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Abstract

The rise of mobile computing platforms has given rise to a new class of ap-
plications: mobile applications that interact with peer applications running on
neighbouring phones. Developing such applications using current technology is
a challenge because of problems inherent to concurrent and distributed program-
ming, and because of problems inherent to mobile networks, such as the fact that
wireless network connections are generally less stable.

We present AmbientTalk, a distributed programming language designed specif-
ically to develop mobile peer-to-peer applications. We discuss the language’s foun-
dations and our experiences in using it. We focus in particular on the language’s
concurrency and distribution model since it lies at the heart of AmbientTalk’s sup-
port for responsive, robust application development. The model is based on com-
municating event loops, itself a flavour of the actor model. We provide a precise
description of this model by means of a small-step operational semantics. To the
best of our knowledge, this is the first formal coverage of an actor language based
on communicating event loops.
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1 Introduction
Throughout the past decade, we have seen the rise of mobile platforms such as J2ME,
iOS and Android. These platforms, in turn, enable a new class of applications: mo-
bile peer-to-peer (P2P) applications. What is characteristic of such applications is that
they are often used on the move, and that they sporadically interact with peer appli-
cations running on neighbouring phones (often communicating via a wireless ad hoc
network [MLE02]).
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Developing such applications is a challenge not only because of the inherent dif-
ficulty of developing distributed applications. Connectivity between phones is often
intermittent (connections drop and are restored as people move about) and applications
may not always rely on fixed infrastructure or a reachable central server to support the
coordination.

In this paper we present AmbientTalk, a distributed programming language de-
signed specifically to develop mobile P2P applications. To the best of our knowledge,
AmbientTalk is the first distributed object-oriented language that specifically targets
applications deployed on mobile phones interconnected via an ad hoc wireless net-
work. On the surface, the language is similar to other OO scripting languages such
as Javascript, Ruby or Python. However, contrary to these languages, it offers built-in
support for concurrent and distributed programming. Its concurrency model is founded
on actors [Agh86]: loosely coupled, asynchronously communicating components.

To support distributed programming, AmbientTalk has built-in support for service
discovery (built on top of UDP), remote messaging (built on top of TCP/IP), failure
handling, asynchronous event processing and publish/subscribe coordination between
distributed applications. The current AmbientTalk implementation is an interpreter,
written in Java, and specifically targets Android-powered smartphones. It is open
sourced under an MIT license and available at ambienttalk.googlecode.com.

This paper presents the most complete description of AmbientTalk to date. It com-
plements previous expositions [VMG+07, DVM+06] with an operational semantics of
its key features, and provides an overview of the example applications and language
extensions developed with and for the language over the past 6 years.

2 Mobile ad hoc networks
AmbientTalk’s concurrency and distribution features are tailored specifically to mo-
bile ad hoc networks. We briefly describe the features characteristic of mobile ad hoc
networks and why they present a challenge.

There are two discriminating properties of mobile networks, which clearly set them
apart from traditional, fixed computer networks: applications are deployed on mo-
bile devices connected by wireless communication links with a limited communication
range. Such networks exhibit two phenomena which are rare in their fixed counterparts:

• Volatile Connections. Mobile phones equipped with wireless media possess
only a limited communication range, such that two communicating phones may
move out of earshot unannounced. The resulting disconnections are not always
permanent: the phones may meet again, requiring their connection to be re-
established. Often, such transient network partitions should not affect an ap-
plication, allowing it to continue its collaboration transparently upon reconnec-
tion. Partial failure handling is not a new ingredient of distributed systems, but
these more frequent transient disconnections do expose applications to a much
higher rate of partial failure than that which most distributed languages or mid-
dleware have been designed for. In mobile networks, disconnections become so
omnipresent that they should be considered the rule, rather than an exceptional
case.

• Zero Infrastructure. In a mobile network, phones (and thus the applications
they host) may spontaneously join or leave the network. Moreover, a mobile ad
hoc network is often not administered by a single party. As a result, in contrast to
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stationary networks where applications usually know where to find collaborating
services via URLs or similar designators, applications in mobile networks have
to discover partner applications while roaming. Services must be discovered on
proximate phones, possibly without the help of shared infrastructure. This lack
of infrastructure requires a peer-to-peer communication model, where services
can be directly advertised to and discovered on proximate phones.

Any application designed for mobile networks has to deal with these phenomena. It
is therefore worth investigating models or frameworks that ease the development of mo-
bile P2P applications. Because the effects engendered by partial failures or the absence
of remote services often pervade the entire application, it is difficult to apply traditional
library or framework abstractions. Therefore, support for distributed programming is
often dealt with in dedicated middleware or programming languages. This is the main
motivation for the design of AmbientTalk as a new programming language.

3 Standing on the shoulders of giants
We briefly describe the foundations of AmbientTalk: where did its features originate?

Object Model AmbientTalk is a dynamically typed, object-oriented language. It was
heavily inspired by Self [US87] and Smalltalk [GR89]. Like Ruby, however,
AmbientTalk is text-based (not image-based). Inspired by Scheme [SJ75] and
E [MTS05], it places an additional emphasis on lexical nesting of objects and
lexical scoping.

Concurrency AmbientTalk embraces actor-based concurrency [Agh86]. In particular,
it embraces a particular flavor of actor-based concurrency known as communi-
cating event loops, pioneered by the E programming language [MTS05], whose
distinguishing features are (a) the treatment of an actor as a coarse-grained com-
ponent that contains potentially many regular objects, and (b) the complete ab-
sence of blocking synchronization primitives. All interaction among actors is
purely asynchronous.

The event loop model maps well onto the inherently event-driven nature of mo-
bile P2P applications. Phones may join or leave the network and messages can
be received from remote applications at any point in time. All of these events are
represented as messages sent to objects, orderly processed by actors. The use of
event loops avoids low-level data races that are inherent in the shared-memory
multithreading paradigm [Ous96, Lee06].

Remote Messaging AmbientTalk avoids traditional RPC-style synchronous distributed
interactions, and provides only asynchronous message passing. This was a de-
liberate design choice to deal with the latency of wireless connections and the
intermittent connectivity of devices due to transient network partitions.

Inspired by the queued RPC mechanism of the Rover toolkit [JdT+95], remote
references in AmbientTalk automatically buffer outgoing messages for which the
recipient is currently unavailable. This allows the communication subsystem to
automatically mask temporary network failures, which is especially useful in the
face of intermittent wireless connectivity.

AmbientTalk uses leasing to deal with partial failures, inspired by Jini [Wal01].
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Following ABCL [YBS86], Eiffel// [Car93], E [MTS05] and Argus [LS88],
AmbientTalk features futures (aka promises) to enable return values for asyn-
chronous method calls. This mitigates part of the inversion of control that is
characteristic of asynchronous, event-driven code.

Discovery AmbientTalk makes use of the publish/subscribe paradigm [EFGK03] to
express discovery among objects: services publish themselves in the network,
while clients subscribe to these service announcements. In this light, Ambient-
Talk is a close cousin of Jini [Wal01], albeit tailored to peer-to-peer networks:
AmbientTalk programs need not rely on third-party lookup service infrastruc-
ture, but can discover one another directly.

AmbientTalk was also inspired by M2MI [KB02], a lightweight extension to
Java enabling asynchronous anycast communication in wireless networks.

Reflection AmbientTalk is meant to serve as a research language to explore the lan-
guage design space for mobile P2P applications. To support this role, it features
an extensive set of reflective APIs to be able to extend the language from within
itself. AmbientTalk supports a reflective architecture based on mirrors [BU04]
and a variety of hooks into the actor system’s message processing and transmis-
sion protocols, inspired by early work on reflection in concurrent object-oriented
languages [WY88, McA95].

4 Sequential AmbientTalk
Before explaining the concurrent and distributed features of AmbientTalk, we give a
brief overview of its more conventional sequential building blocks.

Objects AmbientTalk is a dynamically typed, object-oriented language. It is prototype-
based rather than class-based, meaning that objects are not instantiated from class dec-
larations, but rather can be created as anonymous singleton objects (using an object
literal declaration) or by cloning existing objects.

In the example below, a top-level function named makePoint is defined. Its re-
turn value is a fresh object with three slots: x, y and distanceToOrigin. The x
and y slots are initialized with the arguments to the function. The distanceToOrigin
slot contains a method. Methods are implicitly parameterized with a self pseudo-
variable, which they can use to access the receiver object’s slots. Note that x and y are
instance variables (slots) of the point object, while the variables t1 and t2 are local
variables of the distanceToOrigin method. Numbers are objects in AmbientTalk,
and sqrt is a method defined on such number objects.� �
def makePoint(x0, y0) {

object: {
def x := x0;
def y := y0;
def distanceToOrigin() {

def t1 := self.x * self.x;
def t2 := self.y * self.y;
(t1 + t2).sqrt()

}
}

};
def p := makePoint(1,1);
p.x; // 1
p.distanceToOrigin(); // 1.4142135623730951� �
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Blocks While AmbientTalk is predominantly object-oriented, it has a distinctly func-
tional flavor, through the use of blocks. Blocks (the terminology stems from Smalltalk)
are objects that represent anonymous closures, i.e. functions that may refer to lexically
enclosing variables. Blocks are constructed by means of the syntax {|args| body},
where the |args| part can be omitted if the block takes no arguments. For example:� �
def sum := { |x,y| x + y }; // define a block
sum(1,2) // 3� �

Like Smalltalk and Self, AmbientTalk often uses blocks to represent delayed com-
putations, such as the branches of an if:then:else: control structure, or as listen-
ers or callbacks to await an event, as will be shown later. For instance:� �
def abs(x) {

if: (x < 0) then: { -x } else: { x }
}� �

The abs function calculates the absolute value of a number x. The if-test is not
a built-in statement. Instead, the body of this function consists of a call to the function
if:then:else:, which expects a boolean and two blocks. If the boolean is true,
the first block is called (with no arguments), otherwise the second block is called.

A unique feature of AmbientTalk is that functions or methods can be defined or
called using both traditional C-style syntax as well as Smalltalk-style keyword mes-
sage syntax. In general, keyword message syntax is used to express control structures
(such as the if:then:else: function) while the C-style syntax is used to express
application-level functions or methods (e.g. a function call like sum(1,2) or method
invocation like p.distanceToOrigin()).

Blocks are often used as arguments to higher-order functions, e.g. to map a function
over an array. In the following example, a block is mapped over an array of points,
producing an array of only the x-coordinates:� �
def xcoords := points.map: { |p| p.x }� �

The keyword message syntax in combination with syntactically lightweight blocks
enables AmbientTalk programmers to easily define their own control structures. We
have found this to be extremely helpful in a language that makes heavy use of asyn-
chronous APIs and an event-driven programming style.

Type tags Since AmbientTalk is dynamically typed, it cannot use a static type system
to categorize objects. Instead, the language provides annotations called type tags. Type
tags can be used to annotate whole objects or individual methods or messages. They
are also used for service discovery, as described shortly. An example:� �
deftype Fruit;
deftype Apple <: Fruit;
def a := object: {} taggedAs: [Apple];
is: a taggedAs: Fruit // true� �

Apple is defined as a subtype of the Fruit type tag. The empty object a is
then annotated with this tag. Type tags are analogous to empty “marker” interfaces in
Java (such as java.lang.Cloneable and java.io.Serializable): these
interfaces serve no purpose other than to classify objects, without making any claims
as to the objects’ supported methods (since these interfaces are empty).
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JVM Interoperability AmbientTalk provides built-in support to interoperate with
the underlying JVM. This interoperability is similar to that of other dynamic languages
implemented on top of the JVM such as Groovy, Jython and JRuby. Concretely, Am-
bientTalk programs can access Java classes or objects as if they were AmbientTalk
objects. This allows AmbientTalk programs to reuse Java libraries. For example, the
Java AWT GUI library can be used from AmbientTalk as follows:� �
def b := java.awt.Button.new("Click me");
b.addActionListener(object: {

def actionPerformed(actionEvent) {
system.println("The button was pressed");

}
});� �

This code creates an AWT Button and registers a callback object to be notified when
the button is clicked. Contrary to most JVM scripting languages, our interoperability
layer takes special care to uphold AmbientTalk’s actor-based concurrency model. Con-
cretely, in the above example, when the Java GUI thread invokes actionPerformed
on the AmbientTalk callback object, the interoperability layer will convert this method
call into a message, and post this message to the AmbientTalk actor’s event queue, such
that the method body will be executed by the actor, not by the Java thread. This avoids
race conditions on the object’s state, since otherwise both an AmbientTalk actor and a
Java thread might concurrently modify it. Our interoperability mechanism is described
in full detail elsewhere [VMD09].

Other features The above only scratches the surface of AmbientTalk’s features. Two
other features worth mentioning are:

• Reflection. AmbientTalk features an extensive reflection API based on mir-
rors [MVCT+09]. This allows objects to be inspected and modified at runtime.
AmbientTalk also supports reflection at the actor-level, allowing for instance ac-
cess on an actor’s incoming message queue.

• Object composition. AmbientTalk features inheritance among objects (as in
Self). It also supports traits [SDNB03], a more robust alternative to multiple in-
heritance. AmbientTalk traits are described in full detail elsewhere [VCBDM09].

5 Concurrent AmbientTalk
As mentioned previously, AmbientTalk’s concurrency model is based on actors [Agh86].
A single AmbientTalk virtual machine can host multiple actors that may run in parallel.

5.1 Communicating Event Loops
AmbientTalk combines objects with actors based on the communicating event loops
model of the E programming language [MTS05]. What sets this model apart from
most other actor languages (such as Act1 [Lie87], ABCL [YBS86], Actalk [Bri88],
Salsa [VA01], Erlang [AVWW96], Kilim [SM08], ProActive [BBC+06] or Scala ac-
tors [HO07]), is that:

• Each actor is not itself represented as a single object (a so-called “active object”),
but rather as a vat containing an entire heap of regular objects. These objects may
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be stateful. Any object created by an actor is said to be owned by that actor, and
forever remains contained in that actor. Objects owned by one actor may hold
references to individual objects owned by other actors (i.e. objects contained by
an actor may be referenced from outside of the actor, they are not necessarily
private).

• There is no blocking synchronization primitive: both the sending and receiving
of messages between actors happens asynchronously. Contrary to e.g. Erlang
or Scala actors, there is no direct equivalent to the receive statement that
suspends an actor until a matching message arrives. Instead, message reception
happens implicitly by invoking a method on an object.

Thus, actors are not represented as individual objects, but rather as a collection of
objects that all share a single event loop which executes their code. That event loop
has a single message queue, containing messages to be delivered to one of its owned
objects. The event loop perpetually takes the first message from the message queue and
invokes the corresponding method of the object denoted as the receiver of the message.
This method is then run to completion, without interleaving any other events. Consider
the following example:� �
def makeAccount(balance) {

object: {
def withdraw(amnt) { balance := balance - amnt };
def deposit(amnt) { balance := balance + amnt };

}
}
def b1 := makeAccount(50);
def b2 := makeAccount(20);� �

By default, there is a single “main” AmbientTalk actor that executes all top-level
code. In this example, the main actor creates (and thus owns) two account objects b1
and b2. Any external requests to withdraw or deposit from these accounts will
be executed without interleaving.

The process of dequeuing a message (such as withdraw or deposit) from the
actor’s queue and executing the corresponding method to completion is called a turn.
In between turns, the runtime stack of an actor is always empty. Turns are the basic
unit of “event interleaving” in AmbientTalk: while executing a turn, no other events
can affect the actor’s heap. In event-loop frameworks, this is sometimes called run-to-
completion semantics, since every event is fully processed before processing the next.
This avoids data races on the mutable state of objects owned by an actor.

Only an object’s owning actor may directly execute its methods. Objects owned
by the same actor may communicate using ordinary, sequential method invocation or
using asynchronous message passing. AmbientTalk borrows from the E language the
syntactic distinction between sequential method invocation (expressed as o.m()) and
asynchronous message sending (expressed as o<-m()).

For example, since the main actor owns both b1 and b2, it may atomically transfer
funds from one account to the other by executing:� �
b1.withdraw(10);
b2.deposit(10);� �

It may also decide to send these messages asynchronously:� �
b1<-withdraw(10);
b2<-deposit(10);� �
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This enqueues the requests to withdraw and deposit in the main actor’s own
message queue. However, the programmer should now be aware that other messages
may happen to arrive after withdraw but before deposit was scheduled. In other
words, the transfer is no longer atomic, which may or may not be a problem, depending
on application requirements.

5.2 Far References
It is possible for objects owned by one actor to hold references to individual objects
owned by other actors. Such references that span different actors are named far refer-
ences (the terminology stems from E [MTS05]) and only allow asynchronous access to
the referenced object. This ensures by design that all communication between actors
is asynchronous. Trying to perform a sequential method invocation on a far reference
provokes a runtime exception.

A
B

Message 
queue

Actor

Object Far reference

Event 
Loop

Actor Message from A to B

Figure 1: AmbientTalk actors as communicating event loops.

Figure 1 illustrates AmbientTalk actors as communicating event loops. The dotted
lines represent the event loop activity of each actor which perpetually takes the next
message from its message queue and executes the corresponding method on one of its
owned objects.

To illustrate far references, consider the following example. Our main actor spawns
a new actor and decides to share its account objects with this new actor:� �
def helper := actor: {

def transfer(from,to) {
from<-withdraw(10);
to<-deposit(10);

}
};
helper<-transfer(b1, b2);� �

The expression actor: {...} spawns a new actor. The new actor immediately
creates a new object, as if by evaluating object: {...}. This object, call it o, acts
as the actor’s public interface. The actor: expression immediately evaluates to a far
reference to o, which is stored in the helper variable.

The main actor then sends the transfer message via a far reference to o. Mes-
sages sent via a far reference to an object are enqueued in the message queue of the
object’s owner for later processing. Hence, the transfer message will later be de-
queued and executed by the new actor, not by the main actor.
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5.3 Asynchronous Message Passing and Isolates
When sending an asynchronous message to an object that is owned by the same actor,
the message’s parameters are passed by reference, exactly as is the case with regular
sequential method invocations. When sending a message across a far reference to an-
other actor, objects are instead parameter-passed by far reference: the parameters of
the invoked method are bound to far references to the original objects.

Take another look at the previous example. The main actor passes b1 and b2 as
arguments to an asynchronous transfer message. When the helper actor executes
the transfer method, from and to will be bound to far references to b1 and b2
respectively. Note that the helper actor must use asynchronous message passing (via
<-) to perform the withdraw and deposit operations. Since it does not own the
account objects, it cannot directly invoke their methods.

There is one exception to the above parameter-passing rules: objects declared as
isolates (via the expression isolate:{...} as opposed to object:{...}) are
passed by (deep) copy rather than by far reference. Objects can only be declared as
isolates if all of their methods are closed (i.e., do not contain references to lexically
free variables). This ensures that such objects are isolated from their scope of definition
(hence their name), allowing their methods to be safely executed in other actors. This
restriction also ensures that isolates can be serialized without having to transitively
serialize the value of any lexically captured variables. The benefit of isolates is that the
recipient actor will receive its own local copy of the isolate, avoiding further remote
communication.

5.4 Non-blocking Futures
By default, asynchronous message sends do not return a meaningful value (to be more
precise, they return null). Often, an object that makes an asynchronous request is
interested in a later reply. For instance, in our previous example, what if the main actor
wants to know when the transfer performed by the helper actor was completed?
This can be accomplished as follows:� �
def future := helper<-transfer(b1, b2)@TwoWay;� �

Any AmbientTalk message may be annotated with the TwoWay type tag to indicate
that the message should return a future. A future is a placeholder for the later return
value, which may not yet be available. Initially, the future is said to be unresolved.

The future gives us a handle on the return value, but is not itself the return value.
One can register a callback with a future, which is executed when the future becomes
resolved, and is passed the actual return value of the message:� �
when: future becomes: { |ack|

// execution is postponed until future is resolved
system.println("Transfer performed");

} catch: { |exception|
system.println("Transfer failed");

};
// code hereafter is always executed first, even if future is already resolved� �

The when:becomes:catch: function takes a future and two blocks (a callback
and an errback) as arguments, and registers these blocks with the future, as if they were
listener objects. If the asynchronously invoked method returns a value, the future is
resolved, and the callback is called with the return value (in the above example, the
transfer method just returns null, so ack will be null as well, serving only as
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an acknowledgement). If the method instead raises an exception, the corresponding
future becomes ruined and the errback is called with the exception. The errback is
analogous to a catch-clause in a regular sequential try-catch statement.

Even if when:becomes:catch: is called on a future that is already resolved,
the callback or errback is never immediately invoked, but instead always scheduled
for eventual execution in the message queue of the actor that created the block. This
ensures that the callback or errback is always executed in its own separate turn, and
that the execution is properly serialized w.r.t. other messages processed by the actor.

Returning to our example, we still have not quite successfully synchronized on the
actual transfer of the money: when future resolves, all we actually know is that
the transfer method was executed. But since the transfer method itself performs
asynchronous requests, completion of the transfer method does not imply completion
of the withdraw and deposit messages. This type of transitive asynchronous de-
pendencies comes up sufficiently often that AmbientTalk futures provide support for
it. It is possible to resolve a future f1 with another future f2, establishing a dataflow
dependency among them: if f2 later becomes resolved with a non-future value v, then
eventually f1 will also become resolved with v. Returning to our example, we need to
change the transfer method as follows:� �
def helper := actor: {

def transfer(from,to) {
from<-withdraw(10);
def f2 := to<-deposit(10)@TwoWay; // note the new annotation
f2

}
};
def future := helper<-transfer(b1, b2)@TwoWay;
when: future becomes: { |ack|

system.println("Transfer performed");
} catch: { |e| ... }� �

The transfer method now returns a future f2, rather than null. The outer
future will be resolved with this future f2. The callback will be triggered only
when the deposit message, sent while executing the transfer method, has itself
returned.

While this particular example is correct, the code for transfer in general is
not: our synchronization only works because we know from and to refer to account
objects owned by the same actor. Since AmbientTalk actors enqueue messages in FIFO
order, we know that if the deposit method was executed on to, the withdraw
method was also executed on from, since it was enqueued earlier in the same actor. In
the general case where from and to may refer to objects in different actors, we can
no longer make that assumption.

AmbientTalk has a number of auxiliary functions that operate on futures. One
such function is group:. This function expects an array of futures [f1,f2,...]
and returns a new “composite” future f. f is resolved with the array [v1,v2,...]
when and only when f1,f2,... have all resolved to values v1,v2,.... If any
of the argument futures is ruined with an exception, f becomes ruined with that same
exception. If one thinks of futures as booleans with states resolved and ruined, then
group: is the equivalent of the logical AND operator. Armed with group: we can
apply the proper synchronization:� �
def helper := actor: {

def transfer(from,to) {
def f1 := from<-withdraw(10)@TwoWay;
def f2 := to<-deposit(10)@TwoWay;
group: [f1,f2]
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}
};
def future := helper<-transfer(b1, b2)@TwoWay;
when: future becomes: { |ack|

system.println("Transfer performed");
}� �

The callback is now triggered only after both f1 and f2 have resolved.

Futures as Far References AmbientTalk futures are also far references to their even-
tual value: one can send asynchronous messages to the future, and these are automat-
ically forwarded to their value. As long as the future is unresolved, the messages are
accumulated at the future. When the future is resolved, these accumulated messages
are forwarded to the resolved value. If the future is ruined, any futures associated with
accumulated messages are ruined with the same exception. This is the asynchronous
equivalent of an exception propagating up the call stack.

Conditional Synchronization So far, the only way to obtain a future has been to
send an asynchronous message annotated as @TwoWay. In addition, these futures are
automatically resolved with the return value of the corresponding method. Sometimes,
this rigid pattern of using futures is insufficient: it may be that the resolved value of
a future depends on run-time conditions known only at a later stage in the program.
For instance, consider a bounded buffer with get() and put(v) methods. When the
buffer is empty, it may want its get() method to return an unresolved future, to be
resolved later when a producer sends a put(v) message.

To facilitate such “conditional synchronization” [BGL98] patterns, it is possible to
explicitly create and resolve futures:� �
def [future, resolver] := makeFuture();� �

The call to makeFuture returns two values: a fresh, unresolved future object,
and a paired resolver object. The creator can pass the future object around freely
to third parties, while retaining a reference to the resolver object. At a later time,
when the value of the future is known, the creator can invoke resolver.resolve(value)
to resolve the paired future. This will also trigger any pending callbacks registered with
the future.

5.5 Concurrency Properties
The key concurrency properties provided by communicating event loops are:

No data races Since every object is owned by exactly one actor, and since actors pro-
cess incoming messages for their owned objects sequentially, data races on the
state of objects are avoided: there is at most one concurrent activity that can read
or write to their fields. While low-level data races are prevented, race conditions
at the level of messages are still possible (e.g. unexpected message interleav-
ings).

No deadlocks Since all communication between actors is purely asynchronous, dead-
locks in the traditional sense are avoided. In particular, message reception is
implicit and fully asynchronous (an actor never suspends during a turn). Also,
AmbientTalk futures are fully non-blocking. Contrary to most future abstrac-
tions, they do not support a blocking get() method to await the future’s value
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synchronously. One must use the when:becomes:catch: function to await
the future’s value in a non-blocking manner. Note that lost progress bugs are
still possible, e.g. a future with pending callbacks may never be resolved, so its
callbacks will never fire.

6 Distributed AmbientTalk
We now turn to AmbientTalk’s features specifically geared towards distributed pro-
gramming in mobile ad hoc networks.

A key aspect of distributed programming in AmbientTalk is that (objects in) actors
running on different devices can communicate with each other, as if those actors were
running on the same device. There are of course differences in terms of failure han-
dling, but the programming model remains identical. When an object a acquires a far
reference to an object b in another actor, we call b a remote object (from a’s point of
view), regardless of whether both actors are running on the same device.

6.1 Service Discovery
We have previously shown that objects can acquire a new far reference to a remote
object by simply passing an object as a parameter into or as a return value from a
message sent via an existing far reference. However, this requires some initial far
reference to an object in the remote actor. How is this process bootstrapped?

AmbientTalk uses a publish/subscribe service discovery protocol. A publication
corresponds to an object advertising itself by means of a type tag. The type tag serves
as a topic known to both publishers and subscribers [EFGK03]. A subscription is made
by registering a callback block on a type tag. The callback will be triggered whenever
an object advertised with that tag is detected in the network.

An object that advertises itself is said to be exported. Once exported, an object be-
comes a globally accessible entry-point. In most distributed systems, exported objects
are identified by means of a URL and a UUID, or similar such global identifiers. How-
ever, URLs rely on infrastructure (name servers), which cannot always be relied upon
in a mobile ad hoc network. In addition, in mobile P2P applications, one application
is often interested in any other application with which it can partner, not necessarily
a specific application. Thus, mobile P2P applications are more interested in a type of
service than a particular unique instance of a service.

We use type tags to provide a description of what kinds of services an object pro-
vides to remote objects. We make the explicit assumption that all devices in the net-
work attribute the same meaning to each type tag, i.e. we assume they use a common
classification scheme.

Assume a mobile P2P application named MatchMaker that wants to pair up with
other applications of the same type. This application exchanges user profiles and alerts
the user when a matching profile is found. The MatchMaker application exports an
object serving as its publicly accessible entry-point, as shown below.� �
deftype MatchMaker;
def myEndPoint := object: {

def exchange(profile) { ... }
def alertMatch(profile) { ... }

};
def pub := export: myEndPoint as: MatchMaker;� �
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Once the myEndPoint object is exported, it can be discovered by other actors.
The export:as: function returns an object pub that can be used to take the exported
object offline again, by invoking pub.cancel().

To discover remote endpoints of peer applications, a MatchMaker application can
subscribe a callback to be notified whenever a matching endpoint is discovered in the
network:� �
whenever: MatchMaker discovered: { |remoteEndPoint|

remoteEndPoint<-exchange(myProfile);
...

};� �
The whenever:discovered: function takes as arguments a type tag and a

block that serves as a callback. Every time an object with a matching type tag is
discovered by the language runtime, an invocation of this callback is enqueued in the
actor owning the block. The remoteEndPoint argument to the block is bound to a
far reference pointing to the myEndPoint object of a peer MatchMaker application.

Similar to the export:as: function, the whenever:discovered: function
returns a subscription object whose cancel() method can be used to cancel the reg-
istration of the callback.

6.2 Far References and Partial Failures
Because objects residing on different devices are necessarily owned by different ac-
tors, far references are the only kind of object reference that can span across different
devices. By design, this ensures that all distributed communication is asynchronous.
This strict adherence to asynchronous distributed communication has two advantages
in wireless networks:

• First, latency in wireless networks is still more significant than in wired net-
works. Asynchronous communication helps to hide latency, enabling applica-
tions to perform useful work, or remain responsive, even while sending and re-
ceiving messages.

• Second, as noted previously, connections among roaming mobile devices are
often volatile. Asynchronous communication facilitates communication along
such intermittent connections via buffering. When sender and receiver are dis-
connected, outgoing messages can be buffered and retransmitted when the con-
nection is restored. This is like sending e-mail while working offline.

AmbientTalk’s far references make use of such buffering to be resilient to network
disconnections by default. Returning to our previous example, when a MatchMaker
application discovers a peer, it obtains a far reference remoteEndPoint to com-
municate further. Should the peer application disconnect at that point, the exchange
message will be buffered within the reference. When the network partition is eventually
restored, the far reference automatically retransmits the exchange message. Hence,
messages sent to far references are never lost, regardless of the internal connection state
of the reference.

Of course, not all network partitions are transient. Some will be permanent, or
sufficiently long-lasting to require application-level failure handling. To this end, Am-
bientTalk makes use of leasing [GC89]. An object can be configured such that any far
reference that points to it provides access for only a limited period of time (the lease
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period). Instead of exporting the myEndPoint object directly, the MatchMaker
application can export a lease for it:� �
def myEndPoint := object: {

// as before
};
def leasedEndPoint := lease: myEndPoint for: 2.minutes;
def pub := export: leasedEndPoint as: MatchMaker;� �

The function lease:for: expects an object and a duration (here, 2 minutes) and
returns a leased proxy for the object. Any far reference created to the leased proxy
remains valid for at most 2 minutes from the time the reference was first created. At
the discretion of the creator of the lease, the lease can be renewed, prolonging access to
the object. By default, the lease is renewed every time a message arrives at the proxy.

Connected
(messages are 

forwarded)

Disconnected
(messages are 

buffered)

Expired
(messages are 

dropped)

reconnect
expireexpire

disconnect

Figure 2: State diagram of a (leased) far reference.

Figure 2 summarizes the different states a far reference can be in. When the far
reference is connected and the lease has not yet expired, it forwards messages to the
remote object. While disconnected, messages are accumulated in the reference, as pre-
viously explained. When the lease expires, access to the remote object is permanently
revoked and the far reference itself becomes expired. Any message sent to an expired
reference is discarded (not buffered), and any future associated with this message is ru-
ined with an appropriate exception. Far references to non-leased objects are like leased
references whose lease period is infinite.

Both endpoints of a far reference can register callbacks to be invoked upon expi-
ration, e.g. to schedule clean-up actions. Leased references facilitate automatic dis-
tributed memory management: once all far references to an object have expired, the
object can be taken offline, becoming subject to garbage collection if it is no longer
locally referenced. Without leasing, a single disconnected far reference could keep an
object online forever.

7 Operational Semantics
We present a small step operational semantics of a subset of AmbientTalk, named AT-
LITE. Our goal here is to provide a precise definition of AmbientTalk’s concurrency
model. The presented semantics is based primarily on that of JCobox [SPH10], but
adapted for a dynamically typed, classless language, and modified to precisely reflect
AmbientTalk’s communicating event loops model with non-blocking futures.

The AT-LITE subset contains actors, objects, isolates (pass-by-copy objects), blocks
(functions), non-blocking futures and asynchronous message sending. In Section 7.4
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we extend AT-LITE with service discovery, enabling objects in different actors to dis-
cover one another. In Section 7.5, we introduce the notion of disconnected actors
and fault-tolerant messaging between actors. AT-LITE does not model AmbientTalk’s
object inheritance using prototype-based delegation, its support for trait-based compo-
sition (which is formalised elsewhere [VCBDM09]), reflection, exceptions and JVM
interoperability.

The semantics of AT-LITE is implemented in PLT Redex [FFF09], allowing AT-
LITE programs to be executed. Our PLT Redex implementation is available from
http://soft.vub.ac.be/˜cfscholl/AT-Redex-Model.zip.

7.1 Syntax

e ∈ E ⊆ Expr ::= self | x | null | e ; e | λx.e | e(e) | let x = e in e | e.f | e.f := e

| e.m(e) | actor{f := e,m(x){e}} | object{f := e,m(x){e}}
| isolate{f := e,m(x){e}} | let xf , xr = future in e | resolve e e
| e← m(e) | e←f m(e) | when(e→ x){e}

x, xf , xr ∈ VarName, f ∈ FieldName,m ∈MethodName

Figure 3: Abstract Syntax of AT-LITE.

AT-LITE features both functional and imperative object-oriented elements. The
functional elements descend directly from the λ-calculus. Anonymous functions are
denoted by λx.e and correspond to AmbientTalk blocks. Variable lookup in AT-LITE
is lexically scoped. Local variables can be introduced via let x = e in e.

The imperative object-oriented elements stem from object-based (i.e. classless)
calculi [AC96]. AT-LITE features object {...} and isolate {...} literal ex-
pressions to define fresh, anonymous objects. These literals consist of a sequence of
field and method declarations. Fields may be accessed and updated. Methods may be
invoked either synchronously via e.m(e) or asynchronously via e← m(e).

In the scope of a method body, the pseudovariable self refers to the enclosing
object literal. self cannot be used as a parameter name in methods or redefined using
let.

New actors can be spawned using the actor {...} literal expression. This cre-
ates a new object with the given fields and methods in a fresh actor that executes in
parallel. Actor and isolate literals may not refer to lexically enclosing variables, apart
from the self-pseudovariable. That is, for all field initialiser and method body ex-
pressions e in such literals, the set of free variables FV (e) ⊆ {self}. Isolates and
actors are thus literally “isolated” from their surrounding lexical scope, allowing their
subexpressions to be evaluated independent of the lexical scope in which they were
defined.

New futures can be created explicitly using the expression letxf , xr = future ine.
This binds a fresh future to the variable xf and a fresh, paired resolver object to xr. A
resolver object denotes the right to assign a value to its paired future. The expression
resolve xr e resolves the future xf via its paired resolver xr with the value of e. The
value of a future xf can be awaited using the expression when(xf → x){e}. When
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the future becomes resolved with a value v, the expression e is evaluated with x bound
to v.

AT-LITE supports two forms of asynchronous message passing. Expressions of
the form e ← m(e) denote one-way asynchronous message sends that do not return
a useful value. If a return value is expected, the expression e ←f m(e) denotes a
two-way asynchronous message send that immediately returns a future for the result
of invoking the method m. This is the equivalent of messages annotated with the
@TwoWay tag in AmbientTalk.

7.1.1 Syntactic Sugar

A number of AT-LITE expressions can be defined in terms of a desugaring (local trans-
formation), as shown in Figure 4.

e ; e′ def= let x = e in e′ x /∈ FV(e′)
λx.e

def= let xself = self in object { xself /∈ FV(e)
apply(x){[xself/self]e}
}

e(e) def= e.apply(e)
e←f m(e) def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e)

e← mf (e · xr) ; xf
when(e→ x){e′} def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e′)

let xc = λx.(xr.resolveµ(e′)) in xc /∈ FV(e)
e← registerµ(xc) ; xf

resolve e e′ def= let xr = e in xr /∈ FV(e′)
let xc = λx.(xr ← resolveµ(x)) in xc /∈ FV(e′)
e′ ← registerµ(xc)

Figure 4: AT-LITE syntactic sugar.

It is well-known that functions can be expressed in terms of objects and vice-
versa. AT-LITE functions (like AmbientTalk blocks) are defined as objects with a
single method called apply. The substitution [xself/self]e is necessary to ensure that
within function bodies nested inside object methods, the self-pseudovariable remains
bound to the object enclosing the function, and not to the object representing the func-
tion. Function application e(e) is desugared into invoking an object’s apply method.

A two-way message send e ←f m(e) is syntactic sugar for a simple one-way
message send that carries a fresh resolver object xr, added as a hidden last argument.
The message m is marked mf , serving as a signal for the recipient actor that it needs
to pass the result of the method invocation to xr. The value of a two-way message send
expression is the future xf corresponding to the passed resolver xr.

The expression when(e → x){e′} is used to await the value of a future. It is
syntactic sugar for registering a callback function xc with the future. The expression
as a whole returns a dependent future xf that will become resolved with the expression
e′ when the future denoted by e eventually resolves.

The expression resolve e e′ is used to resolve a future with a value, where e must

16



reduce to a resolver and e′ to any value. If e′ reduces to a non-future value, the callback
function xc will be called with x bound to the value of e′. If e′ reduces to a future
value, the callback function will be called later, with x bound to the resolved value of
the future. Thus, this definition ensures that futures can only be truly resolved with
non-future values.

The desugaring of “when” and “resolve” make use of special messages named
resolveµ and registerµ. The µ (for “meta”) suffix identifies these messages as spe-
cial meta-level messages that should be interpreted differently by actors. A regular
AT-LITE program cannot fabricate these messages other than via the “when” and “re-
solve” expressions.

7.2 Semantic Entities

K ∈ Configuration ::= A Configurations
a ∈ A ⊆ Actor ::= A〈ιa, O,Q, e〉 Actors

Object ::= O〈ιo, t, F,M〉 Objects
t ∈ Tag ::= O | I Object tags
Future ::= F〈ιf , Q, v〉 Futures

Resolver ::= R〈ιr, ιf 〉 Resolvers
m ∈Message ::= M〈v,m, v〉 Messages
Q ∈ Queue ::= m Queues

M ⊆Method ::= m(x){e} Methods
F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ε Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References
e ∈ E ⊆ Expr ::= . . . | r Runtime Expressions

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιa ∈ ActorId, ιo ∈ ObjectId

ιf ∈ FutureId ⊂ ObjectId, ιr ∈ ResolverId ⊂ ObjectId

Figure 5: Semantic entities of AT-LITE.

AT-LITE semantic entities are shown in Figure 5. Caligraphic letters likeF andM
are used as “constructors” to distinguish the different semantic entities syntactically.
Regular uppercase letters like F and M denote sets or sequences. Actors, futures,
resolvers and objects each have a distinct address or identity, denoted ιa, ιf , ιr and ιo
respectively.

The state of an AT-LITE program is represented by a configuration K, which is
a set of concurrently executing actors. Each actor is an event loop consisting of an
identity ιa, a heap O denoting the set of objects, futures and resolvers owned by the
actor, a queueQ containing a sequence of messages to be processed, and the expression
e that the actor is currently executing.

Objects consist of an identity ιo, a tag t and a set of fields F and methods M .
The tag t is used to distinguish objects from isolates, with t = O denoting an object
and t = I denoting an isolate. Isolates are parameter-passed by-copy rather than by-
reference in remote message sends, but otherwise behave the same as regular objects.
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An AT-LITE future is a first-class placeholder for an asynchronously awaited value.
Futures consist of an identity ιf , a queue of pending messages Q and a resolved value
v. A future is initially unresolved, in which case its resolved value v is set to a unique
empty value ε. While the future is unresolved, any messages sent to the future are
queued up in Q. When the future becomes resolved, all messages in Q are forwarded
to the resolved value v and the queue is emptied. We do not model AmbientTalk’s
support for ruined futures and asynchronous propagation of exceptions.

A resolver object denotes the right to assign a value to its unique paired future.
Resolvers consist of an identity ιr and the identity of their paired future ιf . The resolver
is the only means through which a future can be resolved with a value.

Messages are triplets consisting of a receiver value v, a method name m and a
sequence of argument values v. They denote asynchronous messages that are enqueued
in the message queue of actors or futures.

All object references consist of a global component ιa that identifies the actor own-
ing the referenced value, and a local component ιo, ιf or ιr. The local component
indicates that the reference refers to either an object, a resolver or a future. We define
FutureId and ResolverId to be a subset of ObjectId such that a reference to a
future or a resolver is also a valid object reference. As such, ιa.ιo can refer to either an
object, a resolver or a future, but ιa.ιf can refer only to a future.

Our reduction rules operate on “runtime expressions”, which are simply all expres-
sions e including references r, as a subexpression may reduce to a reference before
being reduced further.

7.3 Reduction Rules
7.3.1 Evaluation Contexts

We use evaluation contexts [FH92] to indicate what subexpressions of an expression
should be fully reduced before the compound expression itself can be further reduced:

e� ::= � | let x = e� in e | e�.f | e�.f := e | v.f := e� | e�.m(e) | v.m(v, e�, e)
| e� ← m(e) | v ← m(v, e�, e)

e� denotes an expression with a “hole”. Each appearance of e� indicates a subex-
pression with a possible hole. The intent is for the hole to identify the next subex-
pression to reduce in a compound expression. The notation e�[e] indicates that the
expression e is part of a compound expression e�, and should be reduced first before
the compound expression can be reduced further.

7.3.2 Notation

Actor heaps O are sets of objects, resolvers and futures. To lookup and extract values
from a set O, we use the notation O = O′ ·∪{o}. This splits the set O into a singleton
set containing the desired object o and the disjoint set O′ = O \ {o}. The notation
Q = Q′ ·m deconstructs a sequence Q into a subsequence Q′ and the last element m.
We represent queues as sequences of messages that are processed right-to-left, meaning
that the last message in the sequence is the first to be processed. We denote both the
empty set and the empty sequence as ∅.
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7.3.3 Evaluation Rules

Our semantics is defined in terms of a relation on configurations, K → K ′. It is
implicitly parametrized by a fixed underlying AT-LITE program. The rules defining the
relation are split into two parts: actor-local rules a →a a

′ and global rules K →k K
′.

This makes it explicit which steps can be executed in isolation within a single actor a,
and which require interaction between different actors in a configuration K.

Both actor-local and global rules can be applied non-deterministically, which gives
rise to concurrency. We do not yet consider actors distributed across different devices,
connected by a network, until Section 7.5. For now, we consider all actors to remain
permanently connected with each other.

Actor-local reductions Actors operate by perpetually taking the next message from
their message queue, transforming the message into an appropriate expression to eval-
uate, and then evaluate (reduce) this expression to a value. When the expression is fully
reduced, the next message is processed. As discussed previously, the process of reduc-
ing such a single expression to a value is called a turn. It is not possible to suspend a
turn and start processing another message in the middle of a reduction.

The only valid state in which an actor cannot be further reduced is when its message
queue is empty, and its current expression is fully reduced to a value. The actor then
sits idle until it receives a new message. If an actor is reducing a compound expression,
and finds no applicable actor-local reduction rule to reduce it further, the actor is stuck.
This signifies an error in the program.

[v/x]x′ = x′ [v/x]m(x){e} = m(x){e} if x ∈ x
[v/x]x = v [v/x]m(x){e} = m(x){[v/x]e} if x /∈ x

[v/x]e.f = ([v/x]e).f [v/x]e.f := e = ([v/x]e).f := [v/x]e
[v/x]null = null [v/x]e.m(e) = [v/x]e.m([v/x]e)

[v/x]r = r [v/x]e← m(e) = [v/x]e← m([v/x]e)

[v/x]let x′ = e in e = let x′ = [v/x]e in [v/x]e
[v/x]let x = e in e = let x = [v/x]e in e

[v/x]actor{f := e,m(x){e}} = actor{f := e,m(x){e}}
[v/x]isolate{f := e,m(x){e}} = isolate{f := e,m(x){e}}
[v/x]object{f := e,m(x){e}} = object{f := [v/x]e, [v/x]m(x){e}} if x 6= self

[v/self]object{f := e,m(x){e}} = object{f := e,m(x){e}}
[v/x]let xf , xr = future in e = let xf , xr = future in [v/x]e
[v/x]let x, xr = future in e = let x, xr = future in e
[v/x]let xf , x = future in e = let xf , x = future in e

Figure 6: Substitution rules: x denotes a variable name or the pseudovariable self , v
denotes a value.

We now summarize the actor-local reduction rules in Figure 7:

• LET: a “let”-expression simply substitutes the value of x for v in e according to
the substitution rules outlined in Figure 6.
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(LET)
A〈ιa, O,Q, e�[let x = v in e]〉
→a A〈ιa, O,Q, e�[[v/x]e]〉

(NEW-OBJECT)
ιo fresh

o = O〈ιo, O, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[object{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/self]e; r]〉

(NEW-ISOLATE)
ιo fresh

o = O〈ιo, I, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[isolate{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/self]e; r]〉

(INVOKE)
O〈ιo, t, F,M〉 ∈ O

r = ιa.ιo m(x){e} ∈M
A〈ιa, O,Q, e�[r.m(v)]〉

→a A〈ιa, O,Q, e�[[r/self][v/x]e]〉

(FIELD-ACCESS)
O〈ιo, t, F,M〉 ∈ O f := v ∈ F

A〈ιa, O,Q, e�[ιa.ιo.f ]〉
→a A〈ιa, O,Q, e�[v]〉

(FIELD-UPDATE)
O = O′ ·∪{O〈ιo, t, F ·∪{f := v′},M〉}
O′′ = O′ ∪ {O〈ιo, t, F ∪ {f := v},M〉}

A〈ιa, O,Q, e�[ιa.ιo.f := v]〉
→a A〈ιa, O′′, Q, e�[v]〉

(MAKE-FUTURE)
ιf , ιr fresh

O′ = O ∪ {F〈ιf , ∅, ε〉,R〈ιr, ιf 〉}
A〈ιa, O,Q, e�[let xf , xr = future in e]〉
→a A〈ιa, O′, Q, e�[[ιa.ιf/xf ][ιa.ιr/xr]e]〉

(LOCAL-ASYNCHRONOUS-SEND)
A〈ιa, O,Q, e�[ιa.ιo ← m(v)]〉

→a A〈ιa, O,M〈ιa.ιo,m, v〉 ·Q, e�[null]〉

(PROCESS-MESSAGE)
ιo /∈ FutureId

e = process(ιa.ιo,m, v)
A〈ιa, O,Q · M〈ιa.ιo,m, v〉, v〉

→a A〈ιa, O,Q, e〉

(PROCESS-MSG-TO-FUTURE)
O = O′ ·∪{F〈ιf , Q′, v′〉}
(m, e) = store(m, v, v′)

A〈ιa, O,Q · M〈ιa.ιf ,m, v〉, v〉
→a A〈ιa, O′ ∪ {F〈ιf ,m ·Q′, v′〉}, Q, e〉

(RESOLVE)
R〈ιr, ιf 〉 ∈ O O = O′ ·∪{F〈ιf , Q′, ε〉} v 6= ιa′ .ιf ′

A〈ιa, O,Q, e�[ιa.ιr.resolveµ(v)]〉
→a A〈ιa, O′ ∪ {F〈ιf , ∅, v〉}, Q, e�[fwd(v,Q′)]〉

Figure 7: Actor-local reduction rules.
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• NEW-OBJECT, NEW-ISOLATE: these rules are identical except for the tag of the
fresh object, which is set to O for objects and I for isolates. Evaluating an object
or literal expression adds a new object to the actor’s heap. The new object’s
fields are initialised to null. The literal expression reduces to a sequence of
field update expressions. The self pseudovariable within these field update
expressions refers to the new object. The last expression in the reduced sequence
is a reference r to the new object.

• INVOKE: a method invocation looks up the methodm in the receiver object ιa.ιo
and reduces the method body expression e with appropriate values for the pa-
rameters x and the pseudovariable self. It is only possible to invoke a method
on a local object. The receiver reference’s global component ιa must match the
identity of the current actor.

• FIELD-ACCESS, FIELD-UPDATE: a field update modifies the actor’s heap such
that it contains an object with the same address but with an updated set of fields.
Again, field access and field update apply only to objects local to the executing
actor.

• MAKE-FUTURE: a new future-resolver pair is created such that the future has
an empty queue and is unresolved (its value is ε), and the resolver contains the
future’s identity ιf . The subexpression e is further reduced with xf and xr bound
to references to the new future and resolver respectively.

• LOCAL-ASYNCHRONOUS-SEND: an asynchronous message sent to a local ob-
ject (i.e. an object owned by the actor executing the message send) adds a new
message to the end of the actor’s own message queue. The message send imme-
diately reduces to null.

• PROCESS-MESSAGE: this rule describes the processing of incoming asynchronous
messages directed at local objects or resolvers (but not futures). A new message
can be processed only if two conditions are satisfied: the actor’s queue Q is not
empty, and its current expression cannot be reduced any further (the expression is
a value v). The auxiliary function process (see Figure 9) distinguishes between:

– a regular message m (or the meta-level message resolveµ), which is pro-
cessed by invoking the corresponding method on the receiver object.

– a two-way message mf , as generated by the desugaring of e ←f m(e).
Such a message is processed by invoking the corresponding method on the
receiver object, and by sending the result of the invocation to the “hidden”
last parameter r which denotes a resolver object.

– a meta-level message registerµ, which indicates the registration of a call-
back function v, to be applied to the value of a resolved future. Since
process is only applicable on non-future values ιa.ιo, the callback func-
tion v can be triggered immediately, by asynchronously applying it to ιa.ιo.
This ensures that v is applied later in its own turn.

• PROCESS-MSG-TO-FUTURE: this rule describes the processing of incoming asyn-
chronous messages directed at local futures. The processing of the message de-
pends on the state of the recipient future, as determined by the auxiliary function
store. This function returns a tuple (m, e) where m denotes either a message
or the empty sequence, and e denotes either an asynchronous message send or
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null. The message m is then appended to the future’s queue, and the actor con-
tinues reducing the expression e. The store function determines whether to store
or forward the message m, depending on the state of the future and the type of
message:

– If the future is unresolved (i.e. its value is still ε), the message is enqueued
and must not be forwarded yet (e is null).

– If the future is resolved and the message name m is not registerµ, the
message need not be enqueued (m is ∅), but is rather immediately forwarded
to the resolved value v.

– If the future is resolved and the message is registerµ, which indicates a
request to register a callback function ιa.ιo with the future, the function is
asynchronously applied to the resolved value v. This request need not be
enqueued (m is ∅).

• RESOLVE: this rule describes the reduction of the meta-level message resolveµ,
as used in the desugaring of the “when” and “resolve” expressions. This message
can only be reduced when directed at a resolver object ιr whose paired future ιf
is still unresolved (i.e. its value is still ε). The paired future is updated such that
it is resolved with the value v, and its queue is emptied. The messages previously
stored in its queueQ′ are forwarded as a sequence of message sends, as described
by the auxiliary function fwd:

– If the queue is empty, no more messages need to be forwarded and the
expression reduces to null.

– If the queue contains a messagem or the meta-level message resolveµ, that
message is forwarded to v.

– If the queue contains the meta-level message registerµ, this indicates a
request to notify the callback function ιa.ιo when the future becomes re-
solved. The function is thus asynchronously applied with the future’s re-
solved value v.

Actor-global reductions We summarize the actor-global reduction rules in Figure 8:

• NEW-ACTOR: when an actor ιa reduces an actor literal expression, a new actor
ιa′ is added to the configuration. The new actor’s heap consists of a single new
object ιo whose fields and methods are described by the literal expression. As in
the rule for NEW-OBJECT, the object’s fields are initialized to null. The new
actor has an empty queue and will, as its first action, initialize the fields of its
only object. The actor literal expression itself reduces to a far reference to the
new object, allowing the creator actor to communicate further with the new actor.

• FAR-ASYNCHRONOUS-SEND: this rule describes the reduction of an asynchronous
message send directed at a far reference, i.e. a reference whose global component
ιa′ differs from that of the current actor ιa. A new message is appended to the
queue of the recipient actor ιa′ . The arguments v of the message send expression
are parameter-passed as described by the auxiliary function pass (see Figure 9).
This function prescribes the set O′′ of copied isolate objects to be added to the
recipient’s heap and a sequence of values v′ with updated addresses referring to
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(NEW-ACTOR)
ιa′ , ιo fresh

r = ιa′ .ιo a′ = A〈ιa′ ,O〈ιo, O, f := null,m(x){e′}〉, ∅, r.f := [r/self]e〉
K ·∪A〈ιa, O,Q, e�[actor{f := e,m(x){e′}}]〉 →k K ∪ A〈ιa, O,Q, e�[r]〉 ∪ a′

(FAR-ASYNCHRONOUS-SEND)
K = K ′ ·∪A〈ιa′ , O′, Q′, e′〉

(O′′, v′) = pass(ιa, O, v, ιa′) Q′′ =M〈ιa′ .ιo,m, v
′〉 ·Q′

K ·∪A〈ιa, O,Q, e�[ιa′ .ιo ← m(v)]〉 →k K
′ ∪ A〈ιa, O,Q, e�[null]〉 ∪ A〈ιa′ , O′ ∪O′′, Q′′, e′〉

(CONGRUENCE)
a→a a

′

K ·∪ {a} →k K ∪ {a′}

Figure 8: Actor-global reduction rules.

the copied isolates, if any. As in the LOCAL-ASYNCHRONOUS-SEND rule, the
message send expression evaluates to null.

• CONGRUENCE: this rule merely relates the local and global reduction rules.

An AT-LITE program e is reduced in an initial configuration containing a single
“main” actorKinit = {A〈ιa, ∅, ∅, [null/self]e〉}. At top-level, the self-pseudovariable
is bound to null.

7.3.4 Parameter-passing rules

The auxiliary function pass(ιa, O, v, ι′a) (see Figure 9) describes the rules for parameter-
passing the values v from actor ιa to actor ι′a, where O is the heap of the sender actor
ιa.

The parameter-passing rules for AT-LITE values are simple: objects are passed by
far reference, isolates are passed by copy, and null is passed by value. When an
isolate is passed by copy, all of its constituent field values are recursively parameter-
passed as well.

The auxiliary function reach(O, v) returns the set of all isolate objects reachable
via other isolates in O, starting from the root values v. The first two cases define the
terminal conditions of this traversal. In the third case, an isolate object o is encountered
and added to the result. All of o’s field values are added to the set of roots, and o
itself is removed from the set of objects to consider, so that it is never visited twice.
The fourth rule skips all other values and applies when v is null, a far reference
ιa′ .ιo′ , an object that was already visited (v = ιa.ιo, ιo /∈ O) or a non-isolate object
(v = ιa.ιo,O〈ιo, O, F,M〉 ∈ O).

The mapping σ prescribes fresh identities for each isolate in O′. The function pass
prescribes the set of isolates O′

σ which is simply the set O′ with all isolates renamed
according to σ. The function σv replaces references to parameter-passed isolates with
references to the fresh copies, and is the identity function for all other values.
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reach(∅, v) def
= ∅

reach(O, ∅) def
= ∅

reach(O ·∪o, v · ιa.ιo)
def
= reach(O, v · v′) ∪ {o} if o = O〈ιo, I, f := v′,M〉

reach(O, v · v) def
= reach(O, v) otherwise

pass(ιa, O, v, ι′a)
def
= (O′

σ, σv v)
whereO′ = reach(O, v)
σ = {ιo 7→ ι′o | O〈ιo, t, F,M〉 ∈ O′, ι′o fresh }
O′
σ = {O〈σ(ιo), I, f := σv(v),M〉 | O〈ιo, I, f := v,M〉 ∈ O′}

σv(v) =
{
ι′a.ι

′
o if v = ιa.ιo, ιo 7→ ι′o ∈ σ

v otherwise

store(m, v, ε)
def
= (M〈ε,m, v〉,null)

store(m, v, v)
def
= (∅, v ← m(v)) m 6= registerµ, v 6= ε

store(m, ιa.ιo, v)
def
= (∅, ιa.ιo ← apply(v)) m = registerµ, v 6= ε

fwd(v, ∅) def
= null

fwd(v,Q · M〈ε,m, v〉) def
= v ← m(v) ; fwd(v,Q) m 6= registerµ

fwd(v,Q · M〈ε,m, ιa.ιo〉)
def
= ιa.ιo ← apply(v) ; fwd(v,Q) m = registerµ

process(ιa.ιo,m, v)
def
= ιa.ιo.m(v) m 6= mf ,m 6= registerµ

process(ιa.ιo,mf , v · r)
def
= r ← resolveµ(ιa.ιo.m(v))

process(ιa.ιo, registerµ, v)
def
= v ← apply(ιa.ιo)

Figure 9: Auxiliary functions used in the reduction rules.

7.4 Service Discovery
In Figure 10, we extend AT-LITE with primitives for service discovery, allowing ob-
jects in different actors to discover one another as described in Section 6.1.

AT-LITE actors are extended with a set of exported objects E and a set of im-
port callbacks I . Values are extended to include type tags τ . Objects can be ex-
ported, and callbacks can be registered, under various type tags. When the tags match,
the callback is fired. The AT-LITE syntax is extended with tag literals and expres-
sions to export objects, to register callbacks for discovery and the syntactic sugar
whenDiscovered(e → x){e′} to resemble the AmbientTalk when:discovered:
function.

Figure 11 lists the additional reduction rules for service discovery:

• PUBLISH: to reduce an export expression, the first argument must be reduced
to a type tag τ and the second argument must be reduced to a reference (which
may be a far reference). The effect of reducing an export expression is that the
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Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,E, I, e〉

v ∈ Value ::= . . . | τ
τ ∈ Type

Syntax
e ::= . . . | τ | export e e | discover e e | whenDiscovered(e→ x){e}

Evaluation Contexts
e� ::= . . . | export e� e | export v e� | discover e� e | discover v e�

Syntactic Sugar
whenDiscovered(e→ x){e′} def= discover e (λx.e′)

Figure 10: Extensions for Service Discovery.

(PUBLISH)
(O′, v′) = pass(ιa, O, ιa′ .ιo, ιa)

A〈ιa, O,Q,E, I, e�[export τ ιa′ .ιo]〉
→a A〈ιa, O,Q,E ∪ (O′, v′, τ), I, e�[null]〉

(SUBSCRIBE)
A〈ιa, O,Q,E, I, e�[discover τ ιa.ιo)]〉
→a A〈ιa, O,Q,E, I ∪ (ιa.ιo, τ), e�[null]〉

(MATCH)
A〈ιa′ , O′, Q′, E′ ·∪(O′′, v, τ), I ′, e′〉 ∈ K

(O′′′, v′) = pass(ιa′ , O′′, v, ιa) Q′′ =M〈ιa.ιo, apply, v′〉 ·Q
K ·∪A〈ιa, O,Q,E, I ·∪(ιa.ιo, τ), e〉 →k K ∪ A〈ιa, O ∪O′′′, Q′′, E, I, e〉

Figure 11: Reduction rules for service discovery.

actor’s set of exported objects E is extended to include the exported object and
tag. An exported object is parameter-passed as if it were included in an inter-
actor message. Hence, if the object is an isolate, a copy of the isolate is made at
the time it is exported.

• SUBSCRIBE: to reduce a discover expression, the first argument must be re-
duced to a type tag τ and the second argument must be reduced to an object
reference. The effect of reducing a discover expression is that the actor’s
set of import callbacks I is extended to include a reference to the local callback
object, and the tag.

• MATCH: this rule is applicable when a configuration of actors contains both an
actor ιa′ that exports an object under a type tag τ , and a different actor ιa that
has registered a callback under the same tag τ . The effect of service discovery is
that an asynchronous apply message will be sent to the callback object in ιa.
The callback is simultaneously removed from the import set of its actor so that
it can be notified at most once. The exported object v is parameter-passed again,
this time to copy it from the publication actor ιa′ to the subscription actor ιa.
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7.5 Robust time-decoupled message sends
So far, we have assumed that AT-LITE actors are always permanently connected to all
other actors. In practice, actors may reside on distributed devices and only occasionally
connect to deliver messages. In Figure 12, we extend AT-LITE actors with networks.
Networks partition actors such that communication between actors is only possible if
they are in the same network. A network is represented as a unique identifier.

Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,Qout, ιn, e〉
Qout ∈ Outbox ::= ιa 7→ l
l ∈ Envelope ::= (m, Om)

ιn ∈ NetworkId

Figure 12: Extensions for time-decoupled message sends.

The use of networks allows us to more faithfully describe AmbientTalk’s remote
message passing semantics with buffering of messages sent to far references (see Sec-
tion 6.2). Asynchronous message sends are now split into two parts: message creation
and message transmission. Whenever an actor reduces the ← operator, a message is
created and stored in a message outbox (calledQout), to be transmitted when the recip-
ient is connected. This is called time-decoupled communication [EFGK03], as actors
do not require an active network connection at the time they send a message to each
other.

We represent an actor’s outbox Qout as a function that, for each remote actor ιa,
stores all outgoing messages addressed to objects owned by ιa. The outgoing messages
Qout(ιa) are represented as an ordered sequence of envelopes l. An envelope is simply
a message m together with the set of isolate objects Om passed as arguments to that
message. These objects have to be passed together with the message upon transmission.

In the reduction rules, the original rule for FAR-ASYNCHRONOUS-SEND is re-
placed by new rules for message creation (CREATE-MESSAGE) and message transmis-
sion (TRANSMIT-MESSAGE). Figure 13 lists the additional reduction rules for time-
decoupled message transmission:

• CREATE-MESSAGE: This rule creates a new envelope and appends it toQout(ιa′),
i.e. the list of outgoing messages addressed at actor ιa′ . This rule is actor-local,
so it is applicable regardless of whether the recipient actor is currently in the
same network.

• TRANSMIT-MESSAGE: This rule is applicable whenever an actor is in the same
network as an actor for which it has undelivered messages. If this is the case,
the last (i.e. eldest) of these undelivered messages is removed from the sender
actor’s outbox and appended to the destination actor’s inbound message queue.

• MOBILITY: This rule describes that actors can switch between different net-
works. Application of this rule is entirely involuntary, i.e. actors do not them-
selves choose to move, they are moved around (non-deterministically) by the
system or environment.
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(FAR-ASYNCHRONOUS-SEND)
This rule is removed.

(CREATE-MESSAGE)
(Om, v

′) = pass(ιa, O, v, ιa′) m =M〈ιa′ .ιo,m, v
′〉

l = Qout(ιa′) Q′
out = Qout[ιa′ 7→ (m, Om) · l]

A〈ιa, O,Q,Qout, ιn, e�[ιa′ .ιo ← m(v)]〉 →a A〈ιa, O,Q,Q′
out, ιn, e�[null]〉

(TRANSMIT-MESSAGE)
Qout(ιa′) = l · (m, Om) K = K ′ ·∪A〈ιa′ , O′, Q′, Q′

out, ιn, e
′〉

K ·∪A〈ιa, O,Q,Qout, ιn, e〉 →k

K ′ ∪ A〈ιa, O,Q,Qout[ιa′ 7→ l], ιn, e〉 ∪ A〈ιa′ , O′ ∪Om,m ·Q′, Q′
out, ιn, e

′〉

(MOBILITY)
ιn′ ∈ NetworkId ιn 6= ιn′

K ·∪A〈ιa, O,Q,Qout, ιn, e〉 →k K ∪ A〈ιa, O,Q,Qout, ιn′ , e〉

Figure 13: Reduction rules for time-decoupled message sends.

7.6 Semantic Properties
In Section 5.5 we argued that AmbientTalk’s event loop concurrency model avoids low-
level data races and deadlocks by design. While we do not formally prove these proper-
ties for AT-LITE, we argue that they hold based on the reduction rules. First, data races
are prevented by partitioning objects among different actors, and by restricting field
updates (FIELD-UPDATE) to be applicable only to local objects. Second, deadlocks are
prevented by not providing any synchronization primitive that can block an actor while
reducing a compound expression. Actors can only receive external messages when
their expression has been fully reduced to a value (PROCESS-MESSAGE,PROCESS-
MSG-TO-FUTURE). Of course, it remains possible to write AT-LITE programs that
lead to other forms of lost progress, e.g. by not resolving a future that has callbacks
awaiting its value.

8 Implementation
An AmbientTalk interpreter written in Java is available. Initially, we targeted the Java
2 micro edition (J2ME) platform, under the connected device configuration (CDC).
In 2006, this allowed AmbientTalk to run on PDAs (the forerunners of contemporary
smartphones). Today, we primarily target the Android OS, which supports Java pro-
grams via the Dalvik Virtual Machine. Our current experimental setup is a combination
of Samsung Nexus S and Galaxy Nexus phones (all running Android 4.0.4) and Mo-
torola Xoom tablets (running Android 3.2). The AmbientTalk interpreter is published
on the Google Play Store1. It runs on devices featuring Android 2.1 or higher, which
makes it compatible with 99% of Android devices at the time of writing.

1The interpreter can be downloaded at http://bit.ly/HM7Kzv.
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AmbientTalk interpreters in the same ad hoc network communicate with one an-
other by means of standard TCP/IP. AmbientTalk’s topic-based publish/subscribe ser-
vice discovery mechanism is peer-to-peer and does not require a centralised repository.
AmbientTalk interpreters discover one another by means of the network’s support for
multicast messaging using UDP. After a successful discovery, the two interpreters ex-
change discovery information (e.g. registered subscriptions and exported objects) in
order to find a match.

As described previously, the naming and discovery of services happens via type
tags. We make the underlying assumption that the name of such tags is known by
all participating services. This discovery mechanism also does not take versioning
into account explicitly, e.g. if a certain service is updated, older clients may discover
the updated service, and clients that want to use only the updated service may still
discover older versions. Clients and services are thus themselves responsible to check
versioning constraints.

9 Language Extensions
An explicit design goal of AmbientTalk was to serve as a research language in which
the design space of mobile networks and actor languages could be explored. Here,
we provide a brief overview of the various language extensions developed in and for
AmbientTalk in the past six years. First, extensions geared towards mobile networks:

Ambient references Ambient references are a new type of far reference that can auto-
matically rebind to different objects during their lifetime [Van08]. As such, they
support roaming in mobile applications. An ambient reference is initialized with
a type tag, and can, during its lifetime, refer to any object exported with that tag.
It was inspired by M2MI’s omnihandles [KB02].

RFID tags AmbientTalk has been extended to program mobile RFID-enabled appli-
cations [LPD11]. These applications use RFID tags to represent physical ob-
jects. Just like wireless communication in mobile networks, communicating with
RFID tags is prone to many failures. We allow AmbientTalk objects to be seri-
alized on RFID tags, and allow applications to communicate with these stored
objects using a special type of far reference that makes abstraction of low-level
RFID communication details and similarly provides a smart buffering to mask
intermittent communication failures.

Network-aware references Modern smartphones support multiple communication tech-
nologies, such as Wi-Fi, Bluetooth, cellular data and possibly near field commu-
nication (NFC). Most of these can be used to form ad hoc peer-to-peer networks.
AmbientTalk supports multiple such technologies via different communication
drivers. This raises issues for programmers: if a program is connected to var-
ious overlapping networks, objects can be discovered multiple times, and each
of these far references can disconnect or reconnect individually. Network-aware
references [PHD11] are a new type of far reference that group different such
individual far references so that programmers can make abstraction from the un-
derlying technology.

Tuple space-based abstractions Tuple spaces are a coordination mechanism in which
processes communicate by means of a shared associative memory (the tuple
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space), originating in the Linda coordination language [Gel85]. Communication
via tuples forms an alternative to AmbientTalk’s message passing abstractions.
TOTAM (“Tuples on the ambient”) [SBM09] is a tuple space library for Am-
bientTalk in which tuples can propagate through a mobile network, inspired by
a similar model named TOTA [MZ04]. A TOTAM tuple can contain rules that
describe the conditions under which it is visible to peer applications, facilitating
the development of context-sensitive applications [SGBDMD10].

Second, extensions geared towards actor languages in general:

Parallel actor monitors While the actor model is well appreciated for its ease of use,
its scalability is often criticized. Indeed, the fact that execution within an actor
is sequential prevents truly parallel reads on state encapsulated by that actor. To
address this issue, AmbientTalk has been extended with Parallel Actor Monitors
(PAM) [STD10]. A PAM is a modular, reusable scheduler that permits to in-
troduce parallelism within an actor in a local and abstract manner. PAM allows
the stepwise refinement of local parallelism within a system on a per-actor basis,
without having to deal with low-level synchronization details and locking.

Reactive Programming AmbientTalk applications are inherently event-driven. First
because of services that dynamically and unpredictably disconnect and recon-
nect, and second because of the language’s event loop concurrency model. This
event model has to integrate with events originating from other sources, e.g.
the UI or sensors of the mobile device (GPS, RFID). AmbientTalk’s reliance
on traditional event handlers gives rise to the well-known problem of inversion
of control [HO06], making complex event-driven code hard to manage. Ambi-
entTalk/R [LMVD10] is an extension of AmbientTalk that supports reactive pro-
gramming, a programming paradigm that models events as state changes in time-
varying values. Code that depends on such time-varying values is automatically
tracked by the interpreter and re-executed whenever these values change. Exper-
iments have been conducted with a visual language on top of AmbientTalk/R to
graphically edit distributed reactive programs [LD10].

Contracts AmbientTalk has been extended with higher-order contracts, modelled af-
ter [FF02]. Contracts can specify pre- and post-conditions on functions. Aside
from performing simple type checks on function arguments and return values,
AmbientTalk’s contract system additionally enables one to express constraints
on what a function can do during its execution (e.g. a contract may state that the
function is not allowed to send remote messages). While contracts were initially
designed for sequential function calls, in AmbientTalk they are also applicable
to asynchronous message sends between remote objects [SHT+11].

10 Applications and Experiments
Over the past few years, we have written several applications in AmbientTalk, to show-
case the language’s suitability to build a variety of mobile peer-to-peer applications:

• A P2P drawing application named weScribble in which participants can collab-
oratively draw on a shared virtual canvas. This application is released on the
Android Market.
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• A P2P chat application in which participants automatically discover one another.
Messages sent to disconnected peers are automatically buffered and sent upon
reconnection.

• A P2P “flea market” application (based on an example by Eugster et al. [EGH05])
in which sellers can post items for sale, and buyers can indicate their interest in
general item categories. When a buyer and seller connect, the application ex-
changes contact details of both parties.

• A P2P music match maker: peers can upload a list of song titles. When peers
meet, they exchange and compare song titles. If both users share a similar taste
in music, they are notified. If a user disconnects during the exchange, the ex-
change is automatically stalled until both peers reconnect. For this application,
we established a detailed comparison in terms of lines of code with an equivalent
application in Java 2.

• A P2P social networking application, supporting plug-in applications (inspired
by the Facebook platform). One example application is a picture sharing app that
allows users to share recently taken pictures with people in their direct proximity.

• Various multiplayer games, including a P2P version of the classic Atari game
Pong, a P2P Rock-Paper-Scissors game, a P2P scrabble-like game, and a so-
called “urban game” named Flikken [SGBDMD10] to be played outdoors, where
players are either “cops” or “thieves” and where interaction depends on the play-
ers’ GPS location.

• A workflow language named NOW in which one can express workflow patterns
for nomadic networks [PVDSJ10].

In addition, AmbientTalk is actively used as a teaching platform in the Master in
Computer Science curriculum at the Vrije Universiteit Brussel, for a course on mobile
and distributed computing. Students use AmbientTalk for simple exercises, as well as
more advanced projects such as implementing distributed hash tables or multi-player
games.

11 Asynchronous and Distributed Debugging
To support the development of mobile applications in AmbientTalk, we have built a
number of tools. Our most significant effort thus far is IdeAT, an AmbientTalk IDE
developed as a plugin for Eclipse 3. IdeAT provides many of the standard features ex-
pected by modern IDEs, such as a source code editor, a launcher to run AmbientTalk
programs with an interactive console, and a debugger. The AmbientTalk editor sup-
ports syntax highlighting, syntax error reporting, brace matching, auto-format, auto-
completion of the current identifier and code completion for control structures such as
if:then:else:.

The IdeAT debugger is called REME-D (pronounce “remedy”), the Reflective Epi-
demic MEssage-oriented Debugger [GBCVC+11]. REME-D is an online debugger

2The results of this experiment are available at http://ambienttalk.googlecode.com/
files/LeasingExperimentJavaRMIvsAmbientTalk.zip.

3The IdeAT plugin is available from the Eclipse update site at http://tinyurl.com/ideat
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designed to debug mobile, distributed applications, and specifically to debug event-
driven programs. REME-D was not designed to debug sequential AmbientTalk code,
but only the asynchronous, distributed part of applications.

REME-D allows one to inspect the message queue of an actor, to set breakpoints
on incoming asynchronous messages and to step through the program at the granularity
of whole messages rather than individual statements. In addition, inspired by Cause-
way [SCM09], REME-D incorporates features from post-mortem, message-oriented
debuggers, such as logging all sent and received messages. This allows the program-
mer to browse the causal history of message events.

REME-D has one additional feature to support the deployment of an application to
be debugged on a mobile ad hoc network: epidemic debugging. Epidemic debugging
allows a peer program that is discovered in the network to join an ongoing debugging
session at runtime. If that program supports REME-D, it can be switched into debug-
mode and start “infecting” other programs that it encounters, so that they too enter
debug-mode. Thus, a federation of mobile programs can easily take part in a single
distributed debugging session, without having to explicitly configure each program
as a participant ahead of time. Programs can leave a debugging session at any time
without disrupting the debug-mode of remaining participants, either by disconnecting
or in response to user action.

Figure 14 shows a REME-D debugging session of an online shopping application
(the example was taken from [SCM09]). Three views are on display: the debug view on
the top right, the state inspector on the top left, and a source code editor on the bottom.
In the debug view, we can see that the application is actually distributed and consists
of two programs, one running Store.at (a shop) and the other running Buyer.at
(a client of the shop). Each of these programs consists of multiple actors, as indicated
by the nested actor ID’s.

Figure 14: AmbientTalk IDE for Eclipse showing a REME-D debug session.

The editor shows part of the implementation of the Buyer.at application. The
checkoutShoppingBasketmethod is called when the customer purchases a prod-
uct. In response to this action, a go message is sent, which verifies three things before
accepting the product order: 1) whether the requested item is still in stock, 2) whether
the customer payment is valid and 3) whether the order can be delivered in time.

Finally, the state inspector gives us a view on the state of the objects owned by the
actors, as well as the messages that await processing on the incoming message queue.
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The actor highlighted in this example contains customer and shoppingCart ob-
jects, and has a go message pending in its incoming message queue (inbox). As can be
seen in the screenshot, the user can use the inspector to navigate the actor’s entire heap
of objects reachable from its top-level fields.

A user can place breakpoints in the source code at places where he or she wants
to inspect the application state. In AmbientTalk, this is often at places where asyn-
chronous messages are sent or received. In Figure 14, a breakpoint is set on the outgo-
ing go asynchronous message, as indicated by the blue dot in the editor’s left margin.
What is unique about such breakpoints in REME-D is that execution of the receiver
actor will be paused when the breakpointed message reaches the head of its message
queue, before the message is processed. The figure shows an actor of the Buyer.at
program paused as a result of this breakpoint. As shown by the state inspector on the
top right, the go message is still in the message queue.

In REME-D, one can step through an application one entire event loop turn at a
time. As in regular breakpoint-based debuggers, three kinds of step commands are
offered: step-over, step-into and step-return a turn, each explained below.

A step-over command instructs the debugger to let an actor process a single mes-
sage, the one at the head of its queue, and return it to the paused state. By stepping
over a turn, one can observe how the state of the actor changes as it processes incoming
messages.

A step-into command instructs the debugger to let an actor process a single message
(in a single turn), and return it to the paused state. In addition, all actors that received
messages sent during that turn are also paused. The user can then verify the actor’s
state, and decide which of the now paused recipient actors he or she wants to continue
debugging.

Figure 15: Debug view after a step-into command.

Figure 15 shows the debug view after having stepped into the turn that processed the
go message shown in Figure 14. The actor that processed the go message is expanded,
which reveals the list of messages sent while processing the go method. Each of these
messages (canDeliver, checkCredit and partInStock) was directed at a
different actor in the Store.at application. As indicated by the little yellow “pause”
signs, each of these three actors is now paused.

Finally, a step-return command instructs the debugger to return from a message
which was previously stepped into. This is useful when debugging a method that was
invoked by sending a two-way message m with an associated future f. The method
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must then asynchronously “return” its result to f. When step-returning from such a
method, the actor that previously sent the message m is paused, at the point where
f becomes resolved. The user can then easily inspect the return value of the asyn-
chronously invoked method. Furthermore, at that point, the user can continue the de-
bugging session from the start of any callback functions registered with f using the
when:becomes:catch: function (see Section 5.4). Hence, REME-D users can
debug two-way asynchronous messages as easily as one would debug synchronous
method invocations using a traditional debugger.

REME-D is developed in AmbientTalk itself, which is made possible by the lan-
guage’s support for reflection. AmbientTalk provides a set of hooks that allow pro-
grams to customize the message reception and processing behavior of actors [MVCT+09].
REME-D makes use of these hooks to instrument actors for debugging. For details, we
refer to [GBCVC+11].

12 Related Work
In Section 3, we already introduced the languages and systems that directly influenced
the design of AmbientTalk. Here, we briefly highlight related work in two broad cat-
egories: languages and systems also directed at developing software for mobile net-
works, and related work in actor-based languages in general.

Mobile networks AmbientTalk tackles the issues of mobile networks by building
on object-oriented abstractions such as object references and message-passing. Others
have tackled the same issues by building on different communication paradigms. For
example, LIME [MPR01] and TOTA [MZ04] are mobile computing middleware based
on tuple spaces [Gel85]. In the tuple space model, processes do not communicate by
sending each other private messages, but rather by inserting and removing tuples from
a shared associative store (the tuple space).

Another fruitful paradigm for mobile computing is Publish/Subscribe [EFGK03].
The main difference between traditional, centralised publish/subscribe architectures
and those for mobile networks is the incorporation of geographical constraints on the
event disseminations and subscriptions. For example, in location-based Publish/Sub-
scribe (LPS) [EGH05] and STEAM [MCNC05], publishers and subscribers can de-
fine a geographical range to scope their publications or subscriptions. Only when the
ranges overlap is an event disseminated to the subscriber. AmbientTalk’s service dis-
covery mechanism is based on the publish/subscribe paradigm, but does not provide
any explicit means to scope exported objects and subscribed event handlers.

Actor-based systems In the original actor model, actors refer to one another via mail
addresses [Agh86]. When an actor sends a message to a recipient actor, the message is
placed in a mail queue and is guaranteed to be eventually delivered by the actor system.
Most practical implementations of the actor model do not actually guarantee eventual
delivery.

For instance, in the E language [MTS05], a network disconnection immediately
breaks a far reference. Once the reference is broken, it will no longer deliver any
messages. Hence, E’s far references do not try to mask intermittent network failures the
way AmbientTalk far references do. When leased far references are used, AmbientTalk
does not guarantee eventual delivery of messages either, as these references may expire
(cf. Section 6.2).
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The fact that actors can only communicate asynchronously makes the original actor
model by itself almost suitable for mobile networks. However, the actor model lacks
a means to perform service discovery, i.e. to acquire the mail address of an unknown
remote actor without a common third party acting as an introducer. There do exist
extensions of the actor model that tackle this issue. In the ActorSpace model [CA94],
messages can be sent to a pattern rather than to a mail address, and they will be deliv-
ered by the actor system to an actor with a matching pattern. The ActorSpace model,
however, was not designed for mobile networks, as it relies on infrastructure to manage
the matching of the patterns.

Futures (also known as promises) are a frequently recurring abstraction in actor
systems. The use of futures as return values from asynchronous message sends can
be traced back to actor languages such as ABCL/1 [YBS86]. In Argus, promises ad-
ditionally supported pipelined message sends and exceptions [LS88]. Most future ab-
stractions support synchronisation by suspending a thread that accesses an unresolved
future. This style of synchronization is called wait-by-necessity [Car93]. The E lan-
guage pioneered the when-expression to await the value of a promise in a non-blocking
way [MTS05]. In other actor systems, the same goal is often accomplished by passing
explicit callbacks or “continuation” actors as arguments to a message.

Our notion of future-resolver pairs descends directly from promise-resolver pairs in
E, which are themselves inspired by logic variables in concurrent constraint program-
ming [Sar93].

The view of AmbientTalk actors as containers of regular objects is based on E’s
similar notion of actors as vats [MTS05]. In JCobox [SPH10], actors are similarly
represented as coboxes. JCobox additionally supports cooperative multitasking (corou-
tines) within a cobox.

13 Conclusion
Developing responsive peer-to-peer mobile applications is a challenge because of the
inherent characteristics of mobile networks. Devices are only sporadically connected
and need to discover one another on the move, without always being able to rely on a
shared infrastructure.

AmbientTalk is designed as a language to facilitate the development of mobile P2P
applications. It features a built-in model for concurrency and distribution based on
the actor model, a model that was developed for open, asynchronous, distributed sys-
tems. AmbientTalk augments and extends this model with built-in support for service
discovery and fault-tolerant, time-decoupled asynchronous message sending. We have
given both an informal and a formal account of these core language features. To the
best of our knowledge, this is the first formal account of an actor language built on the
communicating event loops model.
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