
A practical quantum programming framework and
its highly-parallel virtual execution

Yves Vandriessche
Software Languages Lab
Vrije Universiteit Brussel

Email: yvdriess@vub.ac.be

Ellie D’Hondt
Software Languages Lab
Vrije Universiteit Brussel

Email: eldhondt@vub.ac.be

Theo D’Hondt
Software Languages Lab
Vrije Universiteit Brussel

Email: tjdhondt@vub.ac.be

Abstract—We present a practical quantum programming
framework based on the formal framework of the Measurement
Calculus and powered by our high-performance virtual execution
engine: the Quantum Virtual Machine. Within this work, we
employ various software engineering and high performance com-
puting techniques in order to facilitate the design, composition,
transformation, verification and execution of measurement-based
quantum programs. Our first contribution lies in the design and
construction of the framework itself. We present a complete
prototype of the framework, which implements its entire layered
architecture, viz. a complete quantum ’software stack’. Each
layer deals with a separate concern, following the logical division
lines in the semantics of the Measurement Calculus. Our second
contribution is located in the execution layer of the framework:
the formulation of the inherent parallelism in measurement-
based quantum computing simulation and its high-performance
implementation in the form of the Quantum Virtual Machine.

I. INTRODUCTION

Formal frameworks can be powerful tools to assist the dis-
covery and development of quantum computing applications.
Generally speaking, these can be more useful in a virtual en-
vironment, where operations that are tedious when performed
by hand are automated, in which the formal tools can be
applied in analysis and verification of executable quantum pro-
grams and where applications can be developed interactively.
Broadly speaking, there is a need for a Quantum Programming
Paradigm: a collection of quantum programming tools, models
and approaches. However, a programming paradigm is not
constructed, but is grown over time by accumulating the
contributions of a diverse expert community [1]. Pragmatically
speaking, there is first and foremost a need for a practical
quantum programming framework: an environment in which
to interactively write, test and analyze quantum programs. In
other words, there is a need for a programming framework
that combines a low-level execution environment with current
higher level formal tools and techniques.

Our approach to building a practical quantum programming
environment is to first create a small working kernel with
all the necessary elements from top to bottom, but which is
designed from the start to be extended and grown in multiple
directions. To this purpose, we build our first artifact as a series
of abstraction layers. Such an abstraction layer approach is
ubiquitous in todays computer software architectures.

In the Quantum Computing domain, there already exist
executable languages, automated formal models and a great

many low-level quantum computing simulators. Indeed, many
quantum computing implementations have been developed
over the years, both high and low-level. However, there has
been a lack of an overarching approach or quantum computer
model, one that is used for both higher-level formal work
as well as low-level execution environments. The circuit
model typically fills the role of quantum computing model
for practical low-level implementations. Although, because
of the semi-formal nature of quantum circuits, many imple-
mentations have to create their own specific formalization
and architecture. This creates a moving target for practical
high-level frameworks and for the low-level implementation
environments themselves. A solution to this issue is to use
an overarching formal model, which both offers a practical
low-level execution model, but also offers a bridge to current
higher-level formal frameworks.

II. MEASUREMENT CALCULUS

For our quantum programming virtual framework, we base
ourselves on the formal framework of the Measurement Cal-
culus (MC) by Danos et al. [2]. The Measurement Calcu-
lus brings together several interesting properties that make
it highly suited for our above stated purposes. First, the
formal basis for our framework should be physically realistic;
when programmable quantum computers become available,
our quantum programming framework should remain relevant.
Physical scalability arguably poses the biggest threat to the
building of physical quantum computers. The MC is a rigorous
formalization of the Measurement-Based Quantum Comput-
ing (MBQC) model [3], [4]: a radically different paradigm
of quantum computing which aims to achieve this physical
scalability. Secondly, the operational foundation of the MC
provides us with a small yet universal set of simple operations:
a quantum assembly language. Its clean and rigorously defined
operational semantics simplifies the task of constructing a
practical measurement-based quantum computing simulator
Thirdly, the MC introduces a compositional and modular
abstraction on top its operational foundation: measurement
patterns. An important contribution of the MC was to show
that this abstraction enables local reasoning. Finally, the Meas-
urement Calculus is relevant: it is currently being used as a
research tool to drive new discoveries [5]–[7]. In summary,
we use the Measurement Calculus because of its advantages



as a conceptual framework, but also as a practical framework;
building a quantum programming framework requires a com-
bination of both.

We identify, for our purposes, two distinct abstraction layers
in the Measurement Calculus: a pattern layer that concerns
itself with composing patterns into larger wholes and a execu-
tion layer that deals with executing the individual operations.
The execution layer deals with the manipulation at runtime
of computational state, while the pattern layer manipulates
measurement patterns at design time. This separation will
form the basis of the layered architecture of our programming
framework.

III. FRAMEWORK

A. Layered Architecture

The structure of the proposed layered architecture is schem-
atically represented in fig˙ 1. Each layer deals with different
concerns:

• Application layer: MC programs need to be integ-
rated into classical programming languages in order to
build useful applications. In the application layer, the
measurement patterns are connected to the programming
environment at large. We envision and implement two
ways in which this can happen: a graphical design tool
for non-programmers and a pattern library extension for
programmers.

• Pattern layer: The pattern layer provides pattern com-
position functionality, but also implements a pattern as-
sembler to transform a given pattern into an concrete and
executable command sequence.

• Execution layer: Given a command sequence, the execu-
tion layer orchestrates the execution of its MC commands,
taking care of the required classical computations.

• Realization layer: The realization layer virtually or
physically executes an individual quantum operation.

Each layer is developed and implemented separately, as a
distinct abstraction, library or even executable computer pro-
gram. It is fundamental to the layered architecture design that
each layer implementation can be changed, extended and even
substituted without affecting any other layers.

User

Application Layer

Pattern Layer

Execution Layer

Realization Layer

pattern compositions composed pattern

command sequence outcomes

quantum operation measurement result

Figure 1. Overview of the layered architecture structure.

Given the scope of this text, we will briefly focus on the
composition and execution layers: the layers that implement
and automate the MC. More details, such as formalization and
detailed semantics, we refer to Vandriessche’s dissertation on
the topic [8].

B. Composition

Measurement patterns and their composition rules were
already introduced by the MC as an abstraction mechanism,
but require some changes in order to be automated. The current
notational convention works well for small patterns. However,
performing and even defining larger pattern compositions by
hand is a tedious and error-prone process; one needs to manu-
ally match qubit names correctly in an entire measurement
pattern. The two rules for parallel and composite pattern
composition from [2] cannot be trivially automated as they
stand. It is implicit that qubits get renamed in order to achieve
the correct result and to satisfy the rule’s preconditions. We
omit pattern standardization, an important aspect of the MC,
in the discussion here; First, the standardization algorithm can
be applied without fundamental changes. Second, as we will
discuss in section III-C below, a measurement pattern is best
left in a non-standardized (wild) state due to performance
considerations.

We replace qubit names by logic variables and replace
the renaming process by variable matching. While this may
seem more complex, it allows for easier automation of the
composition rules and separates the way the composition
is expressed from the underlying composition rules. Indeed,
this separation is crucial to allow several alternative ways of
expressing patterns and their composition. We wish to stress
that this formulation of measurement patterns is not meant to
be used by humans, but rather by a computer program from
the application layer. The composition functionality using this
new basic representation is implemented by what we call the
generalized composition, which provides a consistent pattern
definition and composition abstraction to the application layer
above. We present the composition functionality in three
stages: expressing pattern composition, renaming and merging.
Additionally, a pattern assembly process breaks down the
pattern structures internal to the pattern layer into concrete
command sequences, which can be passed to the execution
layer for execution.

C. Execution

The execution layer deals with executing MC command
sequences. One can create an interpreter or quantum virtual
machine for executing command sequences by directly imple-
menting MC’s operational semantics. These have been defined
with enough rigor that this poses no significant problems.
In the context of our work, it is important to note that
implementation here means a virtual or simulated execution
environment, rather than a physical one. This gives rise to
some practical concerns, on which we will focus here. As such,
we introduce some amendments to the operational semantics
of the MC, in order to deal with the practical concerns of a



virtual execution environment. The main issue being: there is
a practical upper limit to the number of entangled qubits one
can represent in a simulated environment.

Taking the MC’s operational semantics as-is, one would
need to prepare a single, global and entangled quantum state
before the start of the computation. Taking the amplitude-
vector state representation of a quantum state1, the size of
the vector blows up exponentially by the number of entangled
qubits represented. This limits in practice the total number of
qubits that can be used in any command sequence, which is
disastrous considering the number of qubits used in any typical
measurement-based quantum computation. We work around
this upper limit by the combining of three elements: lazy state
preparation, lazy tensor combination and wild patterns. First,
we only prepare (initialize) a qubit’s quantum state when the
qubit is first needed. Second, we represent the quantum state
as a set of entangled quantum states, rather than a single
entangled state. Finding and factorizing any given general
state is a difficult problem. However, we can conservatively
keep quantum states factorized by construction. Two states
are combined (tensored) only when necessary: right before
the execution of an entanglement operation targeting two of
their qubits. Third, we keep patterns in a wild state. In fact,
measurement (destruction) of a qubit should follow its first
mention (creation) as early as possible. This last property of
a pattern is the exact opposite of the standardization of a
pattern2. The first two elements are small amendments to the
MC’s operational semantics, the third is a preference of input
programs.

We implemented one such execution layer as an optimized
and high-performance quantum virtual machine (QVM) in
the C programming language. This artifact has been made
public3. A large wild pattern, of 3288 commands, realizing the
quantum Fourier transform on 16 qubits can be executed by
the QVM in 0.5 seconds, using a modern Intel Xeon processor.

Dealing with the exponential blowup means on the one hand
being performant, not wasting given computational resources
such as to enable tackling larger problems in a realistic
timescale. On the other hand, one can also throw more
computational resources at the problem. Today, for both cases,
this translates into providing an efficient parallel program.

IV. PARALLEL FORMULATION

We provide a parallel formulation of the simulated execution
of MC command sequences. This is achieved by manipulating
the tensor formulation of the involved quantum operations
and quantum states. The purpose of these manipulations are
to put the operations in a form that will trivially map to
a parallel computation model: the dataflow model. Dataflow

1We use the more general amplitude-vector state representation. A virtual
execution environment based on an alternative, such as the stabilizer calcu-
lus [9], requires a fundamentally different approach, which is out of the scope
of our current work.

2It would be interesting to explore an anti-standardization process to drive
a given pattern as wild as possible. That is, a pattern transformation that keeps
the width of the intermediate entangled quantum states as low as possible.

3https://github.com/yvdriess/qvm

started as a formal model which uses graphs to represent
parallel computation [10], but it has grown into a widely
accepted practical parallel programming model [11] as well,
with applications in parallel computer architectures [12]–
[14] and programming languages technology [15], [16]. It
is important to note at this point that we are dealing here
with classical parallel computations rather than quantum-
level parallelism. Put differently, we want to run as much
amplitude-level arithmetic operations simultaneously, instead
of quantum-level operations.

The first step is to consider the tensor product formulation
of single-qubit operations. Given an amplitude vector imple-
mented using a column-vector, qubit positions in the tensor
product combination become important. A MC command X4

operating on a column-vector quantum state translates to some
matrix operation I⊗m⊗X⊗I⊗n. Matrix operations formulated
as such tensor or Kronecker products have along the diagonal
a certain repeating block structure. The smaller such n, the
smaller the repeating block’s size and the more it is repeated.
When X is completely at the ’right’ side of the product
(n = 0), one obtains a perfectly data-parallel formulation of
the operator X . That is, applying the Im ⊗ X operator on
a vector state is equivalent to applying m-times the two-by-
two X matrix operator in parallel, on contiguous two-element
vectors of the input vector state. For this reason, we will
refer to this preferred tensor product position as the parallel
position.

By itself, the Kronecker product is not commutative. How-
ever, there is a class of permutations that does permute any
given Kronecker product [17]. There is thus a permutation
matrix Pn such that

I⊗m ⊗X ⊗ I⊗n ≡ P−1
n

(
I⊗m+n ⊗X

)
Pn .

Put in other terms, there is an operation which realizes a
cyclical shift of qubit positions. Each one-qubit and two-qubit
operators in the MC have a simple dataflow graph realization.
Given that a parallel position operator can be trivially obtained
by concatenating the dataflow graph of the involved single
(or dual) qubit operator a number of times, we thus obtain a
parallel formulation of every necessary quantum operation in
their parallel position form. The permutations necessary to put
operations in the parallel position are realized on such dataflow
graph by permuting the input output edges. As such, we can
construct a highly-parallel dataflow graph for any given MC
command sequence. An example of such dataflow graph is
given in Figure 2.

This parallel formulation of the virtual execution of MC
command sequences opens up formal analysis of the involved
parallelism, but also provides practical benefits in the form of
steering high-performance parallel implementations. Analysis
of formal parallel metrics already reveal that theoretically,
there is enough available parallelism to offset the exponential
increase in computational cost with an exponential amount of
parallel computing resources. In practice, we observe that par-
allel implementations are dominated by communication cost,



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− −

∗c0 ∗c0 ∗c0 ∗c0∗c1 ∗c1 ∗c1 ∗c1

+ + + +

⊗

∧Z

M

X

Figure 2. Fine-grained dataflow representation (left) of the command
sequence Xs1

2 M1E1,2 implementing the Hadamard transform, acting on a
two-qubit input state. The schema on the right is a visual lead and a compact
representation of the involved operators and quantum states.

either network communication in computer cluster configur-
ations or memory bandwidth and latency in shared-memory
multiprocessors. Here again, the dataflow formulation is key
to optimizing communication and obtaining optimal parallel
performance.

V. DISCUSSION

We present here some of the results and insights gained
by the construction of a practical top-to-bottom measurement-
based quantum programming framework. The layered architec-
ture of this framework was not only invaluable for developing
the entire artifact itself, but lends itself particularly well as
an experimental platform. We will discuss several acquired
insights and avenues of experimentation here.

The limitations introduced by having to simulate the exe-
cution of measurement-based quantum operations has opened
the door to changes or additions to some of the formal
framework. Consider the standardization process for meas-
urement patterns; a practical simulated execution of a MC
program requires not only on a change to the MC’s operational
semantics (e.g. our lazy preparation and tensor combination
amendment), but also requires patterns to be constructed
in a way as to be as wild as possible. It is foreseeable
that future physical measurement-based quantum computer
prototypes have other such limitations that will have impact
on multiple conceptual layers. For example, rather than the
potentially infinite number of parallel operations that can
currently be performed within the formal framework, it is more

likely that a prototype physical implementation that is limited
to a certain number of simultaneous quantum operations.
Such operation schedule, a set of simultaneous operations,
could very well have additional constraints, such as positional
constraints where no two neighboring physical qubits can be
manipulated simultaneously. Our layered framework provides
a context where such changes to the formal and operational
models can be explored: new constraints can be checked and
enforced within the execution environment, new pattern-level
transformations (e.g. an alternative standardization algorithm)
can be added to the pattern layer. This type of research is
prevalent in the programming languages community, where
new language-level constructs, physical constraints and new
assumptions are tested and validated by modifying an existing
layered architecture.

As an example of this type of research support, we can
point to previous work wherein a formal framework for distrib-
uted quantum computing [18] is supplemented by a practical
framework. This practical framework was obtained with only
minimal changes to the basic framework presented in this text.
The pattern and execution layers were extended ’horizontally’,
that is, without breaking or changing existing functionality. We
thus demonstrate that our practical framework can act as an
experimentation platform where one can explore, iteratively
work out and test new formal framework concepts.

Our main research vision, however, is one where new
research results and practical insights are aggregated though
integration with our practical framework. As mentioned in
the introduction, the underlying agenda is to jump-start a
measurement-based quantum programming paradigm, which
needs to aggregates the knowledge of a wide expert com-
munity over time. Towards this goal, we have created a
practical prototype with a heavy emphasis on extensibility,
such that new concepts can be added with relative ease. We are
confident that recent and useful research results can be added
to the current framework: standardization [2], the automated
calculation of depth complexity [6], finding the existence of
flow to detecting unitary embedding [19] and generalized
flow for deterministic patterns [20], detecting and executing
parts of measurement patterns as stabilizer calculus operations,
transforming measurement patterns to quantum circuits [21]
and (the other way around) transforming quantum circuits into
measurement patterns.

A more speculative future research direction lies in the
unification of the dataflow model with the Measurement
Calculus. Dataflow is a proven and popular model for par-
allel computing, which has been used both as a conceptual
tool, supporting formal proofs, but also in practice, as an
intermediate representation in optimizing compilers or even
as execution technique in parallel processors. Our stepwise
graph-based transformation of measurement patterns into a
fine-grained dataflow graph has revealed similarities with the
graph-based generalized flow algorithms. The foreseen benefit
of such unification of Dataflow and MC is the exploration of
a formal system that is still parallel by default, but which can
deal with some of the limits and constraints introduced by



physical parallel quantum computers.

REFERENCES

[1] G. Steele, “Growing a language,” in Higher-Order and Symbolic Com-
putation, 1999, pp. 221–236.

[2] V. Danos, E. Kashefi, and P. Panangaden, “The Measurement Calculus,”
Journal of the ACM (JACM, vol. 54, no. 2, p. 8, 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1219096

[3] R. Raussendorf and H. Briegel, “A one-way quantum computer,” Phys-
ical Review Letters, vol. 86, no. 22, pp. 5188–5191, 2001.

[4] R. Raussendorf, D. Browne, and H. Briegel, “Measurement-based
quantum computation on cluster states,” Physical Review A, vol. 68,
no. 2, p. 22312, 2003.

[5] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,” Theoret-
ical Computer Science, vol. 410, no. 26, pp. 2489–2510, 2009.

[6] D. Browne, E. Kashefi, and S. Perdrix, “Computational Depth
Complexity of Measurement-Based Quantum Computation,” Theory of
Quantum Computation, vol. 6519, p. 35, 2011. [Online]. Available:
http://adsabs.harvard.edu/cgi-bin/nph-data query?bibcode=2011LNCS.6519...35B&link type=ABSTRACT

[7] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and
P. Walther, “Demonstration of Blind Quantum Computing,” Science,
vol. 335, no. 6066, pp. 303–308, Jan. 2012. [Online]. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.1214707

[8] Y. Vandriessche, “A foundation for quantum programming and its highly-
parallel virtual execution,” Ph.D. dissertation, Vrije Universiteit Brussel,
Nov. 2012.

[9] D. Gottesman, “The Heisenberg Representation of Quantum
Computers,” Audio, Transactions of the IRE Professional
Group on, pp. –, Jun. 1998. [Online]. Available:
http://pubget.com/paper/pgtmp quant-ph9807006?institution=

[10] R. Karp and R. Miller, “Parallel program schemata: A mathematical
model for parallel computation,” IEEE Conference Record of the Eighth
Annual Symposium on Switching and Automata Theory, pp. 55–61, 1967.

[11] J. A. Sharp, Data flow computing: theory and practice. Norwood, NJ,
USA: Ablex Publishing Corp., 1992.

[12] J. Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp.
48–56, 1980.

[13] J. Gurd, C. Kirkham, and I. Watson, “The Manchester prototype dataflow
computer,” Communications of the ACM, vol. 28, no. 1, pp. 34–52, 1985.

[14] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-
Gonzalez, and Y. Etsion, “Hybrid Dataflow/Von-
Neumann Architectures,” IEEE Transactions on Parallel
and Distributed Systems, pp. 1–1. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6506076

[15] W. Johnston, J. Hanna, and R. Millar, “Advances in dataflow program-
ming languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, pp.
1–34, 2004.

[16] F. Allen and J. Cocke, “A program data flow analysis procedure,”
Communications of the ACM, vol. 19, no. 3, p. 137, 1976.

[17] H. Henderson and S. Searle, “The vec-permutation matrix, the vec
operator and Kronecker products: a review,” Linear and Multilinear
Algebra, vol. 9, no. 4, pp. 271–288, 1981. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/03081088108817379

[18] E. D’Hondt and Y. Vandriessche, “Distributed quantum programming,”
Natural Computing, vol. 10, no. 4, pp. 1313–1343, Dec. 2011.

[19] M. Pei and N. de Beaudrap, “An extremal result for geometries in the
one-way measurement model,” Quantum Information and Computation,
vol. 8, no. 5, pp. 0430–0437, 2008.

[20] D. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and
determinism in measurement-based quantum computation,” New Journal
of Physics, vol. 9, p. 250, 2007.

[21] R. Duncan and S. Perdrix, “Rewriting measurement-based
quantum computations with generalised flow,” Automata, Languages
and Programming, pp. 285–296, 2010. [Online]. Available:
http://www.springerlink.com/index/06g573327343gq75.pdf


