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Abstract

In tuple space approaches to context-aware mobile systems, the notion of context is
defined by the presence or absence of certain tuples in the tuple space. Existing ap-
proaches define such presence either by collocation of devices holding the tuples or by
replication of tuples across all devices. We show that both approaches can lead to an
erroneous perception of context. Collocation ties the perception of context to network
connectivity which does not always yield the expected result. Tuple replication can
cause that a certain context is perceived even if the device has left the context a long
time ago. We propose a tuple space approach in which tuples themselves carry a predi-
cate that determines whether they are in the right context or not. We present a practical
API for our approach and show its use by means of the implementation of various mo-
bile applications. Benchmarks show that our approach can lead to a significant increase
in performance compared to other approaches.

Keywords: tuple spaces, programming abstractions, context-awareness, mobile
peer-to-peer systems

1. Introduction

A growing body of research in pervasive computing deals with coordination in
mobile ad hoc networks. Such networks are composed of mobile devices which spon-
taneously interact with other devices within communication range as they move about.
This network topology is often used to convey context information to collocated de-
vices [1, 2, 3, 4, 5]. Moreover, such context information can be used to optimize
application behaviour given the scare resources of mobile devices [2]. In this paper,
we focus on distributed programming abstractions to ease the development of context-
aware applications deployed in a mobile environment.

Developing these applications is complicated because of two discriminating prop-
erties inherent to mobile ad hoc networks [6]: nodes in the network only have inter-
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mittent connectivity (due to the limited communication range of wireless technology
combined with the mobility of the devices) and applications need to discover and col-
laborate without relying on a centralized coordination facility. Decoupled coordina-
tion models such as tuple spaces provide an appropriate paradigm for dealing with
those properties [2]. Several adaptations of tuple spaces have been specially devel-
oped for the mobile environment (including LIME [1], L2imbo [3], EgoSpaces [4],
and TOTA [5]). In those systems, processes communicate by reading from and writing
tuples to collocated devices in the environment. Context information in such systems
is thus represented by the ability to read certain tuples from the environment. In this
paper we argue that this representation is inappropriate and can even lead to an erro-
neous perception of context. The main reason for this is that the ability to read a tuple
from the environment does not give any guarantees that the context information carried
by the tuple is appropriate for the reader. This forces programmers to manually verify
that a tuple is valid for the application’s context situation after the tuple is read.

To support the development of mobile context-aware applications, we propose a
novel tuple space approach called TOTAM (“Tuples On The Ambient”) which decou-
ples the concept of tuple perception from tuple reception. A TOTAM tuple can contain
an associated predicated called a context rule that describes the runtime conditions un-
der which it is visible to applications. Only when a tuple’s context rule can be satisfied
by the context of the receiving application, the tuple can be perceived by the appli-
cation. Applications can also be notified when the tuple can no longer be perceived.
The core contribution of this work lies in proposing a tuple space model designed for a
mobile environment which introduces a general programming concept under the form
of a context rule to support development of mobile context-aware applications. Our
contribution is validated by (1) a prototype implementation, (2) demonstrating the ap-
plicability of our model by using it in non-trivial context-aware mobile applications, (3)
using our prototype implementation for teaching students, (4) providing an operational
semantics for our model, (5) benchmarking our prototype implementation.

TOTAM has been employed in a realistic experiment with the Brussels public trans-
port company. In addition, students have used our tuple space based approach for the
development of various mobile peer-to-peer applications. These experiences have led
us to significantly improve previous iterations of our tuple space model [7] in two fun-
damental ways. First, we have developed a leasing model which allows the underlying
system to reclaim tuples in the face of partial failures. Second, we have revisited the
propagation mechanism included in TOTAM which allows developers to scope the dis-
tribution of tuples in the network. In this paper, we report on the various extensions
that we have applied over our original tuple space abstractions and how these exten-
sions ease the development of mobile context-aware applications.

2. Motivation

Tuple spaces were first introduced in the coordination language Linda [8]. Re-
cently they have shown to provide a suitable coordination model for the mobile envi-
ronment [2]. In the tuple space model, processes communicate by means of a globally
shared virtual data structure (called a tuple space) by reading and writing tuples. A tu-
ple is an ordered group of values (called the tuple content) and has an identifier (called
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the type name). Processes can post and read tuples using three basic operations: out
to insert a tuple into the tuple space, in to remove a tuple from the tuple space and
rd to check if a tuple is present in the tuple space (without removing it). Tuples are
anonymous and are extracted from the tuple space by means of pattern matching on the
tuple content.

In order to describe the main motivation behind TOTAM, we introduce a simple yet
representative scenario and show the limitations of existing tuple space approaches.
Consider a company building where each room is equipped with devices that act as
context providers of different kinds of information. For example, information to help
visitors to orient themselves in the building or information about the meeting schedule
in a certain room. Employees and visitors are equipped with mobile devices which
they use to plan meetings or to find their way through the building. Since each room
is equipped with a context provider, a user located in one room will receive context
information from a range of context providers. Only part of this context information
which is broadcasted in the ambient is valid for the current context of the user.
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Figure 1: Context perception in existing tuple space approaches

Figure 1 illustrates the scenario where ω represents the company building, τ a meet-
ing room in the building, and γ the communication range of a device located in the
meeting room. The star denotes a tuple space (acting as the context provider) which
injects tuples into the ambient, i.e. all devices (depicted as dots) ∈ γ. Those tuples are
aimed to be perceived by devices in the meeting room, i.e. in the target area τ . This
device injects a tuple in the ambient to signal receivers that they are currently in the
meeting room. Note that location is just one example of context, τ could involve more
complex constraints, e.g. being located in the meeting room while there is a meeting.

We now give an overview of how context is perceived in the two most prominent tu-
ple space models. A first group of tuple space models, follows a federated tuple space
model [1] in which the visibility of the tuples (and thus context perception) directly
depends on collocation of devices holding these tuples. In this model, the perceived
context of a device is equivalent to being in range of γ. The context delivery solely
based on γ makes two groups of devices to perceive wrong context information (de-
picted as black dots). The first group consists of devices contained in the set γ \ τ . In
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our example, these are all devices within communication range of the context provider
but outside the meeting room. These devices will perceive to be in the meeting room
while they are actually not. The second group consists of devices contained in the set
τ \ γ. In our example, these are all devices out of communication range of the con-
text provider (possibly due to an intermittent disconnection) but in the meeting room.
These devices will perceive not to be in the meeting room while they actually are.

Other tuple space systems have adopted a replication model where tuples are repli-
cated amongst collocated devices in order to increase data availability in the face of
intermittent connectivity [5, 9]. In replication-based models, devices in τ \ γ will not
perceive wrong context information. However, in these systems tuple perception is
equivalent to have been once within reach of γ, possibly in the past. This means that
devices which have been connected to the context provider once (τ ) and are currently
in ω \ τ (depicted as black dots with a R) will perceive to be in the meeting room even
though they are no longer there.

2.1. Summary

Using current tuple space approaches the context perception is correct in certain
cases (the white dots) but, in many cases it is wrong (black dots). There are three
main reasons for these erroneous context perceptions. First, there is a connectivity-
context mismatch making context sharing based solely on connectivity unsuitable for
the development of context-aware applications deployed in a mobile setting. Second,
the observed context is affected by intermittent connectivity: temporal disconnections
with the context provider result in an erroneous context perception. Third, when using
replication-based models to deal with intermittent connectivity, a permanent discon-
nection leads devices to perceive a certain context forever.

In order to solve these issues, programmers are forced to manually verify that every
tuple (and thus context information) is valid for the application’ context. More con-
cretely, programmers have to manually determine tuple perception at the application
level after a tuple is read from the tuple space. Manually determining the applications
context and adapt accordingly leads to context-related conditionals (if statements) be-
ing scattered all over the program [10], hindering modularity. Additionally, the content
of the tuples have to be polluted with meta data in order to infer tuple perception at ap-
plication level, decreasing reusability of tuples. For example, a Room tuple indicating
that a person is currently located in the meeting room should also contain the location
information. Finally, programmers need to write application level code that deals with
context-awareness in order to compensate for the lack of expressiveness of underlying
model.

As the complexity of context-aware applications increases, manually computing tu-
ple perception can no longer be solved using ad hoc solutions. Instead, the coordination
model should be augmented with abstractions for context-awareness that allow devel-
opers to describe tuple perception in the coordination model itself. In this work, we
introduce TOTAM, a novel approach that keeps the simplicity of the tuple space model
where interactions and context information are defined by means of tuples, while al-
lowing tuples themselves to determine the context in which a receiving application
should be in order to perceive a tuple.
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3. The TOTAM Approach

TOTAM is a novel tuple space-based programming model for mobile context-aware
applications. It adopts concepts from both federated and replication-based tuple spaces,
and extends them in order to overcome the aforementioned tuple perception issues. The
TOTAM system introduces the notion of a context rule prescribing when a tuple should
be perceived by the application, and a rule engine to infer when a tuple is perceivable
and when it is not. TOTAM has a scoping mechanism (inspired by TOTA [5]) and
a leasing model that allows developers to deal with the hardware characteristics of a
mobile setting. In the remainder of this section, we describe the most important features
of our model.

VM VM

flow of tuples in the model

Applications

Applications

 Tuple Space System

Tuple 
Space Rule Engine  Tuple Space System

Tuple 
Space 

Rule 
Engine

Tuple Space System

Tuple 
Space 

Rule 
Engine

Figure 2: The TOTAM tuple space model.

The Core Model. The model underlying TOTAM tuples extends the notion of a tradi-
tional tuple space with machinery to control the scope and visibility of tuples. Figure 2
depicts our model. A device in the network corresponds to a virtual machine (VM)
carrying one or more TOTAM tuple spaces. Each virtual machine forms a TOTAM sys-
tem. TOTAM systems are interconnected by means of a MANET, forming a TOTAM
network. The composition of a TOTAM network changes according to the network
topology.

A TOTAM system consists of a tuple space, and a rule engine which infers when
a tuple should be perceived by applications. The tuple space serves as the interface
between applications and the TOTAM system. It only supports non-blocking Linda-
like operations to insert, read and remove tuples. The main reason for the strict non-
blocking operations is that it significantly reduces the impact of volatile connections
on a distributed application. As an alternative to blocking operations, we provide the
notion of a reaction to a tuple (similar to LIME reactions [1]): applications can register
an observer that is asynchronously notified when a tuple matching a given template is
read or removed from the tuple space.

The tuple space of a TOTAM system contains two types of tuples. Public tuples
denote tuples that are shared with remote TOTAM systems, and private tuples denote
tuples that remain local to the tuple space in which they were inserted and thus will
not be transmitted to other TOTAM systems. Applications can insert private and public
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tuples in the tuple space by means of the out and inject operation, respectively. As
in LIME, applications can access tuples coming from the network without knowing the
different collocated TOTAM systems explicitly.

Distribution of Tuples in the Network. When two TOTAM systems discover each other
in the network, the public tuples contained in their tuple spaces are cloned and transmit-
ted to the collocated TOTAM system according to a propagation protocol (reminiscent
of TOTA propagation rules[5]). However, in contrast to TOTA, TOTAM triggers the
propagation protocol before a tuple is being physically transmitted to a new TOTAM
system, and after it is received by the new TOTAM system. Thus, the tuple itself con-
tains all the information needed to dynamically adjust its scope in the TOTAM network
while being propagated. In addition, such a scoping mechanism avoids unnecessary ex-
change of tuples and enhances privacy because the protocol can enforce that a tuple is
not transmitted to a TOTAM system which is not in its scope. This differs from tech-
niques in which the tuple space itself is scoped and tuples have to be inserted in a
certain scope which can not be changed after the facts.

To be able to compute the scope of a tuple, each tuple space has a tuple space
descriptor. This descriptor contains semantic information that is used by the tuples
at sending time in order to decide whether a certain TOTAM system is in their scope.
Descriptors are exchanged between two TOTAM systems when they meet for the first
time or whenever a system decides to change its description.

Coordination. Our model combines replication of tuples for read operations (to sup-
port time-decoupled communication) while guaranteeing atomicity for removal oper-
ations (to support synchronization). In order for a remove operation to succeed, the
system which created and injected the tuple in the network (called the originator sys-
tem) needs to be connected. The underlying model does not remove tuples unless the
originator system has acknowledged the operation. As such, a remove operation in our
approach is executed atomically as defined in Linda [8]: if two processes perform a
remove operation for a tuple, only one removes the tuple. When an originator is asked
to remove one of its (stored) tuples by another system, it removes the tuple and injects
an antituple for the removed tuple in the network. By means of antituples, TOTAM
systems can “unsend” tuples injected to the network. For every tuple there is (concep-
tually) a unique antituple with the same format and content, but with a different sign.
All tuples injected by an application have positive sign while their antituples have a
negative sign. Whenever a tuple and its antituple are stored in the same tuple space,
they annihilate one another, i.e., they both get removed from the tuple space.

Supporting Context-awareness. TOTAM tuples can carry a context rule that describes
the runtime conditions under which the tuple is visible to an application, facilitating the
development of context-aware applications deployed in a mobile environment. More
precisely, a context rule is conceived as a set of conditions defined in terms of the
presence of other tuples in the receiving tuple space. Such context rule is defined by
the creator of the tuple and gets transmitted together with the tuple when the tuple is
injected in the network. Defining context rules in terms of tuples allows the application
to abstract away from the underlying hardware while keeping the simplicity of the tuple
space model (both interactions and context information are defined using tuples).
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Figure 3: Lifespan of a context-aware tuple

When a tuple is inserted at a certain TOTAM system, the tuple is first handed over
to the rule engine which installs the necessary machinery to evaluate the tuple’s context
rule. When the rule engine infers that the conditions on a context rule are satisfied, the
tuple’s context rule is triggered and the rule is said to be satisfied. Only when the
context rule of a tuple is satisfied, is the tuple inserted in the tuple space of the TOTAM
system. At that moment, the applications are able to read the tuple.

The rule engine plays a central role in our model as it takes care of reflecting
the changes to the receiver’s context so that applications cannot perceive those tuples
whose context rule is not satisfied. In particular, it observes the insertion and removal
of the tuples in the tuple space to infer which context rules are satisfied, and subse-
quently control which tuples present in the tuple space should be actually accessible by
applications. As a result, programmers no longer need to infer the presence or absence
of tuples manually as the rule engine takes care of it in an efficient way, making the
code easier to understand and maintain.

The Lifespan of a Context-aware Tuple. Context rules introduce a new dimension to
the lifespan of a tuple. Not only can a tuple be inserted or removed from the tuple
space, it can now also be perceivable or non-perceivable for the application. Figure 3
shows a UML-state diagram for the lifespan of a context-aware tuple, i.e., a TOTAM
tuple carrying a context rule. When an application inserts a tuple in a TOTAM system1,
the tuple is non-perceivable and its context rule is asserted by the rule engine. The rule
engine then starts listening for the activation of that context rule (CR activation in the
figure).

A tuple will become perceivable depending on whether or not the context rule is
satisfied. If the context rule is satisfied, the tuple is perceivable and it is subject to
tuple space operations (and thus becomes accessible to the application). If the tuple is
non-perceivable, the tuple is not subject to tuple space operations but its context rule
remains in the rule engine. Every time a tuple’s context rule is not satisfied, the out-of-
context listeners of a tuple (OC listeners in the figure) are triggered. Applications can
install listeners to be notified when a tuple moves out of context.

1To keep the figure concise out denotes the insertion of a private or a public tuple.
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Figure 4: The CAP theorem.

Upon performing an in operation, the tuple is removed from the tuple space but its
context is not modified. As such, the tuple is considered not to be perceivable (as it is
no longer in the tuple space) and its context rule remains in the rule engine. Once out
of the tuple space, the rule engine listens for the deactivation of the context rule. Once
the context rule is no longer satisfied, the context rule is retracted from the rule engine,
and the tuple will be eventually garbage collected.

A Best Effort Leasing Model. In order to support resource management in the face of
permanent disconnections, we integrate a leasing model into public tuples. Designing
a leasing model for a replication-based model, however, is challenging because tuples
get replicated through a highly dynamic network topology. As such, at the moment a
tuple needs to be removed it might not be possible to reach all systems where it was
replicated to. The root problem is that a fundamental trade-off needs to be made be-
tween consistency and availability of data. Such a trade-off was first remarked in the
domain of web services as Brewer’s conjecture and later, formalized and proven as the
CAP theorem in [11]. The theorem, depicted in Figure 4, states that it is impossible to
simultaneously provide consistency, availability and partition tolerance; only two can
be guaranteed at the same time. Since MANET applications must almost always be
partition-tolerant because failures are inherent to the network topology, a choice needs
to be made between providing consistency or availability. Relaxing consistency allows
the system to remain highly available in the face of partial failures, while emphasiz-
ing consistency implies that the system may not be available under certain conditions.
Since not having access to services can be considered the rule in a mobile setting,
trading off consistency provides a scalable solution. Not only providing consistency
usually introduces communication overhead, it may be also difficult (if not impossible)
to achieve without making assumptions about the mobility of devices [9].

In TOTAM, we have introduced a leasing model which does not guarantee strong
consistency, but only guarantees best effort. The underlying system tries hard to re-
move all replicas of a tuple, but does not give guarantees when this will happen. It
is important to notice that the system does guarantee that the tuple is only removed
once. All tuples are injected in the network with an associated lease denoting the total
lifespan of a tuple. It is determined by the application that creates and injects the tuple
to the network. Programmers can specify the lease time interval by means of dedicated
support (explained later).
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A lease is encoded as part of the propagation protocol, and as such, it is transmitted
together with the tuple when it gets replicated and transmitted to another TOTAM sys-
tem. When the lease term has elapsed, independently of the state in which a tuple is,
the tuple becomes candidate for garbage collection in the TOTAM system. This means
that the tuple’s context rule is retracted from the rule engine, and the tuple is removed
from the tuple space if necessary.

The transitions for leasing have been omitted from Figure 3 to keep it clear and
concise. The lease of a tuple adds a transition from any state to the state representing
that a tuple is non-perceivable and its context rule is retracted. When a public tuple
gets removed as a result of an in operation, the underlying system sends an antituple
to those systems that have previously received a replica of the removed tuple. If a
TOTAM system cannot be reached, the removal of the tuple is delayed until its lease
expires in the disconnected TOTAM system, or until it is in range with one of the
TOTAM systems carrying its antituple.

4. Operational Semantics

Before describing TOTAM’s programming API, we formalize our tuple space model
by means of a calculus with operational semantics based on prior work in coordina-
tion [12, 13]. The syntax of our model is defined by the grammar shown in Table 1. k
identifies the type of the tuple: + for a public tuple, ⊕ for a private tuple and − for an
antituple. A tuple c is specified as a first order term τ . τkx,t〈r〉 indicates that the tuple
with content τ , type k and time interval of its lease t, originates from a tuple space with
identifier x and is only perceivable when its context rule r is satisfied. The context rule
is considered optional and the notation τkx,t should be read as τkx,t〈1〉, i.e. the context
rule is always true. The antituple of a tuple τkx,t is denoted by τ−x,t〈0〉, i.e. its context
rule is always false.

k ::= + | ⊕ | − Tuple Types
c ::= τkx,t〈r〉 Tuple
S ::= ∅ | c, S Tuple Set
P ::= ∅ | A.P Process
C ::= ∅ | (JSKx | C) | (P | C) Configuration
A ::= out(x, τ, r, t) | inject(x, τ, r, t) | rd(x, ν) | in(x, ν) |
outC(x, ν) | whenRead(x, ν, Pa, Pd).P | whenIn(x, ν, Pa, Pd).P Actions

Table 1: TOTAM Tuples: Grammar

A process P consists of a sequence of tuple space operations A. Tuples are stored
in S which is defined as a set of tuples composed by the operator (,). A tuple space with
content S and identifier x is denoted by JSKx. A system configuration C is modeled as
a set of processes P and collocated tuple spaces JSKx composed by the operator |. An
application consists of all P ∈ C.

Next to the grammar, we assume the existence of a matching function µ(ν, τ) that
takes a template ν and a tuple content τ , and returns θ. θ is a substitution map of
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variable identifiers from the template ν to the actual values from τ . A concrete value in
this map can be accessed by θz that returns the actual value for z. The matched tuple
can be accessed by θτ . We also assume the existence of a function time which returns a
numeric comparable value indicating the current time. r(S) indicates that the context
rule r is satisfied in the tuple set S.

The semantics of the our tuple space model is defined by the transition rules shown
in Table 2. Every transition C λ−→ C ′ indicates that a configuration C can be trans-
formed into a configuration C ′ under the condition λ.

out(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ⊕

x,t′ 〈r〉 , SKx|C (OUT)

inject(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ+

x,t′ 〈r〉 , SKx|C (INJ)

Jτkx,t 〈r〉 , SKx|JS′Ky|C
τ 6∈S′∧(k 6=⊕)∧−−−−−−−−−−→

(x 6=y)
Jτkx,t 〈r〉 , SKx|Jτkx,t 〈r〉 , S

′Ky|C (RPL)

rd(x, ν).P |Jτky,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧(k 6=−)∧−−−−−−−−−−−−−→

r(S)
Pθ|Jτky,t 〈r〉 , SKx|C (RD)

Jτ−y,t 〈0〉 , τ
k
y,t 〈r〉 , SKx|C

(k 6=−)−−−−−→ Jτ−y,t 〈0〉 , SKx|C (KILL)

Jτky,t 〈r〉 , SKx|C
t≤time()∧(k 6=−)−−−−−−−−−−−−→ Jτ−y,t 〈0〉 , SKx|C (TIM)

in(x, ν).P |Jτkx,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→

(k 6=−)
Pθ|Jτ−x,t 〈0〉 , SKx|C (INL)

in(x, ν).P |Jτ+
y,t 〈r〉 , SKx|Jτ+

y,t 〈r〉 , S
′Ky|C

µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→
(x 6=y)

Pθ|JSKx|Jτ−y,t 〈0〉 , S
′Ky|C (INR)

outC(x, τ).P |Jτky,t 〈r〉 , SKx|C
!r(S)−−−−→ P |Jτky,t 〈r〉 , SKx|C (OC)

whenRead(x, ν, Pa, Pd).P |JSKx|C
1−→ rd(x, ν).Pa.outC(x, θτ ).Pd|P |JSKx|C (WR)

whenIn(x, ν, Pa, Pd).P |JSKx|C
1−→ in(x, ν).Pa.outC(x, θτ ).Pd|P |JSKx|C (WI)

Table 2: Operational Semantics

The (OUT ) rule states that when a process performs an out operation over a local
tuple space x, the tuple is immediately inserted in x as a private tuple with context rule
r and timeout t′. The process continuation P is executed immediately. When a tuple
is inserted in the tuple space x with an inject operation as specified by (INJ), the
tuple is inserted in x as a public tuple and is replicated to other tuple spaces as specified
by (RPL). This rule states that when a tuple space y moves in communication range
of a tuple space x, all tuples τkx,t which are not private and are not already in y will be
replicated to y. The (RD) rule states that to read a template ν from a tuple space x, x
has to contain a matching τky,t and the context rule of τ is satisfied in S. (RD) blocks if
one of these conditions is not satisfied. When (RD) does apply, the continuation P is
invoked with substitution map θ. Note that we do not disallow x to be equal to y in this
rule. The (KILL) rule specifies that when both a tuple τ and its unique antituple τ− are
stored in the same tuple space, τ is removed immediately. The (TIM) rule specifies that
when the timeout of a tuple τ elapses, its antituple τ− is inserted in the tuple space.

The in operation is guaranteed to be atomically executed. In the semantics, it has
been split into a local rule (INL) and a remote rule (INR). (INL) works similarly
to (RD), but it removes the tuple τkx,t originated by the local tuple space x and inserts
its antituple τ−x,t. (INR) states that when the in operation is matched with a tuple
published by another tuple space y, y must be one of the collocated tuple spaces (i.e.
be in the configuration). Analogously to (INL), the tuple is removed and its antituple
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is inserted. The (OC) rule states that to move out of context a tuple τ from a local tuple
space x, x has to contain τ (possibly its antituple) and its context rule is not satisfied.
The WR rule states that a whenRead operation performed on the local tuple space x
with template ν and processes Pa and Pd, is immediately translated into a new parallel
process and the continuation P will be executed. The newly spawned parallel process
is specified in terms of performing a rd operation followed by an outC operation. A
rd operation blocks until there is a tuple matching ν in the local tuple space. The
continuation Pa is then executed to subsequently perform an outC which blocks until
the tuple is no longer perceivable. Finally, the continuation Pd is invoked whereafter
the process dies. TheWI is specified analogously but as it models a whenIn operation,
it performs a in operation rather than a rd one. The wheneverRead and wheneverIn
operations have been omitted as they are trivial recursive extensions of whenRead and
whenIn, respectively.

Note that (KILL) does not remove antituples. This has been omitted to keep the
semantics simple and concise. By means of (RPL), the antituple of a tuple τ is only
replicated to those systems that received τ . In our concrete implementation if a system
cannot be reached, the removal of the antituple is delayed until the timeout of its tuple
elapses (which inserts an antituple as specified by (TIM)). An antituple can only be
removed once there are no processes in the configuration which registered an outC

operation on the original tuple.

5. Programming in TOTAM

In this section, we describe TOTAM from a programmer’s perspective. We have im-
plemented TOTAM as a middleware in AmbientTalk, a distributed object-oriented pro-
gramming language specifically designed for mobile ad hoc networks [6]. Table A.4 in
the Appendix summarizes TOTAM’s programming API which we further detail in this
section. We introduce the necessary syntax and features of the AmbientTalk language
along with our explanation. We illustrate the set of operations provided by TOTAM
by means of a concrete application called Guanotes that we use as running example
throughout this section.

5.1. Running Example: the Guanotes Application

Guanotes is one of the default applications of Urbiflock [14]: a framework imple-
mented in AmbientTalk for scripting social applications running on Android phones
interacting via mobile ad hoc networks. It allow end-users to interact with their so-
cial networks (organized in flocks) by means of messages. A flock typically denotes a
group of nearby users that match a number of user-defined criteria. Messages in Guan-
otes are called guanotes. A guanote can be sent to the users belonging to a flock which
are currently in in their direct neighbourhood, or to all (reachable) users belonging
to the target flock regardless of whether they are currently connected in the Urbiflock
platform.

To exemplify the kinds of interactions using Guanotes, consider the following sce-
nario: Alice and Bob are in the cafeteria of the university sports complex when they
decide it would be nice to play some badminton. Since reserving the badminton field is
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rather expensive, Bob decides to invite some extra players by taking his mobile phone
and using Guanotes to send a message to the couples currently in the neighborhood who
like to play badminton. Luckily, Carol and Denis who also wanted to play badminton
see the invitation. They reply to Bob’s message whereafter they meet and start playing
a game. After the game, they get the wild idea to organize a badminton competition
for next week. Again Bob takes his mobile phone and decides to send an invitation to
all couples at the university who like badminton.

Figure 5: Bob’s (a) NearbyFlock, (b) badmintonCouplesFlock, (c) Guanotes inbox and (d) Guanote editor

Figure 5 shows Urbiflock on Bob’s device during the process of typing a guanote
after playing a match with Carol and Denis. In particular, four different screenshots
are displayed: (a) the contents of Bob’s NearbyFlock, (b) the contents of Bob’s
badmintonCouplesFlock, (c) Bob’s Guanotes inbox (that contains a guanote pre-
viously received from Carol replying to his first invitation), and (d) the editor for a new
guanote to invite all his friend’s couples to participate in a badminton tournament. Note
that there are few users collocated at this time with Bob (people in the NearbyFlock
shown in (a)) which belong to the badmintonCouplesFlock (b). As he would
like to reach all couples interested in badminton for the tournament, he selects the
badmintonCouplesFlock in the receiver list in Figure 5(d).

5.2. Defining and Inserting TOTAM Tuples

In order to create a TOTAM system and add it to the network, programmers can
invoke the makeTupleSpace constructor function as follows:

def totam := makeTupleSpace(descriptor);
totam.goOnline();

This operation initializes a TOTAM system including the rule engine and the tuple
space. Variables are defined with the keyword def and assigned to a value with the
assignment symbol (:=). The newly created TOTAM system is then published in the
TOTAM network by means of the goOnline operation. This operation returns a publi-
cation object with a cancel method to be able to remove the system from the TOTAM
network. From then on, the newly created system perpetually looks for other systems in
the TOTAM network and exchanges its descriptor with them. As explained before, the
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descriptor contains semantic information relevant to the propagation of tuples. In the
Guanotes application, the description is embodied in the user profile which is imple-
mented as an isolate including fields representing the semantic information associated
with the user (e.g., name, gender, hobbies, etc.).

We provide the out(tuple) operation to insert a private tuple in the tuple space.
In order to insert a public tuple, thereby making it available to other collocated TOTAM
systems, the inject: operation is provided. The code excerpt below illustrates the
injection of the guanote depicted in Figure 5(d).

def aGuanote := tuple: [guanote, username, badmintonCouplesFlock,
"Guys, what about a 2-on-2 next week?"];

totam.inject: aGuanote;

A tuple is created by means of the tuple: operation which takes as argument a list
of fields (implemented in AmbientTalk as a table). As usual, the first field of a tuple
is its type name. In this case, the tuple’s type name is the guanote type tag2. A tuple
representing a guanote consists of the sender of the tuple (stored in the username

variable), the receiver target group (in this case the badmintonCouplesFlock
group) and a textual message.

In its simplest form, the inject: operation takes as argument a tuple and injects
the tuple into the network with a default context rule (i.e., the context rule is always
true), and a default lease (i.e., a lease time interval predefined at the actor level). It
returns a publication object with two methods: a cancel method that allows program-
mers to stop the propagation of the tuple in the TOTAM network, and a retract

method that allows developers to “unexport” a tuple injected into the network (by mak-
ing the system send an antituple to all TOTAM systems which received that tuple). A
tuple carries a default propagation protocol that propagates it to all reachable TOTAM
systems, exactly as in TOTA, i.e., it does not restrict the propagation of tuples. We
explain how to encode and apply custom propagation protocols in Section 5.4.

Table A.4 shows the complete form of the inject: operation. The withLease:
parameter takes an time interval denoting the specific duration of the lease associated
with the tuple. The inContext: parameter takes a context rule defined as a table
containing the set of templates and constraints that need to be satisfied for the tuple to
be perceivable. Constraints are conceived as logical conditions on the variables used
in a template. For example, consider that certain guanotes are only visible if the user is
in, e.g., the cafeteria area. In order to model that a device is in a room, the application
could inject a dedicated public tuple as follows:

totam.inject: (tuple: [inRoom, cafeteriaRoom])
inContext: [tuple: [location, ?loc], withinBoundary(roomArea,?loc)];

The inRoom tuple is a “helper” tuple which allows a guanote to determine when
the user is in the cafeteria area. To this end, the inRoom tuple carries a context rule
which consists of two terms that need to match:

2Type tags are a classification mechanism employed in AmbientTalk to categorize objects explicitly using
a nominal type.
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• First, there must be a tuple in the tuple space encoding the location of the user,
i.e., matching the tuple: [location,?loc] template3. The ? operator in-
dicates a variable in a template. As shown in Table A.4, variables are actually
defined using the var: construct which takes a symbol as argument. This paper
will use the ? operator in order to ease the reading. In our example, the template
matches any location tuple in the tuple space.

• Second, the location tuple needs to satisfy a constraint: its coordinates have
to be within the area of the room. The withinBoundary function returns such
a constraint given the coordinates stored in the ?loc variable and the cafeteria
area stored in roomArea variable.

5.3. Reading and Removing Tuples from the TOTAM Network
In order to read and remove public tuples from the TOTAM network, programmers

can use reactions to register a block of code that is executed when a tuple matching a
template is inserted in the tuple space, reminiscent to LIME reactions. In what follows,
we describe the 4 kinds of reactions supported (shown in Table A.4). The when:
read: operation takes as argument a template to observe in the tuple space, and a
closure that serves as a event handler to call when the tuple matching the template
is available in the tuple space. It actually performs a reaction to a read operation,
i.e., the matching tuple is not removed from the tuple space. In its simplest form,
the when:read: operation only triggers the event handler once for a matching tuple.
If several perceivable tuples match the template, one is chosen non-deterministically.
The whenever:read: operation works analogously but it triggers the event handler
for every perceivable tuple matching the template. The code excerpt below illustrates
the usage of whenever:read: in the implementation of the Guanotes application.

def listenForGuanotesToOwner(guiListener) {
def guanoteTemplate := tuple: [guanote, ?from, ?to, ?msg];
totam.whenever: guanoteTemplate read: {

guiListener<-guanoteReceived(from, to, msg);
};

};

The listenForGuanotesToOwner function is called from the application GUI
in order to start listening for tuples whose type name is guanote. When a perceivable
tuple matches the template, the read: closure is applied binding all variables of the
template to the values of the matching tuple. In this example, the application just
extracts the information from the tuple and sends it to the GUI listener to be displayed4.

Finally, the when:in: and whenever:in operations work analogously to the pre-
vious ones but, they perform a reaction to a removal operation rather than a read op-
eration. In other words, these operations remove the tuple from the tuple space before
applying the closure block. Recall that if the tuple to be removed comes from an-
other TOTAM system, then the underlying TOTAM system has to contact the originator

3A template is created by means of the tuple: operation as well. However, only templates can take
variables as fields.

4In the actual implementation, the tuple contents are converted into an AmbientTalk object which can be
understood by the Java GUI using AmbientTalk’s interoperability layer.
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Listing 1: The TOTAM propagation protocol at sender side.� �
1 if: tuple.decideDie(tupleSpace) then: {
2 remove(tuple);
3 } else:{
4 if: tuple.inScope(senderDescriptor, receiverDescriptor) then: {
5 tuple := tuple.changeTupleContentOnSend();
6 transmit(tuple,locationOf(receiverDescriptor));
7 }
8 };� �

TOTAM system to atomically remove the original tuple. If that removal fails, the repli-
cated tuple is not removed from the local tuple space and the closure is simply not
triggered.

Our approach extends a LIME reaction with the notion of context: the event handler
for a reaction can only be triggered when the tuple matching the pattern is perceivable.
The complete forms of the previously described operations allows developers to re-
act to a tuple moving out of context by installing an outOfContext listener. In the
code snippet, the whenever:read:outOfContext: operation expresses that certain
guanotes are only visible from within a certain room.

def inroomTemplate := tuple: [inRoom,?name];
totam.whenever: inroomTemplate read: {

guiListener<-display("You are in room" + name);
} outOfContext: {

guiListener<-display("You moved out of room" + name);
};

In this case, each time an inRoom tuple is matched, the application detects that the
user moved in a certain room. Once the user leaves the room, the inRoom’s context
rule is no longer satisfied and the outOfContext: closure is applied. In short, the
extended versions of when(ever):* operations asynchronously apply the first closure
when the tuple is perceivable, and the outOfContext: closure when the context rule
of the matching tuple is not satisfied.

Apart from the reactions previously explained, we also provide the rdp and rdg

operations to read one and all tuples in the tuple space, respectively, that match a given
template (at the point in time when the operation is executed).

5.4. Writing Application-Specific Propagation Protocols
As previously mentioned, tuples hop from one TOTAM system to another accord-

ing to a propagation protocol carried by the tuple itself. A propagation protocol is en-
coded in TOTAM as a pass-by-copy object implementing a number of methods which
are called by the the underlying TOTAM system before and after transmitting a tu-
ple. In this section, we explain the API of TOTAM’s propagation protocols and how
programmers can define custom propagation protocols.

Listing 1 shows the protocol before propagating the tuple (i.e., at sender side). First,
decideDie is called. It returns a boolean indicating whether or not the tuple should
be removed. If the protocol decides not to remove the tuple, the protocol will be asked
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whether a potential receiver is in the scope of this tuple. inScope takes as argument
the descriptor of the sender and receiver tuple space. The protocol can then decide to
propagate the tuple to the receiver descriptor. Finally, before transmitting the tuple, the
protocol can change its content (line 5).

Listing 2 shows the protocol on the receiver side. A tuple is first asked whether it
should enter the receiving tuple space (line 1). It will then be allowed to execute some
action on the local tuple space (line 2). Finally the tuple can change its content and
decide to notify the local tuple space that it arrived (line 3 and 4). Tuples with a protocol
which do not notify the local tuple space can be used e.g., to remove inappropriate
tuples.

The code excerpt below illustrates how the Guanotes application creates a custom
propagation protocol to be carried by guanotes which should only be received by users
within direct communication range, i.e., systems only one hop away.

1 def makeGuanoteToNearbyUsers(from, msg){
2 def oneHopProtocol := propagationProtocol: {
3 def hops := 0;
4 def inScope(senderTs, senderDes, receiverDes) {
5 hops < 1;
6 };
7 def changeTupleContentOnReceive(ts) {
8 hops := hops + 1;
9 self.getContent();

10 };
11 };
12 tuple: [guanote, from, to, msg] withPropagationProtocol: guanotesProtocol;
13 };

propagationProtocol: is an operation that allows the programmer to quickly
create a custom protocol. It expects as argument a code block that is used to extend
the default propagation protocol prototype (which corresponds to a tuple which al-
ways propagates to every tuple space encountered). In this example, the inScope

and changeTupleContent methods are overriden in order to limit the propagation
of the guanote. The inScope method will verify that the tuple has been transmit-
ted only one hop. The changeTupleContent increments the hop counter. Line 12
shows programmers can associate a propagation protocol with a tuple by means of the
tuple:withPropagationProtocol: construct.

Listing 2: The TOTAM propagation protocol at receiver side.� �
1 if: tuple.decideEnter(ts) then: {
2 tuple.doAction(ts);
3 tuple := tuple.changeTupleContentOnReceive();
4 if: tuple.decideStore(ts) then: {
5 ts.out(tuple);
6 };
7 tuple
8 } else: { nil };� �
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6. Developing Mobile Applications with TOTAM

We have build several applications in TOTAM to showcase the suitability and ap-
plicability of its programming API. TOTAM has also been used as a teaching platform
in the Master in Computer Science curriculum at the Vrije Universiteit Brussel, for
a course on mobile and distributed computing. Students have used TOTAM for sim-
ple exercises as well as programming projects implementing e.g., multi-player mobile
games such as a urban game for collaborative noise mapping5 Not only has application
development served us to validate programming abstractions proposed in TOTAM, but
it has also uncovered the real needs of developers.

In this section, we elaborate on two applications that benefit from using TOTAM
to enable communication in a mobile setting in which devices interact via wireless ad
hoc connections. The first one involves the ability to detect and react to changes in the
application context, while the second one involves the ability to perform collaborative
tasks in the presence of disconnections. We conclude the section by describing the use
of TOTAM in an industrial case with the Brussels public transport company.

6.1. Flikken

Flikken6 is a game in which players equipped with mobile devices interact in a
physical environment augmented with virtual objects. Flikken is a significant subset of
an augmented reality game inspired by the industrial game “The Target”7. The game
consists of a dangerous gangster on the loose with the goal of earning 1 million euro by
committing crimes. In order to commit crimes the gangster needs to collect burglary
tools around the city (knives, detonators, etc). Policemen work together to shoot the
gangster before he achieves his goal.

Figure 6 shows the gangster’s as well as a policeman’s mobile device at the time
the gangster has burgled the local casino. The gangster knows the locations with larger
amounts of money (banks, casinos, etc). When a gangster commits a crime, policemen
are informed of the location and the amount of money stolen. Policemen can see the
position of all nearby policemen and send messages to each other in order to coordinate
their movements. The gangster and policemen are frequently informed of each other’s
positions and can shoot at each other.

Flikken epitomizes MANET applications that react to context changes in the envi-
ronment. Examples of such changes include player’s location, appearance and disap-
pearance of players, and the discovery of virtual objects while moving about. More-
over, how to react to these changes highly depends on the receivers of the contextual
information. For example, virtual objects representing burglary tools should only be
perceived by the gangster when he is close their location while they should not be
perceived by policemen at all. In what follows, we describe the coordination and inter-
action between policemen and the gangster using tuples.

5Demos of the best student projects of the latest academic years are available at http://www.
youtube.com/playlist?list=PL71615F77073CD26C&feature=plcp

6Flikken means cops in Flemish.
7http://www.lamosca.be/en/the-target
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Figure 6: Flikken GUI on the gangster device (left) and a policeman device (right).

6.1.1. Design and Implementation
Every player has a TOTAM system. Once the game starts, policemen and gangster

communicate by means of the TOTAM network. Throughout the city various context
providers (i.e., TOTAM systems) are placed playing the role of virtual objects or crime
locations by broadcasting the necessary tuples. A special type of context provider is at
the headquarters (HQ) of the players which signals the start of the chase.

In this section, we only describe the set of tuples coordinating the core functionality
which counts 11 tuples (6 of which carry a custom context rule, and 2 a custom lease)
and 7 reactions. Table 3 shows an overview of the tuples used in the game. The
tuples are divided into five categories depending on the entity that injects them in the
environment, i.e., all players, only gangster, only policemen, headquarters and city
context providers. A tuple is denoted by the term τ and the first element of a tuple
indicates its type name. We use capitals for constant values.

The TOTAM system on each player’s device is identified by a descriptor including
its username and the team that he belongs to. However, since there is communication
between policemen and the gangster, tuples injected by players are not scoped on a
team basis. We make use of context rules to control the perception of certain tuples
when necessary (e.g., to make sure the gangster does not see certain tuples). In contrast,
all tuples injected by the TOTAM system at the headquarters are scoped on a team basis
using the player tuple space descriptor.

The player’s TOTAM system carries a private tuple τ (TeamInfo, uid, gip) indicating
which team he belongs to. Every player injects his location to the TOTAM network by
means of the tuple τ (PlayerInfo, uid, gip, location). This tuple is injected into the
tuple space with a custom lease as we will explain later. Both the PlayerInfo and
TeamInfo tuples are often used in other tuple’s context rules to identify the current
whereabouts of a player and his team. For example, the tuple representing a grenade
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Tuple Content Tuple Context Rule / Lease Tuple Description
All Players

τ (TeamInfo,
uid, gip)

[true] Private tuple denoting the player’s team.

τ (PlayerInfo,
uid, gip, location)

[τ (TeamInfo, ?u, ?team), ?team 6=
gip] / [6 min]

Injected to opposite team members every 6 min-
utes to notify the position of a player. Location is
a 2-tuple indicating the (GPS) coordinates of the
player.

τ (OwnsVirtualObject,
GUN, bullets)

[true] Private tuple inserted by players when they pick up
their gun at their HQ.

Only The Gangster
τ (CrimeCommitted,
name,location,reward)

[τ (TeamInfo, ?u, POLICEMAN)] Notifies policemen that the gangster committed a
crime.

τ (OwnsVirtualObject,
type, properties)

[true] Private tuple inserted when the gangster picks up a
virtual object in the game area.

Only Policemen
τ (PlayerInfo,
uid, gip, location)

[τ (TeamInfo, ?u, gip)] / [1 min] Notifies the position of a policemen to his col-
leagues every time he moves.

Headquarters
τ (InHeadquarters,
location)

[τ (PlayerInfo,?u,?team,?loc),
inRange(location, ?loc)]

Notifies that the player entered his HQ. Used to
start the chase (when this tuple moves out of con-
text for the gangster’s HQ) and to reload police-
men’s guns.

τ (CrimeTarget,
name, location)

[true] Notifies the gangster of the position of crime tar-
gets.

τ (CommitCrime,name,
location,reward,vobj)

[τ (PlayerInfo,?u, GANGSTER,?loc),
inRange(location,?loc),
hasVirtualObjects(vobj)]

Notifies the gangster of the possibility of commit-
ting a crime. hasVirtualObjects takes an ar-
ray of virtual object ids and checks that the gangster
has the required OwnsVirtualObject tuples.

City Context Providers
τ (VirtualObject,
id, location)

[τ (TeamInfo, ?u, GANGSTER),
τ (PlayerInfo,?u, GANGSTER,?loc),
inRange(location, ?loc)]

Notifies the gangster of the nearby presence of a
virtual object. inRange is a helper function to
check that two locations are in euclidian distance.

τ (Rechargeable-
VirtualObject,GUN,
BULLETS)

[τ (InHeadQuarters,?loc),
τ (OwnsWeaponVO,GUN,?bullets),
?bullets< BULLETS ]

Represents the player’s gun. The gangster gets only
one charge at the start of the game, while police-
men’s guns are recharged each time they go back
to their HQ.

Table 3: Overview of the Tuples used in Flikken

uses these tuples as follows.

totam.inject: (tuple: [VirtualObject, grenade, location]);
inContext: [tuple: [TeamInfo, ?u, GANGSTER],

tuple: [PlayerInfo, ?u, GANGSTER], ?loc],
inRange(location, ?loc) ]

The tuple τ (VirtualObject, grenade, location) should be only visable if the receiver
is a gangster whose location is physically proximate to the virtual object. The inRange
function checks whether the gangster location (given by ?loc in the PlayerInfo tu-
ple) is in euclidian distance with the location of the grenade (stored in location).
Upon removal of a VirtualObject tuple, a private tuple τ (OwnsVirtualObject, ob-
ject) is inserted in his tuple space. CommitCrime tuples notify the gangster of a
crime that can be committed. As crimes can only be committed when the gangster
has certain burgling items, the context rule of the CommitCrime tuple requires that
certain OwnsVirtualObject tuples are present in the tuple space. For example, in
order for the gangster to perceive the CommitCrime tuple for the grandCasino, a
τ (OwnsVirtualObject,grenade) tuple is needed as shown below.

totam.inject: tuple(CommitCrime, grandCasino, location, reward)
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inContext: [tuple: [TeamInfo, ?u, GANGSTER],
tuple: [PlayerInfo, ?u, GANGSTER, ?loc],
inRange(location, ?loc),
tuple(OwnsVirtualObject,grenade)];

Note that since context rules can be developed separately, this enables programers
to reuse rules to build different kinds of tuples, increasing reusability. As shown
above, we have reused the inRange function to build both the rule for the different
VirtualObject tuples and CommitCrime tuples. Decomposing a tuple into content
and context rule also leads to separation of concerns, increasing modularity.

Each player also registers several reactions to (1) update his GUI (e.g., to show
the OwnsVirtualObject tuples collected), and (2) inject new tuples in response to
the perceived ones. For example, when a gangster commits a crime, he injects a tu-
ple τ (CrimeCommitted, name,location,reward) to notify policemen. The code below
shows the reaction on PlayerInfo tuples installed by the application.

def playerinfoTemplate := tuple: [PlayerInfo, ?uid, ?tid, ?location];
totam.whenever: playerinfoTemplate read: {

GUI.displayPlayerPosition(tid, uid, location);
} outOfContext: {

def matchingPlayerinfoTemplate := tuple: [PlayerInfo, uid, tid, ?loc];
def tuple := totam.rdp(matchingPlayerinfoTemplate);
if: (nil == tuple) then: { GUI.showOffline(uid) };

};

Whenever a PlayerInfo tuple is read, the player updates his GUI with the new
location of that player. As PlayerInfo tuples are injected with a custom lease, they
are automatically removed from the tuple space after their time interval elapses trig-
gering the outOfContext: handler. In particular, opposing team members receive the
player’s location with a lease of 6 minutes, and policemen share their location with a
lease of 1 minute. In the example, the outOfContext: handler grays out the GUI
representation of a player if no other PlayerInfo tuple for that player is in the TO-
TAM system. If the rdp operation does not return a tuple, the player is considered to
be offline as he did not transmit his coordinates for a while.

Note how the integration of context into reactions avoids having to write imperative
code for inferring tuple perception. The underlying rule engine takes care of it, making
the code easier to understand and maintain.

6.2. WeScribble
WeScribble is a collaborative drawing application that allows users to dynamically

participate in a drawing session with other people nearby8. The application assumes no
other infrastructure than mobile devices and wireless ad hoc connections between these
devices. Users can join a drawing sessions by contacting any user which is already part
of a drawing session. When a user joins a drawing session, he can add, remove or move
shapes on the canvas of that session which is virtually shared between the different
participants. Figure 7 shows a screenshot of a weScribble drawing session running on
Android mobile devices. We will call a participant in a drawing session a drawer. In its

8A demo of the weScribble application is available at http://www.youtube.com/watch?v=
k0HYqRCxtHc
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Figure 7: weScribble drawing session over four Android devices.

extended version, users can draw several kind of shapes (e.g. rectangle, square, line),
move them in the canvas, and change their color. Users can also select one or more
shapes and group them in a grouped shape.

6.2.1. Design and Implementation.
The application (supporting rectangle, circles and lines as shapes) consists of 12

types of tuples, 10 read reactions and 2 in: reactions. The basic idea is that the
canvas is represented by a tuple space where devices can read and post Shape tuples
representing shapes being drawn. The main challenges in the design of the application
is to detect nearby drawers, the disconnection of drawers, and updates on group shapes.

Since TOTAM follows a replicated-based tuple space approach, it is important to
avoid that drawers receive outdated tuples from other drawers whose devices are not
nearby, i.e., devices currently not connected to the TOTAM network. To this end, the
application tuple space descriptor makes use of a drawing session id. When a user cre-
ates a drawing session, it places a tuple representing the session id, which can be read
by all users. Users joining a session first need to read a DrawingSession tuple and
then update their tuple space descriptor so that they only share Shape tuples for that
session. This application showed the importance of providing support for changing the
tuple space descriptor dynamically which is for example not necessary for the Flikken
application. We will further discuss the implication of changing tuple space descriptors
in Section 8.

To ensure that players have access to the shapes that he would like to modify created
by other players, the application employs an in reactions on the shape tuple it needs to
modify. If the tuple is not returned, it means that the drawer who first created the shape
has disconnected so the selection of the shape does not succeed. If the tuple is returned,
it means that the drawer is allowed to modify the shape and it becomes temporary
owner of the shape. In order to detect disconnection of drawers, each drawer injected
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a Drawer tuple in the network with a lease of 30 seconds. If the Drawer tuple out
of context listener was triggered and a more recent Drawer tuple is not present in the
tuple space, the drawer is considered to be disconnected, and its shapes gets grayed out
in the GUI.

In order for a drawer to create a group shape, the different shapes forming the group
should be accessible so that they can be bundled together into one group shape. For this
reason, the implementation injects a GroupShape tuple whose context rule specifies
the presence in the tuple space of the individual shapes, and register a read reaction on
the GroupShape tuple so that the shapes can be merged and the GUI is notified. The
use of such a context rule is critical to deal with consistency issues. Note that when
a new drawer joins the drawing session, it receives the individual Shape tuples and
the GroupShape tuple in its tuple space. However, the order in which those tuples
are read is nondeterministic, so if the GroupShape tuple is read before any of the
individual Shape tuples, the application will try to merge unavailable Shape tuples.
By employing a context rule on the GroupShape tuple, developers are sure that only
when all the shapes are available the group will be formed.

6.3. Industrial Case Study

TOTAM has been used to prototype a urban bulletin application in collaboration
with the STIB, Brussels’ public transport company. The application works like the
bulletin boards that one sometimes sees at the exit of supermarkets with messages
such as “Im looking for a housekeeper”, but integrated in a small part of the Brussels
public transportation system. Passengers can use an Android device to post messages
on the bus and read messages that were posted by previous passengers. Crossing buses
exchange messages such that they get percolated through the transportation network.

Our experiments were conducted in May 2011 in a MIVB depot and included 3
buses which were equipped with customized onboard computers. Figure 8 shows a
photo of the setup. Each bus carries a onboard computer (Pentium M-compatible with
1GB RAM) with a 802.11a interface attached to the computer which provides DHCP
connections. Each bus also has a GPRS modem attached to the computer. The onboard
computer runs Linux Debian 5.0 and a dedicated AmbientTalk distribution. This mod-
ified AmbientTalk ables simultaneous connections to two different network interfaces.
This was required in order to enable both customer-to-bus transfers and bus-to-bus
transfers. Passengers were equipped with stock Android devices; we employed Google
Nexus S, HTC Desire, and HTC Sensation phones running Android 4.0.

Each passenger and bus carry a TOTAM tuple space representing the bulletin board.
Using an unoptimized TOTAM and AmbientTalk interpreter, customer-to-bus tuple
transfer took up till 3 seconds. Connections between the onboard wifi antenna and
smartphone are stable until the distance between the smartphone and the bus is in-
creased to 60 m. Such a distance causes significant packet loss or even disconnec-
tions, strongly degrading the QoS. A demo of the customer-to-vehicle mobile bul-
letin board application is available at http://www.youtube.com/watch?v=
N7mxaPftod4.
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Figure 8: Photos of a deployed bus.

7. Software Engineering Analysis

The goal of this section is to highlight how TOTAM features aid the development
of context-aware applications running on mobile ad hoc networks from a software en-
gineering point of view.

7.1. Context Representation

One of the main benefits of TOTAM is that it provides a form of context represen-
tation in which a tuple itself can determine the runtime conditions in which a receiving
application should be in order to perceive the tuple. By introducing a rule engine into
the tuple space system, the underlying system takes care of making accessible context
information only when it is valid for the application’s context situation. A tuple space
model with such abstractions has the following benefits:

1. Decomposing a tuple into content and context rule leads to separation of con-
cerns, increasing modularity.
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2. Since context rules can be developed separately, it enables programers to reuse
the rules to build different kinds of tuples, increasing reusability. For example, in
Flikken, we used a inRangeOfGangster(?loc) function to build the rule
for the different VirtualObject tuples which was also reused to build the
three first conditions of CommitCrime tuples.

3. Programmers do not need to add computational code to infer tuple perception
as the rule engine takes care of it in an efficient way, making the code easier to
understand and maintain.

7.2. Dealing with Partial Failures
Another benefit of TOTAM is providing a tuple space model that deals with the

effects of partial failures inherent to a mobile ad hoc network setting. By default, ap-
plications are not aware of the intermittent disconnections of other TOTAM systems in
the network since the model abstracts the configuration of the network. When a higher
degree of context-awareness is required, tuples can contain context rules describing
the runtime conditions under which the tuples should be visible in the receiving tuple
space. In order to deal with permanent disconnections, programmers can inject tuples
with a lease which determines how long the tuple should remain in the tuple space.

Encoding leases as part of a tuple’s propagation protocol relieves programmers of
manually encoding when a tuple should expire in the propagation protocol itself. Doing
so is challenging because tuples are replicated amongst the network and developers
need to take into account clock synchronization. Keeping clocks synchronised is a well
known problem in distributed systems [15], but this issue is exacerbated in a highly
disconnected environment since the system cannot provide strong guarantees about the
expiration time. In other words, it could be that some copy of a tuple is still unrightfully
active in the system, causing the tuple to be perceivable by applications. The developer
must then add boilerplate code to ascertain whether the tuple is expired or not. Because
we encoded leases into the tuple space model, the system takes care of the issues of
clock synchronization. At worst, the asynchrony causes a tuple to be subject to a read
operation. However, the tuple will not be available for in operations because for a in
operation to succeed the owner of the tuple has to be contacted. When contacting the
owner, the requesting tuple space will be informed that the lease’s tuple is expired.

8. Evaluation

To complete the above software engineering analysis, it is also important to analyze
the effectiveness of TOTAM from a distributed system point of view. By making use
of tuple space descriptors, programmers can scope their tuples preventing them to be
transported to unwanted locations. These descriptors are crucial to provide program-
mers with a hook to encode privacy strategies. For example, although the descriptors
in the Flikken are limited to be simple objects carrying the team identifier, this can
be extended to compute an encryption challenge. By avoiding the unnecessary tuple
transportation, our approach can minimize network traffic.

Tuple space descriptors are exchanged between two locations when they meet for
the first time and whenever a location decides to change its description. In case descrip-
tors stay constant and prevent the propagation of tuples they can drastically reduce the
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burden on the network. In the other case when descriptors change a lot or do not prevent
the transportation of tuples the danger exists that the network traffic gets dominated by
the transmission of descriptors. In the remainder section, we evaluate when the use of
tuple space descriptors is beneficial and in which cases it is not in terms of network
traffic.

8.1. Worst Case

In the worst case there is one message that has to be transported to all connected
locations. This means that the exchange of the tuple space descriptors is an overhead
as the tuple was unlimited in its scope i.e. the tuple floods the network. The network
traffic generated for this tuple to be sent over the network when two locations meet can
be computed as follows. Every location x connecting to a location y will first receive
the descriptor Dy over the network and then receive the tuple tx1. The total amount
of network traffic for this tuple can thus be computed by summing the exchange of all
descriptors with the total amount of exchanged tuples. This is shown in the following
equation where n represents the number of connected locations.

NetworkTraffic = (
n∑
x=0

n∑
y=0

Dy) + n.tx1 (1)

In case the descriptors do not change they will only be transported once when two
locations discover each other. This means that from the second communicated tuple the
cost of the descriptor is dropped in the above equation. The resulting equation is exactly
the traffic that is normally transferred (n.Tx1) when not making use of tuple space
descriptors. However in the worst case all connected locations change their descriptors
for every transmitted tuple. In this case the overhead of transferring the descriptors is
given by the following equation where N is the number of transferred tuples.

NetworkOverhead = (
n∑
x=0

n∑
y=0

Dy) ∗N (2)

The overhead of exchanging the descriptors will be quadratic to the number of
connected locations over time. This clearly shows that when descriptors change a lot
and tuples have to be sent to all connected locations encountered it is not beneficial to
use tuple space descriptors.

8.2. Best Case

In the best meaningful case9 the sent tuples are sculpted to be only sent to one
location and the tuple space descriptors do not change over time. We illustrate this
case by a tuple that hops from location to location in a ring. In every hop the tuple
adjusts its scope to the next hop in the ring configuration. We have illustrated the
network traffic generated by this scenario for TOTAM and traditional approaches in

9The theoretical best case is when the tuple is meant for nobody and thus does not generate network
traffic at all.
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Figure 9. It is important to split up the network traffic generated by TOTAM in the case
for the first tuple and the successive ones. As can be observed on the top left of the
figure, before sending the first tuple over the ring all descriptors have to be exchanged.
However, when this tuple is further propagated over the ring exchanging the descriptors
is not necessary anymore so the number of exchanged tuples for one round equals the
size of the ring (as shown in the second and third step of the figure). This is in contrast
to approaches where the tuples are not scoped, in these cases the number of exchanged
tuples for one round is quadratic to the number of locations participating in the ring.
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Figure 9: Set-up of best case scenario

8.3. Benchmarks

We now report on micro-benchmarks of our TOTAM prototype implementation. In
order to validate whether the use of tuple space descriptors helps the programmer to
decrease the network traffic in his applications we have benchmarked two implementa-
tion of the ring example shown in the previous section. A first implementation makes
use of a tuple space descriptor that corresponds with the number of the node in the ring
where the tuple is jumping to. The relevant code of the protocol that implements this
protocol is shown in figure 3. The second implementation does not make use of tu-
ple space descriptors and thus corresponds to traditional tuple space based approaches.
Therefore, the tuple is sent to each of the participants where it is stored in the memory
of the receiving participant. As argued in the previous section such an implementation
generates a considerable amount of network traffic.

Listing 3: TOTAM ring descriptor.

def protocol(ringSize) {
propagationProtocol: {

def inScope(senderDes, receiverDes) {
receiverDes == (senderDes+1)%ringSize

};
};

};

In our tests, first a ring of ten nodes is created, then a single tuple is inserted that
jumps from node n in the ring to node n + 1. The time in function of the number of
hops the tuple jumps is shown in figure 10. The results depicted were obtained on an
Intel Core 2 Duo with a processor speed of 2.53 GHz running Mac OS X (10.8.3). As
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shown in this figure, the implementation with tuple space descriptors is significantly
faster than the implementation without tuple space descriptors. The figure shows that
the overhead of not making use of tuple space descriptors becoming visible after only
a couple of hops. The main reason why the overhead becomes noticeable very fast, is
that not only the network traffic is significantly higher, the processing time for matching
tuples is also significantly higher. All the received tuples of the nodes in the ring are
processed one by one and while propagating nodes in the network all the tuples that do
not match still need to matched against the event handlers.

In conclusion, our benchmarks confirm that the TOTAM tuple space implemen-
tation can significantly reduce the network traffic. This results in a more responsive
system, for twenty hops a 5 time speedup was measured. Moreover, as there are less
tuples received the individual nodes in the network have less processing work to per-
form.

Figure 10: Benchmark comparison of tuple propagation in a ring structure.

8.4. Summary
The use of tuple space descriptors in combination with scoped tuples has the po-

tential to drastically reduce the network traffic when 1) the tuples will be prevented
from hopping to other locations and 2) the descriptors do not change often relative to
the number of tuples in the system. However, how often do the descriptors change is
highly application-dependent. For example, in Flikken, tuple descriptors do not change
over time because players were not allowed to switch teams. In Guanotes, the tuple de-
scriptor changes when the end-user updates its user profile. As future work, we would
like to conduct experiments with devices to measure the costs of changing tuple space
descriptors for different applications as well as for different propagation strategies.

9. Prior Work

As mentioned in the introduction, the TOTAM system described in this paper is an
updated version of the tuple space system with the same name presented in previous
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work [7, 16]. In this section, we highlight how the designed of the updated TOTAM
defers from its predecessor.

In the first version of TOTAM, not all tuple space operations were designed to be
non-blocking. However, from other previous work [17], we have found that a loosely-
coupled communication model mitigates the effects of the hardware characteristics in-
herent to mobile ad hoc networks. As such, TOTAM’s updated version was re-designed
from the ground up not to support blocking operations.

In addition, tuples were merely wrappers on objects rather than first-class values.
As a result, the design of tuples did not preserve encapsulation and the code for the
propagation protocol was interwoven with the content of the tuple, hindering the reuse
of protocols for other tuples and applications.

Finally, the presented TOTAM proposes a redesigned propagation protocol API
solving two main limitations that the initial API suffered from. First, the inScope
operation did not include the descriptor of both the sender and receiver tuple space.
This forced developers to manually update changes on the sender descriptor when a
tuple arrived to a tuple space by misusing doAction operation. Second, the first
propagation API did not allow to change the tuple content before being sent and re-
ceived in a tuple space.

10. Related Work

In this section, we discuss related work with regard to the various concepts inte-
grated in TOTAM, namely its support for context-awareness, its scoping mechanism
and leasing model. Finally, we compare our approach to publish/subscribe middle-
ware which is closely related to tuple space model as it provides similar decoupling
properties [18].

Context-Awareness. We now discuss related tuple space systems modeled for context-
awareness and show how context-aware tuples differ from them. In TOTA, tuples
themselves decide how to replicate from node to node in the network. Because tu-
ples can execute code when they arrive at a node, they can be exploited to achieve
context-awareness in an adaptive way. However, programming such tuples has proven
to be difficult [5]. TOTA, therefore, provides several basic tuple propagation strategies.
None of these propagation strategies addresses the tuple perception problems tackled
by our approach. Writing context-aware tuples in TOTA would require a considerable
programming effort to react on the presence of an arbitrary combination of tuples as it
only allows reactions on a single tuple.

GeoLinda [19] augments federated tuple spaces with a geometrical read operation
read(s,p). Every tuple has an associated shape and the rd operation only matches
those tuples whose shape intersects the addressing shape s. GeoLinda has been de-
signed to overcome the shortcomings of federated tuple spaces for a small subset of
potential context information, namely the physical location of devices. As such, it
does not offer a general solution for context-aware applications. In contrast, we pro-
pose a general solution based on context rules, which allows programmers to write
application-specific rules for their tuples. Moreover, in GeoLinda the collocation of
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devices still plays a central role for tuple perception which can lead to erroneous con-
text perception.

EgoSpaces provides the concept of a view, a declarative specification of a subset of
the ambient tuples which should be perceived. Such views are defined by the receiver
of tuples while in context-aware tuples it is the other way around. Context-aware tuples
allow the sender of a tuple to attach a context rule dictating the system in which state
the receiver should be in order to perceive the tuple. EgoSpaces suffers from the same
limitations as federated tuple spaces since, at any given time, the available data depends
on connectivity [4].

The Fact Space Model [20] is a LIME-like federated tuple space model that pro-
vides applications with a distributed knowledge base containing logic facts shared
among collocated devices. Unlike context-aware tuples, rules in the Fact Space Model
are not exchanged between collocated devices and are not bound to facts to limit the
perception of context information.

Scoping Mechanisms. A number of approaches support scoping mechanisms in the
context of tuple spaces. Coordination with Scopes [21] introduces the concepts of
scope for a tuple space. A scope represents a view on a flat tuple space. A set of
operations is defined on those views allowing scopes to be joined, nested, intersected
and subtracted. Tuples may thus be visible from several different scopes. This mech-
anism is mainly used to structure tuple spaces according to different viewpoints on a
flat tuple space. However, scopes do not limit the propagation of tuples, i.e., tuples are
propagated to other tuple spaces but may not be visible for certain scopes. Since the
system was not devised for mobile computing applications, they rely on a centralized
infrastructure. In contrast, TOTAM does not rely on any fixed infrastructure and tuples
can be propagated through spontaneously formed MANETs.

CAMA [22] is an agent-based tuple space system which allows the definition of
a scope which agents can join and leave. Scopes are defined as containers in a tu-
ple space and can be nested in order to form hierarchical structures. This notion of
scope improves on coordination with scopes since inserted tuples are only transmitted
to agents which reside in the same scope. However, in order to send tuples to other
scopes the agent first needs to change its scope. Tuples which are inserted in a specific
scope can not be propagated automatically to other scopes. In TOTAM, by allowing
the tuple itself to decide whether it should be propagated, more fine-grained sharing
strategies can be expressed.

L2imbo [3] is a tuple-space based platform for mobile computing which provides
special features for quality of service. Similar to CAMA, L2imbo introduces the con-
cept of multiple tuple spaces but suffers from the same limitations as tuples do not have
the ability to decide to which tuple space they should be propagated. It is interesting
to note that L2imbo supports time-outs associated with tuples. This makes possible for
the system to reorder tuples to make optimal use of the available network connectivity.
Similar to CAMA, L2imbo introduces the concept of multiple tuple spaces but suffers
from the same limitations as tuples do not have the ability to change to which tuple
space they should be propagated.

Evolving tuples [23] have a field destination that they can change while they are
hopping. This destination field is used to determine where the tuple will be transmitted
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to after leaving a host. However, the destination field can only be a broadcast address
or a specific host address. In order to send the tuple to two broadcast addresses the
programmer will have to read the tuple and reinsert it to another broadcast address.
Our approach uses semantic information to determine where it can be transmitted thus
allowing more fine-grained propagation rules.

Inspired by LIME, TeenyLIME [24] introduces abstractions specially designed for
wireless sensor networks (WSN). Every tuple space in TeenyLIME is shared only with
one-hop neighbours, limiting the scope of tuples to one hop. Such limitation fits natural
with WSN architectures where every node typically needs access to nearby informa-
tion [24]. Scoping was introduced to address the scarce resources issue in the context
of WSN. However, no other means are provided to express different propagation pro-
tocols, which need to be expressed in terms of single-hop operations.

Leasing Models. Garbage collection of unused tuples is a known problem in tuple
space approaches [25]. Typically, a tuple space stores tuples which may never be sub-
ject to a remove operation, and which may never be garbage collected. To solve this
problem, TOTAM employs the notion of leasing. Some traditional tuple space ap-
proaches such as Objective Linda [26], JavaSpaces [27] and TSpaces [28], augmented
Linda’s operations with a timeout: if a matching tuple is not found within the timeout,
the operation returns an error. In JavaSpaces and TSpaces, a tuple can be inserted in
the tuple with a lease time denoting the maximum amount of time before the tuple is
automatically removed from the tuple space. However, the centralized nature of those
approaches does not make them applicable in a mobile environment.

To the best of our knowledge, Tiamat [29] is the only tuple space model for the
mobile environment that includes a leasing model. Tiamat follows a federated tuple
space model in which each operation is leased. Interestingly, the authors describe that
in Tiamat “leases may be based on time or on other measures such as the number
of remote instances contacted”. Unfortunately, no code examples are provided to see
how programmers can declare leases based on such conditions. Tiamat leasing model
incorporates the concept of expiration in the tuple space operations, but it does not
provide listeners which allows application to react to them.

In [25], Mamei et Zambonelli remark the importance of incorporating a garbage
collection mechanism to TOTA to remove unused tuples. In TOTA, one can encode a
leased tuple such as the one described in our work by means of a custom propagation
rule. In particular, the propagation rule needs to update its content to take into account
the notion of time, and stop its propagation. The MessageTuple class described in
the latest version of TOTA [25] defines a tuple that floods the network and deletes
itself after some time has passed. In TOTAM, because leasing is orthogonal to the
propagation protocol, programmers do not need to manually encode in the propagation
rule the passage of time, nor the retraction of the tuple from the network upon a delete
operation.

In [30], Ommici et al. extend ReSpecT [31], logic-based tuple space language with
the notion of time. ReSpecT tuple centers behave like tuple spaces whose behaviour is
specified in terms of reactions to events occurring in the tuple space. The notion of time
is introduced into a tuple center with (1) some temporal predicates to get information
about tuple center and event time, and (2) timed reactions which specify reactions
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triggered by time events. Based on this extension, they discuss how some abstractions
that could be built by introducing leasing into tuples similar to what TOTAM supports.
An interesting topic of future work would be to investigate whether introducing leasing
in TOTAM along the principles of (timed) tuple centers will allow us to build time-
based coordination patterns in a more modular way than our current solution based on
propagation protocols.

Publish/subscribe Systems. Many researchers have proposed publish/subscribe as a
suitable communication model for MANETs because of its loosely coupled nature [32,
33, 18, 34]. Publish/subscribe middleware typically does not offer abstractions for
representing failures or reacting to network connectivity. In fact, communicating par-
ties are usually not aware of the underlying network configuration, or even if a pub-
lished event was received by any subscriber; either failures are transparent to publishers
and subscribers and the event notification service buffers events when subscribers dis-
connect, or the publishers are responsible themselves for encoding failure handling
and events get lost if subscribers move out of communication range. For example,
STEAM [35] allows publish/subscribe based on physically location, but it is hard to
describe scopes based on semantic information as shown in the ambient game.

With respect to our support for context-awareness, context-aware publish subscribe
(CAPS) [36] is the closest work as it allows certain events to be filtered depending on
the context of the receiver. More concretely, the publisher can associate an event with
a context of relevance. However, CAPS is significantly different from context-aware
tuples. First, CAPS does not allow reactions on the removal of events, i.e., there is no
dedicated operation to react when an event moves out of context. Moreover, it does
not provide coordination of distributed parties, i.e., atomic removal of events is not
supported. And last, the context of relevance is always associated to a physical space.

Some publish subscribe systems have explored the concept of scope for events. In
scoped REBECA [37] systems can create a scope in which events will be published.
A scope can be extended and therefore form a tree of scopes. Subscribers will only
receive events of publishers which are in the same scope or have a common ancestor in
the scope hierarchy. Similar to CAMA, publishing an event in an other scope requires
the publisher to change it scope first, forcing developers to manually reinsert the tuples
into the other scopes. Location-based publish/subscribe [38] suffers from the same
limitation.

11. Availability

As previously mentioned, TOTAM has been implemented in AmbientTalk, and its
implementation is shipped with AmbientTalk’s standard language library10. In order to
use the TOTAM middleware, developers need to import the TOTAM module accessible
via the lobby.at.lang.totam namespace. This module provides the core model
including the scoping mechanism based on propagation protocol and the leasing model.

10AmbientTalk’s standard library can be downloaded with the language at http://soft.vub.ac.
be/amop
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The context rules that can be attached to a tuple have been implemented as a separated
module extending TOTAM that is accessible via the lobby.frameworks.tuples

namespace. The code for the three described applications (Guanotes, weScribble and
Flikken) is also accessible within the AmbientTalk’s standard language library.

The rule engine in TOTAM incorporates a truth maintenance system built on top
of a RETE network[39]. A RETE network optimizes the matching phase of the infer-
ence engine providing an efficient derivation of context rule activation and deactivation.
The network has also been optimized to allow constant time deletions by applying a
scaffolding technique[40]. For details about the engine and its performance, we refer
to[41].

A TOTAM system relies on AmbientTalk’s service discovery facilities (based on
multicast using UDP) to discover other systems in the network. Flikken’s initial ex-
perimental setup was a set of HTC P3650 Touch Cruises phones running on J2ME
(CDC) and communicating by means of TCP broadcasting on a wireless ad hoc WiFi
network. Guanotes and weScribble’s experimental setup is, however, a combination
of Samsung Nexus S and Galaxy Nexus phones (running Android 4.0.4) and Motorola
Xoom tablets (running Android 3.2). This is today the primary experimental setup for
TOTAM’s applications. As such it remains future work to port Flikken’s current Java
AWT GUI to the Android platform.

12. Conclusion

In this paper, we proposed a novel tuple space model specially designed for the de-
velopment of mobile context-aware applications. TOTAM combines ideas from both
federated and replication-based tuple spaces into a consistent tuple space-based frame-
work. Unlike existing tuple space approaches, only the subset of tuples which should be
perceivable, is made accessible to applications in TOTAM. This is achieved by extend-
ing tuples with a predicate, called a context rule, which determines when the receiving
application is in the right context to perceive the tuple.

There are three main novelties to our approach. First, the use of context rules com-
bined with the introduction of a rule engine in the tuple space system. This gives the
programmer control over which tuples present in the tuple space should be actually
accessible by applications. Programmers do not longer need to infer tuple perception
manually as the rule engine takes care of it in an efficient way, making the code easier
to understand and maintain. Second, TOTAM integrates the concept of leasing into a
replicated-based tuple space model. Leasing is an essential concept in order to deal
with permanent failures in a highly disconnected network topology. Our leasing ab-
stractions allow the developer to determine upper boundaries on the availability of the
injected tuples in the system independent of the connectivity. And finally, TOTAM
introduces the concept of antituples to enable the “unsending” tuples injected to the
network. Antituples are injected into the TOTAM network upon removal or retraction
operations, avoiding programmers to manually encode them in terms of propagation
protocols.

We have given both an informal and a formal account of the core features of TO-
TAM. The applicability of our model has been demonstrated by showing the imple-
mentation of Flikken, a mobile game in which players equipped with mobile devices
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interact in a physical environment augmented with virtual objects, and weScribble, a
collaborative peer-to-peer drawing application. Moreover, our prototype implementa-
tion of TOTAM has been used in an industrial case with the STIB and is actively used
for teaching students at the Vrije Universiteit Brussel.
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Appendix A. TOTAM’s Programming API

Table A.4 summarizes TOTAM’s programming API which is described in Sec-
tion 5.
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Middleware operations
makeTupleSpace(descriptor) creates a tuple space with the given descriptor.
tuple: content

withPropagationProtocol: protocol

creates a tuple with the given list
of fields. The optional parameter
withPropagationProtocol: denotes
the propagation protocol by which the tuple
may be injected in the network.

propagationProtocol: closure returns a protocol object which extends the de-
fault propagation protocol with the given code
block.

var: symbol return a variable from the given symbol.

Tuple space operations
goOnline publishes the tuple space in the TOTAM net-

work.
rdp(template) returns a tuple matching the template or nil if

none is present at the time of invocation.
rdg(template) returns all tuples matching the template or nil

if none is present at the time of invocation.
out(tuple, lease) adds a private tuple to the tuple space.
inject: tuple inContext: rule

withLease: interval

adds a public tuple to the tuple space.
inContext: and withLease: optional pa-
rameters allow to specify the associated context
rule and (lease) time interval, respectively. It re-
turns a publication object with methods to stop
the tuple’s propagation, and retract it from the
network.

when: template read: closure

outOfContext: oocClosure

registers a reaction on the tuple space for the
given template. When a tuple matching the
template is available in the tuple space, the
closure listener is applied binding all vari-
ables of the template to the matching tuple. Op-
tionally, the outOfContext: closure can be
specified to react when the matching tuple is no
longer perceivable.

when: template in: closure

outOfContext: oocClosure

works analogously to when:read:
outOfContext: operation, but registers
a reaction on the removal of a tuple matching
the template.

whenever: template read: closure

outOfContext: oocClosure

works analogously to when:read:
outOfContext: operation, but triggers
the closure listener for every perceivable
tuple matching the template.

whenever: template in: closure

outOfContext: oocClosure

works analogously to when:in:
outOfContext: operation, but triggers
the closure listener for every perceivable
tuple matching the template.

Table A.4: Programming API of TOTAM
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