
Towards Tierless Web Development without Tierless Languages

Laure Philips* Coen De Roover‡* Tom Van Cutsem* Wolfgang De Meuter*
* Software Languages Lab, Vrije Universiteit Brussel, Belgium
‡ Software Engineering Laboratory, Osaka University, Japan

lphilips, cderoove, tvcutsem, wdmeuter @vub.ac.be

Abstract
Tierless programming languages enable developing the typ-
ical server, client and database tiers of a web application as
a single mono-linguistic program. This development style is
in stark contrast to the current practice which requires com-
bining multiple technologies and programming languages. A
myriad of tierless programming languages has already been
proposed, often featuring a JavaScript-like syntax. Instead of
introducing yet another, we advocate that it should be possi-
ble to develop tierless web applications in existing general-
purpose languages. This not only reduces the complexity
that developers are exposed to, but also precludes the need
for new development tools. We concretize this novel ap-
proach to tierless programming by discussing requirements
on its future instantiations. We explore the design space of
the program analysis for determining and the program trans-
formation for realizing the tier split respectively. The former
corresponds to new adaptations of an old familiar, program
slicing, for tier splitting. The latter includes several strategies
for handling cross-tier function calls and data accesses. Us-
ing a prototype instantiation for JavaScript, we demonstrate
the feasibility of our approach on an example web applica-
tion. We conclude with a discussion of open questions and
challenges for future research.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Concurrent, distributed, and parallel languages;
D.2.11 [Software Architectures]: Patterns (client/server)

General Terms Languages, Design

Keywords Tier splitting, Program slicing, Tierless Pro-
gramming, JavaScript

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Contemporary web development has become complex.
There is an increasing demand for interactive features, col-
laboration between clients, support for offline functional-
ity, etc. Realizing such advanced features in a traditional
three-tier architecture requires developers to select and mas-
ter a myriad of technologies. Each tier comes with its own
technology stack. Examples include a query language for
the database tier, PHP or Java for the server tier, and a
combination of JavaScript, HTML and CSS for the client
tier —often augmented with cross-tier technology for asyn-
chronous communication such as Ajax and jQuery. It is up to
the programmer to combine and align the different technol-
ogy stacks. This might not only require a lot, but also rather
complex glue code for contemporary web applications. For
instance, to ensure the different data models of each tier are
kept in sync.

Tierless programming languages aim to reduce this com-
plexity. They enable developing a web application as a sin-
gle mono-linguistic application, which renders its develop-
ment akin to that of a desktop application. A preprocessor or
the runtime of these languages realizes a split into a client,
server and sometimes a database tier, where communica-
tion between the different tiers is handled transparently. The
dynamically-typed functional language Hop [10] is an early
example. It discerns code destined for the server and client
tier based on developer-provided annotations at the level of
individual expressions. The statically-typed functional lan-
guages Links [2] and Opa1 require such annotations at the
level of complete functions.

These approaches to tierless web development require an
investment in novel and perhaps esoteric programming lan-
guages. More importantly, they require developers to anno-
tate code meticulously with tier splitting information —a
time-consuming and often error-prone process. This is par-
ticularly problematic given the general lack of tool support
for these languages. Developers are on their own as far as
understanding, testing, validating, debugging and refactor-
ing tierless web applications is concerned. We therefore ad-
vocate to develop tierless web applications in a general-

1 http://www.opalang.org

1 2014/8/21



purpose language instead, such that its existing tool support
can be leveraged. JavaScript, for instance, is already a com-
mon compilation target for the client and even some server
tiers of the aforementioned tierless languages. This is be-
cause of its ubiquitous browser support and its successful
entry on the server-side since the introduction of NODE.JS.
We propose to take this trend one step further and develop
tierless web applications in JavaScript itself.

The approach we envision requires a means to split an
“ordinary” JavaScript program into client and server-side
code. We identify an old familiar, program slicing [14], as
the enabling technology for our vision. Developers are only
required to adorn a minimum of code with @client and
@server annotations. Program slicing will uncover the im-
plicit dependencies between annotated code, thus determin-
ing the border along which a tierless program can be split in
a server and client tier. Inconsistently annotated code can be
warned about along the way. For example, client-side anno-
tations do not make sense on code that performs an operation
on the server-side database. The same goes for server-side
annotations on code that accesses the browser’s DOM. Con-
versely, existing development tools for the general-purpose
language are oblivious to these annotations. They will there-
fore continue to treat the tierless web application as any
single-tiered one. As such, our approach alleviates the need
for additional tool support for understanding, testing, vali-
dating, debugging and refactoring web applications.

The concept of tier splitting is not novel. VOLTA [5], J-
ORCHESTRA [11] and GWT [3], for instance, are capable
of splitting tierless Java and C# programs into a distributed
application. Our contribution over these “LAMP era”2 ap-
proaches is the identification of open problems and possible
solutions that are inherent to the “JavaScript era” with highly
interactive, contemporary web applications.

2. Motivating Example
We motivate our approach using a web-based chat applica-
tion. We describe the functional requirements of the chat
application before scrutinizing a tierless implementation in
a prototypical tierless language. A prototype instantiation
of our approach will enable demonstrating an equivalent
JavaScript implementation in Section 3.1.

2.1 A Web-based Chat Application
The client side of the web application is to let users join a
chat room under a particular user name. Initially, every user
has joined a default chat room under the name guest. The
web browser should display a separate HTML paragraph
for each message that has been shared with the users in a
chat room. A “Send” button and input field will let users
share such messages themselves. Finally, a “Name” button
and input field will allow users to change their name in the
current chat room. Callback functions associated with these
2 http://gigaom.com/cloud/node-js-and-the-javascript-age

buttons can perform the required communication between
each client and the server.

The server-side of the web application is to maintain a
mapping from users to chat rooms. To this end, it should
listen for events originating from the callback functions in
its clients. Chat messages can be broadcast to the users in
a chat room through events as well. Modern web applica-
tions and frameworks (see e.g., Meteor in Section 7) typ-
ically achieve this through asynchronous AJAX-style calls
or push-communication over web sockets (where the server
pushes data without this being solicited by the client).

2.2 Tierless Implementation in a Prototypical Tierless
Language

Listing 1 depicts an implementation of the chat application
in Hop [10]. Hop is a dynamically-typed tierless program-
ming language derived from Scheme. As such, its syntax
is based on s-expressions. Line 14, for instance, invokes a
function <HTML> on the result of an invocation of a <BODY>
function. These are built-in functions that generate the cor-
responding HTML tags. In this case, an HTML page will
be generated whenever a client connects to the “hello” ser-
vice defined through the define-service special form on
line 10.

HOP web services are evaluated on the server tier. De-
velopers can use annotations to change the tier an individual
expression of the service will be evaluated on. Annotation
$ causes an expression to be evaluated on the server tier,
while annotation ~ causes an expression to be evaluated on
the client tier. Note that these annotations can be nested ar-
bitrarily. The onclick handler for the “Name” button on
line 36, for instance, is executed on the client tier (first ~).
However, line 12 defined the input field for this name on the
server tier. A typical Hop server program builds the HTML
tree and ships it to the client. Therefore, the input field is de-
fined on the server side, inside a let statement, so that it can
be referenced in the listener for the name button, but also to
embed it in the HTML tree (line 33). To retrieve the cur-
rent value in that text field, we must escape from the client
to the server tier using the $ annotation. Having changed the
name through the set! expression, we use the with-hop

construct to invoke the server-defined function join-room

from the client tier. Note that we have to annotate the refer-
ence to this function properly again.

Line 4 defines a server-side web service that, when in-
voked, broadcasts events of type “chat” to every client.
Clients subscribe to these events using the listener defined on
line 19 (i.e., one listener per client). The body of this listener
appends a new paragraph for the newly received message to
the <DIV> of existing messages. Note again that there is a
$ in front of the reference to the corresponding server-side
variable.

The nesting of annotations can be confusing at times. One
needs to keep track of the tier each referenced variable and
function is defined on. Errors such as violating the scoping

2 2014/8/21



1 (define nr_clients 0)
2
3 (define-service (chat msg)
4 (hop-event-broadcast! "chat" msg))
5
6 (define-service (join-room name room)
7 ;Store the update
8 )
9

10 (define-service (hello)
11 (let (( msg_in (<INPUT>))
12 (name_in (<INPUT>))
13 (msgs (<DIV>)))
14 (<HTML>
15 (<BODY>
16 ~( define name "guest")
17 ~( define chatroom "default")
18 (set! nr_clients (+ 1 nr_clients))
19 ~( add-event-listener!
20 server
21 "chat"
22 (lambda (e)
23 (dom-append-child! $msgs
24 (<P> (event-value e))))
25 #t)
26 msg_in
27 (<BUTTON>
28 :onclick
29 ~(let ((msg $msg_in.value))
30 (with-hop
31 ($chat (string-append name ": " msg))))
32 "Send")
33 name_in
34 (<BUTTON>
35 :onclick
36 ~(let (( new_name $name_in.value))
37 (set! name new_name)
38 (with-hop
39 ($join-room new_name chatroom)))
40 "Change name!")
41 msgs))))

Listing 1. Motivating Example in Hop

rules of a particular tier or using tier-specific primitives are
easily made.

On the other hand, this example clearly illustrates how
tierless programming reduces the complexity of develop-
ing web applications. Exposure to the underlying technol-
ogy stack is reduced significantly. Developers can focus on
the application logic rather than worry about non-negligible
amounts of glue code for client-server communication, con-
versions from one data representation to the other, etc. . .

2.3 Towards a Tierless Implementation in a
General-Purpose Language

We envision a different approach to tierless programming.
Through program analysis and transformation, this approach
should bring the benefits of the paradigm to existing general-
purpose languages. We formulate the following require-
ments on instantiations of this approach:

R1. Support tierless programming in a general-purpose
language Tierless programming currently requires invest-
ing in a tierless programming language and its accompany-
ing tool support —at least to the extent such support ex-
ists. We believe that the state of the art in program analysis
and transformation technology can enable tierless program-

ming for existing general-purpose languages instead. Cross-
tier, bi-directional communication should be supported in a
seamless manner. For instance, by aligning it with the lan-
guage’s built-in procedural abstractions. Developers should
be shielded from the accidental complexity that comes with
the underlying technology stack (e.g., asynchronous AJAX-
style calls and push-communication over web sockets).

R2. Compute a sound tier split from a minimal number of
annotations Existing tierless programming languages rely
on developers to demarcate the tier split using meticulously-
specified annotations. This brings about the time-consuming
and error-prone process of determining the server-side and
client-side dependencies of each expression. The sometimes
intricate nesting of these annotations (e.g., lines 36–39 in
Listing 1) might prove difficult to maintain.

We therefore advocate computing the tier split through a
program analysis instead. Although a small amount of anno-
tations will always be required to initiate the analysis and to
resolve uncertainties in its results, incorporating a state of the
art analysis should minimize their incidence. Moreover, such
an analysis will enable warning about incorrectly placed an-
notations. For instance, it could enable warning about server-
side annotated functions that update a DOM element.

R3. Enable the use of existing development tools on tier-
less programs Existing general-purpose programming lan-
guages are supported by tools for understanding, testing, val-
idating, debugging and refactoring programs. Our approach
should enable using these tools on tierless programs devel-
oped in such a language. For instance, developers should be
able to apply a rename refactoring consistently across all
tiers. Provisions might have to be made for code that de-
pends on libraries that are specific to a particular tier. For
instance, validating or testing code that manipulates a DOM
requires the actual DOM or a shadow.

R4. Support full-fledged JavaScript in the browser Con-
temporary web applications such as collaborative editors of-
fer a high degree of interactivity. To the users, such appli-
cations appear as a “single page” to which elements are
continuously added or removed from. These page changes
are typically implemented as DOM manipulations through
JavaScript libraries such as JQuery and Dojo. Any approach
to tierless web development should therefore support the use
of existing JavaScript libraries in a web application.

R5. Offline functionality and consistency strategies Be-
ing able to continue using a web application while discon-
nected is a feature that ranges from being useful (e.g. work-
ing on an airplane) to being critical (e.g. in disaster-relief
scenarios where network connectivity is sparse). A common
way of enabling offline functionality is to replicate (part of)
the state that represents the application on the client. This
way, the client has the required data locally until it recon-
nects. When changes can be made to this data, means to keep

3 2014/8/21



this data consistent between the server and all (possibly dis-
connected) clients should be offered.

3. Overview of the Approach
We introduce an approach to tierless programming that ful-
fils the above requirements. To this end, it relies on program
analysis and transformation for determining and realizing
the tier split respectively. Figure 1 depicts an overview of
the different phases in this tier splitting process. The process
starts from a tierless program in a general-purpose language
and results in tier-specific code (in the same language) ready
to be deployed in a distributed setting. We now describe each
phase and its input and output artefacts in an abstract man-
ner. Section 4 will detail their instantiation in our prototype
implementation.

Tierless 
JavaScript 

Code
Determining tier split 
using program slicing

Realizing tier split using 
program transformation

Tier Split 
Code

Server

Client

ASTs

program slice + 
dependency info

AST

Figure 1. Process-centric overview of our approach.

3.1 Tierless JavaScript Code
Our approach is applicable to any general-purpose language
that supports distributed programming. It relies on annota-
tions for developers to specify what tier a particular block
of code belongs to. We will illustrate our approach using
JavaScript. As JavaScript features no syntax for annotations,
we require developers to nest tier annotations in the com-
ments for a code block.3

Listing 2 depicts the tierless JavaScript code for the web-
based chat application from Section 2.1. The code looks like
regular JavaScript, except for the @client and @server an-
notations that reside within the comments. The web applica-
tion can therefore be run, tested, debugged or refactored as
any regular JavaScript program. Being tierless, however, its
architecture corresponds roughly to the Hop implementation
from Section 2.2. For instance, lines 19–22 install a callback
handler for the “Name” button that enables users to join a
chat room under a particular username. Pushing the button
results in an invocation of the joinRoom function. Note that
this function happens to reside in an @server block.

Line 19 installs this callback handler through a func-
tion install(id, event, callback). We provide this
function in a JavaScript library of tierless primitives that

3 A similar annotations-in-comments convention is followed by JsDoc and
the Google Closure compiler, among others.

1 s1 var nr_clients = 0;
2 Ds /* @server */
3 {
4 s2 var db = [];
5 e1 var joinRoom = function (name ,chatroom) {
6 s3 // add to mapping
7 }
8 }
9

10 Dc /* @client */
11 {
12 s4 var name = ’guest’;
13 s5 var chatroom = ’default ’;
14 s6 nr_clients += 1;
15 e2 var printMsg = function (msg) {
16 c1 print(’msgs’, read(’msgs’) + ’\n’ + msg);
17 }
18 c2 install(’name_btn ’, ’click’,
19 e3 function () {
20 s6 name = read(’name_input ’);
21 c3 joinRoom(name , chatroom)
22 });
23 c4 install(’send_btn ’, ’click’,
24 e4 function () {
25 s7 var msg = read(’msg’);
26 c5 print(’msg’,’’);
27 c6 printMsg(’me: ’ + msg)
28 c7 broadcast(chatroom , name+’: + ’msg);
29 });
30 c8 subscribe(chatroom ,
31 e5 function (data) {
32 c9 printMsg(data)
33 })
34 }

Listing 2. Motivating Example in Tierless JavaScript

facilitates common operations in web applications such
as manipulating the DOM and communicating between
the users of the application. Other primitives used in our
chat application are print(id,text) and read(id) for
DOM manipulation, and broadcast(type,message) and
subscribe(type, callback) for event-based communi-
cation. These tierless primitives abstract over the myriad of
technologies that can be used to this end.4

In contrast to existing approaches, we only require devel-
opers to annotate a minimal seed for the tier split. The full
split will be computed by analyzing the tierless program for
cross-tier references and dependencies. Redundant annota-
tions are allowed, but the consistency of all annotations will
be verified.

3.2 Determining the Tier Split through Program
Slicing

Using the developer-provided annotations, the second phase
in our tier splitting process computes the border along which
a tierless program can be split in a server and client tier. We
discuss now how program slicing [14] can be adapted to
this end. Traditional applications of program slicing are to
be found within program comprehension and debugging, for
instance to determine what parts of the program contributed
to an erroneous value.

4 However, future instantiations of our approach can always forego this li-
brary in favor of recognizing uses of the underlying technologies them-
selves.

4 2014/8/21



3.2.1 Program Slicing
Informally, a backward program slice is a subset of an appli-
cation that has a direct or indirect effect on the values com-
puted at a given location. A program slice is therefore com-
puted with respect to a slicing criterion, typically a line num-
ber and a set of variables. In general, slicing algorithms op-
erate upon a program dependency graph: a directed graph of
which the nodes correspond to statements and branch pred-
icates, and of which edges correspond to data and control
dependences. A statement is data dependent on another if
values flow from the latter to the former. A statement is con-
trol dependent on a branch predicate if the outcome of the
latter determines whether the former will be executed. For
instance, there is a control dependency from every statement
of a procedure to its entry point. Whole-program graphs in-
clude parameter binding edges from concrete arguments to
formal parameters. Computing a slice then amounts to find-
ing all nodes that can be reached backwards from the crite-
rion. We can split a properly annotated tierless web applica-
tion into a server and a client tier through slicing. The client
and server slices are obtained using criteria that consist of
all statements within a @client and a @server block re-
spectively. Program slicing requires a small initial seed for
the partitioning, and enables arbitrarily complex nestings of
client and server expressions. It guarantees that all depen-
dencies are included in the resulting slice, but also has other
advantages such as the ability to filter out duplicated code
but int he meantime preserves the original program’s behav-
ior.

3.2.2 Distributed Dependency Graph
The distributed nature of web applications requires some
extensions to the traditional notion of a dependency graph.
We extend it with so-called distributed component nodes
that encapsulate a code snippet that is to be executed by
a particular tier. Each statement within such a component
has a control dependency on the component’s entry point.
Cross-tier data and control dependencies become remote
dependency edges. Our extensions are akin to the C-nodes
proposed by Mohapatra et al. [7] to represent the sending
and receiving of messages between processes.

Figure 2 depicts a distributed program dependency graph
(DPDG) for the code in Listing 2. For illustration purposes,
we limit the graph to lines 1 to 22 from the code example.
The mapping from line numbers to node numbers can also
be seen in the listing. The distributed program dependency
graph contains all the nodes and edges of a traditional pro-
gram dependency graph. For instance, there is a data depen-
dency from the variable declaration s5 to its use as the sec-
ond argument a6 for the call at c3. In addition, the graph
has distributed component nodes Dc and Ds for the client
and server tiers respectively. A remote edge goes from the
client-side call c3 to the entry point e1 of the server-side
function that is called.

control dependency
data dependency
parameter binding
remote dependency
statement
entry

s

e

c

a

f

e0

s5

Dc Ds

c2s4 s2 e1

f1

s3
a2 a3

f2

call

actual in/out parameter

formal in/out parameter

distributed componentD

e2

f1 c1

e3

s3

a4

c3

a5 a6

s1

s6

Figure 2. Distributed dependency graph for lines 1-22 of
the tierless code in Listing 2. Highlighted nodes correspond
to the slice computed along the tier split.

3.2.3 Slicing along the Tier Split
To separate the client tier from the server tier, we slice the
program along a criterion that consists of all statements
within their respective distributed component. For our mo-
tivating example, we slice on statements s4, s5 and s6, call
node c2 (together with its arguments a2, a3, a4), and entry
nodes e2 and e3. This way we cover all statements in the
distributed component and the slicing algorithm ensures us
that all dependencies are included in the resulting tier split.
Figure 2 highlights the slice obtained in this manner for the
client tier.

Incorporating program slicing in our approach enables
developers to sketch the tier split using coarse-grained anno-
tations at the level of code blocks. We deem this less tedious
and error-prone than meticulously specifying the split using
fine-grained annotations at the level of individual expres-
sions. Note, however, that the final tier split is more sophisti-
cated than the initial developer-provided sketch. A function
may even end up with a different body on the client tier and
on the server tier.

3.3 Realizing the Tier Split through Program
Transformations

Slicing a tierless program into tier-specific subsets does not
yet produce deployable code. Actually realizing the tier split
requires injecting distributed programming technology for
the communication across tiers and between tier peers. The

5 2014/8/21



remote edges in the program’s distributed dependency graph
can be consulted to this end.

However, the transformations required for cross-tier calls
and references are both diverse and complex. What transfor-
mation to apply does not only depend on the chosen technol-
ogy stack, but also on the tier a function (or data definition)
is destined for and the tiers from which it is called (or refer-
enced). We present the results of a case analysis below.

In the interest of generality, our case analysis does not
yet commit to any particular distributed programming tech-
nology. Section 4 details the actual transformations incorpo-
rated in our prototype, including the intricacies brought forth
by technology for asynchronous procedure calls and consis-
tency management of replicated data.

3.3.1 Case Analysis for Cross-Tier Calls
In tierless programming, cross-tier communication is seam-
less through regular function calls. Table 1 summarizes
when such a call should be transformed to a remote proce-
dure call (or an equivalent service invocation). We distin-
guish the cases where the function is either defined on the
server, defined on the client or defined in neither tier (i.e.,
resides outside of an annotated code block). Conversely, a
function can be called only from the server tier, only from
the client tier, from both tiers, or by neither tier.

Function CALL
server-only client-only from both tiers

DEF server-side client-side
server tier same RPC same RPC
client tier RPC same RPC same
shared same same same same

Table 1. Case analysis for transforming cross-tier calls.

When no specific transformation is required for the cor-
responding function call it is indicated in the table with
“same”. This is the case for functions that are only called
from the tier they are defined on (i.e., all calls to the func-
tion are intra-tier). Functions that are shared by both tiers
can be duplicated in the tiers where they are used (together
with all their dependencies). The following special cases can
be identified in the table:

1. Function defined on the server tier, called by the client
tier (and possibly the server tier): the function call on the
client should be replaced by a client-initiated remote pro-
cedure call. Depending on the chosen distributed commu-
nication technology, server-side calls to the same func-
tion might require a local copy of the original definition.

2. Function defined on the client tier, called by the server
tier (and possibly the client tier): the function call on
the server should be replaced by a server-initiated remote
procedure call. This requires the distributed communica-
tion technology to support bi-directional communication
(e.g., push-based communication over web sockets in our
context). Depending on the specifics of this technology,

client-side calls to the same function might require a local
copy of the original definition.

Note that, in all of the above, “duplicating” a function def-
inition might require a sophisticated transformation for ap-
plications that rely on the identity of its returned values.

3.3.2 Case Analysis for Cross-Tier References
Several strategies can be used when dealing with remote
data in distributed programming. We could, for instance,
transform cross-tier data manipulations to remote mutator
and accessor calls. Alternatively, we could also replicate the
data and keep the replicas consistent across the tiers and tier
peers. In our setting, replication comes with the benefit of
faster read and writes. It also does not preclude clients from
using the web application offline. However, a consistency
mechanism should be applied to guarantee an (eventually)
consistent state of all tiers and tier peers.

Variable REFERENCE
server-only client-only from both tiers

DEF server-side client-side
server tier same R+C R+C
client tier / same / same
shared same R+C R+C

Table 2. Case analysis for transforming cross-tier refer-
ences.

Table 2 summarizes our case analysis. A slash indicates
that the corresponding combination is not allowed scoping-
wise. “Same” indicates that no transformation is required.
This is the case when data is defined on a certain tier and is
used by the same tier. In these circumstances, the data can
simply be defined and used in the scope of that tier. Entries
of the form R+C indicate that data should be replicated with
provisions for its consistency:

1. Data defined on the server tier, referenced by the client
tier: a transformation should be applied that results in the
data being replicated to the clients. All replicas should be
kept consistent.

2. Data defined outside of a tier-specific code block (i.e.,
shared), referenced by the client or server tier (and possi-
bly both): a transformation should be applied such that
the involved tiers operate upon replicas of the shared
data. If only the server tier references the shared data,
we can simply move the definition to the server scope.
No transformation of the references is required. How-
ever, if only the client tier references the shared data,
we still need to transform the references to ensure each
client operates upon a replica. The same transformation
is required when the shared data is referenced from both
tiers.

Note that in tierless programming, references from the server
tier to a specific client cannot be expressed through scoping

6 2014/8/21



Figure 3. STiP.js in action: editor on tierless and final tier-
split code.

alone. Such cases require dedicated tierless primitives simi-
lar to those introduced in Section 3.1.

4. Implementation
To evaluate the feasibility of our approach, we implemented
a prototype capable of splitting a tierless JavaScript program
into a client and server tier. Our prototype implementation,
called STIP.JS (Slicing TIerless JavaScript Programs), is
freely available at http://soft.vub.ac.be/~lphilips/
stip. This website provides example programs of which
the distributed dependency graph (see Section 3.2.2) can be
visualized and sliced interactively. Figure 4 depicts such a
visualization for the example program depicted in Figure 3.
The remainder of this section discusses the highlights of this
implementation.

4.1 Abstract Interpretation of JavaScript to Uncover
Control and Data Dependencies

Our tool constructs its distributed dependency graph from
the inter-procedural control and data dependencies that exist
between the expressions in the tierless JavaScript program.
We compute these dependencies from a compile-time de-
scription of the possible states the program can transition
to. This description is provided by the JIPDA5 abstract in-
terpreter framework for JavaScript [8]. We therefore owe
our support for a fairly representative subset of JavaScript
to JIPDA —including several features that are difficult to
analyze statically such as higher-order functions with side-
effects and prototype chains.

4.2 Distributed Programming in JavaScript
Once a program slice has been obtained along the tier split,
the next step is to replace cross-tier calls by an appro-
priate remote procedure call. To this end, our prototype
generates code for the METEOR6 web application frame-

5 https://github.com/jensnicolay/jipda
6 http://www.meteor.com

Figure 4. STiP.js in action: dependency graph used to de-
termine the tier split for the code in Figure 3.

1 if (Meteor.isClient) {
2 Meteor.call(’temperature ’, function(err , res) {
3 // Check first if error
4 var celcius = res * 9/5 + 32;
5 // Update UI
6 if (celcius > 20)
7 // Display ’Summer!’
8 else
9 // Display ’Winter!’

10 })
11 }
12 if (Meteor.isServer) {
13 Meteor.methods ({
14 ’temperature ’ : function () {
15 // Retrieve current temperature
16 return temp;
17 }
18 })
19 }

Listing 3. Cross-tier calls as explicit remote procedure calls
in the METEOR framework.

work. Listing 3 illustrates how this framework supports
asynchronous remote procedure calls. Line 14 registers an
anonymous function as a remote procedure under the name
temperature. This enables other framework users to call
the function as depicted on line 2. The Meteor.call con-
struct takes as its first argument the remote procedure’s
name, followed by the arguments for the call, and a two-
argument callback function. The callback function will be
invoked by the framework with the return value of the anony-
mous function and an error if it occurred. The depicted call-
back function updates the application’s user interface upon
receiving a temperature reading from the remote procedure.

Note that the METEOR framework already supports
tierless programming in a limited sense. Indeed, the
same code is executed on the Meteor.isServer and
Meteor.isClient users of the framework. However, the
run-time checks for these flags indicate that the framework
does not perform any kind of tier splitting. As a result, pos-

7 2014/8/21



sibly sensitive server-specific code ends up with clients as
well. Moreover, developers cannot use the language’s built-
in procedural abstractions for cross-tier calls. Listing 4 de-
picts a truly tierless version of the same code, as supported
by our approach. Section 7 revisits METEOR from the per-
spective of related work.

4.3 Transforming Synchronous Cross-Tier Calls into
Asynchronous Remote Calls

While the case analysis of Table 1 summarizes which cross-
tier function calls require a transformation, it does not de-
fine whether a remote call should proceed in a synchronous
or asynchronous manner. Our prototype implementation
prefers asynchronous communication whenever possible.
This way, the client tier does not have to halt its execution
while waiting for the server to communicate an answer.

However, asynchronous communication brings about the
problem of ensuring that the result of a call has been received
at the moment it is required. For instance, when the result has
to be used as an argument to another call. One way to achieve
this is to transform the call asynchronously, but to include
all of its dependent expressions in the body of the callback
function. When the result of the call becomes available, the
callback function is invoked with this result as input upon
which the computation continues.

Listing 4 depicts the tierless JavaScript variant of the
METEOR program in Listing 3. Note that the temperature
function is now defined as a regular JavaScript function. The
client block makes a local function call to this function and
proceeds as if the result was returned immediately.

Our implementation transforms this tierless JavaScript to
the METEOR code given in listing 3. To decide which ex-
pressions should be moved into the body of the callback
function, STIP.JS uses the dependency graph. The program
dependency graph for the tierless code reveals which expres-
sions depend on the result of the function call. Because the
variable declaration on line 10 of listing 4 depends on the
return value of the function call, the declaration should be
moved to the callback handler. All other statements that are
control or data dependent on that statement, are also moved
to the continuation. For every statement that is transferred to
the continuation, all dependent statements should be trans-
ferred as well, and so on. Other statements that have no de-
pendency on the result of the function call can be executed
independently.

5. Evaluation
In this section we evaluate qualitatively whether our ap-
proach and its prototype instantiation fulfill the requirements
from Section 2.3. To this end, we apply STIP.JS on the tier-
less JavaScript for the motivating example.

1 /* @server */
2 {
3 var temperature = function () {
4 // Retrieve current temperature
5 return temp;
6 }
7 }
8 /* @client */
9 {

10 var celcius = temperature () * 9/5 + 32;
11 // Update UI
12 if (celcius > 20)
13 // Display ’Summer!’
14 else
15 // Display ’Winter!’
16 }

Listing 4. Seamless cross-tier calls in tierless JavaScript.

5.1 Evaluation on Requirement 1
R1: Support tierless programming in a general-purpose
language.

Our tierless implementation of the web-based chat appli-
cation in Listing 2 is valid JavaScript. We do employ some
tierless primitives for manipulating the DOM and cross-tier
communication. These tierless primitives abstract over the
myriad of technologies that can be used to this end. How-
ever, an implementation of these primitives is provided as a
regular JavaScript library.

The tier annotations @server and @client reside within
the comments for code blocks. This way, other development
tools that are oblivious of these annotations can still be used.
In contrast to existing approaches, we only require develop-
ers to annotate a minimal seed for the tier split. The full split
is computed by analyzing the tierless program for cross-tier
references and dependencies. Redundant annotations are al-
lowed, but the consistency of all annotations will be verified.

5.2 Evaluation on Requirement 2
R2: Compute a sound tier split from a minimal number of
annotations.

Listing 5 depicts the client and server tiers computed
by our prototype for the motivating example. Note that the
original call to the server-side function joinRoom has been
replaced by the METEOR construct Meteor.call on the
client-side (line 13). The server-side now defines this func-
tion as a METEOR method (line 33), rendering it available
for clients to call. This is consistent with our case analysis in
Section 3.3.

Variables name and chatroom are defined on the client
tier and so no transformation took place. Data replication
and synchronization, for the shared variable nr clients

from the motivating example, is currently not implemented,
but we give a strategy in section 5.

The tierless primitives we provide also appear in the split
code and their implementation should thus be included in
the project as a library. While the primitives used for DOM

8 2014/8/21



1 /* Client code
2 * Requires: primitives , Meteor Streams package
3 */
4 var chatroom = ’default ’;
5 var name = ’guest ’;
6
7 var printMsg = function(msg) {
8 print(’msgs’, read(’msgs’ + ’\n’ + msg)
9 };

10
11 install(’name_btn ’, ’click’, function () {
12 name = read(’name_input ’);
13 Meteor.call(’joinRoom ’,name ,chatroom);
14 });
15
16 install(’send_btn ’, ’click’, function () {
17 var msg = read(’msg’);
18 print(’msg’, ’ ’);
19 printMsg(’me: ’ + msg);
20 broadcast(defaultstream , name+ ’: ’ + msg);
21 });
22
23 subscribe(defaultstream , function(data) {
24 printMsg(data);
25 });
26
27
28 /* Server code
29 * Requires: Meteor Streams package
30 */
31 var db = [];
32
33 Meteor.methods ({
34 joinRoom : function(name ,chatroom) {
35 // add to mapping
36 }
37 });

Listing 5. The sliced programs in METEOR

1 var defaultstream = new Meteor.Stream(’default ’);
2 var subscribe = function (stream , topic , fn) {
3 stream.on(topic , fn);
4 };
5 var broadcast = function (stream , topic , data) {
6 stream.emit(topic , data);
7 };

Listing 6. The communication primitives for Meteor

manipulation (read, print and install) are rather ele-
mentary, we discuss how the primitives for communication
(broadcast and subscribe) are transformed to METEOR
code.

To broadcast something to all clients, we utilize
the Streams package of METEOR. It is basically a
topic-based publish/subscribe protocol where clients sub-
scribe to a certain topic using stream.on(topic,

callback). Publishing a message can be achieved by us-
ing stream.emit(topic, data). This way of communi-
cation can be used to address only a subset of all clients or
even one in particular. The code generation phase for ME-
TEOR thus also includes the code depicted in listing 6. Line 1
creates a stream for the topics used in broadcast and sub-
scribe. The primitives then simply use the publish subscribe
system from METEOR Streams.

5.3 Evaluation on Requirement 3
R3: Enable the use of existing development tools on tierless
programs.

Because we support tierless programming in a general-
purpose language, existing tools can be applied to the tier-
less JavaScript code. To demonstrate, we take two common
development tools: a refactoring and a unit testing tool.

Refactoring Using the Eclipse IDE for JavaScript (ver-
sion 4.2.2) (provided by the Web Tools Platform7, version
1.3.0) we refactored the code from listing 2. First, we re-
named the shared variable nr clients to nr of clients.
The rename refactoring replaces every reference to that
variable with the new identifier. Because the tool is un-
aware of the tiers (this information is inside comments), the
refactoring was completed successfully for each tier. Sec-
ondly, we refactored the name of the function joinRoom

to addToRoom. The Eclipse refactoring was able to detect
that there is a call to this function in the client-block and
therefore correctly adjusted that call accordingly. Would we
have tried to use a refactoring tool on a typical tiered ap-
plication developed in different languages and technologies,
refactorings on one tier would have completed successfully,
but cross-tier refactorings would likely not be supported.

Unit testing The Mocha test framework 8 allows unit test-
ing of JavaScript code. We implemented the small tierless
JavaScript program depicted in Appendix A, Listing 8. Its
server tier defines two functions to test whether a given num-
ber is a prime, and list all prime numbers up until a certain
number. The client tier has an input field and a button. When
clicked, the client asks the server if the input number is prime
or not and displays the result.

In order to validate the program, we implemented unit
tests for the server functions. These are depicted in Ap-
pendix A, Listing 9. As can be seen from the test code, no ad-
ditional steps need to be taken to extract these functions from
the server tier. The tests use the functions just as they were
defined in a normal non-distributed JavaScript program.

This shows that the chosen approach, where tier-specific
information is given inside comments, enables the code to
be used by tools for that general-purpose language.

5.4 Evaluation on Requirement 4
R4: Support full-fledged JavaScript in the browser.
Our approach supports the use of client-side and server-side
libraries in a web application. Its inter-procedural client and
server slices are computed for the whole program, including
all of its JavaScript libraries.

In practice, however, the STIP.JS prototype is limited by
the precision of the abstract interpreter upon which it relies
to compute the program’s dependency graph. Its handling of

7 http://www.eclipse.org/webtools/
8 http://visionmedia.github.io/mocha/

9 2014/8/21



1 /* Client code
2 * Requires: CloudTypes library
3 */
4 var nr_clients = state.get(’nr_clients ’);
5 nr_clients.add(1);
6 ...
7
8 /* Server code
9 * Requires: CloudTypes library , */

10 CloudTypes.declare(’nr_clients ’, CInt);
11 ...

Listing 7. Cloud Types applied in tier split code

event handlers, in particular, is imprecise. Such imprecisions
might lead to spurious branches in the derived dependency
graph. Should these preclude computing a program slice
unambiguously, we require additional annotations from the
developer.

5.5 Evaluation on Requirement 5
R5: Offline functionality and consistency strategies.
Implementing offline functionality requires the consistent
application of strategies for replicating data and safeguard-
ing the consistency of the replicas. We advocate the use of
annotations as a means to express such strategies in a declar-
ative manner, the implementation of which can then be taken
care of by the runtime. This way, our approach facilitates im-
plementing offline functionality in web applications. In fact,
other cross-cutting concerns such as failure handling, secu-
rity and persistence can be supported similarly.

Although the runtime of our prototype does not yet sup-
port these annotations, we can illustrate that it should be
straightforward to add. Cloud Types [1] is a model for even-
tual consistency, developed in the TouchDevelop[12] lan-
guage. Eventual consistency is consensus between the avail-
ability of the data and strong consistency of the replicas.
Based on revision diagrams, the server keeps track of the
main revision of the data, while the replicated revisions syn-
chronize periodically with the main revision. Each of the
Cloud Types has a predefined set of operations, next to the
set operation. For cloud integers for example, the add oper-
ation is commutative and different adds can thus be executed
incrementally on the revisions.

An open implementation of the model for JavaScript is
available9 and can therefore be incorporated in the tier split
code. Listing 7 illustrates how this JavaScript library can
be put to use to fulfill the offline functionality requirement.
The original code used the variable nr clients, that was
declared on the shared level of the tierless code and used
by the client annotated code. The variable is declared as a
CInt (Cloud Integer) on line 10 and has the default value of
0. On the client side, the cloud type can be received using
the state.get construct, providing the name of the cloud
type (line 4). Incrementing the value is translated to the add
operation on line 5. Please note that the setup code required

9 https://github.com/ticup/CloudTypes-paper

by the Cloud Types library is omitted. This is boilerplate
code and can easily be generated.

6. Discussion
Our approach enables a tierless development style for com-
plex web applications in a general-purpose programming
language. This relieves developers from having to align dif-
ferent client-side and server-side technologies, but without
requiring an investment in an esoteric tierless language that
might be short-lived. More importantly, existing software
engineering tools for the general-purpose language can be
leveraged to develop, test, validate, debug and refactor the
web application as a traditional tierless application. A min-
imal amount of annotations conveys the information neces-
sary to perform the tier split automatically —of which the
existing tools are oblivious.

Although we demonstrated through a prototype imple-
mentation that our approach is feasible for the motivating
example, complete qualitative and quantitative validations
are needed and will be subject of future work. This will
require resolving several open questions and research
challenges.

Leveraging tools in the presence of tier-specific code
Section 5 illustrates how a development and validation

tools can be used on a tierless web application. However,
further research is needed to see whether existing software
engineering tools can cope with the tierless version of a web
application that contains tier-specific code. For instance,
code destined for the client-side tier might perform manipu-
lations of the DOM maintained by a browser. Emulating the
browser through libraries such as JSDOM 10 or ZOMBIE.JS 11

might still enable testing the tierless application as a whole
on a NODE.JS server.

As a first step, we provide primitives for widely used
tasks in web applications: DOM manipulation, communi-
cation between clients, etc. The actual implementation of
these primitives differs for each output target. For instance,
communication between clients is implemented differently
for the METEOR framework than for a NODE.JS application.
To be able to run the tierless program, a default imple-
mentation of these primitives should be provided as a library.

Failure Handling
Many things can go wrong in a distributed setting.

Different applications may have to react differently to
network-related errors. The code in listing 4 and its split
version in listing 3 illustrate this already. The callback
function in the split version takes an extra argument for a
potential error, while there is no sign of error handling in
the tierless version. A potential solution could be to enable
developers to introduce custom error handlers through

10 https://github.com/tmpvar/jsdom
11 http://zombie.labnotes.org/

10 2014/8/21



annotations. These annotations could reside at the tier-level
indicating that all errors on this tier should be handled this
way, or on the level of individual statements.

Tool support for annotations
Inconsistencies can arise when developers annotate tier-

less code. For instance, when a server-side function updates
the DOM. Our distributed program dependency graph en-
ables detecting and reporting such inconsistencies to the de-
veloper. Other combinations of annotation can prove to be
ambiguous. For instance, when a function is passed aopes
an argument to another that applies the given function on a
different tier. Future tools, could ask additional annotations
from the programmer to decide where the function should be
executed. On the other hand, expressions that perform DOM
manipulation or tier-specific code could moreover be recog-
nized by the analysis and automatically classified as client-
side expressions. Should this be inconsistent with the anno-
tations provided by the programmer, future tools could ask
to resolve the conflict.

In addition, these future tools could make the program-
mer conscious of cross-tier transformations; e.g. local func-
tion calls that become remote calls. Programmers can inspect
and analyze how these transformations influence the result-
ing behavior (e.g. performance) of the application.

7. Related Work
Transformation-based approaches VOLTA [5], J-
ORCHESTRA [11] and GWT [3] all advocate developing
web applications in a single general-purpose language.
Table 3 evaluates these approaches on the requirements
from Section 2.3.

The discontinued VOLTA [5] tool is most closely related
to our prototype. It enables developing distributed applica-
tions in a tierless manner. VOLTA automatically adds dis-
tributed constructs as required by developer-provided anno-
tations. All languages that compile to the Common Inter-
mediate Language of the .NET platform are supported, of
which the client tier is compiled to JavaScript. As a con-
sequence, existing tools can be reused. In contrast to our
approach, VOLTA supports very coarse-grained annotations
only (i.e., at the class-level), such that complex behavior
such as a method that behaves differently on the client or
server tier is harder to implement. Support for the client tier
is limited in VOLTA, because its compiler cannot translate
every class or function call to JavaScript code. This issue is
solved by generating procedure calls from client to server
to execute that particular piece of code on the server. This
of course generates more network traffic. Also, bidirectional
communication is not supported; only the client can poll the
server. To the best of our knowledge, data cannot be shared
between the tiers in VOLTA.

J-ORCHESTRA [11] is an automatic partitioning system
for Java bytecode. Given tierless Java code and a distribu-

tion plan, it rewrites the code to a distributed application, us-
ing Java RMI to enable cross-tier communication. Through
an XML configuration file the user must define sites (client
and server) and classify each class of the system under these
sites. Its mobile classes and synchronization mechanisms al-
low data to be shared between tiers. J-ORCHESTRA’s par-
titioning thus operates at a class-level granularity, almost
entirely pre-determined through a GUI or XML file. This is
due to its reliance on a type-based analysis to detect refer-
ences between classes in different partitions, in contrast to
our use of transitive control and data dependencies between
expressions. Program slicing requires a much smaller ini-
tial seed for the partitioning, and enables arbitrarily complex
nestings of client and server expressions. Furthermore, our
annotation-based handling of tier demarcation also extends
to concerns such as consistency, ownership, and robustness.
In J-ORCHESTRA, it is for example necessary to add fail-
ure handling manually in the generated bytecode. Because J-
ORCHESTRA does not focus on web applications but on dis-
tributed applications, it has no support for JavaScript what-
soever.

Google’s GWT [3] enables developing an entire web ap-
plication in Java. To this end, it provides a Java implemen-
tation of a suite of reusable GUI components. GWT offers
a development mode and a production mode. In the devel-
opment mode, the application is executed from Java byte-
code. In the production mode, all client-side code is com-
piled to JavaScript and HTML. In contrast to VOLTA, J-
ORCHESTRA and our approach, cross-tier calls require an
explicit remote procedure calling construct that is rather in-
volved. Because of this, applications developed with GWT
are not fully tierless. Consequently, not every kind of tool
for Java can be reused. Therefore, GWT has its own unit
testing, called GWT JUNIT, which can handle these explicit
remote procedure calls and other framework specific con-
structs. GWT fully embraces JavaScript and defines how ev-
ery data type can be converted between Java and JavaScript,
thus enabling the use of external JavaScript libraries. In ad-
dition, classes can be shared between the client and server
tiers. However, they get duplicated and are altered separately
without synchronization.

Our contribution over these transformation-based ap-
proaches is the identification of open problems and possi-
ble solutions that are inherent to modern web applications.
While some of the discussed approaches allow data repli-
cation to achieve a higher availability of the data, almost
none of them consider conflict detection and resolution on
the replicas. As illustrated in section 5, our approach can
easily be extended in such a way that consistency strategies
can be enabled automatically (as discussed in 3.3.2) or ex-
plicitly by means of annotations. We also strive to a way of
programming where the programmer can use annotations to
which other tools are ignorant and which capture all aspects
of web development: e.g. failure handling should be handled

11 2014/8/21



in the tierless code and not in the tier split code. This is not
always the case for the other approaches discussed here, as
a programmer is required to add specific failure handling in
the generated code. STIP.JS also enables developers to im-
plement a rich client, that can make use of all JavaScript
libraries that are out in the wild.

R1 R2 R3 R4 R5
Volta 3 3 3 ± ×

J-Orchestra 3 3 3 × 3
GWT ± 3 ± 3 ±
Koka × 3 × × ×

Meteor ± 3 ± 3 ±
Stip.js 3 3 3 3 3

Table 3. Comparison of related work based on requirements
(defined in section 2.3)

Analysis-backed tierless programming languages
KOKA [4] is a functional programming language in
which the effects of a function are automatically inferred
and checked. A client and server effect can be used
for functions that are only to be called from the client-side
and server-side respectively. The pure effect is used for
functions that can be called by both. This enables the
effect system to detect undesired cross-tier calls, giving the
developer certain guarantees about how the application will
be split. This guarantee comes at the cost of having to invest
in a new language and its tool support. A commonality with
our approach is KOKA’s use of program analysis. The one in
KOKA takes the form of a type and effect system rather than
a control and data flow analysis. KOKA does not yet support
shared state between the client and server tier. As can be
seem from table 3, KOKA does not allow existing tools
to be reused (R3), neither does it incorporate support for
JavaScript libraries (R4) or offline functionality (R5), but it
has its own exception system embedded in the language.

Frameworks for tierless programming METEOR is a tier-
less framework that allows programmers to write a web ap-
plication in JavaScript. While a web application is written in
one single language, the programmer is still required to ex-
plicitly use the framework’s RPC constructs, etc. to add dis-
tributed behavior (requirement 1). It offers a state-of-the-art
data replication mechanism, but does not detect inconsisten-
cies nor solves them, hence requirement five is only fulfilled
partially. METEOR decides at runtime which code should be
executed by looking at the current executing environment.
This requires the program to be transmitted in its entirety
to the client, including all of its server-side code. Our pro-
totype implementation produces sliced code that can be run
by the framework, where server-side code will not end up at
the client side. We only rely on the framework’s RPC con-
structs to realize the required bi-directional communication
between clients and the server. In the future, we will inves-

tigate alternative JavaScript libraries or frameworks to this
end.

Program slicing for web applications While the notion
of slicing a web application is not new, its use as the en-
abling technology for tierless programming is. More tradi-
tional applications of program slicing are to be found within
program comprehension and debugging. The REWEB pro-
gram slicer [9, 13], for instance, incorporates dependencies
between PHP scripts and the HTML code they generate in
the program dependency graph of a web application. It can
be used to create an executable slice of the complete web
application with respect to a slicing criterion related to a de-
bugging task. The FIRECROW [6] tool supports slicing the
client-side of a web application only. To this end, it extracts
dependency information related to the DOM from recorded
execution traces.

8. Conclusion
We have identified program slicing as the technology with
the potential of enabling tierless programming in general-
purpose programming languages. This relieves developers
from having to align different client-side and server-side
technologies, but without requiring an investment in a new
tierless language. In our approach to tierless programming,
web applications are developed as ordinary single-tiered
programs using the existing tools for a general-purpose lan-
guage. Once tested and validated, the single-tiered program
is automatically split into server and client tiers. This re-
quires a minimal amount of annotations from developers.
Program slicing technology uncovers the implicit dependen-
cies between annotated code, thus determining the border
along which the single-tiered program can be split. To realize
the tier split, shared state and function calls are replaced by
the appropriate distributed programming constructs. Using a
freely available prototype implementation for JavaScript, we
have demonstrated the feasibility of our approach on a small,
but representative tierless web application. Future work in-
cludes further qualitative and quantitative evaluation of the
approach on other tierless programs.

Acknowledgments
We would like to thank the anonymous reviewers for their in-
sightful comments. Laure Philips is supported by a doctoral
scholarship granted by the Agency for Innovation by Science
and Technology in Flanders, Belgium (IWT). This work has
been supported, in part, by the Japan Society for the Promo-
tion of Science, Kakenhi Kiban (S), No.25220003, and by
the Osaka University Program for Promoting International
Joint Research.

References
[1] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood.

Cloud Types for Eventual Consistency. In ECOOP’12, pages

12 2014/8/21



283–307, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN
978-3-642-31056-0.

[2] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming Without Tiers. In FMCO. Springer-Verlag,
2006.

[3] F. Kereki. Essential GWT: Building for the Web with Google
Web Toolkit 2. Addison-Wesley Professional, 1st edition,
2010. ISBN 0321705149, 9780321705143.

[4] D. Leijen. Koka: Programming with Row-Polymorphic Effect
Types. Technical report, Microsoft Research, 2013.

[5] D. Manolescu, B. Beckman, and B. Livshits. Volta: Develop-
ing Distributed Applications by Recompiling. IEEE Softw., 25
(5):53–59, Sept. 2008. ISSN 0740-7459.

[6] J. Maras, J. Carlson, and I. Crnkovic. Client-side web appli-
cation slicing. In ASE, pages 504–507, 2011.

[7] D. P. Mohapatra, R. Mall, and R. Kumar. A Novel Ap-
proach for Dynamic Slicing of Distributed Object-oriented
Programs. In ICDCIT’04, pages 304–309, Berlin, Heidel-
berg, 2004. Springer-Verlag. ISBN 3-540-24075-6, 978-3-
540-24075-4.

[8] J. Nicolay, C. Noguera, C. De Roover, and W. De Meuter.
Determining Coupling In JavaScript Using Object Type Infer-
ence. In SCAM13, 2013.

[9] F. Ricca and P. Tonella. Web application slicing. In Proceed-
ings of the IEEE International Conference on Software Main-
tenance (ICSM’01), ICSM ’01, pages 148–, Washington, DC,
USA, 2001. IEEE Computer Society. ISBN 0-7695-1189-9. .

[10] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a Language for
Programming the Web 2.0. In OOPSLA Companion, pages
975–985, 2006.

[11] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java
application partitioning. In Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming, ECOOP
’02, pages 178–204, London, UK, UK, 2002. Springer-
Verlag. ISBN 3-540-43759-2. URL http://dl.acm.org/

citation.cfm?id=646159.680022.

[12] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich.
Touchdevelop: Programming cloud-connected mobile devices
via touchscreen. In Proceedings of the 10th SIGPLAN Sympo-
sium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, ONWARD ’11, pages 49–60, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0941-7. .
URL http://doi.acm.org/10.1145/2048237.2048245.

[13] P. Tonella and F. Ricca. Web application slicing in presence
of dynamic code generation. Automated Software Engg., 12
(2):259–288, Apr. 2005. ISSN 0928-8910. .

[14] M. Weiser. Program slicing. IEEE Trans. Software Eng., 10
(4):352–357, 1984.

A. Unit Tests for the Evaluation
1 /* @server */
2 {
3 var getPrimes = function (max) {
4 var sieve = [], i, j, primes = [];
5 for (i = 2; i <= max; ++i) {
6 if (!sieve[i]) {
7 primes.push(i);
8 for (j = i << 1; j <= max; j += i)
9 sieve[j] = true;

10 }
11 }
12 return primes;
13 }
14
15 var isPrime = function (n) {
16 if (isNaN(n) || !isFinite(n) || n%1 || n<2)
17 return false;
18 if (n%2==0)
19 return (n==2);
20 var m=Math.sqrt(n);
21 for (var i=3;i<=m;i+=2) {
22 if (n%i==0)
23 return false;
24 }
25 return true;
26 }
27
28 }
29
30 /* @client */
31 {
32 install(’prime_btn ’, ’click’, function () {
33 var res = isPrime( read(’number ’) );
34 print(’isprime ’, res);
35 });
36 }
37
38 module.exports.isPrime = isPrime;
39 module.exports.getPrimes = getPrimes;

Listing 8. Tierless prime web application

1 var assert = require("assert"),
2 isPrime = require(’./ primes ’).isPrime ,
3 getPrimes = require(’./ primes ’).getPrimes;
4
5 suite(’isPrime ’, function () {
6 test(’isPrime returns if a number is prime or not’,

function () {
7 assert.equal(true , isPrime (37));
8 assert.equal(false , isPrime (42));
9 });

10
11 test(’zero and one are not prime numbers ’, function

() {
12 assert.equal(false , isPrime (0));
13 assert.equal(false , isPrime (1));
14 });
15
16 });
17 suite(’getPrimes ’, function () {
18 test(’getPrimes returns all primes until given

number ’, function () {
19 assert.equal(0, getPrimes (1).length);
20 assert.equal(1, getPrimes (2).length);
21 assert.equal(25, getPrimes (100).length);
22
23 });
24 })

Listing 9. Mocha unit test for listing 8

13 2014/8/21


