
AmbientTalk: programming responsive
mobile peer-to-peer applications with actors

Tom Van Cutsema,1,∗, Elisa Gonzalez Boixa,2, Christophe Scholliersa,3, Andoni Lombide
Carretona, Dries Harniea,2, Kevin Pintea, Wolfgang De Meutera

aSoftware Languages Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

Abstract

The rise of mobile computing platforms has given rise to a new class of applications: mobile
applications that interact with peer applications running on neighbouring phones. Developing
such applications is challenging because of problems inherent to concurrent and distributed pro-
gramming, and because of problems inherent to mobile networks, such as the fact that wireless
network connectivity is often intermittent, and the lack of centralized infrastructure to coordinate
the peers.

We present AmbientTalk, a distributed programming language designed specifically to de-
velop mobile peer-to-peer applications. AmbientTalk aims to make it easy to develop mobile
applications that are resilient to network failures by design. We describe the language’s concur-
rency and distribution model in detail, as it lies at the heart of AmbientTalk’s support for respon-
sive, resilient application development. The model is based on communicating event loops, itself
a descendant of the actor model. We contribute a small-step operational semantics for this model
and use it to establish data race and deadlock freedom.

Keywords: actors, event loops, futures, mobile networks, peer-to-peer, service discovery,
leasing

1. Introduction

Throughout the past decade, we have seen the rise of mobile platforms such as J2ME, iOS
and Android. These platforms, in turn, enable a new class of applications: mobile peer-to-peer
(P2P) applications. What is characteristic of such applications is that they are often used on the
move, and that they sporadically interact with peer applications running on neighbouring phones
(often communicating via a wireless ad hoc network [1]).

∗Corresponding author
Email address: tvcutsem@vub.ac.be (Tom Van Cutsem)

1Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
2Funded by the Prospective Research for Brussels (PRFB) program of the Brussels Institute for Research and Inno-

vation (Innoviris).
3Funded by a doctoral scholarship of the Institute for the Promotion of Innovation through Science and Technology

in Flanders (IWT-Vlaanderen).

Preprint submitted to Computer Languages, Systems and Structures (Accepted May 2014) May 21, 2014

Developing such applications is a challenge not only because of the inherent difficulty of
developing distributed applications. Connectivity between phones is often intermittent (connec-
tions drop and are restored as people move about) and applications may not always rely on fixed
infrastructure or a reachable central server to support the coordination.

In this paper we present AmbientTalk, a distributed programming language designed specif-
ically to develop mobile P2P applications. AmbientTalk is the first distributed object-oriented
language that specifically targets applications deployed on mobile phones interconnected via an
ad hoc wireless network. On the surface, the language is similar to other OO scripting languages
such as JavaScript, Ruby or Python. However, contrary to these languages, it offers built-in sup-
port for concurrent and distributed programming. Its concurrency model is founded on actors [2]:
loosely coupled, asynchronously communicating components.

We show how AmbientTalk facilitates the development of mobile P2P applications that are
resilient to intermittent network failures by default, and how this compares to mainstream dis-
tributed object-oriented middleware such as Java RMI (Section 7).

Novelty. This paper complements previous expositions of AmbientTalk [3–5] with a precise
operational semantics (Section 8). To the best of our knowledge, this is the first formal account
of an actor-based language based on communicating event loops with non-blocking futures. We
use the operational semantics to establish data race and deadlock freedom.

Availability. AmbientTalk currently runs as an interpreter on top of the JVM and specifically
targets Android-powered smartphones. It is open sourced under an MIT license and available
at ambienttalk.googlecode.com. The Android version is published on the Google Play
Store (http://bit.ly/HM7Kzv).

2. Mobile ad hoc networks

AmbientTalk’s concurrency and distribution features are tailored specifically to mobile ad
hoc networks. We briefly describe the features characteristic of mobile ad hoc networks and why
they present a challenge.

There are two discriminating properties of mobile networks, which clearly set them apart
from traditional, fixed computer networks: applications are deployed on mobile devices con-
nected by wireless communication links with a limited communication range. Such networks
exhibit two phenomena which are rare in their fixed counterparts:

• Volatile Connections. Mobile phones equipped with wireless media possess only a lim-
ited communication range, such that two communicating phones may move out of earshot
unannounced. The resulting disconnections are not always permanent: the phones may
meet again, requiring their connection to be re-established. Often, such transient network
partitions should not affect an application, allowing it to continue its collaboration trans-
parently upon reconnection. Partial failure handling is not a new ingredient of distributed
systems, but these more frequent transient disconnections do expose applications to a much
higher rate of partial failure than that which most distributed languages or middleware have
been designed for. In mobile networks, disconnections become so omnipresent that they
should be considered the rule, rather than an exceptional case.

2

• Zero Infrastructure. In a mobile network, phones (and thus the applications they host)
may spontaneously join or leave the network. Moreover, a mobile ad hoc network is
often not administered by a single party. As a result, in contrast to stationary networks
where applications usually know where to find collaborating services via URLs or similar
designators, applications in mobile networks have to discover partner applications while
roaming. Services must be discovered on proximate phones, possibly without the help of
shared infrastructure. This lack of infrastructure requires a peer-to-peer communication
model, where services can be directly advertised to and discovered on proximate phones.

Any application designed for mobile networks has to deal with these phenomena. It is there-
fore worth investigating models or frameworks that ease the development of mobile P2P applica-
tions. Because the effects engendered by partial failures or the absence of remote services often
pervade the entire application, it is difficult to apply traditional library or framework abstractions.
Therefore, support for distributed programming is often dealt with in dedicated middleware (e.g.
Java RMI [6], Jini [7]) or programming languages (e.g. Erlang [8], Emerald [9], Argus [10]). In
the spirit of such systems, we designed AmbientTalk as a new distributed programming language.

3. Standing on the shoulders of giants

We briefly describe the foundations of AmbientTalk: where did its features originate?

Object Model AmbientTalk is a dynamically typed, object-oriented language. It was heavily
inspired by Self [11] and Smalltalk [12]. Like Ruby, however, AmbientTalk is text-based
(not image-based). Inspired by Scheme [13] and E [14], it places an additional emphasis
on lexical nesting of objects and lexical scoping.

Concurrency AmbientTalk embraces actor-based concurrency [2]. In particular, it embraces
a particular flavor of actor-based concurrency known as communicating event loops, pi-
oneered by the E programming language [14], whose distinguishing features are (a) the
treatment of an actor as a coarse-grained component that contains potentially many reg-
ular objects, and (b) the complete absence of blocking synchronization primitives. All
interaction among actors is purely asynchronous.

The event loop model maps well onto the inherently event-driven nature of mobile P2P
applications. Phones may join or leave the network and messages can be received from
remote applications at any point in time. All of these events are represented as messages
sent to objects, orderly processed by actors. The use of event loops avoids low-level data
races that are inherent in the shared-memory multithreading paradigm [15, 16].

Remote Messaging AmbientTalk avoids traditional RPC-style synchronous distributed interac-
tions, and provides only asynchronous message passing. This was a deliberate design
choice to deal with the latency of wireless connections and the intermittent connectivity of
devices due to transient network partitions.

Inspired by the queued RPC mechanism of the Rover toolkit [17], remote references in
AmbientTalk automatically buffer outgoing messages for which the recipient is currently
unavailable. This allows the communication subsystem to automatically mask temporary
network failures, which is especially useful in the face of intermittent wireless connectivity.

AmbientTalk uses leasing to deal with partial failures, inspired by Jini [7].
3

Following ABCL [18], Eiffel// [19], E [14] and Argus [20], AmbientTalk features futures
(aka promises) to enable return values for asynchronous method calls. This mitigates part
of the inversion of control that is characteristic of asynchronous, event-driven code.

Discovery AmbientTalk makes use of the publish/subscribe paradigm [21] to express discovery
among objects: services publish themselves in the network, while clients subscribe to
these service announcements. In this light, AmbientTalk is a close cousin of Jini [7],
albeit tailored to peer-to-peer networks: AmbientTalk programs need not rely on third-
party lookup service infrastructure, but can discover one another directly.

AmbientTalk was also inspired by M2MI [22], a lightweight extension to Java enabling
asynchronous anycast communication in wireless networks.

Reflection AmbientTalk is meant to serve as a research language to explore the language design
space for mobile P2P applications. To support this role, it features an extensive set of
reflective APIs to be able to extend the language from within itself. AmbientTalk supports
a reflective architecture based on mirrors [23] and a variety of hooks into the actor system’s
message processing and transmission protocols, inspired by early work on reflection in
concurrent object-oriented languages [24, 25].

4. Sequential AmbientTalk

Before explaining the concurrent and distributed features of AmbientTalk, we give a brief
overview of its more conventional sequential building blocks.

Objects. AmbientTalk is a dynamically typed, object-oriented language. It is prototype-based
rather than class-based, meaning that objects are not instantiated from class declarations, but
rather can be created as anonymous singleton objects (using an object literal declaration) or by
cloning existing objects.

In the example below, a top-level function named makePoint is defined. Its return value is
a fresh object with three slots: x, y and distanceToOrigin. The x and y slots are initialized
with the arguments to the function. The distanceToOrigin slot contains a method. Methods
are implicitly parameterized with a self pseudo-variable, which they can use to access the
receiver object’s slots. Note that x and y are instance variables (slots) of the point object, while
the variables t1 and t2 are local variables of the distanceToOrigin method. Numbers are
objects in AmbientTalk, and sqrt is a method defined on such number objects.
def makePoint(x0, y0) {

object: {
def x := x0;
def y := y0;
def distanceToOrigin() {
def t1 := self.x * self.x;
def t2 := self.y * self.y;
(t1 + t2).sqrt()

}
}

};
def p := makePoint(1,1);
p.x; // 1
p.distanceToOrigin(); // 1.4142135623730951

4

Blocks. While AmbientTalk is predominantly object-oriented, it has a distinctly functional fla-
vor, through the use of blocks. Blocks (the terminology stems from Smalltalk) are objects that
represent anonymous closures, i.e. functions that may refer to lexically enclosing variables.
Blocks are constructed by means of the syntax {|args| body}, where the |args| part can
be omitted if the block takes no arguments. For example:
def sum := { |x,y| x + y }; // define a block
sum(1,2) // 3

Like Smalltalk and Self, AmbientTalk often uses blocks to represent delayed computations,
such as the branches of an if:then:else: control structure, or as listeners or callbacks to
await an event, as will be shown later. For instance:
def abs(x) {

if: (x < 0) then: { -x } else: { x }
}

The abs function calculates the absolute value of a number x. The if-test is not a built-in
statement. Instead, the body of this function consists of a call to the function if:then:else:,
which expects a boolean and two blocks. If the boolean is true, the first block is called (with no
arguments), otherwise the second block is called.

A unique feature of AmbientTalk is that functions or methods can be defined or called using
both traditional C-style syntax as well as Smalltalk-style keyword message syntax. In general,
keyword message syntax is used to express control structures (such as the if:then:else:
function) while the C-style syntax is used to express application-level functions or methods (e.g.
a function call like sum(1,2) or method invocation like p.distanceToOrigin()).

Blocks are often used as arguments to higher-order functions, e.g. to map a function over an
array. In the following example, a block is mapped over an array of points, producing an array
of only the x-coordinates:
def xcoords := points.map: { |p| p.x }

The keyword message syntax in combination with syntactically lightweight blocks enables
AmbientTalk programmers to easily define their own control structures. We have found this to be
extremely helpful in a language that makes heavy use of asynchronous APIs and an event-driven
programming style.

Type tags. Since AmbientTalk is dynamically typed, it cannot use a static type system to cat-
egorize objects. Instead, the language provides annotations called type tags. Type tags can be
used to annotate whole objects or individual methods or messages. They are also used for service
discovery, as described shortly. An example:
deftype Fruit;
deftype Apple <: Fruit;
def a := object: {} taggedAs: [Apple];
is: a taggedAs: Fruit // true

Apple is defined as a subtype of the Fruit type tag. The empty object a is then an-
notated with this tag. Type tags are analogous to empty “marker” interfaces in Java (such as
java.lang.Cloneable and java.io.Serializable): these interfaces serve no pur-
pose other than to classify objects, without making any claims as to the objects’ supported meth-
ods (since these interfaces are empty).

5

JVM interoperability. AmbientTalk provides built-in support to interoperate with the underlying
JVM. This interoperability is similar to that of other dynamic languages implemented on top of
the JVM such as Groovy, Jython and JRuby. Concretely, AmbientTalk programs can access Java
classes or objects as if they were AmbientTalk objects. This allows AmbientTalk programs to
reuse Java libraries. For example, the Java AWT GUI library can be used from AmbientTalk as
follows:
def b := java.awt.Button.new("Click me");
b.addActionListener(object: {
def actionPerformed(actionEvent) {

system.println("The button was pressed");
}

});

This code creates an AWT Button and registers a callback object to be notified when the
button is clicked. Contrary to most JVM scripting languages, our interoperability layer takes
special care to uphold AmbientTalk’s actor-based concurrency model. Concretely, in the above
example, when the Java GUI thread invokes actionPerformed on the AmbientTalk callback
object, the interoperability layer will convert this method call into a message, and post this mes-
sage to the AmbientTalk actor’s event queue, such that the method body will be executed by the
actor, not by the Java thread. This avoids race conditions on the object’s state, since otherwise
both an AmbientTalk actor and a Java thread might concurrently modify it. Our interoperability
mechanism is described in full detail elsewhere [26].

Other features. The above only scratches the surface of AmbientTalk’s features. Two other
features worth mentioning are:

• Reflection. AmbientTalk features an extensive reflection API based on mirrors [23]. This
allows objects to be inspected and modified at runtime. AmbientTalk also supports reflec-
tion at the actor-level, allowing for instance access on an actor’s incoming message queue.
AmbientTalk’s reflective architecture is described in full detail elsewhere [27].

• Object composition. AmbientTalk features inheritance among objects (as in Self). It also
supports traits [28], a more robust alternative to multiple inheritance. AmbientTalk traits
are described in full detail elsewhere [29].

5. Concurrent AmbientTalk

As mentioned previously, AmbientTalk’s concurrency model is based on actors [2]. A single
AmbientTalk virtual machine can host multiple actors that may run in parallel.

5.1. Communicating Event Loops

AmbientTalk combines objects with actors based on the communicating event loops model
of the E programming language [14]. What sets this model apart from most other actor languages
(such as Act1 [30], ABCL [18], Actalk [31], Salsa [32], Erlang [8], Kilim [33], ProActive [34]
or Scala actors [35]), is that:

• Each actor is not itself represented as a single object (a so-called “active object”), but rather
as a vat containing an entire heap of regular objects. These objects may be stateful. Any
object created by an actor is said to be owned by that actor, and forever remains contained

6

in that actor. Objects owned by one actor may hold references to individual objects owned
by other actors (i.e. objects contained by an actor may be referenced from outside of the
actor, they are not necessarily private).

• There is no blocking synchronization primitive: both the sending and receiving of mes-
sages between actors happens asynchronously. Contrary to e.g. Erlang or Scala actors,
there is no direct equivalent to the receive statement that suspends an actor until a
matching message arrives. Instead, message reception happens implicitly by invoking a
method on an object.

Thus, actors are not represented as individual objects, but rather as a collection of objects
that all share a single event loop which executes their code. That event loop has a single message
queue, containing messages to be delivered to one of its owned objects. The event loop perpet-
ually takes the first message from the message queue and invokes the corresponding method of
the object denoted as the receiver of the message. This method is then run to completion, with-
out interleaving any other events (we discuss how method results are handled in Section 5.4).
Consider the following example:
def makeAccount(balance) {
object: {
def withdraw(amnt) { balance := balance - amnt };
def deposit(amnt) { balance := balance + amnt };

}
}
def b1 := makeAccount(50);
def b2 := makeAccount(20);

By default, there is a single “main” AmbientTalk actor that executes all top-level code. In this
example, the main actor creates (and thus owns) two account objects b1 and b2. Any external
requests to withdraw or deposit from these accounts will be synchronized (i.e. the method
bodies executed without interleaving).

The process of dequeuing a message (such as withdraw or deposit) from the actor’s
queue and executing the corresponding method to completion is called a turn. In between turns,
the runtime stack of an actor is always empty. Turns are the basic unit of “event interleaving” in
AmbientTalk: while executing a turn, no other events can affect the actor’s heap. In event-loop
frameworks, this is sometimes called run-to-completion semantics, since every event is fully
processed before processing the next. This avoids data races on the mutable state of objects
owned by an actor.

Only an object’s owning actor may directly execute its methods. Objects owned by the same
actor may communicate using ordinary, sequential method invocation or using asynchronous
message passing. AmbientTalk borrows from the E language the syntactic distinction between
sequential method invocation (expressed as o.m()) and asynchronous message sending (ex-
pressed as o<-m()).

For example, since the main actor owns both b1 and b2, it may atomically transfer funds
from one account to the other by executing:
b1.withdraw(10);
b2.deposit(10);

It may also decide to send these messages asynchronously:
b1<-withdraw(10);
b2<-deposit(10);

7

This enqueues the requests to withdraw and deposit in the main actor’s own message
queue. However, the programmer should now be aware that other messages may happen to arrive
after withdraw but before deposit was scheduled. In other words, the transfer is no longer
atomic, which may or may not be a problem, depending on application requirements.

5.2. Far References

It is possible for objects owned by one actor to hold references to individual objects owned by
other actors. Such references that span different actors are named far references (the terminology
stems from E [14]) and only allow asynchronous access to the referenced object. This ensures by
design that all communication between actors is asynchronous. Trying to perform a sequential
method invocation on a far reference provokes a runtime exception.

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Figure 1: AmbientTalk actors as communicating event loops.

Figure 1 illustrates AmbientTalk actors as communicating event loops. The dotted lines
represent the event loop activity of each actor which perpetually takes the next message from its
message queue and executes the corresponding method on one of its owned objects.

To illustrate far references, consider the following example. Our main actor spawns a new
actor and decides to share its account objects with this new actor:
def helper := actor: {
def transfer(from,to) {

from<-withdraw(10);
to<-deposit(10);

}
};
helper<-transfer(b1, b2);

The expression actor: {...} spawns a new actor. The new actor immediately creates
a new object, as if by evaluating object: {...}. This object, call it o, acts as the actor’s
public interface. The actor: expression immediately evaluates to a far reference to o, which
is stored in the helper variable.

The main actor then sends the transfer message via a far reference to o. Messages sent
via a far reference to an object are enqueued in the message queue of the object’s owner for later
processing. Hence, the transfer message will later be dequeued and executed by the new
actor, not by the main actor.

5.3. Asynchronous Message Passing and Isolates

When sending an asynchronous message to an object that is owned by the same actor, the
message’s parameters are passed by reference, exactly as is the case with regular sequential

8

method invocations. When sending a message across a far reference to another actor, objects are
instead parameter-passed by far reference: the parameters of the invoked method are bound to
far references to the original objects.

Take another look at the previous example. The main actor passes b1 and b2 as arguments to
an asynchronous transfer message. When the helper actor executes the transfer method,
from and to will be bound to far references to b1 and b2 respectively. Note that the helper
actor must use asynchronous message passing (via <-) to perform the withdraw and deposit
operations. Since it does not own the account objects, it cannot directly invoke their methods.

There is one exception to the above parameter-passing rules: objects declared as isolates (via
the expression isolate:{...} as opposed to object:{...}) are passed by (deep) copy
rather than by far reference. Objects can only be declared as isolates if all of their methods
are closed (i.e., do not contain references to lexically free variables). This ensures that such
objects are isolated from their scope of definition (hence their name), allowing their methods to
be safely executed in other actors. This restriction also ensures that isolates can be serialized
without having to transitively serialize the value of any lexically captured variables. The benefit
of isolates is that the recipient actor will receive its own local copy of the isolate, avoiding the
need for further remote communication.

5.4. Non-blocking Futures

By default, asynchronous message sends do not return a meaningful value (to be more pre-
cise, they return null). Often, an object that makes an asynchronous request is interested in a
subsequent reply. For instance, in our previous example, what if the main actor wants to know
when the transfer performed by the helper actor was completed? This can be accomplished
as follows:
def future := helper<-transfer(b1, b2)@TwoWay;

Any AmbientTalk message may be annotated with the TwoWay type tag to indicate that
sending the message should return a future. A future is a placeholder for the later return value,
which may not yet be available. Initially, the future is said to be unresolved.

The future gives us a handle on the return value, but is not itself the return value. One can
register a callback with a future, which is executed when the future becomes resolved, and is
passed the actual return value of the message:
when: future becomes: { |ack|

// execution is postponed until future is resolved
system.println("Transfer performed");

} catch: { |exception|
system.println("Transfer failed");

};
// code hereafter is always executed first, even if future is already resolved

The when:becomes:catch: function takes a future and two blocks (a callback and an
errback) as arguments, and registers these blocks with the future, as if they were listener objects.
If the asynchronously invoked method returns a value, the future is resolved, and the callback is
called with the return value (in the above example, the transfer method just returns null, so
ack will be null as well, serving only as an acknowledgement). If the method instead raises an
exception, the corresponding future becomes ruined and the errback is called with the exception.
The errback is analogous to a catch-clause in a regular sequential try-catch statement.

Even if when:becomes:catch: is called on a future that is already resolved, the callback
or errback is never immediately invoked, but instead always scheduled for eventual execution in

9

the message queue of the actor that created the block. This ensures that the callback or errback is
always executed in its own separate turn, and that the execution is properly serialized w.r.t. other
messages processed by the actor.

Returning to our example, we still have not quite successfully synchronized on the actual
transfer of the money: when future resolves, all we actually know is that the transfer
method was executed. But since the transfer method itself performs asynchronous requests,
completion of the transfer method does not imply completion of the withdraw and deposit
messages. This type of transitive asynchronous dependencies comes up sufficiently often that
AmbientTalk futures provide support for it. It is possible to resolve a future f1 with another
future f2, establishing a dataflow dependency among them: if f2 later becomes resolved with
a non-future value v, then eventually f1 will also become resolved with v. Returning to our
example, we need to change the transfer method as follows:
def helper := actor: {
def transfer(from,to) {
from<-withdraw(10);
def f2 := to<-deposit(10)@TwoWay; // note the new annotation
f2

}
};
def future := helper<-transfer(b1, b2)@TwoWay;
when: future becomes: { |ack|

system.println("Transfer performed");
} catch: { |e| ... }

The transfer method now returns a future f2, rather than null. The outer future
will be resolved with this future f2. The callback will be triggered only when the deposit
message, sent while executing the transfer method, has itself returned.

While this particular example is correct, the code for transfer in general is not: our
synchronization only works because we know from and to refer to account objects owned by
the same actor. Since AmbientTalk actors enqueue messages in FIFO order, we know that if the
deposit method was executed on to, the withdraw method was also executed on from,
since it was enqueued earlier in the same actor. In the general case where from and to may
refer to objects in different actors, we can no longer make that assumption.

AmbientTalk has a number of auxiliary functions that operate on futures. One such function
is group:. This function expects an array of futures [f1,f2,...] and returns a new “com-
posite” future f. f is resolved with the array [v1,v2,...] when and only when f1,f2,...
have all resolved to values v1,v2,.... If any of the argument futures is ruined with an excep-
tion, f becomes ruined with that same exception. If one thinks of futures as booleans with states
resolved and ruined, then group: is the equivalent of the logical AND operator. Armed with
group: we can apply the proper synchronization:
def helper := actor: {

def transfer(from,to) {
def f1 := from<-withdraw(10)@TwoWay;
def f2 := to<-deposit(10)@TwoWay;
group: [f1,f2]

}
};
def future := helper<-transfer(b1, b2)@TwoWay;
when: future becomes: { |ack|
system.println("Transfer performed");

} catch: { |e| ... }

The callback is now triggered only after both f1 and f2 have resolved.

10

Futures as Far References. AmbientTalk futures are also far references to their eventual value:
one can send asynchronous messages to the future, and these are automatically forwarded to their
value. As long as the future is unresolved, the messages are accumulated at the future. When the
future is resolved, these accumulated messages are forwarded to the resolved value. If the future
is ruined, any futures associated with accumulated messages are ruined with the same exception.
This is the asynchronous equivalent of an exception propagating up the call stack.

Conditional Synchronization. So far, the only way to obtain a future has been to send an asyn-
chronous message annotated as @TwoWay. In addition, these futures are automatically resolved
with the return value of the corresponding method. Sometimes, this rigid pattern of using fu-
tures is insufficient: it may be that the resolved value of a future depends on run-time conditions
known only at a later stage in the program. For instance, consider a bounded buffer with get()
and put(v) methods. When the buffer is empty, it may want its get() method to return an
unresolved future, to be resolved later when a producer sends a put(v) message.

To facilitate such “conditional synchronization” [36] patterns, it is possible to explicitly cre-
ate and resolve futures:
def [future, resolver] := makeFuture();

The call to makeFuture returns two values: a fresh, unresolved future object, and a
fresh corresponding resolver object. The creator can then share a reference to the future
object, while retaining a reference to the resolver object. At a later time, when the value
of the future is known, the creator can invoke resolver.resolve(value) to resolve
the paired future. This will cause any callbacks registered on the future by means of the
when:becomes:catch: function to be called in later event loop turns.

5.5. Concurrency Properties
The key concurrency properties provided by communicating event loops are:

No data races Since every object is owned by exactly one actor, and since actors process in-
coming messages for their owned objects sequentially, data races on the state of objects
are avoided: there is at most one concurrent activity that can read or write their fields.

No deadlocks If all message processing turns are finite, messages will never get stuck in actors’
message queues. Processing a message in finite time is helped by the fact that an actor can
never block and wait for a message in the middle of a turn. It can only receive messages be-
tween turns, and has no mechanism to selectively block certain messages from being pro-
cessed. In addition, AmbientTalk futures are fully non-blocking. Contrary to most future
abstractions in other languages, they do not support a blocking get() method to await
the future’s value synchronously. One can only await a future’s value asynchronously, via
a callback registered using the when:becomes:catch: function.

We should note that even in the absence of low-level data races and deadlocks, AmbientTalk
programs can still exhibit higher-level safety and liveness issues. For example, while low-level
data races are prevented, race conditions at the level of messages are still possible. For example,
in the bank account example, if an object sends a withdraw() followed by a deposit()
message, a third message sent by a different actor may interleave and be processed in between
those two messages. The programmer is thus still responsible for synchronizing updates that are
executed over multiple turns.

11

With respect to liveness, while messages do not get stuck in actors’ message queues indefi-
nitely, other forms of lost progress bugs are still possible. In particular, messages or notifications
may still get stuck indefinitely in the message queues of futures. For example, one actor may reg-
ister a callback on a future using when:becomes:catch:, but if this future is never resolved,
the callback will never be executed. There is also a known issue with futures known as data lock,
which occurs when a future gets resolved with itself (either directly or indirectly, via a cycle
of futures depending on each other) [14]. However, contrary to deadlocks in a multithreaded
program, these lost progress bugs are mostly deterministic and are thus easier to reproduce and
debug.

We revisit these safety and liveness properties in more detail in Section 8.4.

6. Distributed AmbientTalk

We now turn to AmbientTalk’s features specifically geared towards distributed programming
in mobile ad hoc networks.

Actors are AmbientTalk’s unit of concurrent and distributed execution. A single Ambient-
Talk virtual machine (VM) may host multiple actors. A network may in turn connect multiple
AmbientTalk VMs. When an object a acquires a far reference to an object b in another actor,
we call b a remote object (from a’s point of view). Whether two actors are running inside the
same VM or not is not visible at the language level. The programmer should always consider
two actors to be distributed, and prepare for possible failures, even if the actors may reside on
the same VM.

Failure model. The VM is AmbientTalk’s unit of failure: if a device running an AmbientTalk
VM crashes, all the actors on that device crash. AmbientTalk provides no built-in abstractions
to recover from device failures (e.g. actors have no persistent state). The network that connects
multiple AmbientTalk VMs may also be subject to failures. At the implementation level, we
assume a fully asynchronous network model where there is no upper bound on message delivery
and individual network messages may be lost, duplicated and reordered. However, as we will
explain in the following sections, at the programming language level, AmbientTalk makes the
network reliable. Messages sent between remote actors will eventually be delivered, without
duplicates and in FIFO order, as long as the network eventually heals and the VMs hosting the
actors do not crash. Our message delivery protocol assumes cooperating VMs, we do not attempt
to overcome Byzantine failures [37].

6.1. Service Discovery

We have previously shown that objects can acquire a new far reference to a remote object
by simply passing an object as a parameter into or as a return value from a message sent via an
existing far reference. However, this requires some initial far reference to an object in the remote
actor. How is this process bootstrapped?

AmbientTalk uses a publish/subscribe service discovery protocol4. A publication corre-
sponds to an object advertising itself by means of a type tag. The type tag serves as a topic
known to both publishers and subscribers [21]. A subscription is made by registering a callback

4The current implementation uses a custom peer-to-peer service discovery protocol based on UDP and IP multicasting
and is designed primarily for ad hoc WiFi networks. An AmbientTalk version that uses Bluetooth is also available.

12

block on a type tag. The callback will be triggered whenever an object advertised with that tag
is detected in the network.

An object that advertises itself is said to be exported. Once exported, an object becomes
a globally accessible entry-point. In most distributed systems, exported objects are identified
by means of a URL and a UUID, or similar such global identifiers. However, URLs rely on
infrastructure (name servers), which cannot always be relied upon in a mobile ad hoc network. In
addition, in mobile P2P applications, one application is often interested in any other application
with which it can partner, not necessarily a specific application. Thus, mobile P2P applications
are more interested in a type of service than a particular unique instance of a service.

We use type tags to provide a description of what kinds of services an object provides to
remote objects. We make the explicit assumption that all devices in the network attribute the
same meaning to each type tag, i.e. we assume they use a common classification scheme.

Assume a mobile P2P application named MatchMaker that wants to pair up with other
applications of the same type. This application exchanges user profiles and alerts the user when
a matching profile is found. The MatchMaker application exports an object serving as its
publicly accessible entry-point, as shown below.
deftype MatchMaker;
def myEndPoint := object: {
def exchange(profile) { ... }
def alertMatch(profile) { ... }

};
def pub := export: myEndPoint as: MatchMaker;

Once the myEndPoint object is exported, it can be discovered by other actors. The export:as:
function returns an object pub that can be used to take the exported object offline again, by in-
voking pub.cancel().

To discover remote endpoints of peer applications, a MatchMaker application can subscribe
a callback to be notified whenever a matching endpoint is discovered in the network:
def sub := whenever: MatchMaker discovered: { |remoteEndPoint|
remoteEndPoint<-exchange(myProfile);
...

};

The whenever:discovered: function takes as arguments a type tag and a block that
serves as a callback. Every time an object with a matching type tag is discovered by the
language runtime, an invocation of this callback is enqueued in the actor owning the block.
The remoteEndPoint argument to the block is bound to a far reference pointing to the
myEndPoint object of a peer MatchMaker application. The whenever:discovered:
function returns an object sub whose cancel() method can be used to cancel the registration
of the callback.

6.2. Far References and Partial Failures

Because objects residing on different devices are necessarily owned by different actors, far
references are the only kind of object reference that can span across different devices. By de-
sign, this ensures that all distributed communication is asynchronous. This strict adherence to
asynchronous distributed communication has two advantages in wireless networks:

• First, latency in wireless networks is still more significant than in wired networks. Asyn-
chronous communication helps to hide latency, enabling applications to perform useful
work, or remain responsive, even while sending and receiving messages.

13

• Second, as noted previously, connections among roaming mobile devices are often volatile.
Asynchronous communication facilitates communication along such intermittent connec-
tions via buffering. When sender and receiver are disconnected, outgoing messages can
be buffered and retransmitted when the connection is restored. This is like sending e-mail
while working offline.

AmbientTalk’s far references make use of such buffering to be resilient to network discon-
nections by default. Returning to our example, when a MatchMaker application discovers a
peer, it obtains a far reference remoteEndPoint to communicate further. Should the peer ap-
plication disconnect at that point, the exchange message will be buffered within the reference.
When the network partition is eventually restored, the far reference automatically retransmits
the message. Hence, messages sent to far references are never lost, regardless of the internal
connection state of the reference.

Of course, not all network partitions are transient. Some will be permanent, or sufficiently
long-lasting to require application-level failure handling. To this end, AmbientTalk makes use
of leasing [38]. Objects can be exported with a lease such that any far reference that points
to it provides access for only a limited period of time (the lease period). For example, the
MatchMaker application can export the myEndPoint as a leased object instead of directly
exporting the object itself:
def myEndPoint := object: {
// as before

};
def leasedEndPoint := lease: myEndPoint for: 2.minutes;
def pub := export: leasedEndPoint as: MatchMaker;

The function lease:for: expects an object and a duration (here, 2 minutes) and returns
a leased proxy for the object. When the proxy is passed to a client in another actor, a leased
far reference (also called a leased reference) is created to the leased object which remains valid
for at most 2 minutes. The client accesses the myEndPoint object transparently via a leased
reference until the lease time elapses. At the discretion of the creator of the lease, the lease can be
renewed, prolonging access to the object. By default, the lease is renewed every time a message
arrives at the leased object.

Connected
(messages are

forwarded)

Disconnected
(messages are

buffered)

Expired
(messages are

dropped)

reconnect
expireexpire

disconnect

Figure 2: State diagram of a (leased) far reference.

Figure 2 summarizes the different states a far reference can be in. When the far reference is
connected and the lease has not yet expired, it forwards messages to the remote object. While
disconnected, messages are accumulated in the reference, as previously explained. When the

14

lease expires, access to the remote object is permanently revoked and the far reference itself
becomes expired. Any message sent to an expired reference is discarded (not buffered), and any
future associated with this message is ruined with an appropriate exception. Far references to
non-leased objects are like leased references whose lease period is infinite.

Both endpoints of a leased reference can register callbacks to be invoked upon expiration,
e.g. to schedule clean-up actions. Once all far references to an object have expired, the object is
taken offline, becoming subject to garbage collection if it is no longer locally referenced. Leased
references facilitate distributed garbage collection: without leasing, a single disconnected far
reference could keep an object online forever.

6.3. Asynchronous Message Passing and Partial Failures

AmbientTalk also integrates leasing into asynchronous message passing to allow developers
to specify an upper bound on how long to wait for the return value of a message. An asyn-
chronous message may be annotated with the Due type tag. Like TwoWay, this indicates that
the message send will return a future. The Due type tag expects a duration, which indicates an
upper bound on how long this future will remain unresolved. We can use the Due type tag in the
exchange message send to denote the time the application is willing to wait for the exchange of
profiles as follows:
whenever: MatchMaker discovered: { |remoteEndPoint|
def leasedFuture := remoteEndPoint<-exchange(myProfile)@Due(2.minutes);
when: leasedFuture becomes: { |profile|
// display profile info from remote peer

} catch: TimeoutException using: { |e|
// profile transfer failed

}
};

The Due tag makes the exchange message send immediately return a future (stored in the
variable leasedFuture). This future is passed by leased reference to the remoteEndPoint

object initialized with a lease of 2 minutes. If the leasedFuture is resolved before its lease
time has elapsed, the becomes: block triggers as usual. Otherwise, when the lease time elapses,
the future is automatically ruined with a TimeoutException exception, and the catch: block
is triggered. If the associated message is still buffered locally, it is removed from the buffer and
discarded.

7. AmbientTalk at Work: Developing a Mobile Peer-to-peer Application

So far, we have shown how the language can be used to develop a small mobile peer-to-
peer application. Over the past few years, we have employed AmbientTalk to build a variety
of mobile peer-to-peer applications ranging from a drawing application5 to various multiplayer
games including an “urban game” called Flikken [39].

In this section, we describe a mobile music player application which we employ to compare
AmbientTalk with Java RMI [6]. Java RMI can still be considered a state-of-the-art middleware
for distributed object-oriented computing, forming the basis for mobile computing middelware
such as Jini (cf. section 9).

5A demo of the drawing application called weScribble is available at http://goo.gl/GUbJsD

15

7.1. The Mobile Music Player Application
Consider a music player running on mobile devices. The music player contains a library

of songs. When two people using the music player enter one another’s personal area network,
the music players set up an ad hoc network and exchange their music library’s song index (not
necessarily the songs themselves). After the exchange, the music players calculate the percentage
of songs both users have in common. If this percentage exceeds a certain threshold, the music
players can e.g. inform the user that someone with a similar taste in music is nearby.

MusicPlayerServiceObject@
device A

MusicPlayerServiceObject@
device B

session@
device B

openSession()

session

uploadSong(song)

'ok

endExchange()

Figure 3: The music library exchange protocol

Figure 3 gives a graphical overview of the music library exchange protocol modeled in an
asynchronous distributed object-oriented system. The figure depicts the protocol from the point
of view of device A. This protocol is executed simultaneously on both devices. Once both devices
discover each other, the music player running on A sends the openSession message to the
remote peer B to start a session to exchange its library index. In response to it, the remote
peer B returns a new session object which implements methods that allow the remote music
player to send song information (uploadSong) and to signal the end of the library exchange
(endExchange).

When implementing the music library exchange protocol, it is important to take the effects of
volatile connections into account. First, the application should remain responsive in the face of
intermittent failures, e.g., the application may want to inform the end-user that the transmission
of songs is temporarily suspended. In addition, the application must also cope with permanent
failures. Otherwise, if a peer disconnects in the middle of the library exchange, the session
may never terminate, and the application will consume unnecessary resources, e.g., a partially
uploaded library.

7.2. Comparison against Java RMI
We now compare AmbientTalk with Java RMI based on implementing the same music player

application in both platforms and subsequently, we evaluate both implementations quantitively
based on an analysis of their lines of code. We refer the reader to [40] for details regarding both
the AmbientTalk and Java RMI implementations.

The AmbientTalk implementation (90 LoC) is significantly shorter than the corresponding
Java RMI implementation (462 LoC). This difference can be partly attributed to the different
syntactic nature of AmbientTalk and Java, so by itself these numbers do not mean much. How-
ever, what we can compare is the relative amount of code spent on non-functional concerns
related to concurrency and distribution.

16

Java RMI AmbientTalk
Memory man-
agement code

145 7

Concurrency
control code

148 7

Failure handling
code

78 6

Application-
level code

91 70

Total lines of
code

462 90

(a) Absolute lines of code

19.70%	

77.78%	

16.88%	

6.67%	

32.03%	

7.78%	
 31.39%	

7.78%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Java	
 RMI	
 AmbientTalk	

Memory	

Management	

Concurrency	

control	

Failure	

handling	

ApplicaIon	

(b) Relative percentages

Figure 4: (a) Absolute LoC and (b) relative % of four concerns in the music player: memory
management, concurrency control, failure handling, application-specific code.

Table 4a lists a breakdown of the total number of lines of code according to four different
concerns: 1) memory management: includes the code to setup leases and reclaim resources
upon lease expiration, 2) concurrency control: includes support for asynchronous communication
and buffering during transient disconnections, 3) failure handling: managing timeouts and 4)
application-specific code.

Figure 4b shows the relative percentage of these lines of code compared to the total applica-
tion size. Note the relatively small percentage of AmbientTalk LoC spent on the non-functional
concerns. The main causes for the relative blow-up in non-functional code in Java RMI is that
it does not feature buffered, asynchronous communication, and its support for leasing is very
tightly coupled to the distributed garbage collection module. We should note that we deliber-
ately left out any comparison regarding service discovery, as Java RMI has no support for this.

The only conclusion that we want to draw from this comparison is that AmbientTalk seems
to succeed at reducing the impact of non-functional concerns that arise when developing fault-
tolerant mobile P2P applications.

8. An Operational Semantics for Featherweight AmbientTalk

Our exposition of AmbientTalk so far was largely informal. The rest of the paper aims to
provide a precise description of AmbientTalk’s concurrency and distribution model. To this end,
we present a small step operational semantics of a subset of AmbientTalk named Featherweight
AmbientTalk or ATf for short. Our semantics is based primarily on that of JCobox [41], but
adapted for a dynamically typed, classless language, and modified to precisely reflect Ambient-
Talk’s communicating event loops model with non-blocking futures.

The ATf subset contains actors, objects, isolates (pass-by-copy objects), blocks (functions),
non-blocking futures and asynchronous message sending. In Section 8.5 we extend ATf with
service discovery, enabling objects in different actors to discover one another. In Section 8.6,
we introduce the notion of disconnected actors and fault-tolerant messaging between actors. ATf

does not model AmbientTalk’s object inheritance using prototype-based delegation, its support
for trait-based composition (which is formalised elsewhere [29]), reflection, exceptions, leasing
and JVM interoperability.

17

A machine-executable implementation of the ATf semantics in PLT Redex [42] is available
online 6.

8.1. Syntax

e ∈ E ⊆ Expr ::= self | x | null | e ; e | λx.e | e(e) | let x = e in e | e.f | e.f := e

| e.m(e) | actor{f := e,m(x){e}} | object{f := e,m(x){e}}
| isolate{f := e,m(x){e}} | let xf , xr = future in e | resolve e e
| e← m(e) | e←f m(e) | when(e→ x){e}

x, xf , xr ∈ VarName, f ∈ FieldName,m,mf ,mµ ∈MethodName

Figure 5: Abstract syntax of ATf .

ATf features both functional and imperative object-oriented elements. The functional ele-
ments descend directly from the λ-calculus (using an eager evaluation strategy). Anonymous
functions are denoted by λx.e and correspond to AmbientTalk blocks. Variable lookup in ATf is
lexically scoped. Local variables can be introduced via let x = e in e.

The imperative object-oriented elements stem from object-based (i.e. classless) calculi [43].
ATf features object {...} and isolate {...} literal expressions to define fresh, anony-
mous objects. These literals consist of a sequence of field and method declarations. Fields may
be accessed and updated. Methods may be invoked either synchronously via e.m(e) or asyn-
chronously via e← m(e).

In the scope of a method body, the pseudovariable self refers to the enclosing object literal.
self cannot be used as a parameter name in methods or redefined using let.

New actors can be spawned using the actor {...} literal expression. This creates a new
object with the given fields and methods in a fresh actor that executes in parallel. Actor and iso-
late literals may not refer to lexically enclosing variables, apart from the self-pseudovariable.
That is, for all field initialiser and method body expressions e in such literals, the set of free vari-
ables FV (e) ⊆ {self}. Isolates and actors are thus literally “isolated” from their surrounding
lexical scope, allowing their subexpressions to be evaluated independent of the lexical scope in
which they were defined.

Futures can be created using the expression let xf , xr = future in e. This expression brings
two variables in scope within the subexpression e: xf will be bound to a fresh future value and
xr will be bound to a corresponding resolver object. This ATf expression corresponds to the
built-in makeFuture() function from AmbientTalk (cf. Section 5.4).

The resolver object can be used to assign a value to its corresponding future, using the ex-
pression resolve xr e. This resolves the future corresponding to xr with the value of e. The
resolve expression from ATf corresponds to invoking the built-in resolver.resolve(v)
method in AmbientTalk (cf. Section 5.4).

The value of a future xf can be awaited using the expression when(xf → x){e}. When
the future becomes resolved with a value v, the expression e is evaluated with x bound to v.

6http://soft.vub.ac.be/˜cfscholl/index.php?page=at_semantics

18

This ATf expression corresponds to the when:becomes:catch: function in AmbientTalk
(cf. Section 5.4).

ATf supports two forms of asynchronous message passing. Expressions of the form e ←
m(e) denote one-way asynchronous message sends that do not return a useful value. If a return
value is expected, the expression e ←f m(e) denotes a two-way asynchronous message send
that immediately returns a future for the result of invoking the method m. This is the equivalent
of messages annotated with the @TwoWay tag in AmbientTalk (cf. Section 5.4).

8.1.1. Syntactic Sugar
A number of ATf expressions can be defined in terms of a desugaring (local transformation),

as shown in Figure 6.

e ; e′ def= let x = e in e′ x /∈ FV(e′)
λx.e

def= let xself = self in object { xself /∈ FV(e)
apply(x){[xself/self]e}
}

e(e) def= e.apply(e)
e←f m(e) def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e)

e← mf (e · xr) ; xf
when(e→ x){e′} def= let xf , xr = future in xf , xr /∈ FV(e) ∪ FV(e′)

let xc = λx.(xr.resolveµ(e′)) in xc /∈ FV(e)
e← registerµ(xc) ; xf

resolve e e′ def= let xr = e in xr /∈ FV(e′)
let xc = λx.(xr ← resolveµ(x)) in xc /∈ FV(e′)
e′ ← registerµ(xc)

Figure 6: ATf syntactic sugar.

It is well-known that functions can be expressed in terms of objects and vice-versa. ATf

functions (like AmbientTalk blocks) are defined as objects with a single method called apply.
The substitution [xself/self]e is necessary to ensure that within function bodies nested inside
object methods, the self-pseudovariable remains bound to the object enclosing the function,
and not to the object representing the function. Function application e(e) is desugared into
invoking an object’s apply method.

A two-way message send e ←f m(e) is syntactic sugar for a simple one-way message
send that carries a fresh resolver object xr, added as a hidden last argument. The message m is
markedmf , serving as a signal for the recipient actor that it needs to pass the result of the method
invocation to xr. The value of a two-way message send expression is the future xf corresponding
to the passed resolver xr.

The desugaring of “when” and “resolve” make use of special messages named resolveµ and
registerµ. The µ (for “meta”) suffix identifies these messages as special meta-level messages
that should be interpreted differently by actors. A regular ATf program cannot fabricate these
messages other than by using the “when” and “resolve” expressions.

19

The expression when(e → x){e′} is used to await the value of a future. It is syntactic
sugar for registering a callback function xc with the future. The expression as a whole returns
a dependent future xf that will become resolved with the expression e′ when the future denoted
by e eventually resolves.

The expression resolve e e′ is used to resolve a future with a value, where e must reduce to a
resolver and e′ to any value. If e′ reduces to a non-future value, the callback function xc will be
called with its x argument bound to the value of e′. If e′ reduces to a future value, the callback
function will be called later, with its x argument bound to the resolved value of the future. Thus,
this definition ensures that futures can only be truly resolved with non-future values.

8.2. Semantic Entities

K ∈ Configuration ::= A Configurations
a ∈ A ⊆ Actor ::= A〈ιa, O,Q, e〉 Actors

Object ::= O〈ιo, t, F,M〉 Objects
t ∈ Tag ::= O | I Object tags
Future ::= F〈ιf , Q, v〉 Futures

Resolver ::= R〈ιr, ιf 〉 Resolvers
m ∈Message ::= M〈v,m, v〉 Messages
Q ∈ Queue ::= m Queues

M ⊆Method ::= m(x){e} Methods
F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ε Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References
e ∈ E ⊆ Expr ::= . . . | r Runtime Expressions

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιa ∈ ActorId, ιo ∈ ObjectId

ιf ∈ FutureId ⊂ ObjectId, ιr ∈ ResolverId ⊂ ObjectId

Figure 7: Semantic entities of ATf .

ATf semantic entities are shown in Figure 7. Caligraphic letters like F and M are used
as “constructors” to distinguish the different semantic entities syntactically. Regular uppercase
letters like F and M denote sets or sequences. Actors, futures, resolvers and objects each have a
distinct address or identity, denoted ιa, ιf , ιr and ιo respectively.

The state of an ATf program is represented by a configuration K, which is a set of con-
currently executing actors. Each actor is an event loop consisting of an identity ιa, a heap O
denoting the set of objects, futures and resolvers owned by the actor, a queue Q containing a
sequence of messages to be processed, and the expression e that the actor is currently executing.

Objects consist of an identity ιo, a tag t and a set of fields F and methods M . The tag t is
used to distinguish objects from isolates, with t = O denoting an object and t = I denoting an
isolate. Isolates are parameter-passed by-copy rather than by-reference in remote message sends,
but otherwise behave the same as regular objects.

An ATf future is a first-class placeholder for an asynchronously awaited value. Futures con-
sist of an identity ιf , a queue of pending messages Q and a resolved value v. A future is initially

20

unresolved, in which case its resolved value v is set to a unique empty value ε. While the future
is unresolved, any messages sent to the future are queued up in Q. When the future becomes
resolved, all messages in Q are forwarded to the resolved value v and the queue is emptied.
We do not model AmbientTalk’s support for ruined futures and asynchronous propagation of
exceptions.

A resolver object denotes the right to assign a value to its unique paired future. Resolvers
consist of an identity ιr and the identity of their paired future ιf . The resolver is the only means
through which a future can be resolved with a value.

Messages are triplets consisting of a receiver value v, a method name m and a sequence of
argument values v. They denote asynchronous messages that are enqueued in the message queue
of actors or futures.

All object references consist of a global component ιa that identifies the actor owning the
referenced value, and a local component ιo, ιf or ιr. The local component indicates that the
reference refers to either an object, a resolver or a future. We define FutureId and ResolverId
to be a subset of ObjectId such that a reference to a future or a resolver is also a valid object
reference. As such, ιa.ιo can refer to either an object, a resolver or a future, but ιa.ιf can refer
only to a future.

Our reduction rules operate on “runtime expressions”, which are simply all expressions e
including references r, as a subexpression may reduce to a reference before being reduced further.

8.3. Reduction Rules

8.3.1. Evaluation Contexts
We use evaluation contexts [44] to indicate what subexpressions of an expression should be

fully reduced before the compound expression itself can be further reduced:

e� ::= � | let x = e� in e | e�.f | e�.f := e | v.f := e�

| e�.m(e) | v.m(v, e�, e) | e� ← m(e) | v ← m(v, e�, e)

e� denotes an expression with a “hole”. Each appearance of e� indicates a subexpression
with a possible hole. The intent is for the hole to identify the next subexpression to reduce in a
compound expression. The notation e�[e] indicates that the expression e is part of a compound
expression e�, and should be reduced first before the compound expression can be reduced
further.

8.3.2. Notation
Actor heaps O are sets of objects, resolvers and futures. To lookup and extract values from

a set O, we use the notation O = O′ ·∪{o}. This splits the set O into a singleton set containing
the desired object o and the disjoint set O′ = O \ {o}. The notation Q = Q′ · m deconstructs
a sequence Q into a subsequence Q′ and the last element m. We represent queues as sequences
of messages that are processed right-to-left, meaning that the last message in the sequence is the
first to be processed. We denote both the empty set and the empty sequence as ∅.

8.3.3. Evaluation Rules
Our semantics is defined in terms of a relation on configurations,K → K ′. The rules defining

the relation are split into two parts: actor-local rules a →a a
′ and global rules K →k K

′. This
makes it explicit which steps can be executed in isolation within a single actor a, and which
require interaction between different actors in a configuration K.

21

An ATf program is an expression e that is reduced in an initial configuration containing a
single “main” actor Kinit = {A〈ιa, ∅, ∅, [null/self]e〉}. The actor’s heap and queue are initially
empty, and the self-pseudovariable is bound to null at top-level.

Both actor-local and global rules can be applied non-deterministically, which gives rise to
concurrency. We do not yet consider actors distributed across different devices, connected by
a network, until Section 8.6. For now, we consider all actors to remain permanently connected
with each other.

Actor-local reductions. Actors operate by perpetually taking the next message from their mes-
sage queue, transforming the message into an appropriate expression to evaluate, and then evalu-
ate (reduce) this expression to a value. When the expression is fully reduced, the next message is
processed. As discussed previously, the process of reducing such a single expression to a value
is called a turn. It is not possible to suspend a turn and start processing another message in the
middle of a reduction.

The only valid state in which an actor cannot be further reduced is when its message queue
is empty, and its current expression is fully reduced to a value. The actor then sits idle until it
receives a new message. If an actor is reducing a compound expression, and finds no applicable
actor-local reduction rule to reduce it further, the actor is stuck. This signifies an error in the
program.

[v/x]x′ = x′ [v/x]m(x){e} = m(x){e} if x ∈ x
[v/x]x = v [v/x]m(x){e} = m(x){[v/x]e} if x /∈ x

[v/x]e.f = ([v/x]e).f [v/x]e.f := e = ([v/x]e).f := [v/x]e
[v/x]null = null [v/x]e.m(e) = [v/x]e.m([v/x]e)

[v/x]r = r [v/x]e← m(e) = [v/x]e← m([v/x]e)

[v/x]let x′ = e in e = let x′ = [v/x]e in [v/x]e
[v/x]let x = e in e = let x = [v/x]e in e

[v/x]actor{f := e,m(x){e}} = actor{f := e,m(x){e}}
[v/x]isolate{f := e,m(x){e}} = isolate{f := e,m(x){e}}
[v/x]object{f := e,m(x){e}} = object{f := [v/x]e, [v/x]m(x){e}} if x 6= self

[v/self]object{f := e,m(x){e}} = object{f := e,m(x){e}}
[v/x]let xf , xr = future in e = let xf , xr = future in [v/x]e
[v/x]let x, xr = future in e = let x, xr = future in e
[v/x]let xf , x = future in e = let xf , x = future in e

Figure 8: Substitution rules: x denotes a variable name or the pseudovariable self , v denotes a
value.

We now summarize the actor-local reduction rules in Figure 9:

• LET: a “let”-expression simply substitutes the value of x for v in e according to the substi-
tution rules outlined in Figure 8.

• NEW-OBJECT, NEW-ISOLATE: these rules are identical except for the tag of the fresh
object, which is set to O for objects and I for isolates. Evaluating an object or literal

22

(LET)
A〈ιa, O,Q, e�[let x = v in e]〉
→a A〈ιa, O,Q, e�[[v/x]e]〉

(NEW-OBJECT)
ιo fresh

o = O〈ιo, O, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[object{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/self]e; r]〉

(NEW-ISOLATE)
ιo fresh

o = O〈ιo, I, f := null,m(x){e′}〉 r = ιa.ιo

A〈ιa, O,Q, e�[isolate{f := e,m(x){e′}}]〉
→a A〈ιa, O ∪ {o}, Q, e�[r.f := [r/self]e; r]〉

(INVOKE)
O〈ιo, t, F,M〉 ∈ O

r = ιa.ιo m(x){e} ∈M
A〈ιa, O,Q, e�[r.m(v)]〉

→a A〈ιa, O,Q, e�[[r/self][v/x]e]〉

(FIELD-ACCESS)
O〈ιo, t, F,M〉 ∈ O f := v ∈ F

A〈ιa, O,Q, e�[ιa.ιo.f]〉
→a A〈ιa, O,Q, e�[v]〉

(FIELD-UPDATE)
O = O′ ·∪{O〈ιo, t, F ·∪{f := v′},M〉}
O′′ = O′ ∪ {O〈ιo, t, F ∪ {f := v},M〉}

A〈ιa, O,Q, e�[ιa.ιo.f := v]〉
→a A〈ιa, O′′, Q, e�[v]〉

(MAKE-FUTURE)
ιf , ιr fresh

O′ = O ∪ {F〈ιf , ∅, ε〉,R〈ιr, ιf 〉}
A〈ιa, O,Q, e�[let xf , xr = future in e]〉
→a A〈ιa, O′, Q, e�[[ιa.ιf/xf][ιa.ιr/xr]e]〉

(LOCAL-ASYNCHRONOUS-SEND)
A〈ιa, O,Q, e�[ιa.ιo ← m(v)]〉

→a A〈ιa, O,M〈ιa.ιo,m, v〉 ·Q, e�[null]〉

(PROCESS-MESSAGE)
ιo /∈ FutureId

e = process(ιa.ιo,m, v)
A〈ιa, O,Q · M〈ιa.ιo,m, v〉, v〉

→a A〈ιa, O,Q, e〉

(PROCESS-MSG-TO-FUTURE)
O = O′ ·∪{F〈ιf , Q′, v′〉}
(m, e) = store(m, v, v′)

A〈ιa, O,Q · M〈ιa.ιf ,m, v〉, v〉
→a A〈ιa, O′ ∪ {F〈ιf ,m ·Q′, v′〉}, Q, e〉

(RESOLVE)
R〈ιr, ιf 〉 ∈ O O = O′ ·∪{F〈ιf , Q′, ε〉} v 6= ιa′ .ιf ′

A〈ιa, O,Q, e�[ιa.ιr.resolveµ(v)]〉
→a A〈ιa, O′ ∪ {F〈ιf , ∅, v〉}, Q, e�[fwd(v,Q′)]〉

Figure 9: Actor-local reduction rules.

23

expression adds a new object to the actor’s heap. The new object’s fields are initialised
to null. The literal expression reduces to a sequence of field update expressions. The
self pseudovariable within these field update expressions refers to the new object. The
last expression in the reduced sequence is a reference r to the new object.

• INVOKE: a method invocation looks up the method m in the receiver object ιa.ιo and
reduces the method body expression e with appropriate values for the parameters x and
the pseudovariable self. It is only possible to invoke a method on a local object. The
receiver reference’s global component ιa must match the identity of the current actor.

• FIELD-ACCESS, FIELD-UPDATE: a field update modifies the actor’s heap such that it con-
tains an object with the same address but with an updated set of fields. Again, field access
and field update apply only to objects local to the executing actor.

• MAKE-FUTURE: a new future-resolver pair is created such that the future has an empty
queue and is unresolved (its value is ε), and the resolver contains the future’s identity ιf .
The subexpression e is further reduced with xf and xr bound to references to the new
future and resolver respectively.

• LOCAL-ASYNCHRONOUS-SEND: an asynchronous message sent to a local object (i.e. an
object owned by the actor executing the message send) adds a new message to the end of
the actor’s own message queue. The message send immediately reduces to null.

• PROCESS-MESSAGE: this rule describes the processing of incoming asynchronous mes-
sages directed at local objects or resolvers (but not futures). A new message can be pro-
cessed only if two conditions are satisfied: the actor’s queueQ is not empty, and its current
expression cannot be reduced any further (the expression is a value v). The auxiliary func-
tion process (see Figure 10) distinguishes between:

– a regular message m (or the meta-level message resolveµ), which is processed by
invoking the corresponding method on the receiver object.

– a two-way message mf , as generated by the desugaring of e ←f m(e). Such a
message is processed by invoking the corresponding method on the receiver object,
and by sending the result of the invocation to the “hidden” last parameter r which
denotes a resolver object.

– a meta-level message registerµ, which indicates the registration of a callback func-
tion v, to be applied to the value of a resolved future. Since process is only applicable
on non-future values ιa.ιo, the callback function v can be triggered immediately, by
asynchronously applying it to ιa.ιo. This ensures that v is applied later in its own
turn.

• PROCESS-MSG-TO-FUTURE: this rule describes the processing of incoming asynchronous
messages directed at local futures. The processing of the message depends on the state
of the future, as determined by the auxiliary function store. This function returns a tuple
(m, e) where m denotes either a message or the empty sequence, and e denotes either an
asynchronous message send or null. The message m is appended to the future’s queue,
and the actor continues reducing the expression e. The store function determines whether
to store or forward the message m, depending on the state of the future and the type of
message:

24

store(m, v, ε)
def
= (M〈ε,m, v〉,null)

store(m, v, v)
def
= (∅, v ← m(v)) m 6= registerµ, v 6= ε

store(m, ιa.ιo, v)
def
= (∅, ιa.ιo ← apply(v)) m = registerµ, v 6= ε

fwd(v, ∅) def
= null

fwd(v,Q · M〈ε,m, v〉) def
= v ← m(v) ; fwd(v,Q) m 6= registerµ

fwd(v,Q · M〈ε,m, ιa.ιo〉)
def
= ιa.ιo ← apply(v) ; fwd(v,Q) m = registerµ

process(ιa.ιo,m, v)
def
= ιa.ιo.m(v) m 6= mf ,m 6= registerµ

process(ιa.ιo,mf , v · r)
def
= r ← resolveµ(ιa.ιo.m(v))

process(ιa.ιo, registerµ, v)
def
= v ← apply(ιa.ιo)

Figure 10: Auxiliary functions used in the reduction rules.

– If the future is unresolved (i.e. its value is still ε), the message is enqueued and must
not be forwarded yet (e is null).

– If the future is resolved and the message name m is not registerµ, the message need
not be enqueued (m is ∅), but is rather immediately forwarded to the resolved value
v.

– If the future is resolved and the message is registerµ, which indicates a request to
register a callback function ιa.ιo with the future, the function is asynchronously ap-
plied to the resolved value v. This request need not be enqueued (m is ∅).

• RESOLVE: this rule describes the reduction of the meta-level message resolveµ, as used
in the desugaring of the “when” and “resolve” expressions. This message can only be
reduced when directed at a resolver object ιr whose paired future ιf is still unresolved
(i.e. its value is still ε). The paired future is updated such that it is resolved with the value
v, which must be a non-future value (i.e. v 6= ιa′ .ιf ′). At the same time, the future’s
queue Q′ is emptied. The messages previously stored in Q′ are forwarded as a sequence
of message sends, as described by the auxiliary function fwd :

– If the queue is empty, no more messages need to be forwarded and the expression
reduces to null.

– If the queue contains a message m or the meta-level message resolveµ, that message
is forwarded to v.

– If the queue contains the message registerµ, this indicates a request to notify the
callback function ιa.ιo when the future becomes resolved. The function is thus asyn-
chronously applied to the future’s resolved value v.

Actor-global reductions. We summarize the actor-global reduction rules in Figure 11:

25

(NEW-ACTOR)
ιa′ , ιo fresh

r = ιa′ .ιo a′ = A〈ιa′ ,O〈ιo, O, f := null,m(x){e′}〉, ∅, r.f := [r/self]e〉
K ·∪A〈ιa, O,Q, e�[actor{f := e,m(x){e′}}]〉 →k K ∪ A〈ιa, O,Q, e�[r]〉 ∪ a′

(FAR-ASYNCHRONOUS-SEND)
K = K ′ ·∪A〈ιa′ , O′, Q′, e′〉

(O′′, v′) = pass(ιa, O, v, ιa′) Q′′ =M〈ιa′ .ιo,m, v
′〉 ·Q′

K ·∪A〈ιa, O,Q, e�[ιa′ .ιo ← m(v)]〉 →k K
′ ∪ A〈ιa, O,Q, e�[null]〉 ∪ A〈ιa′ , O′ ∪O′′, Q′′, e′〉

(CONGRUENCE)
a→a a

′

K ·∪ {a} →k K ∪ {a′}

Figure 11: Actor-global reduction rules.

• NEW-ACTOR: when an actor ιa reduces an actor literal expression, a new actor ιa′ is added
to the configuration. The new actor’s heap consists of a single new object ιo whose fields
and methods are described by the literal expression. As in the rule for NEW-OBJECT, the
object’s fields are initialized to null. The new actor has an empty queue and will, as its
first action, initialize the fields of its only object. The actor literal expression itself reduces
to a far reference to the new object, allowing the creator actor to communicate further with
the new actor.

• FAR-ASYNCHRONOUS-SEND: this rule describes the reduction of an asynchronous mes-
sage send directed at a far reference, i.e. a reference whose global component ιa′ differs
from that of the current actor ιa. A new message is appended to the queue of the re-
cipient actor ιa′ . The arguments v of the message send expression are parameter-passed
as described by the auxiliary function pass (see Figure 10). This function prescribes the
set O′′ of copied isolate objects to be added to the recipient’s heap and a sequence of
values v′ with updated addresses referring to the copied isolates, if any. As in the LOCAL-
ASYNCHRONOUS-SEND rule, the message send expression evaluates to null.

• CONGRUENCE: this rule merely relates the local and global reduction rules.

8.3.4. Parameter-passing rules
The auxiliary function pass(ιa, O, v, ι′a) (see Figure 12) describes the rules for parameter-

passing the values v from actor ιa to actor ι′a, where O is the heap of the sender actor ιa.
The parameter-passing rules for ATf values are simple: objects are passed by far reference,

isolates are passed by copy, and null is passed by value. When an isolate is passed by copy, all
of its constituent field values are recursively parameter-passed as well.

The auxiliary function reach(O, v) returns the set of all isolate objects reachable via other
isolates in O, starting from the root values v. The first two cases define the stop conditions of

26

this traversal. In the third case, an isolate object o is encountered and added to the result. All
of o’s field values are added to the set of roots, and o itself is removed from the set of objects
to consider, so that it is never visited twice. The fourth rule skips all other values and applies
when v is null, a far reference ιa′ .ιo′ , an object that was already visited (v = ιa.ιo, ιo /∈ O) or
a non-isolate object (v = ιa.ιo,O〈ιo, O, F,M〉 ∈ O).

The mapping σ prescribes fresh identities for each isolate inO′. The function pass prescribes
the set of isolates O′σ which is simply the set O′ with all isolates renamed according to σ. The
function σv replaces references to parameter-passed isolates with references to the fresh copies,
and is the identity function for all other values.

8.4. Safety and Liveness Properties of ATf

In Section 5.5 we argued that AmbientTalk’s event loop concurrency model avoids low-level
data races and deadlocks by design. Having introduced an operational semantics for ATf , we can
state these properties more formally.

8.4.1. Data Race Freedom
A data race would occur when two or more actors would simultaneously try to access the

field of an object, and at least one of the field accesses is a field update. In the operational
semantics, there are no true simultaneous accesses as the “concurrent” actors are reduced one
step at a time. However, a simultaneous field access would occur if there are at least two actors
in a configuration that would have a field access as the next expression to evaluate, and both
actors could proceed. Formally:

Definition 1 (Field Access). A configuration K has a field access on a reference r in actor
a ∈ K, denoted fieldaccess(K, a, r) iff a = A〈ιa, O,Q, e�[e]〉 with e ≡ r.f or e ≡ r.f := v,
and K →k K

′′, with K ′′ = K ′′′ ·∪ a′ and a′ = A〈ιιa , O,Q, e�[v]〉.

Definition 2 (Simultaneous Field Access). A configuration K has a simultaneous field access
on a reference r iff K = K ′ ·∪ a ·∪ a′ and fieldaccess(K, a, r) and fieldaccess(K, a′, r).

reach(∅, v)
def
= ∅

reach(O, ∅) def
= ∅

reach(O ·∪o, v · ιa.ιo)
def
= reach(O, v · v′) ∪ {o} if o = O〈ιo, I, f := v′,M〉

reach(O, v · v)
def
= reach(O, v) otherwise

pass(ιa, O, v, ι′a)
def
= (O′σ, σv v)

whereO′ = reach(O, v)
σ = {ιo 7→ ι′o | O〈ιo, t, F,M〉 ∈ O′, ι′o fresh }
O′σ = {O〈σ(ιo), I, f := σv(v),M〉 | O〈ιo, I, f := v,M〉 ∈ O′}

σv(v) =
{
ι′a.ι
′
o if v = ιa.ιo, ιo 7→ ι′o ∈ σ

v otherwise

Figure 12: Auxiliary functions defining parameter-passing.

27

Theorem 1 (Data Race Freedom). Let K be a configuration. K is free of data races as there
can be no simultaneous field accesses in K.

Proof. We show that if there is more than one actor in a configuration trying to access the
same field of the same object, then at most one of these actors can make a step. Let r be a
reference to the object that is being simultaneously accessed. Let K ′ ⊆ K be the set of actors
performing a field access of the form e�[r.f] or e�[r.f := v]. Then at most one of these field
accesses can be reduced to a value v, all other actors will be stuck.

The only rules that allow such field accesses to be further reduced are (FIELD-ACCESS) and
(FIELD-UPDATE). These rules can only be triggered if r is of the form ιa.ιo. If r is any value
other than a reference to an object, e.g. null or ιa.ιf , the actor will get stuck.

If r = ιa.ιo both rules require that the actor executing the expression has a corresponding
identifier ιa. As actor identifiers are unique within a configuration (cf. rule (NEW-ACTOR)),
there can be at most one actor with identifier ιa. Thus there can be at most one actor where
e�[r.f] or e�[r.f := v] can be reduced to a value. All other actors executing these expressions
must have different identifiers, and thus the (FIELD-ACCESS) and (FIELD-UPDATE) rules are not
applicable, causing these actors to get stuck, thus preventing a simultaneous field access.

8.4.2. Deadlock Freedom
We show that, given two reasonable assumptions, any message sent from one actor to another

must eventually be processed. That is, messages cannot get stuck indefinitely in the message
queues of actors, i.e. message passing in ATf is deadlock-free. This result, however, depends on
two assumptions:

Totality We assume that the individual message processing turns of all actors are total, i.e. that
processing a message does not diverge or get stuck, but always eventually reduces to a
value. This assumption certainly does not hold for all ATf programs. It only holds for
correct programs that do not provoke runtime errors (which would lead to stuck states)
and that do not diverge (i.e. go into an infinite loop).

Axiom 1 (Totality). A total actor configuration K is one where each actor a ∈ K that
is evaluating a compound expression e will eventually reduce this expression to a value v.
That is, ∀a ∈ K, a = A〈ιa, O,Q, e〉, e 6= v ∃K ′ : K ·∪a→∗k K ′ ∪ A〈ιa, O′, Q′, v〉

Here,→∗k is the reflexive transitive closure of→k.

Fairness Actor configurations K can be reduced in a non-deterministic manner when multiple
reduction rules are applicable, as we do not specify a particular order in which the rules
apply. However, we will assume a fair scheduling strategy among actors (i.e. every actor
that can make progress eventually does make progress). An unfair scheduler could pre-
vent an actor from making progress by always choosing reduction rules that advance only
other actors. Fairness can be enforced by the rewrite system (for ATf) or the VM (for
AmbientTalk).

Axiom 2 (Fairness). We require ATf computations to be fair. A computation is fair if each
reduction rule K →k K

′ that is enabled (i.e. is applicable) is either eventually chosen or
becomes permanently disabled (i.e. inapplicable).

28

Our definition of fairness is based on Agha et al.’s foundational work [45]. We refer to
their work for a more formal and detailed treatment of fairness.

Given these assumptions, it can be guaranteed that messages never get stuck in the message
queues of actors, i.e. all messages are eventually processed. Our proof depends on the following
two lemmas:

Lemma 1 (Message sending is non-blocking). Sending an asynchronous message never blocks
the sending actor: ∀K ·∪a, a = A〈ιa, O,Q, e�[ιa′ .ιo′ ← m(v)]〉 ∃K ′ : K ·∪a→k K

′ ·∪A〈ιa, O,Q′, e�[null]〉.
Proof. If ιa′ = ιa then the message send is local, and the (LOCAL-ASYNCHRONOUS-SEND)

rule in combination with the (CONGRUENCE) rule is directly applicable.
Otherwise, ιa′ 6= ιa such that the only rule that is applicable is (FAR-ASYNCHRONOUS-

SEND) This rule is applicable regardless of what particular expression e′ the recipient actor ιa′ is
executing. The recipient actor does not need to be in any particular state to accept new incoming
messages.

Lemma 2 (Message receipt is non-selective). If an actor is ready to process a message and its
message queue is non-empty, it must always process the next message. It cannot skip or delay
the processing of certain messages. That is ∀K ·∪ a, a = A〈ιa, O,Q · M〈v,m, v〉, v′〉 ∃K ′ :
K ·∪ a→k K

′ ·∪ A〈ιa, O′, Q, e〉.
Proof. By case analysis on the form of v, the receiver of the message. A value v can either

be a reference r or the values null or ε. The latter two can never be a valid receiver value: the
only rules that ever enqueue messages in an actor’s queue are (LOCAL-ASYNCHRONOUS-SEND),
where the value must be a local reference, and (FAR-ASYNCHRONOUS-SEND), where the value
must be a far reference. It follows that v must be a reference, more specifically, a reference ιa.ιo
denoting an object, future or resolver owned by a.

If v is a reference to an object or resolver, i.e. v = ιa.ιo with ιo /∈ FutureId, then the
rule (PROCESS-MESSAGE) is applicable. Apart from requiring that the actor’s expression has
been fully reduced to a value v and that the message is first in the queue, there are no particular
restrictions on the contents of the message.

If v is a reference to a future, i.e. v = ιa.ιf , then rule (PROCESS-MSG-TO-FUTURE) is
applicable, regardless of whether the future is resolved or unresolved.

Theorem 2 (Eventual Message Processing). All messages sent between actors are eventually
processed. That is, messages cannot get stuck indefinitely in actors’ message queues.

Proof. By Lemma 1, when an actor a1 is ready to send a message m it can always proceed
independent of the state of the recipient actor a2. By Axiom 2, the rule (FAR-ASYNCHRONOUS-
SEND) will eventually be applied. The message is now in the incoming message queue Q of
a2.

We now show that the message m is eventually processed by a2. First, assume Q = Q′ ·m
(i.e. m is the first message in the queue). If a2 is idle (i.e. it has fully reduced its expression to
a value v), Lemma 2 is applicable and a2 can eventually process m (Axiom 2). Otherwise, a2 is
still processing an earlier message. By Axiom 1, message processing is total such that the actor
eventually becomes idle, reducing the problem to the previous case.

If Q contains more than one message, i.e. Q = Q′ ·m′, the above reasoning similarly applies
and m′ will eventually be processed, shortening a2’s queue to Q′. As messages are processed in
strict FIFO order, m must eventually become the first message in the queue and will eventually
be processed.

29

8.5. Service Discovery

In Figure 13, we extend ATf with primitives for service discovery, allowing objects in differ-
ent actors to discover one another as described in Section 6.1.

Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,X, I, e〉
X ⊆ Exports ::= (O, v, τ)
I ⊆ Imports ::= (r, τ)

v ∈ Value ::= . . . | τ
τ ∈ Type

Syntax
e ::= . . . | τ | export e e | discover e e | whenDiscovered(e→ x){e}

Evaluation Contexts
e� ::= . . . | export e� e | export v e� | discover e� e | discover v e�

Syntactic Sugar
whenDiscovered(e→ x){e′} def= discover e (λx.e′)

Figure 13: Extensions for service discovery.

ATf actors are extended with a set of exported objectsX and a set of import callbacks I . Val-
ues are extended to include type tags τ . Objects can be exported, and callbacks can be registered,
under various type tags. When the tags match, the callback is fired. The ATf syntax is extended
with tag literals and expressions to export objects, to register callbacks for discovery and the syn-
tactic sugar whenDiscovered(e→ x){e′} to resemble the AmbientTalk when:discovered:
function.

Figure 14 lists the additional reduction rules for service discovery:

(PUBLISH)
(O′, v′) = pass(ιa, O, ιa′ .ιo, ιa)

A〈ιa, O,Q,X, I, e�[export τ ιa′ .ιo]〉
→a A〈ιa, O,Q,X ∪ (O′, v′, τ), I, e�[null]〉

(SUBSCRIBE)
A〈ιa, O,Q,X, I, e�[discover τ ιa.ιo)]〉
→a A〈ιa, O,Q,X, I ∪ (ιa.ιo, τ), e�[null]〉

(MATCH)
A〈ιa′ , O′, Q′, X ′ ·∪(O′′, v, τ), I ′, e′〉 ∈ K

(O′′′, v′) = pass(ιa′ , O′′, v, ιa) Q′′ =M〈ιa.ιo, apply, v′〉 ·Q
K ·∪A〈ιa, O,Q,X, I ·∪(ιa.ιo, τ), e〉 →k K ∪ A〈ιa, O ∪O′′′, Q′′, X, I, e〉

Figure 14: Reduction rules for service discovery.

30

• PUBLISH: to reduce an export expression, the first argument must be reduced to a type
tag τ and the second argument must be reduced to a reference (which may be a far refer-
ence). The effect of reducing an export expression is that the actor’s set of exported
objects X is extended to include the exported object and tag. An exported object is
parameter-passed as if it were included in an inter-actor message. Hence, if the object
is an isolate, a copy of the isolate is made at the time it is exported.

• SUBSCRIBE: to reduce a discover expression, the first argument must be reduced to a
type tag τ and the second argument must be reduced to an object reference. The effect of
reducing a discover expression is that the actor’s set of import callbacks I is extended
to include a reference to the local callback object, and the tag.

• MATCH: this rule is applicable when a configuration of actors contains both an actor ιa′

that exports an object under a type tag τ , and a different actor ιa that has registered a
callback under the same tag τ . The effect of service discovery is that an asynchronous
apply message will be sent to the callback object in ιa. The callback is simultaneously
removed from the import set of its actor so that it can be notified at most once. The
exported object v is parameter-passed again, this time to copy it from the publication actor
ιa′ to the subscription actor ιa.

Note that when exporting an isolate object, the isolate will be copied at least twice: once
when initially exported, and once again whenever it is matched against a subscription. The
initial copy upon export is necessary such that the exported object becomes self-contained, and
can no longer be modified by the exporting actor. The (MATCH) rule can be triggered while the
exporting actor is in the middle of evaluating an expression e′. If we were to make the initial
copy of the exported object in the (MATCH) rule, a data race could be possible where the actor
ιa′ was in the middle of updating the isolate’s fields.

8.6. Robust time-decoupled message sends

So far, we have assumed that ATf actors are always permanently connected to all other actors.
In practice, actors may reside on distributed devices and only occasionally connect to deliver
messages. In Figure 15, we extend ATf actors with networks. Networks partition actors such
that communication between actors is only possible if they are in the same network. A network
is represented as a unique identifier.

Semantic Entities
a ∈ A ⊆ Actor ::= A〈ιa, O,Q,Qout, ιn, e〉
Qout ∈ Outbox ::= ιa 7→ l
l ∈ Envelope ::= (m, Om)

ιn ∈ NetworkId

Figure 15: Extensions for time-decoupled message sends.

The use of networks allows us to more faithfully describe AmbientTalk’s remote message
passing semantics with buffering of messages sent to far references (see Section 6.2). Asyn-
chronous message sends are now split into two parts: message creation and message transmis-
sion. Whenever an actor reduces the← operator, a message is created and stored in a message

31

outbox (called Qout), to be transmitted when the recipient is connected. This is called time-
decoupled communication [21], as actors do not require an active network connection at the time
they send a message to each other.

We represent an actor’s outbox Qout as a function that, for each remote actor ιa, stores all
outgoing messages addressed to objects owned by ιa. The outgoing messages Qout(ιa) are
represented as an ordered sequence of envelopes l. An envelope is simply a message m together
with the set of isolate objects Om passed as arguments to that message. These objects have to be
passed together with the message upon transmission.

In the reduction rules, the original rule for FAR-ASYNCHRONOUS-SEND is replaced by new
rules for message creation (CREATE-MESSAGE) and message transmission (TRANSMIT-MESSAGE).
Figure 16 lists the additional reduction rules for time-decoupled message transmission:

(FAR-ASYNCHRONOUS-SEND)
This rule is replaced by (CREATE-MESSAGE) and (TRANSMIT-MESSAGE).

(CREATE-MESSAGE)
(Om, v

′) = pass(ιa, O, v, ιa′) m =M〈ιa′ .ιo,m, v
′〉

l = Qout(ιa′) Q′out = Qout[ιa′ 7→ (m, Om) · l]
A〈ιa, O,Q,Qout, ιn, e�[ιa′ .ιo ← m(v)]〉 →a A〈ιa, O,Q,Q′out, ιn, e�[null]〉

(TRANSMIT-MESSAGE)
Qout(ιa′) = l · (m, Om) K = K ′ ·∪A〈ιa′ , O′, Q′, Q′out, ιn, e

′〉
K ·∪A〈ιa, O,Q,Qout, ιn, e〉 →k

K ′ ∪ A〈ιa, O,Q,Qout[ιa′ 7→ l], ιn, e〉 ∪ A〈ιa′ , O′ ∪Om,m ·Q′, Q′out, ιn, e′〉

(MOBILITY)
ιn′ ∈ NetworkId ιn 6= ιn′

K ·∪A〈ιa, O,Q,Qout, ιn, e〉 →k K ∪ A〈ιa, O,Q,Qout, ιn′ , e〉

Figure 16: Reduction rules for time-decoupled message sends.

• CREATE-MESSAGE: This rule creates a new envelope and appends it to Qout(ιa′), i.e. the
list of outgoing messages addressed at actor ιa′ . This rule is actor-local, so it is applicable
regardless of whether the recipient actor is currently in the same network.

• TRANSMIT-MESSAGE: This rule is applicable whenever an actor is in the same network
as an actor for which it has undelivered messages. If this is the case, the last (i.e. eldest)
of these undelivered messages is removed from the sender actor’s outbox and appended to
the destination actor’s inbound message queue.

• MOBILITY: This rule describes that actors can switch between different networks. Ap-
plication of this rule is entirely involuntary, i.e. actors do not themselves choose to move,
they are moved around (non-deterministically) by the system or environment.

32

8.7. ATf compared to AmbientTalk
The extensions to ATf for service discovery and robust time-decoupled message sends do

not break the results established in Section 8.4 pertaining to data race and deadlock freedom,
with one exception: to uphold deadlock-freedom, time-decoupled message sends introduce the
additional assumption that the sender and receiver actor must eventually join the same network.
Otherwise, the message cannot be delivered and will remain stuck in the sender’s outgoing mes-
sage queue.

While ATf only models the essential core language of AmbientTalk, the race and deadlock
freedom results ought to be transferrable to the full language, as we have faithfully modelled all
communication primitives present in the full language. None of AmbientTalk’s libraries or built-
in functions introduce additional ways for two actors to directly share state or to communicate
other than by asynchronous message passing.

9. Related Work

In Section 3, we already introduced the languages and systems that directly influenced the
design of AmbientTalk. Here, we briefly highlight related work in three broad categories: lan-
guages and systems also directed at developing software for mobile networks, related work in
actor-based languages in general and related work on the formalization.

Mobile networks. AmbientTalk tackles the issues of mobile networks by building on object-
oriented abstractions such as object references and message-passing. Jini [7] is the closest object-
oriented approach tailored to peer-to-peer networks. Its main goal is to allow clients and services
to discover and set up an ad hoc network in a flexible, easy manner with minimal administrative
infrastructure. To this end, it introduces the notion of lookup services. However, once services
have been introduced, Jini relies on the synchronous communication model of Java RMI. Jini also
employs the concept of leasing to allow devices leave the network gracefully without affecting
the rest of the system.

Others have tackled the same issues by building on different communication paradigms.
For example, LIME [46] and TOTA [47] are mobile computing middleware based on tuple
spaces [48]. In the tuple space model, processes do not communicate by sending each other
private messages, but rather by inserting and removing tuples from a shared associative store
(the tuple space). Another fruitful paradigm for mobile computing is Publish/Subscribe [21].
The main difference between traditional, centralised publish/subscribe architectures and those for
mobile networks is the incorporation of geographical constraints on the event disseminations and
subscriptions. For example, in location-based Publish/Subscribe (LPS) [49] and STEAM [50],
publishers and subscribers can define a geographical range to scope their publications or sub-
scriptions. Only when the ranges overlap is an event disseminated to the subscriber. Ambient-
Talk’s service discovery mechanism is based on the publish/subscribe paradigm, but does not
provide any explicit means to scope exported objects and subscribed event handlers.

Actor-based systems. In the original actor model, actors refer to one another via mail addresses [2].
When an actor sends a message to a recipient actor, the message is placed in a mail queue and
is guaranteed to be eventually delivered by the actor system. Most practical implementations of
the actor model do not actually guarantee eventual delivery.

For instance, in the E language [14], a network disconnection immediately breaks a far ref-
erence. Once the reference is broken, it will no longer deliver any messages. Hence, E’s far

33

references do not try to mask intermittent network failures the way AmbientTalk far references
do. When leased far references are used, AmbientTalk does not guarantee eventual delivery of
messages either, as these references may expire (cf. Section 6.2).

The fact that actors can only communicate asynchronously makes the original actor model by
itself almost suitable for mobile networks. However, the actor model lacks a means to perform
service discovery, i.e. to acquire the mail address of an unknown remote actor without a common
third party acting as an introducer. There do exist extensions of the actor model that tackle this
issue. In the ActorSpace model [51], messages can be sent to a pattern rather than to a mail
address, and they will be delivered by the actor system to an actor with a matching pattern. The
ActorSpace model, however, was not designed for mobile networks, as it relies on infrastructure
to manage the matching of the patterns.

Futures (also known as promises) are a frequently recurring abstraction in actor systems.
The use of futures as return values from asynchronous message sends can be traced back to
actor languages such as ABCL/1 [18]. In Argus, promises additionally supported pipelined mes-
sage sends and exceptions [20]. Most future abstractions support synchronisation by suspending
a thread that accesses an unresolved future. This style of synchronization is called wait-by-
necessity [19]. The E language pioneered the when-expression to await the value of a promise
in a non-blocking way [14]. In other actor systems, the same goal is often accomplished by
passing explicit callbacks or “continuation” actors as arguments to a message. The Salsa lan-
guage, for instance, uses “token-passing continuations” to express the follow-up processing of
an asynchronous message [32].

Our notion of future-resolver pairs descends directly from promise-resolver pairs in E, which
are themselves inspired by logic variables in concurrent constraint programming [52].

The view of AmbientTalk actors as containers of regular objects is based on E’s similar no-
tion of actors as vats [14]. In JCoBox [41], actors are similarly represented as coboxes. JCoBox
additionally supports cooperative multitasking (coroutines) within a cobox. AmbientTalk’s iso-
lates (pass-by-copy objects) are similar to E “pass-by-construction” objects and JCoBox transfer
objects.

Process calculi. The π-calculus [53] models processes that communicate over channels. Chan-
nels are mobile in the sense that a channel can be passed as argument over another channel. This
leads to a dynamically reconfigurable network of processes, similar to what can be achieved in
the actor model by passing the mail address of one actor as an argument in a message to another
actor. Contrary to the actor model, communication over channels is primitively synchronous
rather than asynchronous (even though asynchronous communication can be modelled in the
π-calculus, just as synchronous communication can be modelled in the actor model).

The ambient calculus [54] is a calculus designed to model mobility of processes and devices.
AmbientTalk does not focus on mobile actors (processes) but only on the mobile devices that
host them. Thus, the networks introduced in Section 8.6 to some extent play the role of mobile
ambients in the ambient calculus, implicitly describing which actors are co-located and thus able
to communicate. Unlike mobile ambients, our networks cannot be hierarchically tree-structured.

Nomadic Pict [55] is a programming model and a language designed for distributed and
mobile computation. Like the ambient calculus, it mainly focuses on mobile computation,
where mobile agents can be migrated across locations. Nomadic Pict distinguishes between
location-dependent communication primitives that require knowledge about the site of an agent
and location-independent primitives that enable communication with an agent without requiring
knowledge of its current site. AmbientTalk actors, unlike agents, are immobile, even though iso-

34

late objects can be copied between actors, introducing a form of code and data mobility without
identity (the copied isolate has its own identity).

The calculus of asynchronous sequential processes (ASP) [56] models parallel activities (sim-
ilar to actors) that interact only through asynchronous method calls. Contrary to our communi-
cating event loops model, which may host multiple remotely addressable objects inside a single
actor, in ASP, each activity contains a single remotely addressable object (an “active object”).
All other objects are called “passive” objects, and are not remotely addressable (like Ambient-
Talk’s isolates, they are passed by deep copy between activities). ASP also introduces futures,
but synchronization on a future is implicit and blocking, in the sense that the activity is sus-
pended when it needs to reduce an expression that needs the value of the future (this is called
wait-by-necessity). By contrast, awaiting the value of a future is explicit and non-blocking in
AmbientTalk, by registering a callback function using when:becomes:catch:. Just like
ATf models the essential concurrency features of AmbientTalk, so ASP models the essential
features of ProActive [34], a Java middleware for distributed object-oriented programming.

Formalization. The notion of formalizing an actor system as transitions on actor configurations
dates back to the original formalization of actors by Agha et al. [45]. However, the operational
semantics of ATf is primarily based on that of JCoBox [41]. Whereas Agha et al. use a functional
base language, JCoBox and ATf use an imperative object-oriented base language. JCoBox itself
is based on Featherweight Java [57]. We adapted the semantics to instead use a dynamically
typed, classless base language, and to reflect AmbientTalk’s communicating event loops model
with non-blocking futures. The proof for data race freedom in 8.4.1 is analogous to the proof for
the same property in JCoBox [58]. The by-copy parameter-passing rules for isolates are similar
to the parameter-passing rules for passive objects in ASP [56].

10. Conclusion

Developing mobile peer-to-peer applications is challenging due to the inherent characteristics
of mobile networks. Devices are only sporadically connected and need to discover one another
on the move, without always being able to rely on a shared infrastructure.

We presented AmbientTalk, an actor-based language designed for developing mobile P2P
applications that remain resilient to network failures by default. AmbientTalk extends the actor
model with support for service discovery and fault-tolerant message sending. By comparison
with standard OO middleware such as Java RMI, AmbientTalk programs require less lines of
code spent on non-functional requirements.

We presented a small-step operational semantics for Featherweight AmbientTalk, a subset
modelling the core features of the language. We established data race freedom and deadlock
freedom as the key concurrency properties of the communicating event loops model, on which
AmbientTalk is based.

References

[1] C. Mascolo, L.Capra, W. Emmerich, Mobile Computing Middleware, in: Advanced lectures on networking,
Springer-Verlag, 2002, pp. 20–58.

[2] G. Agha, Actors: a Model of Concurrent Computation in Distributed Systems, MIT Press, 1986.
[3] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, W. De Meuter, Ambient-oriented Programming

in AmbientTalk, in: D. Thomas (Ed.), Proceedings of the 20th European Conference on Object-oriented
Programming (ECOOP), Vol. 4067 of Lecture Notes in Computer Science, Springer, 2006, pp. 230–254.
doi:http://dx.doi.org/10.1007/11785477 16.

35

[4] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, W. De Meuter, Ambienttalk: object-oriented event-
driven programming in mobile ad hoc networks, in: Inter. Conf. of the Chilean Computer Science Society (SCCC),
IEEE Computer Society, 2007, pp. 3–12.

[5] E. G. Boix, T. V. Cutsem, J. Vallejos, W. D. Meuter, T. D’Hondt, A leasing model to deal with partial failures
in mobile ad hoc networks., in: M. Oriol, B. Meyer (Eds.), TOOLS (47), Vol. 33 of Lecture Notes in Business
Information Processing, Springer, 2009, pp. 231–251.

[6] Sun Microsystems, Java RMI specification, http://java.sun.com/j2se/1.4.2/docs/guide/rmi/
spec/rmiTOC.html (1998).

[7] J. Waldo, Constructing ad hoc networks, in: IEEE International Symposium on Network Computing and Applica-
tions (NCA’01), 2001, p. 9.

[8] J. Armstrong, R. Virding, C. Wikström, M. Williams, Concurrent Programming in Erlang, 2nd Edition, Prentice-
Hall, 1996.
URL citeseer.comp.nus.edu.sg/393979.html

[9] E. Jul, H. Levy, N. Hutchinson, A. Black, Fine-grained mobility in the Emerald system, ACM Transactions on
Computer Systems 6 (1) (1988) 109–133.
URL citeseer.ist.psu.edu/jul88finegrained.html

[10] B. Liskov, Distributed programming in Argus, Communications Of The ACM 31 (3) (1988) 300–312.
doi:http://doi.acm.org/10.1145/42392.42399.

[11] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Conference proceedings on Object-
oriented Programming Systems, Languages and Applications, ACM Press, 1987, pp. 227–242.
doi:http://doi.acm.org/10.1145/38765.38828.

[12] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wesley Longman Publishing Co., Inc., 1989.
[13] G. J. Sussman, G. L. S. Jr., Scheme: An interpreter for extended lambda calculus, in: MEMO 349, MIT AI LAB,

1975.
[14] M. Miller, E. D. Tribble, J. Shapiro, Concurrency among strangers: Programming in E as plan coordination, in:

Symposium on Trustworthy Global Computing, Vol. 3705 of LNCS, Springer, 2005, pp. 195–229.
[15] J. Ousterhout, Why threads are a bad idea (for most purposes), presentation given at the 1996 Usenix Annual Tech-

nical Conference, January 1996. http://www.softpanorama.org/People/Ousterhout/Threads
(captured in March 2008) (1996).

[16] E. A. Lee, The problem with threads, Computer 39 (5) (2006) 33–42. doi:10.1109/MC.2006.180.
URL http://dx.doi.org/10.1109/MC.2006.180

[17] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, M. F. Kaashoek, Rover: a toolkit for mobile informa-
tion access, in: Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP ’95), Colorado,
1995, pp. 156–171.

[18] A. Yonezawa, J.-P. Briot, E. Shibayama, Object-oriented concurrent programming in ABCL/1, in: Conference
proceedings on Object-oriented programming systems, languages and applications, ACM Press, 1986, pp. 258–
268. doi:http://doi.acm.org/10.1145/28697.28722.

[19] D. Caromel, Towards a method of object-oriented concurrent programming, Communications of the ACM 36 (9)
(1993) 90–102.
URL citeseer.ist.psu.edu/300829.html

[20] B. Liskov, L. Shrira, Promises: linguistic support for efficient asynchronous procedure calls in distributed systems,
in: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and Implementation,
ACM Press, 1988, pp. 260–267. doi:http://doi.acm.org/10.1145/53990.54016.

[21] P. T. Eugster, P. A. Felber, R. Guerraoui, A. Kermarrec, The many faces of publish/subscribe, ACM Computing
Survey 35 (2) (2003) 114–131. doi:http://doi.acm.org/10.1145/857076.857078.

[22] A. Kaminsky, H.-P. Bischof, Many-to-many invocation: a new object oriented paradigm for ad hoc collaborative
systems, in: ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM Press, 2002, pp. 72–73. doi:http://doi.acm.org/10.1145/985072.985109.

[23] G. Bracha, D. Ungar, Mirrors: Design principles for meta-level facilities of object-oriented programming lan-
guages, in: Proceedings of the 19th annual Conference on Object-Oriented Programming, Systems, Languages and
Applications, 2004, pp. 331–343.

[24] T. Watanabe, A. Yonezawa, Reflection in an object-oriented concurrent language, in: Conference proceed-
ings on Object-oriented programming systems, languages and applications, ACM Press, 1988, pp. 306–315.
doi:http://doi.acm.org/10.1145/62083.62111.

[25] J. McAffer, Meta-level programming with coda, in: ECOOP ’95: Proceedings of the 9th European Conference on
Object-Oriented Programming, Springer-Verlag, London, UK, 1995, pp. 190–214.

[26] T. Van Cutsem, S. Mostinckx, W. De Meuter, Linguistic symbiosis between event loop actors and threads, Com-
puter Languages Systems & Structures 35 (1) (2009) 80–98. doi:10.1016/j.cl.2008.06.005.

[27] S. Mostinckx, T. Van Cutsem, S. Timbermont, E. Gonzalez Boix, E. Tanter, W. De Meuter, Mirror-based reflection

36

in AmbientTalk, Softw. Pract. Exper. 39 (7) (2009) 661–699. doi:http://dx.doi.org/10.1002/spe.v39:7.
[28] N. Schärli, S. Ducasse, O. Nierstrasz, A. P. Black, Traits: Composable units of behaviour, in: L. Cardelli (Ed.),

ECOOP, Vol. 2743 of Lecture Notes in Computer Science, Springer, 2003, pp. 248–274.
[29] T. Van Cutsem, A. Bergel, S. Ducasse, W. Meuter, Adding state and visibility control to traits using lexical nesting,

in: Genoa: Proceedings of the 23rd European Conference on ECOOP 2009 — Object-Oriented Programming,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 220–243. doi:http://dx.doi.org/10.1007/978-3-642-03013-0 11.

[30] H. Lieberman, Concurrent object-oriented programming in ACT 1, in: A. Yonezawa, M. Tokoro (Eds.), Object-
Oriented Concurrent Programming, MIT Press, 1987, pp. 9–36.

[31] J.-P. Briot, From objects to actors: study of a limited symbiosis in smalltalk-80, in: Proceedings of the 1988
ACM SIGPLAN workshop on Object-based concurrent programming, ACM Press, New York, NY, USA, 1988,
pp. 69–72. doi:http://doi.acm.org/10.1145/67386.67403.

[32] C. Varela, G. Agha, Programming dynamically reconfigurable open systems with SALSA, SIGPLAN Not. 36 (12)
(2001) 20–34. doi:http://doi.acm.org/10.1145/583960.583964.

[33] S. Srinivasan, A. Mycroft, Kilim: Isolation-typed actors for java, in: ECOOP ’08: Proceedings of the 22nd Eu-
ropean conference on Object-Oriented Programming, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 104–128.
doi:http://dx.doi.org/10.1007/978-3-540-70592-5 6.

[34] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici, Grid Computing: Software Environ-
ments and Tools, Springer-Verlag, 2006, Ch. Programming, Deploying, Composing, for the Grid.
URL http://www-sop.inria.fr/oasis/proactive/userfiles/file/papers/
ProgrammingComposingDeploying.pdf

[35] P. Haller, M. Odersky, Actors that unify threads and events, in: A. Murphy, J. Vitek (Eds.), Coordination Models and
Languages, 9th International Conference, COORDINATION 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings,
Vol. 4467 of Lecture Notes in Computer Science, Springer, 2007, pp. 171–190.

[36] J.-P. Briot, R. Guerraoui, K.-P. Lohr, Concurrency and distribution in object-oriented programming, ACM Com-
puting Surveys 30 (3) (1998) 291–329.

[37] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (3) (1982)
382–401. doi:10.1145/357172.357176.
URL http://doi.acm.org/10.1145/357172.357176

[38] C. Gray, D. Cheriton, Leases: an efficient fault-tolerant mechanism for distributed file cache consistency, in: SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems principles, ACM Press, New York, NY,
USA, 1989, pp. 202–210. doi:http://doi.acm.org/10.1145/74850.74870.

[39] C. Scholliers, E. Gonzalez Boix, W. De Meuter, T. D’Hondt, Context-aware tuples for the ambient, On the Move
to Meaningful Internet Systems, OTM 2010 (2010) 745–763.

[40] E. Gonzalez Boix, Handling partial failures in mobile ad hoc network applications: From programming language
design to tool support, Ph.D. thesis, Vrije Universiteit Brussel, Faculty of Sciences, Software Languages Lab
(October 2012).

[41] J. Schäfer, A. Poetzsch-Heffter, Jcobox: generalizing active objects to concurrent components, in: Proceedings of
the 24th European conference on Object-oriented programming, ECOOP’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 275–299.
URL http://dl.acm.org/citation.cfm?id=1883978.1883996

[42] M. Felleisen, R. B. Findler, M. Flatt, Semantics Engineering with PLT Redex, 1st Edition, The MIT Press, 2009.
[43] M. Abadi, L. Cardelli, A Theory of Objects, 1st Edition, Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1996.
[44] M. Felleisen, R. Hieb, The revised report on the syntactic theories of sequential control and state, Theor. Comput.

Sci. 103 (2) (1992) 235–271. doi:10.1016/0304-3975(92)90014-7.
[45] G. A. Agha, I. A. Mason, S. F. Smith, C. L. Talcott, A foundation for actor computation, J. Funct. Program. 7 (1)

(1997) 1–72. doi:10.1017/S095679689700261X.
URL http://dx.doi.org/10.1017/S095679689700261X

[46] A. Murphy, G. Picco, G.-C. Roman, LIME: A middleware for physical and logical mobility, in: Proceedings of the
The 21st International Conference on Distributed Computing Systems, IEEE Computer Society, 2001, pp. 524–536.

[47] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing applications with the TOTA middle-
ware, in: PERCOM ’04: Proceedings of the Second IEEE International Conference on Pervasive Computing and
Communications, IEEE Computer Society, Washington, DC, USA, 2004, p. 263.

[48] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems
7 (1) (1985) 80–112.

[49] P. Eugster, B. Garbinato, A. Holzer, Location-based publish/subscribe, Fourth IEEE International Symposium on
Network Computing and Applications (2005) 279–282.

[50] R. Meier, V. Cahill, A. Nedos, S. Clarke, Proximity-based service discovery in mobile ad hoc networks, in: Dis-
tributed Applications and Interoperable Systems, Springer, 2005, pp. 115–129.

37

[51] C. J. Callsen, G. Agha, Open heterogeneous computing in ActorSpace, Journal of Parallel and Distributed Com-
puting 21 (3) (1994) 289–300.
URL citeseer.ist.psu.edu/callsen94open.html

[52] V. A. Saraswat, Concurrent constraint programming, MIT Press, Cambridge, MA, USA, 1993.
[53] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, i, Inf. Comput. 100 (1) (1992) 1–40.

doi:10.1016/0890-5401(92)90008-4.
URL http://dx.doi.org/10.1016/0890-5401(92)90008-4

[54] L. Cardelli, A. D. Gordon, Mobile ambients, in: Foundations of Software Science and Computation Structures:
First International Conference, FOSSACS ’98, Springer-Verlag, Berlin Germany, 1998.
URL citeseer.nj.nec.com/cardelli98mobile.html

[55] P. Sewell, P. T. Wojciechowski, A. Unyapoth, Nomadic pict: Programming languages, communication infrastruc-
ture overlays, and semantics for mobile computation, ACM Trans. Program. Lang. Syst. 32 (4) (2010) 12:1–12:63.
doi:10.1145/1734206.1734209.
URL http://doi.acm.org/10.1145/1734206.1734209

[56] D. Caromel, L. Henrio, B. P. Serpette, Asynchronous and deterministic objects, in: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’04, ACM, New York, NY, USA,
2004, pp. 123–134. doi:10.1145/964001.964012.
URL http://doi.acm.org/10.1145/964001.964012

[57] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight java: a minimal core calculus for java and gj, ACM Trans.
Program. Lang. Syst. 23 (3) (2001) 396–450. doi:10.1145/503502.503505.
URL http://doi.acm.org/10.1145/503502.503505

[58] J. Schäfer, A programming model and language for concurrent and distributed object-oriented systems, Ph.D.
thesis, Technischen Universität Kaiserslautern (2010).

38

