¬C)) = 1, m1(C) = 1, m1(Pos)=2,
and m1(N) = 2. For this marking the only enabled internal transition is the
deactivation transition deac(C). Firing this transition yields a marking m2,
where m2(C) = 0, m2(Pos) = 2, m2(N) = 2, and m2(Pr(¬C)) = 0. Here, transi-
tion deac(N) (between contexts N and C) becomes enabled because place C is no
longer marked. Firing this transition yields a marking m3, where m3(N) = 1,
m3(Pos) = 2, and m3(Pr(¬Pos)) = 1. At this point (the same) transition
deac(N) is enabled, and deac(Pos) becomes enabled too. Since the two tran-
sitions have the same priority, they can fire in random order. Suppose that
deac(Pos) fires first. This leads to a marking m4, where m4(N) = 1, and
m4(Pos) = 1. This marking does not enable any new transition, however, tran-
sition deac(N) is in the Σ priority set and must fire. The firing yields marking
m5(Pos) = 1, and m5(Pr(¬Pos)) = 1, enabling transition deac(Pos). Firing
the transition yields an empty marking, which means the Petri net has reached
a consistent state again.

Theorem 6.3. Let m be a consistent marking of a CoPN P, and Υ a consistent
step, m[Υ〉m′. Then ∀Υ′ firing step which is a re-ordering of the transition
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firings in Υ, m[Υ′〉m′.

Proof. Let us take t, t′ two transitions in Υ. Note that any permutation of Υ
where t and t′ are interchanged implies that the two transitions are enabled at
the same time, otherwise, they can not be fired in different orders. Suppose by
contradiction that there are two markings m and m′ such that m[Υ〉m′ where
t fires before t′, and m[Υ′〉m′′ where t′ fires before t. Without loss of generality
let us take m[t0〉 . . .mi[t〉 . . .mj [t′〉 . . .m′ and
m[t0〉 . . .mi[t′〉 . . .mj [t〉 . . .m′′. We can distinguish two cases.

case •t ∩ •t′ 6= φ: Constraint RC2 of reactive Petri nets tells us that •t = •t′
or there is no marking enabling both transitions. By hypothesis it is the
cases that mi[t〉 and mj [t′〉, thus it must be that •t = •t′. If this is the
case, t and t′ execute the same action over a context and hence have the
same label, so t = t′. No matter the order in which the transitions are
fired, the result is always the same, thus m′ = m′′.

case •t ∩ •t′ = φ: The two transitions are independent. Since one transition is
enabled at marking mi and the other subsequently at marking mj , one
firing does not interfere with the other, so the overall result of firing both
transitions are be the same, thus m′ = m′′.

Theorem 6.2 provides guarantees that a CoPN remains consistent, regardless
of which contexts are activated or deactivated in the system, and Theorem 6.3
demonstrates that for every two reachable marking multisets, re-orderings of
the step leading from one marking to the other do not affect the result —that
is, the same marking is always reached. Nonetheless, we still need to prove that
regardless of the order in which internal transitions are fired, for a given step Υ
and initial state m, the resulting marking m′ is always the same. This is given
by the following result.

Theorem 6.4. Let P be a CoPN and E the non-empty set of internal transitions
to be fired in P at a marking multisetm. Let Υ be a firing step taking all internal
transitions in E. Then ∃!m′ marking multiset, such that ∀Υ′ firing step which
is a permutation of the transitions in Υ, m[Υ′〉m′.

Proof. Let E = {t1, . . . , tn} the set of enabled transitions at a marking m. For
every pair of transitions tq, tj ∈ E with q, j ∈ {1, . . . , n}, we differentiate three
cases in which the firing of the transitions could take place:

1. •tq ∩ •tj = φ (the transitions have no inputs in common): If it would be the
case that •tq ∩ •tj 6= φ, the constraint rule RC2 of reactive Petri nets
states that either tq and tj have the same inputs, or there is no marking
enabling both transitions. By hypothesis we know that m[tq〉 and m[tj〉,
thus it must be that tq and tj have the same inputs. If this is the case,
Definition 6.8 states that tq = tj , which is not possible because E is a set;
thus •tq ∩ •tj = φ.
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In this case ∀ tq, tj such that ∃ p ∈ tq •∩◦ tj , then @m′′ marking such that
[tq〉m′′[tj〉. Firing transition tq leads to Reduction rule 6.21. So transition
tj always fires before tq. After firing tj , tq is enabled because they do not
share any input places. Firing of tq leads to marking m′. Since Reduction
rule 6.21 ensures the firing order {tj , tq} the only reachable marking ism′.
If firing tj disables tq, then no matter the order in which the transitions
fire, the firing is always rolled back to the last marking saved in the initial
state of the system T .

2. ◦tq ∩ tj• = φ ∧ tq • ∩ ◦ tj = φ: Two situations are distinguished:

(a) Suppose @ t′ such that m[tqt′tj〉 or m[tjt′tq〉
Take m[t〉m2[tj〉m1 and m[tj〉m3[tq〉m4.
Suppose by contradiction that m1 6= m4.
∀ p ∈ P, m2(p) = m(p)− f(p, tq) + f(tq, p) and
m1(p) = m2(p)− f(p, tj) + f(tj , p).
Similarly, ∀ p ∈ P, m3(p) = m(p)− f(p, tj) + f(tj , p) and
m4(p) = m3(p)− f(p, tq) + f(tq, p).
⇒ Combining equations for m1,m2 and m3,m4, we have
∀ p ∈ P, m1(p) = m(p)− f(p, tq) + f(tq, p)− f(p, tj) + f(tj , p) and
m4(p) = m(p)− f(p, tj) + f(tj , p)− f(p, tq) + f(tq, p).
Then we have thatm1 = m4, no matter the order chosen for the firing
of transitions, the same marking is always reached.

(b) Suppose ∃ t′ such that m[tqt′tj〉 or m[tjt′tq〉. Without loss of gener-
ality let us assume m[tqt′tj〉.
In this case, m[tq〉m′′[t′〉 and m[tq〉m′′[tj〉. Note that we recursively
analyze the case of transitions t′, tj as done for transitions tq, tj . Two
possibilities can take place as transitions are fired:
i. |E| −→ 0 in which case the reached marking will always be the

same, either because: the ordering does not matter (case 3.),
an ordering is imposed in the transitions (case 2.), or because
there is no sequence leading to a new consistent marking, then
all possible sequences are rolled back to the last consistent state
(Reduction rule 6.22).

ii. |E| −→ ∞, in which case no marking is ever reached for any firing
order (we assume the firing of transitions is fair, so eventually, the
transition making the firing sequence to diverge will fire). Thus,
the “reached” marking is always the same (none).

3. ◦tq ∩ tj• 6= φ ∨ tq • ∩ ◦ tj 6= φ: Without loss of generality let us suppose that
◦tq ∩ tj• 6= φ. If transition tj fires before tq, then tq becomes disabled,
because one of its inhibiting places contains a token.
(a) Suppose that no internal transition t that becomes enabled, for which

its firing removes the token from the inhibiting place of tq. This means
that when no other internal transition is enabled to fire, the CoPN has
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an inconsistency. If this is the case, Reduction rule 6.21 is applied,
and the state of the CoPN is reverted to marking m. Now transition
tq must be fired before tj . The marking reached after all enabled
internal transitions have fired, would be the marking m′ of the CoPN.

(b) Suppose now that there is an internal transition t that consumes
the token form the inhibiting place of tq. Firing all enabled internal
transitions would lead to a marking m′ of the CoPN. Note that if tq is
fired before tj the same marking m′ would be reached. In particular,
note that the transition will eventually be enabled, since transition
tj must fire as it is enabled. Consequently, the same sets of internal
transitions will become enabled (probably in different order), and
hence, the same marking m′ would be reached.

The case in which transition tq is fired before tj is covered by the case
(b). Hence, in this situation, the same marking is always reached.

Up until now, we have only dealt with CoPNs with a single priority for the
set of internal transitions. Nonetheless, note that if future extensions require
the definition of other transitions with different priorities, Theorem 6.3 remains
valid. This is given because by definition transitions with different priorities
are never enabled by the same marking.

6.4 Context-oriented Programming with Context
Petri Nets

Now that the formal basis behind the structuring, definition and dynamics of
COP systems has been described by means of the CoPN model, we turn to the
programming support offered by the model. In this section we discuss the
language support for the development of predictable COP systems using CoPNs
and the definition of behavioral adaptations. Other aspects of the development
of COP systems such as tool support are discussed in Chapter 8.

6.4.1 Language Abstractions for COP in CoPN

The CoPN model can become complex as the system grows. That is, the number
of contexts and the number of interactions given by context dependency rela-
tions can yield a cluttered CoPN. However, developers interact with it through
a language abstraction layer that hides such complexity. This section presents
the API provided by the current incarnation of CoPN as a run-time model for
Subjective-C. We explain the mapping of the different language constructs to
CoPNs. It is important to notice that a similar API could be provided for differ-
ent COP languages using CoPNs as a run-time model.

CoPN is a model to identify and manage inconsistencies in a COP language.
Hence, the machinery introduced by CoPN to ensure system consistency and
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Context declaration ::= @context( context-name [,bound] )
Context activation ::=

@activate( context-name [in thread-name {, thread-name }] )
Context deactivation ::=

@deactivate( context-name [in thread-name {, thread-name }] )
Context method annotation ::= @contexts context-name { context-name }
Method priority declaration ::= @priority priority
ActivationState ::= @active( context-name )
Dependency relations declaration ::=

[addExclusionBetween: context-name and: context-name] |
[addCausalityFrom: context-name to: context-name ] |
[addImplicationFrom: context-name to: context-name ] |
[addRequirementTo: context-name of: context-name ] |
[addSuggestionFrom: context-name to: context-name ] |
[addConjunctionOf: {context-name} ] |
[addDisjunctionOf: {context-name} ]

Table 6.1: Subjective-C method syntax to interact with CoPNs.

behavioral predictability should not impact the way in which developers interact
with the language. This is the case for Subjective-C. Table 6.1 shows the
syntax for the creation and manipulation of contexts and context dependent
behavior using CoPNs as the run-time model of the system, which resembles
the one presented in Table 4.3 for Subjective-C. Note, however, that there are
differences between the two syntax versions.
The context declaration construct now has the possibility to define a bound

of the context (positive integers) as the maximum number of times a context
can be activated. In the maps application, for example, in order to restrict the
number of connections that the device can handle, the Connectivity context
can be defined as @context(Connectivity, 3). Such a definition automati-
cally generates a CoPN with an empty marking for a single context allowing a
maximum of three simultaneous connections as shown in Figure 6.10.

Pr(C)

req(C) act(C)

C

3 req(¬C)

Pr(¬C)

deac(C)

Figure 6.10: CoPN for the Connectivity (C) context allowing maximum three
simultaneous activations.

The characteristic of enabling a bounded activation of contexts is a novel
contribution to COP on its own. This characteristics addresses the multiplicity
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problem identified in Table 4.2 not to be addressed by existing approaches,
which provide either an unbounded activation of contexts, or a single activation
of contexts.
Activation of contexts, remains unchanged. Section 9.2 further discusses the

activation of contexts with a restricted scope for a particular thread. The con-
text activation semantics introduced by CoPN differs from that of Subjective-C.
Context activation @activate(Connectivity) and @deactivate(Connectivity),
respectively trigger the firing of the external transitions req(Connectivity) and
req(¬ Connectivity) of the CoPN in Figure 6.10. Section 8.1.3 Discusses the
internals of context activation in CoPN and its difference with that originally
proposed in Subjective-C.
Finally, the set of available context dependency relations is extended with

the new conjunction, disjunction and suggestion dependency relations (the
disjunction and suggestion dependency relations are defined in Section 9.3).
The construct addConjunctionOf:, for example, takes a list of (an arbitrary
number of) context names, and generates a CoPN of the conjunction of all
of them (Definition 6.17). For example, the [addConjunctionOf: [NSArray
arrayWithObjects: Connectivity, Friends,nil]] construct generates the
CoPN illustrated in Figure 6.7.
The DSL provided by Subjective-C to define contexts and context dependency

relations of (Table 4.4) is extended as shown in Table 6.2 to use CoPNs as an
underlying management model.

Context Declaration File ::= Contexts: { ContextName }
Context dependency relations: { DependencyDefinitions }

ContextName ::= context-name [,bound= number ]
DependencyDefinitions ::= ContextName DependencyConnector ContextName |

ConjunctionConnector | DisjunctionConnector
DependencyConnector ::= ExclusionConnector | CausalityConnector | ImplicationConnector |

RequirementConnector | SuggestionConnector
ExclusionConnector ::= ><
CausalityConnector ::= ->
ImplicationConnector ::= =>
RequirementConnector ::= =<
SuggestionConnector ::= - ->
DisjunctionConnector ::= +( { ContextName } )
ConjunctionConnector ::= *( { ContextName } )

Table 6.2: Subjective-C DSL syntax for CoPN.

As a concrete illustration, we round up this section with a complete example
of the context-aware maps application (Section 2.3.3) developed using CoPN.

Example 6.5. The CoPN DSL definition of the maps application contexts and
context dependency relations is shown in Snippet 6.1. Note that we left out the
definition of the Priv context for the management of user privacy in the appli-
cation with the purpose of showing how contexts are added programmatically
to an existing application, as shown on Line 1 of Snippet 6.2. To compose the
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CoPN generated using the DSL with the Priv context it suffices to create a con-
text dependency relation between such context and any of the other contexts
already defined. This is done at Line 2 by creating an exclusion dependency
between Priv and Pos.

Contexts: Context dependency relations :
Pos W -> C
N B -> C
GPS GSM => Pos
GSM GPS => Pos
C, bound =3 N => Pos
W N =< C
B, bound =1

Snippet 6.1: CoPN’s DSL definition of the maps application.

Figure 6.11: Composed CoPN for the maps application.

The CoPN shown in Figure 6.11 (automatically generated by the supporting
tools introduced with CoPN, cf. Chapter 8) corresponds to the composition of
all contexts defined for the maps application (this takes place automatically
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after execution of Line 2 in Snippet 6.2).

1 SCContext *priv = @context(Priv,1);
2 [ addExclusionBetween : priv and: @context(Pos)];
3
4 @activate(W);
5 i f (!@active(C) ) {
6 @activate(C);
7 }
8 @activate(N);
9 @activate(Pos);

10 @activate(B);
11 @activate(C);

Snippet 6.2: Maps application: Context composition and activation.
The marking of the CoPN illustrated in Figure 6.11 is reached by executing

the context activations shown on Lines 4 through 10 of Snippet 6.2. Line 4
requests the activation of the Wifi context. Due to the causality dependency
relation W–BC, a request to activate Connectivity is sent and both contexts
are activated. The method @active(C) on Line 5 is used to check whether a
context is active or not. In this case the return of the method is the boolean
value true, since the Connectivity context is active. Line 8 request the ac-
tivation of the NLBS context. Since NLBS requires Connectivity, N–JC, and
Connectivity is active the request can take place, so NLBS is activated. The
consequence restriction given by the implication dependency relation N–IPos,
implies that the Positioning context is also activated. Line 6 requests the acti-
vation of Connectivity. This can immediately take place since Connectivity
does not have any restrictions or consequences, leading to Connectivity to con-
tain two tokens. Line 9 allows to activate Positioning since Private is not
active, which is the only restriction to the context. Line 10 requests the activa-
tion of context Bluethooth. This case is analogous to the activation of Wifi.
This series of activations leads to the marking shown on the righthand side of
Figure 6.11. Finally, Line 11 requests the activation of Connectivity, which
cannot take place because the Connectivity context has reached its bound.
An error message is sent providing the information: “Context Connectivity
cannot be activated because it is preparing to activate and cannot complete the
operation (Connectivity reached its bound)”.

6.4.2 Context-dependent Behavior Semantics
The missing piece of the puzzle to provide a complete implementation of a COP
language with CoPN, is the definition of behavioral adaptations associated with
each context in the CoPN.
Before explaining how behavioral adaptations are represented in CoPN and

how do they interact with the base system (i.e., the set of methods defined in
the system for its common behavior) and other adaptations, we explain how
the base system is represented in CoPN. In CoPN, the base system (its objects,
state variables, and behavior) is represented by means of a special type of
context, named the default context. This context is special in the sense that
it cannot be manipulated by the programmer. The default context is a system-
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defined context (much in the sense of the conjunction context generated by the
conjunction dependency relation) which is always active. This representation
is inspired by its initial proposal in the Ambience programming language [74]
and also implemented in Subjective-C. In CoPN we abstract the default-context
as a context only consisting of a context place which is always marked.

Definition 6.23 (Default context). The default context is defined as the
CoPN C0, where Pc = {default}, Pt = φ, Te = φ and Ti = φ, f = φ, f◦ = φ,
and m0(default) = 1. Moreover, ∀m marking multiset, m(default) = 1.

In Chapter 4 we defined an adaptation which consists of two parts: a context
describing a particular situation in the surrounding execution environment of
the system, and a set of behavioral adaptations defined for that situation. Here
we provide a formal definition of adaptations using CoPNs.

Definition 6.24 (CoPN behavioral adaptations). In a COP system P, an
adaptation is defined as a tuple < C,B > where C ∈ S and C ⊂ P, and B is a
set of behavioral adaptations (Definition 4.1) associated with the context place
p ∈ Pc in C.

Using Definitions 6.23 and 6.24, the base behavior of a COP system cor-
responds to the tuple < default,B0 >, where the set B0 comprises all the
methods defined in the base system.
In CoPN, behavioral adaptations are associated with a context by means of

the @contexts annotation from Table 6.1, similar to the way it is done in
Subjective-C. Methods defined in the application (be it in an object or in an
independent module) can be annotated with the @contexts construct together
with the name of the context the behavior is to be associated with. Snippet 6.3
shows the definition of the behavioral adaptation (openChatRoom:) associated
with the Friends+Connectivity context defined in the maps application. Note
that writing @contexts Friends+Connectivity (the context generated from
the conjunction of the two contexts) is equivalent to the definition given on
Line 1 in Snippet 6.3. That is, the behavior of openChatRoom: is made avail-
able if and only if both contexts Friends and Connectivity are active, which
corresponds to the semantics of the conjunction dependency relation.

1 @contexts Friends Connectivity
2 -(void) openChatRoom : {
3 ChatRoom *room = [[ ChatRoom alloc ] init ];
4 i f ( connection != nil) {
5 friends = [ sel f getOnlineFriends ];
6 [chat start ];
7 }
8 }

Snippet 6.3: Behavioral adaptation associated with context
Friends+Connectivity.

As contexts become available during the execution of the system, the ob-
servable behavior is provided by the sets B of behavioral adaptations for which
their corresponding context place is marked together with the set of base level
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methods B0. Problems may arise from the interaction of behavioral adapta-
tions and the base level behavior, or even with other behavioral adaptations. If
two behavioral adaptations corresponding to a same functionality are available,
what would be the behavior?
To answer this question, selection and composition mechanisms for the reso-

lution of methods are implemented, as discussed in Sections 4.1.2 and 4.1.4. We
now provide a formalization of these concepts to avoid behavioral adaptations
inconsistencies in CoPNs.

Definition 6.25. Let P be a CoPN for a COP system with defined contexts
C1, . . . Cn ⊂ P. Given a method b ∈ B0, we define its equivalence class of b as,
[b] = {bi|bi ∈ Ci such that bi is a behavioral adaptation of b}.

Definition 6.26 (Method ordering). For every method b and for every bi ∈
[b], for 1 ≤ i ≤ n, an ordering O on the equivalence class of b is defined as
the sequence bi1 >O bi2 >O . . . >O b, where the contexts Ci1 , . . . are the active
contexts in the system.

The specific definition of the ordering O depends on the method disambigua-
tion techniques (Section 4.1.4) implemented for each particular COP language.
However, note that the ordering of the equivalence class is resolved dynami-
cally according to the active contexts in the system. Furthermore, depending
on the particular disambiguation techniques used, the ordering can be resolved
for every method call.

Definition 6.27 (Method resolution). Whenever a method b is called in the
application, the method called is resolved by the behavioral adaptation bi such
that bi >O bj , ∀ bj ∈ [b].

Example 6.6. As a concrete example of a method ordering function O, let
us consider the method disambiguation technique implemented for the CoPNs
programming model. CoPN reuses the method disambiguation techniques intro-
duced in Subjective-C, explicit priorities and activation order (Section 4.3.3).
To define the ordering and interaction of behavioral adaptations we introduce
two predicates (one for each of the disambiguation techniques implemented)
priority and timestamp which respectively retrieve the priority of a method
and the timestamp of a context activation. Given two behavioral adaptations,
bi and bj of a method b, according to the active contexts in the surrounding
execution environment of the system, bi >O bj in CoPNs if and only if:

1. priority(bi) > priority(bj), or

2. priority(bi) = priority(bj) ∧ timestamp(Ci) < timestamp(Cj).

As an example, consider the situation described in Snippet 6.4 for the maps
application (Section 2.3.3), where the method enableConnection is defined for
the two contexts WLAN and Bluetooth. In the situation of Line 8, where the two
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contexts are available, which is the behavior that should be observed? Accord-
ing to Definition 6.27 using the two disambiguation techniques implemented
with CoPN, two situations can take place. Let us suppose for the first case that
the @priority annotation of Line 2 is not provided for any of the contexts.
In such a case, since the WLAN context is activated later than Bluetooth, the
observed behavior is the one associated with the WLAN context. The second case
takes place when @priority is defined. In such a case, the observed behav-
ior is that of the method annotated with the highest priority, the Bluetooth
behavioral adaptation.

1 @contexts WLAN
2 @priority 10
3 -(void) enableConnection {
4 // connect via a WLAN
5 }

@contexts Bluetooth
@priority 20
-(void) enableConnection {

// connect via a Bluetooth
}

6 @activate(Bluetooth);
7 @activate(WLAN);
8 [ sel f enableConnection ];

Snippet 6.4: Behavior composition and interaction in CoPN.

On top of the simple interaction of behavioral adaptations presented in this
section, the CoPN programming model could also be further used for the com-
position, selection and scoping of adaptations. We discuss how the model could
extended to provide explicit support for the dispatching of behavioral adapta-
tions in Section 11.4.4.

6.5 Conclusion
This chapter provided the foundations for the development of a formal ba-
sis for the development of Dynamically Adaptive Software Systems based on
the Petri net formalism. We presented context Petri nets (CoPNs) as a for-
mal basis and programming model for the specific case of Context-Oriented
Programming (COP) systems, and evaluate it with respect to the requirements
of Dynamically Adaptive Software Systems (D.1 – D.5) and run-time models
(M.1 – M.4). Satisfaction of these requirements is inherited from the com-
bination of using COP systems (fulfilling D.1–D.5) and Petri nets (fulfilling
M.1–M.4). In particular we highlight the following properties provided by
CoPNs:

• CoPN provides a formal definition for the structure and behavior of COP
systems. The CoPN model allows, unlike existing COP approaches, to
formally describe the system in terms of its contexts, and the interac-
tion between them. The dynamics of the system are defined as a formal
semantics describing the activation of contexts (M.3).

• CoPN has a well-defined semantics describing the adaptations, context
dependency relations, and composition of COP systems. The semantics
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of the model are concise and precise, allowing us to define interaction
between adaptation explicitly. Even more, the CoPN model manages im-
plicit interaction of adaptation by means of its activation semantics. This
reduces the amount of states required to represent the system and its
adaptations (M.1).

• CoPN is used at run-time by the introduction of reactivity to external
events. Events taking place in the surrounding execution environment are
associated with the triggering of external transitions in the CoPN model.
Every time there is a change in the execution environment, this is auto-
matically represented in the CoPNmodel. The defined context dependency
relations and activation semantics of CoPNs ensure at run time that the
representation of the execution environment is always sound with respect
to the expected system behavior (D.1 and D.4).

• The CoPN programming model provides support for the principal language
abstractions introduced by COP languages. As a consequence, CoPNs
reuses these language facilities for the definition of behavioral adapta-
tions. In particular, the model allows the definition of adaptations over
different entities of a system (e.g., using the @contexts annotation), and
to isolate such definitions from each other and the base system (e.g.,
using scoping of adaptations as will be explained later in Section 9.2).
Furthermore, as behavioral adaptations are coupled with contexts, their
introduction to and withdrawal from the base system are ensured to be
consistent with respect to defined interactions between adaptations (D.2
and D.3).

• CoPN provides an explicit representation of the data and control of the
system at first-hand. Data, structure, interactions, and available actions
of the system are all concisely represented in a single model, facilitating
reasoning about the system (M.4).

The CoPN model provides the possibility of timely reaction to the surround-
ing execution environment of a software system in a consistent fashion. The
model effectively provides support for the interaction, abstraction, and decision
requirements for run-time models for Dynamically Adaptive Software Systems.
Additionally, the model also provides a series of supporting tools, previously
inexistent in other proposals for the definition and development of COP systems.
However, we recognize that there is a price to pay for the additional support
of ensuring consistency of the system behavior at run time. Every time there
is a change in the surrounding execution environment of the system (a context
activation or deactivation), the CoPN model is required to determine if such
action conflicts with any of the other contexts available at that system state.





Chapter7
Analyzing Dynamically Adaptive Software Systems

Chapter 6 presented and developed CoPNs, a formal basis for the definition and
run-time management of behavioral adaptations upon contexts changes in the
surrounding execution environment of the system. This chapter explores the
reasoning power of CoPNs. We describe the design-time analysis of different
properties of Dynamically Adaptive Software Systems using CoPNs, as a means
to identify incoherences in the definition of interactions between adaptations.
In Chapter 6 we showed that every CoPN is guaranteed to have a consistent

behavior with respect to the configuration of its adaptations as defined by
context dependency relations. That is, given a specification of the system,
expressed by context dependency relations and method resolution strategies, to
guarantee that the specification is satisfied at run time. However, one question
still remains: how can we ensure that the defined context dependency relations
define a valid specification of the system?
In this chapter we address this question by developing the appropriate in-

frastructure to reason about COP systems. The idea is to complement the
run-time resolution of conflicts between context dependency relations, with a
design-time analysis process of the system properties. The reason to undertake
such an analysis of system properties before its deployment is twofold. First
of all, the questions that can be answered during the design of a system dif-
fer from those questions that can be verified at run time, thus improving the
confidence and predictability of the system. Questions like: will context A ever
be activated?, or is activation of context A independent from that of context B?
are relevant to determine the validity of the system’s specification. Secondly,
a design-time analysis of the system could be used to lower the computational
overhead of the run-time verification of the system’s consistency by checking
some of the properties beforehand.
The objective of analyzing system properties at design time is to inform pro-

grammers about potential behavior conflicts they had not foreseen. In this
respect, CoPNs currently allow to reason about reachability and liveness prop-
erties of the system by taking advantage of existing Petri net analyses for such
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properties. In this dissertation we use the LoLA tool to perform such analyses.
The following sections overview the process used in CoPNs to enable analysis

of system properties. Section 7.1 presents different system properties that can
be analyzed in Petri nets and their relevance in the setting of Dynamically
Adaptive Software Systems. Section 7.2 presents a semiautomated process for
the analysis of system properties using LoLA.

7.1 Reasoning About Systems Properties with CoPN

COP systems are guaranteed to behave consistently in the presence of context
changes if they are specified using CoPNs. Specification of COP systems is driven
by the definition of contexts and their interaction using context dependency
relations —that is, the composition of the defined contexts in the system using
the composition (◦) operator introduced in Definition 6.6. The composition
operator is well defined in the sense that the composition of two consistent COP
systems always yields a consistent COP system. The resulting composed CoPN,
however, may not always yield a coherent system.

Definition 7.1. For a given CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, let
p ∈ Pc, we define p to be unreachable if ∀m reachable marking multiset of P
from the initial marking m0, m(p) = 0. Context places p′ for which there exist
a marking multiset m such that m(p′) > 0 are called reachable.

The notion introduced by Definition 7.1 corresponds to the reachability prop-
erty of Petri nets (Definition 5.6). This notion is used throughout this chapter
to verify the coherence of CoPNs by reasoning about the activation state of a
subset of the contexts defined in the system.

Remark Since Theorem 6.2 states that every finite step yields a consistent
state, it can be derived from Definition 6.19 that if Υ is unstable, there is an
infinite number of internal transitions in the firing step of Υ. Finite steps are
called stable.

Definition 7.2 (Coherence). A CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉
is coherent if ∀p ∈ Pc, p is reachable, and ∀ t ∈ Te, the firing steps Υ with t
as the first fired transition are stable. A CoPN that is not coherent is called
incoherent.

Note that the run-time verification process to ensure consistency of a CoPN
when contexts are activated and deactivated is not sufficient for the identifica-
tion (and eventual avoidance) of incoherences. In particular, at run time, it is
not possible to determine if a step is unstable or not (determining this is equiv-
alent to the halting problem). However it is possible to identify incoherences
by analyzing the system statically at design time. To avoid incoherences in the
composed CoPNs, we use the decision tools of Petri nets as part of the CoPN
model. The CoPN model does not provide dedicated techniques for the analy-
sis of COP systems per se. Instead, it uses the different analyses of Petri net
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properties already existing. The properties that are interesting to be analyzed
in the setting of COP systems are:

Reachability: In the case of COP systems, analyzing the reachability and cov-
erability of a set of states can be seen as the possibility of identifying
whether a particular configuration of active contexts is possible (a set of
simultaneously marked context places), given a system state (an initial
marking of the corresponding CoPN). This property can be used to iden-
tify if a given context can be activated, or to verify if two contexts can
be simultaneously active when they should not. For example, to verify
whether two contexts in an exclusion dependency relation could ever be
active at the same time.

Liveness: In the case of COP systems, analyzing the liveness property of the
system (in its stronger version L4 defined in Definition 5.7) can be seen
as identifying if a particular action over a context could ever take place
(if internal transitions adjacent to context places would ever fire), given
a system state (an initial marking for the CoPN). For example, liveness
could be used to identify if the deactivation transition of the source con-
text in a requirement relation could fire or not.

Persistence: In the case of COP systems, analyzing the persistence property
of the system can be seen as identifying disconnected components of the
CoPN —that is, sets of contexts which only have context dependency rela-
tions between each other, and have no context dependency relation with
any other contexts outside the set. This property can be used to better
modularize features of the system, or to identify undesired independence
of contexts.

Fairness: In the case of COP systems, analyzing the fairness property of the
system can be seen as identifying contexts whose activation can never oc-
cur, because its associated transitions cannot fire in a step. Such a situa-
tion occurs when other transitions in the step fire infinitely (their internal
transitions starve for the given marking for the CoPN). This property can
be used to identify situations in which the system would become irrespon-
sive. For example, to identify the problem of the implication dependency
relation deactivation cycle (Example 4.5).

As the number of contexts and context dependency relations defined in a
COP system increases, incoherent CoPNs could be created. The composition of
CoPNs and COP systems in general should be analyzed for incoherences. Each
of the following examples hints at how the analysis of Petri net properties could
be used to identify these problematic situations.

Example 7.1. The first example of an incoherent CoPN produced by composing
simpler CoPNs is given by the composition of two causality dependency relations,
A–BB ◦ B–BA, as shown in Figure 7.1. The incoherence in the composed CoPN
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is given by an infinite loop between the activation transition of context A and
the activation transition of context B, which is depicted in the figure by the
arcs in bold. In this case, the CoPN presents an accidental interaction between
contexts A and B. This interaction is the reason for the system to block (and
eventually crash) every time one of the two contexts is requested for activation.
The interaction between the two activation transitions constitutes an example
of a CoPN in which a step is unstable.

Pr(A)req(A) act(A)

deac(B)deac(A)

A
req(¬A) Pr(¬A)

deac(A)

Pr(B)req(B) act(B)
B

req(¬B) Pr(¬B)

deac(B)

Figure 7.1: A CoPN with an unstable step for the activation of its contexts.

Beginning with an empty marking of the system (none of the two contexts is
active), the request for activation of A through the firing of the req(A) external
transition adds a token to the Pr(A) temporary place. This new marking m
enables the act(A) internal transition. Firing of the internal transition respec-
tively marks places A and Pr(B), enabling transition act(B). When this transition
fires, it adds a token to places B and Pr(A). The state of the CoPN at this point
subsumes the state generated immediately after the firing of the req(A) exter-
nal transition. Moreover, since no other internal transition is enabled in the
transition firing sequence, the same sequence would occur again. That is:

∀m′ such that m[Υ〉m′, we can derive that ∀ p ∈ P m′(p) ≥ m(p)

The state of the system shown in Figure 7.1 is reached after 3 more firings of
the act(A) transition. The step started by firing req(A) is unstable because at
every reachable state there is always an internal transition to be fired (act(A)
or act(B)). This would cause the system to block indefinitely, or even to crash.
In case one of the two contexts is bounded, the firing step is stable. The

activation process goes on as before until the bound of the context is reached.
Whenever this happens an error message is signaled and the activation is rolled
back. This error is signaled because there is always one extra request for the
activation of the context after its bound has been reached. As a consequence,
every activation request for context A or B would raise an error, so none of the
contexts can ever be activated. The inconsistency shown in Example 4.5 for the
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deactivation cycle problem of Subjective-C is similar to the situation described
in this example.
Incoherences as the one shown in this example, could be identified by ana-

lyzing properties of the composed CoPN. Fairness could be used to check if the
rightmost transition deac(A) (bold in Figure 7.1) could ever be fired. A test
for fairness would evidence that both act(B) and act(A) transitions would fire
infinitively many times, disallowing any other transition of being fired. Other
properties that could be tested include liveness (of transition deac(A)), or reach-
ability of a marking m, where m(A) = 1 and m(B) = 1 and no other place is
marked. Such a marking is not reachable.

Example 7.2. A second example of an incoherent CoPN produced by compos-
ing three coherent CoPNs is that of composing a causality, an implication, and
an exclusion dependency relations, A–BB ◦ A–IC ◦ C�–�B. Figure 7.2 shows
the composed CoPN. The incoherence in this case is given by context A being
unreachable. The CoPN presents an accidental interaction between the three
contexts. Such interaction causes the system to raise an error every time con-
text A is requested for activation. Nonetheless, it is still possible to activate
contexts B or C independently. The interaction between the three contexts and
their context dependency relations constitutes an example of adaptations that
cannot occur simultaneously, even if they could from their individual context
dependency relation definitions, for example, context A and C could be activated
if B is inactive.

req(B) Pr(B) act(B)

act(C)

deac(A)

B
req(¬B) Pr(¬B)

deac(B)

Pr(A)req(A) act(A) A req(¬A)

deac(A)

Pr(¬A)

deac(A)

req(C)

Pr(C)

deac(C)

C
req(¬C) Pr(¬C)

deac(C)

Figure 7.2: A CoPN with non-reachable context A.

To demonstrate the interaction between the contexts let us suppose that we
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beginning with an empty marking of the system. A request for activation of
context A triggers the firing of the req(A) external transition, which adds a token
to Pr(A). This marking enables the act(A) internal transition. Firing this transi-
tion adds a token to the temporary places Pr(B) and Pr(C). In this marking the
two internal transitions act(B) and act(C) are enabled. Since the two transitions
have the same priority, they fire randomly. Without loss of generality, suppose
act(C) is fired, yielding a marking of context places C, A and the temporary
place Pr(B), as shown in Figure 7.2. However, due to the exclusion dependency
relation between contexts C and B, transition act(B) is no longer enabled and
cannot fire. In fact, in this marking no internal transition is enabled. The
CoPN is in an inconsistent state because temporary place Pr(B) is marked. As a
result, the activation of context A raises an error and it is rolled back .1In this
situation, the system does not have any perceivable errors. Nonetheless, part
of its behavioral adaptations can never take place, even though the situations
in the surrounding execution environment render them more appropriate. The
interaction between the contexts prevents the system of behaving as predicted.
Even if context A is available in the surrounding execution environment, the
behavioral adaptations associated with the context are never selected as part
of the system’s behavior.
Incoherences as the one exposed in this example, could be identified by ana-

lyzing properties of the composed CoPN. Reachability could be used to check if
context activation takes place as expected, inspired by the expected interaction
from the independent context dependency relations. That is, if it is possible
to reach situations in which context A and B are active, or contexts A and C
are active. Liveness could also be used to ask if the internal transition deac(A)
(bold in Figure 7.2) would ever fire.

The following sections provide the details on the analysis process of reacha-
bility and liveness in CoPNs, driven by the examples of the possible incoherences
that could be presented through the composition of CoPNs.

7.1.1 Generating CoPNs with Place Capacities
The analysis of Petri net properties is a challenging problem, even more so
when we leave the realms of standard Petri nets. A large body of research is
dedicated to studying the theoretical aspects of the decidability of Petri net
properties over different classes of Petri nets [12, 55, 113, 54], as well as the
development of techniques and algorithms that effectively analyze a particular
property [168, 116, 155, 95, 139].
In the general case, analysis of Petri net properties is undecidable in the

presence of inhibitor arcs, due to the fact that Petri nets with inhibitor arcs are
equivalent to Turing machines. Deciding the reachability problem for Petri nets
with inhibitor arcs would be equivalent to deciding the halting problem, which
is proven to be undecidable. It has been proven, however, that the problem

1The reasoning for firing act(B) is similar.
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is decidable for particular types of Petri nets with inhibitor arcs. Examples of
these are: (1) the class of Petri nets with only one inhibitor arc [155], (2) the
class of Petri nets in which an ordering on its places can be defined such that
a place is an inhibiting place of a transition, if every other inhibiting place is
a preceding place in the order [155], (3) the class of bounded Petri nets, where
the Petri net can be unfolded into an equivalent Petri net without inhibitor
arcs, and (4) the class of primitive systems,2 in which case the Petri net may
be unfolded to an equivalent Petri net without inhibitor arcs [26].
Decidability of property analyses for CoPNs becomes problematic when the

model does not adhere to any of the aforementioned cases of Petri nets. CoPNs
may have multiple inhibitor arcs through the composition of COP systems sat-
isfying more than one context dependency relation. The composition of CoPNs
also makes it difficult to define an ordering on the Petri net places such that
inhibiting places for a transition come from a preceding place in that order. In-
hibiting places may comply to the ordering condition of each individual CoPN,
but not necessarily to the order in the composed CoPN. CoPNs are in principle
unbounded, but they can be bounded according to the specification of the sys-
tem domain. However, in the general case, it may be unfeasible to set a bound
for all contexts, for example, in the setting of an algorithm optimization sys-
tem through parallelization, where a Concurrency context is activated as many
times as new execution threads are spanned in the system. The definition of
the Concurrency context cannot be bounded per se. CoPNs do not comply with
primitive systems, as inhibiting places could always be emptied, for example,
by inactivating a context.
In order to enable Petri net analyses on CoPNs we therefore restrict the speci-

fication of the system to bounded CoPNs, where a bound is given to every place.
It comes as no surprise that bounding a CoPN restricts its semantics. In a CoPN
with place capacities contexts are not allowed to be freely activated because
contexts can only be activated up to their given bound. The consequence of
bounding the places in CoPNs, is that some of the consistent firing steps may
become inconsistent. This is due to the restriction for firing internal transitions
when an output place of the transition has reached its bound. However, taking
into account the type of required analyses from Examples 7.1 and 7.2, we ob-
serve that most of the interesting analyses to be performed refer to particular
states being active or not —that is, not minding how many times a context has
been activated. Thus it is still possible to extract valuable information from
the analysis of bounded CoPNs as shown in this chapter.
The process of unfolding a CoPN into a Petri net with place capacities and

without inhibitor arcs follows the ideas of the unfolding algorithm for primitive
systems into equivalent Petri nets provided by Busi [26]. However the semantics
of the unfolded CoPN is not equivalent to that of the original CoPN.
The first step to unfold a CoPN is to set a bound for all its places. A larger

value for the bound would generate a larger number of places and transitions.

2Primitive systems [26] are a class of Petri nets with inhibitor arcs, in which inhibiting places
can be guaranteed never to be emptied once they have reached a certain capacity.
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This implies that the state space to be analyzed by the different analyses would
be larger. For analyzing the system’s properties we use the Low Level Petri
net Analyzer (LoLA) tool [169]. We provide a bound k to each place in the
CoPN that complies with the size of the state space that LoLA can handle while
keeping it as large as possible so that the semantics of the CoPN are preserved as
far as possible. The process of choosing such a bound for each place is explained
later in this section.
Snippet 7.1 shows our unfolding algorithm which consists of replacing each

inhibiting place for a set of places, where each place in the set represents the
number of tokens contained in the original place (including having no tokens).
Each set of places is thus of size k + 1. Transitions with input inhibitor arcs
are replaced by a set of transitions (of size equal to the greatest bound of
its inhibiting places), where each transition is incident to two places from the
generated set of places (associated to one of the original places).

1 loop for p ∈ P such that p is inhibitor
2 let k a bound of p
3 loop for i from 0 to k

4 add new place p
i

5 loop for t such that p ∈ t• or p ∈ •t
6 i f p ∈ ◦t then
7 replace arc(p, t) with new arc(p

0
, t) and new arc(t, p

0)
8 i f p ∈ t• and p /∈ •tthen
9 loop for i from 0 to k − 1

10 add new transition t
i

11 add new arc(p
i
, t

i)
12 add new arc(t

i
, p

i+1)
13 i f p ∈ •t and p /∈ t•then
14 loop for j from 1 to k

15 add new transition t
i

16 add new arc(p
i
, t

i)
17 add new arc(t

i
, p

i−1)
18 i f p ∈ t • ∧ p ∈ •t then
19 loop for i from 1 to k

20 add new transition t
i

21 add new arc(p
i
, t

i)
22 add new arc(t

i
, p

i)

Snippet 7.1: Unfolding algorithm of CoPNs into bounded CoPNs without
inhibitor arcs.

The algorithm depicted in Snippet 7.1 is described as follows:

1. We define a capacity k (not necessarily the same) for all places in the
Petri net (Line 2).

2. Every inhibiting place p (a place such that p ∈ ◦t for some transition t),
is replaced by a set of places {pi|i = 0, . . . , k} (Lines 3 to 4).

3. Inhibitor arcs to the transition t are replaced by the arcs (p0, t) and (t, p0)
(Lines 6 and 7).

4. Furthermore, each transition t incident to p is replaced by a set of transi-
tions, each of which manages a specific representation of the contents of
place p by means of places pi (Lines 5 to 22):
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a) If p ∈ t• then t becomes the set {ti|i = 0, . . . , k− 1} (Line 8). When
ti fires it removes a token from pi and adds a token to place pi+1

(Lines 11 and 12).
b) If p ∈ •t, then t becomes the set {ti|i = 1, . . . , k} (Line 13). When

ti fires, a token is removed from pi and added to pi−1 (Lines 16 and
17).

c) If p ∈ t • ∧ p ∈ •t then t becomes the set {ti|i = 1, . . . , k} (Line 18).
ti can fire only if place pi is marked. Its firing does not modify the
state of the pi (Lines 21 and 22).

5. All original input and output places of each transition remain as they
were originally (except for those modified in the algorithm). Similarly,
transitions not incident to any inhibiting place remain as in the original
CoPN.

In order to define the bound k for the CoPN places, note that the number of
places and transitions in a CoPN depends on the number of contexts and context
dependency relations defined in it. Additionally, remember from Section 5.1.3
that the maximum size of Petri nets that can be handled by LoLA is on average
of 500 places and 1000 transitions. Choosing a bound requires that the state
expansion of the generated sets of places and transitions by the algorithm does
not go over such limits. We now explain how bounds are chosen for CoPN
according to the limits of the state space size handled by LoLA.
Given a CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉. Let I ⊆ P be the set

of inhibiting places of P, and IT = {t | ∃ p ∈ I and p ∈ •t ∨ p ∈ t • ∨p ∈ ◦t}
be the set of transitions incident to inhibiting places in P. The corresponding
bounded Petri net without inhibitor arcs of P is defined as P = 〈P , T , f, ρ,m0〉,
where P = (P \ I)∪ Ik+1, T = (T \ IT )∪ IT k and m0 is the restricted marking
multiset to the bound of each place. The sets Ik+1 and IT k, respectively are the
sets of generated sets of places and transitions by the algorithm of Snippet 7.1.
Let us suppose that |I| = n, and |IT | = q, then the state space of the generated
bounded Petri net without inhibitor arcs is restricted by:

|T | = |T |+ q(k − 1) ≤ 1000 (7.1)

|P | = |P |+ nk ≤ 500 (7.2)

From Equations 7.1 and 7.2, is possible to see in Equations 7.3 and 7.4 that
the bound of the Petri net is the ratio of the total number of places/transitions
to number of the inhibiting places/transitions with inhibitor arcs.

k ≤ 1000− |T |
q

+ 1 (7.3) k ≤ 500− |P |
n

(7.4)

Equations 7.3 and 7.4 provide an approximation for the maximum bound for
a CoPN for which the state expansion can be managed by LoLA. However, this
bound is not satisfactory for all places. Remember from Table 6.1 that contexts



178 Analyzing Dynamically Adaptive Software Systems

can be given a bound, if so required by the application domain. Whenever places
are given a bound, it should be preserved to ensure that the semantics of such
a context is not lost.
To calculate the bound of every place in a CoPN, the bounds defined for the

original CoPN are reused. Each place that initial had no capacity is given as a
capacity the minimum between its the generated capacities by CoPNs (Equations
7.3 or 7.4). Every place with an initial capacity is given a capacity its original
bound in case that this is smaller than the generated ones. If the initial capacity
of the place is bigger than the generated capacities, then the place is given the
maximum between the generated capacities. Equation (7.5) shows the definition
of the capacity kp given for a place p.

kp =


min

{
1000− |T |

q
+ 1, 500− |P |

n

}
if @ k0 for place p

k0 if ∃ k0 for place p

max
{

1000− |T |
q

+ 1, 500− |P |
n

}
if k0 > (7.3) ∧ (7.4)

(7.5)

Example 7.3. As an example of how these formulae are used to calculate
concrete capacities for a CoPN, let us revisit the CoPNs described in Figures 7.1
and 7.2. Suppose that none of the places in the CoPNs have been given a bound.
In the case of the CoPN of Figure 7.1 |P | = 6, |T | = 10, |I| = 2, and |IT | = 6.
From Equation (7.3) we have that k ≤ 170, and from Equation (7.4) k ≤ 247.
The chosen bound for every place is 170. Similarly, in the case of the CoPN of
Figure 7.2, |P | = 9, |T | = 16, |I| = 3, and |IT | = 7. From Equation (7.3) we
have k ≤ 141, and from Equation (7.4) we have k ≤ 162. The chosen bound
for every place is 141.
Suppose that we give a bound of 2 for every context place in Figures 7.1

and 7.2. according to Equation (7.5), context places will maintain their bound
of 2, while temporary places will be given the generated bound, 170 and 141,
respectively.

Example 7.4. This example shows the unfolding of the CoPN of Figure 7.1.
Let us suppose we define the contexts of the CoPN as bounded contexts, where
context A is given a bound of 1, and context B is given a bound of 2. Further
suppose that the initial state of the CoPN is an empty marking. The bound
for the temporary places (originally unbounded) is then k = 170. The corre-
sponding Petri net with place capacities and without inhibitor arcs is shown
in Figure 7.3. For the sake of simplicity Figure 7.3 does not show the bound
assigned to initially unbounded places, all places not labeled with a bound are
assumed to have a bound of 170.

Notation 7.1.
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Pr(A)req(A) act(A)0

deac(B)1 deac(B)2
deac(A)1

A1
1

A0
1

req(¬A) Pr(¬A) deac(A)1

deac(A)2

Pr(B)req(B)

act(B)0

act(B)1

B1

1

B0

1

B2

1

req(¬B) Pr(¬B)

deac(B)1

deac(B)2

Figure 7.3: Petri net generated from the unfolding of the CoPN P =
◦({CA, CB}, {〈C, CA, CB〉, 〈C, CB , CA〉}).

- In unfolded CoPNs elements are labeled using the label corresponding to the
original element appended by the number of their input bounded place. For
example, a transition labeled deac(A)1 removes the token of place A1 and adds
a token to the place A0

The process of bounding CoPNs preserves the semantics of reactive Petri nets
and Petri nets with static priorities. However, these two semantics cannot be
used when analyzing the CoPN with LoLA. Reactive Petri nets, or Petri nets with
static priorities are not among the family of high-level Petri nets supported by
LoLA. Nonetheless, the generated Petri net can be stripped of these semantics
using the results of Theorems 5.1 and 5.2. The generated Petri net can be
treated as a low-level place/transition net —that is, a Petri net with the regular
token-game semantics, where for every valid firing sequence of transitions σ
under the regular semantics, a permutation of σ leads to a consistent step under
the CoPN semantics. Furthermore, every accepted sequence of transition firing
in the generated Petri net without inhibitor arcs is also a consistent sequence
of steps in the original CoPN.

7.1.2 Analysis of CoPN Properties
Once a CoPN has been unfolded to a bounded Petri net without inhibitor arcs,
it can be used as input for a Petri net analyzer, such as LoLA [169]. Using LoLA,
we are able to analyze the coherence of (a restricted semantics of) the system
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according to Definition 7.2. In particular, we analyze whether contexts can
ever be active simultaneously (reachability, as in Definition 7.1), if a context
can ever be activated (liveness), if there are configurations of contexts in which
no action can be taken (deadlocks), and other relevant states of the system. We
explain each of these analyses in more detail by using the examples of Figures
7.1 and 7.2. Section 9.1 validates the analysis process of CoPNs using a larger
case study.

Reachability

Reachability can be used in the setting of COP systems to reason about the
states of contexts. A reachability analysis can verify positive and negative
properties of the system. That is, examining the state of contexts to verify
that their interaction takes place as expected. For example, in the case of an
implication dependency relation, to verify that every time the source context is
activated, the target context is also activated. Moreover, reachability analysis
can also be used to check that interaction constraints are satisfied, for example,
that two contexts are never active at the same time in an exclusion dependency
relation.
Testing reachability with LoLA requires the (LoLA formatted text) represen-

tation of the Petri net, as the one shown in Snippet 5.1, and the target state
of the Petri net, that is, the state we are analyzing. The analysis property is
formatted in LoLA as shown in Snippet 7.2, where the analysis is described as
an analysis over the whole Petri net, giving the final expected marking. This
definition is used to identify if, for example, it is possible to reach a marking in
which the two contexts A and C are simultaneously active.

// Is there a state where A and C are marked ?
ANALYSE MARKING A : 1 , C : 1

Snippet 7.2: LoLA reachability analysis.

Running such an analysis with LoLA generates two kinds of outputs. On
the one hand, it provides an output value, denoting whether or not the run
was successful, in this case, whether the marking with only the two context
places containing one token was reached. On the other hand, it generates two
output format files, namely the state and path output files. The state output
file consists of the final marking of the system after the analysis was performed,
which can be used to observe if the reached state is effectively as expected —no
extra or missing tokens. The path output file consists of the firing sequence
of transitions leading to the desired state. This information can be further
analyzed by the developer to see whether the desired state could be reached
through a consistent step in the regular CoPN semantics. It is possible that
the generated marking of the analysis subsumes the desired state. Although
LoLA gives a negative result, the reached marking could still be acceptable if,
in addition to A and C, some other contexts places are marked as well, and no
undesired transitions where fired to reach such a state. Such a situation could
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take place, for example, when the initial marking of the system is not the empty
marking.

Example 7.5. Remember from Example 7.2 that we are interested in finding
out if it is possible to activate context A. Given the context dependency relations
through which context A interacts, activation of context A has as a consequence
the activation of contexts B and C, respectively A–BB and A–IC. Let us assume
a bound of 2 for each of the contexts B and C and a bound of 1 for context A
to simplify the analysis of the example. We are interested in verifying whether
the state given (in the unfolded CoPN) by m(A1) = 1, m(B1) = 1, m(C1) = 1,
and m(Pr(C)0) = 1 is reachable or not.
Note that regardless of the chosen value of the bound k, in order to check

if the contexts are active at the same time, it is only necessary to check if
the places marked with one token is reachable (e.g., m(A1) = 1, m(B1) = 1,
m(C1) = 1, m(Pr(C)0) = 1). If this is the case, it is not necessary to check
the various other cases, for example, m′(A) = 1, m′(B2) = 1, m′(C1) = 1, and
m′(Pr(C)0) = 1, since to reach these markings it is necessary to obtain marking
m first.
As indicated by LoLA the desired state m is never reached. The information

provided by this simple analysis signals a problem in the definition of the context
dependency relations. However, the provided information is not enough to know
what the problem is. Performing another reachability analysis on the exclusion
dependency relation defined between contexts B and C indicates that it is not
possible to reach a state m′′(C1) = 1, m′′(B1) = 1, and m′′(Pr(C)0) = 1 (as
expected). With this additional analysis it is possible to know that the three
defined context dependency relations in the system interact accidentally not
allowing the activation of context A.

Example 7.5 shows how to use the LoLA reachability analysis and to reason
about its results in the setting of CoPNs. However, in order to reason about
the availability of context A we did not test the state of this context on its
own. Rather, we tested for the availability of all three contexts. The choice of
analyzing the state of the three contexts is motivated by two reasons. First,
context A has two context dependency relations that constrain the activation
of context A to always activate contexts B and C, respectively. Second, we
are interested in reasoning about consistent firing steps in the CoPN —that is,
steps between firings of two external transitions, since this is the semantics
used at run time. The reachability of a state where A is marked is not allowed
under CoPN semantics, since there remain enabled internal markings to be fired.
Section 7.2 explains the process of generating the required test cases to analyze
system properties for the context dependency relations.

Liveness & Deadlocks

Liveness can be used in the setting of COP systems to reason about whether an
action is executable in the system. For example, to reason about the possibility
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of firing the deactivation transition of a context. Liveness is closely related to
the test for deadlocks, where the Petri net is analyzed to check if there are
system states for which no action can take place. In the setting of COP systems
deadlocks refer to particular context configurations for which the system cannot
adapt its behavior anymore as adaptations cannot be activated.
Reasoning about liveness is an expensive operation and in LoLA liveness anal-

ysis is provided as a local property —that is, transitions need to be analyzed
individually for liveness. To verify the liveness property of a transition, an in-
put analysis file as shown in Snippet 7.3 must be used as input for the LoLA
analysis.

// Is t r a n s i t i o n deac (A) dead ?
ANALYSE TRANSITION deac (A)

Snippet 7.3: LoLA liveness analysis.

LoLA also allows us to reason globally about deadlocks in the Petri net —
that is, reachable states in which transitions are no longer fireable. Deadlock
analysis in LoLA does not require an input analysis file.
Running a liveness or deadlock analysis provides two kinds of outputs. As

for the reachability analysis an output value is generated denoting whether
the transition is live or not (in the case of liveness) or whether there are dead
transitions (in the case of deadlocks). Additionally, when verifying a transition
for liveness, the tool can output the state in which the transition is not dead,
and the sequence of transition firings leading to that state. In the case of
deadlock analysis, if a dead state is found (a state in which dead transitions
exist) the path leading to such a state is provided as output.

Example 7.6. Remember from Example 7.1, that we are interested in finding
out if contexts A and B could be active at the same time, as the intuition of
the causality dependency relation would suggest. Activation of one context
automatically triggers the activation of the other. Given the initial marking as
shown in Figure 7.3 we want to know if there is a state in which the rightmost
deac(A) transition is dead or not.
Analyzing the unfolded CoPN by means of a query similar to that shown in

Snippet 7.3 shows that the transition is indeed live. However, taking a closer
look at the state and path outputs, it is possible to see that the state in which
the transition is not dead is given by, for example, a marking m(Pr(A)) =
1,m(A1) = 1,m(B) = 1, m(Pr(¬A)) = 1. Moreover, the sequence of fired
transitions to reach the state is {req(A), act(A)0, act(B)0, req(¬A)}.3 From the
two outputs we can derive that the (internal) transition act(A)0 is enabled and
has to fire again before the firing of req(¬ A). Hence, hinting at the existence
of a loop in the activation of the contexts A and B. Note also that the sequence
of transitions given by the tool does not reaches of a consistent step. As a
result we can conclude that the state in which deac(A)1 is live, is not actually

3This is the sequence of fired transitions modulo permutation of transitions of the same
priority. Other sequences reaching the same state could be given as output.
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reachable in the CoPNs semantics. This means the CoPN is incoherent, since
there is an unstable step.

The analysis of the output file in the case of liveness requires more involve-
ment from part of the programmer than that of the reachability analysis. Even
though a transition might be live in the regular token-game semantics this might
not be the case in the CoPN semantics, for example, because a transition with
higher priority is enabled. Therefore, each of the produced sequences must be
carefully verified to see if they can take place under the CoPN semantics. An
automated verification of such output paths could be implemented by analyzing
the sequences of transition firings. This process is discussed as future work in
Section 11.4.4.

State predicates

State predicate analysis can be used in the setting of COP systems to reason
about states or state invariants that should be fulfilled by the system. State
predicates can be used to reason about other Petri net properties, such as
reachability or liveness, whenever these are difficult to express or do not yield
any result. Examples of state properties to test for reachability and liveness
are shown in Snippet 7.4. Line 2 tests if it is possible to reach an state in which
the marking of B is smaller than the marking of A (such state should not be
reached). Line 4 tests for the liveness of the deac(A) transition in Figure 7.1,
by checking if the the state enabling the transition can be reached.
These predicates respectively test a particular state of the system, and the

state enabling a particular transition.
1 // Marking for context A is always smaller than that of context B?
2 FORMULA B = 0 AND A > 1
3 // Can t r a n s i t i o n deac (A) be fired ?
4 FORMULA Pr (¬ A)>0 AND B>0 AND A>0

Snippet 7.4: LoLA liveness analysis.

If a state matching the state described by the state predicate formula is found,
the analysis provides the reached state as output. However, unlike the tests for
reachability and liveness, the path to reach such a state is not provided. It is
up to the programmer to deduce any additional information required from this
state output.

Example 7.7. The conditions verified by the reachability property in Exam-
ple 7.5 for the CoPN of Figure 7.2 could also be verified by means of state
predicates. The state formula would resemble that of Snippet 7.2 indicating
that both A1 and C1 should have a marking greater than zero.

FORMULA A1 > 0 AND C1 > 0

LoLA cannot reach the state specified by this formula. Taking a closer look
at the corresponding CoPN we note that whenever contexts A and C are marked,
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so is place Pr(B), as shown in Figure 7.2. Thus it is not possible to reach a
state where only A and C are marked.

Example 7.8. The liveness property of the deactivation transition deac(A) of
Example 7.6 could also be verified by means of state predicates. To verify if the
rightmost transition deac(A)1 in Figure 7.3 is live or not, the predicate formula
in Line 4 of Snippet 7.4 could be used (expressing whether the state enabling
the transition is reachable).
Similarly to the previous example, LoLA cannot reach the state specified by

the formula. Given the loop existing between the activation of contexts A and
B implies that every time the contexts are active, there is a remaining token in
either the temporary place Pr(A) or Pr(B). Thus it is not possible to reach a
state in which only A1, B1 and Pr(¬ A) are marked in Figure 7.3.

7.2 Automating Analysis of System Properties
The analyses described in the previous section all take into account the context
dependency relations in order to know which kind of transition or state should
be used for each analysis input file. However, writing each of the different
analysis test cases for a full system can become cumbersome, time consuming
and error prone, lessening the advantages of using an analysis tool over a manual
verification of the system. Accidental interaction between contexts could be
missed in the definition of such files. Thankfully, the formal definition of context
dependency relations and their close relation with the system execution enable
us to automate the generation of the test cases to be analyzed by LoLA.

7.2.1 Analysis of Context Dependency Relations
In CoPNs, each context dependency relation unequivocally describes a set of
properties that should be satisfied whenever contexts are activated and deacti-
vated. These properties can be used to automatically generate the relevant test
cases for each of the existing context dependency relations. In the remainder of
this section we explain the automatic generation of test cases for the different
context dependency relations.

Exclusion dependency relation

Given two contexts A and B and an exclusion dependency relation, 〈E, CA, CB〉
between their singleton CoPNs CA and CB . According to the expected behavior
of the dependency relation defined by the consE function (remember that the
extE function does not modify the CoPN), the contexts involved in an exclusion
dependency relation should not be active at the same time. Six properties must
be verified in this case:
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1. We need to verify if it is possible to yield a state in which the two contexts
could be active at the same time. This is done by means of analyzing
reachability of the following marking.

ANALYSE MARKING A1:1, B1:1

If the constraints of the exclusion dependency relation are satisfied by the
analyzed CoPN then the state should not be reachable.

2. The previous analysis can only provide information about the prohibited
states of the system, but not about the permitted states. It is necessary
to verify if the accepted cases can occur. This means verifying if one of
the contexts could be active while the other is not. This is verified by the
following state predicate.

FORMULA ( A1 = 1 AND B0 = 1 ) OR ( B1 = 1 AND A0 = 1 )

This formula must always be satisfied in the system. Note that we do
not take into account the case in which this the two contexts are inactive,
since this is the initial marking of the Petri net and it is satisfied trivially
(the analysis wont provide any meaningful results).

3. Additionally, we generate a liveness test case, similar to that of Snip-
pet 7.3, for each of the transitions act(A), act(B), deac(A), and deac(B).
In fact, for each of these transitions, the system automatically generates
k test cases, one for each of the generated transitions activating or deac-
tivating the context, where k is the capacity given to each context. If the
result of the transition analysis is that the transitions are not dead, but
the witness step in which the transition can fire is not consistent, then it
is possible to analyze the transitions using a reachability analysis.

Causality dependency relation

Given two contexts A and B and a causality dependency relation 〈C, CA, CB〉,
between their singleton CoPNs CA and CB . According to the expected behav-
ior of the dependency relation defined by the extC and consC functions, six
properties must be verified:

1. Equation (6.8) states that whenever context A is activated, context B is
also activated. To analyze this property we use the reachability analysis
of the following marking.

ANALYSE MARKING A1 : 1 , B1 : 1

If reachable, the sequence of consistent transition firing must subsume the
step Υ = m0[req(A)act(A)0act(B)0〉 for some initial marking m0.
This test case is complemented by testing that the only way to reach a
situation in which context A is active and context B is inactive is by first
activating A, and then independently deactivating B.

ANALYSE MARKING A1 : 1 , B0 : 1
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The sequence of transition firing to reach this state must subsume Υ =
m0[req(A)act(A)0act(B)0req(¬B)deac(B)1〉 for some initial marking m0.

2. Similar to the first case, Equation (6.7) states that whenever A is de-
activated, B is also deactivated. However, since B can be activated and
deactivated independently, using a reachability analysis becomes more dif-
ficult. It is not clear what the final state of the system representing this
property should be. Nonetheless, using a test case similar to Snippet 7.3,
it is possible to check if the two right-most deactivation transitions of
Figure 6.4 are live or not. k test cases are generated for each transition,
where k is the bound of context B.

3. The extC function dictates that if context B is not active and A is prepar-
ing to deactivate, then A can be deactivated without affecting the state of
B. We use reachability analysis to test if the marking enabling the inter-
nal transition deac(A) between the two contexts in Figure 6.4 is reachable
from an empty initial marking.

ANALYSE MARKING A:1, B0:1, Pr(¬ A):1

If this marking is reachable, the series of consistent transition firings have
to contain the steps Υ1 = m[req(A)act(A)act(B)0〉, Υ2 = m′[req(¬B)deac(B)1〉,
and the firing of transition m′′[req(¬A)〉, for three reachable markings
m,m′ and m′′. This analysis is complemented by a liveness analysis of
the deac(A) transition.

4. Additionally, we generate test cases for the liveness analysis of the acti-
vation transitions act(A) and act(B). If context B is given a capacity of k,
then k test cases are generated for the act(B) transition.

Implication dependency relation

Given two contexts A and B and a implication dependency relation 〈I, CA, CB〉,
between their singleton CoPN CA and CB . According to the expected behavior
of the context dependency relation defined by the extI and consI functions,
seven properties must be verified:

1. Equation (6.10) states that whenever context A is activated, context B is
also activated. To analyze this property we use the reachability analysis
of the following marking.

ANALYSE MARKING A:1, B1:1

If reachable, the sequence of consistent transition firing must contain the
step Υ = m0[req(A)act(A)act(B)0〉, from an initial marking m0.

2. Equation (6.11) states that whenever A is deactivated, B is also deacti-
vated. This property is equivalent to the second property of the cause
dependency relation. We use a liveness analysis to check if the two right-
most deactivation transitions of Figure 6.5 are live or not. If context B
has a capacity of k, then k test cases are generated for each transition.
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3. The deactivation transition of the source context introduced by extI dic-
tates that if context B is neither active nor it is preparing to activate, then
A cannot not be active. We use reachability analysis to test if the mark-
ing enabling the internal transition deac(A) between the two contexts in
Figure 6.5 is reachable.

ANALYSE MARKING A:1, B0:1, Pr(B)0:1

If such a marking is reachable, the series of transition firings to reach
the state must contain the steps Υ1 = m[req(A)act(A)act(B)0〉 and Υ2 =
m′[req(¬B)deac(B)1〉 for two reachable markings m and m′. This analysis
is complemented by a liveness analysis of the deac(A) transition.

4. Additionally, we generate test cases for the liveness analysis of the acti-
vation transitions act(A) and act(B). If B has a capacity of k, then k test
cases are generated for the act(B) transition.

Requirement dependency relation

Given two contexts A and B and a requirement dependency relation 〈Q, CA, CB〉,
between their singleton CoPNs CA and CB . According to the expected behavior
of the context dependency relation defined by the extQ and consQ functions,
six properties must be verified:

1. Equations (6.13) and (6.15) state that context A may only be activated if B
is already active. To analyze this property we use state predicate analysis
to verify if it is possible to reach a state in which B is not marked, and A
is.

FORMULA A > 0 AND B0 = 1

This formula should not be valid in the CoPN.

2. The transition introduced by the extQ function dictates that if context B
is not active, then context A cannot not be active. This property is verified
by means of the results from the previous analysis and complementing
them with the liveness analysis of the deac(A) transition between the two
contexts in Figure 6.6.

3. Additionally, we generate test cases for the liveness analysis of the act(A),
act(B), deac(B) transitions. For each of these transitions we generate k
test cases, where k is the capacity of context B. An additional test case is
generated for the deac(A) transition.

Conjunction dependency relation

Given a set of contexts {A1, . . . , An} and a conjunction dependency relation
〈∧, CA1 , . . . , CAn

〉, between their singleton CoPNs CAj
for 1 ≤ j ≤ n. Following

the expected behavior of the context dependency relation defined by the ext∧
and cons∧ functions, five properties must be verified:
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1. The context place introduced by the ext∧ can only be marked if all of
the the contexts places Aj for 1 ≤ j ≤ n are marked. We use state
predicate analysis to test whether it is possible to mark the introduced
context place when one of the component contexts is inactive.

FORMULA A1 · · · An1 = 1 AND (A1 = 0 OR · · · OR An = 0)

Such an state cannot be reached in the CoPN representing a conjunction
dependency relation of different contexts.

2. Similarly to the previous case, we would like to test if it is possible that all
component contexts are active, but the conjunction context is not. This
property also uses a state predicate analysis.

FORMULA A1 · · · An1 = 0 AND (A1 > 0 AND · · · AND An > 0)

As in the previous test case, such an state cannot be reached in the CoPN
representing a conjunction dependency relation of different contexts.

3. Liveness test cases are generated for the transitions act(A1 · · ·An) and
deac(A1 · · ·An) introduced by the ext∧ function. The activation and
deactivation transitions of all the component contexts are also verified
using liveness analysis.

Test case generation for composed CoPNs

Generation of more general test cases for any CoPN is a more challenging task.
The interactions between adaptations can be given by multiple combinations
of context dependency relations among them, and hence the generation of the
test cases must take into account all these combinations. For this reason, in its
current state, CoPNs are only able to generate test cases for the properties of
the defined context dependency relations in the system, and sets of transitive
context dependency relations.

Definition 7.3. Given three contexts A, B and C with respective singleton CoPNs
CA, CB, and CC , and a context dependency relation R such that 〈R, CA, CB〉 and
〈R, CB , CC〉. R is said to be transitive if and only if the activation/deactivation
of A influences the activation/deactivation of C.

Example 7.9. An example of a transitive context dependency relation as de-
scribed in Definition 7.3, is the requirement dependency relation. Let us take
three contexts A, B and C such that B–JA and C–JB.
The first requirement dependency relation states that in order to activate B, A

must be active first; and that if A is inactive, B also is. We use this information
to analyze the second requirement dependency relation. In the second relation
in order to activate C, B must be active first, which can only happen if A is
already active. In the normal case, context C is ensured to be inactive if B
is inactive, which at first hand does not relate to A. However, since A being
inactive ensures that B is inactive, it is possible to conclude that every time A
is inactive then C is inactive.
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Example 7.10. The exclusion dependency relation is not transitive. For three
contexts A, B and C such that A�–�B and B�–�C, the activation state of A and
C are independent. That is, activation or deactivation of one context does not
affect the activation state of the other. In particular, A and C can be active at
the same time.

In CoPN three context dependency relations are transitive, namely, impli-
cation, causality, and requirement. Using the transitive property for context
dependency relations we are able to generate test cases for more general CoPNs
as follows:

1. For an implication dependency relation, we use reachability analysis to
verify the correct activation of all contexts in its transitive closure —that
is, all contexts reachable via a chain of implication dependency relations.
This analysis requires to take a “root” context as a starting point, and to
take into account all target contexts related to it by means of an impli-
cation dependency relation: all target contexts related to those contexts
via an implication dependency relation, and so on. As a way to better
visualize which contexts are part of the analysis test case, imagine a tree
structure where edges are implication dependency relations and the root
of the tree is a context which is not a target of any implication dependency
relation, as shown in Figure 7.4.

R

I8I7

I4 I5I3

I2I1

I6

. . .

. . .

. . .

Figure 7.4: Tree of implication dependency relations.

For the analysis we generate a state predicate of the form:
FORMULA r > 0 AND I1 > 0 AND ... AND In > 0

Where r is the root node of the tree and the Ij for 1 ≤ j ≤ n are all the
contexts in the transitive closure of the implication dependency relation
from the root node —that is, an enumeration of all contexts reachable
from the root context in Figure 7.4. A test case as the one presented here,
is generated for each root node of an implication dependency relation in
the composed CoPN.
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Generating a test case for the deactivation of the contexts is more chal-
lenging. As it occurred for the generation of the test cases for an impli-
cation dependency relation, there is no state that unequivocally identifies
the deactivation of all contexts. A liveness analysis is required to verify
(individually) each deactivation transition. However, it is possible to de-
fine a general analysis for the inactive states of target contexts. For each
branch to the root node in Figure 7.4 we generate a state formula of the
form:

FORMULA Il = 0 AND P r(Il) = 0 AND (I1 > 0 OR ... OR In > 0)

In this formula Il represents a leaf of the tree and the I1, . . . , In nodes
represent an enumeration of the branch of the tree branch leading from
the root node to the leaf Il. The formula verifies that it is not possible
for a context in a branch to be active, if the tree leaf for that branch
is inactive. The combination of all generated test cases verifies that a
context must be inactive if any of the leafs reachable from it are inactive.

2. Similar analyses as those generated for the implication dependency re-
lation can be generated for the causality dependency relation. Using a
transitive closure for causality dependency relations, similar to the one
shown in Figure 7.4, it is possible generate the state predicate formula for
a reachability analysis of context activations.

FORMULA r > 0 AND I1 > 0 AND ... AND In > 0

This formula states that if the context root to a set of contexts in a
causality dependency relation is activated, then all such contexts must
be activated. In the case of causality dependency relations, however, it is
not possible to generate a general analysis test case for the verification of
context deactivations because target contexts could have a greater acti-
vation count than the source contexts (LoLA does not allow us to create
formulae comparing the states of places).

3. Reachability analysis is used to verify the transitive closure of requirement
dependency relations, a tree similar to Figure 7.4 where every edge is a
requirement dependency relation, where a top level node is required by a
lower level node. To verify the activation state of the contexts we generate
a state predicate test case for each branch of the tree.

FORMULA r = 0 AND I1 > 0 AND ... AND In > 0

This formula verifies that every context in the branch I1 to In can only
be active if the preceding context, and ultimately the root context, are
active. This formula also represents the state triggering the deactivation
of the required contexts. A liveness test of the deactivation transition for
each of the contexts Ij for 1 ≤ j ≤ n, provides an insight of the validity of
the state. If the transition is live, then the state expressed by this state
predicate formula is a valid state of the system. If the transition is dead,
the state expressed by the state predicate formula is not reachable.
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7.2.2 Analyses Integration
In order to perform the reachability and liveness analyses described in Sec-
tion 7.1.2 we use the external reasoning tool, LoLA, which provides comprehen-
sive support for such Petri net analyses.
To enable the analysis of system properties, our CoPN tool suit can automat-

ically generate the (basic) test cases, and perform the unfolding of the CoPN to
a bounded Petri net without inhibitor arcs and stripped down of its reactive
and priority semantics. These are used as input files for the external reasoning
tool LoLA. The execution of the analyses is, however, not automatic. Although
it would be possible to automatically connect the CoPN model with LoLA, we
decided not to do it for the moment. Next we discus our decision.
This chapter envisions a process to reason about system properties as addi-

tional support to the run-time consistency management described in Chapter 6.
We use an early reasoning approach to support the conception and design of the
development processes of COP systems. The analyses presented here are meant
for the identification of incoherences while modeling dynamic adaptations and
the interactions among them. Using a fully automated process would improve
the analysis process of the system —that is, reduce the burden on manually
checking each test case. Furthermore, the CoPN model could be extended to
provide the means to suggest or automatically resolve incoherent configurations
of contexts, allowing the introduction of new contexts at run time. An auto-
matic process could allow us to modify the structure of the CoPN and ensure
that the remaining contexts composed in the system continue to be coherent.
However, LoLA allows the analysis of multiple Petri net properties in the case

of basic Place/Transition nets. Direct integration between the two systems
would not be very fruitful because the available analyses do not completely
cover the semantics of CoPNs. Some properties require a careful analysis with
respect to the CoPN semantics. More specialized techniques than those provided
by LoLA are necessary to support analyses with the specific semantics of CoPN.
Although specialized analysis techniques could be provided to better capture
the (reduced) semantics of CoPN, the design and development of Petri net anal-
yses techniques fall outside the objectives of our thesis, hence, we decided not
to integrate them.
Furthermore, CoPN is only able to generate the basic test cases for the analysis

of the system properties. The test cases are based on the constraints formally
defined in CoPNs. However, the analysis of complete systems may require more
complex test cases that cannot be deduced directly from the CoPN structure and
formalization, but requires domain knowledge on the part of the programmer.
An automatic analysis process would still require a way to generate a more
comprehensive set of analysis test cases, or integrate those test cases defined
by programmers.
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7.3 Conclusion
This chapter developped the necessary concepts to enable the partial analysis of
COP systems. The different analyses presented in this chapter are envisioned as
a complementary support to the run-time consistency management described
in Chapter 6. The purpose of an early analysis of CoPN properties is to identify
incorrect definitions of interactions between contexts and incoherent composi-
tions of adaptations during the design of the system. In particular it enables
us to identify (1) situations in which adaptations are not able to take place
because of the constraints imposed on their activation are never satisfied, and
(2) situations in which context activations lead to a infinite sequence of transi-
tion firings, blocking or crashing the system. These situations are of particular
interest because they cause inconsistencies in the predictability of the system
and are hard to identify or avoid during the execution of CoPNs.

CoPN takes advantage of existing tools for the analysis of Petri nets, for the
analysis of system properties. The analysis of COP systems does not need to
be developed from scratch, but builds on existing techniques. By means of
net unfolding and the use of the Low Level Petri net Analyzer, it is possible
to reason about a restricted semantics of CoPNs and their properties. This
reasoning can be used to provide insights about the interaction of behavioral
adaptations in a COP system. meeting the safety Requirement (M.2) defined
in Section 2.4.
This chapter presented two analysis techniques of Petri nets that are effec-

tively used to identify the activation states of contexts and the possibility to
execute particular actions over contexts. We enable the automatic generation
of test cases based on the formal definition of the context dependency relations
composing the system. In case an incoherence is identified while analyzing
one of said test cases, developers can track the incoherence back to a particu-
lar context and its context dependency relations, allowing them to modify the
interaction of the contexts in order to solve identified incoherences. Through
reachability analysis it is possible to reason about expected or unexpected states
of the contexts composed in a CoPN. Through liveness analysis it is possible
to reason about the availability of particular actions over a context in a CoPN.
In the current incarnation of the CoPN model, the analysis of these properties
is delegated to LoLA, an external Petri net analyzer. The analyses provided
for the CoPN model comply with the decision Requirement (M.4) defined in
Section 2.4.
However useful the analyses of CoPNs has proven to be, the fact that the

semantics of our model has to be restricted only allows us to have an approxi-
mation of the analyzed properties. To solve this problem it could be interesting
to use reset arcs [56] instead of inhibitor arcs, and perform our analyses in
the Petri net with reset arcs or Reset nets. The main function of reset arcs
between a transition and a place is to empty the place whenever the transition
fires. It has been proven that the coverability problem is decidable in Reset
nets. The analysis of Reset nets provides an over-approximation of the cover-
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ability problem, that could be used in the case of CoPN. The use of reset arcs
should be studied further in CoPN, a discussion on their usefulness can be found
in Section 11.3.2.
The reasoning engine presented in this chapter provides support for the safety

and decision requirements for run-time models for Dynamically Adaptive Soft-
ware Systems, increasing their predictability and confidence. The analyses used
in CoPNs allow us to identify incoherences that could not be otherwise identified
at run time.





Chapter8
A Comprehensive Programming Model for Dynamically Adaptive Software
Systems

Chapters 6 and 7 introduced the run-time management of context activations
and the design-time identification of inconsistencies, of the CoPN programming
model. In this chapter we explore the capabilities of CoPNs as a programming
model for Dynamically Adaptive Software Systems. This chapter overviews
CoPNs from two perspectives. First, it provides the details of CoPNs in the light
of the architecture and adaptation process for Dynamically Adaptive Software
Systems, presenting CoPNs as a comprehensive programming model for such
systems, and in particular COP. Second, it gives an overview on the support
provided for the development of Dynamically Adaptive Software Systems.
This chapter revisits the adaptation process and architecture for developing

Dynamically Adaptive Software Systems [159, 161], and its refinements pro-
posed in several COP systems [74, 27, 77], normally referred to as the context-
awareness architecture. CoPNs are mapped to this architecture as a means to
demonstrate their appropriateness as a comprehensive model for the develop-
ment of Dynamically Adaptive Software Systems. We explain the way in which
CoPNs comply with each of the components of context-awareness architecture
by giving the details of the CoPN’s model implementation.
The second part of this chapter explores the support provided by the model

as part of the software development process. In particular we explore the ca-
pabilities of CoPNs to ease testing Dynamically Adaptive Software Systems,
and more precisely the dynamic activation of adaptations. The exploration
of testing the dynamics of context activations follows from its proximity with
the overall concern of this dissertation —managing behavioral inconsistencies.
Here, we present a simulation tool that allows to manually activate and deac-
tivate contexts and observe their interactions.
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8.1 Architecture for Dynamic Adaptations Revisited
In the development of the formal basis presented in CoPN, we also envisioned a
single programming model that comprehends the totality of COP systems. This
is motivated by the observation that current context-aware systems focus either
on the dynamic adaptation of behavior, or on the definition and propagation
of changing situations in the surrounding execution environment of the system.
We argue that in order to provide a comprehensive model for the development
of Dynamically Adaptive Software Systems both aspects are required. This sec-
tion explores the programming model of CoPNs, presenting the implementation
aspects of the formal basis presented in Chapters 6 and 7, and exploring the
way in which CoPNs enfold other aspects of the of the adaptation process, such
as discovery and gathering of context information. Figure 8.1 shows the general
architecture of CoPNs.
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Figure 8.1: Revisited architecture of context-awareness with CoPNs.

CoPNs use the same reference architecture for Dynamically Adaptive Software
Systems presented in Section 4.4.1 [74, 27, 77]. Nonetheless, in Figure 8.1 we
extend the original proposed architecture with the specification of required
modules to fulfill the tasks of the architecture components: context discovery,
context management engine, context representation, and application behavior.
An in-depth explanation of how each component is realized in CoPNs, with its
internal modules, is given in the remainder of this section.

8.1.1 CoPN Application Behavior
The application behavior component of the context-awareness architecture pro-
posed by the CoPN model relies on the process already existing in Subjective-C,
as explained in Section 4.4.1. The observable behavior of Dynamically Adaptive
Software Systems corresponds to the composition of the behavioral adaptations
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associated to all active situations gathered from the surrounding execution
environment of the system. From the perspective of end-users, the applica-
tion behavior component provided by CoPNs presents an intangible difference
with respect to the application behavior component provided by Subjective-C.
Nonetheless, the CoPN model makes a contribution in ensuring that the ap-
plication behavior component is consistent according to the defined context
dependency relations and the situations gathered from the surrounding exe-
cution environment of the system. This contribution differentiates the CoPN
model from traditional models in that the observed application behavior in the
CoPN is not that of all situations present in the surrounding execution envi-
ronment of the system, but rather is composed of all the situations from the
surrounding execution environment that lead to a consistent state of the system,
as expressed in Definition 6.20.

8.1.2 CoPN Context Representation
As mentioned in Section 4.4.1, the context representation component of the
context-awareness architecture keeps track of the active contexts and their as-
sociated behavioral adaptations. That is, it keeps track of the woven behavioral
adaptations in the system at any point during its execution. The CoPN model
follows the same approach for the representation of contexts as other COP lan-
guages such as Ambience [74] or ContextErlang [163].

CoPNs present two representations of the adaptations defined in the system.
The first representation of adaptations comprehends all contexts defined in the
system. Such representation is given by the underlying Petri net structure itself.
Every time a context or a context dependency relation is defined in the system,
the structural representation of contexts is updated to include the new context
dependency relation definition. Context definitions, such as @context(A), are
represented by an individual CoPN. Figure 8.2a shows the definition of two
CoPNs, where each independent CoPN is delimited by a rounded square. Defin-
ing context dependency relations between contexts, for example, an exclusion
dependency relation A�–�B, generates a CoPN consisting of two contexts and
the connections between them, as shown in Figure 8.2b. The generation of a
CoPN through the definition of context dependency relations is related to the
high-level definition of context dependency graphs of Subjective-C. However,
the representation given by the CoPN excels the representation of context de-
pendency graphs by encoding the semantics of the defined context dependency
relations composed into the CoPN.
The second representation of adaptations provided by CoPNs concerns those

adaptations that are currently active in the system. To this end we take advan-
tage of the Petri net marking, which provides a live representation of the system
state. The set of active adaptations corresponds to the set of marked context
places. The set of active adaptations is kept as part of the state of the system
in CoPNs, this corresponds to the stable marking, given in Definition 6.22.
The representation of adaptations provided by the CoPN model is an im-
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Figure 8.2: Structural representation of contexts and context dependency rela-
tions definition in CoPN.

provement over the context representations proposed by previous COP ap-
proaches [74, 98, 163]. First, context representations, usually, require the
introduction of two data structures, one data structure represents the adap-
tations and their relations, and another data structure keeps track of which
adaptations are active. CoPNs use a representation of active contexts that is
already embedded with the structural representation of adaptations, both con-
text representations are derived from the same data structure. Second, the
context representation through the Petri net marking, does not only visualize
the active contexts of the system, but it also provides a first hand view on the
activation count of each context —a technique used to keep track of context
activations in the light of context interaction [33]. Third, CoPNs allow the pos-
sibility of recreating activations and deactivations of contexts by keeping track
of the consistent steps generated during the execution of the system. Such
information, currently not provided by other COP systems, could be used for
simulation and testing purposes with respect to the activation of contexts, or
to cache activations and deactivations in order to ease their verification.
The context representation module constitutes the core of the CoPN progra-

mming model. As said earlier, the context representation consists of the Petri
net itself. In CoPNs, contexts (and their representation), are given by an en-
semble of places and transitions, as shown in Figure 8.3. The basic structure
of the CoPN implementation is inspired by the ideas of the ePNK (Petri Net
Kernel) [112] and snakes [147]. CoPNs are implemented as incidence vectors
for the representation of the Petri net graph, where each transition is aware of
its neighboring places, and each place is aware of its marking set.
A context, SCContext is represented as a set of three places and four tran-

sitions, as given in Definition 6.2. Additionally, to comply with the definition
of CoPNs given in Section 6.1, we introduce a specialization of places as con-
text places (PNContextPlace) and temporary places (PNTemporaryPlace), and
transitions as external transitions (PNExternalTransitions) and internal tran-
sitions (PNInternalTransition). Note that external and internal transitions
are used to provide the reactive semantics of CoPNs, but different transition pri-
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Figure 8.3: Structure diagram of the context representation component in CoPN.

orities can be given to each transition type. However, an internal and external
transition can never have the same priority.

8.1.3 CoPN Context Management Engine
The context management engine component of the context-awareness architec-
ture is presented as combination between an internal and an external engine
of the system [159]. It is an internal engine as it provides language features
for the definition of adaptations. However, the logic defining and managing
the contexts and behavioral adaptations is independent from the rest of the
system’s logic, making it an external engine. So far, the concrete proposals for
a management entity in COP languages have been restricted to the definition of
context changes throughout specified sets of rules, similar to those for context
dependency relations, described in Section 4.4.1. However, we observe that
current approaches for the management of safe context configurations rely on
definitions provided by programmers to be correct [163]. Even if it is possible
to verify some properties the system must satisfy, such properties are specified
by programmers as part of an independent system [49, 103]. As described in
Requirements M.3 and M.4, we envision a programming model that allows
to abstract and reason upon the system in a comprehensive way. From these
requirements we conclude that the management of context activations provided
by other COP approaches is not sufficient. Section 4.2 motivates this fact by
describing situations in which the rules defined by programmers may lead to
inconsistencies of the system’s behavior. We argue that the management of
behavioral adaptations must be based on a formal definition of rules describing
context interactions, and their automated verification.
Similar to the proposal of Ambience [74], CoPNs enclose the consistency man-

agement module into a broader component which comprehends the complete
logic for realizing dynamic adaptations in the system. As shown in Figure 8.1,
the context management engine consists of two modules. The analysis engine
and the consistency manager.
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The motivation behind explicitly providing two modules for the management
of Dynamically Adaptive Software Systems is raised by two different concerns
with respect to the adaptation logic of the system. On the one hand we want
to manage the inclusion and withdrawal of adaptations dynamically at run
time. Moreover we want to arbitrate such processes to ensure the consistency
of the system’s behavior. On the other hand we want to reason about the
adaptations defined in the system, and the interactions between them. It is
natural to separate the two concerns into two different modules, one module
for the management concern, and another module for the analysis concern.
Since the management of adaptations activations takes place at run time, the
separation of the system in two modules allows us to defer part of the costly
analysis tasks to earlier stages of the development cycle, such as design or
compile time. Analysis of dynamic systems in two (or more) phases (design
time and run time) has already been proven a successful technique applied in
similar approaches [22, 64].
The context manager module is responsible for arbitrating the system at run

time, as described in Chapter 6. This module is the central entity of the CoPN
model. The responsibilities of the context manager (SCContextManager) com-
prise the definition of context and context dependency relations, and the man-
agement of the activation and deactivation of contexts. To do this, the context
manager holds a reference to the representation of all contexts (SCContext) and
the set of active contexts (PNMarking). The structure of the context manager
module is shown in the left-hand side of Figure 8.4. We continue by explaining
each of the responsibilities of the context manager module in detail.

Context Manager
Analysis Engine

SCContextManager

SCContext
Updates

SCContext
DependencyRelations

PNMarking

SCContext

*

SCAnalysisTestCase
Generator

SCPetriNetGenerator

Behavior Analysis

SCContext
Gathering

Figure 8.4: Implementation of the context management component in CoPN.

First of all, definition of contexts is done by creating the structure of a sin-
gleton CoPN (Definition 6.2), as for example, the one shown for context A in
Figure 8.2a. Snippet 8.1 shows the definition each context object (SCContext),
given by its three places (Lines 5 through 7) and four transition (Lines 9 through
12).
Secondly, definition of context dependency relations is not hierarchical as is

the case in Subjective-C [123]. In Subjective-C context dependency relations are
explicitly objects in the class hierarchy of the context manager. CoPNs flatten
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1 - (void) addContextWithName :( NSString *) contextName andBound : int bound {
2 sel f . contextName = contextName ;
3 sel f . bound = bound ;
4 // create places
5 PNContextPlace *c = [ PNContextPlace initWithName : contextName ];
6 PNTemporaryPlace *pr = [ PNTemporaryPlace initWithName :[ sel f getPrName :←↩

contextName ]];
7 PNTemporaryPlace *prn = [ PNTemporaryPlace initWithName :[ sel f getPrnName←↩

: contextName ]];
8 // create transitions
9 PNTransition *req = [ PNExternalTransition initWithName :[ sel f getReqName←↩

: contextName ]];
10 PNTransition *reqn = [ PNExternalTransition initWithName :[ sel f ←↩

getReqnName : contextName ]];
11 PNTransition *act = [ PNInternalTransition initWithName :[ sel f getActName←↩

: contextName ]];
12 PNTransition *deac = [ PNInternalTransition initWithName :[ sel f ←↩

getDeacName : contextName ]];
13 // connecting places and transitions
14 [req addOutput : NORMAL_ARC toPlace :pr ];
15 [act addInput : NORMAL_ARC fromPlace :pr ];
16 [act addOutput : NORMAL_ARC toPlace : aContext ];
17 [reqn addOutput : NORMAL_ARC toPlace :prn ];
18 [deac addInput : NORMAL_ARC fromPlace : aContext ];
19 [deac addInput : NORMAL_ARC fromPlace :prn ];
20 }

Snippet 8.1: Declaration of a context as a singleton CoPN.

context dependency relations (SCContextDependencyRelations) as function
applications over a set of singleton CoPN, as described in Section 6.2. Context
dependency relations are described declaratively defining the structure of the
CoPN that satisfies the intended interaction between its contexts. As an exam-
ple, Snippet 8.2 shows the declaration of an implication dependency relation.
Lines 2 through 12 define the extension function extI , and Lines 14 through 27
define the constraining function consI for the implication dependency relation.
In Snippet 8.2, Lines 3 and 15 ensure the restriction that a context cannot

have a context dependency relation with itself. The constraints that must
be satisfied by the CoPN are verified programmatically over all elements of
the CoPN —that is, over all places and transitions after the application of the
union(S) and ext(union(S), R), for given sets of singleton CoPNs, S, and
context dependency relations, R, as respectively given in Definitions 6.10 and
6.11. In the case of an implication dependency relation, for example, Lines 18
through 21 verify that all activations of the source context request the activation
of the target context. All transitions of the CoPN which have the context place
of the source context as an output, and for which this place is not an input, are
given an arc from the transition to the preparing to activate temporary place
of the target context.
Thirdly, context activations are received from the context discovery via the

context gathering module, which is explained later in this section. Instead
of having specific processes for the activation and deactivation of contexts,
the CoPN programming model unifies the two processes as context updates
(SCContextUpdates).
All changes in the surrounding execution environment of the system are al-
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1 // Implication ext associated function
2 - (void) addImplicationFrom :( SCContext *) source to :( SCContext *) target {
3 i f ([ source isEqual : target ]) return;
4
5 // add additional transition deac(source)
6 PNInternalTransition * deacSource = [ PNInternalTransition initWithName : ←↩

deac ];
7 // add arc to flow function f
8 [ deacSource addInput : NORMAL_ARC fromPlace : source ];
9 // add arcs to inhibitor flow function f◦

10 [ deacSource addInput : INHIBITOR_ARC fromPlace : target ];
11 [ deacSource addInput : INHIBITOR_ARC fromPlace :[ target ←↩

getPrepareForActivation ]];
12 }
13 // Implication cons associated function
14 - (void) implicationConstraintsFrom :( SCContext *) source to :( SCContext *)←↩

target {
15 i f ([ source isEqual : target ]) return;
16
17 // add arcs to activate the target when the source is activated
18 for( PNTransition *t in [ sel f getInputsForPlace : source ]) {
19 i f (![[t inputs ] containsObject : source ])
20 [t addOutput : NORMAL_ARC toPlace :[ target getPrepareForActivation ]];
21 }
22 // add arcs to deactivate the target when the source is deactivated
23 for ( PNTransition *t in [ sel f getOutputsForPlace : source ]) {
24 i f (![[t inhibitorInputs ] containsObject : target ])
25 [t addOutput : NORMAL_ARC toPlace :[ target getPrepareForDeactivation ]];
26 }
27 }

Snippet 8.2: Declaration of the implication dependency relation’s extension and
constraining functions.

ways resolved by triggering of an external transition in CoPNs, as described
in Section 6.3.1. Snippet 8.3 shows the implementation for a context update
—that is, activation or deactivation of a context. Lines 6 through 11 provide
the reactive semantics of CoPNs by firing all internal transitions that become
enabled. Once there are no more transitions enabled for firing Lines 14 through
24 verify the marking of the CoPN for inconsistencies and rollback all modifi-
cations if an inconsistency is found. The set of enabled internal transitions is
maintained up to date in Lines 34 through 43.
Three things are worth mentioning from Snippet 8.3. First, CoPNs provide a

unified technique for processing events coming from the surrounding execution
environment of the system, unlike Subjective-C [123] which provides two inde-
pendent techniques, one for activation events, as shown in Snippet 4.10, and
one (analogous method) used for deactivation events. Second, the activation
process of CoPNs does not require to modify manually the activation counter of a
context, this is implicitly done by the number of tokens in a place. Third, appli-
cation of all rules for all context dependency relations is managed automatically
in Snippet 8.3. This is in contrast of other COP languages as Subjective-C [77]
or ContextErlang [163], where the interaction between adaptations is encoded
in the activation logic. Introduction of new context dependency relations in
this approaches requires to modify the activation semantics to account for the
new relation.
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1 - (BOOL) contextAction : ( PNTransition *) transition {
2 [ transition fire ]; // fire external transition -firing rule (6.1)
3 [ sel f enabledActions ];
4
5 // fire all enabled internal transitions -firing rule (6.2)
6 while([ transitionSet count ] != 0) {
7 PNTransition *t = [ transitionSet anyObject ];
8 [t fire ];
9 [ transitionSet removeObject : t];

10 [ sel f enabledActions ];
11 }
12 [ sel f updateActiveContexts ];
13
14 i f ([ sel f isStable ]) {
15 // check for consistency of the step -firing rule (6.4)
16 [ currentContexts updateSystemState ];
17 return YES;
18 } else {
19 // handle error and alert user -firing rule (6.3)
20 [ currentContexts revertOperation ];
21 ...
22 return NO;
23 }
24 }
25
26 - (void) updateActiveContexts {
27 [ currentContexts clean ];
28 for( SCContext *c in places ) {
29 i f ([[c tokens ] count ] > 0)
30 [ currentContexts addActiveContextToMarking :c];
31 }
32 }
33
34 - ( NSMutableArray *) enabledActions {
35 NSMutableArray * result = [[ NSMutableArray alloc ] init ];
36 for( PNTransition * transition in transitions ) {
37 i f ([ transition checkEnabled ])
38 [ result addObject : transition ];
39 else
40 [ transitionSet removeObject : transition ];
41 }
42 return [ result autorelease ];
43 }

Snippet 8.3: CoPN implementation of context updates.

Finally, the context manager module (SCContextManager) is responsible for
the inclusion and withdrawal of behavioral adaptations in the system. CoPNs
rely on the selection of behavioral adaptations used in Subjective-C based on
the definition of Subjective-C’s methods (Snippet 4.9) which are associated
with context objects (SCContext). The existing method was adopted in CoPNs
because it is tightly related with the context activation component, which the
CoPN model also inherited from Subjective-C.
Chapter 7 presents the details of the analysis module introduced by CoPNs.

Currently, the analysis of the system properties is delegated to the LoLA ana-
lyzer. The analysis module of CoPNs, shown in the right-hand side of Figure 8.4,
manages the unfolding of the model into a Petri net with place capacities and
without inhibitor arcs (SCPetriNetGenerator) and the generation of the test
cases to be analyzed by the system (SCAnalysisTestCaseGenerator). The
Analysis engine interacts with the context manager module to retrieve the infor-
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mation about contexts and context dependency relations defined in the system,
in order to derive the appropriate analysis test cases. Analysis of properties
about the system’s adaptations in CoPNs does not require an independent defi-
nition of rules to be verified, from those describing interactions between adap-
tations, as is required in approaches taken by contextL [49] and EventCJ [103].
Currently CoPNs only allow to reason upon structural properties of the system.
Section 11.4.2 describes avenues of future work for reasoning about behavioral
adaptations defined in the system. The behavioral analysis module is grayed
out in Figure 8.4 for this reason.

8.1.4 CoPN Context Discovery
The context discovery component of the context-awareness architecture is in
charge of managing all interactions between the system and its surrounding
execution environment. Discovery of contexts is divided into four main mod-
ules in CoPNs. (1) A context gathering module, which is an active monitor
of the information available about the surrounding execution environment of
the system. This module generates the context updates according to the in-
formation gathered from the surrounding execution environment. (2) A con-
text monitoring module, which is the bridge to communicate information ob-
tained from the sensor network of the system to the context gathering module.
(3) A context acquisition module, which is in charge of discovering new con-
texts and associating their definition with the running CoPN. (4) A context
dependency relations acquisition module, which is in charge of discovering new
definitions of interactions between contexts and associate them with the running
CoPN. Figure 8.5 shows the implementation of the context discovery compo-
nent in CoPNs. In the current version of CoPNs we only covered the context
gathering module (SCContextGathering) and the context acquisition module
(SCContextAcquisition). Monitoring information about the surrounding exe-
cution environment and the acquisition of context dependency relations, shown
in gray in Figure 8.5, are not yet fully supported, and are thus left out of our
discussion below.

SCContextManager

SCContext
Monitoring

Sensor 
Network

SCContext
DependenciesAcquisition

SCContext
Gathering

SCContext
Acquisition

Figure 8.5: Implementation of the context discovery component in CoPN.
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Context acquisition module

The context acquisition module is in charge of composing new context defini-
tions, discovered and acquired from the surrounding execution environment of
the system with its current CoPN representation. We take advantage of Bon-
jour,1 the communication protocol provided by Objective-C, to enable discovery
and communication between devices. This communication model is also reused
for gathering context information about the surrounding execution environment
of the system.
Currently the context acquisition module only allows to send context defini-

tions (e.g., @context(A)) and context dependency relations between contexts
(e.g., [addRequirementTo:A of:B]) from an external source. The context ac-
quisition module addresses Requirement D.5. Such definitions are received by
the context manager module and integrated with the current CoPN following
the composition operation described in Section 6.2.

Example 8.1. As an example let us take the maps application defined in Snip-
pet 6.1. Let S={Positioning, NLBS, GPSAntenna, GSMLocation, Bluetooth,
WLAN, Connectivity} be the set of singleton CoPNs defined in the applica-
tion, and R={<C, WLAN, Connectivity>, <C, Bluetooth, Connectivity>,
<I, GSMLocation, Positioning>, <I, GPSAntenna, Positioning>, <I, NLBS,
Positioning>, <Q, NLBS, Connectivity>} be the set of context dependency
relations defined between such contexts. The CoPN defined for the maps appli-
cation is given by P = ◦(S,R). Suppose that P is defined in a device dev2.
Suppose further that another device, dev1 (e.g., a sensor), is discovered by dev2,
where the discovered device provides the definition of a new context, Private,
and an exclusion dependency relation between the Private and Positioning
contexts.
As soon as dev1 is discovered it sends the messages @context(Private),

and [addExclusionBetween:Private and:Positioning] to dev2. As a re-
sult, dev2 composes this context definition with the existing CoPN P, yielding
a new CoPN P ′ = ◦(S ∪{Private},R∪{< E, Private, Positioning >}). The
visual representation of P ′ corresponds to the CoPN shown in Figure 6.11.

Once contexts and context dependency relations have been composed in the
running system, these are automatically taken into account for the run-time
verification of consistent activations. However, the process of context acquisi-
tion module is still a proof-of-concept, and the discovery and definition of new
contexts and context dependency relations between existing contexts could be
improved. We still assume that all information about contexts and behavioral
adaptations is centralized in one context manager module. Even more, defini-
tion of new contexts are behavior-less —that is, new context definitions are not
created with their associated behavior, and hence, no behavioral adaptations
are composed into the system when these contexts become active. This is a

1https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
NetServices/Introduction.html

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NetServices/Introduction.html
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limitation of the underlying technique for defining behavioral adaptations used
in Subjective-C, which requires all behavioral adaptations to be known at com-
pile time. We discuss how this shortcoming could be addressed using CoPNs in
Section 11.3.

Context gathering module

The context gathering module is in charge of retrieving information about the
surrounding execution environment of the system (e.g., through a sensor net-
work), and to generate the corresponding context changes based on such in-
formation. Each context in the context gathering module is associated with a
particular (set) of information about the surrounding execution environment
of the system. Association of a context with information in the surrounding
execution environment is delegated to the context monitoring module and is
currently not supported in CoPNs. Currently, CoPNs simulated gathered con-
text information using an external device that signals context activations and
deactivations. Context activations are signaled with the context manager every
time the information associated to the context changes. The general process for
a context activation is shown in Figure 8.6. An analogous process takes place
for deactivating a context.

:SCContextGathering :SCContextManager :SCContextUpdates

Input data

@activate(ctx)

[self contextAction: t]
contextAction

res

errorState = [self blockingContexts: ctxs]

[!contextState && !errorState]

contextState = res

[res]

[c sendErrorContext: ctx withRes: res]

[self broadcastStateChange: ctxs withRes: res]
alt

opt

Figure 8.6: Process for context activation.

Each context ctx instantiated in the context gathering module has two vari-
ables: a contextState variable to keep track of the state of the context and
an errorState variable to signal if the state change did not take place because
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a context dependency relation prohibit the context to activate. The purpose
of these two variables is to manage the activation/deactivation messages sent
to the context manager module, so that the context manager is not overflowed
with processing requests from the same context activations. Additionally, using
these variables we can ensure that context activation messages are sent to the
context manager modules if and only if there is a state change in the surround-
ing execution environment of the system and it is not already known that the
context update is going to be denied. As explained previously in the context
management module, there are two possible outcomes from a context activa-
tion. The first possibility is that the context activation is a consistent step.
In such a case the return variable res is set to true, and the new set of active
contexts is broadcasted to all contexts defined in the context gathering module.
Using this information, each context checks if the state of the contexts imped-
ing its activation or deactivation has changed, in which case the errorState
variable is changed. The other possibility is that the context activation is not
a consistent step. In such case the res variable is set to false, and the name of
the context impeding the activation or deactivation is sent to the context entity
in the context gathering module.

Example 8.2. Let us take the maps application as an example of the behavior
of the context gathering module. To facilitate the way the context gathering
module works, we will only take into account the CoPN composed of contexts
Private, and Positioning and an exclusion dependency relation between them
(Figure 6.3). Assume that initially the Positioning context is active, and
suppose that an insecure connection is detected. This information triggers the
activation of the Private context, sending an @activate(Private) message
to the context manager module. Since the Positioning context is already
active, the verification of the requested activation yields an inconsistent state
and the deactivation is denied. In this case, a message is sent to the context
gathering module stating that the Positioning context denies the activation
of the Private context. This information is stored in the errorState variable
of the Private context instantiated int he context gathering module. The
usefulness of the errorState variable is to avoid constantly sending activation
and deactivation messages to the context manager module. In this particular
case, this means not sending the @activate(Private) message, even though
the situation of the surrounding execution environment signals that the context
should be activated.
Suppose now that the Positioning context is now deactivated (for example

because the device looses connectivity). Since there are no context dependency
relations constraining the deactivation of Positioning, the context is deac-
tivated. As a result of this operation, the change of state of this context is
broadcasted to all contexts instantiated in the context gathering module. In
particular, the errorState variable of the Private context is modified with
this information. Since the restriction impeding Private to be activated is
removed, and the application is still in a situation where the private context
should be activated, the @activate(Private) message is send to the context
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manager, yielding the activation of this context.

Activation of contexts is interleaved with the base code of the system in
most COP languages [103], harnessing the flexibility requirement of Dynami-
cally Adaptive Software Systems (D.3). To avoid such problems, the context
discovery component of the context-awareness architecture can be seen as an
external component of the system, both physically and logically. We use the
Bonjour communication protocol for all message exchanges between the context
gathering and the context manager modules.

8.2 CoPN Tool Support for COP

Alongside the development of the CoPN programming model, we also focussed
our development efforts in a simulation tool as a means to test the dynamics
of context activations. There are three reasons motivating the development
of this tool. First of all, we begin with the observation that Petri nets are
dynamic models that provide a firsthand view about the state and possible
actions of the system. As such, a (visual) representation could be useful to
support the interaction requirement M.1 for Dynamically Adaptive Software
Systems. Secondly, a simulation tool that allows to activate and deactivate all
contexts defined in the system could be used as a complement to the analysis of
the system presented in Chapter 7. Finally, we note that testing Dynamically
Adaptive Software Systems is a challenging task [159]. Up to this point, the
only means to test context activations proposed in COP languages has been
through hardcoding of context activations within the base logic of the system.
This approach is neither maintainable nor scalable.
In this section we describe the main features of the current incarnation of our

CoPN-ide simulation tool2 for the context-aware maps application motivated
in Section 2.3.3. The CoPN-ide is a multi-touch visualization tool for CoPNs.
The tool eases the definition of contexts and context dependency relations at
design time by allowing to directly manipulate the different components of the
CoPN. For example, the addition of full contexts (i.e., instances of Figure 6.1),
or individual transitions and arcs, and addition of tokens to particular places
(context or temporary places). To ease the integration with existing Subjective-
C applications, the tool allows the use of the DSL language described in Table 6.2
for the definition of contexts and context dependency relations.
Figure 8.7 shows the general view of the CoPN-ide simulation tool. The top

panel, labeled CoPN view, is the interactive multi-touch view of the complete
system. The different elements of the CoPN (places and transitions) can be
used to manually add tokens into places or fire the external transitions by long-
pressing the corresponding element. In addition the two lower views of the

2The simulation tool is available for download at: http://released.info.ucl.ac.be/
Tools/Context-PetriNets.

http://released.info.ucl.ac.be/Tools/Context-PetriNets
http://released.info.ucl.ac.be/Tools/Context-PetriNets
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Firing steps view
Context information view

CoPN view

Figure 8.7: General view of the CoPN-ide tool.

figure are used to display additional information about the CoPN places (left-
hand side), and the firing steps of the different external transitions triggered by
the user (right-hand side). The context information view provides an overview
of contexts, their capacity and the tokens associated with it. The firing steps
view provides a list of all sequences of fired transitions. This view only displays
those firings of external transitions that lead to a consistent state of the system.
We now explain additional functionality provided by the simulation tool, using
the CoPN defined in Figure 7.2 as an example.

Figure 8.8 provides the visualization of the basic functionality of the interactive
view: transition firing. External transitions are fired by long pressing
them. In order to fire a transition, the color of the transition firing must
be specified (i.e., the color of tokens), as shown in Figure 8.8. Up to this
point we have only discussed a simplified version of CoPNs, in which it is
only allowed to have tokens of one color. Section 9.2 shows the extension
of the model to allow tokens of multiple colors in the system.
Firing each individual transition can be cumbersome and time consuming
in order to reach a particular state in a large system. To further test
interaction of the activation and deactivation of contexts we allow to
manually define particular states of the system by manually adding tokes
to specific places. Adding tokens to places can be used to further find
incoherences of the CoPN by means of simulation, for example states in
which other contexts are no longer reachable, or to test the behavior of
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Figure 8.8: Manual firing of transitions with token colors.
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inconsistent states. As in the case of transition firing, adding tokens to
a place must specify the color of the token. Tokens are added by long
pressing the place they are to be added to.

Figure 8.9: Edition and analysis of CoPNs menu.

Figure 8.9 shows the options to manipulate the structure of an existing CoPN.
As mentioned before it is possible to add different components to the
model, contexts, transitions, and arcs. In addition, by long pressing each
of the components it is possible to modify their state, for example, chang-
ing the type of an arc from normal to inhibitor. Additionally, the fire
transition option allows to fire external transitions without requiring the
visualization of the CoPN.
The analysis option provided in the system’s menu allows to analyze the
currently displayed CoPN as described in Chapter 7. Selection of the
analysis menu option automatically generates the Petri net with place
capacities and without inhibitor arcs and all the test cases for the de-
fined CoPN. The definition of the Petri net with place capacities and the
analysis cases files are saved in the analysis file view of the simulation
tool.
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Figure 8.10: File view manager of the CoPN simulation tool.
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Figure 8.10 shows the files manager view for the CoPN-ide tool. This view
is used to keep different definition of contexts and CoPNs. The CoPN-
ide currently supports two types of files, CoPN definition files (given by
the DSL described in Table 6.2) and LoLA formatted files. CoPN definitions
can be saved and loaded from these files.

As already mentioned, CoPNs can become cluttered in the visualization of
systems with many contexts and context dependency relations between them.
This problem becomes even bigger when the tool is used on small screen devices.
For this reason, CoPN-ide makes it possible to analyze or simulate context
activations without relying on the visualization of the full CoPN.

8.3 Conclusion
This chapter describes the internals of CoPNs as a comprehensive programming
model for Dynamically Adaptive Software Systems. In particular it provides the
details of the way in which our model complies with the general architecture en-
visioned for such systems. The purpose of presenting CoPNs as a comprehensive
programming model for Dynamically Adaptive Software Systems is to show the
validity of CoPNs for such systems. Additionally, we want to ease the develop-
ment of Dynamically Adaptive Software Systems, where the contexts and their
different representations (e.g., context gathering module, context representa-
tion module) cooperate together under the same programming abstractions.
A comprehensive programming model is also beneficial to ease the integration
between adaptations and the base logic of the system.
With these objectives in mind, we revisited the architecture for context-

awareness providing a finer-grained view of its different components. Fig-
ure 8.11 shows the different components of the context-awareness architecture
overlaid over the programming model of CoPNs. Most of the components of
the context-awareness architecture in the revisited model are comprised by the
programming model of CoPNs. The work of this dissertation focuses on the man-
agement of inconsistencies. Although CoPN constitutes the first effort in offering
a comprehensive programming model, we note that this is only a first iteration
over the complete architecture of context-awareness and different modules must
be extended, refined, or completed in order to truly have a comprehensive pro-
gramming model for Dynamically Adaptive Software Systems.
The definition of the ContextGathering and ContextAcquisition modules

introduced in CoPNs it is not longer necessary to know all context definitions
and their interaction beforehand. The CoPN programming model allows us to
introduce context definitions at run-time, and automatically integrate them
with the run-time verification of consistency. This property complies with the
independence requirement (D.5) of Dynamically Adaptive Software Systems.
During the definition of the CoPN programming model we identified a short-

coming regarding the testing of adaptations in existing COP languages, and
Dynamically Adaptive Software Systems in general [159]. Testing of Dynam-
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ically Adaptive Software Systems has already been proven challenging due to
the multiplicity of possible adaptations of the system’s behavior. COP is no
exception to this, and only hardcoded techniques are used for the purpose of
testing. In this chapter we also provide a first step towards the testing of Dy-
namically Adaptive Software Systems. Our approach consists of an interactive
simulation tool that offers the possibility to define and modify COP systems.
Additionally, the tool can be used to test the activation and deactivation of
the contexts defined in the system, without requiring to tangle the context
activations in the base logic of system. Additionally, the tool provides informa-
tion about context’s states and firing steps, as well as visualization of context
activations. That information can be used to further identify if the context
dependency relations defined between contexts behave as desired or not. The
tool thus serves as complementary support for the identification of incoherent
CoPN definitions.
To summarize, CoPNs successfully comply with the architecture proposed

for Dynamically Adaptive Software Systems, providing explicit support for the
different components of such architecture. In addition, the CoPN model offers
a testing tool that can be used for the simulation of context activations. For
these reasons we assert that CoPNs constitute a comprehensive programming
model for Dynamically Adaptive Software Systems.
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Figure 8.11: Refinement of the context-awareness architecture overlaid on the
CoPN programming model.





Chapter9
Context Petri Nets at Work

This chapter evaluates the programing model of CoPNs developed in this dis-
sertation from three different viewpoints: the usefulness of the theory as a
reasoning engine for Dynamically Adaptive Software Systems, the appropriate-
ness of the theory to model Dynamically Adaptive Software Systems, and the
extensibility of the theory to cover new aspects of such systems. In addition to
these three viewpoints evaluating CoPNs as a formalism and as a programming
model, we also provide a first assessment of the performance of managing the
consistency of dynamic adaptations at run time.
The first two case studies presented in this chapter, respectively in Sections

9.1 and 9.2, reuse existing COP applications. In the first case study, the sys-
tem is analyzed using CoPNs. The purpose of the analysis is to improve the
application by removing all identified inconsistencies and incoherences. In the
second case study, the system is used as a means to demonstrate the usefulness
of CoPNs for the development of COP systems. The application was previously
used to validate a new scoping mechanism of behavioral adaptations of COP.
In the original implementation of the application the new scoping rules were
realized using a programmatic approach. In Section 9.2 we obtained the same
results by means of the formalism already defined for CoPNs, without requiring
modification to the programming model or polluting the language syntax. The
third case study, presented in Section 9.3, is an abstract case study used to
evaluate how easy it is to extend the CoPNs formalism. The final section of
this chapter evaluates the performance of CoPNs with respect to that of plain
Subjective-C. Although we do not focus on performance in our work, we rec-
ognize that the run-time management of the system should not constrain its
usability.
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9.1 Analysis of Existing COP Systems
This section evaluates the usefulness of CoPNs as a reasoning engine for COP
systems. To this end we use the Mobile City Guide, an application previ-
ously developed using Subjective-C [102]. We use CoPNs to reason about the
configuration of contexts and the context dependency relations defined in the
application. Based on the obtained results, we refactor the application to a
configuration of contexts that does not present incoherences or inconsistencies.

9.1.1 Mobile City Guide
The Mobile City Guide is a mobile application that enables tourists visiting a
city to navigate through the city’s Points of Interest (POI). This case study is
centered around the compositionality of CoPNs, and the analysis of the system’s
context definitions. The reason for using the Mobile City Guide to validate
the analytic power of CoPN is twofold. On the one hand, being an existing
application, the interactions defined between the contexts are unbiased towards
the analysis of CoPNs. On the other hand, as shown in Figure 9.1, the Mobile
City Guide contains examples of the four basic context dependency relations
originally available in Subjective-C.
The Mobile City Guide application provides the possibility to create, cus-

tomize and follow city tours based on a selection of POIs. The basic behavior
of the application consists of three main features:

F.I. Tour Creation & Selection: This feature allows users to create and
select city tours based on a list of available POIs. A tour can be followed
in two modes: if the device has a GPSAntenna, there is a GuidedTour
mode which guides users throughout the city according to a predefined
route of POIs; in FreeWalk mode, users walk freely around the city and
can view directions to the POIs they would like to visit.

F.II. City Navigation: In order to navigate through a city and its POIs, the
application also provides the possibility of using a map, or compass
navigation to navigate between POIs, which can for example be used in
FreeWalk mode when no GPSAntenna is available.

F.III. POI Display & Information: POIs and their associated information can
be displayed according to user-defined preferences, such as the pre-
ferred language of the user (UserLanguage), the age range of the visitor
(TargetAudience), or the user’s particular interests (UserInterests).

These basic features of the application can be further enhanced depending on
the application’s surrounding execution environment and user preferences. We
now present the most important contexts that adapt the application’s behavior.

1. A Language context allows to adapt the application’s displayed infor-
mation to a particular language, such as English or French, where two
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language contexts cannot be active simultaneously, English�–�French.
The language is either determined by the geographical location of the
user, for example the UK or France, or it can be manually selected by
the user in the application preferences (UserLanguage). We restrict the
application to offer only one language at a time. These adaptations target
the behavior of Feature F.III.

2. A Connectivity context allows us to fetch additional information about
POIs, or to update current information whenever an internet connection
is available. The availability of a particular connection protocol, Wifi
enables the services associated with the internet connection, for example,
Wifi–IConnectivity. These adaptations target the behavior of Features
F.I and F.II.

3. Images associated with POIs can by displayed according to the time of
day at which the images were taken. Morning images are first shown
before midday, while Night images are first shown at night. Clearly the
two contexts cannot be active at the same time: Morning�–�Night. These
contexts can also be used to modify the order in which POIs are displayed,
for example, by ordering them according to their visiting hours. These
adaptations target the behavior of Features F.I and F.III.

GPSAntenna

Wifi

Connectivity

English

French Dutch

GuidedTour

LowBattery

3G

ItineraryPOIOrder CategoryPOIOrder

SimpleInterface PreferedPOIs

TimeAdaptation

Morning

NightAfternoon
ColoredCategory

RefreshPOIMap

LowMemory

Figure 9.1: Context configuration diagram for the Mobile City Guide [102].

9.1.2 Analyzing the Mobile City Guide
We reason about the definition of the contexts and context dependency rela-
tions as originally defined for the Mobile City Guide to identify incoherences
that might have been overlooked by the application designers. The reasoning
process is supported by CoPNs and the LoLA. The original implementation of the



220 Context Petri Nets at Work

Mobile City Guide in Subjective-C consists of 20 contexts and 12 context de-
pendency relations. As can be seem from Figure 9.1, the application consists of
10 isolated components, each of which is analyzed as an independent CoPN. Re-
member from Chapter 7 that properties to be verified about the system consist
in the reachability and liveness of the CoPN. Since CoPNs consisting of a single
context are never constrained for their activation and deactivation, we do not
generate analysis test cases for such contexts (TimeAdaptation, LowBattery,
SimpleInterface, PreferredPOIs, and LowMemory in Figure 9.1) Furthermore,
since Subjective-C does not allow developers to set a bound for contexts, all
contexts are initially defined to be activated an undetermined number of times.
Before diving into the analysis of the system using CoPNs, we first provide a
bound for the contexts whenever this makes sense in the application domain.
Language adaptations are used in the Mobile City Guide to display informa-

tion to users. However, we notice that it does not make sense to have multiple
activations for a language; the application uses a language or it does not. Hence,
the French, English, and Dutch contexts are each given a capacity of 1. Sim-
ilarly, adaptations displaying images according to the time of day, only require
a single activation for each context in the state space partition. In the Mobile
City Guide, the Afternoon, Morning, and Night contexts should be activated
at most once. To manage the interaction between these contexts, the Mobile
City Guide manages their activation logic manually —that is, it is up to the
programmer to ensure that the restrictions mentioned about these contexts are
satisfied. Each of the pair-wise exclusion dependency relations defines the ac-
tivation logic with respect to all the other connected contexts. The burden of
managing the activation of these contexts gets reduced by giving a bound of 1
to each context in the CoPN.
The two CoPNs representing the pair-wise exclusion dependency relations

between the language contexts and the time of day contexts are structurally
identical, hence we treat them jointly in our discussion. For each of these two
sets of exclusion dependency relations 13 test cases were generated by the CoPN
model according to the specification given in Section 7.2.1: a general deadlock
analysis, three reachability analyses, three state predicate analyses, and six
liveness analyses. The analysis of each of these test cases using LoLA proved
those CoPNs to be free of structural incoherences.
The GuidedTour and GPSAntenna contexts are not bounded in the application

domain, because these contexts can be activated from different situations in the
surrounding execution environment. For example, activation may occur because
of user preferences or application version (free vs. paying) in the case of the
GuidedTour, or by means of using device’s physical antenna or connecting to
the antenna of external devices in the case of the GPSAntenna. However, the
order in which the POIs are displayed is unique. Hence, we give a capacity of
1 to the ItineraryPOIOrder and CategoryPOIOrder. The generated capacity
for the GPSAntenna and GuidedTour contexts is 141.
For the CoPN composed of the contexts connected to the GuidedTour con-

text 434 test cases are generated. 423 of these cases correspond to the live-
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ness tests for each of the generated activation and deactivation transitions of
contexts GuidedTour, GPSAntenna, and the activation transitions of context
ItineraryPOIOrder.1 The analysis of the state predicates defined for the re-
quirement dependency relations, for example GuidedTour–JGPSAntenna, de-
tects that it is possible to reach a state m in which m(GuidedTour) ≥ 1 and
m(GPSAntenna)=0. The output provided by LoLA gives a state and a path as
follows:

STATE
GPSAntenna0:1,
GuidedTour1:1,
CategoryPOIOrder0:1,
ItineraryPOIOrder0:1

PATH
req(GuidedTour)
act(GuidedTour)0

As it was discussed in Section 7.2.1, this state cannot be reached. Remember
from the definition of the test cases for a requirement dependency relation
that the state predicate test case needs to be analyzed in conjunction with a
liveness analysis of the transition deactivating the source context whenever the
target is no longer active (deac(GuidedTour) in this example). The liveness
analysis process produces as its output exactly the same state and path as
the one produced by the state predicate analysis. Since the deac(GuidedTour)
transition is an internal transition enabled for the illegal state, it must fire. As
a consequence, the illegal state is never reached under CoPN semantics. Further
analyzing of this information allows us to observed that it is not possible for the
ItineraryPOIOrder to be activated unless the GuidedTour context is active.
This means that it is not possible to order a set POIs whenever the user is in
FreeWalk mode, which is not the expected behavior of the application. In the
reminder of this chapter we refer to this situation (i.e., the behavior of the
application is more restricted than what was expected by the user) as (inc.1).
Although the CoPN is coherent, it presents an inconsistency in the observed behavior
with respect to the predicted one.

For the CoPN composed of the contexts connected to the Connectivity context
we note that contexts can be activated multiple times in the application domain.
The generated capacity for the three contexts is 165. As a result the CoPN model
generates 665 test cases, where 660 test cases correspond to the liveness analysis
of the activation transitions of all three contexts in the CoPN and the deactivation
transitions of the Connectivity context. All generated test cases for the implication
dependency relation, described in Section 7.2.1, yield a satisfactory result. Hence, the
CoPN associated with the Connectivity context and its related contexts is coherent.

Finally, we analyze the CoPN composed of the ColoredCategory and RefreshPOIMap
contexts. In the application domain, the ColoredCategory context can only be ac-
tivated once, while the RefreshPOIMap context could be activated multiple times.
The generated capacity for the latter context is 249. For the analysis of the CoPN
754 test cases are generated, of which 749 correspond to the liveness test cases for
the deactivation transitions of both contexts and the activation transitions of the
RefreshPOIMap context. All generated test cases for the cause dependency relation,

1Currently the analysis of all test cases needs to be manually executed by programmers.
However, must of these cases are equivalent to each other and thus would produce the
same results. For example two activation transitions generated in the net unfolding.
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described in Section 7.2.1, yield a satisfactory result. Hence, the CoPN composed of
the ColoredCategory and RefreshPOIMap contexts is coherent.

In addition to the test cases generated by CoPNs, we produced three test cases to
analyze the overall consistency of the system with respect to its predicted behavior.
The test cases shown in the following all present an inconsistency with respect to the
predicted behavior of the system.

(inc.2) Whenever GuidedTour and POIs information is displayed in a particular lan-
guage, this language is either selected by the users as part of their preferences,
or inferred by the system using the user’s geographical position. The applica-
tion is conceived such that the default behavior uses the selected language as
the language to be displayed. However, if no language is defined in the users’
preferences, the language is inferred from their position. We test the system
to see if it is possible to yield a situation in which the GuidedTour context is
active, but none of the language related contexts is. This state is expressed
using the following state predicate:

FORMULA GuidedTour1 = 1 AND English0 = 1 AND Dutch0 = 1 AND French0 = 1

The state is reachable (taking into account both disconnected CoPNs), which
should not be the case. The output generated by LoLA is as follows:

STATE
Dutch0 : 1,
French0 : 1,
English0 : 1,
GPSAntenna0 : 1,
GuidedTour1 : 1,
CategoryPOIOrder0 : 1,
ItineraryPOIOrder0 : 1

PATH
req(GuidedTour)
act(GuidedTour)0

(inc.3) The purpose of the TimeAdaptation is to order and display the POIs according
to the time of the day. However, this context does not have any connection
with the Day, Afternoon, or Night contexts, which are in charge of represent-
ing the time of the day. Similarly to the previous case, we are interested in
the reachability of a state where TimeAdaptation is active, and none of the
other contexts is. The analysis provided by LoLA shows that indeed such a
state is reachable. The output provided is similar to that of the previous case
(inc.2).

(inc.4) The LowMemory context provides a behavioral adaptation that prohibits the
application from downloading or updating information about the different
tours or POIs when the device does not have sufficient storage space available.
The behavioral adaptations associated with the Connectivity context allow
the updating the information of tours and POIs in the system. These two con-
texts should not be active at the same time as their behavior is contradicting.
We test if it is possible to reach a state in which they are both active at the
same time using the state predicate:

FORMULA LowMemory > 0 AND Connectivity1 = 1

This illegal state is reachable. The output generated by LoLA is as follows:
STATE

LowMemory : 1,
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Connectivity1 : 1,
Pr(Connectivity)0 : 1

PATH
req(LowMemory)
act(LowMemory)
req(Connectivity)0
act(Connectivity)0

9.1.3 Revisiting the Mobile City Guide
The analysis of the ensemble of all independent CoPNs for each connected component
of the Mobile City Guide application does not identify any incoherences as defined
in Definition 7.2. However, it was possible to identify inconsistencies (inc.1) through
(inc.4), which are due to accidental interactions between the defined contexts. In
this section we revisit the Mobile City Guide application to refactor the interaction
between its contexts in order to avoid inconsistencies currently existing in the sys-
tem. After the modification, the application consists of 29 contexts and 31 context
dependency relations. Figure 9.2 depicts the contexts and context dependency rela-
tions for the Mobile City Guide. We use the conjunction dependency relation (→)
introduced in Definition 6.17. Additionally, the figure also presents two new context
dependency relations, a suggestion dependency relation ( - -B) and a disjunction de-
pendency relation (–� ). The inner workings of these relations are introduced later in
Section 9.3.

UserLanguage | 
Language

Positioning GPSAntennaCompass

WifiConnectivity

LocationLanguageUserLanguage VideoStream AudioStream

FreeWalk GuidedTour

UserPreferences

LowBatteryHighBattery

3G

CompassGPSAntenna

ItineraryPOIOrder CategoryPOIOrder

SimpleInterface
TimeOfDay

Morning

NightAfternoonColoredCategory

RefreshPOIMap

LowMemory

Tour

ConnectivityLowMemory

Figure 9.2: Refactored context configuration diagram for the Mobile City
Guide.

Here we discuss the design choices used to solve the inconsistencies identified in the
previous section.
(inc.1) The first inconsistency is addressed by applying three modifications to the

context model. First of all, we introduce the FreeWalk context to manage
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non-guided tours as part of the system’s adaptations, rather than using it as
the default behavior of the application. We turn the default behavior of the
application to simply displaying the selected POIs in no particular order. Sec-
ondly, we abstracted the two existing options to follow a tour, GuidedTour and
FreeWalk, by a new context Tour. Finally, the requirement dependency rela-
tion ItineraryPOIOrder–JGuidedTour becomes ItineraryPOIOrder–JTour.
These modifications of the model, allow the POIs to be ordered in both Tour
modes. If there is no tour being followed, there is no need to order the POIs
according to an itinerary. However, other orders, such as CategoryPOIOrder,
may adapt the default behavior.

(inc.2) The second inconsistency is addressed by performing four modifications to
the context model. First, we decouple the selected language by the user from
the default behavior of the application, and add it as an independent context
UserLanguage. Secondly, all other languages associated with a particular
context, are abstracted as a Language context, and each particular language
is treated as a parameter inside the Language context. Thirdly, an exclusion
dependency relation (UserLanguage�–�Language) is defined between these
two contexts. Fourth, the two language contexts are joined in a disjunction
context UserLanguage||Language. This context is used as the entry point of
all other contexts that require a language to communicate to the user. For
example, VideoStream–JUserLanguage|Language. Finally, we add a new
Positioning context which is in charge of all services related to the user’s
geographical position. In particular it suggests the language to be used by the
application, Positioning - -BLanguage. The inconsistency of the language
behavior is avoided because there must be only one language active in the
application. All functionality related to user interaction uses that language.

(inc.3) The third inconsistency is addressed by applying one modification to the con-
text model. To solve this inconsistency we create a dependency relation be-
tween the different times of the day, Afternoon, Night, and Morning contexts,
and the context abstracting all of them. We create causality dependency rela-
tions between each of these contexts and the TimeOfDay context, for example,
Morning–BTimeOfDay. The inconsistency is resolved now as the two contexts
are activated simultaneously.

(inc.4) The fourth inconsistency is addressed by applying one modification to the con-
text model. To avoid the contradicting behavior between the Connectivity
and LowMemory contexts, we create a conjunction context composed of each of
these contexts. The behavioral adaptations associated with the conjunction
context ConnectivityLowMemory disambiguates any contradictory behavior
that may exist whenever the two component contexts are active.

9.1.4 Evaluation
To evaluate the usefulness of CoPNs for the analysis of COP systems, we reused an
existing application developed in Subjective-C and used CoPNs to test the definition
of contexts and context dependency relations for incoherences and inconsistencies
between the expected and observed behavior of the application.

In order to analyze the Mobile City Guide using CoPNs it was not required to
manipulate the original definition of contexts and context dependency relations in
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Subjective-C. Using the automatic generation of capacities and analysis test cases,
CoPNs allow us to reason about COP system. From the analyses performed in Sec-
tion 9.1.2, it was possible to observe that the generated analysis test cases provide a
wide view on possible incoherent definitions of contexts. As a matter of fact, these
test cases also aided in the identification of an inconsistency in application behav-
ior. Nonetheless, we do note the usefulness of defining additional test cases based on
the domain knowledge and the expected behavior of the system. Using additional
test cases for the analysis of the application it was further possible to identify in-
consistencies in its behavior. Section 11.4.2 discusses how additional cases could be
automatically generated to analyze inconsistent application behavior according to the
different behavioral adaptations defined in the system.

Usefulness of CoPNs is also observed from the definition of activation bounds for
specific contexts. In Subjective-C, whenever the activation of a context requires ad-
ditional management to take into account its activation count, the programmer is
required to manage the activation of the context manually —that is, to explicitly
express the allowed and disallowed cases for the activation of the context. Using
CoPNs it is possible to assign bounds to contexts when they are being defined. The
context activation automatically manages the allowed and disallowed activation con-
ditions given by the bound, for example in the case of the adaptations related to
the TimeOfDay in Figure 9.2. Hence, the use of place capacities avoids the burden of
managing activation state of contexts.

The revisited Mobile City Guide application is used as an example showing how
the results provided by the analysis of the system can be used. The application was
stripped of all incoherences, inconsistencies, and unnecessary context management
code. The modifications of the application mostly required the modification of the
definition of the contexts and context dependency relations. Only localized modi-
fications to the code were required, for example, to remove the code managing the
context activation, such modification are not shown as it is not the objective of the
case study.

9.2 Flexible Scoping of Adaptations Using CoPNs

This section evaluates CoPNs with respect to their appropriateness as a formalism for
COP systems. In particular this section demonstrates how the formal basis of CoPNs
could be used to extend the programming model of COP systems.

Remember from Section 4.1.3 that one of the descriptive characteristics of COP sys-
tems is the scoping of adaptations (property COP.8). COP languages provide scoping
of adaptations to a local thread of execution, or global to all threads of the applica-
tion. Using CoPNs, we can extend the regular scoping mechanism of COP languages
to allow global and local activations of a context. A differentiation between context
activations is beneficial for enabling behavioral adaptations for particular threads
or object instances. In this dissertation we adhere to the delimitation specificity
property (COP.8) in the scoping characteristics of COP languages. Local activations
are understood to be context activations taking place in a particular thread, while
global activations are understood to be context activations taking place for all run-
ning threads in the system. A local context activation implies that a context and its
associated behavioral adaptations are only available in the threads which the context
is activated for. All other threads in the system are oblivious to the behavioral adap-
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tations introduced by the context. An experiment to support local and global scoping
of adaptations was already proposed in Subjective-C [153]. In this section we present
an alternative implementation for local scoping of adaptations which subsumes that
previously provided one in Subjective-C. The most important difference between the
original implementation and the one presented here, is that CoPNs allow and manage
the interaction between global and local contexts [32].

9.2.1 Moving Triangles Application
Before diving into the details of how global and local scoped adaptations are reified
by means of CoPNs, we provide an example application that illustrates the required
support for global and local context activations [153]. This application consists of a
canvas on a mobile device’s screen, onto which a set of triangles can be drawn.

The application behavior is given by an independent thread per triangle drawn,
that autonomously moves it forward on the canvas. The direction in which a single
triangle moves can be modified to one of four directions (Up, Down, Left, or Right),
each of them represented by a context and specializing an abstract Direction context.
The direction in which a triangle moves dictates the color of the triangle. A Color
context is used in combination with the Direction context to give triangles a specific
color. The application also allows logging the movement of a triangle on the canvas
by means of the Log context. The Direction, Color, and Log behavioral adaptations
should be independent for each triangle. Additionally, the application presents two
behavioral adaptations that all existing triangles in the application should exhibit. A
Dashed context draws all triangles with a dashed line instead of a solid line. A Pause
context pauses the movement of all triangles. An example of the application state is
shown in Figure 9.3.

The moving triangles application already shows the convenience of providing global
behavioral adaptations (e.g., Pause triangles’ movement) and local behavioral adap-
tations (e.g., Log a triangle movement). If only one of the two scoping mechanisms is
used, either only local activation or only global activations, the behavior provided by
the other technique must be manually supported by programmers, which can render
the development of the system more complicated and harder to maintain.

9.2.2 Supporting Global and Local Adaptation Scoping
Up to this point we have only discussed how COP systems are structured, and how
CoPNs allow us to manage and reason about these systems. All context activations
and deactivations discussed so far are global context activations, as this is the scop-
ing mechanism natively supported by Subjective-C. To introduce local contexts (i.e.,
contexts for which the associated behavioral adaptations only affect the behavior of
a single thread of execution) we take advantage of the thread model provided by
Objective-C and Colored Petri nets [99].

Colored Petri nets extend the basic Petri net model by adding colors to tokens
(a color can be seen as the type of the token). Transitions may be enabled for a
particular color, thus transition firing is modified to take into account the color of
input and output tokens.

Definition 9.1. A CoPN with support for global and local context activations is a
CoPN as defined in Definition 6.1, in which black tokens represent global activations
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• A color: depending on its orientation.
• A line type: dashed or not.

In additional to these properties, the user has the possibility to temporarily pause the triangle
and to log its movements.

The triangle automatically changes its direction to the opposite one when it hits one of the
screen boundaries.

Figure 1: Triangles case study explanatory screenshot

Figure 1 illustrates the application with a triangle moving upwards, drawn with dashed cyan
lines.

Contexts

The application is made of several contexts:

• Orientation: used to define the orientation of each triangle.
• Pause: used to pause the triangles moves.

CONTENTS ix

• Logging: used to log a selected triangle’s moves.
• Dashed: used to dash the triangles lines.

The context Orientation is refined into two sub-levels. The first sub-level is made of the
contexts Horizontal and Vertical representing the orientation of a triangle as horizontal or
vertical. The second sub-level is made of the contexts Left, Right, Up and Right. Left and
Right refine Horizontal by representing the concrete orientations left or right. On the other
side, Up and Down refine Vertical by representing the concrete orientation up or down.

The more general contexts can be useful when one needs to define a more general action. It can
also be powerful for deactivating an orientation context without knowing what is the triangle
current orientation.

Figure 2 illustrates the context graph of Triangles. Further information about the notation used
in this graph is given in Section 2.3.1.2. For the moment, keep in mind that this graph mainly
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Figure 2: Triangles case study context graph

specifies that none of Up, Down, Left and Right can be active at the same time for a same
triangle. The graph also specifies the refinement levels between the orientation contexts.

Benchmark Operating Procedures

This dissertation contains several benchmarks in order to quantify the performance of Subjective-
C 2.0. The benchmarks have been executed on a MacBook with a 2.4 GHz C2D processor with
2 GB of RAM, running under Mac OS X 10.6.

Except if explicitly indicated, those benchmarks have been performed with Xcode Instruments
by repeating a same experiment between 10000 and 50000 times and using the average result-
ing value. Xcode Instruments provide simple tools for measuring or profiling programs with
few overhead.
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Figure 9.3: Screenshot of the moving triangles application [153].

and colored tokens represent local activations. In the following we refer to these CoPNs
as scoped CoPNs.

The visual representation of a colored CoPN is illustrated in Figure 9.4 for the Log
context of the moving triangles application.

Pr(Log)

req(Log) act(Log)

Log

req(¬Log)

Pr(¬Log)

deac(Log)

Figure 9.4: Three local activations for the Log context.

In scoped CoPNs global and local contexts can interact with each other. To account
for such interaction, enabling and firing of transitions is modified as provided in the
following definitions.

Definition 9.2. In a scoped CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, a transi-
tion t ∈ Te ∪ Ti is enabled for a color l ∈ L at a reachable marking multiset m of
P if and only if, ∀ p ∈ •t, m(p, l) + m(p, black) > f(p, t, l) and ∀ p ∈ ◦t, m(p, l) =
0 ∧m(p, black) = 0.

Definition 9.3. In a scoped CoPN P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, let m be
a marking multiset, and t ∈ Te ∪ Ti a transition such that m[t〉. A marking multiset
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m′ is reachable from m by firing t, m[t〉m′, for a color l ∈ L if and only if ∀ pout ∈
t•, m′(pout, l) = m(pout, l) + f(t, pout, l) and ∀ pin ∈ •t

m′(pin, l) =


m(p, l′)−m(pin, l) if m(pin, l) < f(pin, t, l), ∀l′ ∈ L
m(pin, l)− f(pin, t, l

′) if l = black, ∀ l′ ∈ L
m(pin, l)− f(pin, t, l) otherwise

Note that the conditions for enabling and firing transitions in scoped CoPNs take
into account two sets of colors from the marking multiset. This is to enable interaction
between global and local context activations. For every context marked with a black
token, its associated behavioral adaptations are made available for all running threads
in the applicaiton. Each thread in the application is identified by a unique token color.
Contexts are marked with a colored token if they were activated for a given thread,
in such a case behavior adaptations associated with the context are only available
whenever the thread used for the activation is running.

If a context is activated globally, because the condition about the surrounding
execution environment is reified for all threads, then in particular, said conditions
are also valid for a specific thread. If the conditions reifying a context activation
are no longer valid globally, then said conditions are not valid for any thread, and
the behavioral adaptations associated with the context are removed from all threads.
This interaction between global and local context activations can be better explained
intuitively using the analogy of color subtractive composition theory.2 In color theory,
the black color can be seen as the subtractive combination of all colors —that is, it
is the result of mixing all colors. In scoped CoPNs global context activations (black
tokens) can be seen as activations in all threads of the system (combining all colors).
Contexts activations for particular threads, can depend or be influenced by global
context activations, since black is any other color in particular.

Whenever context activations depend on other contexts through context depen-
dency relations, the interaction between the two contexts takes into account the
thread in which each of them is activated. If the activation of a context depends
on a second context, the latter context can be active both globally, or in the same
thread the former context is to be activated in. If the deactivation of a context gener-
ates de deactivation of a second context and the former context is being deactivated
globally, the latter context is also deactivated even if it is only active in one specific
thread. The interaction between global and local contexts in the presence of context
dependency relations is put into practice in the following example.

Example 9.1. As an example of the interaction between local and global context
activations let us take a requirement dependency relation between two contexts C and
D, as shown in Figure 9.5.

Take the initial marking of the scoped CoPN as m0(D, black) = 1. Suppose now
that context C is to be activated in a specific thread threadred. After the firing of the
req(C) external transition with a red colored token, the marking of the CoPN is m1,
where m1(D, black) = 1 and m1(C, red) = 1. Note that the act(C) internal transition
is enabled at marking m1 because the input place D is marked with a black token,
and by subtractive composition also red. Hence, the transition must fire and it yields
the marking m2 where m2(D, black) = 1 and m2(C, red) = 1, as shown in Figure 9.5.

Starting from the state shown in Figure 9.5, if context D is deactivated globally the
firing of the req(¬ D) external transition yields a marking m3, where m3(D, black) = 1,

2http://www.worqx.com/color/color_systems.htm

http://www.worqx.com/color/color_systems.htm


9.2 Flexible Scoping of Adaptations Using CoPNs 229

Pr(C)

req(C) act(C)

deac(C)

C

req(¬C)

Pr(¬C)

deac(C)

Pr(D)

req(D) act(D) D req(¬D)

Pr(¬D)

deac(D)

Figure 9.5: Global and local context activation interaction.

m3(Pr(¬D), black) = 1, and m3(C, red) = 1. With this marking the deac(D) internal
transition is enabled, and it fires. The firing of the transition leads to marking m4,
where m4(D, l) = 0, ∀l ∈ L, and m4(C, red) = 1. Note that the bottommost in-
ternal transition labeled deac(C) becomes enabled because the deactivation is being
performed globally, so, in particular, the red thread is also being deactivated. The
firing of this transition leads to an empty marking. If context D is deactivated locally
for the red thread, the process is equivalent.

In order to extend the scoping mechanism of COP systems using our formalism
of scoped CoPN, as explained above, the selection mechanism of behavioral adapta-
tions must be modified. At the language level, the context activation constructs are
modified to take into account the specific threads for which a context is to be ap-
plicable. The constructs @activate(context in thread) and @deactivate(context in
thread) are introduced with this purpose, where thread is a running thread defined in
the application. For example, in Figure 9.5 the Log context has been activated for
two particular threads. One thread tG associated to color green, and one thread tR
associated to color red. Respectively, these activations are @activate(Log in tG) and
@activate(Log in tR). Additionally, the selection mechanism of behavioral adapta-
tions is modified to take into account the activation thread of each context. Scoped
CoPNs reuse the method dispatching mechanism introduced in Subjective-C to deal
with local and global context activations and method calls [153].

Snippet 9.1 shows a code extract of the moving triangles application that illustrates
how global and local contexts are used. In the snippet we assume to have two triangles:
triangle tG running on thread tTG, and triangle tB running on the thread tTB.

Triangles start to move independently based on their direction. If we want to log
the movements for triangle tG, it is necessary to activate the Log context in the thread
in which the triangle is running (Line 9 in Snippet 9.1). After the context has been
activated (supposing the activation does not yields an inconsistency) all movements
of triangle tG are logged. However, the movements of triangle tB remain unlogged.
To modify the behavior of all moving triangles, we can use a global adaptation as the
one shown in Line 11, which draws all triangles with a dashed line, since the context
activation took place globally.
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1 // Definition of the two triangles
2 Triangle *tG = [[ Triangle alloc ] initWithCenterPoint : aPoint movingBounds←↩

:[ trianglesView bounds ]];
3 NSThread *tTG = [[ NSThread alloc ] initWithTarget :tG selector :@selector(←↩

startMoving :) object :nil ];
4 tG. movingThread = tTG;
5 Triangle *tB = [[ Triangle alloc ] initWithCenterPoint : aPoint movingBounds←↩

:[ trianglesView bounds ]];
6 NSThread *tTB = [[ NSThread alloc ] initWithTarget :tB selector :@selector(←↩

startMoving :) object :nil ];
7 tB. movingThread = tTB;
8 // Movement of first triangle is logged
9 @activate(Log in tTG);

10 // Both triangles drawn with dashed lines
11 @activate( Dashed );

Snippet 9.1: Effect of global and local context activations from the language
perspective.

9.2.3 Evaluation
To evaluate the appropriateness of CoPNs for the extension of COP systems, we used
colored CoPNs, a mechanism to support local and global scoping of context activations.
Moreover, we validated the approach by means of an application initially developed
in Subjective-C and rebuilt it using the CoPN implementation of Subjective-C.

In order to rebuild the Subjective-C application with CoPNs, it was sufficient to
modify the definitions of the contexts and context dependency relations to use the DSL
language of Table 6.1. To introduce local and global context activations, Subjective-C
explicitly differentiates between local and global contexts —that is, a contexts that
can be activated either locally or globally, but not with both scoping mechanisms.
This implies that in Subjective-C’s DSL it must be specified which contexts are local
and which contexts are global. A consequence of this design choice, is that global and
local contexts do not interact with each other.

In CoPNs, we opted for allowing interaction between local and global contexts ac-
tivations for two reasons. First of all, interaction between local and global contexts
renders systems more flexible and dynamic. For example, the Dashed context of the
moving triangles application can be activated for a single triangle. If context ac-
tivations are kept independent, it is necessary to generate more event messages for
context activation, which may not always make sense. For example, if a context is
made inactive globally, why should events be generated to make it inactive locally.
Secondly, differentiating between local and global contexts pollutes the definition and
reasoning about contexts. Using CoPNs, it is possible to provide local and global con-
text activations simply by giving a semantics to the marking multiset by means of
colored tokens. The run-time management of the system required minimal modifica-
tion to adhere to the semantics of the interaction between global and local context
activations.

The local or global activation of contexts in Subjective-C is tightly coupled with
the notion of threads. However, local or global context activation can take place
with respect to objects and classes, or local and remote services. To adapt the con-
cepts of local and global activations to any of these ideas, the complete Subjective-C
scoping and selection mechanisms have to be revisited. Using scoped CoPNs, on the
contrary, only the conditions in which each local or global activation occurs need to
be changed. The logic of the activation of contexts and their interactions remains
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valid. Section 11.4.4 expands the discussion about the selection mechanism of CoPNs.

9.3 Extending Context Dependency Relations
In this section we evaluate the extensibility of CoPNs with respect to their modeling
power and ease to define and express different interactions between contexts (i.e.,
context dependency relations). To illustrate this extensibility we provide in the fol-
lowing the definition of two new context dependency relations using CoPNs, namely
disjunction and suggestion, respectively represented by the symbol types ∨ and S.

9.3.1 Disjunction
We first introduce the disjunction context dependency relation. Similarly to the
conjunction dependency relation introduced in Definition 6.17, the disjunction depen-
dency is not manipulated directly, but its activation and deactivation depend on the
activation state of its related contexts.

A disjunction dependency relation can be defined between any number of contexts,
used to represent situations in which the same behavioral adaptation may be appro-
priate to different contexts, and hence, is made available when any of such contexts
becomes active. The disjunction dependency relation is implemented in the EventCJ
COP language as part of the composite layers abstraction [104, 105], and it follows
the semantics of the logical or (∨) operator.

The disjunction dependency relation gathers the interaction between a set of con-
texts. To mange such interaction we introduce a new context place, p′ labeled
A1| · · · |An, representing the contexts involved in the dependency relation as a unit.
The p′ context place cannot be directly manipulated —that is, it cannot be activated
by firing external transitions. Instead the context place is automatically activated
whenever one of the source contexts involved in the dependency relation Aj become
active. As a consequence, if all the contexts Aj are inactive, it must be ensured that
the new context place p′ is not marked.

Definition 9.4 (Disjunction). The disjunction dependency relation for a set of
contexts (–� (A1, . . . , An)) is defined as a tuple 〈∨, CA1 , . . . , CAn〉, such that for 1 ≤
j ≤ n, the singleton CoPNs CAj are pairwise different. The composed CoPN defining the
disjunction dependency relation, P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉, is obtained
by the union of all singleton CoPNs, P = union({CA1 , . . . , CAn}), and the application
of the ext∨ and cons∨ functions to P.

The ext∨ function is defined as ext∨(P, 〈∨, CAi , . . . , CAn〉) = P ′, between the single-
ton CoPNs CAj = 〈PcAj

, PtAj
, TeAj

, TiAj
, fAj , f◦Aj

, ρAj ,LAj ,m0Aj
,ΣAj , λAj 〉, such

that for 1 ≤ j ≤ n, CAj ⊂ P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and
P ′ = 〈P ′c, P ′t , Te, T

′
i , f
′, f◦, ρ

′,L,m0,Σ′, λ′〉, where:

Σ′ = Σ ∪ {A1| · · · |An, P r(A1| · · · |An), P r(¬A1| · · · |An), act(A1| · · · |An), deac(A1| · · · |An)}

P ′c = Pc ∪ {p′}
P ′t = Pt ∪ {p′′, p′′′}
T ′i = Ti ∪ {t′, t′′}
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λ′(e) =



λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

A1| · · · |An if e = p′

Pr(A1| · · · |An) if e = p′′

Pr(¬A1| · · · |An) if e = p′′′

act(A1| · · · |An) if e = t′

deac(A1| · · · |An) if e = t′′

ρ′(t) =
{
ρ(t) if t inTe ∪ Ti

2 if t = t′ ∨ t = t′′

f ′(p, t, l) =



f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if p = p′′ ∧ t = t′ ∧ l ∈ L
1 if p = p′′′ ∧ t = t′′ ∧ l ∈ L
1 if p = p′ ∧ t = t′′ ∧ l ∈ L
0 otherwise

f ′(t, p, l) =


f(t, p, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti, ∧ l ∈ L
1 if t = t′ ∧ p = p′ ∧ l ∈ L
0 otherwise

f ′◦(p, t) =
{
f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

0 otherwise
The ext∨ function introduces a new context place to represent the activation state
of any of the component contexts —that is, the context place is marked whenever
one of the context involved in the disjunction dependency relation is active. The
introduced internal transitions and temporary places are used to manage the activation
and deactivation of the new context place.

The cons∨ function is defined as cons∨(P, 〈∨, CA1 , . . . , CAn〉) = P ′, for the single-
ton CoPNs CAj = 〈PcAj

, PtAj
, TeAj

, TiAj
, fAj , f◦Aj

, ρAj ,LAj ,m0Aj
,ΣAj , λAj 〉, such

that for 1 ≤ j ≤ n, CAj ⊂ P and P ′ = 〈Pc, Pt, Te, Ti, f
′, f◦, ρ,L,m0,Σ, λ〉, where

∀ p ∈ Pc ∪ Pt, ∀ t ∈ Te ∪ Ti and ∀ l ∈ L,

f ′(p, t, l) = f(p, t, l)

f ′(t, p, l) =



1 if Aj ∈ t • ∧ Aj /∈ •t for 1 ≤ j ≤ n
∧ p = p′′ ∧ l ∈ L (9.1)

1 if Aj ∈ t • ∧ Aj /∈ •t for 1 ≤ j ≤ n
∧ p = p′′′ ∧ l ∈ L (9.2)

f(t, p, l) otherwise (9.3)

The cons∨ function adds arcs from the activation and deactivation transitions of
each of the contexts composing the disjunction dependency relation. Every time one of
such contexts is activated, the disjunction context place introduced in the ext∨ function
is requested for activation. Similarly, every time one of the component contexts is
deactivated, the disjunction context place introduced by the ext∨ function is requested
for deactivation. As a consequence, the disjunction context place always has as many
tokens as there are tokens in all of the component contexts of the dependency relation.
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Figure 9.6 illustrates the CoPN representing the disjunction dependency relation
〈∨, CU, CL〉 between the contexts Unfocused (U) and LowBattery (L) introduced in
Example 9.2.

Pr(U)

req(U)

act(U) U req(¬U)

Pr(¬U)

deac(U)

act(U|L)
Pr(U|L)

U|L

Pr(¬U|L) deac(U|L)

Pr(L)

req(L)

act(L) L req(¬L)

Pr(¬L)

deac(L)

Figure 9.6: Disjunction dependency relation (–� (U L)).

Example 9.2. We describe the behavior of the disjunction dependency relation in
CoPNs by means of an example first motivated by Kamina et al. [104]. As an example
we use a multi-tabbed message board system. Each tab in the system displays the
record of the messages posted on the message board. The message board should be
updated whenever a message is posted. With the multi-tab view, only the current tab
in focus is updated frequently, unfocused tabs are updated infrequently. Additionally,
in case the device accessing the message board is running low on battery, all of the
tabs are set to update infrequently in order to save battery. In this case an alert
message is displayed to the user.

For a particular tab, the adaptation managing the infrequent update behavior can
be modeled using a disjunction dependency relation. The components of the disjunc-
tion are the conditions in which updates are supposed to occur infrequently, namely
Unfocused (U) and LowBattery (L). The disjunction dependency relation, 〈∨, CU, CL〉,
between the two contexts is shown in Figure 9.6.

For example if the tab t goes out of focus, req(U) is triggered for that tab.3 Since
the internal transition act(U) becomes enabled, it fires adding a token to context U
and forwarding the activation to Pr(U|L). In this case act(U|L) becomes enabled,
and fires adding a token to U|L (the state shown in Figure 9.6). If the tab is focused
again, the req(¬U) transition is fired. As deac(U) fires, U becomes inactive, enabling
deac(U|L) (because L is not active). When such transition fires, none of the contexts
in the CoPN are marked.

3EventCJ provides support for global and local context activations. This example uses that
scoping mechanism for the activation state of each tab. However, the locality of activations
is not important for the purpose of our example.
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9.3.2 Suggestion
The second context dependency relation introduced is suggestion, an extension of
the semantics of the causality dependency relation, presented in Definition 6.14. A
suggestion dependency relation (A - -BB) between two contexts A and B is used to model
the situation in which the activation of the source context A requests the activation of
the target context B. The relation is a suggestion in the sense that A merely suggests the
activation of B but if this context cannot be activated, A is still activated. Additionally,
in case that context B is active, the deactivation of A requests the deactivation of B.
The suggestion dependency relation was first proposed in the PhenomenalGem COP
language [148].

The suggestion dependency relation cannot be represented in the CoPN model as
is. This is due to the conditional constraint over the activation of the target context.
Intuitively, the activation of the source context forwards the activation request to the
target context. If the target context cannot be activated, for example, because of an-
other context dependency relation, the temporary place representing the preparation
to activate the target context is marked, yielding an inconsistent state. According to
the activation semantics described in Section 6.3.1, the activation is rolled back, and
none of the contexts are activated.

To circumvent this problem we take advantage of the priority function ρ for the
prioritization of transition firings in the definition of CoPNs. We need a way to ensure
that the temporary place Pr() for the target context is emptied, hence, avoiding the
inconsistent state. For this purpose, we define a “new” type of internal transition
which we call clearing transitions. Clearing transitions have the same semantics as
internal transitions —that is, they fire as soon as they become enabled. For purposes
of clarity, we represent clearing transitions as the set Tc. Nonetheless, the reader must
remember that clearing transitions are internal transitions Tc ⊂ Ti. However, we will
give clearing transitions a firing priority lower than that of other internal transitions.
Using the priority function, clearing transitions are characterized by their priority
function as Tc = {t ∈ Ti | ρ(t) = 1}.

Notation 9.1.
- Clearing transitions are labeled as cl(·)

Note that introducing clearing transitions does not change the activation semantics
of CoPN. In particular, Reduction rules 6.20 through 6.23 decide which transition to
fire based on the priority of enabled transitions. That is, from the enabled transitions
in the priority set Σ, those transitions with a highest priority are always fired before
those with lower priority, ensuring that all internal transitions fire before any of the
clearing transitions.

The suggestion dependency relation between two contexts A and B, is such that for
every activation of the source context A, the activation of the target B is requested.
However, if B cannot be activated, the activation of A still succeeds. The deactivation
of A automatically triggers the deactivation of B, only if the later was previously active.
If context B is inactive, context A is deactivated without requesting the deactivation
of B. B can be activated and deactivated independently from A.

Definition 9.5 (Suggestion). The suggestion dependency relation between two con-
texts (A - -BB) is defined as the tuple 〈S, CA, CB〉, where CA and CB are two differ-
ent singleton CoPNs. The composed CoPN defining a suggestion dependency relation,
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P = 〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 is obtained by the union of the singleton CoPNs,
P = union({CA, CB}), and the application of the extS and consS functions to P.

The extS function, similar to the extC , is defined as extS(P, 〈S, CA, CB〉) = P ′,
between two singleton CoPNs CA = 〈PcA , PtA , TeA , TiA , fA, f◦A , ρA,LA,m0A ,ΣA, λA〉
and CB = 〈PcB , PtB , TeB , TiB , fB , f◦B , ρB ,LB ,m0B ,ΣB , λB〉, where CA, CB ⊂ P =
〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, T

′
i , f
′, f ′◦, ρ

′,L,m0,Σ′, λ′〉, such
that:

Σ′ = Σ ∪ {cl(Pr(B))}

T ′i = Ti ∪ {t′, t′′}

λ′(e) =


λ(e) if e ∈ Pc ∪ Pt ∪ Te ∪ Ti

deac(A) if e = t′

cl(Pr(B)) if e = t′′

ρ′(t) =


ρ(t) if t ∈ Tc ∪ Ti

2 if t = t′

1 if t = t′′

f ′(t, p, l) =
{
f(t, p, l) if t ∈ Te ∪ Ti ∧ p ∈ Pc ∪ Pt ∧ l ∈ L
0 otherwise

f ′(p, t, l) =



f(p, t, l) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti ∧ l ∈ L
1 if λ(p) = A ∧ t = t′ ∧ l ∈ L
1 if λ(p) = Pr(¬A) ∧ t = t′ ∧ l ∈ L
1 if λ(p) = Pr(B) ∧ t = t′′ ∧ l ∈ L
0 otherwise

f ′◦(p, t) =


f◦(p, t) if p ∈ Pc ∪ Pt ∧ t ∈ Te ∪ Ti

1 if λ(p) = B ∧ t = t′

0 otherwise
The newly introduced by the extS function, t′ labeled deac(A), manages the interac-

tion for the deactivation of the source context whenever the target context is inactive.
This case can arise through the deactivation of the target context, since it is indepen-
dent of the source context. Transition t′′, labeled cl(Pr(A)), is introduced to remove
a request to activate B that cannot be processed. This transition is the last internal
transition to fire because it has the lowest priority. The use of this clearing transition
is to allow the activation of the source context A, even if the target context B cannot
be activated.

The consS function, similar to consC , is defined as consS(P, 〈C, CA, CB〉) = P ′,
between two singleton CoPNs CA = 〈PcA , PtA , TeA , TiA , fA, f◦A , ρA,LA,m0A ,ΣA, λA〉
and CB = 〈PcB , PtB , TeB , TiB , fB , f◦B , ρB ,LB ,m0B ,ΣB , λB〉, where CA, CB ⊂ P =
〈Pc, Pt, Te, Ti, f, f◦, ρ,L,m0,Σ, λ〉 and P ′ = 〈Pc, Pt, Te, Ti, f

′, f◦, ρ,L,m0,Σ, λ〉, such
that

f ′(p, t, l) =


1 if λ(p) = B ∧ A ∈ •t ∧ A /∈ •t ∧

B /∈ ◦t ∧ l ∈ L (9.4)
f(p, t, l) otherwise (9.5)
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f ′(t, p, l) =



1 if λ(p) = B ∧ A ∈ •t ∧ A /∈ •t ∧
B /∈ ◦t ∧ l ∈ L (9.6)

1 if λ(p) = Pr(¬B) ∧ A ∈ •t ∧ A /∈ t • ∧
B /∈ ◦t ∧ l ∈ L (9.7)

1 if λ(p) = Pr(B) ∧ A ∈ t • ∧ A /∈ •t ∧ l ∈ L (9.8)
f(p, t, l) otherwise (9.9)

The arcs introduced by the consS are used to forward the deactivation of the source
context to the target context, whenever the source context is deactivated and the target
context is active, Equations (9.4), (9.6), and (9.7). The behavior provided by these
constraints complements the deactivation rule for the source context introduced by
the extS function. Additionally, every activation of the source context requests the
activation of the target context, given that the source context is not an input place of
such transition, Equation (9.8).

Figure 9.7 illustrates the CoPN representing the suggestion dependency relation
〈S, CM, CQ〉 between the Meeting (M) and Quiet (Q) contexts introduced in Exam-
ple 9.3.

Pr(M)

req(M)

act(M)

deac(M)

M

req(¬M)

Pr(¬M)

deac(M)

Pr(Q)req(Q)

act(Q)

act(N)

Q req(¬Q) Pr(¬Q)

deac(Q)

cl(Pr(Q))

Pr(N)req(N) N req(¬N) Pr(¬N)

deac(N)

Figure 9.7: Suggestion dependency relation (M - -BQ) and exclusion dependency
relation (Q�–�N).

Example 9.3. We describe the behavior of the suggestion dependency in CoPNs by
means of the example motivated in PhenomenalGem. As an example motivating the
need for the suggestion dependency relation, let us take the prototypical example of
the context-aware phone forwarding system. In this scenario the user of a mobile
device wishes to forward calls received during a Meeting (M) to a third person, for
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example a colleague or the secretary. Additionally, the user wants to be aware of the
calls, but does not want to be disturbed. Therefore, the phone goes into Quiet (Q)
mode, where no ringtone or vibration is used, a light is used to signal the call. How-
ever, the quiet mode is only used if the environment noise is not too high. Suppose the
user enters a meeting, in which there is a perceivable high level of noise. As the user
is entering a meeting, the Quiet contexts should be activated (as a forwarding request
from the activation of the Meeting context). However, a Noisy context is active (due
to the sensed noise level) impeding the Quite context from becoming active. The
interaction between these three contexts is shown in Figure 9.7. Using the suggestion
dependency relation, instead of requesting the activation of the context Quiet, the
context Meeting merely suggests its activation. As Quiet cannot be activated, the be-
havior of the application would be a call forwarding, while playing the user’s ringtone,
which is a more adequate behavior given the surrounding execution environment.

The activation semantics of this scenario is as follows: When the activation for the
meeting context is requested, transition req(M) is fired. At this point the only enabled
transition is act(M), which fires adding a token to context place M and temporary place
Pr(Q) (the state shown in Figure 9.7). At this point the enabled transitions are act(Q),
and cl(Pr(Q)). However, since act(Q) has a higher priority, it is the fired transition.
Firing the act(Q) transition adds a token to context place Q, and disables the cl(Pr(Q))
transition. Since there are no more internal transitions to be fired, the CoPN reaches
a consistent state.

Suppose now that the Noisy context is already active in Figure 9.7. In this setting
after firing the act(M) internal transition, the only enabled internal transition is the
clearing transition cl(Pr(Q)), act(Q) is not active due to the inhibitor arc from N. This
transition must fire, and its firing yields a state in which the only marked places are
M and N, which is a consistent state.

9.3.3 Composition and Correctness Results
Now that we have introduced two new context dependency relations we must revisit
Theorem 6.1 to ensure that the introduced relations can be effectively composed
with the previously defined ones (Definitions 6.13 through 6.17). The two context
dependency relations must also ensure that the intended semantics of the relation is
preserved for any kind of CoPN.

Extended result of Theorem 6.1
Proof. Again, let us suppose a context dependency relation 〈R, CA1 , . . . , CAn , CB〉 with
associated functions extR and consR, where the singleton CoPNs CAj are the source
contexts of the dependency relation for 1 ≤ j ≤ n, and CB is the target singleton CoPN
of the dependency relation.

First, note that the all enabling conditions defined in Equations (9.1) through (9.7)
are covered by the two enabling conditions Aj ∈ t • ∧ Aj /∈ •t or Aj ∈ •t ∧ Aj /∈
t • ∧ B /∈ ◦t. Consequently, we must prove that none of the new arcs interferes with
such conditions. Secondly, note that Equations (9.4) through (9.7) correspond exactly
to Equations (6.4) through (6.7). Since the arcs added by the suggestion dependency
relation do not invalidate any of the enabling conditions, and thus the consS function
can be applied in any order with all other consR functions.
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Aj ∈ t • ∧ Aj /∈ •t: Equation (9.1) introduces an arc from the activation transitions of
the source context places to the preparing to activate temporary place intro-
duced in function ext∨. Similarly, Equation (9.2) introduces an arc from the
deactivation transitions of the source context places to the preparing to deac-
tivate temporary place introduced in function ext∨. None of these equations
invalidate the enabling condition of other context dependency relations. Hence,
the cons∨ function can be applied in any order with all other consR functions.

Aj ∈ •t ∧ Aj /∈ t • ∧ B /∈ ◦t: In the case of this enabling condition the reasoning is
similar to that given for the previous case, since the cons∨ only adds arcs to
temporary places, the enabling conditions of the transitions are not invalidated.
Consequently, the cons∨ function can be applied in any order with all other
consR functions.

Since none of the newly introduced arcs interfere with the enabling rules, we can
assert that the consR functions can be applied in any order for the seven context
dependency relation types {E,C, I,Q,∧,∨, S}.

Correctness We now illustrate how the intended behavior of the new context depen-
dency relations is preserved when these context dependency relations are composed
into general CoPNs.

Disjunction dependency relations add places and transitions by means of the ext∨
function to mange the activation state of all the contexts involved in the de-
pendency relation. The state of all contexts is represented by a new context
place, labeled A1| · · · |An. Tokens are added to the new context place when-
ever one of the source contexts becomes active. This situation is ensured by
adding an arc from every transition activating the source contexts, to a newly
introduce preparing to activate temporary place (managing the activation of
the new context place). This behavior is ensured because these arcs are added
by the cons∨ function after all transitions have been introduced in the CoPN.
Similarly, the new context place should not be marked if none of the source
context involved in the context dependency relation are active. This situation
is managed by requesting the deactivation of the new context place every time
one of the source contexts gets deactivated by adding an arc form every de-
activation transition of the source contexts to the new preparing to deactivate
temporary place introduced by the ext∨ function.
The arcs, places, and transitions introduced by the ext∨ and cons∨ functions
ensure that new context place is marked as long, and as many times, as the
source contexts involved in the dependency relation are marked.

Suggestion dependency relations have the same structure of causality dependency
relations, which means that the dependency relation behaves correctly when
composed in a general CoPN as it was illustrated in Section 6.2.2. It is only left
to check that the source context of a suggestion dependency relation can still
be activated in the case the target context cannot be activated. This case is
managed by the clearing transition introduced in the extS function. For every
activation transition of the source context, the activation of the source context
is requested. However, if the later activation cannot be processed (e.g., because
the activation transition of the target context is not enabled) then the clearing
transition becomes enabled and fires. This avoids reaching an inconsistent state
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of the CoPN, thus, the source context can be effectively activated even if the
target context cannot be activated.

9.3.4 Evaluation
To evaluate the extensibility of CoPNs we show how the definition of context depen-
dency relations can incorporate new interactions between contexts. The introduction
of new context dependency relations does not require us to modify the consistency
verification of the system, new context dependency relations are verified in the same
way as those already defined in the system. This section introduces two new context
dependency relations, namely disjunction and suggestion.

We first introduced the disjunction dependency relation. As claimed in Section 6.2.2,
the introduction of new context dependency relations only requires us to express the
constraints representing the interaction between the contexts, that the CoPN must sat-
isfy. This was illustrated by the introduction of the disjunction dependency relation,
which only requires the definition of four dependency constraints to introduce an new
kind of interaction between an arbitrary number of contexts. Note that the introduc-
tion of the disjunction dependency constraint, as it was the case of the conjunction
dependency constraint, defines a context that cannot be activated or deactivated di-
rectly, but rather it is activated according to the conditions of other defined contexts.
Nonetheless, this seemly new fundamental way of context activation does not require
any modification to the activation semantics of CoPN. Similar approaches as compos-
ite layers do require to modify the formal basis behind the activation of contexts to
account for these kinds of interactions between contexts [105].

Introduction of the suggestion dependency relation, however, required more of work.
This is due to the fact that the firing semantics CoPNs do not manage conditional
firing of transitions. The suggestion dependency relation requires us to test for the
possibility of activating a context. The outcome of such a test differs according to
whether the conditions of the test are met or not. In order to account for such a
decision process, we added (conceptually) a new element to the CoPN model, namely
clearing transitions. However, the firing semantics of the model’s execution were not
changed. Clearing transitions keep the semantics of the system by taking advantage
of the firing facilities provided in the definition of static transition priorities. The
conditional flow of tokens is managed by transitions of different priorities.

9.4 Context Petri Nets Performance Evaluation
To round up the evaluation of CoPNs, we conduct in this section a performance anal-
ysis of our run-time model. As mentioned previously, the objective of CoPNs is to
provide a sound basis for the development of Dynamically Adaptive Software Sys-
tems. The developed basis in this dissertation presents a run-time model to manage
the consistent activation and deactivation of adaptations during program execution.
Since we are reasoning dynamically about the state of adaptations as they become
active and inactive, it is expected we observe a decrease in the overall performance
of systems at run time. In this section we evaluate the performance of the CoPN run-
time model with respect to the performance of the execution of Subjective-C. The
purpose of this evaluation is to verify if the CoPN model can be effectively used for a
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running application, or whether the performance overhead is so large that it renders
Dynamically Adaptive Software Systems unusable.

The benchmarks were run on an Apple MacBook Pro with 2.53GHz Intel Core
2 Duo processor and 4GB of RAM running OSX version 10.7.4 and the LLVM 3.0
implementation of Objective-C 2.0.

Our analysis is based on the activation and deactivation of a context in differ-
ent situations with respect to its activation state and context dependency relations.
Six different benchmarks were run. Each benchmark was run 5 times and in each
benchmark a context was activated and deactivated 1000 times. Figure 9.8 shows
the results of these benchmarks, counting the average time (in milliseconds) for the
(de)activations.

Figure 9.8 shows the different executed performance analyses. Each of the graphs
shows a time in milliseconds (y-axis) vs. size of contexts defined in the system (x-
axis). Figure 9.8a shows, respectively, the activation of a context, the deactivation
of an inactive context, and the deactivation of an active context, for CoPNs (left
column) and Subjective-C (right column). Figure 9.8b shows the time to activate and
deactivate a context at the beginning of a chain of implication dependency relations,
depending on the length of that chain. Figure 9.8c shows the time to activate and
deactivate a a context belonging to a graph of contexts, where every context is in an
exclusion dependency relationship with the other contexts in that graph. Figure 9.8d
shows the time to activate and deactivate a context in a cycle of exclusion dependency
relations, where each context excludes the following and the last context excludes the
first. Figure 9.8e shows the time to activate and deactivate a context that has an
exclusion dependency relation with all other defined contexts. Figure 9.8f shows the
time to activate and deactivate a context that has an implication dependency relation
with all other defined contexts . Figures 9.8b to 9.8f show the activation/deactivation
tests for a varying number of contexts, from 5 to 50.

Although there is a (sometimes considerable) overhead for the activation of contexts
using CoPN, the overhead was expected due to the fact that CoPN executes additional
checks dynamically to ensure the system’s consistency. Moreover, the increase in the
execution time as the number of contexts increases can be explained by the way in
which context activation requests propagate through the CoPN. A request must be
issued for every context. Thus, the time to activate a context increases as the number
of contexts increases.

For a small number of contexts (between 5 and 10) CoPNs’s execution time remains
comparable to that of Subjective-C. Regardless of the number of contexts defined
and the types of context dependency relations defined among them, in the worst case
scenario the execution time remained under half a second, which is still acceptable.
Note that the worst performing cases (a chain of implication dependency relations
between 50 contexts, and a complete graph of 50 contexts of exclusion dependency
relations) are unlikely in a real world application. Even more, remember from Sections
9.1 and 9.2 that we reused two applications previously developed with Subjective-C,
in the setting of CoPNs. In both cases, there was no perceivable difference in the user’s
experience when running either the Subjective-C version or the CoPNs version.

The current implementation of CoPNs is optimized. However, optimization to in-
crease its performance could be envisioned. Section 11.4.4 discusses some possibilities
that can be implemented in CoPNs to improve its run-time performance.
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(a) Single context (de)activation.
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(c) Complete exclusion graph.
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complete CoPN Subjective-C
5
10
30
50

0.0556961356 0.0308718
0.0411769952 0.0275922
0.2383574916 0.0281574
1.1129330456 0.0284106

0

0.3

0.6

0.9

1.2

1.5

5 10 30 50

Complete Exclusion Graph

CoPN Subjective-C

cycle CoPN Subjective-C
5
10
30
50

0.0472932048 0.0330968
0.0668364984 0.0313684
0.0889806384 0.0295678
0.2212335548 0.0343014

star CoPN Subjective-C
5
10
30
50

0.0752734592 0.0348098
0.0902672032 0.030206
0.1011939592 0.0310146
0.3027128648 0.0297192

Chain CoPN Subjective-C
5
10
30
50

0.0500803684 0.0739016
0.2046621712 0.027897

70.41425553 0.0283912
334.822006 0.545747

oneToMany CoPN Subjective-C
5
10
30
50

0.0614862564 0.0736422
0.2737968112 0.0276662
97.930629798 0.0279145
335.79979444 0.5278446

0

0.075

0.15

0.225

0.3

5 10 30 50

Exclusions Cycle

CoPN Subjective-C

0

0.1

0.2

0.3

0.4

5 10 30 50

OneToMany Exclusion

CoPN Subjective-C

0

100

200

300

400

5 10 30 50

Chained Implications

CoPN Subjective-C

0

100

200

300

400

5 10 30 50

OneToMany Implications

CoPN Subjective-C

single context CoPN Subjective-C
activation
inactive
deactivation
active
deactivation

0.0358621052 0.0187268
0.0351732016 0.0180934

0.0334064188 0.0117868

0

0.01

0.02

0.03

0.04

activation
inactive
deactivation

active
deactivation

Single Activation

CoPN Subjective-C

Number of Contexts

tim
e 

(m
illi

se
co

nd
s)

tim
e 

(m
illi

se
co

nd
s)

Number of Contexts

tim
e 

(m
illi

se
co

nd
s)

tim
e 

(m
illi

se
co

nd
s)

tim
e 

(m
illi

se
co

nd
s)

tim
e 

(m
illi

se
co

nd
s)

Number of Contexts Number of Contexts

Number of Contexts

(e) One to many exclusions.
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(f) One to many implications.

Figure 9.8: Benchmark results for the activation and deactivation of contexts
with context dependency relations in CoPNs and Subjective-C.
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9.5 Conclusion
This chapter evaluates CoPNs with respect to three different view points here, its
usefulness, appropriateness, and extensibility. We recapitulate the most important
points demonstrating the benefits of having a theory and sound programming model
for the development of Dynamically Adaptive Software Systems.

First, the formal basis introduced with CoPNs is useful during the development
process of Dynamically Adaptive Software Systems because it allows us to reason
about the definition and interaction between adaptations. The reasoning power of
the CoPN model can be used to identify incoherences and behavioral inconsistencies
in the system, Moreover, it can be used to improve the adaptability of the system,
as Section 9.1 showed. CoPNs also prove to be useful for language designers. The
formal definition of context dependency relations and the reasoning power provided
by CoPNs can help to spot inconsistencies in the language. This was the case in
Subjective-C for the definition of the implication dependency relation, as mentioned
in Section 7.1. Additionally, the support provided in CoPNs by means of the context
activation simulator proved useful to spot another behavioral inconsistency in the case
of the requirement dependency relation, as shown in Section 8.2.

Second, the formal basis introduced with CoPNs proved appropriate for the defini-
tion and modeling of Dynamically Adaptive Software Systems by allowing the use of
the model for the formalization of new scoping mechanisms for adaptations, by means
of colored CoPNs. Colored CoPNs enabled us to cleanly separate local and global
adaptations, while allowing the interaction between adaptations activated locally and
those activated globally, as shown in Section 9.2. The requirement of separating local
and global adaptation is proposed by different types of Dynamically Adaptive Soft-
ware Systems, broadening the scope of applicability of our theory. Even more, this
extension opens the door to study concepts of distribution of Dynamically Adaptive
Software Systems from within the same formal framework used in the specification of
the rest of the systems.

Third, the formal basis introduced with CoPNs is easily extensible to cover new
capabilities and requirements of Dynamically Adaptive Software Systems without the
necessity of modifying the semantics of the system execution. The programming
model of CoPNs is developed as general as possible in order to allow its extensibility
in the future. Section 9.3 shows part of the extensibility of the programming model
by using the definition of static transition priorities to introduce the suggestion de-
pendency relation. However, other aspects of the formal basis can be used to extend
the computational model of CoPNs, covering different types of Dynamically Adaptive
Software Systems. For example, the definition of the flow function can be used to
allow the flow of multiple tokens through arcs, or the marking multiset is used to
integrate colored Petri nets into our programming model.

All along this chapter, we have shown how to use and extend CoPNs to consider other
aspects of Dynamically Adaptive Software Systems. CoPNs can easily be extended by
introducing colors (marking multi-sets), new context dependency relations, or using
the multi-flow arcs (multiple tokens flow through an arc). We can assert that the
programming model presented in this dissertation effectively provides a basis for the
specification, management, and development of more general types of Dynamically
Adaptive Software Systems.



Chapter10
Putting Context Petri Nets in Perspective

The formal basis and programming model developed around CoPNs has proven useful
for the formalization, representation, run-time consistency management, and analysis
of context-aware systems as realized by COP languages. However, the formal basis
of CoPN presented in this dissertation is not restricted to COP systems. The results
and developments of our approach can be translated to the broader class of Dynami-
cally Adaptive Software Systems, or even other systems in which similar adaptation
processes are used.

This chapter evaluates the appropriateness of the formal basis proposed by CoPNs by
revisiting some of the approaches realizing Dynamically Adaptive Software Systems,
discussed in Section 3.1. In the following, we put CoPNs in perspective of two ar-
chitectural approaches, two middleware approaches, and one programming language
approach realizing DASS. For each of the approaches, we describe how the CoPNs
model complies with their requirements, and whether CoPNs could assist in tackling
existing challenges for these application domains.

10.1 Dynamic Software Upgrades
As discussed in Section 3.1.1, dynamic software upgrades are used for the introduction
of new functionalities or the correction of bugs in a running software system. Sec-
tion 3.1.1 presents the four basic properties that dynamic software upgrade systems
should provide: timeliness, flexibility, robustness, and practicality.

This section discusses how the formal basis proposed by CoPNs complies with the
requirements of dynamic software upgrades. CoPN exposes a transparent mechanism
for the definition, inclusion, suppression, and composition of behavioral adaptations.
Since context activation occurs at run time, the CoPN model can be mapped directly
to the computational model of dynamic software upgrades.

The support for managing the dynamic introduction and withdrawal of adaptations
to a software system presented by CoPNs can also be used to support dynamic software
upgrades of a system under the following assumptions: (1) contexts are mapped to
software upgrades, where each context represents a system version, (2) the behavioral
adaptations associated with a context are mapped to the behavior introduced by each
upgrade. (3) context activation corresponds to the deployment of a software upgrade,
and (4) context composition is the composition of upgrades to be deployed with the
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upgrades already deployed in the system.
CoPNs also provide support for the deactivation of contexts, and thus the re-

composition of the system due to missing behavior. Such a property could be mapped
to system downgrades. However, most dynamic software upgrade systems do not pro-
vide support for downgrading the system. Later in this section we discuss this and
other additional capabilities provided by CoPNs for the development of dynamic soft-
ware upgrades.
Timeliness stands at the core of Dynamically Adaptive Software Systems, and in

particular CoPNs. Behavioral adaptations are made available whenever their
associated context is rendered active according to the surrounding execution
environment of the system. As behavioral adaptations are included to and
withdrawn from the system, it can continue working without any disruption; the
adapted behavior is applied on the fly as required. However, in some dynamic
software upgrade systems it is required to wait for a quiescent state [114] in
order to apply any upgrade —that is, a state in which the behavior to be
adapted is not in use. The introduction of quiescent states is motivated as
a means to manage/avoid inconsistencies between the running behavior and
that introduced by software upgrades. As a consequence, it might be that
systems must wait long periods of time until reaching a quiescent state. Even
worse, such a state is not guaranteed ever to be reached. The approach for the
introduction of software upgrades undertaken by CoPNs does not require the
system to reach a quiescent state, while still ensuring the consistency of the
system’s behavior after the upgrade has been introduced. System consistency
is enabled in CoPNs by means of context dependency relations an the run-time
management of context activations.

Flexibility In dynamic software upgrade systems, upgrades take place at one of two
granularity levels. Fine-grained upgrades (e.g., replacing methods or fields)
might be too detailed, presenting the difficulty that some elements to be up-
graded are tightly coupled with other system elements. In such case, ensuring
that the upgrade is safe with respect to the system state can be quite chal-
lenging. Before upgrading an element it must be ensured that all other entities
that use or are used by such an element are not active at the moment of the
upgrade, and that they comply with the upgraded element. Coarse-grained
upgrades (e.g., replacing full components) present a clean way to isolate parts
of the system state and hence ensure safety through, for example, waiting for
transactions between components to reach quiescence [114].
COP systems, and hence CoPNs, allow us to define behavioral adaptations at
different levels of granularity. Behavioral adaptations associated with a con-
text may define adaptations for methods, variables, or complete classes. This
means that through CoPNs, it is possible to extend the flexibility with which
software upgrades are defined. The main motivation of dynamic software up-
grades to support coarse-grained upgrades (upgrading application components),
is to preserve the consistency of system behavior. CoPNs guarantee a consistent
behavior of the system in the light of dynamic adaptation regardless of the
type of behavioral adaptions associated with the context. Thus, finer-grained
software upgrades can be introduced by means of CoPNs without compromising
the consistency of the system.

Robustness Ensuring the robustness of the system when dynamically deploying soft-
ware upgrades is a difficult problem. Different dynamic upgrade systems [114,
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187] require programmers to manually identify and define safe points in the
system for upgrades to take place —that is, points in the system execution for
which introduction of upgrades does not break behavior. For example, incon-
sistencies may arise by accessing an instance variable that was changed or no
longer exists after the upgrade, or by modifying the interface provided by a ser-
vice. The robustness property presents a trade-off with the timeliness one, as
the system must wait until the defined safe point is reached in order to deploy
the upgrade. The approach of statically defining the safe points at which the
system can process upgrades may become cumbersome or even unfeasible when
upgrades are unannounced, as it occurs for example in COP systems. Even
more, CoPNs allow a fine-grained definition of software upgrades which could
make the definition of safe system states problematic due to their multiplicity.
The approach taken by CoPNs for ensuring the robustness of dynamic software
upgrades is twofold. On the one hand, CoPNs offer the possibility to reason
about system properties and identify incoherent upgrade definitions, and pos-
sible behavior inconsistencies that upgrades might introduce. On the other
hand, as mentioned previously, the run-time management offered in CoPNs en-
sures that the introduction of software upgrades is not inconsistent with other
upgrades (currently) deployed in the system.
We argue that the existing trade-off between timeliness and robustness disap-
pears with CoPNs. Software upgrades that do not break the system are deployed
immediately. Software upgrades that may break the the system’s behavior are
refused —that is, they are not deployed. The decision of disallowing potentially
harmful upgrades does not contradict the timeliness property, because if an up-
grade might break the behavior of the system, it is not the most appropriate
behavior according to the surrounding execution environment.

Practicality Upgrade definitions and their dynamic deployment in the system are
realized by specific language constructs in CoPNs. Using such constructs, the
definition of software upgrades becomes a natural part of the system’s structure.
Deployment of upgrades is performed automatically in CoPNs as a reaction
to changes in the surrounding execution environment of the system. CoPNs
offer additional support for the deployment of software upgrades. For example,
whenever it is not possible to perform the upgrade, due to the upgrade being
identified as harmful, CoPNs signal the error and the cause of that error to
the user. We argue that these properties facilitate the realization of dynamic
software upgrades, rendering them practical and transparent to programmers
using CoPNs.

In addition to the aforementioned basic requirements of dynamic software upgrades,
CoPNs also provide support for other characteristics not present in standard dynamic
software upgrade approaches. We discuss these characteristics here.
Safe upgrades: As discussed previously, the focus of CoPNs is on ensuring the con-

sistent execution of a software system as it is upgraded dynamically. To avoid
upgrades that are not safe with respect to the current behavior provided by the
system, and the upgrades currently deployed, CoPNs undertake two approaches.
First, during the system’s development it is possible to reason about system
upgrades as they are defined. Such a reasoning process allows avoiding inco-
herences and inconsistencies in the definition of upgrades (Chapter 7). Second,
a run-time verification process is implemented to manage the dynamics of up-
grades as they are deployed in the system. This verification process allows us to
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protect the system from hazardous upgrades that may be introduced dynami-
cally (Chapter 6).

Version Loyalty: Version loyalty refers to how faithful the execution of an applica-
tion is, with respect to a particular configuration of software upgrades. CoPNs
can enable version loyalty by means of upgrade independence —that is, the
possibility to isolate two different configurations of deployed upgrades in an
application. Two different approaches can be taken to enable version loyalty.
The first approach, consists of using the capabilities of the COP language to
isolate the state of upgrades. State and behavioral adaptation definitions are
confined to a particular upgrade, and are made available whenever the upgrades
are deployed in the system [44, 11]. A second approach, could be conceived by
further extending the execution model of CoPNs, as done in Section 9.2. Col-
ored CoPNs were introduced with the objective of isolating deployed upgrades
to a particular execution thread. This same technique can be used to provide
version loyalty. Each upgrade is deployed with a particular token color, mark-
ing the adaptation as active for said color. Behavior and state associated with
the upgrade are only accessible for the application executions (e.g., threads)
associated with that color. Independence of software upgrades would allow us
to provide multiple running versions of a system. For example, by enabling
specific features in a program according to different user profiles.

Consistent Downgrades: CoPNs allow us to dynamically withdraw behavioral adap-
tations from the system. In the context of dynamic software upgrades, this
property could be used to allow system downgrades. Normally, dynamic soft-
ware upgrades systems do not provide support for downgrading the system.
However, we recognize the usefulness of supporting this property, for example,
in case an upgrade introduces erroneous behavior, or to introduce new upgrades
that might be in conflict with currently deployed ones. CoPNs allow the with-
drawal of any upgrade in the system, ensuring that the perceivable behavior of
the system is not compromised. Removing upgrades is ensured not to lead to
inconsistencies using the run-time consistency management provided by CoPNs.
Behavioral adaptations are automatically reordered according to the deployed
upgrades (Section 6.4.2), and resolved using such ordering and the method reuse
mechanism of COP systems (Section 4.1.2).

10.2 Dependency Injection
COP was first introduced as an alternative approach to design patterns for the dynamic
adaptation of behavior in software systems. As is, COP already provides an alternative
implementation to the introduction of behavioral adaptations using design patterns.
On top of this, CoPNs offer run-time consistency management capabilities that COP
languages do not. As an example of how different design patterns for dynamic behavior
adaptation could be replaced by COP, and in particular by CoPNs, we examine the
dependency injection pattern. Dependency injection was discussed in Section 3.1.2 as
a middleware approach that allows the introduction of behavior at specified points of
a running system.

Dependency injection is normally implemented in software systems that require
the management of different variations of the system, while maintaining one instance
of it. Three important requirements for customizing software systems are identified,
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with respect to application development, application configuration, and run-time sup-
port [184].
Software adaptation definition: Programmers of the software system should be of-

fered a simple way to manage the different specified adaptations, as separate
units of deployment that can be selectively bound to the core architecture of
the system.

Configuration facility: With respect to customization, system users should be offered
a configuration facility to select which adaptations should be enabled for them.
In addition, this facility should also allow them to specify particular configura-
tion parameters, such as, business rules or user’s preferences. The independence
of these configuration data should remain isolated for each specific system adap-
tations.

Run-time activation of software adaptations: Run-time support is needed to provide
support for activating adaptations on an isolated basis, for example, per user.
Whenever a user starts the system, the situations relevant to the user’s sur-
rounding execution environment should be determined. Based on the acquired
information, run-time support should then activate the appropriate behavioral
adaptations to process the requests of the user. Another key requirement of
run-time support is that behavioral adaptations should be applied in an iso-
lated way without affecting the behavior of services that is provided to other
adaptations.

We now discuss how the different programming facilities provided by COP, and in
particular CoPN, can be used to address these requirements extracted from Dynami-
cally Adaptive Software Systems using dependency injection.
Software adaptation definition: COP allows the definition of behavioral adaptations

and their association with particular situations in the surrounding execution
environment of the system, as explained in Section 4.1.1. Such definitions ensure
that behavioral adaptations are grouped by their context, where contexts are
independent from each other. Additionally, the internals of COP automatically
manage the integration of behavioral adaptations into the base system without
requiring any modification to the system’s architecture, as it is the case with
most design patterns, and dependency injection in particular.

Configuration facility: The activation model of behavioral adaptations, described in
Section 4.1.2, allows us to activate adaptations as a reaction to users’ input. For
example, the @activate construct of CoPNs can be used to activate a context
and make available its associated behavioral adaptations when users select their
preferences in the system. Independence of behavioral adaptations is accom-
plished programmatically by associating a particular state of the system with
specific adaptations. Such a state is only accessible whenever the context with
which it is associated becomes active.

Run-time activation of software adaptations: The computation model of COP sys-
tems allows us to gather information about the system and automatically ac-
tivate the corresponding adaptations, for instance as it is done by the context
gathering module in CoPNs (Section 8.1). Additionally, COP systems offer dif-
ferent ways in which adaptations may interact, as explained in Section 4.1.4.
CoPNs ensure, for example, that interaction between adaptations remain con-
sistent —that is, activation of adaptations does not yield contradicting system
states with respect to other active adaptations.
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A performance evaluation comparing the dependency injection implementation of
the web booking application (Section 2.3.2) with its COP counterpart is provided
by Truyen et al. [184]. The performance evaluation proves the usefulness of using COP
as an alternative to architectural solutions for implementing Dynamically Adaptive
Software Systems.

10.3 Self-Adaptive Systems
As discussed in Section 3.1.2, self-adaptive systems tackle the problem of costly re-
configuration and re-deployment of software systems by the introduction of dynamic
adaptations —that is, system re-configuration without requiring any downtime. In
order to allow dynamic adaptations, self-adaptive systems are required to monitor,
analyze, plan, and execute both the internal execution of the system and its sur-
rounding environment. To support these requirements a system must fulfill a set of
characteristics, called self-* properties [159].

Different self-* properties cover different aspects of dynamic adaptivity, ranging
from acquiring information and self-awareness of the system’s surroundings, to de-
cision making and self-adaptiveness. Multiple self-* properties can be fulfilled in a
system, based on the objective of the system and its quality requirements. However,
it is common practice for self-adaptive systems to be developed with one particular
property in mind. As a consequence, there is no single programming model that covers
all the existing self-* properties. Furthermore, creation of self-adaptive systems can
be cumbersome. A series of challenges must be addressed to provide fully self-adaptive
systems. Here, we discuss some of the existing challenges [118, 159].

C.1 The first challenge evidenced in the development of self-adaptive systems, is
that they often do not provide support for all self-* properties. The majority of
self-adaptive systems focus on one particular self-* property. Hence, interaction
between properties is not taken into account. A unified coordination model for
all self-* properties is required.

C.2 An important challenge is highlighted in the system’s ability to detect evolving
situations of its execution environment and consequently present appropriate
adaptations to them. Questions that need to be tackled include: how are changes
propagated and adapted in the system model? How to isolate particular changes
that do not concern the totality of the system? How to detect adaptations that
may harm the system’s behavior?

C.3 The process in which selected adaptations are composed with the base system
is still an open question in self-adaptive systems. The process deciding whether
an adaptation should be included in the system, has historically been a static
process. Even in the static case, there is no consensus yet about how to approach
situations in which there is incomplete information about the system and its
adaptations (e.g., in the case of decentralized system where parts of the system
constraining the composition of new adaptations may be temporarily offline), or
the interaction between global and local decisions to compose adaptations.

C.4 A challenge related to the previous one, is that of how to ensure that introducing
a new adaptation yields the desired system behavior.

C.5 Adaptations interact through adaptation policies or rules. The problem with
this interaction is that such rules are typically expressed in a high-level lan-



10.3 Self-Adaptive Systems 249

guage which often differs from the one in which the system is implemented. The
translation process usually loses the intended semantics given by the high-level
definition, because this semantics is not easily expressible in the system or are
defined in an imprecise way. The implementation of the policy rules can put in
evidence errors in the interaction defined between adaptations. Additionally, in-
teraction rules are often hard-coded, limiting the system to a single set of possible
adaptations.

C.6 Testing remains an open issue in engineering self-adaptive systems. Due to the
multiplicity of applicable adaptations, multiple execution scenarios can branch
at every program point. Initial test mechanisms and model checking-based veri-
fication techniques have been proposed to cover testing of self-adaptive systems.

In the remainder of this section, we explore how the different language facilities and
tools developed in the CoPN programming model could be used to provide support for
self-* properties and some of the challenges in self-adaptive systems. Similar studies
have recently been developed providing support for self-adaptiveness by means of COP
languages [161].

Providing support for self-* properties with CoPN

Given the close relation between COP and self-adaptive systems (Table 3.1), COP pro-
vides support for many self-* properties. The COP paradigm is thus a good candidate
for effectively unifying the programming model realizing self-adaptive systems. The
self-* properties that can be addressed using the formal basis of CoPNs developed in
this dissertation include:
The self-awareness and context-awareness properties are directly supported fol-

lowing Definition 4.2 of contexts. In CoPN these properties are respectively
supported by the internal and external information inputs to the context man-
agement module in the architecture of context-aware systems, shown in Fig-
ure 8.1.

The self-control property is naturally enabled through the dynamic activation of
contexts as explained in Section 4.1.2. For example, using the @activate and
@deactivate language constructs in CoPN.

The self-configuring and self-recovering properties are supported by means of
the interaction between behavioral adaptations. In these cases, the support pro-
vided by CoPNs comprehends the use of disambiguation techniques, as explained
in Section 4.1.4, the @resend language construct, and the context dependency
relations, defined by CoPNs in Section 6.2.2.

The self-organizing property is supported by the combination of: (1) the definition
of context dependency relations and the composition operator of CoPNs (Sec-
tion 6.2), and (2) the introduction of the context acquisition module in CoPN,
as explained in Section 8.1.

The self-diagnosing property is partially supported by the introduction of the
analysis engine used in CoPNs (Chapter 7). Reasoning about the properties
that the system should satisfy, allows us to diagnose erroneous configurations
between adaptations, as explained in Section 7.1.2. The property is not fully
supported in CoPNs as the analysis of the system is not fully automated. Sec-
tion 11.4 discusses different ways in which the analysis of the system could be
fully automated and extended to support the self-diagnosing property.
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The self-healing and self-protecting properties are partially supported in CoPN
by the run-time verification of consistency between adaptations. Section 6.3.1
explains how CoPNs can recover from errors before they are actually woven into
the system. However, the CoPN model only supports one corrective action,
that is, rolling back to the last correct state. Other possibilities for providing
self-healing with CoPNs are discussed in Section 11.4.3.

Tackling challenges of self-adaptive systems with CoPN

The formal basis and programming model developed in CoPNs exhibit most of the
characteristics expected from self-adaptive systems. We now turn our attention to
the previously enumerated challenges in the development of self-adaptive systems,
and observe if they can be addressed using CoPNs.
Challenge C.1 is addressed by CoPNs as a whole. As it is possible to see from the

preceding overview of self-* properties, the development of the CoPN formal
basis satisfies the requirements for a sound and unified coordination model of
self-adaptive systems.

Challenge C.2 is addressed by different parts of the CoPN model. The context gath-
ering module introduced by CoPNs is in charge of detecting changes to the
surrounding execution environment, and forwarding the respective events to
the CoPN representation of the system (as explained in Section 8.1). Context
activations are propagated by means of context dependency relations within
the CoPN (as given in Sections 6.2.2 and 6.3). Isolation of adaptations not
concerned with the complete system is managed using global and local context
activations (as explained in Section 9.2). Finally, harmful situations to the sys-
tem are addressed by the execution semantics of the system (as explained in
Section 6.3.1).

Challenge C.3 is partially addressed by the dynamic disambiguation characteristics
offered by CoPN for the selection of behavioral adaptations. Additionally, CoPN
offers a unique interaction model between local and global behavior (as ex-
plained in Section 9.2). The CoPN programming model assumes a complete
information world —that is, a system where all the information about contexts
and their associated behavioral adaptations is known. Nonetheless, modifica-
tions and customization of the analysis processes provided with CoPNs could
be applied in order to allow the partial verification and analysis of the system
—that is, customizing the analysis algorithms so that only part of the CoPN is
reasoned about.

Challenge C.4 is addressed by the introduction of context dependency relations (Sec-
tion 6.2.2), and their run-time verification of the consistency of the system’s
CoPNs (Section 6.3.1).

Challenge C.5 is addressed by the low-level definition of contexts and context depen-
dency relations given in CoPN (Definitions 6.2 and 6.13 through 6.17). Using
the first-hand view representation of Petri nets, context dependency relations
definitions are directly mapped onto their run-time representation. Moreover,
as specified in Section 8.1, the context acquisition model introduced by CoPNs
allows us to introduce new contexts at run time.

Challenge C.6 is addressed by the simulation tool proposed by CoPN, as shown in
Section 8.2. This tool allows us to simulate the activation of a particular context
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without requiring a complete running version of the system. Together with
the analysis and verification steps introduced by CoPNs, the simulation tool
constitutes a first step towards a framework for the analysis and testing of
self-adaptive systems.

Because of the support it provides in the development of self-adaptive systems, the
formal basis for COP systems presented in this dissertation by means of context Petri
nets, seems to be a promising approach for the development of self-adaptive systems.

10.4 Event Systems
As discussed in Section 3.1.2, event systems allow the automatic interaction between
system components. Event systems can be used for the representation of Dynami-
cally Adaptive Software Systems, where particular behavior defined in the system is
automatically triggered whenever a particular event associated with that behavior is
triggered [121, 92]. Event systems are normally represented by automata or LTS [91]
to facilitate the management of the system’s control flow.

In this section we discuss the key characteristics of the CoPN model allowing the
support and development of event systems that dynamically adapt their behavior to
the surrounding execution environment of the system.

One important difference between CoPNs and event systems, is that CoPNs confine
the system and its representation to part of the same programming model, unlike event
systems which use two separate representations: a programming model of the system
on one hand, and its representation as an automaton on the other hand. Having a
single model representation facilitates the development and analysis of event systems.
The association of particular system events with the dedicated behavior that must
be computed by their triggering is directly supported by CoPNs with the definition of
adaptations as first class entities (Definition 6.24). Adaptations are composed from
the conditions in the surrounding execution environment they are most appropriate for
(contexts), and their respective associated behavior (behavioral adaptations). These
concepts can respectively be mapped to the concepts of: event kind, event and event
thread in INI [121], and conspecs, fields and methods in EventJava [92].

Secondly, the triggering of behavioral adaptations follows the scheme of event sys-
tems, where an actuator loop observes a particular state variable of the system, or a
property in its surrounding execution environment. Whenever some predefined con-
straints over such a state are identified as valid, the event is triggered and the behavior
associated with the event is executed. In CoPNs, monitoring of events is delegated to
the context gathering module, described in Section 8.1. Once an event is identified, its
triggering is deferred to the underlying CoPN (the context management module) for
inclusion of the appropriate behavior associated with the event. Behavior associated
with the event is included if and only if the firing step of the CoPN is consistent and
the resulting state of the system differs from the last consistent state.

Finally, representation of event systems by means of CoPNs, is an improvement with
respect to their classical representation as automata. The first shortcoming identified
for the representation of events by means of automata is that events are treated inde-
pendently. That is, events have a one-to-one association with states of the automaton,
edges in the automaton represent the actions performed by the system to go from one
state to another. In order to represent multiple states taking place simultaneously in
the surrounding execution environment of the system (i.e., constraints defining two
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events are both satisfied) additional states need to be added to the automaton. Adding
states can lead to a state space explosion in the case of large systems (Section 3.2.5).
The Petri net representation of event systems allows the interaction between events by
considering them as a whole in the surrounding execution environment of the system.

Additionally to the aforementioned characteristics, CoPNs offer the possibility of
interactions between events and the management for such interactions. Normally,
events are seen as isolated circumstances taking place in the surrounding execution
environment of event systems. However, since events occur as a whole, they must
be addressed as a consistent set of events, rather than in isolation. CoPNs offer the
possibility to define interaction between different events throughout the definition
of context dependency relations (Section 6.2.2). Moreover, CoPNs address (to some
extent) the shortcomings identified by rule-based modifications of event systems [121]
and the interaction between conspects (context aspects) [92] by ensuring the safeness
of applying the behavior associated with dynamic events.

The execution semantics presented in Chapter 6 ensures the safety of triggering
application behavior associated with events is the system —that is, the CoPN model
allows us to manage the interaction between events consistently. Consequently, we
claim that CoPNs could be used for the implementation and analysis of event systems.

10.5 Reactive Programming
As discussed in Section 3.1.3, reactive programming allows the computation of events
that continuously change over time in the surrounding execution environment. Sec-
tion 3.2.5 discusses dataflow graphs, which are directed graphs used, among others,
for the representation of reactive programs. Dataflow graphs are implicitly generated
by the reactive system (i.e., the reactive programming language). Dataflow graphs
can also be used as a visual coordination model to inspect and edit the control flow
of the system [129].

The computation model of dataflow graphs can be described by three main char-
acteristics. These characteristics comply with the model of reactive programming.

States and operations: Dataflow graphs represent input and output states and the
operations taking place between them. Operators and states are represented by
nodes in the graph.

Node communication: Information and data about computation flows between nodes
by means of dataflow edges. Information always flows from the output of an
operator to the inputs of other operators or states.

Information transfer: Information is transferred between two nodes by one of two
semantics. The first semantics consists of executing operations in an operator
node whenever all of its inputs have received a value. The second semantics
consists of executing operations in an operator node whenever any of its inputs
have received a new value. Upon execution, operators take the information
from all their inputs, and set their computation in their outputs.

We now describe the similarities between the programming model developed in this
dissertation, and the programming model of reactive systems. Two points are worth
noticing before going any further. First, the support provided for event management
in CoPNs is divided in two parts, namely an external events management (provided by
the context discovery module in Section 8.1), and the propagation of events internally
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in the system (provided by the firing semantics of CoPNs in Section 6.3.1). As a
consequence, CoPNs do not provide the same support for behaviors and values as
regular reactive programming languages. Second, given the different approaches taken
for the development of dataflow graphs and CoPNs, the implementation of CoPNs as
dataflow graphs for the coordination of reactive systems requires to modify the CoPN’s
formalization. This is in contrast to the support provided by CoPNs for the other
approaches discussed in this chapter.

Supporting dataflow graph computation style with CoPNs

According to the aforementioned characteristics, the programming model of CoPNs can
be easily mapped to the programming model for dataflow graphs . Two important
similarities between CoPNs and dataflow graphs are proposed. (1) As it is the case for
dataflow graphs, generation of CoPNs is done implicitly by the programming language,
and (2) CoPNs also provide a visual model representation of the system allowing its
inspection and modification.

State and operations: CoPNs offer a first-hand view of the system’s states and its
operations, where states are represented by places and operations are repre-
sented by transitions. This is the same representation given by dataflow graphs.
Nonetheless, states and operations in CoPNs are “information-less”. Tokens only
provide information about the state of places as discrete multisets of values,
where each token in the multiset describes whether the state has the prop-
erty abstracted by the token. However, tokens do not carry any additional
information about the system’s state variables or computations. Consequently,
transitions only take tokens from their input places and generate (non-mutated)
tokens for their outputs but do not perform any computations.
To better correspond to the intention of behaviors and operators from dataflow
graphs, CoPNs could extend the representation of tokens by providing them
with information about system properties. That is, tokens might carry specific
states of the system as values, for example “variable x has value 3”. Transitions
are consequently extended to perform operations over such token information,
for example “increment the value of x by 1”. Transitions may modify token
information and transmit this new information to their output places. Luckily,
such modifications of the CoPN model does not need to be introduced from
the ground-up. Petri net extensions such as algebraic Petri nets [55] or the
box algebra [17] allow us to annotate transitions with process expressions that
can modify the information of tokens, in the same way operations in dataflow
operators modify their information inputs. Moreover, programmatically, CoPNs
were conceived with the necessary hooks to extend their computation model.
However, the CoPN programming model still needs to be modified to provide
such support.

Node communication: The communication between nodes in a CoPN follows the same
communication style as dataflow graphs. Information flows through the arcs in
the CoPN by means of Petri net tokens. CoPNs impose an additional restriction,
since that information may only flow from outputs of states into inputs of
operators, and from outputs of operators into inputs of states. This restriction
adds additional nodes, which could lead to a state explosion problem as the
system grows.
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Information transfer: CoPNs only provide support for one of the information transfer
semantics of dataflow graphs. In CoPNs, operators are triggered only when
there is new information for all of their input states. Whenever this is the case,
operators are immediately executed (either internal or external transitions).
Providing support for the other semantics for triggering operators would require
us to modify the semantics of Petri nets and the formal definition of CoPNs.
Hence this semantics are not part of the CoPN model. Evaluation of operators
in a reactive system using CoPNs does not occur every time one of their inputs
changes, rather, re-evaluation of operators takes place once all input information
of the operator has change. The model does not react to small localized changes.

Additionally to the fulfillment for the basic characteristics of the dataflow graph’s
computation model, the CoPN model also provides support for other specific charac-
teristics provided in particular reactive and dataflow programming languages.

CoPNs allow the adaptation of behavior at different levels of granularity. This prop-
erty could be shifted to the computation of dataflow graphs which manage information
transfer between components. Using an extension of CoPNs in which tokens are used
as data entities of the program an carry information between places, CoPNs can be
used to manage the information flow between any kind of modules in the system.

Some languages to program dataflow graphs, such as Aurora* and Medusa [36],
present properties for the automatic reaction to failures. In these languages, operators
keep a link with their input nodes by sending periodic messages to them. Whenever
there is no response from one of the input nodes after a predetermined time has
elapsed, the node is considered to have an error, and the input is sought from another
node. Such automatic correction of potential erroneous states can be considered
as a self-healing property of these languages. As explained in Section 10.3, CoPNs
provide partial support for such corrective actions. The extension of the CoPN model
to provide self-healing, discussed in Section 11.4.4, takes into account the discussion
presented here.

Reactive programming presents a latent problem of glitches. Glitches occur when-
ever the computation of operations can be broken down into two or more simpler
components sharing a common reactive input (i.e., a value). The computation of the
whole operation can be compromised depending on the order in which the operation
components are evaluated. To avoid glitches in the evaluation of multiple operators
that depend on a varying value, some languages, such as FrTime [42], allow the defi-
nition of a height for operators, such that every operator has a larger height than all
of its predecessors (i.e., inputs). Operators with a smaller height are computed before
those with a larger height. This definition of heights is naturally given in the CoPN
model by transition priorities. Transition priorities ensure the execution of operators
to take place only after all their components have been evaluated. Currently, tran-
sition priorities are set statically in CoPNs. However, it would be possible to define
dynamic transition priorities [13], following the algorithm used for reactive languages.
Such a definition needs to be addressed and studied carefully. It may not be feasible
to consistently define priorities for all transitions when composing CoPNs.

Reactive dynamic adaptations in CoPNs

Up to this point we focused on the description of dataflow graphs and the conception
of their programming model by means of CoPNs. We now proceed with describing how
support for reactive dynamic adaptations can be provided in CoPNs. Dynamic adapta-
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tion of behavior in a reactive setting has been proposed in the Flute language [11]. In
the Flute programming model context changes take place automatically as a reaction
to changes in the surrounding execution environment. Flute offers the possibility of
defining the strategy with which behavioral adaptations are introduced in the system
by means of procedure interruptions, resumptions, restarts, immediate inclusion, and
deferred inclusion.

CoPNs react to changes in the surrounding execution environment by means of the
event-system associated with external transitions —that is, context activations and de-
activations are triggered by the context gathering module (Section 8.1). Unlike Flute,
different adaptations interact with each other in CoPNs. Through the response to a
change in the surrounding execution environment, further contexts can be activated
and deactivated. Such an activation is performed reactively following the activation
semantics proposed by CoPN (Section 6.3.1). However, CoPNs do not provide any
support for the interruption or resumption of computations provided by Flute. We
recognize that the two approaches are complementary and could be coupled together
in the future. For example, by associating the resumption or restart strategies with
internal transitions.

The coupling of the reactive programming computational model and CoPNs would
provide a programming model that allows behavioral adaptations to take place re-
actively, enables their interaction, and ensures their consistency with respect to the
surrounding execution environment of the system.

10.6 Conclusion
This chapter puts the developments of CoPNs described in this dissertation in perspec-
tive of Dynamically Adaptive Software Systems. Our research was setup in the context
of providing consistency and predictability for a software system in the presence of dy-
namically adaptive behavior. During the development of this dissertation, we focused
our efforts on one particular kind of such systems, namely Context-Oriented Pro-
gramming. COP allows the implementation of software systems with highly dynamic
characteristics. However, we claim that the efforts developed in this dissertation are
not only valid for COP systems, but that they can actually be used in the broader
context of Dynamically Adaptive Software Systems.

Throughout this chapter we validated this claim by revisiting some of the ap-
proaches for implementing Dynamically Adaptive Software Systems described in Chap-
ter 3. Given the broad scope of Dynamically Adaptive Software Systems we did not
discuss all of the surveyed approaches for the implementation of such systems in this
chapter. Rather, we selected different approaches for each of the categories describ-
ing the landscape of Dynamically Adaptive Software Systems, architectural solutions,
middleware solutions, and language solutions.

With respect to the architectural solutions we studied the appropriateness of CoPNs
as support for the implementation of dynamic software upgrade systems and depen-
dency injection frameworks. In both situations CoPNs effectively satisfy the basic
requirements presented in each of the solutions. In addition, CoPNs provide support
to facilitate the implementation process of such systems, as well as the capabilities
to ensure safety properties for them. For example, ensuring safe upgrades in the case
of dynamic software upgrades, or managing interaction between behavioral adapta-
tions in the case of dependency injection. This evaluation demonstrates the potential
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usefulness of CoPNs to reduce the architectural complexity of developing consistent
Dynamically Adaptive Software Systems.

With respect to the middleware solutions we studied the appropriateness of CoPNs
as support for the implementation of self-adaptive systems and event systems. In the
case of event systems we described how the CoPN model unifies the implementation
of event systems with their abstract representation. Moreover, we used the CoPN
representation of event systems to treat events as a whole, rather than as isolated
events taking place in the surrounding execution environment of the system. Self-
adaptive systems are closely related to the purpose of COP. We showed how CoPNs
adhere to the main properties of self-adaptive systems. Moreover, using the CoPN
model we revisited some of the existing challenges in self-adaptive systems and studied
how these can be addressed using the support provided by CoPN. This evaluation
shows how the CoPN model could be useful in the case of middleware for dynamic
adaptive systems.

With respect to the language solutions we studied the appropriateness of CoPNs as
support for the implementation of reactive systems. Similarly to the case of event
systems, CoPNs are used to unite the development of reactive systems with their rep-
resentation. CoPNs can be extended to support the full vision of reactive programming
as dataflow graphs. Additionally, CoPNs can be combined with existing reactive mod-
els for the adaptation of systems behavior with the purpose of enabling a consistent
interaction between such adaptations. In addition to reactive programming, there is
another language solution which we have not treated in this chapter, namely AOP.
COP is closely related to the programming model of dynamic AOP with the difference
that behavioral adaptations in COP can be introduced and customized independently
according to the surrounding execution environment of the system, In dynamic AOP,
on the other hand, the aspects woven in the system are necessarily known beforehand,
so that their matching joinpoints can be specified. Given the similarity between the
two models, the benefits that CoPNs provide to COP systems can be directly mapped
to the context of dynamic AOP systems.

Given the usefulness and appropriateness of CoPNs across the landscape of different
solutions for the implementation of Dynamically Adaptive Software Systems, we claim
that the formal basis and programming model developed in this dissertation covers
the broader scope of Dynamically Adaptive Software Systems.
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Conclusions

The work developed in this dissertation was motivated by the observation that, in
systems allowing dynamic adaptation of their behavior, it is difficult to guarantee
that the intended behavior is consistent with the actual behavior observed at run time.
This problem is mainly due to the dynamic introduction and withdrawal of multiple
adaptations, which may cause accidental interactions among them. If not dealt with
carefully, such accidental interactions may lead to behavioral inconsistencies in the
execution of the system.

This chapter concludes the dissertation by summarizing our approach to the prob-
lem of achieving a more consistent and predictable behavior of Dynamically Adaptive
Software Systems. Our approach consisted of introducing the formal basis and progra-
mming model of CoPNs to support the development of Dynamically Adaptive Software
Systems. In this final chapter we review the extent to which our initial research goals
were achieved, and repeat the main contributions of this dissertation. We also discuss
some limitations of our approach and propose avenues of future work.

11.1 Research Goals Revisited
Section 1.2 stated different situations that can give rise to inconsistencies between
the intended and observed behavior of Dynamically Adaptive Software Systems. In
view of the identified problems, the principal goal of this dissertation was to pro-
vide a comprehensive programming model to achieve consistency and predictability of
dynamically adaptive software systems, in the presence of multiple behavioral adapta-
tions, continuously being introduced to and withdrawn from the system at run time.
To attain this objective we proposed four research goals. In the following we revisit
these goals and discuss to what extent they are attained by our proposed formalism
and programming model.

G.1: Lack of interaction definition. Chapter 6 introduced context dependency rela-
tions as a means to define interactions between adaptations. Context depen-
dency relations are associated with two functions that allow the modification of
a CoPN by introducing places, transitions, or arcs. Such modifications are used
to describe which context should and should not be (de)activated according to
the activation states of other contexts. The set of context dependency relations
presented in this dissertation corresponds to the needs identified during the
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development of our case studies but does not presume to be complete; more
context dependency relations can be added to the current set as needed. The
process of defining new context dependency relations was shown in Section 9.3
with the introduction of two new relations.

G.2: Accidental interaction of adaptations. Chapter 6 introduced the process of acti-
vating contexts, where interactions between all defined adaptations are dynam-
ically verified through the reactive semantics of CoPNs. Requests to activate or
deactivate a context take into account the state of all other contexts defined
in the system, by verifying that the constraints defined by the context depen-
dency relations are satisfied. This process first verifies the context dependency
relations associated with the context requested for activation, and transitively
forwards the request to all other contexts defined in the system. The firing
semantics of CoPNs is defined with the objective of avoiding accidental interac-
tions between adaptations. Chapter 7 introduced analyses of the CoPN which
identify additional inconsistencies in the definition of context dependency re-
lations. This process uses reachability and liveness analyses to verify that the
expected behavior of all context dependency relations defined in the system is
as expected. CoPNs cannot yet identify missing context dependency relations.
Section 11.4.2 presents a discussion about how the identification of missing
context dependency relations could be added to our programming model.

G.3: Lack of verification. Chapter 6 presented the approach introduced in CoPNs for
the dynamic verification of context activations. The context dependency con-
straints that must be satisfied by adaptations are directly encoded in the CoPN
representation of the system. Using the firing semantics of reactive Petri nets,
dependency constraints are verified at run time. The reactive semantics intro-
duced in CoPNs are used to ensure that activations and deactivations of contexts
are always consistent with respect to the defined context dependency relations.

G.4: Lack of property analysis. Chapter 7 presented the property analysis process
introduced in CoPNs. CoPNs provide us with the possibility to analyze if the
context dependency relations defined in the system are coherent —that is, if
there are no interactions between contexts leading to infinite firing steps, or
adaptations that can never be activated. The properties that can be reasoned
about are reachability of system states and liveness of context activations and
deactivations. The analysis process of these properties in CoPNs is supported by
an external reasoning engine, LoLA. The CoPN model uses a set of extensions
that restrict its analysis capabilities, only allowing the analysis of a restricted
semantics of the model. The analysis of system properties is not performed
over the complete CoPN but only over a bounded version of it —that is, for
each context activations can be verified up to a given (maximum) number.

G.5: Lack of a comprehensive programming model. In the survey of the highly dy-
namic systems of Chapter 4, we observed how none of the existing CoPN lan-
guages provide support for the complete adaptation process proposed in the
literature on Dynamically Adaptive Software Systems [159, 41, 27]. In Chap-
ter 8 we presented the CoPN programming model, which complies with the
adaptation process for Dynamically Adaptive Software Systems by implement-
ing components for the discovery, analysis and management, representation,
and execution of dynamic adaptations (Figure 8.1). The development of the
CoPN programming model focused on the component for managing the consis-
tency between behavioral adaptations. Other components of the process model,
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such as the discovery component, are developed as a proof-of-concept, and can
still be extended and made more robust. The programming model offered by
CoPNs was coupled to the Subjective-C language. Nonetheless, the formal ba-
sis of CoPN is independent of a particular programming language, and thus we
argue that the programming model could be coupled easily to other COP lan-
guages within the same family as Subjective-C (e.g., Ambience [74]), or even
more, to other families of COP languages such as layer-based or distributed COP
languages (e.g., EventCJ [103] and ContextErlang [71], respectively).

11.2 Contributions
This dissertation presents a formal basis for the specification and development of
Dynamically Adaptive Software Systems. In particular we make a contribution to
the domain of inconsistency management for such systems. The programming model
presented herein is a stepping stone towards a sound definition of more consistent and
predictable Dynamically Adaptive Software Systems.

Having explained our approach in detail throughout the dissertation, we now pro-
vide a summary describing each of our contributions.

Formalizing COP systems

In this dissertation we developed a formal basis for the definition and execution of
Dynamically Adaptive Software Systems, and in particular COP systems. Chapter 6
presented a language and implementation-independent formalization of adaptations
and their interactions. Contexts are defined as singleton instances of CoPNs (Defini-
tion 6.2). Interactions between adaptations are defined by means of context depen-
dency relations which formally describe how activation and deactivation of contexts
interact with other contexts defined (by means of context dependency constraints).
COP systems are composed of multiple adaptations represented as a CoPN which con-
sist of all singleton CoPNs with additional places and transitions introduced by the
context dependency relations defined in the system (Section 6.2). The purpose of
providing COP systems with such a formalization was to define a sound activation
semantics of the system. Hence, we defined what it means to be in a consistent state
in the system, and how consistent states are preserved as contexts are activated and
deactivated dynamically (Section 6.3). Preservation of consistent states is verified at
run time as contexts are activated or deactivated using the reactive semantics intro-
duced in CoPNs [33, 30]. Finally, our formalization of COP systems describes how
behavioral adaptations are associated with each context, and how they are ordered
with respect to the disambiguation techniques implemented in the language. Such for-
malization describes the selection of the applicable behavioral adaptations for every
message send.

Run-time verification of inconsistencies

In Section 4.2 we identified the dynamicity of adaptations as one of the main causes
for inconsistencies that may arise in the system. As contexts are activated and de-
activated, their associated behavioral adaptations are respectively introduced to and
withdrawn from the system. To avoid the problems of missing or interposing behav-
ioral adaptations at run time, Section 6.2 introduced context dependency relations
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as a means to constrain the activation and deactivation of contexts with respect to
other defined contexts. Such relations are directly encoded in the execution model
of the system —that is, corresponding constraints are represented by transitions and
arcs in the CoPN. Context dependency relations are verified at run time as tokens
flow through the CoPN, as a result of transition firing. The non fulfillment of context
dependency relations is identified in the system by not reaching a consistent state
of the CoPN (i.e., reaching a marking in which a temporary place is marked and no
internal transition is enabled). As described in Section 6.3.1 inconsistent states are
managed by automatically backtracking all changes to the state of the CoPN to its
last consistent state according to the reactive semantics of CoPNs [33].

Design-time Identification of inconsistencies

Run-time verification of context dependency relations between contexts is not enough
to ensure the correct execution of the system. Even if context activations are guar-
anteed to be consistent by means of the run-time verification, interactions between
contexts could be ill-defined. Chapter 7 introduced a process for the analysis of sys-
tem properties at design time, allowing us to answer questions as: could a particular
set of contexts be active simultaneously? or is it ever possible to activate a context?
In particular our approach is targeted at the identification of incoherent definitions
of interactions between contexts —that is, states in which the activations of contexts
can never happen, or infinite sequences of transition firings can occur. CoPN uses a
semiautomated process for the analysis of system properties. For each of the context
dependency relations defined in the system, a set of test cases is automatically gen-
erated in order to verify the reachability and liveness properties of the system. Such
properties are then manually verified using the external analyzer, LoLA. The results of
the analyses can be used to reason about structural properties of the CoPN, ensuring
the coherence of interactions defined between context.

The semiautomated approach used for the analysis of the system introduced in
CoPNs is an improvement over existing COP approaches in the literature (e.g., Con-
textL [49] or EventCJ [103]). CoPNs do not need to resort to external definitions
or formalizations in order to analyze the system’s properties, rather CoPNs use the
defined context dependency relations to automatically generate the test cases that are
used to analyze the reachability and liveness properties of the system.

Comprehensive Programming Model

Chapter 8 presented the general architecture of the CoPN programming model and
the details of its implementation. The CoPN programming model was developed
with the objective of providing support for the adaptation process and to comply
with the general architecture of Dynamically Adaptive Software Systems. As a re-
sult we provided a system architecture composed of: (1) A ContextAcquisition
and a ContextGathering module, respectively used for introducing new adaptations
and retrieving information about the surrounding execution environment. (2) A
ContextManager module used for the definition and run-time management of con-
texts and context dependency relations. (3) A PetriNetGenerator module used to
unfold CoPNs into Petri nets with place capacities and without inhibitor arcs, and
an AnalysisTestCaseGenerator module used for generating the analysis test cases.
The models generated by these modules are later used as inputs of the LoLA analyzer.
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(4) The ApplicationBehavior of the system, which is given by the composition of
behavioral adaptations associated to the active contexts in the system.

A Formal Basis for the Development of DASS

The overall contribution of this dissertation consists of providing a formal basis for the
definition, development, management, and analysis of Dynamically Adaptive Software
Systems. The development of the CoPN programming model was based on the case of
COP, a highly dynamic class of Dynamically Adaptive Software Systems, as described
in Chapter 4. To evaluate the appropriateness of our programming model for the
broader class of Dynamically Adaptive Software Systems, we revisited some of the
surveyed approaches in Chapter 3 for implementing Dynamically Adaptive Software
Systems. Chapter 10 presented a discussion on how CoPNs could be used for the
development of other classes of Dynamically Adaptive Software Systems, and how
existing challenges could be addressed using CoPNs as a basis for the development of
such systems.

11.3 Limitations of CoPNs
The development of the formalism described throughout this dissertation is a contri-
bution to the specification and development of software systems that can consistently
adapt their behavior to the changing conditions of the surrounding execution envi-
ronment. However, we recognize that there are still limitations to the applicability
of our work. This section discusses the existing shortcomings of CoPNs described in
previous chapters.

11.3.1 A Semantics of the Execution Language
The main goal behind the definition of the CoPN programming model was to provide
a more consistent and predictable adaptation of the system’s behavior at run time.
As such, CoPNs provide a formal specification for defining contexts (Section 6.1),
their interactions and composition of contexts defined in a system (Section 6.2.2), the
dynamic behavior of the system (Section 6.3.1), the selection of behavioral adaptations
(Section 6.4.2) and the scoping of behavioral adaptations (Section 9.2). Nonetheless,
we still rely on existing techniques in current COP languages for the execution of
behavioral adaptations. Therefore, the CoPN model does not provide a semantics for
the execution of behavioral adaptations. This characteristic has been the focus of
study in previous approaches targeting the definition of semantics for COP [74, 38, 2,
96, 105].

We argue that, in order to provide a complete formalization of COP systems, the
application of behavioral adaptations also needs to be addressed by the system’s
semantics. An example supporting this statement is the difficulty in defining the
resending of behavioral adaptations, which has been proved to cause inconsistencies
in layer-based COP languages with dynamic scoping, such as ContextL [39]. Definition
of a semantics for the application of behavioral adaptations, and in particular resend
of behavioral adaptations, could be used to detect and manage inconsistencies in the
application behavior, which is currently not supported in CoPNs.
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11.3.2 CoPNs Analysis
In CoPNs interactions between adaptations are modeled by explicitly specifying the
allowed and disallowed actions for every context activation and deactivation with
respect to the state of other contexts defined in the system. In particular, interactions
are modeled using static transition priorities and inhibitor arcs. The use of inhibitor
arcs presents a tradeoff in the definition of CoPNs. While using inhibitor arcs allows
us to represent conditions in which context can be activated or deactivated due to
the inactive state of another context, the use of such arcs turns the different Petri net
properties undecidable.

In order to analyze different properties about COP systems other formalisms such as
predicate logic could have been used. Nonetheless, such an approach has four major
setbacks with respect to the work presented in this dissertation. First, using Boolean
logic for the representation of contexts would make it hard to express interaction
between adaptations, because it is not possible to model the multiple activation of
contexts, required to enable context interaction. Such activation behavior would have
to be implemented using a model which is independent to the specification of con-
texts, for example, using activation counters. Secondly, the expression of all possible
combinations of contexts and all interaction rules between contexts need to be sup-
ported by external models that verify their completeness. Thirdly, the representation
of the system using predicate logic would be useful for the analysis of the system but
additional execution model that complies with the logic specification would have to
be designed independently. Finally, we argue that having different specifications of
the system (i.e., for its analysis, execution, and management of multiple activations)
would harness the adoption and development of such systems as more expertise would
be required.

Another possibility to deal with the analysis of CoPNs, would be to use over-
approximations of the model by means of reset arcs. The idea for such analysis would
be to replace inhibitor arcs of the CoPN model with reset arcs [56] and perform the
analyses (e.g., coverability) in this new model. In the setting of CoPNs such analysis
could be used to ensure that if certain marking is not coverable in the Petri net with
reset arcs, it is not coverable in the CoPN. Such results could be used to ensure that
it would never be possible to reach illegal states of the system.

These alternatives to ease or extend the analysis of CoPNs would need to be fully
developed in order to conduct an in-depth study analyzing their potential advantages
and disadvantages with respect to the solution proposed in this dissertation.

11.3.3 Analyses Integration
In Chapter 7 we explored the application of different techniques for the analysis of
contexts and context dependency relations, defined at design time. To perform such
analyses we used LoLA, a specialized Petri net analyzer. Currently the development
and analysis tools are not integrated. This means that developers must manually
run each of the test cases generated by CoPNs. Clearly this can become a very time
consuming and error-prone task as the system grows, for example, in the case of
the Mobile City Guide application described in Section 9.1.2, 1874 test cases were
generated which then had to be (manually) verified one by one using LoLA. In addition,
the current analysis of system properties can only take place at design time.

It is thus necessary to integrate the development and analysis tools in order to fully
automate the analysis process of COP systems, addressing the two aforementioned
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issues. Two approaches can be taken for the integration of the tools. One approach
would consist of using the libraries available in LoLA for its integration with other
tools.1 Such integration, however, restricts the tools to be compatible with C, the
language in which LoLA is developed. Although it is still possible to use the library
with other languages, for example, with Java as it is the case of ePNK [112], this
imposes a technological infrastructure which may not be acceptable for the deployment
of CoPNs in sensor networks or mobile devices. The second approach would consist
of creating a tailored analysis of the system’s properties for CoPNs, for example using
a coverability-tree like reduction techniques [80, 95]. This approach answers to a
current limitation of using LoLA as an analysis tool. Since lola specializes in the
analysis of place/transition nets, we must analyze CoPNs without their reactive or
static priorities semantics. Maintaining the semantics of CoPNs would improve the
process of analyzing their properties.

11.3.4 Introduction of Behavioral Adaptations and Context
Dependency Relations

Section 8.1.4 presented the proof-of-concept implementation of the context acquisition
module in CoPNs. Our programming model currently maintains a single centralized
CoPN for the management of the system’s contexts. The context acquisition module
allows the introduction of new (unknown) contexts to this CoPN, and the definition of
context dependency relations between its contexts. Introduction of behavioral adap-
tations, however, is not yet supported in CoPNs, because the underlying mechanism
for the introduction of behavioral adaptations used by Subjective-C does not allows
it. In Subjective-C behavioral adaptations are only processed and included as part of
an application at compile time. This is a current limitation detected in all existing
COP languages.

Nonetheless, we recognize that in order to provide a true context acquisition module
it is necessary to enable the introduction of complete adaptations (i.e., contexts and
their associated behavioral adaptations), instead of only allowing the introduction
of contexts. Introduction of behavioral adaptations would also require a run-time
analysis and verification of the introduced behavior, which is not currently possible
in the CoPN model.

Definition of behavioral adaptations in CoPNs currently follows the approach in-
troduced in Subjective-C [123]. In Subjective-C each behavioral adaptation is pro-
cessed at compile time, creating the corresponding SCMethod as defined in Snippet 4.9.
Subjective-C specific methods keep a reference to the base implementation of the
method and the behavioral adaptation. A similar definition of behavioral adaptations
could be used for the dynamic acquisition of behavioral adaptations, for example, by
means of block constructs.2 Blocks, similar to closures [1], are first-class anonymous
functions which can capture and modify the state of the lexical scope within which
they are defined. Such capabilities of blocks would allow the introduction behavioral
adaptations alongside their associated contexts. Blocks could also aid in the definition
and introduction of new types of context dependency relations, where the definition

1Cf. LoLA presentation available at: http://www.slideshare.net/correctsystems/
verification-with-lola-6-integrating-lola

2http://developer.apple.com/library/ios/#documentation/cocoa/Conceptual/Blocks/
Articles/00_Introduction.html

http://www.slideshare.net/correctsystems/verification-with-lola-6-integrating-lola
http://www.slideshare.net/correctsystems/verification-with-lola-6-integrating-lola
http://developer.apple.com/library/ios/#documentation/cocoa/Conceptual/Blocks/Articles/00_Introduction.html
http://developer.apple.com/library/ios/#documentation/cocoa/Conceptual/Blocks/Articles/00_Introduction.html
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of dependency constraints would be described within the block’s behavior, allowing
the introduction of new definitions of extR and consR functions.

11.4 Future Work
In this section we discuss how the work presented in this dissertation could be extended
and complemented, providing avenues for future research.

11.4.1 Studying Alternatives to CoPNs

In this dissertation we opted for a Petri net-based model for the modeling, analysis
and execution of Dynamically Adaptive Software Systems. However, we recognize
that other formalizations (e.g., statecharts, Boolean logic) could be used to model,
analyze and execute such systems. An interesting avenue of future work would be to
develop such formalisms in order to generate a qualitative comparison of the different
approaches.

The development of execution models for Dynamically Adaptive Software Systems
using other formalisms requires additional analysis about the reasoning capabilities
offered by the formalism. The defined interactions between contexts yield a a Turing
complete model rendering desired properties of the model undecidable. We would re-
quired to analyze if the verification mechanisms provided by other formalisms enabled
an analysis approximation to deal with such types of systems.

11.4.2 Behavior Analysis of Dynamically Adaptive Software
Systems

Dynamically Adaptive Software Systems modify the control flow of the system during
its execution with the introduction of behavioral adaptations. This makes software
systems programmed in such a style difficult to follow and reason about. In this
dissertation we addressed the problem of inconsistent behavior of dynamic adaptations
from the view point of the interactions between the contexts associated to behavioral
adaptations. Introduced behavioral adaptations could be inconsistent between each
other, even if they respect the interactions between their associated contexts. We
see an opportunity for future research in the consistency management of behavioral
adaptations. Such an approach would require, similarly to the work presented in this
dissertation, a means to manage and analyze behavioral adaptations. Three main
research tracks could steer future research in the analysis of Dynamically Adaptive
Software Systems.

Completeness of Behavioral Adaptations

A first avenue of research for the analysis of behavioral adaptations consists of a
design-time analysis to reason about the completeness of behavioral adaptations. The
notion of completeness has been defined in the perspective of predicate dispatch to
“guarantee that no ‘message not understood’ error is raised —for every possible set
of arguments at each call site, some method is applicable” [60]. COP languages do
not provide any guarantees about completeness of behavior. We believe this notion
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of completeness could be used to reason about behavioral adaptations defined in the
system.

Two aspects need to be considered to analyze the completeness of the system’s
behavior: the definition of behavioral adaptations, and the activation state of their
associated contexts; fortunately, such information is already provided by the CoPN
model. Each context defined in the system is aware of all of its associated behavioral
adaptations. The activation state of contexts is available from the context represen-
tation module —that is, the current marking of the system. Additionally, activation
states of contexts could be deduced from the context dependency relations defined
between adaptations. For example, taking the case of an implication dependency
relation, we know that every time, the source context of the relation is active, the
target context is also active. In such a case, the behavioral adaptations provided
by the target context, are available to use by the source context. Such information
would allow us to construct a behavior interaction graph for the system —that is,
a graph representing the concrete behavioral adaptations (implementations), and the
different situations in the surrounding execution environment of the system in which
such behavior can be used.

Such an approach for reasoning about the system behavior could be used to further
increase the predictability of the system and avoid behavior incompleteness, and hence
inconsistencies.

Identifying Conflicts Between Behavioral Adaptations

A second approach to the analysis of behavioral adaptations consists of a compile-time
analysis of the behavioral adaptations definition. The idea behind this approach is to
build a context control flow graph, a control flow graph [157] that branches out
in all behavioral adaptations of every method.

The purpose of this approach is to identify different types of behavioral inconsis-
tencies. For example, navigating through all branches of behavioral adaptations for
a particular method could be used to identify behavioral adaptations that provide
contradicting behavior, or are missing behavior to finish their execution correctly.

Construction of a control flow graph for Dynamically Adaptive Software Systems
does not come without challenge, as it has not yet been attempted. At compile time
it is unknown which behavioral adaptations of a method will be executed, hence the
graph will contain many nodes with multiple outgoing edges, for example, at every
method with multiple behavioral adaptations. As a result, there will be many possible
paths through this graph, which may not scale, making it difficult to identify paths
in which conflicting behavior might be active. State explosion of the context control
flow graph could be reduced, for example, using the interaction information provided
by context dependency relations

By analyzing the source code of the application, it is possible to determine which
behavioral adaptations will never be adopted at the same time. Hence, CoPNs do
not require to check for conflicts between these behaviors at run time, reducing the
performance overhead of such verification.

Test Case Refinement Using Behavioral Inconsistencies

Using information gathered from the behavior analysis of the system (by means of
either of the aforementioned approaches) it would be possible to expand the test cases
currently generated by CoPNs. Chapter 7 discussed the process of generating a series
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of test cases with CoPNs, and their later analysis using LoLA. These test cases are
based on the structure provided by the context dependency relations defined in the
system. Using information about the behavioral adaptations defined in the system
could be helpful to refine and expand the generated test cases.

11.4.3 Extending Dynamically Adaptive Software Systems
With respect to the development of and reasoning about Dynamically Adaptive Soft-
ware Systems there are still multiple open questions to be answered. Here we discuss
two challenges that became apparent in the development of our approach.

Concurrent Execution of Dynamically Adaptive Software Systems

Adaptations to a system’s behavior are normally processed sequentially. The Petri net
model, however, has been used in the modeling of concurrent process since its early
origins [156], it is thus natural to ask ourselves if the programming model presented
in this dissertation could be opened to a concurrent computational model.

Opening the programming model to a concurrent evaluation of the system’s in-
structions and context activations would require revisiting the execution model of
behavioral adaptations, but more importantly it would require us to revisit the as-
sessment and verification of consistency. Since requests to activate or deactivate
adaptations can take place concurrently, the order in which transitions are fired may
interfere with the firing of other enabled transitions —that is, firing transitions en-
abled by one activation request may disable the firing of transitions enabled by other
activation requests. In order to adopt a concurrent evaluation of context activations
the semantics for their evaluation would need to be redefined. Similarly, based on the
new execution model, the activation semantics of the CoPN would need to be revis-
ited in the light of Reduction Rules 6.19 through 6.23 of the adaptation activations
semantics, and Theorem 6.3. Process algebra formalisms such as the box algebra [17]
could be further studied in order to pursue a concurrent execution of COP systems.

Temporal execution of Dynamically Adaptive Software Systems

As a means to push further the dynamicity and adaptability of Dynamically Adap-
tive Software Systems it would be interesting to allow the programming model to
reason about temporal properties of the system. So far adaptations are defined by
means of contexts —situations in the surrounding execution environment that are
semantically meaningful for the system. However, during the exploration of Dynam-
ically Adaptive Software Systems and the development of different case studies, we
identified cases in which adaptations could take place due to past (or future) events,
rather than taking place to a particular situation currently present in the surrounding
execution environment. For example, we could use these temporal conditions for the
introduction of behavioral adaptations that use a particular variable, only when the
variable has been given a concrete value.

In order to extend the context activation mechanism to take into account temporal
conditions of the system we could take inspiration from timed Petri nets [140] and
modal logic [19]. Timed Petri nets allow us to annotate transitions with an interval of
time for which the transition is enabled once all its input places are marked. Using a
similar approach it would be possible to annotate transitions, not with a time interval,
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but rather with a temporal formula describing conditions about the execution of the
system.

11.4.4 Extensions and Uses of CoPNs
The work presented in this dissertation is a contribution for the development of Dy-
namically Adaptive Software Systems. However we recognize different points of ex-
tension or improvement which the programming model could profit from, to facilitate
the development of Dynamically Adaptive Software Systems.

Automated Analysis of LoLA Outputs

The semi-automated process for the analysis of system properties presented in Chap-
ter 7 consists of in the automated generation of different test cases, and their later
verification using LoLA. However, some of the generated test cases (e.g., case 1. of
the causality dependency relation defined in Section 7.2.1) requires further analysis
of the outputs generated by LoLA —that is, analysis of the generated firing sequence
or reached state.

In order to analyze the output state of the analysis it is required to generate the
expected state of the CoPN and compare it with the output state provided by the
analysis. The analysis would be accepted if the only marked places are those generated
with the test case, and the marking of each reached place is greater than or equal to
the marking provided in the test case. Note that the process to compare the generated
output states needs to be implemented, as it is not supported by LoLA.

The analysis of output firing sequences requires more work. To analyze if the output
firing sequence is a valid step of the CoPN we could re-use the ideas of the reachability
tree analysis [107, 80, 95] to reason about the sequences of transition firings, under
the firing semantics of CoPNs. Our firing sequence tree analysis consists of building a
tree of valid sequences of transition firings for a given marking, where each node of
the tree corresponds to the set of enabled transitions, and each edge corresponds to
the firing of a particular transition at each node. Once the tree is constructed, we are
interested in analyzing all possible permutations of consistent steps from the output
firing sequence given by LoLA. For each of the consistent steps a tree of transitions
firings is created, analyzing if that particular step is possible in the CoPN —that is,
if firing the transitions of the step leads to a leaf of the tree, where no (internal)
transition is enabled.

Method Dispatching with CoPNs

CoPNs were presented in Chapter 8 as a programming model that successfully covers
the complete adaptation process of Dynamically Adaptive Software Systems through
the context-awareness architecture. In our discussion of the CoPN programming model
we delegated the selection of behavioral adaptations to the method dispatching mech-
anism implemented by the underlying COP language (Subjective-C). However, we
noticed that the CoPN model already contains all the required information to select
the applicable behavioral adaptations of the system.

The process of the method dispatching mechanism of Dynamically Adaptive Soft-
ware Systems supported by CoPNs could be defined as follows:
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1. Message sends that have behavioral adaptations are looked up for active con-
texts associated with the behavioral adaptations. If the message has no behav-
ioral adaptations, then it is resolved by the default context.

2. Active contexts are ordered according to the disambiguation techniques avail-
able in the system, following Definition 6.27. The responder to the message
would be the first behavioral adaptation in the order.

3. Reuse of behavior through the @resend() language construct is treated as reg-
ular message send. Whenever a @resend is sent, behavioral adaptations are
ordered as described in step 2. However, such process differs from a simple
message send in the sense that the responder to the message would be the
first behavioral adaptation which is an immediate successor, with respect to
the given order, to the behavioral adaptation with which the @resend message
originated.

CoPNs Tool Support

Currently there is little tool support for the development of COP applications, other
than that provided by the underlying programming language of the system. In many
cases integration between the COP language and the tools provided by the underlying
programming model is not evident or even possible. Adaptation of the system’s behav-
ior as proposed by COP constitutes a paradigm shift from common Object-Oriented
Programming, and thus it also requires specialized tools to support its development.

In this dissertation we provided a step forward in this direction, by defining a tool
that allows the manipulation and visualization of contexts and their states. Addi-
tionally, we provided a tool for the simulation of context activations that allows us to
observe interaction between adaptations. The reach of such a tool could be expanded
from a support tool for the simulation of the system, to a tool for its development.

The visualization of the CoPN provided in Figure 8.7 could be reused for the devel-
opment and definition of adaptations by modifying its behavior from a Simulation
mode to a Development mode as follows:

• The firing steps view could be used to inspect and add new behavioral adap-
tations to a given context. Behavioral adaptations associated with the context
would be presented as a list of methods.

• The context information view could be used for the visualization of the im-
plementation of behavioral adaptations. Every time a behavioral adaptation
is selected in the firing steps view, its corresponding implementation would be
displayed in the context information view.

• The CoPN view would be used to display contexts as is currently done. However
the behavior for highlighting contexts would change. Only one context could
be selected at a time, providing a list of its behavioral adaptations in the firing
steps view and the details of the implementation for a particular behavioral ad-
aptation in the context information view as described earlier. Other contexts in
the CoPN view could be highlighted automatically (for example in red or green)
as a means to show the contexts which also define behavioral adaptations for (a
subset of) the behavior that the selected context does. Highlighting of contexts
could be based on the outputs of the behavioral adaptations analysis as envi-
sioned in Section 11.4.2, for example, conflicting contexts would be highlighted
in red.
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Using the CoPN-ide tool as a means for the development of Dynamically Adaptive
Software Systems is a challenging task. This extension requires the development of an
interpreter or compiler to be able to generate executable code and deploy applications.
Nonetheless, we see the value in developing such a tool, because it would unify the
development of different Dynamically Adaptive Software Systems under one single
environment. Clearly, other tools supporting the development of the system, such
as specialized debuggers for dynamic adaptations, could still be integrated with the
CoPN-ide tool.

Performance Improvements

In Section 9.4 we observed that the run-time verification of consistency in COP sys-
tems has an important impact on the overall performance of the system’s execution.
A pre-analysis and cache of context activations could be performed to reduce the
performance overhead of the run-time verification.

The CoPN structure presented in this dissertation is static, apart from the marking.
Using the static structure of the CoPN —that is, the initial set of adaptations and
context dependency relations defined between them, it is possible to pre-calculate
the context activations, in order to avoid the run-time verification of every activation
or deactivation. Using the existing reachability analysis described in Chapter 7, it
would be possible to re-use the generated reachability tree for the CoPN to avoid
verification of every activation or deactivation. At run time, context activations are
not resolved by means of the activation semantics of the CoPN, but rather they would
be resolved directly by a cache structure, or production system, consisting of all
possible activations or deactivations that lead to a consistent state under a specific
configuration of active contexts.

This performance optimization technique would need to be revisited in the case
the structure of the CoPN is modified at run time. If new adaptations are introduced,
or context dependency relations between adaptations are defined the constraints of
activation and deactivation of an adaptation may change. It is required to study
whether the reachability tree can be (incrementally) generated at run time, or whether
the cache structure can be filled as contexts are activated and deactivated.
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