
Determining Dynamic Coupling in JavaScript
Using Object Type Inference

Jens Nicolay, Carlos Noguera, Coen De Roover, Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
{jnicolay, cnoguera, cderoove, wdmeuter}@vub.ac.be

Abstract—Coupling in an object-oriented context is often
defined in terms of access to instance variables and methods
of other classes. JavaScript, however, lacks static type informa-
tion and classes, and instead features a flexible object system
with prototypal inheritance. In order to determine coupling in
JavaScript, we infer object types based on abstract interpretation
of a program. Type inference depends on both structure and
behavior of objects, and common patterns for expressing classes
and modules are supported. We approximate a set of accessed
types per function, and classify every access as either local or
foreign. Examples demonstrate that our object type inference,
together with some additional heuristics concerning property
access, enable determining coupling in JavaScript in a meaningful
way.

I. INTRODUCTION

JavaScript applications are becoming increasingly complex,
and are no longer confined to the browser. As a result,
various stakeholders would benefit from tools that support
them in assessing the quality of JavaScript code. Extensive
research has resulted in quality assessment tools for traditional,
class-based, object-oriented languages [1], [2], [3]. JavaScript,
in contrast, has received far less attention in this regard.
One possible reason is that static reasoning over JavaScript
programs is challenging due to the dynamic nature of the
language. Static reasoning forms the foundation for advanced
tooling.

One important aspect that determines the quality of a pro-
gram is coupling. It is considered a good software engineering
principle to keep coupling low, as this makes code easier
to understand and maintain. In this paper, we describe our
approach to determining the dynamic coupling of functions
to object types. We define dynamic coupling for a function
as the set of object types of which that function accesses
properties. As JavaScript has no classes nor static types, we
infer object types in such a way that we can measure coupling
meaningfully, even in the presence of dynamic features and the
commonly used class and module patterns. We demonstrate the
usefulness of our approach by applying it to the detection of
coupling-related code smells.

A. Approach

We start by approximating the set of all property accesses
that might occur in a running program. To this end, an abstract

interpreter collects tuples that capture the details of each
property access (Section II). Next, we compute a type for the
receiver (Section III), enabling us to determine the locality of
each access based on the type of the base object and that of the
this binding that is in effect. By collecting this information
for all property accesses in a given function, we determine the
dynamic coupling for that function (Section IV). The initially
computed types are based only on information available in the
tuples returned by the interpreter. When considering the entire
set of property accesses, we are able to enhance these types by
discovering relations between them based on their flow to base
expressions (Section V-A) and their interfaces (Section V-B).

B. Contributions

● We describe an abstract interpretation required for ap-
proximating all property accesses in a running program.

● We examine how to infer types for objects so that module
and class patterns are supported.

● We show how to compute dynamic coupling in JavaScript
based on approximations of property access and inferred
object types.

II. ABSTRACT INTERPRETATION

At the heart of our approach to determining dynamic
coupling is an abstract interpreter [4]. An abstract interpreter
executes the program using abstract semantics that approxi-
mate the concrete semantics of JavaScript program execution.
These abstractions simplify the semantic domain that models
the runtime, and guarantees finite execution in both time and
space. In this paper we define coupling in terms of types
inferred from property access within functions. Therefore, our
abstract interpreter is configured to collect a set of tuples that
contain information about the property accesses it encounters.
This set of tuples is then used to infer object types, which in
turn determine coupling of functions.

In what follows, we detail the syntactic elements of
JavaScript that are relevant to the abstract interpretation, the
abstract domain used to analyse property accesses, and the
manner in which property access information is collected
during interpretation.

A. Syntactic elements

Figure 1 identifies the syntactic elements of JavaScript that
are relevant for reasoning over property accesses with the978-1-4673-5739-5/13/$31.00 © 2013 IEEE

n ∈ Node = finite set of AST nodes
f ∈ Fun ⊆ Node = function expressions and declarations
v ∈ Id ⊆ Node = identifiers

e ∈ Exp ⊆ Node = expressions
p ∈ Prop ⊆ Exp = eb.v (dot) ∣ eb[ev] (bracket)
t ∈ This ⊆ Exp = this (this expression)
u ∈ Call ⊆ Exp = ef(earg∗) (call expressions)
c ∈ New ⊆ Exp = new ef(earg∗) (new expressions)
l ∈ ObjLit ⊆ Exp = {⟨v:einit⟩ ∗ } (object literals)
r ∈ ArrLit ⊆ Exp = [einit ∗] (array literals)

Fig. 1. Overview of relevant syntactic elements of JavaScript.

Store = Addr ↦ Val

Val = (Prim × ℘(Addr)) +Benv

Benv = Str ↦ ℘(Addr)
Addr = finite set of addresses
Prim = finite set of abstract primitive values

Prim ⊇ Str = set of abstract names

Fig. 2. The abstract domain used in our static analysis.

purpose of inferring object types and determining coupling.
Besides property access itself, we also distinguish between
function expressions and declarations, identifiers, call and
new expressions, and array and object literals. The set Prop
contains two kinds of property access nodes. Dot-based ac-
cesses identify the accessed property of base expression eb
through the identifier v, while bracket-based accesses identify
the accessed property through the value of another indexation
expression ev . In the second case, JavaScript always coerces
base expressions into object types and indexation expressions
into strings. We define a function base ∶ Prop↦ Exp to access
the base expression of either kind of property access.

B. Abstract domain

The abstract interpreter models the runtime of the target pro-
gram with the abstract domain shown in Figure 2. Addresses
in Addr are references to values and generated whenever the
interpreter allocates values. An abstract object in Benv is
a one-to-many mapping from names to addresses. Abstract
objects are used to represent objects, arrays, closures, and
environments. A store in Store maps addresses onto a value. It
mimics the heap and is a key component in performing points-
to analysis. Values are either first-class values (primitives and
object references) or objects.

In the context of object type inference and dynamic cou-
pling, we are especially interested in those AST nodes that
create objects. New expressions, array literals, and object
literals are sources of object creation that can be directly

Acc = Addr ×Addr ×Prop ×Addr × Str × Store

af ∈ Addr Address of the function enclosing the property
access.

at ∈ Addr Current address of this in the active execu-
tion context.

p ∈ Prop Property access node.
ab ∈ Addr Address of base(p).
s ∈ Str Name of the referenced property in p, either

name of v or the result of evaluating ev .
σ ∈ Store Current store.

Fig. 3. Elements of the active execution context in Acc, generated for each
property access the interpreter evaluates.

traced back to specific nodes. Certain method invocations
on built-in objects, like for example Object.create, also
create objects behind the scenes. Function expressions and
declarations give rise to function objects, the evaluation of
regular expressions results in RegExp objects, and so on.
Function nodes also indirectly create a prototype object, acces-
sible through the public prototype property on the function
object created by the same node. Addresses are generated in
the interpreter in such a way that there is a link between the
address and the node responsible for creating that address,
even if the address in question references an implicitly created
object. Thus, we define a function node ∶ Addr ↦ Node that
establishes this between an address and its corresponding node.
Note that this does not limit the number of addresses linked to
a particular node, so addresses can be generated in a context-
sensitive manner for example.

C. Collecting property access information

Examining property access in a JavaScript program on a
syntactic level only is not sufficient: it usually does not reveal
any useful information about the objects and properties that
might be involved at runtime. We therefore rely on an abstract
interpreter that is instrumented to collect information on all
property accesses it evaluates during abstract interpretation
of a program. For the moment we will only consider read
access. In Section V-C we explain how to extend our approach
to also include write access, and how to deal with accessing
undefined properties. Information regarding a particular read
property access is recorded in a tuple (af , at, p, ab, s, σ) ∈ Acc
consisting of the elements detailed in Figure 3. The evaluation
of one property access can result in multiple tuples, depending
on the number of addresses in the points-to sets of the en-
closing function, the value of this, and the base expression.
How close these and other computed sets in the remainder
of this paper are to their actual runtime equivalents, depends
on the combination of the dynamicity of the program and the
precision of the underlying abstract interpretation.

III. OBJECT TYPE INFERENCE

Our approach determines coupling dynamically by consid-
ering the types of accessed objects. To compute the type of an

object, we define a function iof that takes an object reference
and a store, and returns a set of addresses that represents the
type for that object reference.

iof ∶ Addr ↦ Store ↦ ℘(Addr)

Using addresses to represent types entails that the type of an
object is another object. Below we discuss which objects we
consider as types. Using objects as types carries the added
benefit of allowing us to map an object to abstract syntax
tree locations (cf. II-B), which can give further information to
type inference algorithms. Defining the function iof this way
gives rise to a type hierarchy in the form of a tree of objects
computed by the transitive closure iof ∗.

iof ∗ ∶ Addr ↦ Store ↦ ℘(℘(Addr))
iof ∗ (a0, σ) = {{a0, . . . , an} ∣ ∀i ∈ 1..n ∶ ai ∈ iof (ai−1)}

Function iof encapsulates different possible object type
inference algorithms. If we only look at a single tuple at a
time to infer types, there are two straightforward definitions
of this function.

1) Prototype-based, where the type of an object is its
prototype.

2) Object-based, where each object is its own type.
Below we explore these definitions, and conclude that we need
to combine them in order to support some of the most common
JavaScript patterns.

A. Prototype-based type inference

Every object in JavaScript has an internal [[Prototype]]
property that points to that object’s prototype, or that has the
value null if there is no prototype. Similarly, function objects
have a regular prototype property. When a function object
is invoked as a constructor using the new operator, the result
is a newly created object of which the [[Prototype]] property is
set to the prototype property of the constructor at the time
of construction. Therefore, for any function F, the following
holds:
Object.getPrototypeOf(new F()) === F.prototype

We consider a first approximation to object type inference in
which the iof function is defined in terms of the [[Prototype]]
property. In abstract terms the value of [[Prototype]] for
an object is a (possibly empty) set representing an over-
approximation of object references to prototype objects. By
defining a function proto ∶ Benv ↦ ℘(Addr) that returns this
set of possible prototype addresses, we can define a prototype-
based definition of iof p as follows:

iof p ∶ Addr ↦ Store ↦ ℘(Addr)
iof p(a, σ) = proto(σ(a))

A prototype chain of a JavaScript object starts at the
[[Prototype]] of that object and then traces out subsequent
[[Prototype]] links. In JavaScript the prototype chain of an
object would be obtained by repeatedly applying the built-
in function Object.getPrototypeOf, until null is en-
countered. The instanceof operator of JavaScript uses

function Circle(x, y, r) {
this.x = x;
this.y = y;
this.r = r;

}

function Point(x, y) {
Circle.call(this, x, y, 0);

}
Point.prototype =
Object.create(Circle.prototype);

var p = new Point(90, 90);
p.x

Fig. 4. Example program P1.

the prototype chain to determine types: an object x is an
instance of constructor F if the prototype chain of x contains
F.prototype. For approximating the object type of an ob-
ject, the transitive closure of iof p∗, will compute a prototype
tree, represented as a set of all possible [[Prototype]] chains.
Function iof p defines types by referring to prototype objects
(Object.getPrototypeOf) instead of taking prototype
objects to constructors as instanceof does.

Convention: In the code examples that follow we will
translate addresses into equivalent source code expressions,
i.e. expressions that evaluate to the same addresses. If neces-
sary, the evaluation context for these expressions will be made
clear in the example.

Example 1: In the JavaScript program P1 (Fig. 4) the
following holds:

Object.getPrototypeOf(p)
=== Point.prototype

⇒ true
Object.getPrototypeOf(Point.prototype)
=== Circle.prototype

⇒ true
Object.getPrototypeOf(Circle.prototype)
=== Object.prototype

⇒ true
Object.getPrototypeOf(Object.prototype)
=== null

⇒ true

Therefore, if σ is the store when evaluating property access
p.x, then iof p(p, σ) = {Point.prototype} and iof p ∗
(p, σ) = {{Point.prototype,
Circle.prototype,Object.prototype}}.

Example 2: Example program P2 (Fig. 5) shows the
essence of the module pattern in JavaScript. Functions pub
and priv are defined in the local scope of the immediately
invoked function expression (IIFE) enclosing the two func-
tions. Because they are confined to the local scope of the
IIFE, they are not directly accessible from outside it. The
object literal the IIFE returns serves as the interface of the
module, so that the access module.pub returns function
pub. Using iof p, the type computed for the base object in
property access module.pub is {Object.prototype}.
The reason is that object literals are evaluated to objects that
are created as if by the expression new Object(). The type

var module = (function () {
function pub(x) {return Math.sqrt(x)};
function priv() {return "bar"};
return {pub:pub};

})();

function f() {
print(module.pub(4));

}
f()

Fig. 5. Example program P2.

for (var i = 0; i < 1000; i++) {
var o = {x:i};
print(o.x);

}

Fig. 6. Example program P3.

of base object Math in property access Math.sqrt is also
{Object.prototype}, because the prototype of this object
is Object.prototype as well.
Example 2 shows the limits of iof p when inferring the types
of object literals and built-in objects such as Math.

B. Object-based type inference

The finest granularity at which we can assign object types,
is by assigning each object its own type. Therefore, we define
an object-based version of iof o:

iof o ∶ Addr ↦ Store ↦ ℘(Addr)
iof o(a,) = {a}

The type hierarchy computed by the transitive closure iof o∗
consists of a single chain containing the object address:
iof o ∗ (a,) = {{a}}. In a concrete setting, each object can
be allocated at a unique address. In our abstract setting, the
set of addresses is finite and typically much smaller than the
set of concrete addresses. The address allocation strategy used
during abstract interpretation will greatly influence to which
degree we can distinguish different objects. Although different
configurations and implementation strategies may therefore
impact the speed and precision (and therefore quality) of
computed results, those results should always be sound.

Example 3: Taking the same module definition as in Exam-
ple 2, but now using object-based type inference, we compute
{module} as type of the base object in property access
module.pub, and {Math} as type of the base object in
property access Math.sqrt.

Example 4:
Consider the example program P3 (Fig. 6) consisting of

a for loop: A concrete interpretation will allocate 1000
different objects, but abstract interpretation might distinguish
between far less abstract objects, usually depending on how
quickly it reaches a fixpoint (which in turn might depend on
things like context-sensitivity, strong updating, widening, etc.).
For example, our abstract interpreter is equipped with a “k

last call sites” strategy for distinguishing between different
contexts (Section VII), and entering a loop body is considered
to be equivalent to a function call in this regard. With k = 0,
i.e with context-sensitivity turned off, only one address is
used for allocating objects resulting from evaluating the object
literal, and the property access is evaluated three times before
a fixpoint is reached. We therefore have iof o(o,) = {{x:i}}
for all property accesses.

When k = 5, the abstract interpreter returns seven tuples
and generates three distinct addresses for allocating the object
literal. In this case we compute three different types for o
instead of one single type as was the case with k = 0.

In both cases the computed types are sound, altough in the
latter case they are more precise.

C. Combining prototypes and object-based inference

Examining the results obtained by typing base objects using
either iof p or iof o, we observe the following:

● Example 1 shows that prototype-based object type in-
ference works well when objects are explicitly created
through constructors using new, and we are dealing
with “instance” data. However, when accessing prop-
erties on non-instance objects, like the property access
Math.sqrt in Example 2, prototype-based inference is
not useful. Example 2 also demonstrates that prototype-
based inference is unable to distinguish between accesses
to different modules. Objects created from object literals
are considered to be instances of the standard Object
constructor, greatly diminishing the usefulness of the type
inference in these cases.

● Examples 3 and 4 shows that object-based object type
inference is able to distinguish between different object
literals, and, as a consequence, different modules. On the
other hand, as in Example 4, object-based inference may
be overkill in situations where objects from one or more
object literals intuitively represent different instances of
the same type.

A better definition for iof therefore would be one that
differentiates objects based on their creation. If an object
comes into existence as a result of evaluating a constructor
invocation (New), an array literal (ArrLit), or the invocation of
a built-in method like for example Object.create (Call),
then the type of that object is its [[Prototype]]. For all other
objects, we take the address of those objects as their type.
Built-in objects (like Math and the global object) will have
unique addresses, as will objects created at different source
code locations1.

iof n ∶ Addr ↦ Store ↦ ℘(Addr)

iof n(a, σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iof p(a, σ) if n = node(a)
∧n ∈ New ∪ArrLit ∪Call

iof o(a, σ) else

1Up to a certain limit because the set of addresses is finite.

IV. COMPUTING COUPLING

As we have previously explained (cf. I), we are interested
in statically assessing the dynamic coupling of JavaScript
functions. Thus, we require, for each property access appearing
in a given function, the type of the base object (represented
by its address Addr), and a constant indicating whether that
type is local or foreign ({L,F}) at the time of access.
The function coupling computes typed accesses specific to
a function, starting from the set of tuples collected by the
abstract interpreter.

coupling ∶ Addr ↦ ℘(Acc)↦ (Addr × {L,F})

Whether a type is local or foreign is decided in function of
the value of this in the function at the time of access. If the
property is accessed on a type in the type hierarchy of this,
then the type is marked as local (L), otherwise, the type is
deemed foreign (F).

Our approach can be instantiated with any definition of
the function iof that returns a set of addresses representing
objects. In what follows, we will use iof n and its transitive
closure from the previous section. Concretely, when the func-
tion iof n∗ is applied to an address at representing this, we
obtain all possible [[Prototype]] chains consisting of types that
are considered local to the active function invocation. Then,
the function iof n is used to compute a type ao for each object
appearing as a base object in a property access. The base object
type is local when it is a member of a chain returned by the
application of iof n∗, else it is foreign.

locality ∶ Addr ↦ Addr ↦ Store ↦ ℘({L,F})

locality(ao, at, σ) = ⋃
Ð→a ∈iof n∗(at,σ)

⎧⎪⎪⎨⎪⎪⎩

L if ao ∈Ð→a
F else

Function locality ensures that every access to this in func-
tions is always considered to be a local access, since in that
case ao = at.

We then define a helper function that will filter the infor-
mation on property access collected in a set T , keeping only
tuples pertaining to the specified function.

filterFun ∶ Fun↦ ℘(Acc)↦ ℘(Acc)
filterFun(f,T) = {(af , , , , ,) ∈ Acc ∣ node(af) = f}

Filtering the collected coupling information, and applying
iof and locality , we can determine the dynamic coupling for
a function f as follows:

coupling(f,T) = {(a, `)
∣ a ∈ iof n(ab, σ) ∧ ` ∈ locality(a, at, σ)
∧ (af , at, p, ab, s, σ) ∈ filterFun(f,T)}

Example 5: The code in Figure 7 defines two types,
Circle and Point. In the module, a Point is made to
be a Circle with radius 0.

Suppose we have the following client application:

function Circle(x, y, r) { . . . }

Circle.MP = 0.5;

Circle.prototype.midpoint =
function (c) {

return new Point((this.x+c.x) * Circle.MP,
(this.y+c.y) * Circle.MP);

}

function Point(x, y) {
Circle.call(this, x, y, 0);

}
Point.prototype = Object.create(Circle.prototype);

Fig. 7. Example program P4.

var c = new Circle(10, 20, 50);
var p = new Point(90, 90);
p.midpoint(c)

The abstract interpreter returns the following tuples regarding
property access in method midpoint:

(midpoint,p,this.x,p,"x", σ)

(midpoint,p,c.x,c,"x", σ)

(midpoint,p,Circle.MP,Circle,"MP", σ)

(midpoint,p,this.y,p,"y", σ)

(midpoint,p,c.y,p,"y", σ)

We compute the following coupling for midpoint using
iof n:

(Point.prototype, L)

(Circle.prototype, L)

(Circle, F)

The coupling to Point.Prototype is generated by ac-
cesses on this bound to an instance of Point, and accesses
of this are local by definition. Access to parameter c
inside method midpoint generates coupling to Circle,
which is also local since Circle.prototype is a mem-
ber of all chains in the type hierarchy iof n ∗ (p). The
access Circle.MP is considered to be a foreign coupling to
Circle, since iof n(c) = Circle, which is not a member of
the type hierarchy of this. The constructor invocation new
Point(. . .) does not generate any coupling, since Point is
looked up in the lexical scope of function midpoint, and
we do not track coupling to environment records2.

Example 6: We again start with the code in Figure 7, but
now define the following client program:

var c2 = {x:10, y:20, r:50};
var p = new Point(90, 90);
p.midpoint(cl);

The difference between this client program and the one in
Example 5 is that we don’t create a circle object using the
constructor Circle, but instead use an object literal that

2We are deliberately glossing over some details here, like the top-level
environment being the global object in JavaScript, and the with statement
blurring the line between objects and environment records, but in our approach
only member access (at the syntactical level) generates dynamic coupling.

defines the same properties. The abstract interpreter returns the
same tuples regarding property access, but now we compute
the following coupling for midpoint using iof n:

(Point.prototype, L)

(c2, F)

(Circle, F)

Access to parameter c inside method midpoint generates
coupling to type c2, which is foreign since it is not a member
of the type hierarchy iof n ∗ (p).

V. ENHANCING OBJECT TYPES

Having explained how we calculate the types to which a
JavaScript function is coupled to, we now explore how to
enhance the typing information produced by our object type
inferencing for the purpose of coupling assessment. Previous
definitions of iof (cf. III) are derived from looking at a single
tuple generated by the abstract interpretation of the program,
while in what follows, we consider the whole set of tuples.
We propose two ways of relating equivalent object types, the
first one relates object types by looking at what instances
are used together (i.e., flow to the same base objects in a
property access); while the second one relates object types by
considering which property names are accessed together (i.e.,
interface types). Finally, as type inference is calculated using
property reads alone, we discuss what further information
can be obtained by including property write operations in the
analysis.

A. Flow of types

The definition of iof n solves some of the problems we
observed at the beginning of Section III-C, but it still does not
adequately deal with the situation in which objects resulting
from the evaluation of one or more object literals intuitively
represent different instances of the same type. One way of
relating types is by looking at where instances end up being
used as base object. To capture this notion, we first define the
function flowsTo that for every type computed using iof n,
yields all the base expression nodes that type flows to. Unlike
the previous type inferences, we now take the entire set of
tuples returned by the abstract interpreter into consideration.

flowsTo ∶ Addr ↦ ℘(Acc)↦ ℘(Exp)
flowsTo(a,T) = {eb ∣ a ∈ iof n(ab, σ)

∧ (, , p, ab, , σ) ∈ T ∧ base(p) = eb}

Then we can define a reflexive and symmetric relation ≈f
stating that “two types are equivalent iff they flow to the same
base expression node”.

a1 ≈f a2 ⇐⇒ flowsTo(a1,T) ∩ flowsTo(a2,T) ≠ ∅

The transitive closure of ≈∗f partitions the set of types in the
range of iof n into equivalence classes. All types returned by
a single application of iof n are equivalent by this definition.

Example 7: We compute the following coupling for func-
tion area in example program P5 (Fig. 8).

function Circle(x, y, r) { . . . }

Circle.prototype.circumference =
function () {

return 2 * Matha.PI * thisa.r;
}

function area(c) {
return Mathb.PI * ca.r * cb.r;

}

var c1 = {x:10, y:20, r:30};
var c2 = new Circle(30, -5, 10);
var c3 = new Circle(50, 50, 20);
area(c1)
area(c2)
c2.circumference()
area(c3)

Fig. 8. Example program P5.

(Math, F)

(c1, F)

(Circle.prototype, F)

And for method circumference we obtain the following
coupling:

(Math, F)

(Circle.prototype, L)

For the set of tuples T , we have the following flow of types:
flowsTo(Math,T) = {Matha,Mathb}

flowsTo(c1,T) = {ca,cb}

flowsTo(Circle.prototype,T) = {ca,cb,thisa}

Consequently, the equivalence relation ≈∗f partitions the set
of computed types as follows:

{{Math},{c1,Circle.prototype}}

This means that types c1 and Circle.prototype are
equivalent under ≈∗f , and we could substitute the equivalence
class for the computed types when determining coupling. If
we denote the equivalence class of type a as [a], we have:

[Math] = {Math}

[c1] = [Circle.prototype] = {c1,Circle.prototype}

This however can have consequences for the local-
ity of the access. The equivalence class of prototype
Circle.prototype in our example also contains an
object-based type c1, the latter which does not belong to
the hierarchy of receiver c2. If the type hierarchy of an
equivalence class is the join of the type hierarchies computed
for every type in that equivalence class, the locality for the
coupling to Circle.prototype both {L,F}. This also
breaks the invariant that an access to this inside a method is
a purely local access. One solution could be to replace types
by their equivalence class, but keep the locality computed
using the original type. Also, if an equivalence class contains
a prototype, one could assume that “the programmer knows

best” and that these types, most often constructed by new,
should somehow take precedence over other types in that
equivalence class. We regard clarifying these issues as future
work.
Relating types by their flow may make types too coarse-
grained. Two types may flow to the same base expression(s),
thereby sharing a very small part of their interface, but actually
may be unrelated for all other intents, including in the context
of coupling. We’ll have more to say on this when we discuss
interface types next.

B. Interface types

Just like flowsTo induces a partitioning on the types com-
puted by iof n based on the flow of types, we can also partition
the set of types based on the properties that are accessed.
Intuitively, this follows the notion of duck typing. We define
the interface of a type as the set of names that are accessed
on it. As with flowsTo, we consider the entire set of property
access information returned by abstract interpretation.

interface ∶ Addr ↦ ℘(Acc)↦ ℘(Str)
interface(a,T) = {s ∣ a ∈ iof n(ab, σ)

∧ (, , , ab, s, σ) ∈ T }

We define a reflexive and symmetric relation ≈i stating that
“two types are equivalent iff they have the same interface”.

a1 ≈i a2 ⇐⇒ interface(a1,T) = interface(a2,T)

The transitive closure of ≈∗i partitions the set of types in the
range of iof n into equivalence classes, and here too all types
returned by a single application of iof n are equivalent by this
definition.

Relating types only by interface is usually not sufficient,
since it may relate types that should be considered unrelated.
Two types can have the same interface, say {"x","y","z"},
but one type might express a 3D coordinate, while the other
represents the code for a 3-cipher lock. As was previously
the case with the definition of iof n, where we combined
prototype inference with object-based type inference, here too
a combination of flow information and interfaces may be the
best approach.

Example 8: In program P6 (Fig. 9) the relation ≈∗f induces
the following partition on the set of types:

{{Math},{Label.prototype,Circle.prototype}}

Types Label.prototype and Circle.prototype are
related because they flow to function hash. However, in-
tuitively they represent different types and have different
interfaces, even though they share {"x","y"} in this respect.
Based on interfaces, we may split the equivalence class based
on flow, thereby obtaining a set of unrelated types again:

{{Math},{Label.prototype},{Circle.prototype}}

function Label(x, y, n) {
this.x = x;
this.y = y;
this.n = n;

}

function Circle(x, y, r) { . . . }

function hash(p) {
return ((p.x + p.y)*(p.x + p.y + 1)/2) + p.y;

}

Circle.prototype.circumference =
function () {
return 2 * Math.PI * this.r;

}

function display(label) {
return label.x + label.y + label.n;

}

var c = new Circle(30, -5, 10);
var l = {x: 50, y:50, n:"Destination"};
hash(c);
c.circumference();
hash(l);
display(l);

Fig. 9. Example program P6.

C. Writing properties

So far we have only addressed coupling as a consequence
of reading properties. When considering writing properties’
impact on coupling, we observe that:

1) Writing properties can extend or modify an object. When
the property is not present, the property is added, else
the value of the property is changed.

2) Writing of properties does not involve prototype lookup.
The base object is the object that is extended or modi-
fied.

In order to properly reason about property writes, the
abstract interpreter must be extended to keep track of extra
information for each property access. We therefore extend the
definition of our tuples in Acc by adding a tag indicating
whether a property write (W) or read (R) occurred.

AccRW = Addr ×Addr ×Prop × {R,W} ×Addr × Str × Store

If the abstract interpreter takes a snapshot of the store before
the property access itself is effectuated, it becomes possible
to determine whether the accessed property exists or not. That
way we can discern between the following scenarios with
regards to the coupling induced by the property access:

1) Read of an existing property: this is the scenario that we
have considered so far in the paper.

2) Read of a non-existing property, or property with an
undefined value: programmers sometimes use the
presence or absence of a certain property as a type test.
It may be argued that reading an undefined property does
not generate coupling by itself. Programmers might try
to read undefined properties as a kind of “instance of”

check, in which case the check is normally followed by
uses of the object, which in turn will be detected as
coupling.

3) Update of an existing property: this scenario generates
coupling in the same way as reading an existing prop-
erty, thus it is detected in the same manner as scenario 1
above.

4) Adding a property: again we argue that this does not
generate coupling on the level of types, since adding
properties always “works”, regardless of the inferred
type of the receiving object.

VI. APPLICATIONS

We now present how, using the coupling detection approach
we have outlined above we can detect the Feature Envy bad
smell as defined by Lanza, Marinescu and Ducasse in [5],
adapted to functions in JavaScript.

A. Detecting Feature Envy

Feature Envy is a bad smell related to coupling. Informally,
it can be described as “a design disharmony [that] refers to
methods that seem more interested in the data of other classes
than that of their own class” [5]. To detect feature envious
functions, we implement the three metrics that Lanza et. al.
use to detect Feature Envy: Access To Foreign Data (atfd),
Locality of Attribute Access (laa), and Foreign Data Providers
(fdp). Given those functions, they propose the following
detection strategy for Feature Envy, given a function f :

featureEnvy(f) ⇐⇒ atfd(f) > FEW

∧ laa(f) < 1

3
∧ fdp(f) ≤ FEW

where FEW stands for a small positive integer like 2 or 3.
We use the set of tuples computed by function coupling

from Section IV to distinguish between different data
providers, and between foreign and local attributes, Note
however, that a type is returned only once by the coupling
function regardless the amount of times that type is referred
to in the function. When detecting feature envy, this distinc-
tion becomes relevant. In order to approximate the different
accesses to the same type, we include the name of the
accessed property s in the coupling information computed by
couplings:

couplings ∶ Addr ↦ ℘(Acc)↦ (Addr × Str × {L,F})
couplings(f,T) = {(a, s, `)

∣ τ ∈ iof (ab, σ) ∧ ` ∈ locality(a, at, σ)
∧ (af , at, p, ab, s, σ) ∈ filterFun(f,T)}

B. Calculating the metrics

It is straightforward to compute the proposed coupling
metrics using the results from function couplings. In what
follows, #S denotes cardinality of S.

Function atd counts all distinct property accesses contained
in function f , given a set of tuples T .

atd ∶ Fun↦ ℘(Acc)↦ Int
atd(f,T) =#couplings(f,T)

Function atfd only counts the foreign property accesses.

atfd ∶ Fun↦ ℘(Acc)↦ Int
atfd(f,T) =#{(, , F) ∈ couplings(f,T)}

Function laa is the ratio of local property accesses to total
number of property accesses.

laa ∶ Fun↦ ℘(Acc)↦ Int

laa(f,T) = atd(f,T) − atfd(f,T)
atd(f,T)

Finally, the function fdp counts the number of distinct foreign
types that are accessed.

fdp ∶ Fun↦ ℘(Acc)↦ Int
fdp(f,T) =#{a ∣ (a, , F) ∈ couplings(f,T)}

To illustrate how feature envy can be detected, consider the
following example.

Example 9: Suppose we have the following client program
(identical to the one in Example 5) that uses the code in
Figure 7.

var c = new Circle(10, 20, 50);
var p = new Point(90, 90);
p.midpoint(c);

Using function couplings and a set of property access tuples
T , we compute the following dynamic coupling for method
midpoint:

(Point.prototype,"x", L)

(Point.prototype,"y", L)

(Circle.prototype,"x", L)

(Circle.prototype,"y", L)

(Circle,"MP", F)

The set of foreign data providers is {Circle} being accessed
once. The remaining types are local, with in total 4 distinct
data accesses. The metrics would then be calculates as:

atfd(midpoint,T) = 1

laa(midpoint,T) =
4

5
fdp(midpoint,T) = 1

From this we conclude that method midpoint does not
exhibit Feature Envy.

C. Dealing with arrays

As explained in Section VI-A, function couplings takes the
name of the accessed properties into account in its output.
JavaScript, unlike Java for example, treats indexing into an ar-
ray as any other property access. A property name s is an array
index if it is the string representation of an integer between
0 and 232 − 1 [6]. This can have undesirable consequences,

since functions accessing arrays can have very strong coupling
to array objects if every array access is counted as a distinct
property access.

To address this, we could choose to disregard array index
access altogether or treat all array indexing for a particular
base array object as one distinct access. Instead, we define
a predicate function idx that discriminates between property
names that are indexes and those that are not. If the name of
the access is computed, loss of precision in the abstract domain
can lead to a situation where the concrete representation of an
abstract name can be both an array index name and not. Instead
of reflecting this by returning a set of booleans, we simplify
and idx returns false in this situation.

idx ∶ Str ↦ Bool

The behavior of generic JavaScript methods on
Array.prototype assume that any object accessed
using array indexes is in fact array-like. We therefore do
not check in any way whether the base object actually is of
type Array.prototype. This has as an advantage that we
can identify array index access on the level of tuples in Acc
returned by the abstract interpreter. We can then remove these
accesses, or we can define a function mapIdx that maps the
property name of every index access onto a unique global
symbol IDX so that array indexing is reflected in the metrics
at most once for every base object.

mapIdx ∶ ℘(Acc)↦ ℘(Acc)
mapIdx(T) = {(af , at, p, ab, s′, σ)

∣ (af , at, p, ab, s, σ) ∈ T

∧ s′ =
⎧⎪⎪⎨⎪⎪⎩

IDX if idx(s)
s else

VII. IMPLEMENTATION

We implemented our approach on top of a generic abstract
interpreter called JIPDA, which was influenced by work of
Might et al. [7]. JIPDA is capable of handling a large subset
of JavaScript semantics, and allows for a large range of con-
figuration options, allowing us to plug-in the abstract domain
depicted in Fig. 2 which generates addresses as described in
Section II-B. To generate and collect the tuples central to
our approach, we instrumented the evaluator by overriding the
two methods that deal with member expressions: one method
for member expressions that are in operator position, and the
other method for all other cases. To determine the enclosing
function, we implemented a function that walks the stack to
find the most recent invocation.

Our current implementation computes the functions that
calculate coupling (coupling and couplings), and the flowsTo
and interface relations defined in Section V. We consider the
development of the algorithms that enhance the type inference
based on these partitions the subject of future work.

The generic abstract interpreter, its configuration, and
the code for implementing our approach, are written in
JavaScript. The implementation is publicly available on

the project’s webpage (https://code.google.com/p/
jipda/); the configuration of the abstract interpreter and the
supporting code used in this paper can be found in folder
instances/mod.

Limitations: Most limitations in the implementation of
our approach are a direct consequence of limitations in the
underlying abstract interpreter.

Some of these limitations are inherent to abstract interpre-
tation itself. By using overapproximation, we are sure that we
do not exclude any objects and relations between objects that
may exist at runtime, but false positives (computed results that
will never actually occur in a running program) will diminish
the usefulness of the type inference. Therefore, the abstract
interpreter that underlies an implementation of our approach
should be precise enough to be useful in practice, while being
able to compute results in an acceptable amount of space and
time, where “useful” and “acceptable” depend on the context.
Such a good trade-off between speed and precision is difficult
to achieve.

Our implementation of the abstract interpreter supports a
set of ECMAScript 5 features [6] large enough, and models
this with sufficient precision, to be able to experiment with
interesting examples. However, we are currently not able to
handle real-world JavaScript frameworks and applications. The
main shortcoming is that many global objects and primitives
are not yet modeled in the abstract domain. Another limitation
is that we do not yet support getter/setter properties and strict
mode. These limitations must be addressed before we can
attempt to validate the usefulness of our approach on real-life
JavaScript programs.

VIII. RELATED WORK

A. Static and dynamic coupling metrics

We have found no previous work that concerns itself with
coupling assessment of JavaScript functions, as most existing
work has been carried out in the context of object-oriented
systems with a static type-system. Within this body of work,
two main approaches have been explored: those that rely on
the structure of the source code (static) and those that rely
on (dynamic) runtime information, of which the former have
received most of the attention in literature. Most of them
measure the manner in which classes are linked to each other
by observing method invocations or attribute references. This
information is readably available in statically-typed languages
such as Java or C++. In more dynamic languages as is the
case with JavaScript, calculating static coupling metrics is
more difficult since obtaining the receiver type of a method
invocation requires static analyses. This difficulty is further
compounded with the fact that no single way of implementing
classes is imposed by JavaScript, so the metric calculation
must accommodate for different patterns used to construct
objects.

Dynamic coupling metrics, first introduced by Yacoub et
al. [8], measure the degree of interaction between objects
from a dynamic rather than static context. Beszedes et al. [9]
Dynamic Function Coupling (DFC) considers two functions

as coupled if their behaviors are “close” to each other. This is
in contrast to our approach, where we consider the coupling
between functions and (local or foreign) types. Hassoun et al.’s
Dynamic Coupling Measure (DCM) considers the coupling
between objects as varying in time [10]. Parallels can be
drawn between DCM’s time-variance and the set of tuples
generated by our abstract interpreter. Both DFC and DCM are
metrics calculated from actual runs of a program. The work of
Harman et. al. [11] is the only instance we have found that uses
static analysis to calculate coupling, using program slicing to
measure the coupling of a system. The intuition behind their
work is that code fragments that share a slice are coupled.

B. Abstract Interpretation and type inference of JavaScript

Hackett and Guo developed a fast type inference for
JavaScript that uses abstract interpretation [12]. Similar to
our approach, they assign types to objects according to their
prototype, except for plain Object and Array objects,
which have the same type if they were allocated at the same
soure location. They do not attempt to relate types based
on flow properties or their interfaces, as we do. Logozzo
and Venter perform atomic type analysis based on abstract
interpretation [13]. Their focus is not on objects, but instead
on numerical analysis and domains with the aim of program
optimization. Anderson et al. give an operational semantics
and static type system using structural types over an idealized
version of JavaScript [14]. They consider subtyping for objects
based on implementation (a subtype must contain all members
of its supertype), whereas we formulated equivalence between
types based on having the same interface. Jensen et al. describe
a type analysis for JavaScript based on abstract interpretation,
with the goal of checking for the absence of common pro-
gramming errors, and to provide type information for program
comprehension [15]. The abstract domain for TAJS is more
complex than ours and models all possible primitive data
types, while our approach focuses on object types. Static
analysis performed for the Self language is interesting in
the context of static analysis for JavaScript, because Self
influenced the design of JavaScript. Agesen et al. designed and
implemented a constraint-based type inference algorithm for
Self, based on implementation types, to guarantee the safety
of message sends [16].

IX. CONCLUSION

We have demonstrated that it is possible to statically de-
termine dynamic coupling of JavaScript functions to object
types in a manner that is useful. We also showed that our
dynamic coupling can be used to compute metrics with the
aim of detecting bad smells related to coupling.

Object type inference is challenging for a dynamic language
without classes and static typing. Manual code inspection
and even simple AST analysis do not suffice. Value and
control flow need to be tracked simultaneously for non-trivial
JavaScript programs. Our object type inference therefore is
based on information collected by an abstract interpreter that
approximates run-time objects and property accesses with

sufficient precision. The actual object type inference already
takes common JavaScript patterns for classes and modules
into account. Relating types based on flow and interfaces are
promising ideas to further enhance the type inference, but they
need to be further explored to become useful in practice.

ACKNOWLEDGMENTS

Jens Nicolay is funded by the “Flemish agency for Inno-
vation by Science and Technology” (IWT Vlaanderen). Coen
De Roover is funded by the Cha-Q project also sponsored by
IWT Vlaanderen. Carlos Noguera is funded by the AIRCO
project of the “Fonds Wetenschappelijk Onderzoek”.

REFERENCES

[1] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5, pp.
22–29, 2008.

[2] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on. IEEE, 2004, pp. 245–256.

[3] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
Software Engineering, IEEE Transactions on, vol. 36, no. 1, pp. 20–36,
2010.

[4] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

[5] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in
Practice. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[6] ECMA International, Standard ECMA-262 - ECMAScript Language
Specification, 5th ed., June 2011. [Online]. Available: http://www.
ecma-international.org/publications/standards/Ecma-262.htm

[7] M. Might and T. Prabhu, “Interprocedural dependence analysis of
higher-order programs via stack reachability,” in Proceedings of the 2009
Workshop on Scheme and Functional Programming, Boston, Massachus-
setts, USA, 2009.

[8] S. M. Yacoub, T. Robinson, and H. H. Ammar, “Dynamic metrics for
object oriented design,” in Proc. International Symposium on Software
Metrics, 1999, pp. 50–58.

[9] A. Beszedes, T. Gergely, S. Farago, T. Gymothy, and F. Fischer, “The
dynamic function coupling metric and its use in software evolution,” in
Proc. European Conference on Software Maintenance and Reengineer-
ing, 2007, pp. 103–112.

[10] Y. Hassoun, R. Johnson, and S. Counsell, “A dynamic runtime cou-
pling metric for meta-level architectures,” in Software Maintenance
and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European
Conference on. IEEE, 2004, pp. 339–346.

[11] M. Harman, M. Okunlawon, B. Sivagurunathan, and S. Danicic, “Slice-
based measurement of coupling,” in IEEE/ACM ICSE workshop on
Process Modeling and Empirical Studies of Software Evolution, Boston,
Massachsetts, 1997, pp. 28–32.

[12] B. Hackett and S.-y. Guo, “Fast and precise hybrid type inference for
javascript,” in Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation. ACM, 2012, pp.
239–250.

[13] F. Logozzo and H. Venter, “Rata: rapid atomic type analysis by ab-
stract interpretation–application to javascript optimization,” in Compiler
Construction. Springer, 2010, pp. 66–83.

[14] C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type infer-
ence for javascript,” in ECOOP 2005-Object-Oriented Programming.
Springer, 2005, pp. 428–452.

[15] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript,”
in Static Analysis. Springer, 2009, pp. 238–255.

[16] O. Agesen, J. Palsberg, and M. I. Schwartzbach, Type inference of SELF.
Springer, 1993.

