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ABSTRACT
In this paper we argue the need for orchestration support for
participatory campaigns to achieve campaign quality, and au-
tomatisation of said support to achieve scalability, both issues
contributing to stakeholder usability. This goes further than
providing support for defining campaigns, an issue tackled in
prior work. We provide a formal definition for a campaign by
extracting commonalities from the state of the art and exper-
tise in organising noise mapping campaigns. Next, we for-
malise how to ensure campaigns end successfully, and trans-
late this formal notion into an operational recipe for dynamic
orchestration. We then present a framework for automatising
campaign definition, monitoring and orchestration which re-
lies on workflow technology. The framework is validated by
re-enacting several campaigns previously run through manual
orchestration and quantifying the increased efficiency.
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INTRODUCTION
Participatory sensing [11, 7] allows people-centric environ-
mental monitoring by way of smart mobile devices. This is
by now a well-established research field as witnessed by the
publication of recent surveys [4, 24]. Currently, there exist
several platforms which allow people to gather data partici-
patively. While those platforms provide a firm technological
foundation for the domain of participatory sensing (PS), the
equally important data and people aspects are much less stud-
ied. PS requires not only stable technology but also insights
in methodologies for qualitative data collection and analy-
sis, and, last but not least, engaging and keeping engaged
those people that gather data using said methodologies and
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technology. We envision that the next-generation PS frame-
works will incorporate methodologies for data gathering in
a way that appeals to end-users, who are typically non ICT-
experts. At the same time they should be scalable with respect
to the amount of data, the number of users, and, most impor-
tantly, the type of data gathered (i.e. application area) [24,
25]. Through these frameworks, stakeholders should be able
to express their concerns and see them translated into proce-
dures for successful participatory campaigning with little or
no help from platform owners. Only in this way can we move
away from small-scale research-oriented deployments to the
full-fledged adoption of PS as a societally and scientifically
relevant method.

Recent years certainly have seen several important research
outcomes in the area of methodologies for collaborative data
gathering. The main question to be answered is: can the
potentially enormous quantity of participatory sensing data
compensate the typically inferior quality of miniature sensors
used by non-experts? Several research efforts have answered
that quality-quantity question in the affirmative [25, 6, 10].
But in order to do this, one first and foremost needs to en-
sure that the potential high data quantity is achieved, typi-
cally in the context of a sensing campaign focused in area
and/or time. Additionally, organising campaigns is also es-
sential to the people-aspect of PS. Indeed, there is high de-
mand by communities of all sorts — grassroots, institution-
led, or research-based — to be able to translate local con-
cerns into actual campaigns for tackling them. However, the
knowledge on how to organise campaigns properly is absent
from currently existing PS platforms. This is problematic for
stakeholders, who are largely dependent on platform owners
for insider knowledge on campaign management, but also for
platform owners, who are not able to scale up their efforts in
sharing this knowledge.

In this article we propose a scalable system for community-
friendly campaigning which encapsulates methodologies for
qualitative collaborative data gathering. The design of the
system is based on an abstraction of elementary campaign
concepts distilled from extensive prior experience with par-
ticipatory campaigning and the existing state of the art. The
advantage of this approach is to act as a bridge between user-
friendliness and platform reconfigurability. Indeed, on the
one hand these abstractions form the building blocks for an
end-user-oriented campaigning system. On the other hand,
they are general enough so that we can formulate generic PS
settings and thus work towards a platform that is usable in var-
ious sensing contexts. We propose a concrete implementation
of this design in the area of participatory sensing of environ-



mental noise (partly described in an earlier note [27]). Our
implementation consists of components for campaign defini-
tion, monitoring, and analysis, complemented with a cam-
paign orchestration system tasked with guiding a campaign to
a successful end (in terms of data quality). To embody cam-
paign processes in our system in a natural way, we employed
workflow technology and meta-logic reasoning techniques.

Our approach specifically targets collaborative sensor efforts,
though these need not be actively so. That is to say, while
actively collaborative community-based campaigning is cer-
tainly one use case, campaigns may just as well be executed
by loosely collected volunteer communities willing to share
their data to work towards a common goal. Indirectly, we also
contribute to several aspects which are argued to be highly in-
fluential for the success of next-generation systems, namely
incentives for participation, dealing with faulty data and con-
cise data representation [25], and this by way of the orches-
tration component which is malleable to any of the aforemen-
tioned issues.

We validate our approach by analysing 19 different cam-
paigns which were previously deployed without ICT-support
for campaign management, re-enacting 6 of them and dis-
cussing aspects of correctness, efficiency and scalability. In
particular, we quantify how our system and its orchestration
procedures affect management and measurement efforts of
each campaign.

RELATED WORK
The term participatory sensing was first introduced by the
CENS group in [11] where they present a broader vision for
the application of mobile sensing technology in the context
of environmental monitoring by citizen scientists. Since then
a variety of participatory sensing apps has been developed,
such as CenceMe [17] (social networking), BikeNet [5] (well-
being) and NoiseTube [15] (environmental noise). While sev-
eral review articles have shown the applicability of participa-
tory sensing in a wide number of areas [13, 4, 2], the software
technology involved is developed on a per-application basis
time and again.

More recently, several articles advocate the necessity of a re-
configurable and reusable framework for mobile sensing ap-
plications. Projects such as Epicollect [3], ohmage [22], and
Sensr [12] propose flexible frameworks for constructing mo-
bile data-gathering tools. However, these frameworks limit
the type of data that can be collected (typically form-based),
or focus only on the campaign definition phase. Moreover,
these so-called reconfigurable PS systems do not ensure that
the potential high data quantity is achieved, as participants
are expected to contribute freely and without guidance.

The idea of organising participatory sensing actions into cam-
paigns is an obvious one and indeed has been mentioned as
early as 2006 [11]. On the one hand, sensing campaigns are
an answer to community concerns which are typically fo-
cused in time, place and/or other contextual factors. On the
other hand, sensing campaigns are a means to ensure data
density in absence of a large enough crowd contributing data.
This, in turn, is essential for adequate assessment of the con-

cern at hand. Some PS projects have focused on providing
a limited form of campaign management. Examples include
the use of location-based triggers [8], model-based question
targeting [14], and encouraging participants to move towards
desired locations [23]. All these approaches, however, lack
the reconfigurable aspects of the aforementioned frameworks.

In conclusion, to the best of our knowledge, there exists no
PS system which is reconfigurable and embodies notions of
data quality, while covering all steps of a campaign from the
design to the analysis of the outcomes. Such a system would
contribute to campaign scalability as well as usability for end-
users.

CAMPAIGN PROTOCOL
Despite the existence of several platforms for participatory
sensing and their application in specific campaigns there is
currently no formal notion of a campaign nor an operational
implementation thereof. We proceed in this and the next sec-
tion with the former issue, afterwards moving on to a con-
crete implementation of a framework to support the design,
dynamic orchestration and monitoring of campaigns. The no-
tion of data quality, crucial in the translation of campaigns
from a static to a dynamic concept, is discussed in the next
section.

Let us start with formalising participatory sensing (PS) plat-
forms and campaigns running on them. PS is an inherently
active data gathering method; measurements are gathered
consciously by platform users with particular devices (typi-
cally smartphones). We denote this data collection context
by Γ. Data is collected in separate tracks, where a track
is a collection of measurements {M}. Finally, an individ-
ual measurement is a tuple of data points M = (s1, . . . , sn)
where si are sensor readings. We take a liberal meaning of the
word sensor here, encompassing real sensor data, user inputs,
data ingested from existing datasets, or even higher-order data
such as that derived by activity recognition algorithms. We
write Γ⇒ {M} to say that the context Γ contributed dataset
{M}. We then have the following definition.

DEFINITION 1. A campaign protocol is a tuple of concate-
nated predicates PΓ + PM over context Γ and measurements
M respectively.

The above predicates are themselves defined over tuples, e.g.
PM = (Psi

)i (which is why we use concatenation in this def-
inition). Individual predicates are considered to be classical,
i.e. they are subsets of the set of all possible outcomes for
the corresponding notion. Note that PM generally includes a
temporal predicate PT , i.e. the timeframe we are interested
in, alongside a geographical predicate, which we write as PA,
with A for the area we are interested in. Here we use area to
abstract away from longitude, latitude and higher-order GIS-
concepts such as polygons.

As a leading example we take the NoiseTube platform [19],
which enables participatory monitoring and mapping
of ambient sound levels through mobile phones. In
NoiseTube measurements are tuples of sensor readings
for time, sound level, latitude, longitude and zero or
more tags respectively, while a track is a set of such



measurements. As an example, consider the individ-
ual measurement (2011-10-13T19:32:12, 68,
50.821495,4.396498, ambulance), part of the
contribution brussense1, iPhone4s ⇒ { timei,
Leq,i,latitudei, longitudei, tags∗i }ni=0. Here ∗
indicates that there may be zero or more tags added by
the user. A city administrator who wishes to investigate
sound levels recorded by his employees, using calibrated
handsets, in the centre of Brussels between 8-9am dur-
ing the month of May, would see his campaign formally
represented as (user ∈ {employees}, device ∈
{calibrated-devices}, time(timestamp) ∈
[2014-05-xT08:00:00, 2014-05-xT09:00:00]
with x ∈ {1, . . . , 31},>, (latitude, longitude) ∈
polygon(Brussels), >∗}. Here > indicates that no
constraints are defined for the pertaining sensor stream, and
the polygon is that corresponding to the City of Brussels.

As an aside, we obviously do not expect end-users to express
campaigns in the above way, but imagine a user-friendly GUI
to do this. This GUI can be built right on top of the domain-
specific abstractions that we have described above. On the
other hand, the above abstractions hold more generally for
sensing platforms beyond NoiseTube and even beyond PS,
allowing us to construct a platform reconfigurable for various
sensing settings. For example, [4, Table1] lists a variety of
platforms in terms of sensor modalities, all of which can be
expressed as a measurement M in the above sense. The same
holds for platforms such as EpiCollect [3], which, while at
first sight very different due to their focus on survey-based
campaigning, are actually formally identical.

CAMPAIGN QUALITY
A crucial aspect of campaigning is the notion of quality. In-
deed, one typically translates the enormous quantity of data
that is typical of PS into a more qualitative condensed rep-
resentation, e.g. by location-based statistical averaging. For-
malising this notion is important so that one can guide end-
users to fine-tune a campaign protocol at design time. On
the other hand, it allows to monitor campaign progress dy-
namically, triggering adapted orchestration procedures so as
to ensure successful campaign completion.

Campaign quality is inherently related to measurement den-
sity. As an example, consider a measurement campaign
where the desired outcome is a map for a particular time-
frame. That is to say, we only restrict measurements accord-
ing to PA and PT , e.g. the centre of Brussels between 8-9am
as above. We then require the measurement density per unit
time and area to be high enough to allow statistical reasoning.
For example, in earlier work [6] we found 50 measurements
per unit hour and area of 20m× 20m to be an adequate sam-
ple set size. Of course, there is no exact rule for choosing
the size of sample sets; rather, it is a tradeoff between mea-
surement resources and statistical power. In PS this tradeoff
is determined by the need to eliminate random errors and to
increase representativeness of the dataset, while at the same
time taking into account that sample sets are constructed by
real people with limited time and mobility.

A concept embedded in this reasoning is that of a predicate
Psi ’s resolution, by which we mean the number of sample
sets it covers. In the above example the spatial resolution
rA = A/(20m × 20m), since the total measurement area is
partitioned into sample sets of the aforementioned size. On
the other hand, there is only one temporal sample set, as we
calculate averages between 8-9am over all days in the dataset.
Hence the temporal resolution rT is just the total campaign
running time 1h × D, where D is the number of campaign
days (e.g. 31). If the end-user instead wants to obtain a noise
map for every 10 minutes in the specified hour, there would be
6 sample sets and so temporal resolution would be the same
expression divided by 6. Summarising the above reasoning,
we see that our example campaign has achieved the desired
quality if measurement density at time t, denoted ρ(t), sur-
passes a particular prefixed value ρmin (50 in the above). This
can be rewritten in terms of resolution and total amount of
campaign measurements at time t, M(t), as follows.

ρ(t) ≥ ρmin ⇐⇒
M(t)
rT .rA

≥ Mmin(t)
rT .rA

. (1)

More generally, resolution rsi for an arbitrary sensor stream
si is the number of sample sets the corresponding predicate
needs to be partitioned in, that is

rsi
=

|Psi |
#samplesetsi

. (2)

Here vertical bars denote the size of a predicate, i.e. the size
of the subset it is defined by. Indeed the notion of resolu-
tion applies more generally with respect to arbitrary cam-
paign protocols as defined in the previous section. For ex-
ample, suppose we are interested in sound levels between 50
and 70 dB(A), in bands of 5 dB(A) each, we would need to in-
clude a resolution rLeq = 4. Similarly, focusing on a fixed set
of tags {ambulance, truck, car} we would have a resolution
rtags = 3, as we would need to partition all valid campaign
measurements over 3 sample sets. Hence the general expres-
sion for campaign quality is as follows

Pr ≡ ρ(t) ≥ ρmin ⇐⇒
M(t)
r
≥ Mmin(t)

r
, (3)

with the measurement resolution r =
∏

i rsi . Actually, the
above expression is another predicate, which we call the qual-
ity predicate Pr, which forms an essential ingredient of a
campaign protocol. Hence we need to adapt our definition
as follows.

DEFINITION 2. A campaign protocol is a triple of con-
catenated predicates PΓ +PM +Pr over context Γ, measure-
ments M and with measurement resolution r respectively.

As we shall see below, checking the quality of a campaign at
design time is one of the ways we put this notion to use, the
other one being as a means to monitor a campaign’s progress
dynamically. Note that once a campaign protocol is fixed one
could easily simplify this expression to M(t) ≥ Mmin(t).



Which form of the predicate to use depends on the context: at
design time the user-friendly density expression is more suit-
able, while at monitoring time the system can easily reason in
terms of the total number of measurements.

CAMPAIGN LIFECYCLE
A campaign’s lifecycle proceeds through a number of stages.
First, a campaign protocol is defined. After the campaign is
initiated, it is monitored to ensure it runs as intended. If this is
not the case, orchestration procedures may be activated that
enable to put the campaign back on track. Finally, after the
campaign ends its outcomes are analysed and presented to
interested parties. Before describing the implementation of
our framework in the next section, we specify which role
campaign protocol and predicates play in each element in a
campaign’s lifecycle. We note that in our past experiences
with noise mapping campaigns, these campaign-specific co-
ordination steps were carried out with very little ICT support.
Rather, the workflow for running successful campaigns was
partly a co-design process with the communities involved,
and partly a research exercise in itself [6].

First of all a campaign needs to be defined, i.e. end-users
need to be able to specify values of interest for each of the
sensor streams in the PS setup the campaign runs in, as well
as for the context in which these measurements are collected
(by whom and in what way). In practically all cases this will
include specifying an area of interest (e.g. by selecting an
area on a map), often complemented by a time interval of
interest. While the campaign definition tool should be gen-
eral enough to be adaptable to various settings, it is also im-
portant that end-users need only focus on those streams that
they are interested in. For example, grassroots communities
wishing to map the noise in their neighbourhood are often
not interested in specific tags, and thus should not have to
detail any specifics w.r.t. this data stream. Another recur-
ring element in our interactions with stakeholders is the pos-
sibility of dictating exactly who will contribute in a particu-
lar campaign rather than building up a volunteer base for a
particular campaign organically. While end-users specify the
above constraints by means of a user-friendly format (graph-
ical, form-based...) internally these are translated precisely
into predicates that form the campaign protocol. For example
private and public campaign settings are nothing but particu-
lar context predicates PΓ. These predicates are handed over
to the monitoring framework in order to analyse which mea-
surements are relevant to a campaign and which orchestration
procedures need to be called in action if the campaign does
not run according to plan. Knowing which predicate fails and
at what rate is crucial in determining the remedial action re-
quired.

Campaign quality is the notion that binds all levels of a cam-
paign’s lifecycle. First of all, the soundness of a campaign
protocol can be indicated at definition time, thus provid-
ing valuable feedback to campaign designers that can guide
them in properly fine-tuning the protocol in advance. This is
extremely useful for campaign managers knowledgeable on
data quality issues, let alone for those that are not. To check
protocol soundness at design time we use a statical version

of the data quality predicate given in Eq.(3) to estimate the
amount of measurements that can be gathered in the course
of a campaign. Default values for resolutions can be used,
while allowing more advanced users to specify their own val-
ues. Concretely, supposing measurements are gathered by n
volunteers at a rate of R measurements per second (specific
to the PS platform at hand). Then the maximal amount mea-
surements Mmax gathered during the campaign is given by

Mmax = n.R.|Ptime| . (4)

For the example campaign protocol mentioned earlier, assum-
ing the set of employees consists of 10 people and a measure-
ment rate of 1 measurement per second, we find Mmax =
1, 116, 000. With a total area of 32.61km2 and default reso-
lutions as above (i.e. one map for the whole period, divided in
grid cells of 20m×20m) we obtain a maximum measurement
density of ρmax = 13 measurements per grid cell. As this is
below the desired minimum density ρmin = 50 the system
can then suggest the campaign designer to adapt the protocol,
e.g. by increasing the number of volunteers or the duration
of the campaign, or by decreasing the target area. Obviously
there are more refined ways of making this estimate, e.g. by
ignoring grid cells in unreachable areas.

Eq.(4) requires some caveats. First, we are assuming an iden-
tical rate for all sensors, but of course this may be something
more complicated for a particular sensing setting. Second,
we assume the number n of volunteers contributing is known
in advance, constant, and that volunteers carry out the proto-
col exactly. Of course this is a highly optimistic assumption:
in reality volunteers often contribute less than these maximal
values, because of technological issues, localisation issues, or
because they do not follow the protocol exactly, be it delib-
erately or not. On top of this, in public and even in private
campaigns the number of volunteers n may evolve over time.
Nevertheless, where possible one should estimate campaign
quality in advance, as a first step towards completing a cam-
paign successfully.

The fact that campaign protocols as specified at definition
time may be executed quite differently as the campaign is
running brings us to the monitoring phase. Here one essen-
tially relies on the predicates in a campaign protocol to check
which measurements are relevant to a campaign and which
are not, at the same time maintaining a count M(t) of said
measurements. Note there is a difference in flavour (reflected
in the implementation) between the contextual predicate PΓ,
which is defined on measurement tracks, and the predicate
PM , which is defined on individual measurements. The mea-
surement count is used to check the campaign quality predi-
cate dynamically. That is to say, after discrete time intervals
(e.g. one hour) the measurement count M(t) can be used in-
stead of Mmax to extrapolate whether campaign goals can be
reached in terms of the protocol that is defined. If that is not
the case, we can set into action a number of orchestration
procedures, arguably the most useful aspect of a campaign
framework such as the one we propose here.

In practice, campaigns almost always do not run as planned
and without adequate support a lot of opportunities are missed



to carry out remedial actions. Indeed, in our personal ex-
perience it was very difficult to act upon incoming data in
real-time, simply because the amount of work in analysing
the incoming data, concretising the issues at the origin of di-
vergent campaign evolution, and finally contacting the vol-
unteers involved, is not manageable. By contrast, many of
these elements can be automated, in particular because of our
approach with campaign predicates. Indeed, knowing which
predicate fails allows the system to identify the actual issue at
hand and provide specific feedback to contributors (e.g. ab-
sent localisation data, measuring outside the area and time
of the campaign, and so on). Also, by notifying the cam-
paign designer of these issues, the protocol can be adapted
in real-time so as to achieve data quality without disturbing
the continuity of the campaign. All of these issues are highly
important in an area which is gaining definite traction, but
where motivation and engagement are crucial driving factors
in maintaining incoming measurement streams. Unsuccessful
campaigns can have a detrimental effect on first-time volun-
teers, and volunteers lie at the basis of any PS framework.

We now proceed with proposing an implementation of a
framework for campaign management based on the design
proposed in the above. Our framework system consists of
two parts: the campaign definition framework, which enables
users to specify and check the soundness of a campaign pro-
tocol, and the campaign monitoring framework, which moni-
tors, and, if required, orchestrates running campaigns in terms
of the protocol specified. For the campaign analysis phase we
rely on techniques elaborated in earlier work [6], considering
the development of more advanced or customisable analysis
components as future work. The framework we present is
elaborated on top of the existing NoiseTube platform [19],
i.e. campaign abstractions are concretised as per the examples
provided throughout this article. However, the abstractions
and as such our implementation can be generalised towards
other PS platforms, an endeavour which we will embark on
in the near future. We state explicitly whenever our imple-
mentation is specific w.r.t. NoiseTube.

DEFINITION FRAMEWORK
To enable citizens to define their own campaigns, our sys-
tem provides a user-friendly (web) interface for specifying
the campaign protocol as given in Definition 2. We first ex-
plain how each of the predicates in a protocol are taken into
account in our definition framework.

Context. The predicate PΓ captures the desired context of the
data collection, i.e. the particular type of users and/or devices
that should be used for collecting campaign measurements.
In our campaigning experiences we encountered two typical
contextual specifications. First, campaigns can be declared
as private, such that only trusted users (who can join through
invitation) are allowed to participate. In other words Pu is
defined as user ∈ U, with U some predefined set. Con-
versely, a public campaign imposes no constraints on partici-
pants whatsoever, so that Pu = >. Second, the issue of cali-
bration of the sensors involved can be an important factor, as
it strongly affects their accuracy. For example in NoiseTube
not all compatible smartphone models have been calibrated,

as it is very difficult to keep up with the market. Campaigns
can thus make the choice of only including calibrated data,
typically at the cost of decreasing the amount of relevant in-
coming data. Here the predicate Pd would be defined as in the
example above, device ∈ {calibrated-devices}.1

At the moment, our campaign definition framework only con-
siders contextual predicates PΓ which are a combination of
the predicates described above. While these contexts are
likely to remain relevant for other PS frameworks, one could
easily imagine more general contextual predicates such as
gender and age to be important for stakeholders as well. Gen-
eralising towards arbitrary PΓ is thus next on the list for
framework improvements.

Measurements. Recall that PM generally includes a temporal
predicate PT , alongside a geographical predicate PA. Again,
our framework focuses on these measurement predicates as
we experienced them to be typical in campaigns for noise
mapping and beyond. We also allow the possibility for cam-
paign designers to define a tag predicate Ptag , which defines
tags specific to the campaign at hand. Generalising towards
other sensor data streams is another improvement planned for
the near future.

The temporal constraint PT can be specified by indicating the
time and days which are of interest to the campaign. Both for
days and for hours custom specification as well as predefined
options are available. For days predefined options are full
week, weekdays and weekend, while for hours one can focus
on peak hours, non-peak hours, daytime and nighttime. There
are two ways to specify a geographical constraint PA in our
framework: drawing a zone or a trajectory on a map. If a zone
is selected, only measurements made in that zone are added to
the campaign. In the case of a trajectory, every measurement
made in a buffer of twenty meters around the trajectory is
relevant for the campaign.

Data quality. The last step in the campaign definition pro-
cess provides feedback with regards to the (static) data qual-
ity predicate Pr for the campaign specified. This feedback
informs the campaign designer of the workload involved (in
particular the number of participants required) to complete
the campaign successfully in terms of the concrete constraints
provided. This feature is extremely useful as it provides im-
mediate feedback in case designers define unrealistic cam-
paigns. For example, it will tell a campaign designer that
creating a good map of a whole city involving only 10 par-
ticipants for an hour per day during a week is simply not
reasonable. Concretely, we compute the theoretical maxi-
mal amount of measurements collected according to Equa-
tion (4). Relying on default settings for temporal resolutions
as exemplified above, we then check whether the associated
ρmax surpasses the value 50. Here we also rely on the mea-
surement rate for NoiseTube. One obvious extension of our
framework would be to allow user-specified resolutions and
to include platform-specific rates. While the former option
has not arisen in the context of campaigns executed, our inter-

1A list of calibrated phone models for NoiseTube can be found at
http://www.noisetube.net/download/.



actions with more advanced, typically institutional stakehold-
ers indicate that there is interest in opening up this feature.

Once a campaign is created, the framework enables members
of the campaign (in addition to other users of the system, if
the campaign is public) to view and discuss the campaign’s
progress by using a web-based interface. More details and
screenshots can be found in [26, Chapter 4].

The campaign definition framework is built using the Ruby
on Rails framework and is written as a combination of Ruby,
HTML, CSS and JavaScript (as is the NoiseTube platform).
In the backend sits a PostgreSQL database with the Post-
GIS spatial extension. We specifically chose the PostgreSQL
DBMS in order to use PostGIS, since it adds data type sup-
port for geographic objects and allows various types of spatial
queries to be handled at the SQL level.

MONITORING & ORCHESTRATION FRAMEWORK
To assist citizens to follow up on the enactment of their cam-
paigns, we developed a monitoring framework that automati-
cally checks incoming measurements for campaign relevancy
and orchestrates remedial actions if the campaign does not
evolve as intended. The monitoring framework relies on a
number of repeatable patterns: for each campaign one has to
check the context of each incoming track, the relevancy of
measurements contained in this track, and the overall density
of accumulated measurements. These repeatable patterns can
be described as a workflow: a series of operations (called ac-
tivities) which are enacted in a predefined order (specified by
a defined set of rules) by a workflow engine. Workflows are
particularly well-suited for modelling, coordinating and con-
trolling various processes [9], and thus the underlying tech-
nology of choice. In the background section below we moti-
vate the choice of workflow language in order to accommo-
date orchestration in the context of PS.

Background
PS systems are inherently distributed: a fixed infrastructure
is complemented by flocks of mobile phone users, a setting
known as a nomadic network [16]. Although a multitude of
workflow languages are available nowadays [1], only a few
focus on distributed network settings. Additionally, two char-
acteristics of PS need to be taken into account when decid-
ing upon which workflow language to use. First, in PS sys-
tems, participants use mobile devices (which act as services)
to upload data to and receive feedback from a central server
through unreliable wireless communication. As such, the
workflow language should ensure execution progress in the
face of unreliable communication and participants. Second,
campaigns require a workflow engine capable of coordinat-
ing the execution of a group of participants’ mobile applica-
tions. This is closely related to the concept of group orches-
tration [20] where a particular process (i.e. application) is ex-
ecuted for a group of services (e.g. users). Based on these two
characteristics, we employ the nomadic workflow language
called NOW [21]. To the best of our knowledge, NOW is
the only workflow language which incorporates communica-
tion primitives resilient to network failures and has dedicated
support for service and group orchestration. In what follows,

we detail the necessary concepts of NOW to understand our
campaign monitoring framework. More details on NOW can
be found in [21].

Group orchestration. To manage a set of services (users) that
form a logical group and coordinate the execution of pro-
cesses for all group members, NOW introduces a new set of
workflow patterns for group orchestration. The description of
the services that belong to a group can either be achieved by
enumerating all of them (extensional description) or by de-
scribing all properties those services must fulfil (intensional
description). When a group pattern is instantiated, all the
services satisfying the group’s description are added to the
group. Specially relevant in the context of PS is a living group
pattern which allows to add newly discovered devices satis-
fying the group description dynamically after the start of the
group pattern.

Monitoring & Orchestration Workflow
Our monitoring framework employs a workflow engine at the
server backend which monitors the different campaigns. Each
campaign thus has its dedicated workflow instance running on
the server for as long as the campaign is active. Such a work-
flow is composed of three main services, as is depicted in
Figure 1. Track services represent a participant’s track. Ev-
erytime a user uploads a track, a track service is initialised.
The second kind of service, called the processor service, pro-
vides a set of operations to analyse measurements in uploaded
tracks in terms of campaign relevancy. Finally, the monitor
service keeps track of the overall campaign progress. There
is a 1-1 correspondence between these three types of services
and the predicates composing a campaign protocol, as we ex-
plain below.

Context. Checking the context PΓ is an operation at the level
of tracks which requires group orchestration, i.e. for each
uploaded track a particular process must be executed. The
group demands an intensional description, which abstracts
away from the precise number of tracks being uploaded dur-
ing an active campaign. To do so, the workflow employs a
group pattern as depicted by the rectangle with dashed lines
at the top of Figure 1. By using the aforementioned liv-
ing group pattern, we ensure that the workflow execution re-
mains active for as long as the campaign is running. Each
time a track service is uploaded, and hence discovered by
the campaign workflow, the workflow engine verifies whether
the track matches the intensional description. If this is the
case, a new instance of the measurement workflow (the pro-
cess wrapped by the group pattern) is instantiated for the track
under consideration.

As a concrete example, consider a private campaign in which
only invited/subscribed users can participate. When a track is
uploaded by a participant of such a campaign and the descrip-
tion is satisfied, a new instance of the measurement workflow
is initialised in which that particular track is processed. In
order to reason about the context predicate PΓ in a campaign
protocol, NOW employs a reasoning engine integrated in the
language [18]. The code necessary in NOWfor implement-
ing a private campaign is shown in Listing 1. The intensional
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Figure 1. The campaign monitoring & orchestration workflow.

description of a private campaign consists of two prerequi-
sites. The first prerequisite (line 1) is simply used to bind the
variable ?CId to the campaign that the workflow is repre-
senting. The second prerequisite (line 2) is used to test if the
user who uploaded the track is a participant in a campaign.
Both prerequisites are then combined (line 3) into an inten-
sional description that reads as “all tracks made by users who
are participants of this campaign”. Lines 5-6 ensure that the
measurement workflow is wrapped in the living group pattern
as defined by its intentional description.

1 d e f p1 := p r i v a t e . i s c a m p a i g n ( ?C , ? CId )
2 d e f p2 := s h a r e d . i s p a r t i c i p a n t ( ? T , ? CId )
3 d e f desc := m a k e I n t e n s i o n a l D e s c r ( p1 , p2 )
4
5 d e f c a m p a i g n O r c h e s t r a t o r :=
6 Liv ingGroup ( desc , ‘ t r a c k , MeasWF)

Listing 1. Rules to implement context PΓ for a private campaign.

Measurements. The measurement workflow (depicted within
the black dotted lines) is executed only for tracks that satis-
fied the aforementioned group’s intensional description, i.e.
the tracks that fulfil the context PΓ. It relies on the processor
service to verify whether the individual measurements of a

track also satisfy the measurement predicate PM imposed by
the campaign protocol. Measurement verification is realised
by parsing the track such that its measurements are available
during the process’ execution. The core of the verification
process is implemented using a series of filter patterns, one
for each of the components of PM . Recall that PM generally
includes temporal and geographical predicates. The tempo-
ral predicate is enforced by the day filter and the time filter,
which filters out measurements made on the wrong day or at
the wrong time respectively. The geographical predicate is
enforced by the GPS filter, which checks if location data is
available, and the geographical filter, which verifies whether
the measurements are made in the right area (zone or trajec-
tory). Here we make heavy use of the PostGIS spatial exten-
sion of our database, as it greatly facilitates this sort of spatial
queries. Note that any of these filters could be absent from
the workflow, as the constraints they enforce are optional.

Each filter is surrounded by a constraint violation pattern (de-
picted by the double rectangle labeled with a sticky note sym-
bol) which monitors the amount of measurements that are fil-
tered out at each step. Constraint violation patterns can trig-
ger compensating actions which are the engine behind cam-
paign orchestration. These actions do not stop the execution
of the workflow, which continues processing measurements,
but is used to provide intermediary feedback to participants.
This filter-specific feedback is crucial for participants to en-
able them to correct their measurement actions. For exam-
ple, consider a campaign that requires participants to follow a
predefined trajectory. If some participant accidentally diverts
from the trajectory, we can inform him/her of this issue so
that it can be corrected for. Moreover, there are indications
that feedback of any kind sustains participants’ motivation
to contribute. Our framework’s feedback system is currently
text-based (e.g. “56 measurements of this track were made
in the wrong area”). However, it is perfectly feasible to im-
plement more user-friendly approaches such as a graphical
representation showing a participant’s track and using colour
coding to indicate where s/he diverted from the trajectory.

After all measurements in a track are processed, the verifi-
cation process is said to be finished. The user is then in-
formed about how many measurements contributed to the
campaign (as shown by the reportContributions op-
eration), and these measurements are added to the campaign
by the addMeasurementsToCampaign operation. This
basically consists of linking the measurements in the underly-
ing database and making them visible on the campaign web-
page. Additionally, a signal is sent to the campaign quality
monitoring workflow discussed below.

Quality. The campaign monitoring workflow, depicted at the
bottom of Figure 1, is responsible for monitoring overall cam-
paign progress in terms of the predicate Pr. It is worth not-
ing that this part is separated from the measurement work-
flow since campaign quality is a notion specific to a cam-
paign rather than individual tracks. This workflow relies on
the monitor service which is notified each time relevant mea-
surements are added and keeps track of the total number of
campaign measurements M(t).



In parallel, a timer mechanism periodically tests the campaign
progress. Currently this mechanism proceeds on an hourly
basis, first checking whether the hour that just passed was of
interest to the campaign. If it was not, no further calcula-
tions are performed. In case the hour is included in the cam-
paign protocol, the activity first verifies whether Pr holds,
i.e. whether enough measurements have been accumulated
to terminate the campaign. If Pr is not yet satisfied, the cur-
rent value of M(t) is extrapolated for the campaign duration
according to the procedure described earlier. Using this in-
formation, we can inform the campaign manager on the re-
quired runtime for the campaign for achieving Pr following
the current average contribution rate. In order to give feed-
back when the number of measurements added each hour is
lower than the required average, the workflow uses another
constraint violation pattern. The compensating action for this
pattern posts a message on that campaign webpage notifying
participants that a higher participation grade is requested. Al-
ternatively, the campaign manager can be contacted to advice
him/her to increase the runtime of the campaign or the num-
ber of participants so that the data quality of the campaign is
satisfied.

VALIDATION
We now validate our approach in terms of correctness of cam-
paign outcomes and efficiency of running campaigns. We do
this by comparing these aspects for 6 noise mapping cam-
paigns with and without the availability of our campaign
framework. These campaigns were first manually executed
by a platform owner who served the role of campaign de-
signer, monitor and analyser. We have then re-enacted (i.e.
simulated) them using our framework for automatic cam-
paign management which takes up and extends upon those
same roles. By comparing both processes for each of the 6
campaigns we quantify how the campaign final outcome is
affected (correctness), how campaign execution can be im-
proved (efficiency), and, finally, how the societal uptake of
campaigning can be boosted by providing support for more
autonomous community campaigning (scalability).

Before continuing, we briefly describe these 6 campaigns.
Each campaign followed a step-wise process, where face-
to-face meetings interleaved with intermediary bespoke de-
velopments for campaign design, definition, monitoring and
analysis respectively. The campaigns were initiated by a vari-
ety of stakeholders (including researchers, grassroots organi-
sations, city administrations, and within an educational con-
text).2. All campaigns focused on mapping noise pollution,
one campaign also mapping air pollution and meteorologi-
cal parameters. In the Wommelgem (WO) campaign, 7 con-
cerned citizens mapped the noise pollution in their neighbour-
hood due to a huge traffic-laden roundabout. The Baia Mare
(BA) campaign noise mapped a 3-km path through the town
historical center with 6 volunteers. The campaign in Zagreb
(ZA) was coordinated with the city administration which re-
cruited 5 volunteers to follow a predefined trajectory during

2The campaign maps are available at www.brussense.be/
experiments

WO BA ZA LI BX TU

with 56239 16585 44453 26713 21709 24429
w/o 66645 22045 59162 35600 31923 23448

% 16 25 25 25 32 -4
Table 1. Relevant measurements with and without the framework.

peak hours. The Linkeroever (LI) campaign tasked 8 volun-
teers to measure along a predefined path in their neighbour-
hood. The BxlSense campaign held in the city centre of Brus-
sels (BX) focused on mapping noise and other environmental
data using off-board sensors. Finally, in Tuinwijk (TU), up to
19 volunteers measured noise for at least 1 hour a day while
walking around in a predefined zone. Further details about
these campaigns can be found in [26].

Correctness
The first aspect to check is whether our framework produces
correct outcomes. Correctness in this context means that the
maps produced are based only on measurements that satisfy
the campaign protocol, and that statistics on the composing
sample sets are correctly computed. The statistical analysis
of measurements relies on the procedure proposed in [6], and
has been incorporated unchanged into the framework.

Table 1 shows the number of relevant measurements identi-
fied with and without the framework in place for the 6 afore-
mentioned campaigns. Relevant measurements correspond to
those measurements that satisfy the campaign protocol. In
most cases, more measurements were identified to be rele-
vant without the framework than with (except for the Tuin-
wijk campaign). Closer inspection of the datasets reveals that
the difference in relevant measurements is partly due to hu-
man errors. In the case of the Tuinwijk campaign, an unex-
pected user was contributing data. This was caught by our
framework but not by the platform owner. For the Zagreb
campaign, measurements of up to two hours beyond the limits
of the campaign protocol were wrongly included. However,
in this case, the platform owner manifested that some wrong
measurements were deliberately incorporated as a way of in-
creasing campaign size by softening protocol boundaries. For
example, measurements taken 10 minutes before and after the
temporal predicate were tolerated. This shows that our frame-
work is definitely valuable in catching errors, but it is still
worthwhile to keep a human involved in the campaign man-
agement, e.g. to soften protocol boundaries if necessary.

Efficiency
We now evaluate how our framework improves upon effi-
ciency in terms of campaign runtime, i.e. the time that a
campaign runs. To this end, we compare the runtime of 6
campaigns with the potential decreased runtimes if its partic-
ipants would have received feedback on the collected data.
Our framework provides feedback for three types of data col-
lection errors: (1) missing localisation data, (2) data collec-
tion at times/days that are not relevant, and (3) data collec-
tion outside the designated measurement area. As we are re-
enacting past campaigns, we need to make some assumptions
on how the participants will react to the feedback they receive.

www.brussense.be/experiments
www.brussense.be/experiments


total error type relevant

meas. GPS time area meas.

Track 1-real 2731 744 116 270 1601

Track 2-real 2162 248 319 240 1356

Track 2-learned 2162 0 0 240 1923
Table 2. Comparison of campaign tracks with and without learning.

We assume that there is an 80% chance that a user corrects
for a measurement error, and this for each type of error that
receives feedback on. Once a user learns how to prevent a
particular error, we consider all future measurements (previ-
ously unusable due to the error) as relevant. If a user did not
correct the errors, this decision is passed on to the next track,
where the process is repeated. All errors need to be corrected
for a measurement to be relevant. Note that missing locali-
sation data and measurements at irrelevant areas are mutually
exclusive errors.

Table 2 lists two consecutive tracks by one particular partic-
ipant, which we use as an example to explain our method-
ology. The first track consists of 2731 real measurements of
which 1601 are relevant to the campaign. The remaining 1130
measurements contain an error, and are split in the table ac-
cording to the three aforementioned errors. For each error,
this user has a 80% chance not to make it in the future. The
third line in the table shows one particular outcome for the
second track in which the user learns not to make the first two
types of errors again. The real measurements for the second
track are thus adapted in the third line, which contains 1923
usable measurements instead of 1356.

For each campaign we use the actual running time and the
associated total amount of usable measurements as the refer-
ence point for our evaluation. Using the above approach, we
check at what point in time in the campaign’s re-enactment
we reach the same amount of measurements. To account for
nondeterminism due to the 80% learning rule, we take the av-
erage of 10 simulations per user. Figure 2 depicts the outcome
of this analysis, comparing the actual runtime of these cam-
paign (in days) to the runtime these campaigns would have
had when benefiting from automated orchestration. We find
decreased runtimes of 16% (Zagreb) up to 50% (Wommel-
gem). As campaign managers this difference can be very
clearly coupled to the organisation of the volunteer groups
involved and their technical expertise, which was much bet-
ter in the case of the former than the latter. While the results
vary, and of course depend on the learning assumptions used,
it should be clear that the presence of the orchestration frame-
work has a definite impact on campaign efficiency.

Scalability
The above clearly shows that our current implementation im-
proves campaign runtimes. To scale up also in terms of
the number of campaigns we investigate whether our design
enables the full campaign lifecycle to be carried more effi-
ciently. To this end, we estimate the effort spent in organising
19 campaigns from first-hand experiences, identifying those

Figure 2. Campaign runtime with and without orchestration.

elements which can be handled by the framework. By involv-
ing platform owners to a much lesser extent, communities are
empowered to run campaigns more autonomously.

The analysis presented here is tentative in several ways. First,
it assumes a framework fully implementing the design pro-
posed in the earlier sections of this paper (in particular sensor
abstractions), which moreover adequately disseminates best
practices guidelines (in the form of manuals, copyable cam-
paign designs, ...). Second, we did not carry out an in-depth
study of the efficiency of our framework in other application
areas and with real communities, which we consider beyond
the scope of this paper. Rather, we relied on our own experi-
ences as campaign designers, managers and analysers, which
we believe to be valuable nonetheless. Third, we did not con-
sider the benefits of dynamical monitoring the quality predi-
cate, which enables campaign managers to adapt the protocol
dynamically.

The outcome of our analysis in guiding 19 campaigns is sum-
marised in Table 3. The table estimates the time spent on
campaign design and management with and without our plat-
form according to three types of campaigns: (1) the very
first noise mapping campaign described in [6], (2) copycat
campaigns, i.e. campaigns following a similar approach as
the first campaign (a campaign in a predefined area during
peak/off hours), and (3) small variation campaigns. The lat-
ter category is represented by the BxlSense campaign which,
as previously mentioned, focused not only on noise but also
on environmental measurements with offboard sensors. The
first column of Table 3 estimates the time spent in days for the
combined steps in a campaign’s lifecycle without the platform
in place. To this end, we examined agendas, emails, in-house
time sheets, file histories and so on. Depending on the devi-
ation of a campaign with respect to earlier campaigns, cam-
paign management was more time-consuming or not. For ex-
ample, configuring the technological platform for campaign-



Campaign type w/o
platform

with
platform

effort
saved

1st noise mapping

campaign [6]
24 + O 8.5 15.5 + O

copycat campaigns 13 + O 2 11 + O

small variations 34 + O 13.5 20.5 + O
Table 3. Estimations of campaign management effort without and with
our platform (in days), with O for orchestration effort.

specific data collection took on average 2 days for a copycat
campaign, but 2 weeks for the first noise mapping campaign
and 4 weeks for the first environmental mapping campaign.
These differences indicate the importance of developing cam-
paign frameworks that are geared towards reconfigurability,
to avoid the considerable bespoke software engineering that
is an important obstacle to wide-scale adoption of PS tech-
niques.

It is important to realise that the effort calculated does not
include dynamic monitoring and orchestration, as this was
simply not feasible with the staff and timeframes at hand. In-
deed, analysing data streams and getting back to individual
volunteers is considerable unwieldy when no ICT support is
present, involving manual data inspection and direct interac-
tion with volunteers. If the protocol is not followed or, worse,
technical or usability issues prevent the measurements from
arriving at the system at all, it requires a substantial amount
of time on problem diagnosis and resolution. Because of this
limitation, in the actual campaigns run we limited orchestra-
tion to resolving issues at the end of each campaign data col-
lection phase. Denoting the effort for manual monitoring and
orchestration (i.e. without framework support) as O, we thus
need to include this quantity specifically in calculated cam-
paign efforts to obtain the full picture. While this quantity
depends highly on the campaign protocol and how it is exe-
cuted, the effort required should not be underestimated and is
indeed one of the main reasons for developing the implemen-
tation presented here. Without monitoring, campaigns do not
progress as efficiently as Figure 2 underlines.

The second column of Table 3 shows the estimated total ef-
forts on campaign design and management with the platform
in place. To generate these estimates, we analysed which
steps in the process can be taken up by the platform. We
find that effort could be decreased at all levels of the cam-
paign lifecycle: campaign protocol design, analysis and or-
chestration is substantially facilitated by the implementation
in place, while best practices guidelines allow to decrease
the number and duration of interactions of platform owners
and campaign managers. In terms of bespoke software engi-
neering efforts it is more difficult to quantify the efficiency
gained. For the sake of simplicity we assume here that 50%
of the effort could be saved by working with a framework im-
plementing the abstractions proposed in the above, and thus
easy to reconfigure to varied settings. Communities using
the platform should share a reasonable level of autonomy to
start with, such as being able to use their own measurement

devices and/or borrow ours without much intervention from
platform owners.

The last column of Table 3 summarises the estimated effort
gained by using the platform, writing again O for orchestra-
tion effort.

From our analysis of the 19 campaigns that we have manually
managed as platform owners, we believe the effort for new
campaigns could be cut by more than half, and the effort for
copycat campaigns could be reduced even more significantly.
These numbers are highly supportive of our platform. Valida-
tions in terms of running campaigns involving real communi-
ties are needed to obtain more accurate numbers on the actual
improvements achieved.

CONCLUSION & FUTURE WORK
At the heart of this article lies the notion of a participatory
sensing campaign. We argue the need for ICT support to
achieve scalability over the full campaign lifecycle, and for
orchestration support to achieve campaign quality. After this
we propose relevant campaign abstractions relying on first-
hand experience with more than a dozen campaigns in the
sound measuring domain and on the state of the art in PS.
We then use these abstractions as the basis of the design and
implementation of a framework for campaign management,
relying on workflow technology and meta-logic reasoning.
While our implementation is based on an existing platform
for participatory noise monitoring, the underlying abstrac-
tions are phrased with arbitrary PS settings in mind. To our
knowledge, this is the first time campaigns and a platform
for supporting them have been so thoroughly studied, devel-
oped and implemented. We also present a validation of our
approach by comparing campaigns previously executed with-
out the platform with a re-enactment thereof supported by the
platform, quantifying the increase in correctness, efficiency
and scalability.

There are, as always, many avenues for further research. In
the short run, there are several features that would improve
our system as is, such as supporting the full spectrum of
protocol predicates, heterogeneous data monitoring and user-
defined campaign quality. This should be complemented by
a validation of in terms of real-time community-based cam-
paigning activities, which in turn should point towards fur-
ther improvements. A larger — and more important — ef-
fort is to do with upscaling the system towards more users,
more campaigns, and more parameters, so that eventually we
have a fully reconfigurable system able to answer variable
stakeholder requirements. Though this will certainly prove to
be a much more substantial research and engineering effort,
we believe that by the approach presented here we have op-
timised our chances for success. Finally, one should always
bear in mind that end-users are typically non-ICT experts, and
thus the abstractions presented should serve as a backbone for
a user interface which is geared towards a variety of commu-
nities and stakeholders. Our experience in running campaigns
and frequent contacts with stakeholders at the local, regional,
national and international level will be an essential asset here.
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