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Abstract—Quantum Computing lies at the frontier of comput-
ing, offering a radically different and unconventional model of
computation. In the absence of practical quantum computers
today, we must simulate their execution. This creates a per-
formance problem, as quantum computing simulation is very
costly. However, quantum computing simulation does contain an
abundance of parallelism. The research question becomes: how to
expose this parallelism? Although it is easy to show the problem
inherently contains a large amount of parallelism, the type of
parallelism is non-trivial to exploit in a scalable way using current
mainstream parallelization techniques. This paper presents the
formulation a virtual machine for quantum computing as a fine-
grained dataflow schema, which aims to expose and exploit the
abundance of parallelism in a way that avoids the observed
scalability issues. We present the formal mapping from the
linear algebra description of elementary quantum operations to
dataflow graphs, analyze its theoretical parallel characteristics
and present experimental performance results of a prototype
implementation.

I. INTRODUCTION

Quantum Computing started as a mathematics and physics
curiosity, but has gradually shown to have interesting applica-
tions. This potential has spurred researchers to work towards
actual physical quantum computers. The current state of this
field is similar to the era before the electronic computer;
the underlying principles are known, but the practical im-
plementation techniques are still being developed. As com-
puter scientists, it is interesting to consider how one would
go about programming such computers. Early programming
languages have been developed after hardware came along,
discovering along the way what works and what does not.
Quantum programming attempts to develop ways of working
with a quantum computer, before these become available,
guided by decades of experience building software systems
and languages.

Building a practical quantum programming framework
today means that: a) execution needs to be simulated and
b) there is a large choice of possible hardware and software
approaches. The problem with the first point is that this
simulation grows in exponential time and space complexity,
creating a performance barrier. The second point means that
the programming framework needs to deal with heterogeneity
on both the higher and lower levels of abstractions.

We approach the variation problem (b) using a Virtual
Machine (VM) abstraction. Virtual machines for program-

ming languages have become a staple technique in software
language engineering to deal with variability on the level
of the language it needs to support and on the level of
the execution machinery it needs to run on. Facing similar
variability problems in the domain of quantum programming
languages, it was a logical step to apply the same virtual
machine technique. In order to do this, it is important to choose
an appropriate Instruction Set Architecture (ISA). In earlier
work [1] we presented, to a quantum computing audience, a
VM design and prototype based on the Measurement Calculus
model of quantum computing, called the Quantum Virtual
Machine (QVM). Here, we report on recent work which seeks
to express the execution of such a VM as a highly-parallel
computation.

The renewed interest today in parallel computing is un-
derstandable, considering we find ourselves in an era where
sequential performance of computing hardware is stagnating,
whereas parallel hardware performance continues to scale;
a more performant sequential approach today will likely be
outpaced tomorrow by the previously slower parallel approach.
For the specific context of quantum computing simulation, we
find that it is an interesting case for trying out novel parallel
computing techniques. On paper, as we will show, there is
an abundance of exploitable parallelism. In practice however,
we observe1 that mainstream parallel hardware architectures
are ill-equipped to exploit the involved type of parallelism.
Concretely, arithmetic intensity is low, the access pattern is
global and hard to prefetch. For such workloads, common
in-hardware techniques to reduce memory latency become
ineffective or even counterproductive. In order to scale, a
different paradigm of parallel computing is needed [2].

We have a two-pronged goal for this presented work. First,
theoretically formulate quantum computing simulation as to
fully express all available parallelism. Second, express the
parallel computation in practice in a way that avoids the
common issues encountered in mainstream parallel software
and hardware approaches. For both goals, we make use of a
Dataflow execution model: a formal dataflow model schema

1We observed this in an earlier experiments, in which we applied common
parallelization techniques to our existing efficient sequential QVM implement-
ation. This artifact has been made publicly available on http://github.com/
yvdriess/qvm/. The experiment can be reproduced by comparing the code
branches dense and openmp.

http://github.com/yvdriess/qvm/
http://github.com/yvdriess/qvm/


for the former and a dataflow execution framework for the
latter.

A. Quantum Computing

Quantum algorithms and applications are still mainly de-
veloped on paper, by virtue of a person’s expert knowledge.
Low-level physical effects, as described by quantum mech-
anics, are used to describe quantum algorithms with only
little conceptual abstraction. Most commonly, the semi-formal
quantum circuit model is used to express quantum computa-
tions. The circuit model is a simple framework, organizing
reversible and deterministic quantum operations as one would
organize logic gates in an electronic circuit. The classical com-
puting elements often required in these quantum algorithms
are kept informal or implicit. Many quantum computing simu-
lators and imperative quantum programming languages follow
the circuit model, each typically reformulating and formalizing
the circuit model along the way. These approaches thus keep
to a low-level ’quantum gates’ formulation of quantum com-
puting and integrate quantum computation with the classical
programming world at this low level of abstraction.

In contrast, other research efforts focus on formulating
quantum computing using higher-level frameworks from math-
ematics and computer science: type theory [3], linear logic [4],
lambda calculus [5], functional languages [6], category the-
ory [7, 8], etc. Most often, their low-level execution is a
secondary concern; these formal frameworks and languages
search for new insights and provide formal tools to facilitate
proofs.

For our Quantum Virtual Machine, we base ourselves on the
Measurement Calculus (MC) by Danos et al. [9]. This formal
model brings together several properties we desire. First, it in-
troduces a compositional and modular abstraction for quantum
programs. Second, the Measurement Calculus is a formaliza-
tion of a low-level model of quantum computations that is
physically realistic: measurement-based quantum computing.
Physicists have found that actual implementations of the circuit
model run into fundamental scalability issues. Measurement-
based quantum computing is one of the newer generations
of approaches to quantum computing that use the insights
gained from years of experimental research to avoid these
scaling issues. Third, the MC elegantly separates quantum
and classical state, allowing us to draw clear boundaries on
what work can be performed on a classical system and which
computations are inherently quantum. Lastly, the MC uses a
small but universal set of operations: with it, any quantum
operation can be expressed. The operations themselves are
relatively simple, which simplifies the implementor’s task. We
have developed this QVM within the broader context of a
quantum programming framework, which we have presented
in prior work [1, 10]. The work here focuses specifically on
the parallel formulation and execution of the QVM’s ISA.

B. Dataflow model

We have chosen the dataflow model of computation as
foundation for the parallel execution of our QVM. Quantum

Computing is today mainly expressed in terms of linear
algebra, such linear algebra problems have already been
shown before to map well to dataflow models and hardware
architectures [11, 12]. But more specifically to our case,
dataflow exhibits certain properties that we desire for highly-
parallel QC simulation: it is fine-grained, data-oriented, highly
asynchronous (viz. local rather than global synchronization),
implicitly parallel and easily analyzable. We assume here that
the reader has a minimal familiarity formal dataflow models
and dataflow of parallel execution. For a more thorough
treatment of dataflow models, architectures and languages
we refer to the surveys by Treleaven et al. [13], Johnston
et al. [14] and Veen [15], and the books by Sharp [16] and
Almasi and Gottlieb [17]. The formalization of our problem
as a dataflow computation is expressed in a relatively simple,
abstract and static dataflow model; similar to the Petri net-style
formalization of dataflow by Kavi et al. [18].

We keep here to an abstract model formulation both for
simplicity and to avoid having to commit to any specific
dataflow computing platform. Recent research heavily fa-
vors hybrid dataflow/von Neumann architectures that strike
a balance between the elegance of dataflow execution and
some of the perceived inefficiencies and barriers to adoption
of pure fine-grained dataflow. Some recent hybrid dataflow
research architectures are the TRIPS [19], WaveScalar [20] and
Apple-CORE [21] architectures. Each type of hybrid or macro
dataflow model involves a different formulation of the same
problem. A full survey and classification of hybrid dataflow
architectures can be found in Yazdanpanah et al. [22].

In this text, we will start from a multilinear algebra for-
mulation of the involved quantum operations. The expression
of each QVM operation as a Kronecker product, a matrix-
and vector-specific instance of the tensor product, allows us
to establish a simple transformation (expansion) into a fine-
grained dataflow model.

II. DATAFLOW FORMULATION OF THE QVM
A. The Quantum Virtual Machine

The QVM presented here has to be considered in the context
of a larger quantum programming framework. To give a brief
overview: the framework’s application layer enables its users
to compose complex quantum programs in a structured way
and integrate it into a traditional application, a compilation
layer deals with performing the logical composition of the
modular program parts and an assembly step will ultimately
produce a sequence of concrete commands. Note that we will
be using the term commands here as interchangeable with
instructions. The command sequence thus forms a ‘quantum
assembly language’ and is the program input for our quantum
virtual machine, which functions as the execution layer for
the framework. The operational semantics of this quantum
assembly language are based on the Measurement Calculus
by Danos et al. [9]. Each command of an input command
sequence is executed one after the other, targeting only one or
two qubits. A qubit is the smallest non-trivial quantum state,
each qubit is identified in commands by a unique integer. Just



as the bit forms the elementary data element in a classical
computer, so does the qubit for a quantum computer.

To get an impression of a quantum program as a command
sequence, we give the following example. The command
sequence performing the teleportation of the qubit identified
by the integer 1 into the qubit 3 is expressed in MC’s original
mathematical notation as

Xs2
3 Z

s1
3 M

s1
2 M1E2,3E1,2 .

Read from right to left, analogous to matrix multiplication, the
above contains a sequence of applications of the commands: E
(Entanglement), M (Measurement), Z and X (Pauli-Z and -X
operations). Subscripts denote which qubits the command acts
upon. Superscripts denote predicated execution: Zs13 will be
executed or not depending on the outcome of the measurement
of qubit 1. As you can already observe, only the entanglement
command acts on two qubits, the rest on only one. To explain
the higher-level meaning of the above program would involve
more than we have space available here, due to the radically
different nature of the quantum computing paradigm. For
our purposes, it is sufficient to only describe the small-step
semantics, the effect of each individual command (E, M , Z
and X) on the simulated quantum computational state. Each
such command corresponds to a specific quantum operation,
the effect of which we simulate2 using a classical computer.

In this section, we will expose the effect of each individual
command on the computational state during its simulated
execution. By doing this, we focus on explaining only the
concepts and semantics required to understand our core con-
tribution: the mapping of the involved quantum operation to
dataflow. We will start with the simplest formulation, one were
each operation is applied on an atomic state. As we will see,
the dataflow graph for each such atomic operation can be used
to construct the dataflow graph for all involved operations.

B. Single qubit formulation

Each command of the Measurement Calculus manipulates
the entire quantum state, even if logically only a single
logical entity (a qubit) is manipulated. The quantum state
can be represented as a vector of complex elements, which
are for historical reasons called amplitudes. The simplest
formulation of each involved quantum operation thus involves
a computational state representing only a single qubit: a vector
of two elements. In the case of the Entanglement command
(E), the smallest applicable state is represents two qubits: a
vector of four elements.

The operators realizing the X and Z commands on a single
qubit are the following simple matrix operators.

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
(1)

2To avoid confusion, note that when we use the term quantum computing
simulation, this has a different meaning than the term quantum simulation in
for example molecular chemistry. Our type of simulation is more analogous to
gate-level simulation of a processor chip, rather than the physical simulation
of individual electrons.

Acting on a two-element vector, one can easily see that
X swaps the position of the two elements and Z flips the
sign of the second element. This behavior corresponds to the
following simple dataflow graphs.

id id

in[0] in[1]

out[0] out[1]

X

and id −

in[0] in[1]

out[0] out[1]

Z

The operation nodes containing id are dummy nodes perform-
ing the identity operation and are used here for the sake of
uniformity. The nodes are labeled here for clarity, conceptually
linking these back to vector elements.

The quantum operation realizing the entanglement com-
mand E has a similarly simple matrix operator, called the
controlled-Z or ∧Z operator.

∧ Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2)

Again, this corresponds to the following simple dataflow
graph.

in[0]

out[0]

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

id id id −

∧Z

The measurement command M for a single-qubit state is
normally a trivial corner case, as it completely destroys the
input state. Nevertheless, it is useful to first consider the
measurement of a single qubit state. This trivial case will leave
a residual scalar, instead of a quantum state. In the Measure-
ment Calculus, the M operation takes a measurement angle
parameter α. The measurement of a single-qubit state vector
[a0 a1]

T degenerates into the inner product:
[
1 e−iα

] [
a0
a1

]
.

Taking the complex scalar c = e−iα, a simple dataflow graph
can again be constructed as shown below.



in[0] in[1]

id ∗ c

+

M

One essential operation has not been discussed so far, which
forms an implicit part of the QVM’s realization of the E
command: the Kronecker product. In the formal semantics
of the Measurement Calculus, on which the QVM is based,
the quantum state is prepared beforehand in a state repres-
entation which combines all necessary qubits. A combined
representation of two states is obtained by combining all
amplitudes of one state with those of the other, thus creating
a combinatorial explosion. In order to be practical, our QVM
semantics amended the original MC operational semantics to
combine two quantum states only when absolutely necessary,
lazy state combination as it were. Only during the E command
can such combination take place, as ∧Z is the only operator
that acts on two qubits, and thus requires them to be in a
combined state. In terms of linear algebra, the combination
of two quantum state vectors qa and qb is achieved using the
tensor product, specifically, the Kronecker product: qa ⊗ qb.
For instance, combining two single-qubit states results in the
amplitude vector

[
a0
a1

]
⊗
[
b0
b1

]
=

a0
[
b0
b1

]
a1

[
b0
b1

]
 =


a0b0
a0b1
a1b0
a1b1

 . (3)

The above example results in the dataflow graph shown below.

a0 a1 b0 b1

∗ ∗ ∗ ∗

qa ⊗ qb

This can be generalized for larger states by repeating the
following graph pattern in which N is the size of the vector
inb:

. . . . . .

[i]

. . . . . .

[j]ina inb

∗

[Ni+ j]

. . . . . .

ina ⊗ inb

C. Multi-qubit formulation

The first step is to consider the tensor product formulation
of single-qubit operations. As quantum states get combined,
the single-qubit operations need to reformulated as to act on
this combination. This is realized by combining the 2 × 2
identity operator I =

[
1 0
0 1

]
with the single-qubit operator. The

command X thus translates to some matrix operator

I⊗m ⊗X ⊗ I⊗n , (4)

when applied on a quantum state representing n+m+1 qubits.
Position within this tensor product is of prime importance:
X needs to be in the same tensor position as the qubit it
is targeting. We define the tensor position of a qubit as the
position it was combined in. For example, take q1, q2, . . . to
be single qubit states for qubits named 1, 2, . . .. Applying the
MC command X3, targeting qubit 3, to the quantum state
combination q1 ⊗ q3 ⊗ q5 is realized by the matrix operator
I ⊗X ⊗ I . In practice, we use a intermediate representation
which associates with each quantum state a sequence of qubit
names, in order to track in which position each qubit can be
found.

Matrix operators with such a Kronecker product formu-
lation have along the diagonal a certain repeating block
structure [23]. The smaller the n in eq. (4), the smaller the
repeating block’s size and the more it is repeated. When X is
completely at the last tensor position (n = 0), one obtains
a perfectly data-parallel formulation of the operator [26].
That is, applying the Im ⊗ X operator on a vector state
is equivalent to applying m-times the two-by-two X matrix
operator in parallel on contiguous two-element sub-vectors
of the input vector state. For this reason, we will refer to
this preferred tensor product position as the parallel position.
As a parallel position operator is equivalent to the repeated
parallel application of its atomic one- or two-qubit version,
its dataflow graph is thus a repetition or concatenation of the
atomic operator’s graph.

The key insight here, is that one can change the tensor
positions of qubits in the quantum state vector. By itself, the
Kronecker product is not commutative. However, there is a
class of permutations that does permute any given Kronecker
product [23]. There is thus a permutation matrix Pn such that

I⊗m ⊗X ⊗ I⊗n ≡ P−1n

(
I⊗m+n ⊗X

)
Pn .



Put in other terms, there is an operation which realizes a
cyclical shift of qubit positions. The dataflow graph construc-
tion of this position changing permutation can be described as
follows. Label each input state node from in[0] to in[N − 1]
and do the same to for output nodes (out[0] to out[N − 1]).
Given the position changing operation Ps which cyclically
shifts all qubits s positions to the left and S = 2s, then
connect each input node labeled in[i] to an output node labeled
out[pS,N/S(i)], where the permutation function pm,n is defined
as:

pm,n(i) = m (i mod n) +

⌊
i
n

⌋
. (5)

For instance, a P1 position changing operation acting on a
quantum state vector of eight elements is thus transformed
into the following fine grained graph:

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

in

out

It is useful to note that this permutation function describes the
data access pattern of imperative program implementations of
the same operations. In such cases, it can be useful to perform
the actual data movements, for instance to enable vectorization
optimizations or to improve data locality. Indeed, the same
tensor-commuting permutation can be observed in related
work involving similar multilinear algebra, often the automatic
parallelizing and optimization of Fourier transforms [25, 26].
In our case, this permutation is used to construct the static
dataflow graph, as we have done here. But, the permutation
can also be used in dynamic dataflow configurations, where
the permutation function in (5) can be used to compute the
destination of any given output element at runtime.

In conclusion, bringing everything together, a complete
fine-grained dataflow graph can be constructed for any given
sequence of commands. For the sake of compactness, this text
has glossed over several details and mathematical formula-
tions. A more full and rigorous treatment of the subject can
currently be found in the doctoral dissertation of Vandriessche
[10]. To clarify with a larger example, we have juxtaposed an
example positional coarse graph with its fine grained graph
in Figure 1.

III. IMPLEMENTATION AND ANALYSIS

At the core of our contribution lies the claim that a
command sequence expressed in our fine-grained dataflow
graph model exposes a large amount of parallelism. Supporting
this claim solely using an empirical study is hard, as real-
world performance is very sensitive to implementation issues
and the target parallel architecture. We therefore supplement

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− −

∗c ∗c ∗c ∗c

+ + + +

⊗

∧Z

M

X

Figure 1. Fine-grained dataflow representation (left) of the command se-
quence Xs1

2 M1E1,2 implementing the Hadamard transform, acting on a
two-qubit input state. The schema on the right is a visual lead and a compact
representation of the involved operators and quantum states.

the empirical results of our implementation, presented below,
with a more theoretical quantitative analysis of the parallelism
exposed by our fine-grained dataflow model.

A. Average parallelism

Average parallelism is a machine-independent metric, ob-
servable from the static program description that has in prac-
tice shown a high correlation with parallel speedup. To our
knowledge, no other such metric combines simplicity with
a strong predictive power for parallel performance [27, 28].
Indeed, one of the popularizing factors of the Cilk [29]
approach is the predictable parallel performance based on
this observable parallelism metric. Average parallelism helps
programmers during the design and implementation of parallel
programs by giving them a measure of progress and expected
performance. We thus use average parallelism as a quantitative
measure for exploitable parallelism. This gives a basis for
comparison for future work related to ours, but also reveals
something about the parallel nature of quantum computations.

Average parallelism is defined as the ratio between the total
work in the program and the length of its critical path:

πav =
S1

S∞
(6)

The total work S1 of a program is the time it takes for a single
processing element to execute the program. The critical path
S∞ is the time to execute the program with an unbounded
number of processing elements. The average parallelism of



a program is the maximal parallel speedup one that can
theoretically achieve. It is no coincidence that this relates to
Amdahl’s law: the critical path relates to the sequential part
of a program, the average parallelism to the parallel part.

In parallel programs structured using DAGs, as is our case,
the S1 and S∞ properties are directly observable from the
program graph. We proceed by first making the assumption
that each elementary operation takes one time unit to execute.
S1 is then obtained by counting the number of operation
nodes in the program graph. The critical path is obtained by
counting the operations in the longest path from input to output
node in the program graph. Rather than doing this by hand,
we automated this by integrating it in our parallel compiler.
The resulting metrics for a few interesting quantum programs
are listed in Table I and plotted in Figure 2. The Quantum
Fourier Transform (QFT) is interesting as indicator because
of its practical relevance in QC, but also because it allows
the step-wise incrementing of command sequence length and
qubit state width. We use QFT (n) to refer to the n-qubit QFT
program. The number of QVM commands (#ops) metric is
included to compare program sizes. The πav of the Quantum
Fourier Transform can be observed to double roughly for each
additional qubit, following the same increase in the ‘width’ of
the quantum state. The program to create the W3 state [30, 31]
has only 40 commands, in contrast with QFT (16)’s 3288,
but affords a comparable measure of parallelism. This is due
to the nature of the quantum algorithm, but also because the
W3 program puts all entanglement commands in front of the
sequence, creating a wide dataflow graph. The critical path
length in every case reflects the number of commands in the
given sequence, it is not significantly higher because of two
reasons. First, the dataflow graph exposes some natural parallel
execution of some commands. And second, the X operation
does not perform work in a dataflow computing setting. Put
in other terms; following the edges, one can ‘compile away’
the operation entirely.

QFT (2) QFT (4) QFT (8) QFT (16) W3

#ops 33 174 780 3,288 39
S1 165 2,595 114,699 67,862,667 920,682
S∞ 30 158 702 2,942 42
πav 5 16 163 23,066 21,921

Table I
WORK, CRITICAL PATH AND AVERAGE PARALLELISM METRICS OF THE

DATAFLOW GRAPHS REALIZING VARIOUS QUANTUM COMPUTING
BENCHMARK PROGRAMS.

From the analysis of the average parallelism as measure for
parallelism, we can conclude that there is indeed evidence
of a vast amount of exploitable parallelism. The average
parallelism for larger quantum programs shows that there is
indeed the potential parallelism to counteract the exponential
increase in computational work with an exponential increase
in computational resources. However, it is also the case that
for computations like QFT , the increasing critical path length
reflects its highly entangled nature.

2 4 6 8 10 12 14 16

0
50
00

10
00
0

15
00
0

20
00
0

QFT(n)

am
ou
nt

average parallelism
critical path length
number of commands

Figure 2. Average parallelism data points for different program sizes, indic-
ating that the exponential increase of work goes together with an exponential
increase in exploitable parallel performance.

B. Experimental Validation

The implementation used for the experimental validation of
this work is a proof of concept, demonstrating by construction
that the QVM can indeed be realized as a fine-grained dataflow
computation, and that the described theoretical dataflow graph
yields correct results. This is not self-evident, the same theor-
etical analysis can be used for a more traditional imperative-
style data-parallel implementation, as in parallel QC related
work [32, 33]. Indeed, a traditional approach would likely
perform better on today’s stock processors. However, the goal
of this implementation is not to get optimal performance on
current stock hardware, but rather validate that our fine-grained
dataflow formalization is indeed feasible and exposes the
promised parallelism. Therefore, our implementation approach
follows the fine-grained dataflow semantics as closely as
possible.

The implementation artifact is structured as a stratified com-
piler, written in Common Lisp, using multiple intermediate
model transformations; staying close to the research we are
validating while providing enough hooks in the implement-
ation for researching optimizations and alternative execution
targets. For this initial experimental work, we choose Intel
Concurrent Collection (CnC) [36] as parallel software plat-
form. We thus make two main compromises in this prototype
implementation. The first is in the choice of CnC as dataflow
computation platform. The second is the implementation of
the prototype as compiler rather than runtime virtual machine.
Ideally, we want to directly emit instructions for a target



dataflow platform that can take advantage of the fine-grained
dataflow formulation to perform the necessary dataflow op-
timizations. However, to our knowledge, there are no such off
the shelf dataflow computing solutions. We thus compromise
by choosing from the set of current and practical software
frameworks that provides us the desired dataflow semantics
on top of commodity multicore processors; frameworks such
as Qthreads [34], Data-Driven Tasks [35] or Intel’s CnC [36].
Our choice of CnC represents a trade-off between being able
to achieve fine-grained dataflow execution semantics with an
off the shelve parallel hardware and programming framework.
Moreover, CnC allows for different back-ends [37, 38], which
offers us prospects on testing our implementation under differ-
ent execution strategies and hardware. The second compromise
is our use of a compiler design for our prototype, instead
of a runtime virtual machine as in the formal case and
our reference sequential qvm implementation. This is out of
technical considerations – a code generation step is required –
and out of a formal consideration to stay close to the formal
model transformations. Our prototype does remains identical
in interface, function and results compared to the formal QVM
and our reference sequential qvm implementation.

The theoretical analysis above reveals a vast amount of
available parallelism, enough in theory to allow the simulation
of additional qubits by an exponential increase in hardware
resources. This abundant parallelism should be visible in a
real world implementation in the form of parallel speedup,
even in a high-overhead naive implementation. We show that
our implementation exposes and exploits inherent parallelism
by using speedup as an empirical quantitative measurement.
Speedup is used as a relative performance measure, comparing
different instances of the same program to measure parallel-
ism. For a fair performance analysis, a parallel implementa-
tion should also be compared to a representative sequential
algorithm. Our sequential implementation qvm was imple-
mented for this purpose, using the low-level programming
language C and the popular libquantum library to offer a fast
sequential implementation as baseline comparison. Further-
more we demonstrate by introducing a coarsening optimization
that that parallel scheduling overhead is the dominant factor
in this proof of concept implementation.

We use the experimental results to support two statements.

• Statement 1: We automatically expose and exploit paral-
lelism, with our proof of concept implementation already
demonstrating good parallel performance.

• Statement 2: The current proof of concept implementation
is wasteful, but contains a lot of optimization headroom.
Given enough engineering effort, this can be exploited to
increase absolute real-world performance.

Statement 1 is tied to the theoretical analysis above, which
already shows that we expose a vast amount of average paral-
lelism that can in practice lead to good parallel performance.
By construction, our proof of concept does so automatic-
ally; our artifact takes the same program input as qvm and
automatically produces parallel program code based on the

internal dataflow graph representation. However, we still need
to show with experimental results that parallelism is exploited
in practice. This is achieved by measuring the parallel speedup
metric as for parallel performance. Speedup Sn := T1

Tn
is the

most commonly used parallel performance metric, it compares
the execution time on a single processing element T1 with the
execution time on an n-number of processing elements Tn.

a) Experimental setup: The test-bed computer system we
have used in the experiments uses two 2.26 Ghz quad-core
Intel Xeon multicore processors in a uniform memory archi-
tecture configuration, allowing us to scale up to eight effective
hardware threads. Processor cache sizes are 256KB (L2) and
8MB (L3). As benchmark program, we use the QFT (n)
quantum algorithm, as used in the theoretical analysis above.
For demonstrating strong scaling we use QFT (16), as it
constitutes a high enough workload in both sequential (qvm)
and parallel cases, with runtimes in the order of seconds.
Each experiment consists of a number samples gathered over
multiple execution runs, in order to offer more statistically
valid performance measurements [39]. The multiple wallclock
runtimes of each experiment are presented using a violin
plot, a variation of the boxplot that simultaneously visualizes
the usual quartiles (black rectangle), mean (central dot) and
probability density (violin shape).
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Figure 3. Parallel Speedup Sn values of multiple execution runs for the
QFT (16) command sequence, using the un-optimized fine-grained parallel
implementation. The diagonal line represents ideal linear speedup.

b) Results: The speedup graph in Figure 3 shows a
typical cannonball trajectory curve, where we see a speedup
improvement whose increase gradually tapers off. The main
factors contributing to this behavior is the task coarseness;



each fine-grained task performs only a small amount of
computation compared to the scheduling, task switching and
synchronization overhead. This first naive experiment does
not take into account the ideal parallel task coarseness of the
target hardware platform. We demonstrate that coarseness is
indeed a dominant factor by showing the effect of a coarsening
optimization below.

To test the amount of overhead, we measure the effect
optimizations have on speedup. Optimizing for memory is hard
to do directly in our implementation, as the Intel CnC and
TBB libraries abstract away their memory management. CnC
does offer optimizations in the form of tuning functionality,
in which the programmer supplies additional information to
the CnC runtime. We have added step and item tuners to the
code generated by our artifact. A CnC step tuner, declares the
data dependency of each step instance to the scheduler. This
information can be used by the scheduler to start executing
a step instance when all its dependencies are ready, avoiding
the situation in which a steps are suspended while waiting
for their inputs. An item tuner on an item collection can
declare how many times its items get consumed, in order to
manage better the allocated memory. However, we notice in
practice that no item collections currently get deallocated or
downsized. In Figure 4 we superimpose the earlier reported
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Figure 4. Effect of introducing CnC tuner optimizations, reducing the
overhead of individual parallel step instances.

speedup characteristics of the naive parallel implementation
with the tuned version. We observe that tuners improve the
speedup scaling behavior, as expected. Step tuners decrease
the overhead of individual step instantiations, thus decrease
the total parallel overhead.

However, the parallel overhead is evidently not the main
bottleneck; we observe a small shift of the parallel scaling
graph towards linear speedup. This is assumed to be an
indicator that parallel overhead is dominated by the number
of scheduled step instances, rather than the overhead for each
individual one. This assumption is tested in the following
by introducing a coarsening optimization, which reduces the
overall number of step instances. The coarsening optimization
is implemented at the level of our compiler artifact. By imple-
menting parts of the fine-grained graph as a single CnC step,
the amount of parallel work is decreased in favor of higher
sequential work. We thus get an indication of the amount
of parallel overhead of our implementation by comparing
the execution runtime of the unoptimized version with the
coarsened versions. This is reported in Figure 5, in which we
added the average sequential runtime speed of the sequential
qvm implementation as reference point. This graphic clearly
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Figure 5. Comparing the absolute runtime speeds of the original unoptimized
parallel implementation with the tuned and coarsened optimized version. Both
execute the same QFT (16) command sequence.

shows a large absolute performance win from introducing a
small coarsening optimization. This indicates parallel over-
head from the fine-grained granularity to be the dominant
performance factor in our proof of concept implementation.
This overhead does not only originate from CnC, which is
designed around coarser steps, but this is also an issue of the
multicore execution platform which still prefers large blocks
of sequential workload.

IV. CONCLUSIONS

We have formulated the execution of simulated
measurement-based quantum computing programs as a



highly-parallel dataflow computation, both to analyze its
parallel potential and to express the problem independently
from underlying parallel hardware. Our approach starts from
a tensor product formulation of the involved linear operators
to construct a fine-grained dataflow graph model.

We implemented the required transformation steps by build-
ing a dataflow compiler artifact. However, lacking a true data-
flow execution platform, we turned to emulating the parallel
execution of the fine-grained dataflow graph using a mod-
ern parallel computing library: Intel Concurrent Collections
(CnC) [40]. Because of CnC’s dataflow-like programming
model, we were able to achieve true fine-grained dataflow
execution semantics with only few compromises: balancing
at one end the need to demonstrate the conceptual fine-
grained approach, and at the other end the notorious practical
difficulties and hard to predict performance characteristics of
parallel programming with respect to parallel hardware.

As validation of our parallel approach, we performed both
a theoretical and an experimental analysis of the fine-grained
dataflow graph. Theoretical analysis of the average parallel-
ism metric shows that the dataflow graph indeed exposes a
vast amount of exploitable parallelism. We saw that for the
Quantum Fourier Transform case, an exponential increase in
total work is matched by an exponential increase of exposed
parallelism. In the experimental analysis, we measured the
real-world performance of executing large Quantum Fourier
Transform computations. We show that this difference in ab-
solute performance is indeed due to inefficiencies: experiments
that introduce simple optimizations demonstrate dramatic per-
formance improvements.

With this research we seek to inspire further work that uses
dataflow as model for parallel computing. We have used it
effectively in the context of quantum computing simulation,
both in its capacities as a simple and elegant conceptual model,
but also as a practical way of executing fine-grained parallel
computations. In addition, quantum computing simulation
has also proven to be an effective parallel computing case,
exhibiting a vast amount of parallelism that is hard to exploit
with traditional parallel software techniques. For the future,
we look forward to using the parallel QVM as a test bed for
general-purpose fine-grained dataflow execution environments.
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