
Building Development Tools Interactively
using the EKEKO Meta-Programming Library

Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Belgium
Email: cderoove@vub.ac.be

Reinout Stevens
Software Languages Lab

Vrije Universiteit Brussel, Belgium
Email: resteven@vub.ac.be

Abstract—EKEKO is a Clojure library for applicative logic
meta-programming against an Eclipse workspace. EKEKO has
been applied successfully to answering program queries (e.g.,
“does this bug pattern occur in my code?”), to analyzing project
corpora (e.g., “how often does this API usage pattern occur
in this corpus?”), and to transforming programs (e.g., “change
occurrences of this pattern as follows”) in a declarative manner.
These applications rely on a seamless embedding of logic queries
in applicative expressions. While the former identify source code
of interest, the latter associate error markers with, compute
statistics about, or rewrite the identified source code snippets.
In this paper, we detail the logic and applicative aspects of the
EKEKO library. We also highlight key choices in their implemen-
tation. In particular, we demonstrate how a causal connection
with the Eclipse infrastructure enables building development
tools interactively on the Clojure read-eval-print loop.

I. INTRODUCTION

EKEKO is a Clojure library that enables querying and
manipulating an Eclipse workspace using logic queries that
are seamlessly embedded in functional expressions. Recent
applications of EKEKO include the GASR tool for detect-
ing suspicious aspect-oriented code [1] and the QWALKEKO
tool for reasoning about fine-grained evolutions of versioned
code [2]. In this paper, we describe the meta-programming
facilities offered by EKEKO and highlight key choices in
their implementation1. We also draw attention to the highly
interactive manner of tool building these facilities enable.

II. RUNNING EXAMPLE: AN ECLIPSE PLUGIN

More concretely, we will demonstrate how to build a
lightweight Eclipse plugin entirely on the Clojure read-eval-
print loop. We will use this plugin as a running example
throughout the rest of this paper. Our Eclipse plugin is to
support developers in repeating similar changes throughout an
entire class hierarchy. It is to associate problem markers with
fields that have not yet been changed. In addition, it is to
present developers a visualization of these problems. Finally,
it is to provide a “quick fix” that applies the required changes
correctly.

Figure 1 illustrates the particular changes that need to be
repeated. The raw EntityIdentifier type of those fields
within a subclass of be.ac.chaq.model.ast.java.ASTNode

1The EKEKO library, its implementation, and all documentation is freely
available from https://github.com/cderoove/damp.ekeko/.

p u b l i c c l a s s B r e a k S t a t e m e n t ex tends S t a t e m e n t {
/ / B e f o r e changes :
@ E n t i t y P r o p e r t y (v a l u e = SimpleName . c l a s s)
p r i v a t e E n t i t y I d e n t i f i e r l a b e l ;

/ / A f t e r changes :
@ E n t i t y P r o p e r t y (v a l u e = SimpleName . c l a s s)
p r i v a t e E n t i t y I d e n t i f i e r <SimpleName> l a b e l ;

/ / . . . (a . o . , a c c e s s o r methods change a c c o r d i n g l y)
}

Fig. 1: Example changes to be repeated.

that carry an @EntityProperty annotation, is to receive a type
parameter that corresponds to the annotation’s value key.

III. ARCHITECTURAL OVERVIEW

The EKEKO library operates upon a central repository of
project models. These models contain structural and behavioral
information that is not readily available from the projects
themselves. The models for Java projects include abstract
syntax trees provided by the Eclipse JDT parser, but also
control flow and data flow information computed by the SOOT
program analysis framework [3].

An accompanying Eclipse plugin automatically maintains
the EKEKO model repository. To this end, it subscribes to
each workspace change and triggers incremental updates or
complete rebuilds of project models. As a result, the infor-
mation operated upon by the EKEKO library is always up-to-
date. In addition, this plugin provides an extension point that
enables registering additional kinds of project models. The
KEKO extension, for instance, builds its project model from
the results of a partial program analysis [4] —enabling queries
over compilation units that do not build correctly.

IV. LOGIC PROGRAM QUERYING

The EKEKO library enables querying and manipulating pro-
grams using logic queries and applicative expressions respec-
tively. We detail the former first. Section V discusses the latter.
The program querying facilities relieve tool builders from
implementing an imperative search for source code that ex-
hibits particular characteristics. Instead, developers can specify
these characteristics declaratively through a logic query. The

https://github.com/cderoove/damp.ekeko/

conditions of such a query quantify over the complete source
code of the program. Solutions to the query, computed by
EKEKO, correspond to the sought after code.

Other logic program querying libraries include CODE-
QUEST [5], PQL [6] and SOUL [7]. Our experiences with
the latter have influenced several choices in EKEKO’s design.
Most notably, for reifying code as logic data, we forego a tran-
scription to logic facts. Such a transcription hampers perusing
query solutions within tool implementations. Instead, we leave
the reified version of an AST node as the AST node itself (i.e.,
an instance of org.eclipse.jdt.core.dom.ASTNode). Embed-
ding our logic language within Clojure, which offers excellent
Java interoperability, enables this identity-based reification.

A. An Embedding of Logic Programming in Clojure

EKEKO owes its logic language to the CORE.LOGIC2 port to
Clojure of MINIKANREN [8]. Queries can be launched from
the Clojure read-eval-print loop using the ekeko special form.
It takes a vector of logic variables, each denoted by a starting
question mark, followed by a sequence of logic goals:
(ekeko [?x ?y] (contains [1 2] ?x) (contains [3 4] ?y))

Binary predicate contains/2, used in both goals, holds
if its first argument is a collection that contains the second
argument. Solutions to a query consist of the different bindings
for its variables such that all logic goals succeed. Internally, the
logic engine performs an exploration of all possible results, us-
ing backtracking to yield the different bindings for logic vari-
ables. The four solutions to the above query consist of bindings
[?x ?y] such that ?x is an element of vector [1 2] and ?y is
an element of vector [3 4]: ([1 3] [1 4] [2 3] [2 4]).

Logic variables have to be introduced explicitly into each
lexical scope. Above, the ekeko special form introduced two
variables into the scope of its logic conditions. Additional
variables can be introduced through the fresh special form:
(ekeko [?x]
(differs ?x 4)
(fresh [?y] (equals ?y ?x) (contains [3 4] ?y)))

The above query has but one solution: ([3]). Indeed, 3 is the
only binding for ?x such that all goals succeed. The differs/2

goal on line 2 imposes a disequality constraint such that any
binding for ?x has to differ from 4. The equals/2 goal on line
4 requires ?x and the newly introduced ?y to unify.

B. Ekeko Predicates for Program Querying

EKEKO provides a library of predicates that can be used
to query programs. These predicates reify the basic structural,
control flow and data flow relations maintained by our model
repository (cf. Section III) as well as higher-level relations that
are derived from the basic ones.

We limit our discussion to those predicates that reify
structural relations computed from the Eclipse JDT. Bi-
nary predicate (ast ?kind ?node), for instance, reifies
the relation of all AST nodes of a particular type.
Here, ?kind is a Clojure keyword denoting the capi-
talized, unqualified name of ?node’s class. Solutions to

2https://github.com/clojure/core.logic

the query (ekeko [?inv] (ast :MethodInvocation ?inv))

therefore comprise all method invocations in the source code.
Ternary predicate (has ?propertyname ?node ?value) rei-

fies the relation between an AST node and the value
of one of its properties. Here, ?propertyname is a Clo-
jure keyword denoting the decapitalized name of the
property’s org.eclipse.jdt.core.dom.PropertyDescriptor

(e.g., :modifiers). In general, ?value is either another ASTNode
or a wrapper for primitive values and collections. This wrapper
ensures the relationality of the predicate. The following query
will therefore retrieve nodes that have null as the value for
their :expression property (e.g., receiver-less invocations):
(ekeko [?node]
(fresh [?exp] (nullvalue ?exp) (has :expression ?node ?exp))

Finally, the child/3 predicate reifies the relation between
an AST node and one of its immediate AST node children.
Solutions to the following query therefore consist of pairs of
a method invocation and one of its arguments:
(ekeko [?inv ?arg]

(ast :MethodInvocation ?inv) (child :arguments ?inv ?arg))

Conceptually, the implementation of these lower-level pred-
icates use the aforementioned contains/2 over an AST node
relation maintained by each EKEKO project model (cf. Sec-
tion III). Our implementation of the higher-level predicates
illustrates that CORE.LOGIC (cf. Section IV-A) embeds logic
programming within a functional language. Binary predicate
child+/2, for instance, is implemented as a regular Clojure
function that returns a logic goal:
(defn child+ [?node ?child]

(fresh [?keyw ?ch]
(child ?keyw ?node ?ch)
(conde [(equals ?ch ?child)]

[(child+ ?ch ?child)])))

Here, special form conde returns a goal that is the disjunction
of one or more goals. Predicate child+/2 therefore reifies the
transitive closure of the child/2 relation.3

Next to facilitating the use of query results in tools and
preventing queries from returning stale results that no longer
reflect the current state of the workspace, our identity-based
reification of AST nodes (cf. Section IV) also brings along
some practical implementation advantages. Many predicates
call out to Java whenever this is more convenient than a purely
declarative implementation:
(defn ast-parent [?node ?parent]

(fresh [?kind]
(ast ?node ?ast)
(differs null ?parent)
(equals ?parent (.getParent ?node))))

Here, the last line ensures that ?parent unifies with the result
of invoking method ASTNode.getParent() on the binding for
?parent. The before-last line ensures that the predicate fails
for CompilationUnit instances which function as AST roots.

C. Running Example Revisited: Detecting Change Subjects

The plugin that comprises our running example (cf. Sec-
tion II) needs to identify fields that carry an @EntityProperty

3Note that an idiomatic Prolog definition would consist of two rules that
define the same predicate: one for the base case and one for the recursive
case, thus creating an implicit choice point.

https://github.com/clojure/core.logic

annotation of which the declared type is missing the corre-
sponding type parameter. We will do so using a program query
that uses a combination of built-in and case-specific predicates.
Although we only depict their final definition, we developed
these predicates one condition at a time —the read-eval-print
loop facilitates exploring the impact of additional conditions
on the query’s solutions.

Predicate fielddeclaration|incorrect/1 reifies the rela-
tion of field declarations in our hierarchy that miss the type
parameter corresponding to their annotation (i.e., the future
subjects of our plugin’s quick fix transformation)4:
(defn fielddeclaration|incorrect [?fielddecl]

(fresh [?typedecl ?fieldtype ?anno]
(annotation|ep ?anno)
(annotation-fielddeclaration ?anno ?fielddecl)
(ast-typedeclaration|encompassing ?fielddecl ?typedecl)
(typedeclaration|inhierarchy ?typedecl)
(has :type ?fielddecl ?fieldtype)
(fails (type-annotation|correct ?fieldtype ?anno))))

The final line excludes correctly typed field declarations
through conventional negation-as-failure. Here, elements of the
relation reified by type-annotation|correct/2 are obtained
from the parameterized types of which a type argument
denotes the same type as the type literal in the annotation:
(defn
type-annotation|correct
[?asttype ?annotation]
(fresh [?targ ?annotypelit ?annotype ?key]

(ast :ParameterizedType ?asttype)
(child :typeArguments ?asttype ?targ)
(annotation|ep-typeliteral ?annotation ?annotypelit)
(ast|typeliteral-type ?annotypelit ?annotype)
(ast|type-type ?key ?targ ?annotype)))

Note that predicates ast|typeliteral-type and
ast|type-type both resolve their second argument ?annotype
to the same type, regardless of whether the type literal in the
annotation and the type parameter of the parameterized type
refer to ?annotype as a fully qualified or simple type. To this
end, these predicates call out to Java to consult the name and
type analysis provided by the JDT. Finally, the actual type
literal in the annotation is obtained as follows:
(defn annotation|ep-typeliteral [?anno ?typel]

(fresh [?mn]
(annotation|ep ?anno)
(annotation-membername-value ?anno ?mn ?typel)
(has :identifier ?mn "value")))

V. APPLICATIVE PROGRAM MANIPULATION

Having discussed the logic meta-programming facilities of
the EKEKO library, we shift our focus to the applicative ones.

A. Ekeko Functions for Scripting Query Launches

The ekeko* variant of the ekeko special form (cf. Sec-
tion IV-A) does not only launch a logic query from the read-
eval-print loop, but also opens a graphical inspector on its
results that stems from our earlier Eclipse plugin suite for
program querying [7], [9]. Among others, it presents query
evaluation times and supports highlighting locations in the
source code that correspond to a query result. The top-left

4The names of predicates that reify an n-ary relation consist of n compo-
nents separated by a -, each describing an element of the relation. Vertical
bars | separate words within the description of a single component.

corner of Figure 2 depicts the inspector on the results of the
query launched from the REPL in the bottom. This REPL-
inspector combination supports tool builders in refining their
program queries and case-specific predicates incrementally.

To support corpus mining activities, EKEKO provides
a library of functions for scripting the evaluation of
queries and processing their results. For instance, function
(ekeko-reduce-projects! f initval projects) reduces a
collection of workspace projects using the given function and
initial value (i.e., a left fold over the projects). As the idea
is that f launches a program query to extract interesting
program facts, we have EKEKO populate (and destroy) a
project model for each project. We coordinate with the Eclipse
build infrastructure to ensure each model is fully populated
before f is applied. The same infrastructure enables us to
provide support for registering Clojure expressions that are
to be evaluated upon workspace changes. For instance, to
continuously associate and disassociate problem markers with
the results of a program query.

Finally, EKEKO provides a lightweight functional interface
to the ZEST Eclipse Visualization Toolkit5. This interface
enables tool builders to visualize the results of a query on
the REPL. To draw a directed graph, for instance, function
ekeko-visualize can be invoked with two collections of
tuples. The first collection of 1-tuples determines the nodes
of the graph. The second collection of 2-tuples determines the
edges of the graph. Note that these collections can be obtained
through a program query in one and in two logic variables
respectively. Additional keyword arguments can be provided
to override the default styling for the graph.

B. Running Example Revisited: Visualizing Change Subjects

Figure 3 depicts a directed graph of which the
nodes correspond to type declarations that declare a
be.ac.chaq.model.ast.java.Expression subtype. An edge
from a type declaration d1 to another type declaration d2
denotes that d1 refers, in one of its @EntityProperty annota-
tions, to the type declared by d2. The graph is produced by
the following Clojure let-expression:
(let [labelprovider (damp.ekeko.gui.EkekoLabelProvider.)]

(ekeko-visualize
(ekeko [?typedeclaration]
(fresh [?root]
(typedeclaration-name|qualified|string

?root "be.ac.chaq.model.ast.java.Expression")
(conde [(equals ?typedeclaration ?root)]

[(typedeclaration-typedeclaration|super
?typedeclaration ?root)])))

(ekeko [?fromuser ?totype]
(fresh [?anno ?annotypelit ?annotype]

(annotation|ep-typeliteral ?anno ?annotypelit)
(ast-typedeclaration|encompassing ?anno ?fromuser)
(typeliteral-type ?annotypelit ?annotype)
(typedeclaration-type ?totype ?annotype)))

:edge|style
(fn [src dest] edge|directed)
:node|image
(fn [typedeclaration]
(.getImage labelprovider typedeclaration))))

The let-expression binds labelprovider to an instance of
the default EKEKO label provider. This instance is used

5http://www.eclipse.org/gef/zest/

http://www.eclipse.org/gef/zest/

by the last :node|image (keyword) argument to compute
an image for each node. The actual nodes are computed
through the program query that serves as the first (regular)
argument to the ekeko-visualize function. The query binds
?typedeclaration to a type declaration that either declares
the Expression type itself or one of its subtypes. The edges
for the graph are computed by second program query.

C. Ekeko Functions for Transforming Code

Clojure’s interoperability with Java enables
us to provide a functional layer on top of the
org.eclipse.jdt.core.dom.rewrite.ASTRewrite API.
A rewrite groups a series of delayed code changes to a
single compilation unit. Delaying these changes enables
development tools to simulate their eventual effect. For
instance, to have end-users select the most appropriate code
transformation from several possible ones.

EKEKO provides functions to remove (remove-node), insert
(add-node) and replace (replace-node) nodes. Values of their
properties can be changed as well (change-property-node).
Here, properties are denoted using the Clojure keywords from
the has/3 predicate (cf. Section IV-B). Implementation-wise,
these functions extend the current rewrite for the compilation
unit in which the node resides or create a new one if none
is present. After all changes have been recorded, they can be
applied by calling apply-and-reset-rewrites.

D. Running Example Revisited: Markers and Quick-fix

To facilitate marking problematic nodes in the editor,
EKEKO provides a generic Eclipse resource marker that can be
added to a specific AST node by calling add-problem-marker.
For our running example, we map this function on the
REPL over each AST node retrieved by the program query
(ekeko [?ast] (field-declaration|incorrect ?ast). The
result is depicted in Figure 2; a collection of resource markers.

Note that each marker keeps track of the AST node it
decorates. This allows us to implement the quick fix as a
function that takes a marker as its argument:
(defn marker-quick-fix [marker]
(let [fielddecl (ekekomarker-astnode marker)

cu (get-cu fielddecl)
ftype (node-property fielddecl :type)
atype (annotation-typeliteral anno)
ftype-copy (copy-subtree type)
atype-copy (copy-subtree anno-type)
node (create-parameterized-type type-copy)]

(add-node cu node :typeArguments atype-copy 0)
(change-property-node fielddecl :type node)
(apply-and-reset-rewrites)
(remove-marker marker)))

We need to replace the type of the annotated field declaration
by a ParameterizedType that corresponds to the type in the
annotation. Using function copy-subtree, we copy both the
field’s and the annotation’s type nodes. We create a new
ParameterizedType node new-node from the first copy and
add the second copy by calling add-node. We specify under
which property the node needs to be inserted, its index in the
collection of type arguments and the compilation unit of the
original node. We then replace the original type in the field

declaration with the new node using change-property-node.
Finally, we apply the rewrite and remove the marker.

VI. CONCLUSION

We have presented EKEKO as a Clojure library that enables
querying and manipulating an Eclipse workspace using logic
queries and applicative expressions respectively. Our imple-
mentation exploits a seamless embedding of logic program-
ming in Clojure. We have demonstrated how EKEKO can
be used from the Clojure read-eval-print loop to prototype a
lightweight Eclipse plugin in a highly interactive manner.

Building such plugins using EKEKO does require a basic
understanding of functional and logic programming. The same
goes for the Eclipse JDT with which our libraries interface.
However, combining the Clojure REPL with the EKEKO result
browser enables specifying queries gradually (i.e., condition
by condition). Moreover, extensive documentation and code
completion further mitigates these drawbacks.

Conceptually, EKEKO’s performance is dominated by the
complexity of the program query and the size of the queried
program. However, our implementation relies on the project
models to cache information that is expensive to compute.
Moreover, most predicates have mode annotations that spe-
cialize the implementation depending on which arguments are
bound. Results for the queries in this paper are instantaneous.

ACKNOWLEDGMENTS
Coen De Roover is funded by the Cha-Q SBO project sponsored by

the “Flemish agency for Innovation by Science and Technology” (IWT
Vlaanderen). The same agency funds the scholarship of Reinout Stevens.

REFERENCES

[1] J. Fabry, C. De Roover, and V. Jonckers, “Aspectual source code analysis
with GASR,” in Proceedings of the 13th International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM13), 2013.

[2] R. Stevens, C. De Roover, C. Noguera, and V. Jonckers, “A history
querying tool and its application to detect multi-version refactorings,” in
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR 2013), 2013.

[3] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework for
Java program analysis: a retrospective,” in In Proceedings of the Cetus
Users and Compiler Infastructure Workshop (CETUS11), 2011.

[4] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” in Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications
(OOPSLA08), 2008.

[5] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: Scalable source
code queries with Datalog,” in Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP06), ser. Lecture Notes
in Computer Science, vol. 4067, 2006, pp. 2–27.

[6] M. Martin, B. Livshits, and M. Lam, “Finding application errors and
security flaws using PQL: a program query language,” in Proceedings
of the 20th annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA05), 2005, pp.
365–383.

[7] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL tool
suite for querying programs in symbiosis with eclipse,” in Proceedings
of the 9th International Conference on the Principles and Practice of
Programming in Java (PPPJ11), 2011.

[8] W. E. Byrd, “Relational programming in minikanren: Techniques, ap-
plications, and implementations,” Ph.D. dissertation, Indiana University,
August 2009.

[9] C. Noguera, C. De Roover, A. Kellens, and V. Jonckers, “Program
querying with a SOUL: the barista tool suite,” in Proceedings of the
27th IEEE International Conference on Software Maintenance (ICSM11),
2011.

Fig. 2: The Clojure REPL (bottom), the EKEKO query result inspector (top-left), and the final plugin (top-right) in action.

Fig. 3: An EKEKO-computed visualization of our running example. A directed graph is shown of which the nodes correspond
to Expression subtypes. Edges correspond to a type referring to another type in one of its @EntityProperty-annotated fields.

	Introduction
	Running Example: an Eclipse Plugin
	Architectural Overview
	Logic Program Querying
	An Embedding of Logic Programming in Clojure
	Ekeko Predicates for Program Querying
	Running Example Revisited: Detecting Change Subjects

	Applicative Program Manipulation
	Ekeko Functions for Scripting Query Launches
	Running Example Revisited: Visualizing Change Subjects
	Ekeko Functions for Transforming Code
	Running Example Revisited: Markers and Quick-fix

	Conclusion
	References

