
Explaining why methods change together

Angela Lozano, Carlos Noguera, Viviane Jonckers
Software Languages Lab.
Vrije Universiteit Brussel

Email: {alozano,cnoguera,vejoncke}@vub.ac.be

Abstract—By analyzing historical information from Source
Code Management systems, previous research has observed that
certain methods tend to change together consistently. Co-change
has been identified as a good predictor of the entities that
are likely to be affected by a change, which ones might be
missing modifications, and which ones might change in the
future. However, existing co-change analysis provides no insight
on why methods consistently co-change. Being able to identify
the rationale that explains co-changes could allow to document
and enforce design knowledge. This paper proposes an automatic
approach to derive the reason behind a co-change. We define the
reason of a (set) of co-changes as a set of properties common to
the elements that co-change. We consider two kinds of properties:
structural properties which indicate explicit dependencies, and
semantic properties which reveal implicit dependencies. Then
we attempt to identify the reasons behind single commits, as
well as the reasons behind co-changes that repeatedly affect the
same set of methods. These sets of methods are identified by
clustering methods that tend to be modified in the same commit-
transactions. We perform our analysis over the history of two
open-source systems, analyzing nearly 19.000 methods and over
3700 commits. We show that it is possible to automatically extract
explanations for co-changes, that the quality of such explanations
improves when structural and semantic properties are taken into
account, and when the methods analyzed co-change recurrently.

I. INTRODUCTION

Co-change has been identified as an appropriate method
to detect hidden dependencies [1], and as a good predictor
of the impact of a change [2]–[4]. Nevertheless, co-changes
have only been used to recommend future co-changes. In
particular, extending co-change analysis to more informative
recommendations (e.g., specific changes based on co-changing
entities) has been unsuccessful [5] probably due to the large
amount of coincidental changes [6]. Therefore, while co-
change analysis has proven worthwhile, it only considers the
frequency with which source code entities (co-)change, but
no insight has been gained on why they co-change. Being
able to derive the rationale behind co-changes could allow to
document design knowledge, enforce design restrictions, and
to make predictions for new methods.

This paper proposes an automatic approach to derive the
reason behind a co-change.The granularity level for our ap-
proach is methods because they are functionality units with
unique purposes, and therefore their relations may convey
some underlying rationale. We define the rationale of a (set
of) co-change(s) as a set of properties common to the elements
that belong to the co-change, at that point in time.

The approach considers two kinds of properties that might
provide reasonable explanations for a co-change. First, struc-
tural properties explain co-changes by evidencing explicit de-
pendencies common to the elements that change. Examples of

structural reasons include type references, exceptions thrown
or cached, and the type that defines the method. Second,
semantic properties explain co-changes by evidencing implicit
dependencies common to the co-changing methods. Semantic
properties include names of methods, parameters or local
variables defined within the method, as well as recurring terms
in the documentation (JavaDoc) attached to the co-changing
methods. Our hypothesis is that it is necessary to mix structural
and semantic properties to obtain reasons that: (1) cover a
good percentage of co-changes, (2) are plausible explanations
of the co-changes among those methods, (3) describe only
the methods that should co-change, and (4) are different from
each other –so that different co-change relations have different
rationales. We propose a metric to evaluate each one of the
previous characteristics, and we use them to evaluate the
quality of different reasons. For instance, to evaluate the impact
of different types of property, we compare the metrics for
the reasons obtained with all properties versus those obtained
using semantic or structural properties only.

Also, we compare the reasons found for two types of co-
change relations. First, for sets of methods that co-changed
in the same commit transaction and for sets of methods that
recurrently co-changed. Given that several researchers have
identified that commits tend to be either too fine grained or too
coarse grained [6], [7] we expect to find that the reasons for
methods co-changed in a commit transaction perform worse
than the reasons for recurrently co-changing methods. This
is because the latter ones are more likely to reveal logical
dependencies like the ones behind methods implementing the
same feature or concept.

We perform our analysis over the history of two Java open-
source systems, analyzing nearly 19.000 methods and over
3700 (trunk) commits. We find that our approach success-
fully extracts reasons for co-changes among sets of methods;
especially when the reasons are extracted from clusters of
recurrently co-changing methods and use both semantic and
structural properties. Also, that all approaches analyzed to
extract reasons are acceptable in terms of coverage, unique-
ness, and idiosyncrasy. This applies even for the most naive
approach: single co-changes (per commit), and using one sort
of properties (structural or semantic). Finally, we conclude
that it is possible to automatically extract explanations for co-
changes, however, more research is required in fine tuning the
parameters for detecting clusters of recurrently co-changing
methods. Reasons for clusters of recurring co-changes suffer
from bad coverage, but are the ones with the most potential
for prediction and documentation since they provide the most
plausible explanations.

The rest of the paper is organized as follows: Section II

introduces the properties that used to describe methods, com-
mits and clusters of commits. In this section we propose
five research questions and explain the evaluation framework
to answer them. Section III gives an overview of the data
collection procedure and execution, before presenting our
findings in Section IV. Section V presents a discussion of
our findings, and Section VI positions them with respect to
existing related work. Finally, Section VII and Section VIII
respectively present the threats to validity and conclude the
paper.

II. REASONS FOR CHANGE

In order to provide an explanation for why methods change
together, we consider the manner in which change ripples
across the code base. We base ourselves on the hypothesis that
change ripples along dependency links. When implementing a
change, all the source code elements affected by the change
will be related in some manner, that is, they will belong to
the concern that is being modified. For example, consider a
library for managing a bar and an application relying on it.
Within this library a method isAdult() checks whether a
user is indeed an adult. A new version of the library modifies
the signature of this method, to take into account the country
in which this functionality is called. The change then will
ripple through the called-by relations in the application. When
looking at the commit transaction that accommodates to this
change, all methods in the change will invoke the isAdult
method. Furthermore, because of the nature of the change,
they will also have a reference to the type that provides
location services, and maybe mention the word “Adult” in
their documentation. These common properties then become
a reason for the change. Now, new methods introduced to the
application with properties in common with this reason (invoke
isAdult, have a reference to Location services, and mention
“Adult” in their documentation), will probably need to be taken
into account whenever the original group of methods change.

A. Property-based reasons

Our approach is based on using properties shared among
co-changing methods to provide reasons for why they change
together. We say that a description Dm of a method m is the
set of properties for that method. Properties p are pairs 〈k, v〉
where k is the type of property, and v its value.

A reason RM for a group of methods M is the properties
that they have in common:

RM :=
⋂

m∈M

Dm

By choosing the group of methods in a particular commit
transaction (Mc) we can assert the reason for that commit
(RMc) as the intersection of the descriptions of the methods
at the end of the commit. Thus, co-changing methods sharing
at least one property when they co-change will have a non-
empty reason: the common property.

Similarly, we define the reason for a set of consistently co-
changing methods as the intersection of the reasons for each
commit in which the methods co-changed.

Notice that, the reason for a co-change only makes sense
if there are co-changing entities. Therefore, commit transac-
tions consisting of a single method are marked as having an
undefined reason.

We consider two sorts of properties, those that represent
structural (or explicit) dependencies between methods, and
those that represent semantic (or implicit) dependencies.

Structural Semantic
1.CALLS_METHOD_NAME 1.LOCAL_VARIABLE_
2.CATCH_EXCEPTION_TYPE DECLARATION_NAME
3.DECLARING_TYPE 2.METHOD_JAVADOC_
4.DECLARING_TYPE_EXTENDS MENTIONS
5.DECLARING_TYPE_IMPLEMENTS 3.METHOD_NAME
6.LOCAL_VARIABLE_DECLARATION_ 4.METHOD_PARAM_

TYPE NAME
7.METHOD_ANNOTATED
8.METHOD_PARAM_TYPE
9.RETURN_TYPE

10.THROWS_TYPE

TABLE I. PROPERTIES ANALYZED TO DESCRIBE REASONS FOR

CO-CHANGES.

1) Structural properties: The structural properties selected
in this paper describe calls-to relations, type-reference de-
pendencies or scoping relations. Calls-to relations and type-
reference dependencies might explain co-changes that occur
because of coupling between entities: changes to called meth-
ods are likely to ripple out to their callers, and changes to
shared types are likely to ripple to the users of those types.
Scoping relations, on the other hand, might explain co-changes
that occur because of cohesion within a module: methods
within one class or hierarchy of classes might change together
when the concept modeled by the class is updated.

For the calls-to relations we record for each method, the
names of the methods invoked inside its body. For type-
reference dependencies, we record the types of local variables
defined inside of the method, the types of the method’s
arguments, the return and thrown exception types, as well as
the types of annotations present in the method. Finally, we
record the name of the method’s declaring class, as well as
the types it extends and interfaces it implements. Table III
(first column) details the structural properties gathered.

2) Semantic properties: In addition to structural properties
as possible reasons for why methods change together, we also
include semantic properties (table III, second column). By
including semantic properties we expect to capture implicit
dependencies through which changes might ripple through a
code-base. To do so, we take two sources of semantic infor-
mation: the method’s documentation, and the names used as
identifiers within a method. For the method’s documentation,
we process the Javadoc comments from the method, remove
stop words, and assert one property per word mentioned in
the Javadoc. For the identifiers, we collect the names of local
variables, parameters and the method’s name.

Running example: Consider the commit transaction
with message ‘priority of task is save and open on xml
files’ and time-stamp ‘2003-05-22 22:56’ of GanttProject
which modified two methods∗. Using the properties

∗GanttXMLSaver.writeTask(OutputStreamWriter,int,String) and
GanttXMLOpen.DefaultTagHandler.startElement(String,String,String,Attributes

defined above, we describe the methods on this commit
transaction using 93 properties (50 for the first one,
and 43 for the second one). Since the methods shared 9
characteristics, the reason for the commit transaction becomes:
CALLS_METHOD_NAME: add, equals, get, getLength, size,
toString; LOCAL_VARIABLE_DECLARATION_NAME:
i, task; and LOCAL_VARIABLE_DECLARATION_TYPE:
GanttTask.

B. Some reasons are better than others

With this set of properties as possible explanations for co-
changes, we aim at answering five research questions:

RQ1: To what extent is it possible to automatically find a
reason for a set of co-changing methods? We analyze this
question by comparing the coverage of the reasons found:

Coverage: This relates to the number of commit-
transactions that have non-empty reasons. We define two types
of coverage.

Coverage per commit, CovC as the ratio of commits with
a non-empty CR reason to total number of commits in the
system’s history Cs. And coverage per methods, CovM as the
ratio of methods with a non-empty MR reason† to total number
of methods in the system’s history Ms.

CovC = CR

Cs
, CovM = MR

Ms

Given that we eliminate commits in which only one method
changes, and that commits in which many methods change are
unlikely to have a single reason, the coverage of our approach
will be low.

RQ2: To what extent the automatically detected reasons
describe only the set of co-changing methods? We analyze
this question by assessing the discriminating power of reasons.

Idiosyncrasy: Good reasons will contain properties that
tend to occur only in methods that change together. If the
properties found in a reason are also found in methods that
did not change together, then those properties are likely found
by a coincidence and do not represent an explanation for the
change.

Therefore, we measure the idiosyncrasy Idios(RM) of a
reason RM as one minus the ratio between the set of methods
that are described by RM by coincidence (i.e., the number of
methods that have properties in common with RM but that
do not belong to the methods it describes –M–) and the total
number of methods in the system’s history Ms.

Idios(RM) = 1− | ∪m∈Ms
RM ⊂ Dm| − |M |
|Ms|

For example the idiosyncrasy for the example commit is: 1-(
(5‡ - 2§)/(14895¶)) = 1- 0.0002 = 0.9998.

†Methods modified in at least one commit with non-empty reasons.
‡Methods whose description includes all the properties of the example

commit: GanttXMLSaver.writeTask(OutputStreamWriter,int,String)
GanttXMLOpen.DefaultTagHandler.startElement(String,String,String,Attributes)
GanttXMLOpen.GanttXMLParser.startElement(String,String,String,Attributes)
GanttXMLSaver.writeTask(OutputStreamWriter,DefaultMutableTreeNode,String)
GanttXMLSaver.writeTask(Writer,DefaultMutableTreeNode,String)

§Number of methods modified in the example commit see section II-A.
¶Methods belonging to GanttProject during the period analyzed (table III)

RQ3: To what extent the automatically detected reasons for
co-changing methods overlap with each other? We analyze
this question by measuring the uniqueness of reasons.

Uniqueness: It is also important to know whether rea-
sons are sufficiently different between each other to serve
as explanations only for the changes they describe. Thus, we
measure the similarity Sim(R1, R2) between two reasons as
their Jaccard index (i.e., the intersection over the union of their
properties.).

The uniqueness of a reason Ri is the mean difference to
the rest of reasons found in the project (i.e., R).

Unq(Ri) = 1− x̃(
⋃

Rj∈R∧i �=j

Sim(Ri, Rj))

Uniqueness tells us if different co-change relations are likely
to be due to different reasons. Lets suppose that there are three
methods (m1, m2, and m3) but there are only two co-change
clusters (m1 and m2, m2 and m3). Even though m2 co-changes
with m1 and m3, it is likely that the reasons for co-changing
with m2, are different from the reasons for co-changing with
m3. Therefore we expect the reasons to be unique. For example
the uniqueness for the example commit is‖ 0.985333.

RQ4: To what extent the automatically detected reasons
for sets of co-changing methods are sound? We analyze
this question by manually checking their plausibility.

Plausibility: Even if reasons explain a large number of
methods (high CovM), covering most of the history of the
application (high CovC), being sufficiently discriminatory
(high Idios, and high Unq), they might still make no sense.
Therefore, we need to perform a manual assessment of the
reasons found to see whether they are plausible. This is
achieved by comparing the reasons for a (set) of commits
produced by our analysis with the message that corresponds to
the (set of) commits. We assert each reason as either plausible
or not. We consider a reason a plausible explanation for a
commit, if the words or terms mentioned in the properties of
the reason appear in the commit message that accompanies the
co-change. For groups of co-changes, for those that span more
than 6 co-changes, we extract a word-cloud from the commit
messages to provide an overview of the general terms therein.
We apply a small degree of liberty when aligning the terms
of the reason with those present in the commit message(s);
for example if the commit message mentions UI, or mouse
events, we will consider plausible reasons those that include
dependencies to JPanel or ActionListener types (both types
present in Java’s SWING UI framework). Finally, note that the
plausibility depends on the quality of the commit message, if
the commit message provides no information (i.e., “bugfix” or
“no message”) we will consider the reason as an implausible
explanation for the commit regardless of the properties found
in the reason itself.

The example commit is considered plausible because the
commit message and the reason refer to an I/O task∗∗.

‖The example commit had a non-empty intersection with 128 commits
(from the 626 commits in GanttProject with a non-empty reason). Moreover,
most of the intersections had only one property. Therefore, its similarity with
other commits is very low (Min: 0, 1st Qu.:0, Median:0, Mean:0.018, 3rd
Qu.:0, Max:0.3).

∗∗See the description of the example in section II-A.

RQ5: Which is the best approach to identify the rationale
of co-changes?
(a) Are the reasons extracted from recurrently co-changing
methods better from those derived from single commits?
(b) Are the reasons that take into account structural and
semantic properties significantly better from those that take
into account only one type of properties?

We analyze these question by comparing the metrics pre-
sented above for reasons extracted from different properties
and co-changes (see table II):

(a) the sets of methods that co-change in each commit trans-
action versus clusters of methods that regularly co-change

(b) all properties versus structural properties, and all properties
versus semantic properties.

Notice that the range of all metrics proposed is between zero
and one. The closer they are to one, the better are the reasons
evaluated.

All Structural Semantic
Commits RCmAll RCmSt RCmSm

Cluster RClAll RClSt RClSm

TABLE II. NAMES FOR THE DATA SETS OF REASONS COLLECTED

III. DATA COLLECTION

This section explains which data was collected, and how
it was processed to find the reasons for different co-changes.
First of all, it is necessary to identify for each commit which
methods were changed and their description at that point in
time. This is done by:

1) Grouping commits of the trunk by author, message, and
time (with a standard three minute sliding window).

2) For each commit, downloading a copy of the repository.

3) For each commit, identifying which methods were modi-
fied:

a) For each source code file, retrieving the methods and
their boundaries in terms of lines of code .

b) Mapping the changes in the change log (i.e., lines
changed, added or deleted per file) to the list of methods
using their boundaries.

4) For each commit, describing each one of the modified
methods:

a) Getting the Abstract Syntax Tree per compilation unit
(without type bindings) in the files that were modified.

b) Gathering information over AST elements present on
each method modified.

Once this data is collected (for each project) it is possible to
find the reasons per commit and per cluster of recurrently co-
changing methods, and to compare the results when analyzing
all properties, versus the reasons that only contain structural
properties or semantic properties.

1) Analysis per commits: Finding the reason for a commit
is the result of intersecting the properties of the methods that
change in that commit.

m1
m2
m3
m4
m5

+
+
+
-
-

-
-
-
+
+

+
+
+
-
-

+
+
+
-
-

-
-
-
+
+

-
-
-
+
-

m6 + - - -- +

c1 c2 c3 c6c4 c5

m7 - - + +- -
m8 - - + +- -

-
-
+
-
+
-

c7

-
-

1 cluster of 3 recurrently co-changing pairs:
co-change ratio(m1,m2) = 4 / 4
co-change ratio(m1,m3) = 4 / 5
co-change ratio(m2,m3) = 4 / 5

+
+
+
-
-
-

c8

-
-

co-change ratio(mi,mj) =

where cm(mi) is the set of commits that
modified the method mi

cm(mi) ∪ cm(mj)
cm(mi) ∩ cm(mj)

Fig. 1. Clusters of recurrently co-changing methods in a fictitious application.

2) Analysis per clusters of recurrently co-changing meth-
ods: Finding the cluster of methods requires detecting the set
of methods that recurrently co-change, and intersecting their
properties whenever they co-change. That is,

1) Finding pairs of frequently co-changing methods: that is
sets of pairs that tend to be modified in the same commits
(see Fig. 1):

a) The methods in a pair can ‘avoid’ co-change in at
most 20% of all commits in which any methods were
modified. This means that methods pairs which changed
in less than five commits, must co-change in all their
commits to be considered as recurrently co-changing. In
contrast, methods pairs which changed in five or more
commits can have commits in which they did not co-
changed.

b) Having one or two co-changes could be due to coin-
cidental co-changes. Therefore, method pairs must co-
change at least three times to be considered a recur-
rently co-changing method pair.

2) Recovering the properties that appear in both methods of
each pair of frequently co-changing methods (i.e., obtained
in the first step) , for all of the co-changing commits

3) Clustering method pairs that co-changed in the same com-
mits, and re-calculating their combined reason.

IV. EXPLAINING WHY METHODS CHANGE TOGETHER

We have collected structural and semantic properties from
the historic information of two open-source projects, as found
in their CVS repositories. The projects are GanttProject, a
project scheduling and management tool and FreeCol, a turn-
based strategy game††. We have selected these projects because
of their ease of access to their repositories, and the fact that
we could verify the data collected as we have analyzed them
for other experiments [8]. Counting both projects, we process
3788 revisions and 18994 unique methods.

The structural information gathered for each method at
each revision is summarised in Table III. For each method,
we gather information regarding which methods are called (se-
lector), type references in local variables, parameters, thrown
and caught exceptions‡‡. Additionally, we record the method’s
name, name of parameters, and names of local variables
declared in the method. Notice that in the table, we gathered

††ganttproject.cvs.sourceforge.net:/cvsroot/ganttproject,
freecol.cvs.sourceforge.net:/cvsroot/freecol

‡‡References to primitive types (like int, float, boolean, etc.) and to
java.lang.String are not taken into account since they are unlikely to be related
to the underlying reason for a co-change.

the same number of values for METHOD_PARAM_TYPE and
METHOD_PARAM_NAME, this is not the case for local vari-
ables, since Java allows several variables to be declared in the
same statement (e.g, int a,b,c). For semantic properties,
we processed the JavaDoc comments attached to the files,
extracting a list of terms present in the comment.

Property FreeCol GanttProject
commits (with a non-empty reason) 1 087 (286) 2 701(626)

clusters (methods involved) 7(14) 138(280)
unique methods 4 099 14 895

properties 478 312 54 7394
Structural properties

CALLS_METHOD_NAME 202 874 251 118
CATCH_EXCEPTION_TYPE 1 987 2 684

DECLARING_TYPE 11 177 21 536
DECLARING_TYPE_EXTENDS 8 371 14 823

DECLARING_TYPE_IMPLEMENTS 6 427 13 426
LOCAL_VARIABLE_DECLARATION_TYPE 36 704 39 401

METHOD_ANNOTATED 2 422
METHOD_PARAM_TYPE 18 706 25 594

RETURN_TYPE 13 017 25 361
THROWS_TYPE 604 1 176

Semantic properties
LOCAL_VARIABLE_DECLARATION_NAME 37 527 39 818

METHOD_JAVADOC_MENTIONS 108 985 60 568
METHOD_NAME 13 226 25 874

METHOD_PARAM_NAME 18 706 25 594

TABLE III. SUMMARY OF DATA MINED

A. Describing the reasons found

Intuitively, the number of methods is inversely proportional
to the size of the reason. On one hand, the data-sets of reasons
per commit tend to represent more methods, with more general
reasons (i.e., reasons with few properties) as the top part of
Fig. 2 shows. This was foreseeable given that when considering
commit transactions, we eliminate from the analysis those
commits in which only one method was changed. However,
we do not perform special treatment of commits in which a
large number of methods were changed, for example commits
in which a large restructuring of the application was made.
Because of the nature of the analysis, such large commits
are unlikely of having a reason (that is, not a single property
that is common to all changed methods), or having a very
general reason (that is, a reason with one or two properties).
For instance, the largest commit in GanttProject modified
3572 methods but they do not share any properties. While
the largest commit with a reason changed 1177 methods; its
reason contains only one property which is rather generic
(‘DECLARING_TYPE_EXTENDS:GanttLanguage’). In con-
trast, the reasons for small commits (i.e., that modified a couple
of methods) can be very specific (i.e., with several properties),
very generic (i.e., with few properties) or somewhere in
between.

On the other hand, the data-sets of reasons per clus-
ter provide more specific reasons (i.e., reasons with several
properties) regardless of the number of methods described
(see bottom part of Fig. 2). For Freecol, we find a very
low number of clusters (7 in total) , all of them containing
only two methods, but with a varied size of reason. For
GanttProject, we find a much higher number of clusters. In
general, GanttProject’s clusters and commits follow an inverse
relation between the number of methods they describe and the
number of properties as Freecol’s commits. In both data-sets,
and for both commits and clusters, using all properties (marked
as a circle in Fig 2) provides reasons with a high level of detail
(size of reason) that also describe a larger number of methods.

B. RQ1: To what extent is it possible to automatically find a
reason for a set of co-changing methods?

Given that the conditions to cluster co-changing methods
are strict (at least 80% of co-change similarity and at least three
changes) we expected that the reasons for commit transactions
to cover more methods and more commits than the reasons
for clusters of recurrently co-changing methods. Considering
the properties taken into account, we expected that it would
be more likely to find at least one common property for all
co-changing methods when both structural and semantic prop-
erties are considered i.e., analyzing all properties would lead to
having more reasons, and therefore to cover more methods or
commits. Nevertheless, any difference between structural and
semantic reasons would depend on the application analyzed
and the quality of their comments and naming conventions.
Table IV, which lists the coverage of methods (CovM) and

RCmAll RCmSt RCmSm RClAll RClSt RClSm

Freecol
CovM 0.17 0.14 0.11 0.0034 0.0029 0.0034
CovC 0.26 0.19 0.20 0.0064 0.0055 0.0064
Ganttproject
CovM 0.29 0.27 0.06 0.015 0.016 0.011
CovC 0.25 0.23 0.13 0.053 0.049 0.044

TABLE IV. COVERAGE RESULTS

commits (CovC) for both projects and all kinds of properties,
confirms our expectations. Reasons extracted from single co-
changes (i.e., commits) represent a higher percentage of the
methods and of the commit transaction of the applications
analyzed. Also, having both sorts of properties improves the
coverage in comparison with reasons obtained from structural
or semantic properties only. Finally, there is no consistent
behavior when comparing the coverage of reasons obtained
from structural properties against those obtained from semantic
properties.

C. RQ2: To what extent the automatically detected reasons
describe only the set of co-changing methods?

The usefulness of a reason for predicting co-changes
depends on how well it is capable of pointing out only at
the methods that are likely to change, that is having a high
idiosyncrasy value. As Figure 3 shows, in general, all reasons
extracted presented good idiosyncrasy values; the medians are
above 0.981 for Freecol, and above 0.9972 for GanttProject.
This indicates that when a reason for a co-change of methods
is found, the reason represents less than 2% (for Freecol) and
1% (for GanttProject) of the methods in the application.

Freecol GanttProject

clSm

clSt

clAll

cmSm

cmSt

cmAll

0.85 0.95

clSm

clSt

clAll

cmSm

cmSt

cmAll

0.92 0.96 1.00

Fig. 3. Idiosyncrasy for the different data-sets for the applications analyzed.

When looking at commit-based reasons versus cluster-
based reasons in terms of idiosyncrasy, fig. 3 shows that

Freecol GanttProject
per Commit per Cluster per Commit per Cluster

0 20 40 60 80

2
5

10
20

size of reason

m
et

ho
ds

0 20 40 60 80

2
5

10
20

size of reason

m
et

ho
ds

0 20 40 60 80

2
5

20
10

0
50

0

size of reason

m
et

ho
ds

0 20 40 60 80

2
5

20
10

0
50

0

size of reason

m
et

ho
ds

All Structural Semantic

Fig. 2. Number of methods (y-axis -in logarithmic scale-) vs. Size of reason (x-axis) for the different data-sets of the applications analyzed.

commit-based reasons are better when compared against
cluster-based reasons. Regarding at the type of properties used,
having all properties tend to result in better idiosyncrasy val-
ues than having only structural or semantic properties.
Finally, Figure 3 shows that structural properties tend to
be worst when analyzing cluster-based reasons for both
projects.

D. RQ3: To what extent the automatically detected reasons for
co-changing methods overlap with each other?

Reasons should not be similar to each other, as they are
supposed to describe sets of co-changing methods. Having
similar reasons would indicate that they are not a good way
to differentiate different sets of co-changing methods. Fig. 4
shows that, in general, the reasons we extracted tend to be
unique (with a value above 85%). Similar to the idiosyncrasy
results, commit-based reasons tend to have better uniqueness
values for GanttProject while cluster-based reasons tend to
have better uniqueness values Freecol. In terms of the type
of properties used, reasons using only semantic properties
are more likely to be unique than reasons using all or only
structural properties (except for reasons extracted from
commits in Freecol whose best uniqueness corresponds to
all).

Freecol GanttProject

clSm

clSt

clAll

cmSm

cmSt

cmAll

0.90 0.94 0.98

clSm

clSt

clAll

cmSm

cmSt

cmAll

0.85 0.95

Fig. 4. Uniqueness for the different data-sets for the applications analyzed.

Finally, fig. 3 shows that structural properties tend to
be the worst when analyzing cluster-based reasons for
both projects.

We also expected that the level of detail of a reason to be
directly proportional to its uniqueness. That is, reasons with a
small set of properties would be more likely to overlap with
other reasons. In general, the higher the size of a reason the

more unique (see Fig. 5); with the majority of reasons having
less than 20 properties while maintaining an uniqueness value
above 93%. Therefore, in general it is not necessary to have
many properties for a reason to be unique.

E. RQ4: To what extent the automatically detected reasons for
sets of co-changing methods are sound?

Probably the most important evaluation criteria for reasons
is to what extent the reasons that are extracted automatically
indeed convey the rationale of co-changes or explain what
is the logical dependency among the co-changing methods.
Table V presents a couple of examples (taken from Freecol)
of plausibility when analyzed per commits. The results on the

Reason Commit description
Plausible

DECLARING_TYPE: ColonyPanel, DECLAR-
ING_TYPE_EXTENDS: JLayeredPane, DECLAR-
ING_TYPE_IMPLEMENTS: ActionListener,
METHOD_JAVADOC_MENTIONS: panel

changed cargo panel man-
agement

Implausible
DECLARING_TYPE: Player, DECLAR-
ING_TYPE_EXTENDS: FreeColGameObject,
METHOD_JAVADOC_MENTIONS: player

added initial contact sup-
port (when you first meet a
nation/tribe)

TABLE V. EXAMPLES OF PLAUSIBILITY ANALYZED PER COMMITS

plausibility of the reasons extracted are shown in Table VI. The
columns named ‘Reasons analyzed’ on Table VI indicate the
amount of reasons whose plausibility was manually validated,
while the columns name ‘Plausibility’ indicate the proportion
of reasons found to be plausible. Given that this analysis is
done manually, we performed an evaluation for a fraction of
the reasons found (between parenthesis in the table). Results

Freecol Ganttproject
Data-set Reasons analyzed Plausibility Reasons analyzed Plausibility
RCmAll 57 (20%) 0.31 140 (20%) 0.26
RCmSt 44 (20%) 0.31 126 (20%) 0.19
RCmSm 45 (20%) 0.26 75(20%) 0.28
RClAll 7 (100%) 0.71 29 (20%) 0.58
RClSt 6 (100%) 0.33 27 (20%) 0.62
RClSm 7 (100%) 0.71 24 (20%) 0.33

TABLE VI. PLAUSIBILITY RESULTS (OF RANDOMLY CHOSEN

REASONS)

indicate that reasons extracted from clusters are much more
likely to describe logical dependencies among the co-changing

Freecol GanttProject

0 20 40 60 80

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

size of reason

un
iq
ue
ne
ss

RcmAll
RcmSt
RcmSm
RclAll
RclSt
RclSm

0 20 40 60 80

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

size of reason

un
iq
ue
ne
ss

RcmAll
RcmSt
RcmSm
RclAll
RclSt
RclSm

Fig. 5. Uniqueness vs. Size of reason for the different data-sets for the applications analyzed.

methods than those extracted from commit transactions. This
result was expected as clusters represent sets of methods
that recurrently co-change, and thus are more likely to have
structural and semantic similarities. Regarding the type of
properties used, it is not clear which properties are more likely
to convey plausible reasons. For Freecol, merging semantic and
structural properties increases the chance of finding plausible
reasons regardless of the sets of methods analyzed, while for
GanttProject semantic properties better describe commits and
structural properties better describe clusters.

F. RQ5: Which is the best approach to identify the rationale
of co-changes?

Finally, we want to compare which analysis would provide
better reasons. We first consider the results that compare
commits and clusters, for which we expect clusters to provide
better results as they are less sensitive to coincidental co-
changes. Then, we consider the results that compare different
types of properties to extract the reasons. We expect that the
combination of semantic and structural reasons would result
into better reasons because they would have more properties
that are orthogonal to each other. Finally, we discuss the most
advantageous data sets.

(a) Are the reasons extracted from recurrently co-changing
methods better from those derived from single commits?:
Table VII shows the p-values for the statistical comparison of
the idiosyncrasy and uniqueness values of reasons extracted
from clusters versus those extracted from commits. Whenever
the null hypothesis could be rejected, the table also shows
what would be the relation between the metrics of cluster-
based reasons versus those of commit-based reasons. The null
hypotheses could not be rejected for the reasons extracted
for Freecol except for uniqueness using semantic properties.
This indicates that there is no difference in the idiosyncrasy
and uniqueness of reasons extracted from Freecol regardless
of the sets of methods analyzed. A possible explanation is
that the non-empty reasons extracted from Freecol represent a
smaller set of methods than those extracted from Ganttproject
(see Fig. 2) resulting in more precise properties. However,
when using only semantic properties on Freecol’s code, cluster-
based reasons are more unique than commit-based reasons.

In contrast, the majority of null hypotheses were rejected for
the reasons extracted from GanttProject. Cluster-based reasons
taking into account all properties or only structural properties
present better uniqueness and idiosyncrasy than commit-based
reasons. Finally, commit-based reasons with only semantic
properties are more unique for GanttProject than cluster-based
reasons, contradicting the results found for Freecol.

Null Hypothesis: Extracting reasons from clusters of recurrently co-changing
methods using <prop> properties does not significantly improve <metric> results
compared to extracting reasons from commit transactions.

Freecol GanttProject
<metric> <prop> H0 Alternative H0 Alternative

all 0.69 none 8.2e-03 (>) 4.1e-03
Idios structural 0.93 none 3.9e-10 (>) 1.9e-10

semantic 0.83 none 0.88 none
all 0.69 none 8e-28 (>) 4.4e-28

Uniq structural 0.47 none 8e-37 (>) 4.2e-37
semantic 0.04 (>) 0.02 *1e-01 (<) 5.1e-02

TABLE VII. COMPARING REASONS EXTRACTED USING DIFFERENT

SETS OF CO-CHANGING METHODS (WILCOXON TEST)

(b) Are the reasons that take into account all properties
significantly better from those that take into account only
one type of properties?: Table VIII shows the p-values of
comparison for the idiosyncrasy and uniqueness values of
reasons extracted with different sets of properties. Similarly to
table VII, the table shows the direction of the relation when-
ever a difference between the data-sets could be established
(i.e., the null hypotheses being rejected). Results indicate that
taking into account all properties results in better uniqueness,
and idiosyncrasy for commit-based reasons regardless of the
application analysed. However, for cluster-based reasons, it
seems that there is no clear difference in the uniqueness and
idiosyncrasy when taking into account all properties versus
structural or semantic properties. The lack of differences in the
uniqueness for different types of properties could be explained
by structural and semantic properties pointing out at the same
source code relations.

(c) What is the best configuration?: Table IX shows the
summary of the results obtained. The direction of compar-
ing different data-sets, and the best value for each metric
are taken into account to indicate which data-set resulted

Null Hypothesis: Combining all properties to extract the reasons behind the co-
changes of <set> does not significantly improve <metric> results compared to
<prop> properties.

Freecol GanttProject
<set> <prop> H0 Alternative H0 Alternative
<metric>: Idios

commits structural 3.7e-06 (>) 1.8e-06 1.8e-03 (>) 9.4e-04
commits semantic 0.20 none 1.8e-03 (>) 9.4e-04
clusters structural 0.35 none 3.2e-04 (>) 1.6e-04
clusters semantic 0.74 none 0.54 none
<metric>: Uniq

commits structural 2.9e-10 (>) 1.4e-10 1.3e-03 (>) 6.7e-04
commits semantic 2.9e-10 (>) 1.4e-10 0.14 (>) 7.0e-02
clusters structural 1 none 7.5e-14 (>) 3.7e-14
clusters semantic 0.62 none 2.5e-15 (<) 1.2e-15

TABLE VIII. COMPARING REASONS EXTRACTED USING DIFFERENT

PROPERTIES (WILCOXON TEST)

in better metrics. Commit-based reasons outperform cluster
based reasons in coverage. However, it is not clear if commit
and cluster based reasons have a different idiosyncrasy or
uniqueness values. In any case, clusters are better to extract
plausible reasons than commits (i.e., reasons extracted from
single co-changes are more susceptible of lack of soundness).
Considering different properties improves the quality of the
reasons. It is more likely to describe only the methods changed
in the same commit transaction by looking only at structural
properties. In some cases, analyzing all properties does not
improve the metrics obtained with a single type of properties.
For instance, for the CovC , Idios, Unq, and Plausibility
of Freecol for cluster-based reasons with semantic properties
only, or for the Idios and Unq of Freecol for cluster-based
reasons with structural properties only. This happens because
the null hypotheses could not be rejected (results shown in
table VIII) which in the case of Freecol could be due to the
small size of the sample.

CovM CovC Idios Unq P lausib.
which is better RCmAll or RClAll?

Freecol Commit Commit None None Cluster
GanttProject Commit Commit Commit Commit Cluster

which is better RCmSt vs. RClSt?
Freecol Commit Commit None None Cluster*

GanttProject Commit Commit Commit Commit Cluster*
which is better RCmSm vs. RClSm?

Freecol Commit Commit None Cluster Cluster
GanttProject Commit Commit None Commit Cluster

which is better RCmAll vs. RCmSt?
Freecol All All All All None

GanttProject All All All All All
which is better RCmAll vs. RCmSm?

Freecol All All None All All
GanttProject All All All All Semantic

which is better RClAll vs. RClSt?
Freecol All All None None All

GanttProject Structural All All All Structural
which is better RClAll vs. RClSm?

Freecol All None None None None
GanttProject None All None Semantic All

TABLE IX. COMPARISON OF METRICS FOR DIFFERENT DATA-SETS

V. DISCUSSION

This section discusses the variables that may have affected
the results. The first variable is the parameters chosen for
the clustering of the methods. Depending on the number of
methods modified per commit of an application, having at least
three co-changes might have been too strict a restriction. Sim-
ilarly, if commits tend to modify too many methods it might

be more difficult to find recurrently co-changing methods that
indeed have logical dependencies. This is made evident by
the number of clusters found in the applications analyzed.
While the thresholds seem appropriate for GanttProject with
138 clusters, it is too strict for Freecol where only 7 clusters
were found. Figure 6 shows the distribution of number of
methods modified by commit, and changes made to unique
methods for both applications. Methods in Freecol tend to
change more, and its co-changes tend to be larger than those
in GanttProject.Therefore it is more likely to find pairs of
recurrently co-changing methods in Freecol. However, the
coarser granularity of Freecol’s commits may have reduced
the chance of having a common reason among co-changing
methods. Moreover, the higher chance of a method of being
changed makes more difficult to find other methods with at
least 80% of co-change ratio.

Methods modified per commit Changes per method

Freecol Ganttproject
0

5

10

15

Freecol Ganttproject
1

2

3

4

5

6

Fig. 6. Factors that may affect the effectiveness of the thresholds used for
clustering co-changing methods.

Another variable that may have affected the results and
the quality of the reasons found is the choice of properties.
In terms of structural properties, the approach misses methods
that are in the same call chain. Therefore, methods that co-
change frequently because they call to each other might have
empty reasons. This seems to happen frequently as shown by
the coverage results. However, In terms of semantic proper-
ties, the approach taken to extract them is rather naive. The
analysis of ‘METHOD_JAVADOC_MENTIONS ’ ignores the
frequency of terms not only per method (i.e., a term that
appears once in a single java-doc is regarded in the same way
by the approach as one that appears several times) but also
across methods (i.e., terms that are frequent across java-docs
are not eliminated from the analysis). Ignoring the frequency
of terms may have reduced the plausibility of the reasons by
adding false-positive reasons (i.e., sets of methods that would
otherwise have no reasons) by adding noise terms (i.e., making
reasons more difficult to understand by adding properties that
are not related to the dependencies among the set of co-
changing methods e.g., ‘returns’) . Finally, although the words
in identifiers (names of variables, parameters and methods)
may point out to the underlying domain concept or feature
being implemented, we did not perform any further processing
(e.g., ‘CamelCase’ splitting or ‘tolowercase’ standardization).

VI. RELATED WORK

This section describes previous work on co-change analy-
sis, and how they differ from this study.

A. Co-change analysis

Co-change analysis was initially proposed to detect logical
dependencies that would have been too cumbersome to detect

using traditional static analyses [1]. Using more elaborate tech-
niques (i.e., confidence and support of association rules), co-
change analysis has shown its usefulness to detect incomplete
changes at method level [4], and to identify the files affected
by a modification task [9]. In fact, historical information has
been found to be a better predictor of change propagation than
structural dependencies [2]. Moreover, the prediction of future
changes can be improved by adding the recency of changes to
co-change analysis [3].

Co-change analysis has also been used to evaluate the
modularization choices made, because it can uncover to what
extent structural dependencies support developers in having
changes hidden behind source code abstractions [8], [10]–[12].
For instance, finding architectural weaknesses and degrada-
tion by detecting discrepancies between change dependencies
and structural dependencies [10], [11], providing evidence
that modularization constructs that separate functionality from
implementation (e.g., interfaces) facilitate software evolution
by comparing the likelihood and size of changes of different
modularization constructs [12], providing evidence that clones
affect the maintainability of code by comparing the effort
required to change methods with and without clones [8].

Given that co-change analysis does not depend on structural
information it can be used to provide insights beyond source
code artifacts, demonstrating its effectiveness for traceability
detection [13].

B. Mixing structural vs. semantic information

Maletic and Marcus [14] were pioneers in merging struc-
tural and semantic data in reverse engineering and program
comprehension. Their findings inspired recommendation sys-
tems that provide better results thanks to their combination of
structural and semantic information [15], [16].

Kagdi et al. [17] combined semantic dependencies and
change dependencies to increase the precision and when pre-
dicting software changes. Gethers et al. used Latent Semantic
Indexing to find a baseline impact set for a change request,
which was improved by adding co-change analysis and dy-
namic analysis [18].

C. Similarities and differences with previous work

We combine semantic and structural properties as they
provide orthogonal views on the relations that source code
entities may have because they tend to outperform approaches
based only on the type of information (structural or semantic)
especially for approaches aimed at improving understandabil-
ity. Nevertheless, our approach differs from previous work in
two aspects. First, the purpose is not to identify the impact of
changing a source code entity, nor checking which of the enti-
ties that are likely to be affected is missing a modification, but
to find the reasons behind the modifications to an application.
Second, we propose a new evaluation framework to assess the
value of reasons in terms of comprehension, and usefulness to
locate related methods, rather than precision and recall of a
prediction.

Robillard and Dagenais study is the closest to this study
[5]. They analyzed to what extent the information contained in
clusters of co-changing source code elements (fields or meth-
ods) was useful for change tasks. However, they cluster commit

transactions that have common code elements while we cluster
methods whose changes overlap in at least 80%. Moreover,
their main assumption contradicts ours. They assume that by
establishing transitive co-change relations it is possible to
identify hidden logical dependencies, while we assume that
there is no such transitiveness in co-change relations and that,
in fact, the reasons behind a pair of co-changing methods can
be different to the reason behind a second pair of co-changing
methods even if the two pairs share one method. Finally,
the information they recommended also could only support a
minority of change tasks. In contrast, between 20% and 71%
of our reasons are plausible depending on the configuration.

VII. THREATS TO VALIDITY

This section discusses the main threats to the validity of
our results.

A. Construct validity

Our approach is based on the hypothesis that changes ripple
along dependencies between methods. While in theory this is
the case, methods might change together for reasons other than
their “logical” coupling, for example, a developer might bundle
together changes to all methods under his control. Similarly,
we mine logical changes from source code repository systems.
It can be possible that the changes in the repository do not
always correspond to logical changes, which would obscure the
underlying reasons for the changes. We mitigate these threats
by considering semantic properties (such as comments present
in the code), in addition to structural properties of the co-
changing methods. We also group commit transactions that
occur within a standard 3 minute sliding window, which has
been used before to approximate logical changes. Our approach
however, remains sensitive to particular commit practices.

B. Internal validity

In our experiment we characterize methods by extracting
a number of properties, both structural and semantic. The
particular choice of which characteristics to extract was dic-
tated by two rationales: First, structural properties evidence
explicit dependencies that demonstrate the effect of coupling
between entities (references to common types) and cohesion
(methods in the same scope); while semantic properties ev-
idence implicit dependencies (terms mentioned in Javadoc
comments). Second, technical limitations: the parser we used
does not resolve bindings, and provides no access to comments
within a method. While performing the same experiment with
a different set of properties, could lead different conclusions,
we believe that the approach presented in this paper remains
useful. Other choices that may have affected our study are:
(1) the thresholds used for clustering recurrently co-changing
methods, (2) not parsing identifiers into terms, and (3) ignoring
the frequency of terms when extracting properties from java-
docs. Further studies are required to evaluate the impact of
these choices.

C. External validity

Regarding the generalization of our findings, the conclu-
sions of this work are limited to the projects we have analyzed.
Although we selected projects from different domains, they
have roughly the same size and are implemented with the
same programming language. The size of the applications

may have an effect on the relevance of the thresholds for
defining clusters of recurrently co-changing methods. The
programming language may also affect the importance of the
structural relations analyzed. In any case the major issue with
the generalization of our findings is the lack of more data
points. Given that the analysis only takes into account two
projects we do not know to what extent their commits profile
is representative, and therefore we cannot generalize the results
to other projects even if they are similar in terms of size and
programming language.

D. Conclusion validity

In our study, we only draw conclusions referring to the best
configuration for extracting reasons for co-change, which is
based on the comparison of four metrics calculated for each of
the data-sets that represent instances of different configuration
options. The only configuration option that we did not vary
was the definition of recurrently co-changing methods, which
is in any case compared against reasons for methods that co-
change once (i.e., commit-based reasons). Therefore, we are
confident that the relationships found between configuration
variables are justified.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automatically
extract the rationale for a set of co-changing methods. We
believe that the rationale for co-changes is orthogonal to the
prediction of (co-)changes but is more likely to be remembered
by developers because it helps to uncover design knowledge.
The proposed approach is based on common properties shared
by co-changing methods. We have shown that even though it
is possible to extract reasons with good coverage, idiosyncrasy
and uniqueness levels from single co-changes, the plausibility
of the reasons is always improved when the set of methods
analyzed co-changed recurrently. Our study also shows that
reasons that take into account structural and semantic prop-
erties tend to outperform reasons that use only one type of
property. This approach could be used not only to document
the reasons behind co-change relations, but also, to predict the
impact of adding a new code entity to the system (i.e., by
comparing its properties against known co-change reasons).
We plan to perform a more extensive experimentation on
the thresholds used for identifying the clusters of recurrently
co-changing methods, improving the quality of the semantic
properties extracted, and assessing the usefulness of other types
of properties (like transitive-calls, or belonging to the same
slice).

Acknowledgment

Angela Lozano is financed by the CHaQ project of the Agentschap voor Innovatie

door Wetenschap en Technologie. Carlos Noguera is funded by the AIRCO project of

the Fonds Wetenschappeljik Onderzoek.

REFERENCES

[1] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE Computer Society, 1998, pp. 190–198.

[2] A. Hassan and R. Holt, “Predicting change propagation in software
systems,” in Proc. Int’l Conf. on Software Maintenance (ICSM). IEEE
Computer Society, 2004, pp. 284–293.

[3] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s weather: guiding early
reverse engineering efforts by summarizing the evolution of changes,”
in Proc. Int’l Conf. on Software Maintenance (ICSM). IEEE Computer
Society, 2004, pp. 40–49.

[4] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the
26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572.

[5] M. P. Robillard and B. Dagenais, “Recommending change clusters to
support software investigation: An empirical study,” J. Softw. Maint.
Evol., vol. 22, no. 3, pp. 143–164, Apr. 2010.

[6] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 351–360.

[7] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit?
a characterization of open source software repositories,” in Proc. of
the IEEE Int’l Conf. on Program Comprehension, ser. ICPC ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 182–191.

[8] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in Proc. Int’l Conf. on Software Maintenance (ICSM’08).
IEEE, October/Autumn 2008, pp. 227–236, 227-236.

[9] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source
code changes by mining change history,” IEEE Trans. Softw. Eng.,
vol. 30, no. 9, pp. 574–586, 2004.

[10] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data for
detecting logical couplings,” in Proc. Int’l Workshop on Principles of
Software Evolution (IWPSE), 2003, pp. 13–23.

[11] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in Proc. Int’l Workshop on Principles of Software
Evolution (IWPSE), 2003, pp. 73–83.

[12] T. B. V. Belle, “Modularity and the evolution of software evolvability,”
PhD thesis, The University of New Mexico, 2004.

[13] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining software repositories
for traceability links,” in Proceedings of the 15th IEEE International
Conference on Program Comprehension, ser. ICPC ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 145–154.

[14] J. I. Maletic and A. Marcus, “Supporting program comprehension using
semantic and structural information,” in Proc. of the Int’l Conf. on
Software Engineering, ser. ICSE ’01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 103–112.

[15] M. P. Robillard, “Automatic generation of suggestions for program in-
vestigation,” in Proc. of the 10th European Software Engineering Conf.
held jointly with 13th ACM SIGSOFT int’l symposium on Foundations
of Software Engineering, ser. ESEC/FSE-13. New York, NY, USA:
ACM, 2005, pp. 11–20.

[16] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with dora to expedite software maintenance,” in Proc. of the int’l conf.
on Automated software engineering, ser. ASE ’07. New York, NY,
USA: ACM, 2007, pp. 14–23.

[17] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blending
conceptual and evolutionary couplings to support change impact analy-
sis in source code,” in Proceedings of the 2010 17th Working Conference
on Reverse Engineering, ser. WCRE ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 119–128.

[18] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk, “An adaptive
approach to impact analysis from change requests to source code,” in
Proc. of the Int’l Conf. on Automated Software Engineering, ser. ASE
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 540–
543.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

