
A History Querying Tool and its Application to Detect Multi-version Refactorings

Reinout Stevens∗, Coen De Roover†, Carlos Noguera‡ and Viviane Jonckers‡
∗Software Languages Lab

Vrije Universiteit Brussel, Brussels, Belgium
Email: resteven—cderoove—cnoguera—vejoncke@vub.ac.be

Abstract—Version Control Systems (VCS) have become
indispensable in developing software. In order to provide
support for change management, they track the history of
software projects. Tool builders can exploit this latent historical
information to provide insights in the evolution of the project.
For example, the information needed to identify when and
where a particular refactoring was applied is implicitly present
in the VCS. However, tool support for eliciting this information
is lacking. So far, no general-purpose history querying tool
capable of answering a wide variety of questions about the
evolution of software exists. Therefore, we generalize the idea of
a program querying tool to a history querying tool. A program
querying tool reifies the program’s code into a knowledge base,
from which it retrieves elements that exhibit characteristics
specified through a user-provided program query. Our history
querying tool, QWALKEKO, enables specifying the evolution
of source code characteristics across multiple versions of
Java projects versioned in Git. We apply QWALKEKO to the
problem of detecting refactorings, specified as the code changes
induced by each refactoring. These specifications stem from the
literature, but are limited to changes between two successive
versions. We demonstrate the expressiveness of our tool by
generalizing the specifications such that refactorings can span
multiple versions.

Keywords-program comprehension tools; software reposito-
ries; refactoring;

I. INTRODUCTION

While maintaining software, developers frequently need
a wide series of questions answered [1]. Some of these
questions (e.g.,what are a method’s callers) can be answered
using existing integrated development environments. Pro-
gram querying tools have proven useful for answering more
complex questions (e.g., whether all execution paths respect
the protocol of an in-house developed API) [2]. Neverthe-
less, not all questions can be answered using the current state
of a software project alone. Even simple questions such as
“who introduced this class?” or “was this method renamed?”
require the project’s history.

One possible source of information about a project’s
history is the Version Control System (VCS) it is versioned
in. The use of a VCS has become a software development
best practice. A VCS enables developers to commit, share
and undo changes, as well as implementing experimental
features in a separate branch. Other sources of information
can also be used. For instance, several Eclipse plugins track
edit operations on a project.

Currently, tool support for querying these history sources
is lacking. A history querying tool ought to offer a dedicated
language for specifying how source code evolves. Existing
tools do not feature expressive means for specifying the
temporal characteristics of fine-grained changes (e.g., how
statements change across versions).

In this paper, we present a history querying tool that
features a dedicated language for specifying temporal char-
acteristics of fine-grained code evolutions. To this end,
QWALKEKO models a project’s history as a version graph.
History queries navigate the version graph using the QWAL
regular path expression language, while code characteristics
of individual versions along this path are described using
the EKEKO logic program querying language.

QWALKEKO is inspired by an earlier history querying
tool of ours called ABSINTHE [3]. Whereas QWALKEKO
quantifies directly over versioned AST nodes (i.e., Java
versioned in Git), ABSINTHE quantifies over a lightweight
model that contains coarse-grained information about a
program’s structure (i.e., Smalltalk versioned in Monticello).
Sub-method information was only available indirectly. As a
result, ABSINTHE does not support specifying how individ-
ual instructions evolve.

II. RELATED WORK

Program querying tools identify source code that exhibits
user-specified characteristics of interest. For instance, to
check architectural constraints. Enabling users to specify
these characteristics in logic-based languages has proven
to result in expressive, yet descriptive specifications. This
requires reifying code as data in a logic language. Examples
of such logic-based program querying tools include CODE-
QUEST [4], PQL [5] and SOUL [2]. Our work generalizes
this idea to multiple versions of code.

While most VCS provide limited version querying facil-
ities (e.g.,to see who touched a file), they do not support
querying the code within a version —let alone across ver-
sions. The EVOLIZER platform supports history analyses of
versioned software through dedicated plugins. For instance,
CHANGEDISTILLER [6] extracts code changes between
successive versions through tree differencing. The general-
purpose history querying tools that exist, (i.e., SCQL [7],
V-Praxis [8] and iSPARQL [9]) do not feature a language



dedicated to specifying the temporal characteristics of fine-
grained code evolutions across multiple versions.

III. GENERAL-PURPOSE HISTORY QUERYING TOOLS

We advocate the idea that a general-purpose history query-
ing tool has to identify source code evolutions that exhibit
characteristics of interest. From the user’s perspective, three
dimensions are key in the design of the tool’s specification
language: the formalism for specifying code characteristics,
the formalism for specifying version characteristics, and the
formalism for specifying temporal characteristics.

Source code characteristics concern the instructions (i.e.,
individual AST nodes), overall structure (e.g., subtyping
relations), control flow (i.e., the order in which instructions
can be executed) and data flow (i.e., the values operated
upon by each instruction) within a single version of the
program. Once specified in a history query, retrieving source
code elements that exhibit these characteristics is left to the
querying tool.

Version characteristics primarily concern the meta-data
associated with each version of the software. Examples
include the author, timestamp and commit message. These
are typically provided by the history information source
(e.g., a VCS). In addition, version characteristics concern
the traceability relation between source code elements across
versions. Using source code and version characteristics
alone, history queries can be specified that retrieve the
source code elements that correspond between two particular
versions. Again, tracking entities across versions in order to
maintain traceability is left to the querying tool.

Temporal characteristics concern the succession of ver-
sions along the project’s history. Note that a version can have
multiple successor versions. This is the case for versions
that initiate a new branch in the project’s history. Versions
can also have multiple predecessors. This is the case for
versions that resulted from the merger of different branches.
As a result, there might be multiple sequences of succes-
sive versions between any two versions. In combination
with the other characteristics, temporal characteristics enable
specifying queries that retrieve sequences of versions along
which particular source code or version characteristics hold.
Such a sequence corresponds to one particular evolution in
a program’s history.

IV. QWALKEKO

We now describe our general-purpose history querying
tool QWALKEKO. It extends the logic program querying tool
EKEKO1 with an implementation of regular path expressions
QWAL2. QWALKEKO currently supports querying Eclipse
JDT projects versioned in Git.

1EKEKO is freely available at http://github.com/cderoove/damp.ekeko
2QWAL is freely available at http://github.com/ReinoutStevens/damp.qwal

A. Ekeko, a Program Query Language

EKEKO is a tool for answering program queries about
JDT projects such as “where does my code implement a
double dispatching idiom?”. Its specification language is
based on the CORE.LOGIC port to Clojure of KANREN [10].
Source code characteristics are therefore specified as logic
conditions. Queries are launched using the ekeko* special
form which takes a vector of logic variables as its first
argument, followed by a sequence of logic conditions:

1 (ekeko* [?s ?e]
2 (ast :ReturnStatement ?s) (has :expression ?s ?e))

Solutions to a query consist of bindings for its variables
such that all conditions succeed. For the above query, the
solutions consist of a return statement ?s and an expression
?e such that the latter is the former’s expression part.
Binary predicate ast/2 quantifies over AST nodes of a
particular type, while ternary predicate has/3 quantifies over
the values of their properties. In addition to such AST-related
predicates, Ekeko provides predicates that quantify over the
structure, control flow and data flow of a Java program.

B. Qwal, a Graph Query Language

QWAL enables querying graphs using regular path ex-
pressions [11]. Regular path expressions are an intuitive
formalism for quantifying over the paths through a graph.
They are akin to regular expressions, except that they consist
of logic conditions to which regular expression operators
have been applied. Rather than matching a sequence of
characters in a string, they match paths through a graph
along which their conditions holds.

In the context of QWALKEKO, graphs represent a pro-
gram’s history. Nodes correspond to program versions, while
edges connect consecutive versions. Applied to such a
version graph, QWAL’s regular path expressions match se-
quences of successive versions. The logic conditions within
such an expression specify source code characteristics of
a single version through EKEKO predicates. Version char-
acteristics can be specified through predicates provided by
QWALKEKO itself (cf. Section IV-C).

Figure 1 depicts a query that finds classes that are
subclassed in a later version. The first line configures the
QWAL engine: it specifies the graph, start node and end
node of the regular path expression, and introduces two logic
variables ?class and ?subclass. Note that the end node is
an unground logic variable, and will be bound to the end
node of the path expression. Line 2 uses the QWAL primitive
q=>*. This primitive skips an arbitrary number of versions
(i.e., including none). Lines 3–4 specify that there must be a
class in the current version, which will be bound to ?class.
Line 5 uses the q=>+ primitive, which is similar to q=>*,
except that it skips at least one version. Lines 6–8 specify
that there must be a subclass ?subclass of ?class that is
introduced in this version.



1 (qwal graph start ?end [?class ?subclass]
2 q=>*
3 (qin-current
4 (ast :TypeDeclaration ?class))
5 q=>+
6 (qin-current
7 (class-subclass ?class ?subclass)
8 (introduced ?subclass)))

Figure 1. Finding a class for which a subclass is introduced later.

C. QwalKeko

QWALKEKO converts a Git repository into a version graph
that can be queried using QWAL. A separate JDT project is
created for each version. As opening all these projects at
once will not scale, QWALKEKO opens and closes these
projects on-demand as required by the QWAL query.

As stated earlier, history querying tools should maintain
traceability links such that users do not have to track
elements manually across versions. Our approach is two-
pronged. A domain-specific variant of the classical unifica-
tion procedure unifies code elements that stem from different
program versions. It may succeed where the classical unifi-
cation procedure fails. This is necessary as the same logic
variable can substitute for elements from different program
versions. For example, two methods from different versions
unify if they have the same name, signature and return type.
Domain-specific unification does not consider the context of
a program element (e.g., the classes declaring the methods).
Predicate same/2, in contrast, does. It unifies its second
argument with a program element from the current version
that corresponds to the one given as its first argument. For
example, two methods are considered the same in case they
unify, have the same defining class and package. Several of
the built-in predicates are implemented using same/2, such
as introduced/1 and removed/1.

V. DETECTING MULTI-VERSION REFACTORINGS

Prete et al. [12] approach the problem of identifying
which refactorings have been applied between two program
versions by detecting the changes they induce, specified
in the logic-based querying tool REF-FINDER. REF-
FINDER populates a fact base from two Eclipse projects,
each representing a single version of the software project.
The changes induced by a refactoring are specified in a
Prolog-like language.

To demonstrate that QWALKEKO is as least as expressive
as REF-FINDER, we re-implement the REF-FINDER
specification for methods that have been pulled up between
two versions. Even though this is a fairly simple refactor-
ing, we foresee no difficulties implementing more complex
refactorings. Both REF-FINDER and QWALKEKO use the
JDT to construct their representation of a single program
version.

Figure 2 depicts the REF-FINDER specification for
pulled up methods. A method is pulled up when the method
is moved to another class, and this class is a superclass of

1 move_method(fShortName,tChildFullName,tParentFullName)
2 AND before_subtype(tParentFullName,tChildFullName) !
3 pull_up_method(fShortName,tChildFullName,tParentFullName)

Figure 2. A method named tChildFullname is pulled up to
tParentFullName. This rule originates from [12].

1 deleted_method(mFullName,mShortName,t1FullName)
2 AND added_method(newmName,mShortName,t2FullName)
3 AND similarbody(newmName,newmBody,mFullName,mBody)
4 AND not(equals(t1FullName,t2FullName)) !
5 move_method(mShortName,t1Fullname,t2FullName)

Figure 3. A method named t1Fullname is moved to t2FullName. This
rule originates from [12].

the method’s original defining class. These conditions can
be translated into logic rules, depicted on lines 1–2. The
first line specifies that the method has to be moved. The
second line specifies the superclass requirement. The most
interesting condition is move_method/3. Its implementation
is depicted in figure 3. A method is moved in case the
method was removed and a new method with a similar body
was introduced in another class.

Figures 4 and 5 depict the corresponding QWALKEKO
specifications. The most interesting condition is removed.
This is implemented using same/2 and negation.

1 (defn pulled-up [?method ?pulled]
2 (fresh [?m-class ?p-class]
3 (method-moved ?method ?pulled)
4 (declaring-class ?method ?m-class)
5 (declaring-class ?pulled ?p-class)
6 (superclass ?m-class ?p-class)))

Figure 4. Query to detect whether a method ?method, bound in a previous
version, is pulled up to ?pulled in the current version.

1 (defn method-moved [?moved ?to]
2 (all
3 (removed ?moved)
4 (ast :MethodDeclaration ?to)
5 (== ?moved ?to) ;;same signature
6 (has-similar-body ?moved ?to)))

Figure 5. Query to detect whether a method ?moved, bound in a previous
version, is moved to ?to in the current version.

The main difference between QWALKEKO and REF-
FINDER is that REF-FINDER is limited to reason about
two predefined versions. As such, the REF-FINDER spec-
ification language does not support temporal characteristics;
predicates are already evaluated in the “correct” version.
QWALKEKO, in contrast, enables reasoning about multiple
versions. Goals are always evaluated with respect to an
implicit version, specified by a path expression. In fact, so
far the QWALKEKO specification does not yet specify in
which versions its conditions have to hold. The specification
depicted in Figure 6 does. Lines 2–3 bind ?method to a
method in the start version. Line 4 moves to a successive
version. Lines 5–6 use our previously defined rule to find
whether the current version contains a method ?pulled that
is the result of pulling up ?method.



1 (qwal graph root ?end [?method ?pulled]
2 (qin-current
3 (ast :MethodDeclaration ?method))
4 q=> ;;go to next version
5 (qin-current
6 (pulled-up ?method ?pulled)))

Figure 6. A method ?method is pulled up to ?pulled in a successive
version.

Because of QWALKEKO’s dedicated support for temporal
characteristics, it is straightforward to generalize the speci-
fication such that the refactoring can happen across multiple
versions, where intermediate changes do not qualify as a
refactoring, but the accumulation of changes does. This only
requires changing q=> to q=>+ in the specification. As this
operator skips an arbitrary number of versions, intermediate
changes are skipped and the refactoring is detected once
it has been performed completely. It does not matter in
which order the steps of the refactoring occurred, only
whether the end result qualifies as a refactoring. Detecting
multi-version refactorings using REF-FINDER, in contrast,
would require manually decomposing the refactoring into
individual changes. This is because REF-FINDER can only
assert that such a change occurred between two specific
versions. As such, all pairs of successive versions have to
be quantified over.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the general-purpose history querying
tool QWALKEKO, which identifies source code evolutions
that exhibit user-specified characteristics of interest. These
evolutions are specified as sequences of successive versions,
and the properties that have to hold in each of these
versions. Its expressive, dedicated means for specifying the
temporal characteristics of fine-grained code evolutions set
QWALKEKO apart.

We have applied our tool to the problem of detecting
refactorings, originally specified in REF-FINDER [12] by
means of the changes induced between two versions. To
demonstrate the expressiveness of our specification lan-
guage, we have generalized these specifications to refactor-
ings that happen across multiple versions, where individual
changes are not a complete refactoring, but the accumulated
changes are. This only required interchanging temporal
operators. In future work, we will conduct an empirical study
to assess how frequently such refactorings occur in large-
scale software projects.

One of the major challenges is improving the performance
of the tool. EKEKO uses computationally intensive static
analyses to derive control flow and data flow relations. These
are derived for each version. In future work, we intend to
incrementalize these derivations —in particular the logic-
based ones.

Finally, QWALKEKO can be applied to software engi-
neering problems other than detecting refactorings. One
interesting application domain is supporting integrators with

the incorporation of a patch for one release of a software
project into a variant release. This requires investigating how
the entities modified by the patch have diverged.

ACKNOWLEDGMENTS

Reinout Stevens is funded by the “Flemish agency for
Innovation by Science and Technology” (IWT Vlaanderen).
Coen De Roover is funded by the Cha-Q SBO project
sponsored by the same agency.

REFERENCES

[1] T. Fritz and G. C. Murphy, “Using information fragments to
answer the questions developers ask,” in Proc. of the 32nd
ACM/IEEE Int. Conf. on Software Engineering, 2010.

[2] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The
SOUL tool suite for querying programs in symbiosis with
eclipse,” in Proc. of the 9th Int. Conf. on Principles and
Practice of Programming in Java, 2011.

[3] A. Kellens, C. De Roover, C. Noguera, R. Stevens, and
V. Jonckers, “Reasoning over the evolution of source code
using quantified regular path expressions,” in Proc. of the
18th Working Conference on Reverse Engineering, 2011.

[4] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest:
Scalable source code queries with Datalog,” in Proceedings of
the 20th European Conf. on Object-Oriented Programming,
vol. 4067, 2006.

[5] M. Martin, B. Livshits, and M. Lam, “Finding application
errors and security flaws using PQL: a program query lan-
guage,” in Proc. of the 20th annual ACM SIGPLAN Conf.
on Object-oriented Programming Systems, Languages and
Applications, 2005.

[6] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with
evolizer and changedistiller,” IEEE Softw., vol. 26, no. 1,
2009.

[7] A. Hindle and D. M. Germán, “SCQL: a formal model
and a query language for source control repositories,” ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 4, 2005.

[8] A. Mougenot, X. Blanc, and M.-P. Gervais, “D-Praxis: A
peer-to-peer collaborative model editing framework,” in Proc.
of the 9th Int. Conf. on Distributed Applications and Interop-
erable Systems, 2009.

[9] C. Kiefer, A. Bernstein, and J. Tappolet, “Mining software
repositories with isparol and a software evolution ontology,”
in Proc. of the 4th Int. Workshop on Mining Software Repos-
itories, 2007.

[10] D. P. Friedman, W. E. Byrd, and O. Kiselyov, The Reasoned
Schemer. The MIT Press, 2005.

[11] O. De Moor, D. Lacey, and E. Van Wyk, “Universal regular
path queries,” Higher Order Symbol. Comput., vol. 16, no.
1-2, Mar. 2003.

[12] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim,
“Template-based reconstruction of complex refactorings,” in
Proc. of the 2010 IEEE Int. Conf. on Software Maintenance,
2010.


