
Visualizing the Evolution of Systems and their
Library Dependencies

Raula Gaikovina Kula∗, Coen De Roover∗†, Daniel German∗‡, Takashi Ishio∗, Katsuro Inoue∗
∗ Osaka University, Osaka, Japan † Vrije Universiteit Brussel, Brussels, Belgium

‡ University of Victoria, Canada
Email: {raula, coen, cderoove, ishio, inoue}@ist.osaka-u.ac.jp

dmg@uvic.ca

Abstract—System maintainers face several challenges stem-
ming from a system and its library dependencies evolving
separately. Novice maintainers may lack the historical knowledge
required to efficiently manage an inherited system. While some
libraries are regularly updated, some systems keep a dependency
on older versions. On the other hand, maintainers may be
unaware that other systems have settled on a different version
of a library. In this paper, we visualize how the dependency
relation between a system and its dependencies evolves from
two perspectives. Our system-centric dependency plots (SDP)
visualize the successive library versions a system depends on
over time. The radial layout and heat-map metaphor provide
visual clues about the change in dependencies along the system’s
release history. From this perspective, maintainers can navigate
to a library-centric dependants diffusion plot (LDP). The LDP is
a time-series visualization that shows the diffusion of users across
the different versions of a library. We demonstrate on real-world
systems how maintainers can benefit from our visualizations
through four case scenarios.

I. INTRODUCTION

Dependence on third-party software libraries has become
standard practice in both open source and industrial software
engineering [1], with a vast source of libraries from large
repositories such as SourceForge1 and Maven Central2. Sys-
tems now rely on several dependencies of different libraries
such as ASM3, GOOGLE-GUAVA4, JUNIT5 and popular frame-
works like SPRING 6 and HIBERNATE 7. As these libraries each
evolve independently from the system and from each other,
tracking their evolution becomes important for the maintainers
of a system.

As part of software maintenance, upgrading (or updating
which we will use interchangeably) to a newer version of
an outdated library may seem an obvious decision with
advantages such as patched vulnerabilities, access to new
features and continued support. However, deciding whether
to upgrade requires careful consideration for systems with
complex dependencies. For instance, knowledge of which
dependencies were adopted at the same time may indicate

1http://sourceforge.net/
2http://mvnrepository.com/
3http://asm.ow2.org/
4https://code.google.com/p/guava-libraries/
5http://junit.org/
6https://spring.io/
7http://hibernate.org/

relevance. Maintainers then can use this information to trace
and assess respective affected system structures. Knowledge
about a system’s past upgrade decisions with respect to a
library can help maintainers. Examples include significant
dependency changes such as dropped and adopted libraries.
Such historical information is particularly useful for novice
maintainers and maintainers of poorly documented systems
with many dependencies.

More seasoned maintainers, on the other hand, can benefit
from knowledge about upgrade decisions made by different
systems. Examples include identifying opportunities for up-
grading to a newer version of a library as well as opportunities
for migrating to a different library altogether. For instance,
many systems might settle for a particular version because
the next one has introduced many breaking API changes.
Recognizing migration opportunities requires considering the
dependency decisions of systems with similar dependencies.
Many systems might abandon a particular library in favour of
an equivalent one that is more frequently maintained or has
better documentation.

In this paper, we visualize the evolution of systems and
their library dependencies from two perspectives. Our System-
centric Dependency Plot (SDP) provides an intuitive overview
of the evolution of the dependencies of a system as it evolves.
Different types of dependency changes can be discerned easily.
Maintainers can differentiate between dependencies that are
regularly updated and those that do not change. We use a heat-
map metaphor to characterize the willingness of a system to
adopt newer versions of a library as they are released.

From within the SDP, users can access library-specific usage
and diffusion information by selecting a single dependency.
The Library-centric dependents Diffusion Plots (LDP) that is
shown to this end incorporates the “wisdom-of-the-crowd” by
analyzing how other systems use a library. LDPs visualize the
diffusion of dependent systems between the different versions
of a library as well as movement of systems between each
version.

We demonstrate the usefulness of both visualizations in
four maintenance scenarios. In addition, we discuss interesting
visual observations in visualizations of real-world systems and
libraries. We provide the following two contributions:

• We present a visualization to explain the current state of
a software system using important dependency changes

http://sourceforge.net/
http://mvnrepository.com/
http://asm.ow2.org/
https://code.google.com/p/guava-libraries/
http://junit.org/
https://spring.io/
http://hibernate.org/


in its history.
• We present a visualization to understand the ‘diffusion’

usage across different library versions.

II. BACKGROUND AND RELATED WORK

This section is divided into two parts. In the first part, we
detail existing work on the software evolution visualizations.
In part two, we explain the grounding theory for each visual-
ization and employed visualization techniques.

A. Software Evolution Visualizations

There exists a large body of work dedicated to the visual-
ization of software; its structure [2], the different relationships
and metrics [3], and at different levels of granularity [4] . In
this section, we focus on software evolution visualizations.

The added time dimension makes visualizing the evolution
of software systems much more difficult compared to visual-
izing a system snapshot. Studies have shown that evolution vi-
sualizations help recognize important changes in the software
such as re-factorings and newly introduced modules [5], [6] .
Most methods either display a sequence of static snapshots of
the system or display its entire evolution in one image.

Researchers have used visualization techniques for software
evolution at the source code, class and architecture levels.
Code Flow [7] uses the cable-and-plug wiring metaphor to
describe line-level code changes. Wettel and Lanza [8] pro-
posed TimeLine to view at class level changes. Hierarchical
Edge Bundles [9] visualizes the software architecture in terms
of organizational changes. The Evolution Matrix [10], RelVis
[11] and City/Cities [12] all present the evolution of different
metrics associated with the software architecture.

In contrast, we present a new approach to visualize the
evolution of third-party dependencies at the architectural level.
The visualizations provide usage information, popularity and
movements of dependencies between library versions.

B. Visualization Techniques and Representations

Our visualizations are inspired by a combination of real-
world metaphors for graphical representation. Since software
is virtual, the combination of metaphors and graphing tech-
niques in a familiar context helps users to immediately con-
ceptualize a system and its dependent library relationships.

System-centric. Our system centric perspective is inspired
by Dendrochronology [13], the scientific method of dating
based on the analysis of patterns of growth rings. Starting
from the center, each ring signifies a system release version.
Similarly, RelVis [11] employs Kiviat diagrams. Other radial
type visualizations are Sunburst [14] and Hive Plots [15]. Key
benefits of using a radial layout is added structure for easier
detection of patterns.

Heat-maps are useful to highlight intensity or importance
of a particular phenomenon. Of particular interest was how
Benomar [16] used heatmaps for easier understanding. Com-
bining the radial design with the use of heat-map colours, we
are able visualize the evolution of library dependencies and
relative usage at that point in time.

𝑳𝟏

𝑺𝟏 𝑺𝟐 𝑺𝟑

TIME

idler updater
(upgrader)

𝑳𝟐

adopterSystem S

Library L

D
ep

en
d

s(
S,

L)

𝑺𝟒

updater
(downgrader)

Fig. 1: Dependency relations between system versions and library
versions.

Library-centric. Our library-centric perspective is inspired
by the Diffusion of Innovations Theory [17], which implies a
process of which new ideas/concepts are spread through the
population. First we start with a slow adoption. Then there is
a steady rate of adoption, then finally adoption slows down
after reaching a critical mass. The ‘S-Shape’ growth curve
(sigmoid curve), which can be expressed as a mathematical
model, is commonplace in many fields of biology, medicine,
economics and the social sciences [18]. It can describe and
predict the evolution/growth of a quantitative measure over
time. In software engineering, this curve has been applied
primarily in the context of software reliability (e.g., [19], [20],
[21]).

Work closely related to our library centric view is the
usage ‘popularity’ of software libraries [22]. Mileva et al.
study popularity over time to identify the most commonly
used library versions [23]. Other work such as De Roover et
al. explored library popularity in terms of source-level usage
patterns [24]. In our visualizations, we express popularity as
an aggregation and also track movements between different
library versions.

III. SYSTEM AND LIBRARY DEPENDENCIES

In this section, we first introduce the necessary terminology
and model for reasoning about dependencies between evolving
systems and libraries. All examples are based on Figure 1.

• Versions. We refer to both system and library releases as
versions. Conventions of releases are usually project spe-
cific. In this example, system S has 4 versions S1, .., S4

and L has L1 and L2 two respectively.
• Dependency Relations. A dependency relation is when

a system starts using a library as its dependent. In this
example, we have two versions of the library L1 and
L2 and four versions of a system S1, .., S4. System
versions S1, S2, S4 depend on L1 while system version
S3 depends on L2.

• Dependency Relations Change Types. We classify sys-
tem versions in terms of a change in the dependency
relations. An adopter system version starts using a library



for the first time (i.e., it has not used previous versions).
In our example in Figure 1, S1 is an adopter of L1.
An idler is a system version that depends upon the same
library version as its immediate predecessor. Hence, in
our example S changes from being an adopter in its
version (S1) to be an idler in version 2 (S2).
An updater is a system version of which the previous ver-
sion depended upon a different library version. In Figure
1, both S3 and S4 are updaters (for S3 the dependency
relations changed from (S2, L1) to (S3, L2). Note that
an updater is either an upgrader or a downgrader. The
former update to a newer version of the library, while the
latter revert to an older. S3 is an upgrader, while S4 is a
downgrader.
Finally, dropper is a system version of which the current
version ceases the dependency relationship. Note that a
dropper can revert to an adopter of a different library
version or resume being an idler of a previous version.

IV. VISUALIZATION DESIGN

Our main objective is to provide intuitive visual clues to
assist maintainers with library upgrade decisions. Our visu-
alizations are implemented through two separate, but linked
perspectives. In this section we discuss three important visual
aspects:

• Layout/Metaphor Design gives the different perspectives.
Aids organization and structure of the dependency rela-
tions.

• Shape Design for the data points used to differentiate
dependency relations types.

• Choice of colour schemes and connecting lines are used
to differentiate between different versioning of systems
and libraries.

In the next two subsections, we describe a) system-centric
(System Dependency Plots) and b) library-centric (Library
Diffusion Plots) using the three aspects. Users can easily
navigate between perspectives by clicking on the respective
points of the visualization.

For our examples, the dependency relations are derived from
the dynamic linking of libraries (pom.xml 8 ) provided from
the Maven 2 Central Repository 9 ecosystem.

A. System-centric Perspective

System-centric Dependency Plots (SDP) provide a chronol-
ogy of the evolution of the library version dependencies over
all system versions. We use the example in Figure 2 to
illustrate the different aspects of a SDP. The data used is 12
versions of the FINDBUGS system (ver. 0.9.4 - 2.0.1), plotting
192 dependency relations across 16 different libraries.

Depicted in Figure 2(a), each axis in a SDP represents a
library that it depends upon. Starting from the center, each
‘ring’ represents a released version of the subject system. Time
between releases is represented by the distance between rings.

8http://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html

9http://mvnrepository.com/

 

 

mydays

50

100

150

0.00

0.25

0.50

0.75

Library Version Usage

0.00

0.25

0.50

0.75

Library Version Usage

Library Evolution Types

dropped

idler

updater

System Dependency Plot

Fig. 3: Radial vs. linear layout. An increase of libraries on the x-axis
inadvertently increases the size of the linear layout.

On each ring, each of the dependencies used by that release
is denoted. The shape and color of the dependency represent
the type of dependency relationship and the version. Next, we
describe in detail based on the three visual aspects.

• Layout/Metaphor Design. Dependency relations are
plotted using a radial coordinate system, with the axes
representing a dependent library. As depicted in Figure
3, the radial design manages to keep structure as the
number of libraries increases. The two-dimensional ra-
dial design provides a more organized view of the ‘big
picture’ between all dependencies. Moreover, hive plots
[15] and sunburst diagrams [14] argue radial represent a
more rational visualization as opposed to the conventional
edge-and-node network diagrams.
The distance from the center corresponds to time since the
first system release. As seen in Figure 2(a), the distance
between the rings indicate the time between system
releases. The angle and relative position of dependencies
does not carry information. The major drawback to our
design decision is the minimized visual space of older
system versions.

• Shape Design. On each ring, the shape of the points
describes the system’s dependency relation to that par-
ticular version. + (adopter) indicates when the system
has first adopted the library. � (updater) indicates that
the system is an updater to a new library version. ◦
(idler) indicates an existing dependency is maintained.
Additionally, points that are not longer plotted (from
the inside out) indicate the system is a dropper of that
library. To reduce cluttering and overlaying of shapes, the
outlines of the shapes were favored as opposed to fills.
The only exception is for updater shapes, to highlight
when a library has been upgraded. For aesthetic purposes,
the shapes are sized proportionally to its distance from
the center
The shapes intuitively provide information on the regular-
ity when the system updates its libraries. An example of
this is shown in Figure 2(b). The appearance of updaters
in consecutive system versions indicate that the FINDBUG

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://mvnrepository.com/


(a) Overview. According to the library version usage scale, the red indicates ’low usage’, green ’mid
usage’ and black ’high usage’ at that point of dependency. Figure 2(b) zooms in on the top-half of the
plot

findbugs2.0.0is an 

updater of asm3.3.
Color indicates 0.5 

usage when updated

After adoption system 
versions are idlers of jaxen1.1.1

All predecessors of findbugs1.0.0are 

droppers of findbugsGUI1.0.0
findbugs0.9.4

(b) This is a zoomed in cross-section of Figure 2(a). Note that dropped libraries are not plotted.

Fig. 2: SDP for FINDBUGS system. (a) gives an overall view and (b) is a zoomed in cross-section of with specific libraries on the axis.
Starting from the center, each ring represents a system release. The relative distance between rings is the time between releases (weeks)



system regulary updates its libraries.
• Colour and line schemes. We assume most developers

are less inclined to updated lesser used library versions.
A heat-map colour intensity schematic can be used to
provide visual hints about the system’s willingness to
adopt newer library versions. According to the Diffusion
of Innovations, systems of newer (low usage) library
versions are known as early adopters.
Using a library version’s usage, we express the will-
ingness as a ratio of the usage when it was adopted
over the current usage within a repository of projects.
For example using the Maven repository, in Figure 2(b),
when FindBugs2.0.0 was released, asm3.1 was updated
to asm3.3. At this point, there was 36 similar systems
depending on asm3.3. Currently 78 systems use asm3.3,
thus, resulting to a usage ratio of 0.52. (green intensity).
We can also infer that FINDBUGS system is willing to
update to low usage versions of the library JSR305 (red
colour).
Formally, we define time as t and usage represents the
ratio of systems that are using the library. Suppose vt is
the time when a system is released. Therefore, usagevt
represents the usage at the point in the evolution. Taking
the current time as ct as a reference, we can identify its
relative usage as a ratio:

Usage =
usagevt
usagect

(1)

We can see in the example in Figure 2(a), the contin-
uous colour scale depicts different intensities of library
version usage. Relatively at that point of dependency, red
indicates ‘early adopter systems that there is a higher
risk’. Likewise, green indicates that ‘adopter systems to
an attractive library with the rest of the majority ’. Finally,
black indicates ‘adopter systems to an already stable
library with other laggard systems’.

B. Library-centric perspective

The heat-map aspect of the SDP introduced in the previous
subsection provides a subtle hint of the usage properties of a
library version. Clicking on any library version will navigate
the user to the library-centric diffusion plot. This section
discusses this perspective in detail.

From a library-centric perspective, systems are viewed as
dependents of a library. We define the diffusion of a library as
the extent to which—and at what rate—its individual versions
are spread among its dependents over time. We introduce
Library-centric dependents Diffusion Plots (LDP) as a means
to visualize diffusion over time

We use Figure 4 to illustrate the aspects of the LDP. We
use a time-series graph technique, aligning the aggregation of
system versions on the y-axis. The aggregation is a cumulative
sum of systems that have a dependency relations with a
specific library version. For basic understanding, our example
plots a single system’s library usage. A typical LDP is more

complex, including all systems with a dependency relation to
a library.

• Layout/Metaphor Design. Based on the diffusion of
innovation theory, we expect that plotting the number of
systems that have adopted a given version of a library
would result in an s-shaped (sigmoid) growth curve.
The initial stage corresponds to a period in which it is
beginning to be adopted (by early adopters). At some
point it starts to grow rapidly. This phase is followed by
a transitional one in which the library version still gains
dependent system versions, but at a slower rate. Finally,
the function experiences a plateau phase in which growth
ceases and the amount of dependants remains constant.
We use the aggregation of systems to describe this growth
function. The time-series on the x-axes allows the user
to visualize the popularity of library versions at any
point in time. As opposed to usage trends, aggregation
can be mathematically modelled as a cumulative growth
function.

• Shape Design. Each point is plotted using a specific
shape to indicate the dependency relations between that
particular system and the library. + indicates adopter, ◦
indicates idler and � indicates an updater. Shapes give
an indication of the types of systems that have adopted
a particular library system. For instance, it gives the
user information if a newer library version is attracting
adopters and updaters. The occurrences of many idlers
may pertain to a more stable library version.

• Colour and line schemes. Colours are used to classify
the different library versions. As seen in Figure 4, it is a
visual aid for the growth curve.
The connecting lines group versions of a system. In the
example, since it a single system, all points are connected.
Consequently, the lines track system movement between
the different versions. The system movements indicate
if systems are willing to upgrade or move away from a
library version.

V. ILLUSTRATIVE CASE STUDIES

To illustrate the use of our visualizations, we designed a
cognitive walk-through of how a developer would use our tool
with four case scenarios. First we introduce the scenario set-
ting. Then we breakdown the setting into four case scenarios.

A. Case Setting

Our visualizations are targeted towards maintainers of a
system. Familiarity of system, poor documentation or system
complexity are motivating factors. We use the following case
scenario to illustrate the challenges of upgrading libraries:

‘Rusty is a new maintainer to a software project. Rusty
notices that some of the system’s library dependencies are
outdated. Simply upgrading to the latest versions of all
dependencies seems natural, however, Rusty does not know
where to start. How to help Rusty?’



5

10

2009-07 2010-01 2010-07 2011-01 2011-07

 Time

 C
u
m

m
u
la

ti
v
e
 S

u
m

 o
f 

S
y
s
te

m
 V

e
rs

io
n
s
 

 p
e
r 

L
ib

ra
ry

 V
e
rs

io
n
 

System Type

adopter

idler

updater

factor(V3)

2.4

2.5

2.6

DDP Library Versions

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑐𝑜𝑚𝑚𝑜𝑛𝑠 − 𝑙𝑎𝑛𝑔2.4
to 𝑐𝑜𝑚𝑚𝑜𝑛𝑠 − 𝑙𝑎𝑛𝑔2.5

updateradopter

idler
Library Versions

Fig. 4: Simplified example of a LDP with a single system for the COMMONS-LANG library. A typical LDP is composed of many systems.

To this end, Rusty is faced with a) understanding the
systems dependency structure to prioritise which libraries
should be upgraded and b) identifying suitable candidate
library versions for upgrade.

Current state of the art tools and environments such as
Eclipse 10 and its various plugins can allow Rusty to view
the current snapshot of a system and respective library depen-
dencies. However, most lack historic evolution information.
The following two scenarios are related to how the system’s
dependency evolution history can be beneficial:

• S1. Rusty wants to understand the regularity of system
dependency changes. The evolution history gives an
indication of the frequency in relation to the version
releases. It would also be useful if a system is more
inclined to risk by adopting a newer version or is a either
a regular updater or would rather wait until a library
version is used by other similar systems before adopting.

• S2. Rusty wants to understand what important struc-
tural dependency events have occurred. Dependency
relation changes such as dropped and adopted libraries
can provide clues for important structural changes. Pat-
terns can be used for understanding various historic
events between dependencies.

In order to keep up-to-date with the library, Rusty also needs
to know if the system libraries are in need of upgrades. Since
Rusty is a typical wary developer, he wants to know what other
similar systems that have reused the same libraries are doing.
In this paper, we define a library versions ‘attractiveness’ as
highly favourable upgrade candidate. Based on the Innovation
of Diffusion theory, we assume its successful diffusion into
the population implies low risk with high benefit. The next
two scenarios illustrate this viewpoint:

• S3. Rusty wants to know the current ‘attractiveness’
of any library version. Understanding the movement of
adopters, idlers and updater systems provides visual clues
on its ‘attractiveness’.

10https://www.eclipse.org/

• S4. Rusty wants to know if newer releases are viable
candidates for updating. Assessment of the ‘attractive-
ness’ of newer library versions can assist maintainers with
the upgrade decisions.

B. Real World Examples

The first two scenarios stay in the system-centric per-
spective. The latter involve transition to the library-centric
viewpoints.

For this study, we found that the FINDBUGS 11 system
serves as a perfect example of our cognitive walk-through.
FINDBUGS is a java program that uses static analysis to look
for bugs in Java code.

Additional examples are provided. FASTJSON 12 is a small
and fast polymorphic JSON serializer. ATOMSERVER 13 is a
generic data store implemented as a RESTful web service.
Finally, SYMMETRICDS 14 is a open source software for both
file and database synchronization for synchronization, and
transformation across networks in a heterogeneous environ-
ment.

The dependency relations are derived from the dependency
information provided from the Maven 2 Central Repository
15 ecosystem. Note that most projects in this repository are
open-source Java, Scala or Clojure libraries. The visualization
are generated from 188,951 dependency facts. Details of the
data can be downloaded from our website 16.

C. Scenario Walk-through

‘Rusty is a new maintainer to FINDBUGS. Rusty is able
to view all dependencies but due to the complex nature of
dependencies is hesitant on what dependencies are viable
candidates for upgrading.’

11http://findbugs.sourceforge.net/
12https://github.com/alibaba/fastjson
13http://atomserver.codehaus.org/
14http://www.symmetricds.org/
15http://mvnrepository.com/
16http://sel.ist.osaka-u.ac.jp/∼raula-k/LibraryDiffusion2/index.html

https://www.eclipse.org/
http://findbugs.sourceforge.net/
https://github.com/alibaba/fastjson
http://atomserver.codehaus.org/
http://www.symmetricds.org/
http://mvnrepository.com/
http://sel.ist.osaka-u.ac.jp/~raula-k/LibraryDiffusion2/index.html


(a) FINDBUGS System

cglib

cglib-nodep

clojure

commons-io

genson

groovy

gson

jackson-core-lgpl

jackson-databind

jackson-jaxrs

jackson-mapper-lgpl
jackson-smile

javassist

json-lib

json-simple

json-smart

jsr311-api

junit

servlet-api

spring-test

spring-web

spring-webmvc

xom

 

 

Library Evolution Types

adopter

dropped

idler

updater

0.25

0.50

0.75

1.00
Library Version Usage

(b) FASTJSON System

 

 

Library Evolution Types

adopter

dropped

idler

updater

0.00

0.25

0.50

0.75

Library Version Usage

(c) ATOMSERVER System (d) SYMMETRIC System

Fig. 5: Comparison of the SDP between the different systems

Using the Figure 2, we demonstrate how Rusty can use the
SDP:

• S1. Rusty wants to understand the regularity of system
dependency changes. Firstly, from a holistic view in
Figure 2(a), Rusty can deduce alot of the dependencies
were updated in a version just before the current version.
Visually, Rusty can easily differentiate which dependen-
cies were upgraded and the current usage. For instance,
the gradient of the colours of the latest versions suggest
that the current dependency relations have higher usage
by peer systems.

Additionally, Figure 5 depicts the SDP of different sys-
tems. Intuitively, we can see that FINDBUGS and FASTJSON
have more regular updating of their dependency relation-
ships than ATOMSERVER and SYMMETRIC. Note that both
ATOMSERVER and SYMMETRIC have ceased to upgrade their
dependency relations, especially with the latest system ver-

sions.

Therefore to address S1, Rusty now understands the reg-
ularity of upgrade and decide which specific libraries are
candidates for upgrading.

• S2. Rusty wants to understand what important structural
dependency events have occurred. First, Rusty looks
for dropped dependency relations. Referring back to
Figure 2(a), he notices that asm− util, asm− xmil and
asm− analysis were dropped at the same time, thus
hinting there may be an association between them.
Additionally, FINDBUGS system specific plugins such
as findBugs − ant, findBugsGui and coreplugin
libraries are no longer depended upon.

Therefore to address S2, Rusty now understands the impor-
tant changes and associated dependency relations.



(a) SDP for FINDBUGS system

0

25

50

75

100

125

2006 2008 2010 2012 2014

 Time

 C
u
m

m
u
la

ti
v
e
 S

u
m

 o
f 

S
y
s
te

m
 V

e
rs

io
n
s
 

 p
e
r 

L
ib

ra
ry

 V
e
rs

io
n
 

factor(New)

adopter

idler

updater

factor(V3)

1.4.3

1.5.2

1.5.3

2.1

2.2

2.2.3

3.1

3.2

3.3

3.3.1

4.1

DDP Library Versions

Current version 
used by FindBugs

Library version

System Type

candidate versions

(b) LDP for ASM library

0

50

100

150

2006 2008 2010 2012 2014

 Time

 C
u
m

m
u
la

ti
v
e
 S

u
m

 o
f 

S
y
s
te

m
 V

e
rs

io
n
s
 

 p
e
r 

L
ib

ra
ry

 V
e
rs

io
n
 

System Type

adopter

idler

updater

factor(V3)

1

2

2.1

2.2

2.3

2.4

2.5

2.6

DDP Library Versions

Current version 
used by FindBugs

Library version

candidate versions

(c) LDP for COMMONS-LANG library

0

100

200

300

2006 2008 2010 2012 2014

 Time

 C
u
m

m
u
la

ti
v
e
 S

u
m

 o
f 

S
y
s
te

m
 V

e
rs

io
n
s
 

 p
e
r 

L
ib

ra
ry

 V
e
rs

io
n
 

System Type

adopter

idler

updater

factor(V3)

1.1

1.3

1.4

1.4-dev-3

1.4-dev-8

1.5

1.5.2

1.6

1.6.1

1.7-20060614

DDP Library Versions

Current version 
used by FindBugs

Library version

(d) LDP for DOM4J library

Fig. 6: Transition from SDP to LDP Visualizations



“Now that Rusty understands the current situation of the
different library dependencies, he is looking for opportuni-
ties to update library dependencies.”

From the SDP perspective, Rusty can now navigate to the
library-centric LDP to understand the diffusion state of the
library. We assume that Rusty is now considering updating
ASM, COMMONS-LANG and DOM4J library versions.

Figure 6 illustrates the transition. By clicking on the axis of
any of the highlighted libraries (Figure 6(a)), the user is taken
to the library’s respective LDPs (Figures 6(b), 6(c) and 6(d)).
Now we can return to address S3 and S4:

• S3. Rusty wants to know the current ‘attractiveness’ of
any library version.
The latest version of FINDBUGS depends on is asm3.3.
Figure 6(b) suggests that this version is not very popular
with similar systems. The curve of asm3.1 suggests that
it is the most popular version. The movement between
asm3.1 and asm3.3 suggest development or testing re-
verts between versions. Since there is evidence of up-
grading, Rusty should consider this library as upgradable.
Similarly, Rusty gives the same ‘thought process’ for both
COMMONS-LANG and DOM4J library.
As depicted in Figure 6(c), FINDBUGS currently depends
on commons − lang2.4 . There is some movement to
different versions commons− lang2.5 and commons−
lang2.6. For commons− lang2.4, the aggregation is at a
constant state. Finally, dom4j1.6.1 is currently depended
by FINDBUGS. From Figure 6(d), we note that this is the
dominant version, which has a constant growth rate. All
movement looks to be adoption into this version.

Visually from the shape of the growth curve in Figure 6, Rusty
is provided clues on the current state of the libraries. Therefore
in response to S3, we illustrate that the LDP visualization
enables Rusty to understand the current state of the library
that the system is using.

• S4. Rusty wants to know if newer releases are viable
candidates for updating. The first thing to look for is
the popular or dominant versions. In the case of ASM 6(b)
for instance, newer versions asm3.3.1 and asm4.1 exist.
Although popular, asm3.1 seems to be ceasing growth.
Rusty has the three candidates, that depending on his
preference, can choose to adopt.
Similar analysis can be done from the COMMONS.LANG
and DOM4J libraries. From Figure 6(c), commons −
lang2.6 is a very strong candidate for updating. As shown
in Figure 6(d), dom4j1.6.1 seems the only stable version
with no competitive candidate versions.

At this point, we demonstrate that in S4, Rusty can visually
identify viable candidates for updating.

Using our visualizations, Rusty can now consider:
• Library version asm3.3.1 is a viable candidate for

upgrading.
• Both commons − lang2.5 and commons − lang2.6

library versions are viable candidates for upgrading.
• Library version dom4j1.6.1 is depicted as more ‘sta-

ble’, thus upgrading is not recommended.

VI. DISCUSSION

A. Generality

While we demonstrate our approach on dynamic java library
linkages within the Maven 2 ecosystem, our visualization
techniques can be applied for any dependency relations. Rela-
tionships could be extended between classes or packages and
it is language independent.

B. Visual Scalability

Due to the radial layout of the SDP, scalability can be
achieved without compromise to structure. Shown in Figure
5(d), the most dependency-intensive system that we analyze
is the SYMMETRIC system. It comprises of 44 system versions
across 37 libraries, totalling to 1,628 dependency relationships.

For LDP visualization, more data provides a better estima-
tion of the diffusion curve. Available at our website, the largest
LDP would be the JUNIT library. 17. We used 14 versions to
plot 11,771 system versions.

To reduce clutter, the tool-tip can be utilized for labels
and highlighting individual points on the graphs. This is an
example of utilizing effective interface manipulation tech-
niques such as zoom and pan, highlight and mouse trigger
events. Future enhancements may include dynamic removing
uninteresting points of the visualizations.

C. Ease of Use

We designed simplicity by using only two perspectives.
Evaluation of this is not implicit in this study. For future work,
we plan to carry out both controlled and practitioners survey
evaluations.

D. Practicality

The decision to update libraries is reliant on several factors
and depending on both system and maintainers preference, can
be a case-by-case evaluation. Therefore, our system provides
a means for which maintainers to make a more informed
decision based on historic data rather than guesswork.

In order to maintain up-to-date, usage data needs to be
periodically updated. Historic data can grow quickly, thus
requiring higher space and computation costs. We envision
that effective optimization and filtering techniques can be
implemented to properly manage this data.

17http://sel.ist.osaka-u.ac.jp/∼raula-k/LibraryDiffusion2/DDP/DDPJunit.
pdf

http://sel.ist.osaka-u.ac.jp/~raula-k/LibraryDiffusion2/DDP/DDPJunit.pdf
http://sel.ist.osaka-u.ac.jp/~raula-k/LibraryDiffusion2/DDP/DDPJunit.pdf


E. Additional Scenarios
Due to space requirements, the paper only covers general

case scenario of the tool. Additional scenarios could be the
following:

• Recursive SDP views. This could be useful especially to
view the deeper ‘transitive’ library dependency relation-
ships.

• Library frameworks. SDP view to understand the evo-
lution of a framework. Maintainers of frameworks may
want to understand the ‘transitive’ library dependencies
of a framework.

• Related system SDPs. From the LDP view, click on
other similar systems that are currently using a candidate
update library version. This would allow users to ‘peek’
into the SDP for other systems.

We would like to extend our visualizations to track move-
ment of similar systems across different libraries. We believe
that this will provide maintainers with alternative library
options.

VII. CONCLUSION AND FUTURE WORK

We present two new visualization approaches of systems
evolution with their library dependencies. Our visualizations
capture how dependency relations between a system and its
dependencies evolves from two perspectives. Our system-
centric dependency plots (SDP) visualize the successive library
versions a system depends on over time in a radial layout. It
provides visual clues about the change in dependencies along
the system’s release history. From this perspective, maintainers
can navigate to a library-centric dependants diffusion plot
(LDP). The LDP is a time-series visualization that shows the
diffusion of users across the different versions of a library.
We demonstrate on real-world systems how our visualizations
can benefit maintainers through four case scenarios. Future
enhancements include additional interactive and dynamic tran-
sitions between the two visualizations.

VIII. ACKNOWLEDGMENTS

Thanks to Prof. Makoto Matsushita for his useful comments.
This work is supported by JSPS KANENHI (Grant Numbers
25220003 and 26280021) and the “Osaka University Program
for Promoting International Joint Research.”.

REFERENCES

[1] C. Ebert, “Open source software in industry,” in IEEE Software, 2008,
pp. 52–53.

[2] H. Kienle and H. Muller, “Requirements of software visualization tools:
A literature survey,” in Proc. of Int. Workshop on Visualizing Software
for Understanding and Analysis, (VISSOFT2007), June 2007, pp. 2–9.

[3] S. Bassil and R. Keller, “Software visualization tools: survey and
analysis,” in Proc. of Int. Workshop on Program Comprehension (IWPC
2001), 2001, pp. 7–17.

[4] P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” Trans on Visualization and Computer Graphics, vol. 17, no. 7,
pp. 913–933, July 2011.

[5] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster, “Visualizing
software changes,” Trans. on Software Engineering, pp. 396–412, Apr
2002.

[6] A. Hindle, Z. M. Jiang, W. Koleilat, M. Godfrey, and R. Holt, “Yarn:
Animating software evolution,” in Proc. of Int. Workshop on Visualizing
Software for Understanding and Analysis, (VISSOFT2007)., June 2007,
pp. 129–136.

[7] F. Chevalier, D. Auber, and A. Telea, “Structural analysis and visual-
ization of c++ code evolution using syntax trees,” in Int. Workshop on
Principles of Software Evolution (IWEPSE2007), New York, NY, USA,
2007, pp. 90–97.

[8] R. Wettel and M. Lanza, “Visual exploration of large-scale system evolu-
tion,” in Proc. of Working Conf. on Reverse Engineering, (WCRE2008),
2008, pp. 219–228.

[9] D. Holten and J. J. van Wijk, “Visual comparison of hierarchically
organized data,” in Proc. of the 10th Joint Eurographics / IEEE - VGTC
Conf. on Visualization, 2008, pp. 759–766.

[10] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in Proc. of the Int. Workshop on
Principles of Software Evolution, (IWPSE2001). ACM, 2001, pp. 37–
42.

[11] M. Lanza and S. Ducasse, “Understanding software evolution using a
combination of software visualization and software metrics,” in Proc. of
Langages et ModÃles Ã Objects (LMO2002), 2002, pp. 135–149.

[12] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing multiple
evolution metrics,” in Proc. of ACM Symposium on Software Visualiza-
tion (2005), 2005, pp. 67–75.

[13] S. Arno and K. Sneck, “A method for determining fire history in
coniferous forests of the mountain west,” in USDA Forest Service
General Technical Report, May 1988, p. 28.

[14] K. Andrews and H. Heidegger, “Information slices: Visualising and
exploring large hierarchies using cascading, semi-circular discs,” in
Proc. of Infovis1998, 1998.

[15] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive plots: A
rational approach to visualizing networks,” Briefings in Bioinformatics,
2011.

[16] O. B. Omar, H. A. Sahraoui, and P. Poulin, “Visualizing software
dynamicities with heat maps,” in Proc. of VISSOFT2013, 2013.

[17] E. M. Rogers, Diffusion of innovations, 5th ed. Free Press, 08.
[18] G. Annadurai, S. Rajesh Babu, and V. R. Srinivasamoorthy, “Develop-

ment of mathematical models (logistic, gompertz and richards models)
describing the growth pattern of pseudomonas putida (nicm 2174),”
Bioprocess Engineering, vol. 23, pp. 607–612, 2000.

[19] V. Almering, M. van Genuchten, G. Cloudt, and P. Sonnemans, “Using
software reliability growth models in practice,” Software, IEEE, pp. 82–
88, 2007.

[20] A. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” Trans. Software Engineering, pp. 1411–1423, 1985.

[21] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection,” Trans. Reliability, pp. 475–484,
1983.

[22] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in
Proc.of the International academic and industrial conference on Testing
- practice and research techniques (TAIC PART2010), 2010, pp. 173–
180.

[23] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proc. Intl and ERCIM Principles of Soft. Evol. and
Soft. Evol. Workshops (IWPSE-Evol ’09). ACM, 2009, pp. 57–62.

[24] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proc. of IEEE Intl. Conf. on Prog. Comp.(ICPC13),
2013.


