
Supporting Multi-level Configuration with

Feature-Solution Graphs

Formal Semantics and Alloy Implementation

Jaime Chavarriaga∗1,2, Carlos Noguera†1, Rubby Casallas‡2, and
Viviane Jonkers§1

1Vrije Universiteit Brussel
2Universidad de los Andes

Technical Report VUB-SOFT-TR-13-21

Abstract

In Software Product Lines, several approaches support configuration
processes using feature models representing constraints about which fea-
tures, software elements or assets can be included in a product. These
approaches use a single feature models to display users which features can
be included in a product and to validate if a given configuration is valid.
In this paper we propose feature-solution graphs (FSGs) to detect and
explain conflicts in multi-staged configuration processes. In these FSGs,
configuration options are arranged into a pair of feature models with re-
lationships between them. Then, when some options are selected in one
of them, an automatic process is able to determine the set of options that
can be selected in the other. Finally, if a combination of features results
in that none option can be selected in the latter feature model, an auto-
matic process determine the selected options that cause the problem. The
technical report presents the approach providing a formal semantics for
feature models and feature solution graphs, and provides an example and
comparison.

1 Introduction

In Software Product Lines (SPL), building correct configurations is essential
to define products that not only satisfy the requirements, but that are also
∗jchavarr@vub.ac.be
†cnoguera@vub.ac.be
‡rcasalla@uniandes.edu.co
§vejoncke@vub.ac.be

1

amenable to composition; i.e., configurations that do not have conflicts or in-
compatibilities. Usually the configuration of these products may require the
involvement of different stakeholders [5], and selections performed by one stake-
holder may conflict with choices of others.

Feature models have been used as a foundation for configuration processes [5,
4, 8]. Originally focused on documenting commonalities and variabilities, feature
models allow engineers to define constraints over which combinations of features
can be part of a product [11].

Multi-staged configuration [5, 8] process considers diverse stakeholders that
make decisions over the same set of features, while multi-level configuration [5]
considers a different set of features for each stakeholder. In both, the selections
performed by any stakeholder can restrict the options that the others can select.
How these processes are implemented can vary from approach to approach: some
propagate constraints of already made decisions to indicate which additional
features are or cannot be selected [1]. Other approaches [5] use the selections
performed to modify the structure and constrains in the feature models and
present to users only the subset of possibilities that they can select.

Existing multi-staged and multi-level configuration approaches focus on pre-
venting errors during configuration: selecting features in one stage/level that
cannot exist in the same configuration with features selected in subsequent
stages/levels. However, in configuration processes with multiple stakeholders,
these approaches can not explain, for an stakeholder, which features selected
by other stakeholders cause that some feature must be selected, that a feature
cannot be selected, or the causes of a conflict.

This paper presents FaMoSA (Feature Models for Software Architecture) a
multi-level configuration process based on independent feature models, to repre-
sent variability relevant to diverse stakeholders, and feature-solution graphs (FS-
Graphs) to relate features involved in one configuration level with the features
involved in the next one. We are interested on explaining to each stakeholder
why some features are selected or which decisions taken by other stakeholders
cause conflicts. Conflicting features are detected by reasoning over the struc-
ture of the FM, while their explanation is derived from the FS-Graph’s relations.
The major contributions of this paper are:

1. A formal semantics for feature models that tolerate inconsistencies during
a configuration process.

2. A formal semantics for feature-solution graphs to describe configuration
processes.

3. An approach to detect conflicts in a configuration process, and explain
their causes based on transformations over feature-solution graphs.

The remainder of this paper is structured as follows. Section 2 gives an
overview of related work and 3 presents our approach for supporting multi-level
configuration processes. First, Section 3.1 presents an overview, then section
3.2 presents the FaMoSA formalization, and finally, section 3.3 presents an

2

implementation of the formalization in Alloy. Section 4 concludes the paper
and outlines our future work.

2 Related Work

Feature-based Configuration Software Product Lines and Configurable Soft-
ware, such as applications servers and operating systems, require a Configuration
Process [5, 8]. In these processes, one or more stakeholders configure a product
by selecting features and assigning values to options. The expected outcome is
a valid configuration that includes only features and options that do not have
conflicts or incompatibilities among them.

In configuration processes with multiple stakeholders, each stakeholder con-
figures features of her concern [8]. However, selections performed by one may
affect which features can be selected by the others. Several approaches have
been proposed to support configuration processes and help stakeholders pro-
duce valid configurations [5, 4, 8]. Feature-based Configuration Processes are
those approaches based on feature models to specify the features and options
that can be selected, and the constraints about which features can be chosen
at the same time.[8]. Depending on the approach, they organize the options for
each stakeholders using a single feature model or using different feature models
for each stakeholder [5].

Multi-stage configuration processes [5, 4, 8] use a single feature model to
represent the whole variability independently of the stakeholders. These ap-
proaches combine the feature models of all the stakeholders in a single model
and introduce new implies and excludes relationships between features of a
stakeholder and features of others. These types of relationships allow to specify
that a feature must be or not included in a configuration as an effect of a selec-
tion. However, these relationships cannot be used to represent that a selection
of a feature causes specific modifications on the feature model, e.g., they can-
not be used to denote that, after a feature is selected, other feature becomes
mandatory in the group where it belongs.

Multi-level configuration uses multiple feature models, basically, one per
stakeholder. Czarnecki, Classen et al. [5, 4] use annotations in features to
include expressions that determine if a feature must be included in a configura-
tion. These expressions are defined in terms of features of other stakeholders.
Bruin, Janota et al. [3, 10] propose Feature-Solution and Feature-Component
Graphs to represent, after a selection of a feature, which other features in other
feature models must be also included in a product configuration. However these
approaches only define the equivalent to implies relationships, but not to rep-
resent that a feature prohibits another feature or makes it mandatory in the
feature group where it belongs.

Conflict Tolerance during Configuration Configuration conflicts occur
when intended features of a stakeholder cannot be selected because of other
choices by same or other stakeholders [8].

3

Automatic support for detecting and preventing conflicts in multi-staged and
multi-level configuration are mostly based on propagating decisions. Propaga-
tion of decisions is a process that takes the features selected by one stakeholder
to update the features belonging to the same and other stakeholders to represent
all the effects of these decisions.

To prevent conflicts, approaches propagate decisions using feature model spe-
cialization, i.e. reducing the variability in feature models [5]. These approaches
update constantly the structure of feature models taking the features selected by
the stakeholders and the constraints defined in the feature model to set manda-
tory those features that must be selected and to remove non-selectable features
[12, 4]. They prevent configuration conflicts because conflicting features are
removed. However, because missing features, the structure of the feature model
cannot be used to explain what previous choices caused a conflict.

On the other hand, other approaches tolerate conflicts detecting them after
stakeholders have selected all intended features. They convert feature models
and partial configurations into a set of constraints and use a solver to deter-
mine if there are conflicts [2]. However, to obtain the information of already
selected or non-selectable features provided by the specialization process, these
approaches require further processing using a solver with additional constraints
for each feature.

Configuration Conflict Explanation In configuration processes with mul-
tiple stakeholders, determining the causes of a conflict, i.e., why a feature is
non-selectable or already selected, is key. If the causes of a conflict are in the
features belonging to the same stakeholder, she can fix it changing her own
choices. However, when causes include features selected by other stakeholders,
negotiation is required to solve the conflict. This negotiation not only requires
knowledge about which combinations are valid, but also about which selections
of each stakeholder are the cause of the conflict and negotiate with that stake-
holders which selections maintain or retract.

As mentioned before, feature model specialization alters the models removing
non-selectable features. Then, the remaining structure cannot be used to explain
why a feature is not selectable. When the conflicts lead to no possible valid
configuration, all the features in the model are removed, making harder to
explain any cause.

The approaches that tolerate conflicts use combinatorial analysis and solver
techniques to determine configuration conflicts [2, 13]. However, they present
information about combinations of features that result in conflicts but not about
the other features involved, e.g. the features where it occurs.

In order to support solution to configuration conflicts involving multiple
stakeholders, it is important to present the impact of each selection and explain
causes of selected or non-selectable features in terms of features belonging to
other stakeholders. This cannot be easily obtained using feature model special-
ization because information is lost in the process, neither using existing solver
approaches focused on valid combinations of features.

4

3 FaMoSA

Section 3.1 presents an overview where informally, our multi-level configuration
process is explained and then, section 3.2 presents the main elements of the
FaMoSA formalization.

3.1 Overview

3.1.1 Feature-based Configuration

One of the contributions of our work is the FaMoSA’s ability to explain con-
flicts in terms of selected features of other stakeholders. In our strategy, we
specialize feature models tolerating conflicts during the process, and maintain-
ing structures that allow us to trace the decisions and explain the reasons of
conflicts.

Conflict-tolerant feature models To tolerate conflicts, we propose feature
models where features can be typed as non-selectable, in addition to the standard
mandatory and optional types. Our feature models allow features to carry more
than one type at the same time. Thus, a feature model can be well-formed even
when a feature is mandatory and non-selectable. Notice that normally, a feature
model would not be constructed using non-selectable features, rather the type
is used to make explicit the cases in which a feature cannot be selected due to
constraints in the model propagated during the configuration process.

In our approach, we distinguish full mandatory features as those that must be
included in all the configurations (i.e. the mandatory features which ancestors
are also mandatory features). Notice that a feature model is invalid1 if any full
mandatory feature is also non-selectable.

Figure 1: Example feature model supporting multiple types. A cross-box is used
to indicate non-selectable feature.

Figure 1 shows a feature model, result of a configuration step, supporting
multiple types and non-selectable features. It includes an optional feature f1
and a mandatory feature f2 as traditional feature models. These features are
in an Or Group denoting that both can be included in a valid configuration. In

1If there are no valid configurations for a feature model.

5

addition, the model includes a feature f3 that has an optional and an additional
mandatory type (i.e. effectively rendering the feature mandatory). The feature
f4 is optional and non-selectable (i.e. it is non-selectable or a dead feature)
and feature f5 is optional, mandatory and non-selectable (i.e. a conflicting
feature that makes its parent non-selectable). The feature f2 is full mandatory
because it and all its ancestor features are mandatory. Features f3, f4 and f5
are in an Alternative Group, i.e. only one of them can be included in a valid
configuration. Notice that the presented feature model is valid because no full
mandatory feature is also non-mandatory (e.g. a configuration including root,
f2 and all its ancestors is a valid configuration).

Feature-Solution Graphs(FS-Graphs) We specify features in a configura-
tion process using feature models and feature solution graphs (FS-Graphs) that
relate two feature models. Instead using a single feature model, we define a
different feature model for each level. We define relationships from features of
one level to features in the next level; when a feature in the left-side model is
selected, using the relationships in the FS-Graph, we can affect features in the
right-side model.

As we explain in the related work, implies and excludes relationships are
not enough to constraints features from different levels, then, we have defined
three types of relationships that reflect specialization operations for the defined
feature models. For a given configuration c and f and f ′ features of the left and
right hand side feature models of an FS-Graph respectively:

forces A relation f
forces−−−−→ f ′ denotes that the feature f ′ must be converted to

full-mandatory when f is included in the configuration c.

suggests A relation f
suggests−−−−−→ f ′ indicates that the feature f ′ must be typed

as mandatory just in the feature group where it belongs when f is included
in c.

prohibits A relation f
prohibits−−−−−−→ f ′ denotes that the feature f ′ must be typed

as a non selectable feature when f is included in c.

3.1.2 Configuration process

During a configuration process, stakeholders make decisions selecting features
to include in a configuration, and an automatic process propagates that deci-
sions selecting and making non-selectable other features. This propagation of
decisions is achieved through a feature model specialization, a transformation
that takes a feature model and yields another feature such that the set of valid
configurations of the resulting model is a subset of the valid configurations of the
original feature model. Informally, an FS-Graph holds the information to per-
form a feature model specialization. Basically, the specialization process takes
the features of a valid configuration in the left-side feature model, obtains the
relationships defined in the FS-Graph that start on these features, and modify
the types of the features in the right-side model where those relationships end.

6

(a) forces relationships

(b) suggests relationships

(c) prohibits relationships

Figure 2: Effect of forces, suggests and prohibits relationships in a feature model
specialization.

Figure 2 shows, for each type of relationship in a FS-Graph, how the right-
side feature model is specialized according to the semantics that we have asso-
ciated to the relationships.

forces Figure 2.a shows an FS-Graph where a feature in the left-side has a
forces relationship to a feature in the right-side. Then, if that feature
is selected in the left-side, the corresponding feature in the right-side is
converted into a full-mandatory feature, adding a mandatory type to that
feature and all its ancestors.

suggests Figure 2.b shows a suggests relationship: if the feature in the right-
side is selected, a mandatory type is added to the corresponding feature
in the left-side (but not to its ancestors).

prohibits Figure 2.c shows a prohibits relationship: if the feature in the right-
side is selected, a non-selectable type is added to the corresponding feature
in the left-side.

Our propagation of decisions makes explicit all mandatory and non-selectable
features in the right-side feature model, either because: 1) they are originally
marked or, 2) they are a result of the forces, suggests and prohibits relationships
in the FS-graphs, or 3) they are a result of the constraints defined in the right-
side feature model.

7

In addition, this propagation creates new relationships in the FS-Graph rep-
resenting, for each selected feature in the left-side model, which additional fea-
tures in the right-side model are converted to mandatory or non-selectable in
consequence. These updated graph maintain a trace that is later used to explain
conflicts.

Figure 3: Propagation of decisions into new relationships in the feature-solution
graph.

Figure 3 shows how a propagation of decisions updates an FS-Graph. The
left side shows an FS-Graph where a feature in the right-side model has a
forces relationships to a feature in the left-side model. After propagation, new
relationships are added into the FS-Graph to denote, for the original feature in
the first model, which additional features are suggested and prohibited.

Figure 4: Example FS-Graph

As a more complete example, Figure 4 presents two feature models and FS-
Graphs relating features of the left-side model with features of the right-side
model. These relationships specify that feature f1 in the left-side forces the
feature f ′10 in the right side, the feature f2 forces f ′5 and f3 prohibits f ′2.

According to these relationships, each time a stakeholder selects one of the
features f1, f2 and f3, variability in the right-side feature model is modified by
adding new types to the features in that model. In addition, new relationships
are added to the FS-Graphs to represent which selection caused that new types.
Figure 5 shows the updated FS-Graphs that result from selecting each feature
in the left-side model.

As we already mentioned, propagating the selection of a feature results in
a set of changes on the right-side feature model. For instance, figure 5.a shows
the propagation of selecting f1 assuming that that f1 forces f ′10: First, f ′10 must
become in a full mandatory feature, thus the features f ′10 and its ancestors,
i.e. the feature f ′8, must be marked as mandatory. Then, because each of those

8

(a) after propagating the decision of selecting f1

(b) after propagating the decision of selecting f2

(c) after propagating the decision of selecting f3

Figure 5: Updated FS-Graphs after propagating decisions of selecting each fea-
ture f1, f2 and f3.

features now marked as mandatory are part of alternative groups, other features
in that group must be typed as non-selectable, i.e. the features f ′7 and f ′9. In
addition, because f ′3 implies f ′9 (a non-selectable) feature, f ′3 becomes non-
selectable too. Finally, because f ′3 is non-selectable and it is in an alternative
group with only other feature, that feature f ′2 must be typed as mandatory.
Besides the new types in the right-side feature model, new relationships are
added to the FS-Graph to denote that f1 suggests f ′2, f ′8 and f ′10, and prohibits
f ′3, f ′7 and f ′9.

Figure 5.b shows that propagating the decision of selecting f2, considering
that f2 forces f ′5, adds relationships to the FS-Graph that represent that f2
suggests f ′5, f ′4 and f ′2. Figure 5.c shows that propagating the decision of select-
ing of f3, considering that f3 prohibits f ′2, results in that f3 prohibits f ′2 and
suggests f ′3.

When a stakeholder selects two or more features, that decisions can be also
propagated. Figure 6 shows the updated FS-Graph after propagating the deci-
sion of selecting f1 and f3. The resulting FS-Graph includes the relationships
presented in figures 5.a and 5.c but also other relationships. For instance, no-
tice that feature f ′2 is suggested by f1 but prohibited by f3. That means that
the feature f ′1, parent of f ′2 is non-selectable. Then, the FS-Graph is updated
indicating that f ′1 is prohibited by the selection of f1 and f3.

Once decisions have been propagated into new relationships in the FS-Graph,
we use these relationships to explain why a feature is already selected or is non-

9

Figure 6: Excerpt of FS-Graphs after propagating decisions of selecting all
features f1, f2 and f3.

selectable. For instance, in figure 6 we can identify that f ′5 is non-selectable
because the selection of both f1 and f3, but the feature f ′9 is non-selectable only
because the selection of f1.

3.1.3 Detecting and Explaining Conflict

A configuration conflict occurs when the effect of selecting two or more features
in the left-side model invalidates the right-side because some feature become
full mandatory and non-selectable.

Using the above example, if only two of the features f1, f2 and f3 are selected,
the resulting feature model is valid. However, selecting all three features results
in conflicting features, i.e. full mandatory features that are non-selectable, e.g.
f ′1 is one of them. Figure 7 shows some updated relationships after propagating
decisions in FS-Graphs. It includes relationships that show that feature f ′1 is
suggested by f2 but, at the same time, prohibited by f1 and f3. Note that, at
least, f ′1, f ′2 and f ′3 are full mandatory and non-selectable at the same time, i.e.
they are conflicting features that invalidate the feature model.

Figure 7: Excerpt of FS-Graphs after propagating decisions of selecting all
features f1, f2 and f3.

3.2 FaMoSA specification

3.2.1 Conflict-tolerant Feature Models

Formal semantics for feature models in FaMoSA are based on semantics pro-
posed by Schobbens et al. [14] but introduces multiple types for each feature
and the non-selectable type.

10

We follow the guidelines of Harel and Rumpe [7] to specify a modeling lan-
guage L describing the syntactic domain LL, the semantic domain SL and the
semantic function ML : LL → SL, also traditionally written J·KL.

Definition 1 (Syntactic domain LFM) A feature model fm ∈ LFM is a 7-tuple
fm = (F, r,DE , w, λ,REQ ,EXCL) such that

• F is the (non empty) set of features

• r ∈ F is the root

• DE ⊆ F × F is the decomposition relations which forms a tree. For con-
venience, we write f → g sometimes instead of (f, g) ∈ DE. In addition,
we use:

– children(f) to denote {g|(f, g) ∈ DE}, the set of all direct subfeatures
of f ,

– descendants(f) to denote the transitive closure of DE, i.e. the set
of all direct and indirect subfeatures of f ,

– ascenstors(f) to denote {g|f ∈ descendants(g)}

• w ⊆ F × FT indicates one or more types for each feature, where FT = {
Optional, Mandatory, NonSelectable }.

• λ ⊆ F×GT indicates the type of feature group for the childrens of each fea-
ture. This feature group type can be GT = { AlternativeGroup, OrGroup,
Aggregation }

• REQ ⊆ F × F and EXCL ⊆ F × F are the sets of requires and excludes
relations respectively.

Furthermore, each fm ∈ LFM must satisfy the following well-formedness
rules:

• fm is a tree. r is the root and only r has no parent: ∀f ∈ F (@n′ ∈ F • n′ → n)⇔
n = r,

• fm is a tree. Therefore all the features f in features are descendants from
r: ∀f ∈ F
(f 6= r ⇒ ∃n1, . . . , nk • r → n1 → . . .→ nk → f),

• fm is a tree. Therefore DE is acyclic:
@n1, . . . , nk ∈ features • n1 → . . .→ nk → n1

• No feature f has Requires or Excludes constraint to itself.
∀f ∈ F ((f, f) /∈ REQ ∧ (f, f) /∈ EXCL)

• All the Alternative and Or feature groups must include more than one
feature.

∀f ∈ F ((f,AlternativeGroup) ∈ λ⇒ |children (f) | ≥ 1)

11

∀f ∈ F ((f,OrGroup) ∈ λ⇒ |children (f) | ≥ 1)

Definition 2 (Semantic domain SFM) SFM , P (P (F))2, indicating that each
syntactically correct model should be interpreted as a set of configurations of
products (set of sets of features).

Definition 3 (Semantic function JfmKFM) Given fm ∈ LFM , JfmKFM is the
set of valid feature configurations FC ∈ P (P (F)).

Definition 4 (valid configuration) A set of features c is a valid configuration
for a feature model fm if c ∈ JfmK.

A given configuration is valid regarding (conform to) a feature model c ∈
JfmKFM is a configuration c ∈ P (F) such that:

• contain the root: root ∈ c,

• justify each feature, that is that if a non-root feature g is in the configu-
ration, its parent f must be too:
g ∈ c ∧ g 6= r ∧ g ∈ children (f)⇒ f ∈ c,

• satisfy the constraints defined by the types of each feature.

∀f ∈ c |
(f,NonSelectable) /∈ w
∃g ∈ children (f) • (g,Mandatory) ∈ w ⇒ g ∈ c

• satisfy the constraints defined by the group type of each feature

∀f ∈ c |
(f,AlternativeGroup) ∈ λ⇒ |children (f) ∩ c| = 1
(f,OrGroup) ∈ λ⇒ |children (f) ∩ c| ≥ 1

• and satisfies the constraints defined by the requires and excludes relation-
ships

∀f ∈ c |
(f, g) ∈ REQ⇒ g ∈ c
(f, g) ∈ EXC ⇒ g /∈ c

Definition 5 (valid feature model) A feature model fm is considered valid (not
void), if there is at least one valid configuration for it, |JfmKFM | > 0.

2P is the powerset symbol.

12

Definition 6 (feature model equivalence) A feature model fme ∈ LFM is equiv-
alent to another feature model fm ∈ LFM , if JfmeKFM = JfmKFM , that is that
both models represent the same set of configurations (i.e. their semantics are
the same).

Definition 7 (feature model specialization) A given feature model fms ∈ LFM

is an specialization of another feature model fm ∈ LFM , if JfmsKFM ⊆ JfmKFM ,
that is that the first model represents a subset of the configurations defined by
the latter.

3.2.2 Feature-solution Graphs (FS-Graphs)

Feature Solution Graphs (FS-Graphs) were proposed by De Bruin et al. [3] to
specify the relationships between user-visible features and the corresponding
implementation structures and elements. We are extending their ideas using
FS-Graphs to specify relationships between features in one level (left-side) to
features in next level (right-side). Here we present the syntactic and semantic
domain (abstract syntax) of FS-Graphs and in the next section we discuss their
semantic function as a feature model specialization.

Definition 8 (Syntactic domain LFSG) A feature-solution graph fsg ∈ LFSG

is a 5-tuple fsg = (fm, fm ′,SUG ,FOR,PRO) such that:

• fm ∈ LFM and fm ′ ∈ LFM are left-side and right-side feature models. We
write F to refer to the set of features in fm and F ′ to the set of features
in fm ′.

• FOR ⊆ F × F ′, SUG ⊆ F × F ′ and PRO ⊆ F × F ′ are the sets of forces,
suggests and prohibits relations respectively.

Definition 9 (Semantic domain SFSG) SFSG , P (P (F)) × P (P (F ′)), indi-
cating that each syntactically correct FSG should be interpreted as the relation
between configurations of the fm feature model and a set of configurations of the
fm ′ feature model.

Definition 10 (Semantic function JfsgKFSG) Given fsg ∈ LFSG , JfsgKFSG re-
turns a set {(c, C)|c ∈ JfmKFM ∧ C ⊆ Jfm ′KFM }, such that:

• all the configurations c are valid configurations of fm : ∀(c, C) ∈ JfsgKFSG•
c ∈ JfmKFM .

• all the sets of configurations C are valid configurations of fm ′ : ∀(c, C) ∈
JfsgKFSG • C ⊆ Jfm ′KFM .

• each tuple (c, C), satisfy the constraints defined in the forces, suggests and
prohibits relations:

∀(f, f ′) ∈ SUG ∧ f ∈ c⇒ ∀c′ ∈ C, iff ′ ∈ children(g′) ∧ g′ ∈ c′ ⇒ f ′ /∈ c′

13

∀(f, f ′) ∈ FOR ∧ f ∈ c⇒ ∀c′ ∈ C, f ′ ∈ c′

∀(f, f ′) ∈ PRO ∧ f ∈ c⇒ ∀c′ ∈ C, f ′ /∈ c′

Definition 11 (valid feature solution graph) A given feature solution graph fsg
is considered valid (not void), if there is at least one tuple (c, C) ∈ JfsgKFSG , such
as the corresponding configuration C is not empty: ∃(c, C) ∈ JfsgKFSG • C 6= ∅.

Definition 12 (Feature solution graph equivalence) A feature solution graph
fsge ∈ LFSG is equivalent to another feature solution graph fsg ∈ LFSG , if
JfsgeKFSG = JfsgKFSG .

Definition 13 (Feature solution graph specialization) Given fsgs ∈ LFSG is
a specialization of another feature solution graph fsg ∈ LFSG , if JfsgsKFSG ⊆
JfsgKFSG . That is that ∀(c, C) ∈ JfsgsKFSG • (c, C) ∈ JfsgKFSG .

3.2.3 Propagation of Decisions

As mentioned in section 3.1.2, we propagate the decisions taken by stakeholders
in the left-side model by specializing the right-side feature model based on the
relationships defined in the FS-Graphs.

However, during specialization, adding a Mandatory or Non-Selectable type
to a feature directly referenced by an FS-Graph affects other features too. For
instance, if we add a Mandatory type to a feature in an Alternative group, other
features in the same group becomes Non-Selectable. These effects may invalidate
a feature model when a full mandatory feature becomes de-facto Non- Selectable,
and therefore, indicating the existence of a configuration conflict.

The propagation of decisions is a 3 steps process, shown in algorithm 1:

1. Simplify the FS-Graph eliminating the relationships not related to the
features included in the configuration of the left-side model, and converting
forces relations into sets of suggests.

2. Apply the relations of the FS-Graph marking as Mandatory and Non-
Selectable the features on the target side of suggests and prohibits rela-
tions, and taking into account sibling features in alternative groups, and
child features of non-selectable features.

3. Propagate the effects of adding Mandatory and Non-Selectable types to
features by introducing new suggests and prohibits relations into the FS-
Graph.

Steps 2 and 3 iterate until a fix point is reached.

Simplification of an FS-Graph First, the FS-Graph is simplified to ease
the processing. A simplified FS-Graph fsg ′ includes only suggests and prohibits
relationships involving the features f ∈ c. To consider the forces relationships,
a simplified FS-Graph includes the suggests relationships that are equivalent to

14

Algorithm 1 Propagation of decisions through an FS-Graph
1: procedure propagate(c, fsg)
2: fsg0 ← simplify(c, fsg)
3: i← 1
4: while fsg i 6= fsg i−1 do
5: fsg i = propagateEffects(c, applyFsg(c, fsg i−1))
6: i← i+ 1
7: end while
8: return fsg i

9: end procedure

the forces involving the features f ∈ c. Note that a relationship f
suggests−−−−−→ f ′

adds a mandatory type to the feature f ′ and a f
forces−−−−→ f ′ adds a mandatory

type to the feature f ′ and to all the features h ancestors of f ′. Then, for
each forces relationship, it is possible to determine an equivalent set of suggests
relationships.

Algorithm 2 Simplification of an FS-Graph
1: procedure simplify(c, fsg)
2: FOR← {(f, g) ∈ FOR|f ∈ c}
3: SUG← {(f, g) ∈ SUG|f ∈ c}
4: PRO ← {(f, g) ∈ PRO|f ∈ c}
5: for all f ∈ c do
6: for all (f, f ′) ∈ FOR do
7: for all g ∈ ancestors(f ′) do
8: addSuggests(f, g)
9: end for

10: end for
11: end for
12: return fsg
13: end procedure

Algorithm 2 simplifies an FS-Graph. For brevity, we write addSuggests(f, f ′)
to denote SUG ← SUG ∪ (f, f ′), i.e. to add a new f

suggests−−−−−→ f ′ relationships
to an FS-Graph.

Application of effects defined in the FS-Graph After the FS-Graph have
been simplified, the specialization process adds Mandatory and Non-Selectable
types to the features according to the suggests and prohibits relationships in
the FS-Graph fsg that start from features in the configuration c. In addition,
the corresponding suggests and prohibits relationships that represent any modi-
fication into the right-side feature model are also added to the FS-Graphs Note
that, after a simplification, all forces relationships were translated to suggests

15

relationships.
Feature types and relationships to add to the right-side feature model and

FS-Graphs respectively depend on the type of the FS-Graph relation :

For all the f
suggests−−−−−→ f ′ such that f is in c :

effect on f ′: the resulting FM fm′ must include Mandatory as a type of fea-
ture f

effect on siblings of f ′: , if the parent of feature f in the original FM fm
is an Alternative Group (i.e. a group where just one children can be
selected), the resulting FM fm′ must include NonSelectable as a type for
all the sibling features f ′ of f . In addition, the resulting fsg′ must include
a relation that specify that tactic t prohibits all the sibling features f ′ of
f

For all f
prohibits−−−−−−→ f ′ such that f is in c :

effect on f ′: , the resulting FM fm′ must include NonSelectable as a type of
feature f

effect on the children of f ′: , the resulting FM fm′ must include NonSe-
lectable as a type of every children feature f ′ of f . In addition, the
resulting FS-Graph fsg′ must include relations indicating that t prohibits
all the children feature f ′ of f .

effect on features that require f ′: , the resulting FM fm′ must include Non-
Selectable as a type of every feature f ′ that requires f . In addition, re-
sulting FS-Graph fsg′ must include relations describing that t prohibits
all the features f ′ that requires f . In addition, resulting FS-Graph fsg′

must include relations describing that t prohibits all the features f ′ that
requires f .

Algorithm 3 describes how the Mandatory and Non-Selectable types are
added to the features. We write addProhibits(f, f ′), makeMandatory(f) and
makeNonSelectable(f), to denote respectively that a prohibits relation is added
and the addition of mandatory or Non-Selectable to a feature. Also, isAlternative(f)
and thatRequires(f ′) are used to query whether the group of a feature is an al-
ternative or to obtain the required features by another feature.

Propagation of Decisions in an FS-Graph Having propagated the ef-
fects of the relations present in the FS-Graph, we now consider the effects that
Mandatory or Non-Selectable feature types have on other features in the FM.

For all features f in the source feature model fm in fsg′:

f defines an Alternative group , if f defines an Alternative feature group,
and there are more than one children feature f ′ with type Mandatory, the
resulting fm′ must include NonSelectable as a type for f . In addition, the

16

Algorithm 3 Application of an FS-Graph
1: procedure applyFsg(c, fsg)
2: for all f ∈ c do
3: for all (f, f ′) ∈ SUG do
4: makeMandatory(f ′)
5: if isAlternative(parent(f ′)) then
6: for all g′ ∈ siblings(f ′) do
7: makeNonSelectable(g′)
8: addProhibits(f, g′)
9: end for

10: end if
11: end for
12: for all (f, f ′) ∈ PRO do
13: makeNonSelectable(f ′)
14: for all g′ ∈ descendants(f ′) do
15: makeNonSelectable(g′)
16: addProhibits(f, g′)
17: end for
18: for all g′ ∈ thatRequires(f ′) do
19: makeNonSelectable(g′)
20: addProhibits(f, g′)
21: end for
22: end for
23: end for
24: return fsg
25: end procedure

17

resulting fsg′ must include relations that indicates that all the features
t with relations t suggest the children features f ′ in fsg has prohibits
relations to the feature feature f (i.e. they are the cause to make f non-
selectable).

f defines an Or or Alternative Group , if f defines an Alternative or Or-
Group feature group and all its children feature has non-selectable as a
type, the resulting fm′ must include NonSelectable as a type for f . In
addition, the resulting fsg′ must include relations that indicates that all
the features t with relations t prohibits the children features f ′ in fsg has
prohibits relations to the feature feature f (i.e. they are the cause to make
f non-selectable).

f defines an Aggregation Group , if f defines an Aggregation group, f is
not a full mandatory feature of fm, and there is one or more features f ′

such that f ′ has the type Mandatory and NonSelectable, the resulting fm′

must include NonSelectable for the feature f . In addition, the resulting
fsg′ must include relations that indicates that all the features t with rela-
tions t prohibits the children features f ′ and the features t′ with relations
t′ suggests the children features f ′, has prohibits relations to the feature
feature f (i.e. they are the cause to make f non-selectable).

f is excluded by a Full Mandatories feature , for all the full mandatory
features f ′ in fm, the resulting fm′ must include NonSelectable in the
types for all the features f excluded by the feature f ′ in the original FM
fm. In addition, the resulting FSGraph fsg must include a relation that
denotes that the tactics t that suggests the features f are prohibiting f ′.

f is required by a Full Mandatory feature , for all the full mandatory fea-
tures f ′ in fm, the resulting fm′ must include Mandatory in the types
for all the features f required by the feature f ′ in the original FM fm. In
addition, the resulting FSGraph fsg must include a relation that denotes
that the tactic t suggests the features f required by f ′.

Algorithm 4 introduces new suggests and prohibits relationships to propagate
the effect of adding Mandatory and Non-Selectable types into the target feature
model. We write isMandatory(f) and isNonSelectable(f) to query the types
of a feature. suggestorsOf (f ′) and prohibitorsOf (f ′) to navigate suggests and
prohibits relations in the FS-Graphs. Finally, we use

fullMandatory(f ′) ∀g′ ∈ ancestors(f ′) • (g′, Mandatory) ∈ w

mandatories as the set {f ′ ∈ F ′|(f ′, Mandatory) ∈ w}

nonselectables as the set {f ′ ∈ F ′|(f ′, NonSelectable) ∈ w}

conflictingFeatures as {f ′ ∈ F ′|fullMandatory(f ′) ∧ f ′ ∈ nonselectables}

18

Algorithm 4 Propagation of applied features in FS-Graphs
1: procedure propagateEffects(c, fsg)
2: for all f ′ ∈ F ′ do
3: if isAlternative(f ′) then
4: if |children(f ′) ∩mandatories| > 1 then
5: addProhibits(suggestorsOf (children(f ′), f ′)
6: end if
7: end if
8: if (isAlternative(f ′) ∨ isOr(f ′)) then
9: if children(f ′)− nonselectables = ∅ then

10: addProhibits(suggestorsOf (children(f ′), f ′)
11: addProhibits(prohibitorsOf (children(f ′), f ′)
12: end if
13: end if
14: if isAggregation(f ′) ∧ ¬fullMandatory(f ′) then
15: g′ ← children(f ′) ∩ conflictingFeatures
16: if g′ 6= ∅ then
17: addProhibits(suggestorsOf (children(g′), f ′)
18: addProhibits(prohibitorsOf (children(g′), f ′)
19: end if
20: end if
21: if fullMandatory(f ′) then
22: for all g′ ∈ excludedBy(f ′) do
23: addProhibits(suggestorsOf (f ′), g′)
24: end for
25: for all g′ ∈ requiredBy(f ′) do
26: addSuggests(suggestorsOf (f ′), g′)
27: end for
28: end if
29: end for
30: return fsg
31: end procedure

19

3.2.4 Detecting and Explaining Conflicts

After propagating the decisions of a configuration c into an FS-Graph fsg , it
is possible to detect if the resulting feature model is invalid, i.e. if the model
has features that are full-mandatory and non-selectable. We name here those
features conflicting features.

Definition 14 (conflicting features) In a propagated FS-Graph, the set of con-
flicting features of the right-side feature model fm ′ corresponds to the set of
features:

conflictingFeatures ={f ′ ∈ F ′|fullMandatory(f ′)
∧ (f ′, NonSelectable) ∈ w}

Updated relationships in the FS-Graph can be used also to detect which
features g in a configuration c for the left-side feature model cause the selection
or the conflict in a feature f in the right-side feature model.

Definition 15 (Causes of a feature selection or conflict) In a propagated FS-
Graph fsg, features CAUSES that cause a conflict or a selection of a feature
f ′ in the right-side feature model is the set of features f of the left-side feature
model that have forces or prohibits relationships to f ′.

causes(f ′) ={f |(f, f ′) ∈ FOR
∨ (f, f ′) ∈ PRO}

Note that the resulting FS-Graph, after propagating decisions, allow us to
explain which choices of other stakeholders make a feature full mandatory (i.e.
selecting it) or non-selectable.

20

3.3 Formal semantics in Alloy

We have implemented the presented formal semantics using Alloy [9], a mod-
eling language that allow us to analyze and evaluate some properties of the
specification using SAT-solvers. Our implementation is based on the proposed
by Gheyi [6] to represent the structure of feature models.

3.3.1 Conflict-tolerant Feature Models

As specified in 3.2.1, a feature model FM is composed of a set of features, one
of them selected as being the root of the model. Features are linked to each
other by relations. Features in an FM are mapped to FeatureTypes (Mandatory,
NonSelectable, or Optional). Additionally, features can group subfeatures in an
or, alternative or aggregation relation. Finally, a feature can require or exclude
the presence of another feature in valid configurations of the FM.
sig FM {

features : set Name ,
root : one features ,
relations : features lone -> features ,
types : features -> FeatureType ,
groupTypes : features -> one GroupType ,
requires : features -> features ,
excludes : features -> features ,

}
sig Name{}

abstract sig FeatureType {}
one sig Mandatory , NonSelectable , Optional

extends FeatureType {}

abstract sig GroupType {}
one sig OrFeatureGroup , Alternative , Aggregation

extends GroupType {}

We say that a FM is well-formed if all the features except root, are accessible
from root across the decomposition relation, and if no features are accessible to
themselves by their decomposition relations (do not have self links). In addition,
a feature cannot require or include to it self, and no feature can have a feature
group Alternative or Or Group when it has less than two children features. Note
that a feature model with multiple types (e.g. mandatory and non-selectable)
is well-formed.
pred wellFormedFM(fm : FM) {

all f:fm.features - fm.root
| f in (fm.root).^(fm.relations)

no f:fm.features
| f in f.^(fm.relations)

no f:fm.features | f in fm.requires[f]
no f:fm.features | f in fm.excludes[f]

no f:fm.features
| fm.groupTypes[f] in Alternative+OrFeatureGroup

and #fm.relations[f]=<1
}

21

Feature configurations In our model, features with conflicting feature-types
(e.g., a feature being both mandatory and non-selectable) can be well-formed.
However, not all well-formed feature models can have valid configurations. We
define a configuration as a set of feature (names).
sig Configuration {

value : set Name
}

A configuration c is valid with respect to a feature model fm, if the configu-
ration includes a set of features that satisfies the constraints of fm. The validity
of a configuration is decomposed into whether the configuration satisfies the
implicit and explicit constraints, and whether it satisfies the relations, group
types and feature types of the model.
pred isValid (fm : FM, c : Configuration) {

satisfyImplicitConstraints [fm, c]
and satisfyExplicitConstraints [fm, c]
and satisfyRelations[fm, c]
and satisfyGroupTypes [fm, c]
and satisfyFeatureTypes [fm, c]

}

Implicit constraint satisfaction checks that the configuration contains only
features present in the feature model, and that it includes the root feature.
pred satisfyImplicitConstraints

(fm : FM , c : Configuration) {
fm.root in c.value
c.value in fm.features

}

Explicit constraint satisfaction, on the other hand, checks that the requires
and excludes constraints defined in the feature model are respected.
pred satisfyExplicitConstraints

(fm : FM , c : Configuration) {
all f : c.value {

fm.requires[f] in c.value
fm.excludes[f] != none

=> (fm.excludes[f] !in c.value)
}

}

A feature configuration c satisfies the relation-based constraints in a FM fm
when none feature f is included in c and its parent is not included in c. That is,
if a feature is included in the configuration, the parent feature in the FM must
be included as well.
pred satisfyRelations(fm : FM, c : Configuration) {

no f : c.value |
fm.relations .(f) !in c.value

}

The predicate satisfyGroupTypes checks that the configuration respects
the semantics of the OrGroup and AlternativeGroup types. A feature config-
uration c satisfies the alternative group types in a FM fm when, for all the
features f ∈ c, if the group type of f is Alternative then one of its children is
also in c In addition, a configuration c satisfies the Or group types in a FM fm
when, for all the features f in c, if the group type of f is Or then at least one

22

of its children is also in c. The Aggregation group type does not impose any
constraint to the configurations.
pred satisfyGroupTypes(fm : FM, c : Configuration) {

no f : c.value {
fm.groupTypes[f] = Alternative
and #(fm.relations[f] & c.value) != 1

}
no f : c.value {

fm.groupTypes[f] = OrFeatureGroup
#(fm.relations[f] & c.value) = 0

}
}

NonSelectable and Mandatory feature types also defines constraints to valid
configurations. A feature configuration c satisfies the NonSelectable type in a
FM fm when, for all the features f in c, none of them is defined as NonSelectable
in fm. In addition, a configuration c satisfies the Mandatory type in a FM fm
when, for all the features f in c, all the children features f ′ of the feature f
defined with type mandatory in fm are also included in c. The Optional feature
type does not impose constraints to features in a valid configuration.
pred satisfyFeatureTypes(fm : FM , c : Configuration) {

no f : c.value
| NonSelectable in fm.types[f]

no disj f : c.value , f’ : fm.features {
f’ in fm.relations[f]
Mandatory in fm.types[f]
f’ !in c.value

}
}

Notice that relations, feature types and feature group types in a feature
model constraint the space of valid configurations regarding that model. Se-
mantics for a FM fm correspond to the set of configurations that satisfy all
the implicit and explicit constraints defined by its relations, feature types and
group types, i.e. they correspond to the set of configurations that are valid to
it.
fun semantics(fm : FM) : set Configuration {

{ c : Configuration | isValid [fm, c] }
}

A dead feature is a feature that is not included in any valid configuration,
whereas a full mandatory feature is one that is present in all valid configurations.
fun deadFeatures(fm: FM) : set Name {

{ f: Name |
all c : semantics[fm] |

f !in c
}

}
fun fullMandatories(fm: FM) : set Name {

fm.root .^(fm.relations :> fm.types .(Mandatory))
}

In our semantics, a non-selectable feature is a dead feature. In addition, any
feature that is excluded by a full mandatory feature (i.e. excluded by a feature
that must be included in all valid configurations) is also a dead feature.

23

A valid feature model is a feature model that has valid configurations (i.e.
a non-empty semantic set). Invalid feature models are those where it is not
possible to define a configuration that is valid regarding them (i.e. an empty
semantic set).

A feature model including full-mandatory features typed as non-selectable is
an invalid feature models because it is not possible to create a valid configuration
including a feature, and without including the same feature. The following
conflictingFeatures function returns the set of full-mandatory features that
have a NonSelectable as one of their types (i.e. a set of features that make a
feature model invalid).
fun conflictingFeatures (fm : FM) : set Name {

{ f : fullMandatories[fm] |
NonSelectable in fm.types[f] }

}

3.3.2 Feature-solution Graphs (FS-Graphs)

Having defined the conflict-tolerant feature models, we now show how we spec-
ify feature solution graphs in FaMoSA: A Feature-Solution Graph (FS-Graph)
comprises a source FM, a target FM and sets of relations between features in
the source FM to features in the target FM. In our specification, the source is an
FM representing architectural tactics and the target an FM representing design
alternatives. Each type of relation (forces, suggests and prohibits) is represented
by its own mapping.
sig FSGraph {

source : FM,
target : FM,

forces : Name -> Name ,
suggests : Name -> Name ,
prohibits : Name -> Name ,

}

A FS-Graph is well formed if the source and target feature models are well
formed, and if all the relations (i.e. forces, suggests, and prohibits) have domain
in the source features and range in the target features.
pred wellFormedFSGraph (fsg : FSGraph) {

wellFormedFM [fsg.source]
wellFormedFM [fsg.target]

no f : Name , f’ : fsg.forces[f] |
f !in fsg.source.features

and f’ !in fsg.target.features

no f : Name , f’ : fsg.suggests[f] |
f !in fsg.source.features

and f’ !in fsg.target.features

no f : Name , f’ : fsg.prohibits[f] |
f !in fsg.source.features

and f’ !in fsg.target.features
}

24

In FaMoSA, semantics of an FS-Graphs are an specialization of the right-
side feature model. Given a FS-Graph fsg and a configuration c that is valid
regarding the source FM in fsg, the relations in fsg represent the following
modifications:

• forces relations. A forces relation f
forces−−−−→ f ′ in fsg denotes that the

types of features in fsg must be m f ′ in the target FM of fsg must be
converted to full-mandatory when f is included in the configuration c.

• suggests relations. A suggests relation f
suggests−−−−−→ f ′ in fsg indicates

that the feature f ′ in the target FM of fsg must be typed as mandatory
just in the feature group where it belongs when f is included in c.

• prohibits relations. A prohibits relation f
prohibits−−−−−−→ f ′ denotes that

the feature f ′ in the target FM of fsg must be typed as a non selectable
feature when f is included in c.

We define a predicate appliedFSGraphToFM representing the specialization
of an FS-Graph’s target feature model. The predicate relates a valid configu-
ration c of the source FM of a FS-Graph fsg, and the target of the FS-Graph
before (fm) and after (fm′) the specialization. The specialization defined in
FaMoSA, are base on changing the feature types only, and this only adding
feature types to fm′ as directed by the relations present in fsg: features will
now include Mandatory if exists a relation f

forces−−−−→ f ′ in fsg and f is in c; if
exists a relation f

forces−−−−→ g in fsg, the feature f is in c and the feature f ′ is
an ancestor of g; or if exists a relation f

suggests−−−−−→ f ′ and the feature f is in c.
They will now include Non-Selectable if exists a relation f

prohibits−−−−−−→ f ′ in fsg
and f is included in c.
pred appliedFSGraphToFM

(c : Configuration , fsg: FSGraph ,
fm, fm ’ : FM) {

fm ’.root = fm.root
fm ’. features = fm.features
fm ’. relations = fm.relations

fm ’.types = fm.types
+ { f : fsg.forces[c.value],

type : Mandatory }
+ { f : fsg.target.features ,

type : Mandatory
| some g : Name
| g in fsg.forces[c.value]
and (f in ancestors[fsg.target , g])
}

+ { f : fsg.suggests[c.value],
type : Mandatory }

+ { f : fsg.prohibits[c.value],
type : NonSelectable }

fm ’. groupTypes = fm.groupTypes
fm ’. requires = fm.requires
fm ’. excludes = fm.excludes

}

25

fun ancestors (fm : FM, f : Name) : set Name {
{f’ : fm.features | f in f’.^(fm.relations) }

}

During the configuration process, when the decisions are propagated, the
semantics of the right-side feature model must be preserved. We use this
appliedFSGraphToFM predicate in Alloy to evaluate that the following predi-
cates and transformations, that we use to propagate the decisions, preserve the
semantics of the right-side model.

3.3.3 Propagation of decisions

Propagation of decisions, as explained in the section 3.1.2, allows FaMoSA to
detect conflicting features in a configuration process. Finding out which are the
choices in the left-side FM that cause a conflict is a simple matter of tracing
back the relations defined in the FS-Graph from the conflicting features back to
their corresponding features in the left-side.

As mentioned, the steps of the propagation are as follows, from a valid
configuration of the source model in the FS-Graph:

1. Simplify the FS-Graph by converting forces relations into sets of suggests;

2. propagate the relations of the FS-Graph by applying it, marking as Manda-
tory and NonSelectable the features on the target side of suggests and
prohibits relations, and taking into account sibling features in alternative
groups, and child features of non-selectable features;

3. propagate the effects of the types of features on their children, and the
effect of explicit relations (requires and excludes) on Full Mandatory fea-
tures.

Steps 2 and 3 are iterated until a fix point is reached. In what follows, we
detail each of the steps.

Simplification of an FS-Graph A Simplified FS-Graph fsg′ of a FS-Graph
fsg and configuration c includes only the relations related to features f in c
and the a set of suggests relations equivalent to the forces in fsg. That means
that source FM, target FM in fsg′ are the same in fsg. In addition, forces and
prohibits relations in fsg′ are only those relations in fsg that has domain in
c.value. Finally, suggests relations in fsg include the suggests relations in fsg
with domain in c.value plus new suggest relations to the features f forced by
the features x in c, and to the their ancestor features g.
pred convertForcesIntoSuggests

(c : Configuration , fsg , fsg ’ : FSGraph) {

fsg ’. source = fsg.source
fsg ’. target = fsg.target

fsg ’. forces = c.value <: fsg.forces
fsg ’. suggests = c.value <: fsg.suggests

26

+ { x : c.value , f : fsg.target.features
f in fsg.forces[x] }

+ { x : c.value , f : fsg.target.features
| some g : Name
| g in fsg.forces[x]

and (f in ancestors[fsg.target , g]) }

fsg ’. prohibits = c.value <: fsg.prohibits
}

Application of effects defined in an FS-Graph A relation-propagated
FS-Graph is a FS-Graph whose target feature model and relations represent
the effects of adding a Mandatory or NonSelectable type to a feature on other
features.

The predicate appliedEffectsIntoFM represents the transformation of fm
into fm′ after propagating the effects of the relations of a given FS-Graph fsg
and a configuration c.
pred appliedEffectsIntoFM(c : Configuration ,

fsg : FSGraph , fm, fm’ : FM) {

all t : c.value , f : fsg.suggests[t] {

Mandatory in fm ’.types[f]

fm.groupTypes[parent[fm, f]] = Alternative
=> all f’ : siblings[fm , f] |

NonSelectable in fm ’.types[f’]
}

all t : c.value , f : fsg.prohibits [t] {

NonSelectable in fm ’.types[f]

all f’ : children[fm, f] |
NonSelectable in fm ’.types[f’]

all f’ : thatRequires[fm, f] |
NonSelectable in fm ’.types[f’]

}
}

Also, we define a appliedEffectsIntoFSG predicate that describe the FS-
Graph fsg′ that results after propagating the effects of the relations in fsg
using a configuration c.
pred appliedEffectsIntoFSG(c : Configuration ,

fsg , fsg ’ : FSGraph) {

let fm = fsg.target {

all t : c.value , f : fsg.suggests[t] {
fm.groupTypes[parent[fm, f]] = Alternative
=> {

all f’ : siblings[fm, f] |
t -> f’ in fsg ’. prohibits }

}

all t : c.value , f : fsg.prohibits[t] {
all f’ : children[fm, f] |

t -> f’ in fsg ’. prohibits
all f’ : thatRequires[fm, f] |

t -> f’ in fsg ’. prohibits
}

27

}
}

Propagation of decisions in an FS-Graph Having propagated the ef-
fects of the relations present in the FS-Graph, we now consider the effects that
Mandatory or Non-Selectable feature types have on other features in the FM.

We define the predicate propagatedDecisionsIntoFM representing the trans-
formation of fm into fm′ after propagating the effects of modifications resulting
of applying the relations of a given FS-Graph fsg and a configuration c.
pred propagatedDecisionsIntoFM(c : Configuration ,

fsg : FSGraph , fm, fm’ : FM) {

all f : fm.features
| fm.groupTypes[f] = Alternative

and #(children[fm, f]
& fm.types.(Mandatory)) > 1

=> NonSelectable in fm ’.types[f]

all f : fm.features
| fm.groupTypes[f]

in (Alternative + OrFeatureGroup)
and #(children[fm, f] & fm.types.(NonSelectable))

= #children[fm, f]
=> NonSelectable in fm ’.types[f]

all f : fullMandatories[fm] |
all f’ : excluded[fm, f]

| NonSelectable in fm ’.types[f’]

all f : fullMandatories[fm] |
all f’ : fm.requires[f]

| f’ in fullMandatories[fm’]

all f : fm.features
| fm.groupTypes[f] in (Aggregation)
and #children[fm , f] >= 1
and #(children[fm, f] & fm.types.(Mandatory) &

fm.types .(NonSelectable)) = #children[fm, f]
=> NonSelectable in fm ’.types[f]

}

Also, we define a predicate propagatedDecisionsIntoFSGraph representing
the transformation of fsg into fsg′ after propagating the effects resulting of
applying the relations of fsg and a configuration c.
pred propagatedDecisionsIntoFSGraph

(c : Configuration , fsg , fsg ’ : FSGraph) {

let fm = fsg.target {

all f : fm.features
| fm.groupTypes[f] = Alternative

and #(children[fm, f]
& fm.types.(Mandatory)) > 1

=> {
all t :

fsg.suggests .(children[fm, f]
& fm.types.(Mandatory))
| t -> f in fsg ’. prohibits

}

all f : fm.features

28

| fm.groupTypes[f]
in (Alternative + OrFeatureGroup)

and #(children[fm, f]
& fm.types.(NonSelectable))
= #children[fm , f]

=> {
all t :

fsg.prohibits .(children[fm , f])
| t -> f in fsg ’. prohibits

}

all f : fullMandatories[fm] {
all f’ : excluded[fm, f] ,
t : fsg ’. suggests .(f)

| t -> f’ in fsg ’. prohibits
}

all f : fullMandatories[fm] {
all f’ : fm.requires[f],
t : fsg ’. suggests .(f)

| t -> f’ in fsg ’. suggests
}

}
}

3.3.4 Detecting and Explaining conflicts

After all the modifications of applying a FS-Graph have been propagated, con-
flicts caused by during the configuration process can be detected determining
full-mandatory features typed as non-selectable.
fun conflicts(fsg : FSGraph) : set Name {

conflictingFeatures[fsg.target]
}

In addition, the updated relations in the FS-Graph can be used to determine
which features in the left-side feature model cause that a feature in the right-side
model become mandatory or non-selectable.
fun causes(fsg : FSGraph , f : Name) : Name {

{ g : fsg.source.features |
f in fsg.suggests[g]

or f in fsg.prohibits [g]
}

}

4 Conclusion

FaMoSA is our multi-level configuration process to detect conflicts and causes
using feature-solution graphs and feature models that tolerate conflicts. It is
based on feature models that can be specialized without removing features,
because each feature can be typed at the same time as mandatory, optional
and non-selectable. We use FS-Graph to specify how features in one level affect
features in other levels. FaMoSA’s FS-Graphs support forces, suggests and
prohibits relationships , our configuration process uses these relationships to
propagate decisions from one level (left-side feature model) to the next one
(right-side feature model).

29

In terms of future work, FaMoSA does not support disjunctive relationships
(e.g. f forces f ′ or g′) nor arbitrary inclusions of CNF constraints on its feature
models. Extended feature models, such models with cardinalities [5], are not
supported neither. We are currently working on using FS-Graphs to maintain
traceability during specialization of feature models with these extensions.

In addition, multi-level configuration processes may involve more than two
feature models in sequence or in combinations of sequential and parallel steps.
Then, solving a conflict requires to determine causes and effects in each step and
propose alternative configurations to each stakeholder. We consider that type
of processes can be supported using diverse topologies of FS-Graphs. Applying
feature-solution graphs to detect conflicts and propose fixes in these scenarios
remains the subject of future work.

Acknowledgements

Jaime Chavarriaga is a recipient of a COLCIENCIAS (Colombian Department
of Science, Technology and Innovation) fellowship. Carlos Noguera is funded
by the FWO-AIRCO project of the Fonds Wetenschappelijk Onderzoek of the
Flemish Region.

References

[1] D. Batory. Feature models, grammars, and propositional formulas. In
Software Product Lines, volume 3714 of Lecture Notes in Computer Science,
pages 7–20. Springer Berlin Heidelberg, 2005.

[2] D. Benavides, S. Segura, and A. Ruiz-Corts. Automated analysis of feature
models 20 years later: a literature review. Information Systems, 35(6):615
– 636, 2010.

[3] H. Bruin and H. Vliet. Scenario-based generation and evaluation of soft-
ware architectures. In J. Bosch, editor, Generative and Component-Based
Software Engineering, volume 2186 of Lecture Notes in Computer Science,
pages 128–139. Springer Berlin Heidelberg, 2001.

[4] A. Classen, A. Hubaux, and P. Heymans. A formal semantics for multi-
level staged configuration. In D. Benavides, A. Metzger, and U. W. Eise-
necker, editors, Third International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS 2009), volume 29 of ICB Research Re-
port, pages 51–60. Universität Duisburg-Essen, 2009.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through
specialization and multilevel configuration of feature models. Software Pro-
cess: Improvement and Practice, 10(2):143–169, 2005.

[6] R. Gheyi, T. Massoni, and P. Borba. A Theory for Feature Models in Alloy.
In First Alloy Workshop, pages 71–80, 2006.

30

[7] D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of
“semantics”? Computer, 37(10):64–72, Oct. 2004.

[8] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder, and E. Abbasi.
Supporting multiple perspectives in feature-based configuration. Software
and Systems Modeling (SoSyM), pages 1–23, 2011.

[9] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology, 11(2):256–290, 2002.

[10] M. Janota and G. Botterweck. Formal approach to integrating feature
and architecture models. In 11th International Conference Fundamental
Approaches to Software Engineering (FASE 2008), volume 4961 of Lecture
Notes in Computer Science, pages 31–45. Springer, 2008.

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. (CMU/SEI-
90-TR-021). Technical report, Software Engineering Institute, Carnegie
Mellon University, 1990.

[12] C. H. P. Kim and K. Czarnecki. Synchronizing cardinality-based feature
models and their specializations. In A. Hartman and D. Kreische, editors,
European Conference on Model Driven Architecture – Foundations and Ap-
plications (ECMDA-FA’05), volume 3748 of Lecture Notes in Computer
Science, pages 331 – 348. Springer-Verlag, 2005.

[13] A. Nöhrer, A. Biere, and A. Egyed. A comparison of strategies for tolerat-
ing inconsistencies during decision-making. In 16th International Software
Product Line Conference (SPLC ’12), pages 11–20. ACM, 2012.

[14] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A
survey and a formal semantics. In Requirements Engineering, 14th IEEE
International Conference, pages 139–148, 2006.

31

