
Faculty of Sciences and Bio-Engineering Sciences
Department of Computer Science
Software Languages Lab

Domains: Language Abstractions for Controlling Shared
Mutable State in Actor Systems

Dissertation Submitted for the Degree of Doctor of Philosophy in Sciences

Joeri De Koster

Promotors: Prof. Dr. Theo D’Hondt
Dr. Tom Van Cutsem

January 2015

© 2015 Joeri De Koster

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / Fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 978 90 8224 807 4
NUR 989

Alle Rechten voorbehouden. Niets van deze uitgave mag worden vermenigvul-
digd en/of openbaar gemaakt worden door middel van druk, fotokopie, micro-
film, electronisch of op welke andere wijze ook, zonder voorafgaande schrifte-
lijke toestemming van de auteur.

All rights reserved. No parts of this book may be reproduced in any form by
print, photoprint, microfilm, electronic or any other means without prior writ-
ten permission from the author.

A B S T R A C T

Traditionally, concurrency models fall into two broad categories: flexible versus
safe and manageable concurrency control. On one end of the spectrum there
are shared-memory models such as threads and locks which are very flexible but
offer almost no safety guarantees. On the other end of the spectrum are isolated
message-passing models which are often more stringent, favoring safety and
liveness guarantees.

The actor model is such a message-passing concurrency model and because
of the asynchrony of its communication mechanism and isolation of its diffe-
rent processes the actor model avoids issues such as deadlocks and low-level
data races by construction. This facilitates concurrent programming, especially
in the context of complex interactive applications where modularity, security
and fault-tolerance are required. The trade-off is that the actor model sacrifices
expressiveness with respect to parallel access to shared state.

This dissertation aims to show that strict isolation is not a prerequisite to gua-
rantee deadlock and race condition freedom, and that breaking with no-shared-
state concurrency can improve the flexibility of message-passing concurrency
models while still maintaining their safety guarantees.

In this dissertation, we give an overview of the issues that come with repre-
senting shared resources in modern actor systems and then formulate an ex-
tension to the actor model that allows safe and expressive sharing of mutable
state among otherwise isolated concurrent components. We propose domains as
a set of novel language abstractions for encapsulating and sharing state. With
the domain model, we introduce four types of domains, namely immutable,
isolated, observable and shared domains. The design and implementation of
the domain model is realized in the context of SH A C L, a novel communicating
event-loop actor language. We validate the usefulness of our model by applying
it in practice through a case study in Scala.

i

S A M E N VAT T I N G

Traditioneel kunnen concurrency modellen opgedeeld worden in twee catego-
rieën: flexibele versus veilig en beheersbare concurrencycontrol. Aan het ene
uiteinde van het spectrum er zijn gedeeld-geheugen modellen zoals threads en
locks die zeer flexibel zijn maar bijna geen veiligheidsgaranties bieden. Aan het
andere uiteinde van het spectrum zijn geïsoleerde message-passing modellen
die vaak strikter zijn, ten voordele van de veiligheidsgaranties van het resulte-
rende model.

Het actormodel is zo een message-passing model en omdat het actormodel
asynchrone communicatie hanteert en de verschillende processen strikt geïso-
leerd zijn vermijdt dit model gekende concurrencyproblemen zoals deadlocks
en elementaire data races. Dit vergemakkelijkt concurrent programmeren, voor-
namelijk in de context van complexe interactieve applicaties waarbij eigen-
schappen zoals modulariteit, veiligheid en fouttolerantie belangrijk zijn. De
keerzijde van de medaille is dat dit model aan expressiviteit opoffert betref-
fende parallelle toegang tot gedeelde informatie.

Deze verhandeling stelt zich tot doel aan te tonen dat strikte isolatie van de
verschillende actoren geen vereiste is om deadlocks en data races te vermijden.
De breuk maken met no-shared-state parallelisme kan de flexibiliteit van het
message-passing concurrency modellen verbeteren en tegelijkertijd hun veilig-
heidsgaranties bewaren.

In deze verhandeling starten we met een overzicht van de verschillende pro-
blemen die zich voordoen bij het voorstellen van gedeelde informatie in mo-
derne actorsystemen. Nadien formuleren we een uitbreiding van het actormo-
del dat de programmeur in staat moet stellen om op een veilige en expressieve
manier gedeelde informatie voor te stellen. We stellen domeinen voor als een
set van verschillende taalabstracties voor het inkapselen en delen van informa-
tie. Met dit model stellen we vier verschillende types van domeinen voor, met
name niet-aanpasbare, geïsoleerde, observeerbare en gedeelde domeinen. Het
ontwerp en de implementatie van domeinen zijn gerealiseerd in de context van
SH A C L, een nieuwe communicating event-loop actor programmeertaal. We va-
lideren ook de bruikbaarheid van ons model door het toe te passen in de prak-
tijk door middel van een case study in Scala.

iii

A C K N O W L E D G E M E N T S

Throughout my Phd I have been lucky enough to receive the support of not
one, but two outstanding promotors. I would like to thank Prof. Theo D’Hondt
for being largely responsible for shaping my views on programming language
design and implementation. Every building needs a strong foundation and the
work I did during my Phd is largely founded upon his principles. I would also
like to thank Dr. Tom Van Cutsem for helping me put together the ideas pre-
sented in this dissertation. His involvement in my work truly marked the start
of my Phd and many of the ideas and concepts introduced in this work derive
from the discussions we had together. I cannot thank him enough for sticking
around to see it through until the end.

I would also like to thank Dr. Stefan Marr, my favourite German I love to
hate. Thank you for giving me the necessary whipping from time to time, those
always led to peaks in my productivity and tremendously helped in getting
some of my work published. I loved you as a fellow researcher and as an office
mate and was sad to see you go.

A big thanks goes out to the members of my jury: Prof. Philipp Haller, Dr. Roel
Wuyts, Prof. Wolfgang De Meuter, Prof. Jennifer Sartor, Prof. Philippe Cara, Dr.
Yann-Michaël De Hauwere. Thanks for critically reading my dissertation and
helping in improving the quality of this text.

I would like to thank all the (former) members of the Software Languages
Lab for providing an excellent environment to work in. Special thanks goes out
to the Parallel Programming People for all the insightful debates an discussions
during our meetings.

I would also like to thank my family and friends to take my mind off “dinges
met computers” and do some more fun stuff from time to time.

Last, but not least, I would like to thank Florence Dusart, my best friend, life
partner, wife and mother of my child. We met when I started studying Computer
Science and she has since supported me through my entire academic career. All
of the important choices I made in life, including doing the Phd of which this
work is the end result, I made together with her. I am therefore deeply indebted
to her.

This work is funded by a Phd scholarship of the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT).

v

I N H O U D S O P G AV E

1. Introduction 1
1.1. Problem Statement . 3
1.2. Research Vision . 4
1.3. Contributions . 5
1.4. Supporting Publications and Technical Contributions 6
1.5. Dissertation Outline . 8

2. Context: Actor Systems 11
2.1. The History of Actor Systems . 12

2.1.1. Agha’s Actor Model: ACT, SAL and Rosette 13
2.1.2. ABCL/1 . 15
2.1.3. Erlang . 16
2.1.4. SALSA . 17
2.1.5. Asynchronous Sequential Processes and ProActive 18
2.1.6. E Programming Language 19
2.1.7. Scala Actor Library and Akka 21
2.1.8. Kilim . 22

2.2. Actor System Classification and Properties 24
2.2.1. Classification of Actor Systems 24

2.2.1.1. Original Actor Model 24
2.2.1.2. Processes . 24
2.2.1.3. Active Objects 25
2.2.1.4. Communicating Event-Loops 26

2.2.2. Actor Properties . 26
2.2.2.1. Message Processing 26
2.2.2.2. Message Reception 28
2.2.2.3. State Changes 29
2.2.2.4. Actors Per Node 30

2.3. The Isolated Turn Principle . 30

vii

Inhoudsopgave

2.4. Conclusion . 31

3. Shared State in Modern Actor Systems 33
3.1. Shared State in Pure Actor Systems 34

3.1.1. Replication . 34
3.1.2. Delegate Actor . 35

3.1.2.1. Code Fragmentation and Continuation-passing
Style Enforced 36

3.1.2.2. No Parallel Reads 38
3.1.2.3. Message-level Race Conditions 38
3.1.2.4. Message-level Deadlocks 40
3.1.2.5. Conclusion . 40

3.2. Shared State in Impure Actor Systems 40
3.2.1. Locks . 41
3.2.2. Software Transactional Memory 42

3.3. Conclusion . 42

4. Communicating Event-Loops 45
4.1. Why Communicating Event-Loops? 46

4.1.1. Fine-grained versus Coarse-grained Concurrency 46
4.1.2. Flexible versus Fixed Behavior 46

4.2. S H A C L: A Communicating Event-Loop Language 48
4.2.1. Imperative Programming in S H A C L 48
4.2.2. Object Oriented Programming in S H A C L 51
4.2.3. Actor Oriented Programming in S H A C L 52

4.3. Shared State in S H A C L, A Motivating Example 57
4.3.1. An Idealized Implementation of the Motivating Example . 59

4.4. Conclusion . 60

5. The Domain Model 61
5.1. The Design Space: Event-loops × Object Heaps 62
5.2. Domains: Immutable, Isolated, Observable, Shared 63
5.3. S H A C L: A Language with Domains 63
5.4. Immutable Domains . 66
5.5. Isolated Domains . 67
5.6. Observable Domains . 69

5.6.1. Observable Actors . 70
5.6.2. Properties . 70
5.6.3. A Note on the Implementation 71

viii

Inhoudsopgave

5.6.4. Revisiting the Motivating Example Using Observable Do-
mains . 72

5.6.5. Conclusion . 73
5.7. Shared domains . 73

5.7.1. Futures . 75
5.7.2. Asynchronous Communication 76
5.7.3. Requesting a View on Multiple Domains 76
5.7.4. Comparison with Multiple Reader/Single Writer Locks . . 79
5.7.5. Properties . 80
5.7.6. Revisiting the Motivating Example Using Shared Domains 80

5.8. Benefits of Domains . 81
5.9. Related work . 82
5.10.Conclusion . 86

6. An Operational Semantics for a Significant Subset of SH A C L 87
6.1. Introduction . 87
6.2. Basic S H A C L -L I T E, Actors and Their Isolated Domains 88

6.2.1. Semantic Entities . 88
6.2.2. S H A C L -L I T E Syntax . 89
6.2.3. Substitution and Tagging Rules 91
6.2.4. Reduction Rules . 92

6.3. Immutable Domains . 96
6.3.1. Semantic Entities . 96
6.3.2. Syntax . 97
6.3.3. Reduction Rules . 98

6.4. Observable Domains . 99
6.4.1. Semantic Entities . 100
6.4.2. Syntax . 100
6.4.3. Reduction Rules . 100

6.5. Shared Domains . 105
6.5.1. Semantic Entities . 105
6.5.2. Additional Syntax for Shared Domains 106
6.5.3. Reduction Rules . 108

6.6. Differences Between S H A C L and S H A C L -L I T E 112
6.7. Conclusion . 112

7. Implementation: Domain Handlers 115
7.1. The S H A C L VM: An Implementation in Go 116

ix

Inhoudsopgave

7.2. The Domain Handler Interface . 116
7.2.1. Default Domain Handler 119
7.2.2. Immutable Domain Handler 121
7.2.3. Isolated Domain Handler 121
7.2.4. Observable Domain Handler 122
7.2.5. Shared Domain Handler 126

7.3. Conclusion . 129

8. Applying Domains in Practice: A Case Study in Scala 131
8.1. Shared State Synchronization Patterns: A Scala Survey 132

8.1.1. The Corpus of Actor Programs 132
8.1.2. Evaluation of The Different Synchronization Mechanisms 133
8.1.3. The Survey: Locks and Delegate Actors 134

8.1.3.1. Locks . 134
8.1.3.2. Delegate Actor 138

8.1.4. Conclusion . 140
8.2. A Shared Domain Library for Scala 141

8.2.1. Shared Domains for Scala: The Implementation 143
8.2.2. Properties of the Domain Model 144
8.2.3. Pattern Transformation to Scala Library 145

8.2.3.1. Delegate Actor 145
8.2.3.2. Server-side lock 146
8.2.3.3. Client-side lock 146
8.2.3.4. Conclusion . 146

8.3. Discussion . 147
8.4. Conclusion . 147

9. Conclusion 149
9.1. Summary . 150
9.2. Contributions . 151
9.3. Future Work . 153

9.3.1. Domains for Other Concurrency Models 153
9.3.2. Performance . 154
9.3.3. Other . 155

9.4. Closing Conclusion . 155

A. Scala Pattern Transformation 157
A.1. Delegate Actor . 158
A.2. Delegate Actor Transformation 159

x

Inhoudsopgave

A.3. Server-side Lock . 160
A.4. Server-side Lock Transformed . 161
A.5. Client-side Lock . 162
A.6. Client-side Lock Transformed . 163

xi

L IJ S T VA N F I G U R E N

1.1. The trade-off between flexible and performant concurrency con-
trol and manageable concurrency control 3

2.1. A selection of actor languages and their ancestry 12
2.2. Asynchronous Sequential Processes 19
2.3. The communicating event-loop model 20

3.1. Replicating a shared object over the different actors 34
3.2. Using a delegate actor . 35
3.3. Flexible behavior: Finite state machine 40
3.4. Both actors have direct access to the shared object. 41

5.1. The domain model . 64
5.2. An immutable domain defining some constants 67
5.3. Two communicating event-loops and their isolated domains. . . . 68
5.4. An observable domain owned by an event-loop 70
5.5. A shared domain . 74
5.6. Left, read/write lock in Java. Right, shared domain in S H A C L. . . 79

6.1. Semantic entities of S H A C L -L I T E 88
6.2. Syntax of S H A C L -L I T E . 90
6.3. Substitution rules: x denotes a variable name or the pseudova-

riable this. 91
6.4. Runtime object tagging rules. 92
6.5. Actor-local reduction rules and congruence. 94
6.6. Creational rules . 95
6.7. Asynchronous message rules . 96
6.8. Additional semantic entities for immutable domains 97
6.9. Additional syntax for immutable domains 97
6.10.Immutable Domain Actor-Local Reduction Rules. 97

xiii

Lijst van figuren

6.11.Immutable Creational Rules . 98
6.12.Immutable Asynchronous Message Reduction Rules 99
6.13.Additional semantic entities for observable domains 100
6.14.Additional syntax for observable domains 101
6.15.Observable Domain Actor-Local Reduction Rules. 102
6.16.Observable Creational Rules . 103
6.17.Observable Asynchronous Message Reduction Rules 104
6.18.Additional semantic entities for shared domains 105
6.19.Additional syntax for shared domains 106
6.20.Shared Domain Actor-Local Reduction Rules. 107
6.21.Shared Creational Rules . 108
6.22.Shared Asynchronous Message Reduction Rules 109
6.23.Views reduction rules. 110

7.1. UML class diagram of the domain handler interface 117

8.1. A server-side lock in Scala. 136
8.2. A client-side lock in Scala. 136
8.3. A delegate actor in Scala. 139

xiv

L IJ S T VA N TA B E L L E N

2.1. Actor Languages Classification and Properties 27

4.1. S H A C L basic syntax . 48

5.1. The different types of domains 63

8.1. The corpus of projects used in the survey 133
8.2. Locks in the projects . 137
8.3. Actors in the projects . 140
8.4. The different synchronization patterns and their properties 140
8.5. The different synchronization patterns and their properties 144

xv

L I S T O F L I S T I N G S

2.1. Factorial function written in PLASMA. 13
2.2. An actor in Rosette. 14
2.3. An active object in ABCL/1. 15
2.4. An Erlang process. 16
2.5. A SALSA behavior. 17
2.6. A vat in E. 20
2.7. An actor in Scala. 22
2.8. An actor in Akka. 22
2.9. An actor in Kilim. 23

3.1. Rosette: A shared counter represented by a delegate actor 36
3.2. A future-type message in E . 37
3.3. Rosette: A finite state machine . 39

4.1. Flight reservation component written in E. 47
4.2. Factorial definition in S H A C L . 49
4.3. Call-by-name parameter in S H A C L 50
4.4. Variable number argument lists in S H A C L 51
4.5. Object Definition in S H A C L . 52
4.6. Hello World actor in S H A C L . 53
4.7. Futures in S H A C L . 54
4.8. Chaining futures in S H A C L . 55
4.9. when_resolved is an asynchronous primitive. 56
4.10.A script in S H A C L . 56
4.11.Motivating Example . 57
4.12.Ideal implementation . 60

5.1. A standalone isolated domain . 68
5.2. Transformation of our motivating example using observable do-

mains . 73

xvii

List of Listings

5.3. The when primitives return a future 76
5.4. Using the when_acquired primitive to acquire a view on multiple

domains . 77
5.5. Finding a node in a binary search tree 78
5.6. Nested view requests . 79
5.7. Transformation of our motivating example using shared domains 81

7.1. Default Domain Handler . 120
7.2. Immutable Domain Handler . 121
7.3. Isolated Domain Handler . 122
7.4. The event-loop of a S H A C L actor 123
7.5. Observable Domain Handler . 125
7.6. Shared Domain Handler . 127
7.7. Handling Requests . 128
7.8. Processing a View . 129

8.1. A domain reference in Scala. 142
8.2. The DomainReference trait. 143
8.3. The DomainActor trait. 144

A.1. A delegate actor . 158
A.2. Transformation of the delegate actor pattern 159
A.3. A server-side lock . 160
A.4. Transformation of the server-side lock 161
A.5. A client-side lock . 162
A.6. Transformation of the client-side lock 163

xviii

1
I N T R O D U C T I O N

Moore’s law [Moore, 1965] states that the density of transistors in central pro-
cessing units (CPUs) doubles approximately every two years. In the past de-
cades, software developers have relied on this “free lunch” for performance
gains of their applications without necessarily releasing new versions of their
software. Unfortunately, we have hit a performance wall and the free lunch is
over [Sutter, 2005]. For now, Moore’s Law seems to hold. However, the expo-
nential increase of the number of transistors does not translate into an increa-
sed clock speed for a single CPU. Instead, hardware manufacturers are investing
in running multiple CPUs in a single chip. In the past few years we have seen
a transition towards integrating multi-core processors in commodity hardware
such as smartphones, laptops, and workstations. This has led to an increased in-
terest in concurrent programming models. In the past concurrent programming
had largely remained a tool for specialist developers in the field of embedded
systems or high performance computing. However, today, concurrent program-
ming is also becoming an important factor for exploiting these new multi-core
architectures in mainstream desktop, mobile and web applications.

Exploiting parallelism in the context of high performance computing is of-
ten analogous to parallelizing algorithms that are composed of executing a set
of homogeneous tasks. Data-parallel programming models such as Fork/Join
[Blumofe et al., 1995], MapReduce [Dean and Ghemawat, 2008] and Dataflow
[Ashcroft and Wadge, 1977] have traditionally been well suited for exploiting
that kind of parallelism. The focus of these models is more on abstractions for
parallel programming rather than manually introducing concurrency. However,

1

1. Introduction

interactive applications are generally more complex and the different compo-
nents of such applications often map onto heterogeneous tasks. This means that
developers would benefit from a concurrency mechanism that is well suited to
model each component or task as a parallel software entity. Concurrency me-
chanisms that fit this category include threads and locks, software transactional
memory (STM) [Shavit and Touitou, 1995], communicating sequential proces-
ses (CSP) [Hoare, 1978] and actors [Hewitt et al., 1973]. This does not mean
that the degree of parallelism should be limited to the number of components of
an application. Inside a single component it is possible to find opportunities to
parallelize a set of homogeneous tasks using the various data-parallel program-
ming models. What it does mean is that the governing concurrency mechanism
for interactive applications should be able to safely model heterogeneous tasks
in a modular, reusable, secure, and fault-tolerant way.

In a larger context, the focus of this dissertation is about the contrast bet-
ween flexible concurrency control and manageable concurrency control by gu-
aranteeing safety and liveness. These two sets of requirements are fundamen-
tally conflicting and designing a new concurrency mechanism is often an act
of choosing between one or the other. On one end of the spectrum there are
models such as threads that are very flexible but inherently non-deterministic.
This non-determinism can cause safety issues such as race conditions and pr-
uning that non-determinism with locks can cause liveness issues such as dead-
locks [Lee, 2006]. On the other end of the spectrum there are isolated message
passing models such as CSP and Actors which follow a strict “share nothing”
approach, thus favoring safety and liveness guarantees. The downside of these
models is that they are often more stringent when it comes to accessing shared
state. Fig. 1.1 graphically sketches this trade-off.

The starting hypothesis of this dissertation is that developers of complex in-
teractive applications benefit most from a model with high safety and liveness
guarantees. However, this dissertation aims to show that this strict isolation is
not always necessary to provide those guarantees and that breaking with no-
shared-state concurrency can improve flexibility while still maintaining dead-
lock and data-race freedom.

While the ideas presented in this dissertation could be applied to other con-
currency models (see Sec. 9.3), this dissertation focusses on the actor model. In
the actor model, applications are decomposed into concurrently running actors.
Actors are isolated (i. e., they have no direct access to each other’s state), but
may interact via (asynchronous) message passing. While it is often used as a
distributed programming model, actors remain equally useful as a higher-level
alternative to multithreading in shared-memory architectures. Both component-

2

1.1. Problem Statement

Flexibility

Safety &
Liveness

Threads &
Locks

Isolated
Message Passing

???

Figuur 1.1.: The trade-off between flexible and performant concurrency control and
manageable concurrency control

based and service-oriented architectures can be modeled naturally using actors.
In this dissertation, we will study the actor model only with the aim of applying
it to improve shared-memory concurrency. We do not consider applications that
require actors to be physically distributed across machines.

1.1. Problem Statement

In practice, the actor model is made available either via dedicated programming
languages (actor languages), or via libraries in existing languages. Actor langu-
ages are mostly pure, in the sense that they often strictly enforce the isolation
of actors: the state of an actor is fully encapsulated, cannot leak, and asyn-
chronous access to it is enforced. Examples of pure actor languages include Er-
lang [Armstrong et al., 1996], SALSA [Varela and Agha, 2001], E [Miller et al.,
2005], AmbientTalk [Van Cutsem et al., 2007], and Kilim [Srinivasan and My-
croft, 2008]. The major benefit of pure actor languages is that the developer
gets strong safety guarantees: low-level data races are ruled out by design. The
downside is that this strict isolation severely restricts the way in which access
to shared resources can be expressed.

At the other end of the spectrum, we find actor libraries, which are very of-
ten added to existing languages whose concurrency model is based on shared-
memory multithreading. For Java alone, examples include ActorFoundry [Ast-
ley, 1998-99], Actor Architecture [Jang, 2004], ProActive [Baduel et al., 2006],
AsyncObjects [Plotnikov, 2007], JavAct [J.-P. Arcangeli, 2008], Jetlang [Rettig,

3

1. Introduction

2008-09], and AJ [Zwicky, 2008]. Scala, which inherits shared-memory multi-
threading as its standard concurrency model from Java, features multiple actor
frameworks, such as Scala Actors [Haller and Odersky, 2007] and Akka [Allen,
2013].

What these libraries have in common that they do not enforce actor isola-
tion, i. e., they cannot guarantee that actors do not share mutable state. There
exist techniques to circumvent this issue. For example, it is possible to extend
the type system of Scala to guarantee data-race freedom [Haller and Odersky,
2010]. However, it is easy for a developer to use the underlying shared-memory
concurrency model as an “escape hatch” when direct sharing of state is the most
natural or most efficient solution. Once the developer choses to go this route,
the benefits of the high-level actor model are lost, and the developer typically
has to resort to other ad hoc synchronization mechanisms to prevent data races.

On the one hand, pure actor languages are often more strict, which allows
them to provide strong safety guarantees. The downside is that they often re-
strict the expressiveness when it comes to modeling access to a shared resource.
On the other hand, impure actor libraries are more flexible at the cost of some
of those safety guarantees.

1.2. Research Vision

The goal of this work is to enable safe and expressive state sharing among actors
in pure actor languages. To achieve this goal, we aim to relax the strictness of
pure actor languages via the controlled use of novel language abstractions. We
aim to improve state sharing among actors on two levels:

Safety The isolation between actors enforces a structure on programs and the-
reby facilitates reasoning about large-scale software. Consider for instance
a plug-in or component architecture. By running plug-ins in their own iso-
lated actors, we can guarantee that they do not violate certain safety and
liveness invariants of the “core” application. Thus, as in pure actor langu-
ages, we seek an actor system that maintains strong language-enforced
guarantees and prevents low-level data races and deadlocks by design.

Expressiveness Many phenomena in the real world can be naturally modeled
using message-passing concurrency, for instance telephone calls, e-mail,
digital circuits, and discrete-event simulations. Sometimes, however, a
phenomenon can be modeled more directly in terms of shared state. Con-
sider for instance the scoreboard in a game of football, which can be

4

1.3. Contributions

read in parallel by thousands of spectators. As in impure actor libraries,
we seek an actor system in which one can directly express access to sha-
red mutable state, without having to encode shared state as encapsulated
state of a shared actor. Furthermore, by enabling direct synchronous ac-
cess to shared state, we gain stronger synchronization constraints and
prevent the inversion of control that is characteristic for interacting with
actors using asynchronous message-passing.

While the primary focus of this dissertation is to enable safe and expressive
state sharing among actors, there is also a note to be made on efficiency. Today,
multicore hardware is the prevalent computing platform, both on the client and
the server sides [Sutter, 2011]. While multiple isolated actors can be executed
perfectly in parallel by different hardware threads, shared access to a single ac-
tor can still form a serious sequential bottleneck. In pure actor languages, sha-
red mutable state is modeled with a specific actor and all requests sent to it are
serialized, even if some requests could be processed in parallel, e. g., requests to
simply read or query part of the actor’s state. Pure actors lack multiple-reader,
single-writer access, which is required to enable truly parallel reads of shared
state.

1.3. Contributions

This dissertation makes the following contributions in the field of concurrent
programming language design and more specifically, the actor model.

Actor System History We give an overview of some of the important contri-
butions in the field of actor programming. We illustrate that the different actor
systems can be classified along four distinct actor families. We give an overview
of some of the most important properties of each actor system. The semantics
of the original actor model ensure that processing a message happens in a sin-
gle isolated step. This is an important principle for formal reasoning as well as
application development, as the amount of processing done in a single step can
be made as large or as small as necessary. We formally define this principle as
the isolated turn principle.

SH A C L, a Communicating Event-loop Actor Language The S H A C L (Shared
actor language) programming language is an imperative prototype-based object-
oriented programming language that adopts the communicating event-loop ac-
tor model as its model for concurrency. SH A C L is designed as a platform for

5

1. Introduction

experimenting with new language abstractions for coordinating access to sha-
red mutable state in the communicating event-loop actor model.

The Domain Model The core contribution of this dissertation is the domain
model. Domains are a family of language abstractions for controlling shared
state in an actor system. We present four types of domains, namely immutable,
isolated, observable, and shared domains and show how they enable safe and
expressive access to shared state while preserving the safety guarantees of the
original actor model.

Communicating Event-Loop Calculus We defined an operational semantics
for a subset of the S H A C L programming language. This operational semantics
serves as a reference specification for the semantics of our language abstrac-
tions regarding domains. By unifying object heaps of the original model and
isolated domains we show that they are overlapping language concepts. Our
calculus serves as an extensible basis for experimenting with semantics for va-
rious other types of domains.

A survey of shared-state in practical actor systems We performed a survey
of an existing set of relevant open-source Scala projects that employ actors for
concurrency control. This survey illustrates what synchronization mechanisms
programmers of modern actor systems currently employ to synchronize access
to a shared resource. We establish that programmers mix different synchro-
nization mechanisms depending on the desired application-specific properties.
Based on this survey we illustrate how the identified synchronization mecha-
nisms could be translated to the domain model and validate that the desired
properties are still guaranteed.

1.4. Supporting Publications and Technical
Contributions

Parts of this dissertation’s contributions have been published. This section dis-
cusses these publications briefly to highlight their relevance to this work.

Published Papers: Shared and Observable Domains
The core contribution of this dissertation is The Domain Model as discussed in
Chapter 5. The following papers are about the design and rationale behind the
different domains.

6

1.4. Supporting Publications and Technical Contributions

In the following works we explored the core semantic features of shared do-
mains:

• Joeri De Koster, Stefan Marr, and Theo D’Hondt. Synchronization views
for event-loop actors. In Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’12, pa-
ges 317–318, New York, NY, USA, 2012a. ACM. ISBN 978-1-4503-1160-
1. doi: 10.1145/2145816.2145873. URL http://doi.acm.org/10.1145/
2145816.2145873

• Joeri De Koster, Tom Van Cutsem, and Theo D’Hondt. Domains: Safe
sharing among actors. In Proceedings of the 2nd Edition on Programming
Systems, Languages and Applications Based on Actors, Agents, and Decentra-
lized Control Abstractions, AGERE! ’12, pages 11–22, New York, NY, USA,
2012b. ACM. ISBN 978-1-4503-1630-9. doi: 10.1145/2414639.2414644.
URL http://doi.acm.org/10.1145/2414639.2414644

This work was extended and formalized in the following journal paper:

• Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. Do-
mains: Safe sharing among actors. Science of Computer Programming,
98, Part 2(0):140 – 158, 2015. ISSN 0167-6423. doi: http://dx.doi.o
rg/10.1016/j.scico.2014.02.008. URL http://www.sciencedirect.com
/science/article/pii/S0167642314000495. Special Issue on Program-
ming Based on Actors, Agents and Decentralized Control

The design and rationale behind observable domains has been explored in
the following work:

• Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. Tanks:
Multiple reader, single writer actors. In Proceedings of the 2013 Work-
shop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! ’13, pages 61–68, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2602-5. doi: 10.1145/2541329.2541331. URL http://doi.acm.o
rg/10.1145/2541329.2541331

Technical Contibutions
This dissertation is also supported by a number of technical contributions which
are listed here.
The operational semantics for the domain model is discussed in Chapter 6. This

7

http://doi.acm.org/10.1145/2145816.2145873
http://doi.acm.org/10.1145/2145816.2145873
http://doi.acm.org/10.1145/2414639.2414644
http://www.sciencedirect.com/science/article/pii/S0167642314000495
http://www.sciencedirect.com/science/article/pii/S0167642314000495
http://doi.acm.org/10.1145/2541329.2541331
http://doi.acm.org/10.1145/2541329.2541331

1. Introduction

operational semantics serves as a precise specification of the semantics of the
domain model. A standalone version can be found here:

• Joeri De Koster and Tom Van Cutsem. Shacl: Operational semantics. Tech-
nical report, Vrije Universiteit Brussel, 2013. http://soft.vub.ac.be/Pu
blications/2013/vub-soft-tr-13-26.pdf

The SH A C L language was designed as a research platform to experiment
with synchronization mechanisms for the communicating event-loop actor mo-
del. A full implementation can be found here:

• Joeri De Koster. The shacl programming language. http://soft.vub.a
c.be/~jdekoste/shacl/, 2014

1.5. Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 gives an overview of the history of Actor Systems, starting from its
inception by Hewitt et al. [1973] until the present day (November 2014).
This chapter distinguishes the style of actor model from each Actor System
according to four major families and catalogues them according to their
properties.

Chapter 3 argues that there is a lack of good abstractions to represent shared
resources in modern actor systems by giving an overview of the currently
available state of the art techniques.

Chapter 4 gives an in-depth overview of the communicating event-loop ac-
tor model. The communicating event-loop actor model is an interesting
model for structuring large interactive applications where actors function
mostly as components of the system. We show that this model has a num-
ber of desirable properties over other actor models for that purpose. This
chapter also introduces the S H A C L programming language. SH A C L is de-
signed as a platform for experimenting with new language abstractions
for representing shared resources in the communicating event-loop actor
model. The chapter ends by illustrating the limitations of the communica-
ting event-loop model specifically when it comes to representing shared
resources.

8

http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-26.pdf
http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-26.pdf
http://soft.vub.ac.be/~jdekoste/shacl/
http://soft.vub.ac.be/~jdekoste/shacl/

1.5. Dissertation Outline

Chapter 5 proposes the main contribution of this dissertation, The Domain
Model. This chapter presents the taxonomy that led to the design of four
distinct types of domains, namely immutable, isolated, observable, and
shared domains. Subsequently each of the different types of domains and
their use in S H A C L is discussed.

Chapter 6 gives a formal account of the domain model by providing an ope-
rational semantics for a significant subset of the S H A C L programming
language. The aim of the operational semantics is to serve as a reference
specification of the semantics of the language abstractions regarding do-
mains.

Chapter 7 presents domain handlers as a possible strategy for implementing
the domain model. A domain handler defines a number of traps that serve
as callbacks for the interpreter. Each domain handler can then specify the
behavior of a certain domain type by specializing the default trap(s).

Chapter 8 validates the usefulness of the domain model. We start with a survey
of synchronization patterns used by developers in existing open-source
Scala projects. We then show that these examples can be translated to the
domain model.

Chapter 9 concludes this dissertation and highlights avenues for future work.

9

2
C O N T E X T: A C T O R S Y S T E M S

The actor model was originally proposed by [Hewitt et al., 1973] in the context
of artificial intelligence research at MIT. The original goal was to have a pro-
gramming model for safely exploiting concurrency in distributed workstations.
In December 1975, in an attempt to understand the actor model described by
Hewitt, [Sussman and Steele, 1975] wrote a continuation based interpreter for
a Lisp-like language called Scheme. They came to the conclusion that Hewitt’s
“actors” were very similar to scheme lambda expressions and had their roots
in the lambda calculus [Church, 1936]. In a purely functional context, sending
a message is very similar to passing a continuation. Later, [Agha, 1986, 1990]
revised this model and made actors stateful by allowing them to change their
behavior. This way of doing state updates has an important advantage over
conventional assignment statements as this severely coarsens the granularity of
operations that need to be considered when analyzing a system. This insight is,
for this dissertation, perhaps the most important contribution of his work. In an
actor model, the granularity of reasoning is at the level of the processing of a
single message. This means that processing a message can be regarded as being
done in a single step. Throughout the rest of this dissertation we refer to this
principle as the isolated turn principle. Agha’s actor model consists of three
basic actor primitives: create, send and become. These three primitives spawned
a host of different actor systems and can still be found in modern actor langua-
ges and libraries today. This chapter gives an overview of the ancestry of actor
systems from 1975 until today (2014) as seen in Fig. 2.1. Afterwards we classify
the different actor languages into four major paradigms and categorize them in
terms of the properties they provide.

11

2. Context: Actor Systems

ABCL/1
Yonezawa

Plasma
Hewitt

Erlang
Armstrong

SAL/ACT
Agha

SALSA
Varela

E
Miller

AmbientTalk
Van Cutsem

Scala Actors
Haller

Kilim
Srinivasan

Akka
Bonér

1970 1980 1990 2000 2010

ASP/ProActive
Caromel

Figuur 2.1.: A selection of actor languages and their ancestry

2.1. The History of Actor Systems

The actor model was originally proposed by Hewitt et al. [1973] as a com-
putational model for artificial intelligence. It was meant for modeling parallel
communication based problem solvers. In October of 1975 Hewitt and Smith
[1975] wrote a primer on a language called PLASMA, the first language im-
plementation of the actor model. In PLASMA, actors consist of a behavior and
an inbox. A behavior specifies the set of messages accepted by an actor and
the code that should be executed to handle each type of message. The inbox
of an actor holds all incoming messages. An actor perpetually takes one mes-
sage from its inbox and processes that message. Actors communicate with each
other via message passing which consists of sending a request from one actor
(called the messenger) to another actor (called the target). The request and the
messenger are packaged as an envelope and put into the inbox of the target
actor (request: message; reply-to: messenger). Given that envelope, the
behavior of the target actor then specifies how the computation continues with
respect to the request. The messenger is typically used as the reply address to
which a reply to the request should be sent. The simplest control structure that
uses this request-reply pattern in most programming languages is the procedure
call and return. A recursive implementation of factorial written in PLASMA is
given in Lst. 2.1.

In this example factorial is defined to be an actor of which the behavior
matches the requests of incoming envelopes with one element which will be

12

2.1. The History of Actor Systems

(factorial ≡
(≡> [=n]
(rules n
(≡> 1

1)
(≡> (> 1)

(n * (factorial <= (n - 1)))))))

Listing 2.1: Factorial function written in PLASMA.

called n. The rules for n are, if it is 1, then we send back 1 to the messenger of
the envelope. Note that this is done implicitly. If it is greater than 1, we send a
message to the factorial actor to recursively compute the factorial of (n - 1).

2.1.1. Agha’s Actor Model: ACT, SAL and Rosette

Agha [1986, 1990] proposes a variation on the actor model as a concurrent
object-oriented programming model. The main focus was to produce a platform
for distributed problem solving in networked workstations. In his model concur-
rent objects, i. e. actors, are self-contained, independent components that inter-
act with each other by asynchronous message passing. In his work he presents
three basic actor primitives:

• create: Creates an actor from a behavior description. Returns the address
of the newly created actor.

• send: Asynchronously sends a message from one actor to another by using
the address of the receiver. Immediately returns and returns nothing.

• become: Allows actors to replace their behavior. The next message that
will be received by that actor is processed by the new behavior.

These three primitives are the basic building blocks for most actor systems
today and have been very influential in the development of any actor language
that follows this work. The sequential subset of the model he describes is mostly
functional. Any state changes are specified by replacing the behavior of an actor.
This has an important advantage over conventional assignment statements as
this severely coarsens the granularity of side-effecting operations that need to
be considered when analyzing a system. On the one hand, an actor can only
change its own behavior, meaning that actors are fully isolated. On the other

13

2. Context: Actor Systems

hand, changing the behavior of an actor only comes into effect when proces-
sing the next message. This means that, the processing of a single message can
be regarded as a single isolated operation. This mechanism allows state upda-
tes to be aggregated into a single become statement and significantly reduces
the amount of control flow dependencies between statements. The example in
Lst. 2.2 is written in the Rosette actor language [Tomlinson et al., 1988] which
was based on this model.

(define Cell
(mutable [content]
[put [newcontent]
(become Cell newcontent)]

[get
(return ’got-content content)]))

(define my-cell (create Cell 0))
(get my-cell)

Listing 2.2: An actor in Rosette.

The mutable form is used to create an actor generator that is bound to Cell.
That generator can be used with the create form to create an instance of that
actor. Each actor instance has its own inbox and behavior. Following the key-
word mutable is a sequence of identifiers that specify the mutable fields of that
actor. In our example, any Cell actor will have one mutable field, namely the
content of that cell. After that is a specification of all the methods that are un-
derstood by the actor. A method is specified by a keyword followed by a table
of arguments. In this case the put method expects a value for the new content.
Afterwards follows the body that specifies how each method should be proces-
sed. If one wishes to modify the state of a mutable field one can use the become
form to replace the behavior of an actor using the actor generator. The return
form is used to send back the result of a computation to the implicit sender of
the original message.

There are many library implementations of the actor model based on [Agha,
1990] for different languages such as Smalltalk (Actalk [Briot, 1989]) and C++
(ACT++ [Kafura, 1990], Broadway [Sturman and Agha, 1994] and Thal [Kim,
1997]).

14

2.1. The History of Actor Systems

2.1.2. ABCL/1

Around the same time [Yonezawa et al., 1986] worked on a object-oriented
concurrent programming language called ABCL/1. In this language, each object
has its own processing power and may have its own local persistent memory.
In this model state changes are not specified in terms of behavior updates (be-
come) but rather by individual assignment statements. However, the state of
each active object is isolated from one another. This means that state updates
are also isolated and because messages are processed entirely sequentially the
isolated turn principle still holds1.

[object Cell
(state [contents := nil])
(script
(=> [:put newContent]
contents := newContent)

(=> [:get] @ From
From <= contents))]

Cell <= [:get]

Listing 2.3: An active object in ABCL/1.

There are three types of messages in ABCL/1: past, now and future. Past type
messages are sent to the receiver and immediately return. The sender does not
wait for the receiver to process the message before continuing its current com-
putation. This is the default message type we knew from other actor models up
till now. Past type messages can be sent by using the following syntactical form:
[T <= M]. Where M is the message and T is the receiver of the message. This
type of message is called “past” because sending a message finishes before it is
processed by the receiver object. Now type messages are very similar to proce-
dure call and return. When an object O sends a now type message to another
object T, O will wait for T to process that message and send back a result before
continuing with its current computation. Now type messages can be sent by
using the following syntactical form: [T <== M]. While now type messages pro-
vide a convenient synchronization mechanism for concurrent activities, it can
cause potential deadlocks as it is a blocking operation. Future type messages are
used when the sender of a message does not need the result of the message im-

1Barring the use of express messages, which can potentially interrupt the processing of a message
and thus violate this principle.

15

2. Context: Actor Systems

mediately. Future type messages can be sent by using the following syntactical
form: [T <= M $ x] where x is a variable that will bind a future object. That
future can be used by the sender of the message to wait for the result. Trying
to reference x will cause the computation to block until the return value of the
message becomes available. In other actor models, the sender of a request, O,
has to finish its computation before being able to receive the response from the
receiver, T. If sending this request and processing the result is part of O’s task,
this often leads to an unnatural breakdown of that task in different execution
steps. ABCL/1’s futures was the first attempt to solve that issue.

2.1.3. Erlang

Erlang [Armstrong et al., 1996] was the first industrial language to adopt the
actor model as its model of concurrency. It was developed at the Ericsson and
Ellemtel Computer Science Laboratories as a declarative language for program-
ming large industrial telecommunications switching systems. While in style Er-
lang has many similarities with Agha’s actor model, in Erlang, actors are not
represented by a behavior. Rather actors are represented by processes that run
from start to completion. Erlang actors can use the primitive receive to specify
what messages an actor understands. When evaluating a receive expression
the actor pauses until a message is received. If a message is received, the mat-
ching code is evaluated and execution continues until a new receive block is
evaluated. One can use recursion to ensure that an actor continues processing
incoming messages. This is illustrated by the following example:

loop(Contents) ->
receive
{put, NewContent} ->
loop(NewContent);

{get, From} ->
From ! Contents,
loop(Contents)

end.

MyCell = spawn(loop, [nil]).
MyCell ! {get, self()}.

Listing 2.4: An Erlang process.

We create a new actor process by using the primitive spawn. This will call the
provided function, loop, in a new process and returns that process’ process id.

16

2.1. The History of Actor Systems

The cell uses the primitive receive to match incoming get- and put-messages.
Once the message body is processed we recursively call the loop with our upda-
ted state.

2.1.4. SALSA

SALSA [Varela and Agha, 2001] was one of the first actor languages implemen-
ted on top of Java. The implementation translates SALSA code into Java code
that can be compiled together with the SALSA actor library to Java byte-code
with any Java compiler and run on any JVM. SALSA was proposed as an actor-
based language for mobile and internet computing. A few of the main contri-
butions are three new language mechanisms to help coordinate asynchronous
communication between different actors. When an actor sends an asynchro-
nous message to another actor, that actor may include an implicit customer to
which the result should be sent after the message has been processed. This can
be done by using one of three kinds of continuations, namely token-passing
continuations, join continuations and first-class continuations. The example in
Lst. 2.5 illustrates how to use actors and token-passing continuations in SALSA.

behavior Cell {
Object contents;
Cell(Object initialContents){
contents = initialContents;

}
void put(Object newContents) {
contents = newContents;

}
Object get() {
return contents;

}
}

Cell myCell = new Cell(null);
myCell<-get() @ standardOutput<-print(token);

Listing 2.5: A SALSA behavior.

Similar to ABCL/1 state updates are not specified in terms of behavior up-
dates (become) but rather by individual assignments. The SALSA compiler en-
sures actors are correctly encapsulated by serializing any object that is trans-
mitted from one actor to another. Thus, the isolated turn principle holds. The

17

2. Context: Actor Systems

last line in the example illustrates how to use token continuations in SALSA.
When the myCell actor is done processing the get message the result can be
printed on the screen. We do this by sending a print message to the standard
output using token as a value. token is a special keyword that evaluates to
the value provided by the last token-passing continuation. This abstraction is
very similar in use compared with ABCL/1’s future type messages. The main
difference being that using a future in ABCL/1 is a blocking operation while a
token-passing continuation postpones the evaluation of the continuation until
the result of the message send becomes available. Meanwhile other messages
can be processed.

Join continuations in SALSA, as illustrated by the example below are a way
to group several messages. Any token continuation following a join continua-
tion will wait until all the messages are processed. Once this is done the token
continuation receives an array with the tokens produced by the different mes-
sages.

join(author<-writeChapter(1),
otherAuthor<-writeChapter(2))

@ editor<-review(token) @ publisher<-print(token);

SALSA also has first-class continuations. The keyword currentContinuation
can be used as a token continuation to delegate computation to the context
in which the message processing is taking place. For example, in the example
above, the editor can potentially send messages to other actors during its review.
Any results produced by those messages can be delegated to the publisher by
passing currentContinuation as a token continuation.

2.1.5. Asynchronous Sequential Processes and ProActive

Asynchronous Sequential Processes [Caromel et al., 2009] is a programming
model similar to ABCL/1 in that it is a concurrent object-oriented programming
model. However, contrary to ABCL/1, not every object in this model is an active
object. Rather, actors in this model are represented by an activity. Each activity
has a single root object called the active object. Different activities do not share
memory, the active objects’ whole object graph is deep-copied into the activity
and the copied objects are then called passive objects. Every activity always has
a single active object and potentially many passive objects. Any method call
on an active object will result in an asynchronous request being sent to the
active object and returns a future. The request is stored in a request-queue and
is called pending. Later this request will be served and when it is finished the

18

2.1. The History of Actor Systems

request is calculated and the future is replaced with a (deep) copy of the return
value.

Activity A Activity B

request-queue

active object

distant
referencenear

reference

active object

passive
object

future values

future

request-queuefuture values

Figuur 2.2.: Asynchronous Sequential Processes

Fig. 2.2 illustrates two activities, each with their own active object. Any me-
thod call via a distant reference will add that call to the request-queue of the
corresponding activity and result in a future. The result of the method call is
stored in a ‘store’ of future values. Similarly to ABCL/1’s futures, execution will
block if any attempt is made to perform a strict operation (e. g., a method call)
on such a future. Execution resumes when the corresponding request is calcula-
ted. Isolation of the different activities is guaranteed by passing passive objects
by copy between the different activities. All references to passive objects are
always local to an activity and any method call on a passive object is synchro-
nously executed. An implementation of this model can be found in ProActive
[Baduel et al., 2006], which is a framework for Java.

2.1.6. E Programming Language

The E programming language [Miller et al., 2005] was the first language to
introduce the communicating event-loop actor model. This model takes a very
similar approach to Asynchronous Sequential Processes with the exception that
it does not make a distinction between passive and active objects. In this model,
each actor is represented as a vat. A vat has a single thread of control (the
event-loop), a heap of objects, a stack, and an event queue. Each object in a
vat’s object heap is owned by that vat and those objects are owned by exactly
one vat. Within a vat, references to objects owned by that same vat are called
near references. References to objects owned by other vats are called eventual
references (see Fig. 2.3).

The type of reference determines the access capabilities of that vat’s thread
of execution on the referenced object. Generally, actors are introduced to one

19

2. Context: Actor Systems

Actor A Actor B

event-loopevent-queue event-loopevent-queue

object

eventual
reference

near
reference

Figuur 2.3.: The communicating event-loop model

another by exchanging addresses. In the communicating event-loop model such
an address is always in the form of an eventual reference to a specific object.
The referenced object then defines how another actor can interface with that ac-
tor. The main difference between communicating event-loops (CEL) and other
actor languages up to this point was that other actor languages usually only
provide a single entry point or address to an actor. A CEL can define multiple
objects that all share the same message queue and event-loop and hand out
different references to those objects. The example in Lst. 2.6 illustrates how to
create an object in E and send it an eventual message get.

def cell {
var contents := null
to put(newContents) {
contents := newContents

}
to get() {
return contents

}
}

var promise := cell<-get()
when (promise) -> {
println(promise)

}

Listing 2.6: A vat in E.

When you send an eventual message to an object the message is enqueued in
the event queue of the owner of the object and immediately returns a promise.
That promise will be resolved with the return value of the message once that
message is processed. It is not allowed to use a promise as a near reference. If
you want to make an immediate call on the value represented by a promise, like

20

2.1. The History of Actor Systems

printing it on the screen, you must set up an action to occur when the promise
resolves. This is done by using the when primitive. When the promise for the
value of the get message becomes resolved, the body of the when primitive is
executed. During that execution the promise is resolved and can be used as a
local object.

The communicating event-loop model was later adopted by AmbientTalk
[Van Cutsem et al., 2007], a distributed object-oriented programming langu-
age which has been designed for developing applications on mobile ad hoc net-
works. AmbientTalk was designed as an ambient-oriented programming (AmOP)
language [Dedecker et al., 2006]. It adds to the actor model a number of new
primitives to handle disconnecting and reconnecting nodes in a network where
connections are volatile. The core concurrency model however remains faithful
to the original communicating event-loops of E.

2.1.7. Scala Actor Library and Akka

The Scala Actor Library [Haller and Odersky, 2007] offers a full-fledged imple-
mentation of Erlang-style actors on top of Scala. Today, the Scala Actor Library
remains one of the most widespread used actor implementations. Partly be-
cause Scala is built on top of the JVM and thus Scala seamlessly interoperates
with code written in Java. Scala Actors can use two different primitives to re-
ceive a message. On the one hand, receive suspends the current actor together
with its full stack frame until a message is received. Once the message is recei-
ved the actor can continue processing that message and the context in which
the receive block was executed is not lost. On the other hand, react suspends
the actor with just a continuation closure. This closure only contains informa-
tion on how to proceed with processing an incoming message. The context in
which the react was called is lost. This type of message processing has the
benefit of being more lightweight and thus scales to a larger number of actors.
The example in Lst. 2.7 illustrates how to create a new actor in Scala and send
it a message.

The Akka [Allen, 2013] actor library is an actor-framework for Scala. It stays
more faithful to the original Agha actor model in the sense that an Akka actor
has a single global message handler to process incoming messages. Instead
of invoking receive to process incoming messages you implement a receive
method that defines how all incoming messages should be processed. To change
the global message handler (i. e., the behavior) of an actor in Akka one can use
the become control structure.

21

2. Context: Actor Systems

class Cell[T](var contents: T) extends Actor {
def act() {
loop {
react {
case Get =>
sender ! contents

case Put(newContents: T) =>
contents = newContents

}
}

}
}

val cell = new Cell(0)
cell.start
cell ! Get

Listing 2.7: An actor in Scala.

class Cell[T](var contents: T) extends Actor {
def receive = {
case Get =>
sender ! contents

case Put(newContents: T) =>
contents = newContents

}
}

val system = ActorSystem("MySystem")
val cell = system.actorOf(Props(new Cell(0)), name = "cell")
cell ! Get

Listing 2.8: An actor in Akka.

2.1.8. Kilim

Kilim [Srinivasan and Mycroft, 2008] is an actor framework for Java. The Ki-
lim weaver post-processes Java byte-code to add a lightweight implementation
of actors and provide strong isolation guarantees. The example in Lst. 2.9 il-
lustrates how to implement a Cell actor in Kilim. Each actor class needs to
specify an execute method as entry point for the actor. Getting a message from
a mailbox is a blocking operation and the Kilim weaver makes sure that context

22

2.1. The History of Actor Systems

switching is possible during the execution of any method that is annotated with
the @pausable annotation. Objects that are transmitted over a mailbox have to
implement the Message interface and are passed by copy between the diffe-
rent actors. This is the standard technique used to ensure isolation between the
different processes. However, there exist extensions to Kilim to do zero-copy
message passing [Gruber and Boyer, 2013].

class Cell extends Actor {
Mailbox<Msg> mb;
private int contents = 0;
Cell(Mailbox<Msg> mb) { this.mb = mb; }

@pausable
public void execute() {
while(true) {
Msg m = mb.get();
if (m.type == "Get") {
m.replymb.put(contents);

}
if (m.type == "Put") {
contents = m.contents

}
}

}
}

Mailbox<Msg> outmb = new Mailbox<Msg>();
new Cell(outmb).start()
Mailbox<Msg> replymb = new Mailbox<Msg>();
outmb.put(new Msg(replymb, 42, "Put"));
Msg reply = replymb.get();

Listing 2.9: An actor in Kilim.

23

2. Context: Actor Systems

2.2. Actor System Classification and Properties

In Sec. 2.1 we have shown some of the most prominent implementations of the
actor model. While each of those actor systems is different, we can distinguish
the style of actor model according to four major families. In this section we will
classify each of the discussed languages according to those four main families.
Each actor system in a single family has a number of common features that are
shared between all actor systems in that family. However, a number of other
features are still actor system dependent. Tab. 2.1 on page 27 gives an overview
of the different distinct features of each actor system. The goal of this classifi-
cation is to give a complete view on all the different actor systems and their
properties. This will allow us to derive and extract some general properties and
guarantees for each actor system.

2.2.1. Classification of Actor Systems

This section gives an overview of the four major families according to which we
classified each actor system. The four major families are: Original actor model,
processes, active objects and communicating event-loops.

2.2.1.1. Original Actor Model

Actor systems in this category implement the original model proposed by Agha.
All actor systems in this category provide the actor model by means of three ba-
sic primitives, namely create, send and become. The sequential subset of lan-
guages in this category is typically mostly functional (e. g., ACT, SAL, Rosette).
Changes to the state of an actor are aggregated in a single become statement.
The only (implicitly) mutable data-structures are the inbox and the behavior
of an actor. Isolation of the different actors is guaranteed because an actor can
only change its own behavior and that change is only observable between the
processing of messages. The Akka actor library also belongs in this category as it
also implements the three basic actor primitives. However, its sequential subset
is built on top of the imperative language Scala, meaning that actor isolation is
not guaranteed.

2.2.1.2. Processes

The Erlang implementation of the Actor Model was unique as it did not specify
an actor’s implementation as a reentrant behavior. Rather, to represent actors,
it employs processes that run from start to completion. Any actor system that

24

2.2. Actor System Classification and Properties

represents an actor as a process falls into this category. Once the process ter-
minates, the actor stops and can no longer receive any messages. To receive a
message, an actor has to evaluate a receive statement. Once the message has
been processed, execution can continue where it left off. The sequential subset
of Erlang is functional and similar to Agha’s model, changes to the state of an ac-
tor are typically aggregated between the different receive statements. Erlang
actors are fully isolated and thus the isolated turn principle holds2. However, in
this case, the notion of a “turn” is not so easily defined. It makes sense to regard
all operations between the processing of two consecutive receive statements
as being processed in a single isolated operation or turn.

The Scala Actor Library and Kilim also belong in this category as they also
represent actors as processes that run from start to completion. However, in the
case of Scala, actor isolation is not guaranteed. Kilim does guarantee actor iso-
lation at compile time by ensuring that any object that crosses actor boundaries
does not have any internal aliases.

2.2.1.3. Active Objects

ABCL/1 moved away from the classical representation of actors and looked at
actors from an object-oriented perspective. Actors are represented by objects
with their own thread of control and isolated memory. The main difference
with the classical representation of actors is that state updates in this model are
not aggregated in a single become operation. In fact, the behavior of an actor is
fixed in this model: it is the interface of the active object. Rather than changing
their behavior, actors can modify individual instance variables. Asynchronous
Sequential Processes was an adaptation of this model in which an extra distinc-
tion is made between active and passive objects. Active objects are passed by
reference and can only be communicated with via asynchronous message pas-
sing. Passive objects are passed by copy to ensure isolation and can be commu-
nicated with via synchronous method invocation. SALSA is another language
that falls into this category. In SALSA, each behavior specifies an active object
and passive objects are copied via serialization when crossing actor boundaries.
Javascript webworkers is another implementation of Active Objects. Any object
that crosses webworker boundaries is copied by serialization.

2Erlang does allow a limited form of shared state between different actors in the form of Erlang
Term Storage (ETS) tables. These are not part of the core language and will not be discussed
here.

25

2. Context: Actor Systems

2.2.1.4. Communicating Event-Loops

The communicating event-loop model was first introduced by E. In this mo-
del actors are represented by vats. The main difference between event-loops
and actor models based on active objects is that the communicating event-loop
model does not make a distinction between active and passive objects. In this
model every object is a passive object that is owned by a vat. A vat can then
hand out references to those different objects and other vats can use those re-
ferences to asynchronously communicate with that vat. In contrast with other
actor models, a vat does not have a single behavior as entry point. Rather, every
reference to an object defines a different behavior that can be the target of an
asynchronous message. To ensure isolation objects are not passed by copy but
rather by proxy. AmbientTalk also adopted the communicating event-loop mo-
del.

2.2.2. Actor Properties

Each of the four families discussed gives some indication of the properties of the
actor system. However, these properties still remain largely dependent on the
specific implementation of the actor system. In this section we give an overview
of all the features and properties we use to classify the different actor systems
discussed in Sec. 2.1. Tab. 2.1 gives an overview of all actor systems and their
properties. There are four main classes of features and properties. First we look
at how each system processes individual messages. Secondly, we look at how
messages are received by the actor. Thirdly, we look at what mutable state is
available in the actor system and how the actor system handles state changes.
Lastly, we classify the different actor systems according to the granularity in
which actors are meant to be used on a single node.

2.2.2.1. Message Processing

An important part of any actor system is the way in which messages are proces-
sed. This is typically the sequential subset of the language. An important side-
note here is that, any property that holds for the sequential subset of the lan-
guage, typically only holds for the processing of a single message. For example,
any actor system that upholds the isolated turn principle guarantees that each
message is processed sequentially and fully isolated. However, once you broa-
den that boundary to the processing of several messages, most of these proper-
ties no longer hold. In this section we only concern ourself with properties that
hold during the processing of a single message.

26

2.2. Actor System Classification and Properties

M
es

sa
ge

Pr
oc

es
si

n
g

M
es

sa
ge

R
ec

ep
ti

on
St

at
e

C
ha

n
ge

s
A

ct
or

s
pe

r
N

od
e

Pa
ra

di
gm

C
on

ti
nu

ou
s

C
on

se
cu

ti
ve

In
te

rf
ac

e
Fl

ex
ib

ili
ty

#
In

te
rf

ac
es

O
rd

er
G

ra
nu

la
ri

ty
Is

ol
at

io
n

G
ra

nu
la

ri
ty

O
ri

gi
n

al
A

ct
or

M
od

el
A

gh
a

(A
C

T,
SA

L,
R

os
et

te
)

Fu
nc

ti
on

al
C

on
ti

nu
ou

s
C

on
se

cu
ti

ve
B

eh
av

io
r

Fl
ex

ib
le

1
U

no
rd

er
ed

A
gg

re
ga

te
d

Is
ol

at
ed

Fi
ne

-g
ra

in
ed

A
kk

a
Im

pe
ra

ti
ve

B
lo

ck
in

g
C

on
se

cu
ti

ve
B

eh
av

io
r

Fl
ex

ib
le

1
U

no
rd

er
ed

In
di

vi
du

al
Sh

ar
ed

-M
em

or
y

Fi
ne

-g
ra

in
ed

Pr
oc

es
se

s Er
la

ng
Fu

nc
ti

on
al

C
on

ti
nu

ou
s

C
on

se
cu

ti
ve

R
ec

ei
ve

Fl
ex

ib
le

1
U

no
rd

er
ed

A
gg

re
ga

te
d

Is
ol

at
ed

Fi
ne

-g
ra

in
ed

Sc
al

a
A

ct
or

Li
br

ar
y

Im
pe

ra
ti

ve
B

lo
ck

in
g

C
on

se
cu

ti
ve

R
ec

ei
ve

Fl
ex

ib
le

1
U

no
rd

er
ed

In
di

vi
du

al
Sh

ar
ed

-M
em

or
y

Fi
ne

-g
ra

in
ed

K
ili

m
Im

pe
ra

ti
ve

B
lo

ck
in

g
C

on
se

cu
ti

ve
M

ai
lb

ox
Fl

ex
ib

le
1

FI
FO

In
di

vi
du

al
Is

ol
at

ed
Fi

ne
-g

ra
in

ed
A

ct
iv

e
O

bj
ec

ts
A

B
C

L/
1

Im
pe

ra
ti

ve
B

lo
ck

in
g

In
te

rl
ea

ve
d

M
et

ho
ds

Fi
xe

d
1

FI
FO

In
di

vi
du

al
Is

ol
at

ed
C

oa
rs

e-
gr

ai
ne

d
A

SP
(P

ro
A

ct
iv

e)
Im

pe
ra

ti
ve

B
lo

ck
in

g
C

on
se

cu
ti

ve
M

et
ho

ds
Fi

xe
d

1
FI

FO
In

di
vi

du
al

Is
ol

at
ed

C
oa

rs
e-

gr
ai

ne
d

SA
LS

A
Im

pe
ra

ti
ve

C
on

ti
nu

ou
s

C
on

se
cu

ti
ve

M
et

ho
ds

Fi
xe

d
1

FI
FO

In
di

vi
du

al
Is

ol
at

ed
C

oa
rs

e-
gr

ai
ne

d
C

om
m

u
n

ic
at

in
g

Ev
en

t-
Lo

op
s

E
Im

pe
ra

ti
ve

C
on

ti
nu

ou
s

C
on

se
cu

ti
ve

M
et

ho
ds

Fi
xe

d
*

E-
O

R
D

ER
In

di
vi

du
al

Is
ol

at
ed

C
oa

rs
e-

gr
ai

ne
d

A
m

bi
en

tT
al

k
Im

pe
ra

ti
ve

C
on

ti
nu

ou
s

C
on

se
cu

ti
ve

M
et

ho
ds

Fi
xe

d
*

FI
FO

In
di

vi
du

al
Is

ol
at

ed
C

oa
rs

e-
gr

ai
ne

d

Ta
be

l2
.1

.:
A

ct
or

La
ng

ua
ge

s
C

la
ss

ifi
ca

ti
on

an
d

Pr
op

er
ti

es

27

2. Context: Actor Systems

Paradigm The sequential subset of an actor language can either be functional
or imperative. If it is functional then, typically, the only way to modify state
is to change the behavior of the actor. If it is imperative then that means that
extra care needs to be taken to guarantee isolation of the different actors. If
the isolated turn principle is guaranteed, then the choice of paradigm does not
impact the concurrency properties of the resulting model.

Continuous The sequential subset of a language can allow blocking state-
ments or can ensure a continuous processing of each message. In the latter case
actors are guaranteed to process a message from start to completion without
having to worry about deadlocks. Again, this only applies to the processing
of a single message. Other forms of lost progress can still occur between the
processing of different messages.

Consecutive We consider a message to be processed consecutive if it is pro-
cessed from start to completion without being interleaved with the processing
of other messages. This is usually guaranteed unless there is some way to inter-
rupt the processing of a single message (e. g. express messages in ABCL/1).

2.2.2.2. Message Reception

Incoming messages are always stored in the inbox of an actor. How those mes-
sages are taken out of that inbox can differ between the different actor systems.
In this section we discuss some properties of actor systems according to how
they take messages out of their inbox before processing them.

Interface The interface (i. e. behavior) of an actor can be specified in va-
rious ways. Some actor systems specify a behavior from a behavior description.
Others use special primitives such as receive to take a message from their
inbox. Others use an object-oriented style where the interface of the actor cor-
responds to the interface of an object and a message send corresponds to a
method invocation.

Flexibility The interface to an actor can be fixed or flexible. When the inter-
face of an actor is fixed that means that actor will always understand the same
set of messages at any given point in time. When the interface is flexible, the
set of messages an actor understands can vary over time. This is typically done
by changing the behavior of the actor. However, this does not imply that chan-
ging the behavior of an actor has to somehow change its interface. A behavior

28

2.2. Actor System Classification and Properties

is state-full and an actor can change its behavior to update its internal state
without changing what messages it understands. Similarly, having a fixed inter-
face does not imply that actors always respond to a message in the same way.
With an imperative sequential subset is still possible to change how an actor
responds to a message depending on earlier state updates.

Number of interfaces Traditionally, every actor has a single entry point, na-
mely the interface (i. e., the behavior) of that actor. However, in the case of the
communicating event-loop model, each actor can hand out many references to
its own object and each reference can specify a different interface. Because this
is the most distinguishing property of the communicating event-loop model we
wanted to give this property its own section here.

In order In the case of a fixed interface, it makes sense to process messages in
the same order they arrived in the inbox of the actor. However, when the inter-
face is flexible it can be opportune to process messages out of order depending
on what messages are supported by the behavior that is in place at the start of
each turn.

2.2.2.3. State Changes

Regardless of whether their sequential subset is functional or not, all implemen-
tations of the actor model have some form of mutable state (e. g. the behavi-
or/inbox of an actor).

Granularity State changes can be aggregated or on an individual, i. e. per
variable, basis. If the sequential subset of the actor language is functional then
the only mutable state of the actor is typically its behavior.

Isolation Isolation is guaranteed when no two actors can read-write or write-
write to the same memory location. In actor systems where the sequential sub-
set is functional this is guaranteed because in those languages the only mutable
state is the behavior of an actor and actors are only able to modify their own
behavior. In actor systems where the sequential subset is imperative some ex-
tra care needs to be taken when sharing mutable state. For example, by (deep)
copying any data structure when it crosses actor boundaries.

29

2. Context: Actor Systems

2.2.2.4. Actors Per Node

The original intention for the actor model was to provide a programming mo-
del for expressing concurrent programs over different nodes in a distributed
network. The message passing model and isolation of the different actors is
a good fit for such systems. As such, most actor systems include support for
distribution. However, where they do differentiate is how actors were meant
to be used on a single node. This ranges from Erlang, which is known for its
lightweight implementation of actors and supposed to run many actors on a sin-
gle node, to AmbientTalk, which is an actor language designed to deploy only
a few actors on each node in a peer-to-peer network with volatile connections.

2.3. The Isolated Turn Principle

The semantics of the original actor model enable a macro-step semantics [Agha
et al., 1997]. With the macro-step semantics, the actor model provides an im-
portant property for formal reasoning about program semantics, which also pro-
vides additional guarantees to facilitate application development. The macro-
step semantics says that in an actor model, the granularity of reasoning is at
the level of a turn, i. e., an actor processing a message from its inbox. This
means that a single turn can be regarded as being processed in a single isola-
ted step. Throughout the rest of this dissertation we refer to this principle as
the isolated turn principle. The isolated turn principle leads to a convenient
reduction of the overall state-space that has to be considered in the process
of formal reasoning. Furthermore, this principle is directly beneficial to appli-
cation programmers, because the amount of processing done within a single
turn can be made as large or as small as necessary, which reduces the poten-
tial for problematic interactions. In other words, this principle guarantees that,
during a single turn, an actor has a consistent view over the whole program
environment.

To satisfy this principle, an actor system must satisfy the following three pro-
perties from Tab. 2.1:

Continuous message processing. The processing of a message cannot contain
any blocking operations. Any message is always entirely processed from
start to finish. Because of this property, processing a single message is free
of deadlocks.

Consecutive message processing. An actor can only process messages from its
own inbox and those messages can only be processed one by one. The pro-

30

2.4. Conclusion

cessing of a message cannot be interleaved with the processing of other
messages of the same actor.

Isolation. The state of any actor is fully encapsulated. This property is mainly
guaranteed by adopting a no-shared-state policy between actors. Any ob-
ject that is transmitted across actor boundaries is either copied, proxied or
immutable. This property ensures that the processing of a single message
in the actor model is free of low-level data races.

The isolated turn principle guarantees that the actor model is free of low-
level data races and deadlocks. However, on the one hand, as the actor model
only guarantees isolation within a single turn, high-level race conditions can
still occur with bad interleaving of different messages. The general consensus
when programming in an actor system is that when an operation spans several
messages the programmer must provide a custom synchronization mechanism
to prevent potential bad interleavings and ensure correct execution. On the
other hand, high-level deadlocks can still occur when actors are waiting on
each other to send a message before progress can be made.

2.4. Conclusion

The goal of this chapter was to give an overview of the current state of the art in
actor systems. This section discusses each actor system with its properties and
classifies them according to the four major families we have identified. Tab. 2.1
gives an overview of all the described actor systems and their properties.

31

3
S H A R E D S TAT E I N M O D E R N A C T O R S Y S T E M S

This chapter discusses the different strategies to share state in modern actor
systems. As we saw in Chapter 2, the actor model is either made available via
dedicated programming languages (actor languages), or via libraries in exis-
ting languages (actor libraries). Ensuring isolation of the different actors can
typically only be achieved in a language approach. As such, actor languages
are often pure1, in the sense that they strictly enforce actor isolation: the state
of an actor is fully encapsulated, cannot leak, and asynchronous access to it is
enforced. The major benefit of pure actor systems is that the developer benefits
from strong safety guarantees: low-level data races are ruled out by design. The
main drawback and the strongest limitation of pure actor systems is that direct
resource sharing between actors is completely ruled out. Instead, approaches
such as delegate actors or replication are used to achieve shared state depending
on whether consistency or parallelism are the main concern. Actor libraries on
the other hand are often impure2, they do not strictly enforce actor isolation. It
is easy for a developer to use the underlying shared-memory concurrency mo-
del as an “escape hatch” when direct sharing of state is the most natural or most
efficient solution. However, once the developer chooses to go this route, the be-
nefits of the high-level actor model are lost, and the developer typically has
to resort to manual locking to prevent data races. This chapter discusses the
different ways to represent a shared resource in both pure and impure actor
systems.

1A notable exception being Erlang when using Term Storage Tables [Armstrong et al., 1996]
2A notable exception being SALSA [Varela and Agha, 2001], which guarantees isolation by

using a compiler technique

33

3. Shared State in Modern Actor Systems

3.1. Shared State in Pure Actor Systems

If we want to model a shared resource in a pure actor system it must be repre-
sented either by replicating the shared resource over the different actors or by
encapsulating the shared resource in an additional independent delegate actor.
In this section we discuss the disadvantages of both approaches.

3.1.1. Replication

One option for representing a shared resource in the actor model is to replicate
this resource inside different actors that require access to it. Fig. 3.1 illustrates
two actors that share a single object by replicating it over the different actors.
Each actor has direct read access to the replicated object. Writes have to be
propagated to the different replicas by means of a consistency protocol. This
approach has disadvantages with regard to consistency, memory overhead, and
performance:

Actor A
shared object

replica Actor B
consistency

protocol

shared object
replica

Figuur 3.1.: Replicating a shared object over the different actors

Consistency Even though we only consider shared memory systems, the CAP
theorem [Brewer, 2000] still applies. If we want to increase the availabi-
lity of our shared state, we need to lower its consistency. Unfortunately,
whether lowering the consistency is possible is entirely application depen-
dent. Moreover, keeping replicated state consistent requires a consistency
protocol that usually does not scale well with the number of participants.
The amount of interactions needed between the different actors grows ex-
ponentially with the number of participants. In our specific example this
approach can be used, but if we consider applications with hundreds of
components this is no longer feasible. In general, keeping replicated state
consistent is a hard problem.

Memory usage Replication increases the memory usage with the amount of sha-
red state and the number of actors. Depending on the granularity with
which actors are created, this might incur a memory overhead that is too
high.

34

3.1. Shared State in Pure Actor Systems

Copying cost In certain applications, short lived objects need to be shared bet-
ween different actors and the cost of copying them is greater than the cost
of the operation that needs to be performed on them. For example, cal-
culating the sum of all the elements in a vector in parallel would be less
efficient than the sequential version if we first need to copy each subset
of the vector to a different actor.

The isolated turn principle guarantees that during any single turn an actor
has a consistent view over the whole state space. Keeping this guarantee in the
case of state replication would involve some communication between the actors
containing the replicated state upon each update of that state. In conclusion,
offering state replication as an optimisation strategy for certain applications as a
caching technique can be useful when eventual consistency is enough. However,
when designing a general purpose actor system, usually a stricter consistency
model is required.

3.1.2. Delegate Actor

The more natural solution for representing shared state in pure actor systems
is by encapsulating that shared state in a separate delegate actor. Any actor
that wants to access the shared resource is forced to use asynchronous message
passing.

Actor A Actor B

Delegate
Actor

shared object

Figuur 3.2.: Using a delegate actor

Using a delegate actor to encapsulate a shared resource does not require
any consistency protocols and thus scales better than replication because the
amount of communication needed to synchronize access to the shared resource
only grows linearly with the number of participants. There are however four dif-
ferent classes of problems when using this approach: Code fragmentation and
continuation-passing style enforced, read-access to the shared resource cannot
be parallelized and message-level deadlocks and race conditions can occur.

In this section we will discuss these four issues using the example in Lst. 3.1
written in Rosette. On line 1 we define a mutable cell as an actor behavior with
one field, content, and two messages namely get and put. In this example, we

35

3. Shared State in Modern Actor Systems

define a client as an actor that first sends a get message to retrieve the value of
the cell and then a set message to increment that value by one.

1 (define Cell
2 (mutable [content]
3 [put [newcontent]
4 (become Cell newcontent)]
5 [get
6 (return ’reply content)]))
7

8 (define cell (create Cell 0))

10 (define Client
11 (behavior
12 [start [cell]
13 (send cell ’get)]
14 [reply [content]
15 (return ’put (+ content 1))]))
16

17 (define client (create Client))
18 (send client ’start cell)

Listing 3.1: Rosette: A shared counter represented by a delegate actor

3.1.2.1. Code Fragmentation and Continuation-passing Style Enforced

Using a distinct actor to represent conceptually shared state implies that this
resource cannot be accessed directly from any other actor since all commu-
nication happens asynchronously within the actor model. Thus, the interface
with which to access the shared resource now becomes asynchronous rather
than synchronous. This implies the introduction of explicit request-reply style
communication, where the continuation of the request must be turned into a
callback. The style of programming where the control of the program is passed
around explicitly as a continuation is called continuation-passing style (CPS),
also known as programming without a call stack [Hohpe, 2006]. The problem
with this style of programming is that it leads to “inversion of control” [Johnson
and Foote, 1988].
In the example in Lst. 3.1 we see that every time the client wants to retrieve the
value of the mutable cell, the continuation of our program has to be modeled
in a different callback message, namely reply. If that callback would contain
another invocation of the get message, another callback has to be made. Every
time this is done, another level of CPS is introduced. The code that is respon-
sible for incrementing the value of our cell is fragmented over the different
callbacks.

Future-type messages Many actor languages, especially in the Active Object
and Communicating Event-Loop family of actor languages include future-type
messages to overcome this issue of code fragmentation when using callbacks.
While typically, asynchronous messages do not have a return value, future-type

36

3.1. Shared State in Pure Actor Systems

messages return a future. That future is a placeholder for the return value of
the asynchronous message. Once the message is processed, the future is resolved
with the return value of the message.

1 var promise := cell<-get()
2 when (promise) -> {
3 cell<-put(promise + 1)
4 }

Listing 3.2: A future-type message in E
In E, every asynchronous message send is a future-type message send and re-
turns a promise (i. e. future). Lst. 3.2 illustrates the use of future-type messages
in E. We use the return value of the message on line 1 to store a reference to a
promise in the promise variable. Once the get message is processed by the vat
that owns the cell object, that promise will be resolved. On line 2, the when
primitive is used to register a closure that needs to be called when the promise
is resolved.
To maintain the isolated turn principle, two conditions must be met when im-
plementing future-type messages. On the one hand, accessing that future-value
has to be an asynchronous operation. Otherwise we would introduce a blocking
operation, violating the condition that messages have to be processed conti-
nuously. On the other hand, when the future is resolved, the registered closure
has to be called during its own turn. That turn cannot be interleaved with other
turns of the same actor. Otherwise we would violate the condition that messa-
ges have to be processed consecutively.
In E, registering a closure using the when primitive is done explicitly. This for-
ces the programmer to apply CPS. The registered closure then represents the
continuation of the program given the return value of the message. Once the
promise is resolved an event that is responsible for calling the closure is sche-
duled in the event queue of the vat that issued the request. Thus guaranteeing
that the closure is called in its own turn.
Using future-type messages prevents code fragmentation because the callback
can be scheduled immediately after sending the message. There are even tech-
niques to prevent the use of a CPS transformation (e. g., C# and Scala assync
and await). What is worse is that the operation on our shared resource now
spans several turns. Meaning that we can only benefit from the isolated turn
principle for each individual turn, but not for the entire operation. Ideally we
would like to have synchronous access to the shared resource for the duration
of a whole turn.

37

3. Shared State in Modern Actor Systems

SALSA’s token-passing continuations are very similar to futures except that the
CPS transformation is done by the compiler. In ABCL, accessing a future is a
blocking operation that is done implicitly. This violates the continuous message
processing condition that is needed for satisfying the isolated turn principle.
In Scala, by default, the registered closure is processed in parallel with other
messages of the same actor. This violates the consecutive message processing
condition that is needed for satisfying the isolated turn principle. There are
ways for the programmer to circumvent this issue in Scala by using custom
execution contexts to guarantee that the future is executed on the same worker
thread as the actor.

Processes. The family of actor languages that use processes to represent ac-
tors have the distinct advantage of being able to receive messages anywhere
during the control flow of the execution of the actor. Thus, waiting for a reply
can be done without breaking the control flow of the program. Continuation
passing style is not enforced and the code is not fragmented. However, seve-
ral messages still need to be processed in order to complete the operation, we
cannot guarantee the isolated turn principle for the whole operation.

3.1.2.2. No Parallel Reads

State that is conceptually shared can never be read truly in parallel because all
accesses to the shared resource are sequentialized by the inbox of the delegate
actor. Each request to read (part of) the delegate actor’s state is taken out of the
inbox and processed one by one. Most of current actor systems do not support
this optimization, even though it is completely safe to execute read operations
in parallel. [Scholliers et al., 2014] proposes an optimization where messages
that are tagged read-only can be processed in parallel.

3.1.2.3. Message-level Race Conditions

The traditional actor model does not allow specifying extra synchronization
conditions on multiple compound operations. Messages from a single sender
are usually processed in the same order as they were sent. However, the or-
der in which messages from different senders are handled is nondeterministic.
This means that messages from different senders can be arbitrarily interleaved.
Bad interleaving of the different messages can potentially lead to message-level
race conditions. In Lst. 3.1, the asynchronous messages sent by the client on
lines 13 and 15 can be interleaved with get and put messages of other actors,

38

3.1. Shared State in Pure Actor Systems

potentially causing a race condition. This type of high-level race condition is
typically avoided by increasing the amount of operations in a single turn, i. e.,
coarsening it up. For example, by introducing an increment message that adds
a given value to the cell in a single isolated turn. Generally, bad interleaving
of messages occurs because different messages, sent by the same actor, cannot
always be processed synchronously. Programmers cannot specify synchroniza-
tion conditions on batches of messages. Therefore, a programmer is limited by
the smallest unit of non-interleaved operations provided by the interface of the
delegate actor he or she is using and there are no mechanisms provided to
eliminate unwanted interleaving without changing the implementation of the
delegate actor, i. e., there are no means for client-side synchronization.

Flexible behavior. In actor systems where the behavior of an actor is flexible,
(i. e. original actor model and processes) we can put extra synchronization con-
straints on the order in which the Cell actor has to process incoming messages
by changing the behavior of that actor between messages.

1 (define GetCell
2 (mutable [content]
3 [get
4 (become PutCell)
5 (return ’reply content)]))

6 (define PutCell
7 (behavior
8 [put [newcontent]
9 (become GetCell newcontent)]))

Listing 3.3: Rosette: A finite state machine
Lst. 3.3 illustrates how we can turn an actor into the finite state machine shown
in Fig. 3.3 by restricting what messages it understands each turn. Only the first
get message will be processed. All other get messages are blocked in the in-
box of the Cell actor until a put message is processed. However, there are two
issues with this approach. On the one hand, if one actor does not follow this
protocol and sends only a get message all other messages are blocked and a
message-level deadlock occurs (See Sec. 3.1.2.4). On the other hand, by restric-
ting the behavior of an actor we also restrict the potential parallelism. If an
actor offers different services for which the different messages can be interlea-
ved, we effectively restrict the parallelism.

Batch messages. [Yonezawa et al., 1986] proposes batch messages to circum-
vent the lack of synchronization. A batch message groups several messages in
a single batch that are processed consecutively by the receiver. However, batch
messages do not solve the synchronization problem in the case when there are

39

3. Shared State in Modern Actor Systems

GetCell
[content]PutCell

'put [content]

'get

'get

'put [content]

Figuur 3.3.: Flexible behavior: Finite state machine

data dependencies between the different messages. For instance in our example,
the value passed to the put message depends on the return value of the get me-
thod.

3.1.2.4. Message-level Deadlocks

Changing the behavior of an actor forces that actor to prioritize the processing
of certain messages. If the reception of those messages depends on progress
made by that actor a deadlock can occur. Relying on callbacks can have a similar
effect when the invocation of different callbacks are dependent on one another.

3.1.2.5. Conclusion

In most pure actor systems delegate actors are the common idiom to represent
a shared resource. However, in this section we have shown that using a dele-
gate actor forces any computation on that state to span several turns. As we saw
in Sec. 2.3, the guarantees given by the isolated turn principle only apply du-
ring a single turn. Common concurrency problems such as deadlocks and race
conditions can still occur when an operation spans several turns. Unfortunately,
using a delegate actor to represent a shared resource forces us to go that route.
Ideally, we would want to model our shared resource in such a way that an
actor that wants to modify that state can have exclusive, synchronous access to
that resource for the duration of a single turn.

3.2. Shared State in Impure Actor Systems

Actor libraries are often added to an existing language whose concurrency mo-
del is based on shared-memory multithreading. When opting for a library ap-
proach it is often difficult to enforce isolation of the different actors. As such,

40

3.2. Shared State in Impure Actor Systems

actor libraries are often impure. Scala, which inherits shared-memory multith-
reading as its standard concurrency model from Java, features multiple actor
frameworks, namely Scala Actors [Haller and Odersky, 2007] and Akka [Allen,
2013]. What these libraries have in common is that they do not enforce ac-
tor isolation, i. e., they do not guarantee that actors do not share mutable state.
The upside is that developers can easily use the underlying shared-memory con-
currency model as an “escape hatch”, when direct sharing of state is the most
natural or most efficient solution. However, once the developer chooses to go
this route, the benefits of the high-level actor model are lost, and the developer
typically has to resort to manual locking to prevent data races.

Actor A Actor B

shared object

Figuur 3.4.: Both actors have direct access to the shared object.

Fig. 3.4 illustrates two actors that have direct shared access to a shared object.
In that case, another synchronization mechanism such as locks or Software
Transactional Memory (STM) needs to be provided. Typically, if these synchro-
nization mechanisms are provided, they are not well integrated with the actor
model and thus compromise the isolated turn principle. In this section we will
discuss a number of issues with these synchronization mechanisms when they
are combined with the actor model.

3.2.1. Locks

Locks can be used as a synchronization mechanism to protect concurrent access
to shared state. However, in practice, locks often only yield understandable
programs for very simple interactions [Lee, 2006]. Acquiring nested locks can
lead to a situation where different actors are stalled while attempting to acquire
a lock that the other holds, thus causing a deadlock. Each actor that is involved
in the deadlock is unable to process other incoming messages and any further
actor-local progress is lost.
Another problematic case is when the actor library has a lightweight implemen-
tation of actors where many actors are scheduled on fewer worker threads. In
that case, the provided locking mechanism is not always well integrated with
the actor framework. A worker that stalls on acquiring a lock is unable to make
progress which can lead to a multitude of problems. On the one hand, it can
potentially compromise fairness, which is an implicit assumption of most actor

41

3. Shared State in Modern Actor Systems

systems. On the other, if all workers threads are involved in acquiring a lock,
global progress can be lost even without there inherently being a deadlock. For
example, if all workers are stalled on acquiring a lock that is held by an ac-
tor that is currently not being processed. A know technique to solve that last
problem is by temporarily extending the pool of workers when all workers are
stalled [Haller and Odersky, 2009].
Furthermore, acquiring a lock is a blocking operation which compromises the
isolated turn principle.

3.2.2. Software Transactional Memory

STM is another mechanism that can be used to synchronize access to shared
state. However, integrating an STM in an actor system is also not always trivial
because of the abort-and-retry mechanic that is inherent to transactional me-
mory systems. Any operation that is executed within a transaction needs to be
idempotent and this leads to several problems when the STM is not well inte-
grated with the actor model. On the one hand, any message that is sent during
a transaction needs to be either part of the transaction or postponed to be sent
when the transaction commits. Otherwise messages can be sent multiple times
when a transaction is executed multiple times. On the other hand, any mutable
state that is local to the actor needs to be part of the transactional memory. As
transactional memory incurs a certain overhead, ideally we would like to only
pay the cost for the actually shared state.

3.3. Conclusion

Impure actor systems are flexible when it comes to representing shared resour-
ces. The programmer can access the underlying shared-memory model to re-
present a shared resource. Unfortunately, this flexibility compromises on the
overall safety guarantees of the original model. Pure actor systems are on the
other end of the spectrum, they are more stringent. They follow a no-shared-
state concurrency model and shared resources have to be represented through
either replication or a delegate actor. The benefit of these restrictions being that
pure actor systems can offer a lot of guarantees to the programmer, the most
important one being the isolated turn principle. However, the isolated turn prin-
ciple only provides some guarantees for the processing of individual messages.
Concurrency issues such as race conditions and deadlocks remain an issue when
an operation spans several messages, which is often the case when accessing a
shared resource in a pure actor system as the programmer is forced to employ

42

3.3. Conclusion

asynchronous communication to access that resource. Ideally we would want a
representation for a shared resource that allows us to access that resource syn-
chronously for the duration of a single turn without compromising the isolated
turn principle.

43

4
C O M M U N I C AT I N G E V E N T- L O O P S

The Communicating Event-Loop (CEL) model was originally intended as an
object-oriented programming model for secure distributed computing [Miller
et al., 2005]. However, the starting hypothesis of this dissertation is that this
model is also useful in a shared memory context. Modularity, reusability, secu-
rity, and fault-tolerance are prime qualities required from the implementation
platform when modeling component-based software and plug-in architectures.
We claim that the communicating event-loop model, as first instantiated in E,
offers these qualities and for the remainder of this dissertation, we consider it
as the foundation on which we will build abstractions for the safe sharing of
mutable state between otherwise isolated actors. On the one hand, the object-
oriented sequential subset of the communicating event-loop model allows desig-
ning modular, reusable software systems, because it provides a standard object-
oriented programming model without any distractions related to concurrency.
On the other hand, its actor model offers fault-tolerance by isolating the diffe-
rent actors. Any actor that crashes due to algorithmic faults, logic or network
failures does not have an impact on other concurrently running actors. This
chapter motivates the choice for the communicating event-loop model. Sub-
sequently, SH A C L, a communicating event-loop actor language is introduced.
The S H A C L virtual machine was developed as a platform for experimenting
with new language features. SH A C L is implemented as a new language rather
than an extension of an existing language as it allows us to enforce certain pro-
perties of our model. The sequential subset of SH A C L is a prototype-based
object-oriented programming model while communicating event-loop actors
are offered as the abstraction for introducing concurrency.

45

4. Communicating Event-Loops

4.1. Why Communicating Event-Loops?

In Chapter 2 we have already shown that generally actor models are free of
deadlocks and data races which are useful properties in a shared memory con-
text. However, specifically for implementing component-based software and
plug-in architectures, the CEL model has a number of properties which make
it highly suitable for that task. This section motivates that reasoning. On the
one hand, a vat (i. e. actor) is a coarse-grained concurrency mechanism that
naturally fits with each component or plug-in. Actor isolation allows for a fault-
tolerant implementation (See Sec. 4.1.1). On the other hand, the fact that a vat
can have multiple public behaviors allows for a modular implementation (See
Sec. 4.1.2).

4.1.1. Fine-grained versus Coarse-grained Concurrency

In component-based software, an application is composed of a number of com-
ponents and each of those components offers a number of services. When in-
troducing concurrency, rather than parallelizing individual components or ser-
vices, it makes sense to adopt a more coarse-grained approach by running each
component in a separate process. That way, services offered by different com-
ponents can be executed in parallel. This idea does not fit with all actor models.
On the one hand, the intent of the original actor model was to offer lightweight
actors as an abstraction such that they can be used as fine-grained building
blocks. Languages in the process category implement actors in the same vein.
The Erlang virtual machine even makes a statement of being able to run thou-
sands of hybrid processes in parallel [Armstrong et al., 1996]. The CEL mo-
del on the other hand promotes actors as a more coarse-grained concurrency
mechanism. Each vat (i. e. actor) is a concurrent container for many objects.
Distinct actors are strongly isolated, which allows for a fault-tolerant imple-
mentation.

4.1.2. Flexible versus Fixed Behavior

The benefit of actor models that allow behavior modification is that changing
the behavior effectively postpones the execution of some messages. This allows
the programmer to put extra synchronization constraints on the order in which
messages are processed and effectively allows the programmer to use actors as
finite state machines (See Sec. 3.1.2.4). However, if another client actor does
not follow the correct protocol when using a service of our component, that
might lead that actor to be stuck in a state and effectively cause a deadlock.

46

4.1. Why Communicating Event-Loops?

There are various reasons why the client would not respect the ordering of mes-
sages (e. g. the client is malicious software or the client has simply crashed).
This is not a desirable property when designing robust fault-tolerant software.
The advantage of actor models with a fixed behavior is that they can guaran-
tee that any message will eventually be processed. This also means that the
processing of a message cannot be postponed, it either succeeds or fails. The
drawback is that extra care needs to be taken to ensure that messages from dif-
ferent sources are executed in the correct order. An added benefit of using the
CEL model is that an actor in that model is not limited to a single behavior. For
example, we could have a component modeled as an actor that wants to export
two services. Each service implements a certain interface that can be exported
to the clients of the component. There are two ways to combine two services
in an actor model where actors have a single behavior. Either one would have
to define a new behavior which has an interface that is a combination of both
services; or define a separate protocol so the client can specify which service he
wants to address first. In the CEL model, a component that provides different
services can export each of those services as an eventual reference to an object
that implements the interface to that service. Because each actor in a commu-
nicating event-loop model can have many behaviors, those interfaces can be
cleanly separated.

1 def reservations := # ...
2

3 def clientService {
4 to printTicket(clientID) {
5 printer.printTicket(reservations.find(clientID))
6 }
7 to makeReservation(clientID, flightID) {
8 def reservation := newReservation(clientID, flightID)
9 reservations.add(clientID, reservation)

10 return reservation
11 }
12 }
13

14 def managerService {
15 to printFlightReservations(flightID) {
16 printer.print(reservations.summary())
17 }
18 }

Listing 4.1: Flight reservation component written in E.

47

4. Communicating Event-Loops

Lst. 4.1 illustrates how to export different behaviors as interfaces to different
services in E. The example defines two services, one for clients to make a reser-
vation and print out their tickets and one for managers to print out a summary
of all reservations. Both services make use of the same shared state, namely the
reservations database. For this reason it makes sense to put them both in the
same vat. Any state update of the reservations database is automatically syn-
chronized by the event queue of the actor. An added benefit of separating both
services in different interfaces is that it is possible to cleanly separate which
clients can access what service. Only managers that have obtained an eventual
reference to the managerService can access that service.

4.2. SH A C L: A Communicating Event-Loop Language

The SH A C L (Shared actor language) programming language is designed as a
platform for experimenting with new language abstractions for representing
shared resources in the actor model. This section gives an informal overview
of S H A C L minus the domains abstractions. See Chapter 6 for a full operational
semantics of a subset of S H A C L.

4.2.1. Imperative Programming in SH A C L

The sequential subset of SH A C L ’s programming model is based on that of
Pico [De Meuter et al., 1999] which is a Scheme-like [Adams et al., 1998]
language designed for teaching but with a C-like [Kernighan, 1988] syntax.

Primitive values. SH A C L has a number of atomic values such as booleans,
integers, floats, strings. The only composite value that is offered by default
in the imperative subset of the language are tables, which are arrays indexed
starting from index 1.

Syntax. The SH A C L syntax for the imperative subset of the language is ex-
plained by means of the three by three matrix depicted in Tab. 4.1.

variable table function

reference nam exp[exp1] exp(exp1, . . . , expn)
definition nam : exp nam[exp1] : exp2 nam(exp1, . . . , expn) : exp
assignment nam := exp exp[exp1] := exp2 nam(exp1, . . . , expn) := exp

Tabel 4.1.: SH A C L basic syntax

48

4.2. Shacl: A Communicating Event-Loop Language

This two-dimensional matrix results from merging all possible combinations of
two design decision dimensions. In SH A C L, an expression is always evaluated
with respect to a certain environment. Each row in the table provides syntax on
how to manipulate this environment. To refer to something in the environment,
to add something to the environment (with :) and to change something in the
environment (with :=). Each column in the table gives syntax to manipulate the
three basic imperative SH A C L values, namely variables, tables and functions.
We can refer to variables, define them with an initial value or update them.
Likewise we can refer to an element of a table at a certain position, we can
define a new table with a certain size and we can update an element of a table.
Finally, we can call a function, define a new function or update the body of a
function with a new one.

1 fac(n):
2 if(n < 2,
3 1,
4 n * fac(n - 1));
5

6 x: 5;
7

8 fac(x);

Listing 4.2: Factorial definition in S H A C L

The example in Lst. 4.2 illustrates how to define the recursive factorial function
in S H A C L. On line 1 a new function fac is defined with a single parameter, n. Its
body consists of a single SH A C L expression, namely a call to a function called
if.There is no additional syntax for special forms. A conditional if expression is
written down in the same way as a functional application with three arguments,
namely the predicate, the consequent and alternative. On line 6 a new variable,
x, is defined and on line 8 the factorial function is called with a single argument,
x.

Parameter passing. When the formal parameter of a function is an ordinary
identifier, S H A C L follows standard call-by-value semantics. Atomic values are
sent by copy while tables and functions are sent by reference. However, in
SH A C L and Pico, the formal parameter expression of a function can also be
an application invocation (i. e. call-by-name, see Lst. 4.3). In that case, the for-
mal parameter is bound to a new closure that closes over the environment of
the call-site.

49

4. Communicating Event-Loops

1 foreach(f(x), t):
2 for(i:1, i<=t.size(), i:=i+1,
3 f(t[i]));
4

5 foreach(
6 if(x % 2 == 0,
7 display("Even", eoln),
8 display("Odd", eoln)),
9 [1, 2, 3]);

Listing 4.3: Call-by-name parameter in S H A C L

In Lst. 4.3, a new function foreach is defined with two formal parameters: an
application expression f(x) and an ordinary identifier t. When calling foreach
on line 5, the first expression that is passed as an actual argument is not eagerly
evaluated but bound to the body of a new closure, named f, with a single
parameter x. The variable x in the call-by-name argument is dynamically scoped
as it is only dynamically bound to the parameter of f when calling foreach. The
environment of f is dynamically bound upon each call of foreach. The newly
created closure corresponds to:

f(x):
if(x % 2 == 0,
display("Even", eoln),
display("Odd", eoln))

The second argument eagerly evaluated to a table and is bound to the variable,
t.

Variadic functions. SH A C L has support for variadic functions using the # no-
tation. In Lst. 4.4 we define a new function sum that will add all its arguments.
When sum is invoked, all its arguments are evaluated and stored in a single ta-
ble. That table is bound to the variable t before the body of sum is evaluated.
In contrast to other languages such as Scheme [Adams et al., 1998], in SH A C L,
there is no way to specify a minimum number of arguments for variadic functi-
ons. The function is either a fixed or indefinite arity. Similar to an if statement,
there is no additional syntax for a for-loop. It is written down as a function ap-
plication. Curly brackets, {}, are used in combination with semicolon-separated
expressions as syntactic sugar for begin and backticks, ``, are for comments.

50

4.2. Shacl: A Communicating Event-Loop Language

1 sum#t:
2 { result: 0;
3 for(i: 1, i <= t.size(), i:= i + 1,
4 result:= result + t[i]);
5 result };
6

7 sum(1, 2, 3); ‘=> 6‘

Listing 4.4: Variable number argument lists in S H A C L

Annotations. SH A C L has support for annotations using the @ notation. Cur-
rently, annotations are only used for generating scripts. See Sec. 4.2.3 for an
explanation of how the @script annotation works in S H A C L.

4.2.2. Object Oriented Programming in SH A C L

The object model of SH A C L was directly inspired by the object model of Am-
bientTalk which in turn was inspired by Prototype-Based programming langua-
ges such as Self [Ungar and Smith, 1987]. In prototype-based languages objects
are not instantiated from a class but are rather created ex-nihilo or cloned from
an existing object. In S H A C L, any primitive value is an object.

Object creation. The example in Lst. 4.5 illustrates how to define a point ob-
ject in S H A C L. On line 1 we create a new object using the object primitive and
bind that object to the point variable. There is no additional syntax for creating
objects, the object primitive is written down as a function application with one
argument, namely an expression that specifies the interface of the object. In this
case, the point object has two fields, namely x and y, and two methods, init
and distance.

Message sending and inheritance. Messages are used to refer to fields or
invoke methods on an object. On line 10 we send a clone message to the point
object to create a new point and we initialize that point by immediately sending
it an init message. On line 12 we calculate the distance between both points
by sending a distance message to our second point. Messages that are not
understood by the object are delegated to the parent object. Each S H A C L object
implicitly has a special field called super that references the parent of the object.
All primitive values and all newly created objects have the global object as their
default parent. That field can dynamically be changed, which enables dynamic
inheritance [Ungar and Smith, 1987]. The global object implements a number

51

4. Communicating Event-Loops

1 point: object(
2 { x: 0;
3 y: 0;
4 init(aX, aY):
5 { x:= aX;
6 y:= aY }
7 distance(p):
8 sqrt(sqr(p.x - x) + sqr(p.y - y)) });
9

10 other_point: point.clone().init(4, 3);
11

12 other_point.distance(point);

Listing 4.5: Object Definition in S H A C L

of methods that allow object introspection. For example, it is possible to send
the methods message to any object that has object as its parent to return all
the methods of that object. The primitive clone is also defined as a method of
object.

Scoping. Variables in SH A C L are always looked up in the lexical environ-
ment. If the variable is not found a runtime error occurs. If a programmer want
to ignore lexical scoping and qualify along which inheritance chain the varia-
ble should be looked up, he can do so by sending a message, e. g. self.x. In
SH A C L, self is syntax that evaluates to the current dynamic receiver.

4.2.3. Actor Oriented Programming in SH A C L

The concurrent subset of SH A C L is based on the model of the AmbientTalk
language’s communicating event-loops which in turn was based on the com-
municating event-loop model of E. In this model, each actor is represented as
a vat. A vat has a single thread of execution (the event-loop), an object heap,
and an event queue. Throughout this chapter, the terms shacl actor, event-loop
and vat are used interchangeably and always refer to “actors” as described in
the communicating event-loop model (See Sec. 2.1.6). A SH A C L VM is started
with a single “main actor”. All input expressions from the REPL are evaluated as
a single turn of that main actor. Other actors are created by means of the actor
primitive. Lst. 4.6 illustrates how to create an actor in S H A C L. When an actor
is created, it is initialized with a new event-loop, object heap and event queue.
The event queue is initially empty. The object heap initially hosts a single object

52

4.2. Shacl: A Communicating Event-Loop Language

which is said to be the actor’s behavior. The object is initialized in the same way
as the object primitive. In this example, the object defines a single method,
namely say_hello. The actor that created the new actor, in this case the main
actor, gets back a far reference to that behavior object.

1 a: actor(
2 say_hello():
3 display("Hello World!\n"));
4

5 a<-say_hello();

Listing 4.6: Hello World actor in S H A C L

On line 1, the main actor gets back a far reference to the newly created actor
and stores it in the variable a. On line 5, the main actor uses that far reference
to send an asynchronous message to the newly created actor.

Synchronous communication. The event-loop of an actor can only process
synchronous messages when the receiver object is owned by the actor that is
processing that message. In other words, an actor can only send synchronous
messages to near references. Any attempt to synchronously access a far refe-
rence is considered to be an erroneous operation and will throw a runtime
exception.

Asynchronous communication. Actors in S H A C L are not first class entities
and do not send messages to each other directly. Instead, objects owned by dif-
ferent actors send asynchronous messages to each other using far references
to objects owned by another actor. An asynchronous message sent to an object
in a different actor is enqueued in the event queue of the actor that owns the
receiver object. The thread of execution of that actor is an event-loop that per-
petually takes one event (i. e. a queued message send) from its event queue
and delivers it to the local receiver object. Hence, events are processed one by
one. The processing of a single event is called a turn. An important note is that
SH A C L guarantees message ordering on the outgoing messages towards a sin-
gle actor. Messages sent from one actor to another will be received in the same
order as sent. There are no ordering guarantees on messages sent to multiple
distinct actors.
All arguments to an asynchronous message are evaluated before that message
is enqueued in the event queue of the receiver actor. Immediate values such
as booleans, numbers and strings are sent as a near reference to the receiver

53

4. Communicating Event-Loops

actor. Any composite value such as tables, closures or objects are passed by
far reference. At the receiver’s side there is an extra resolution step to check
whether any of the far references are pointing to objects that are owned by the
receiver. In this case, the far reference is resolved to a near reference on the
receiver side. In conclusion, any reference to a composite value that is owned
by another actor is always a far reference. All other references are always near
references.

Futures. SH A C L includes future-type messages [Yonezawa et al., 1986] to
prevent code-fragmentation that comes with the use of callbacks to retrieve
the result of an asynchronous message. In S H A C L, every asynchronous mes-
sage is a future-type message and returns a future. That future acts as a pla-
ceholder for the return value of processing an asynchronous message. Simi-
lar to E and AmbientTalk, retrieving the result of a future is also an asyn-
chronous operation. Retrieving the result of a future can be done using the
when_resolved(expression(value)) primitive, where expression is a S H A C L

call-by-name parameter (See Sec. 4.2.1). expression can be any valid S H A C L

expression in which value will be bound to the result of the future. This
language mechanism is similar to SALSA’s token-passing continuations (See
Sec. 2.1.4) where the special keyword token was bound to the result of the
message that was sent as part of the token-passing continuation.

1 future: a<-say_hello();
2

3 future.when_resolved(
4 display("Result: ", value.to_string(), eoln));

Listing 4.7: Futures in S H A C L

Lst. 4.7 shows an example of using future-type messages in S H A C L. First, an
asynchronous message say_hello is sent to a far reference. The result of this
message is a future that is bound to the future variable. Retrieving the result
of the message is done by registering a callback closure with the future. This is
done by using the when_resolved primitive. This primitive expects any SH A C L

expression as its argument and transforms that argument into a closure with
a single parameter, namely value and registers that closure with the future.
Once the future is resolved, all registered closures are invoked with the value
parameter bound to the result of the future. The when_resolved primitive is
in itself an asynchronous operation. As with every asynchronous operation in

54

4.2. Shacl: A Communicating Event-Loop Language

SH A C L, when_resolved also returns a future. That future is resolved to the
result of the registered closure once the callback has been executed.

1 make_car(parts):
2 { assembly_f: plant<-assemble(parts);
3 assembly_f.when_resolved(
4 painter<-paint(value)) };
5

6 car_f: make_car(my_parts);
7 car_f.when_resolved(
8 drive(value));

Listing 4.8: Chaining futures in S H A C L

In S H A C L, a future can also be resolved with another future, in which case
the parent future is resolved with the result of the child future once the child
future is resolved. Parent and child futures are chained. Lst. 4.8 illustrates how
this is done in S H A C L. On line 6, the make_car method is invoked to assemble
a car from some car parts. Firstly, to assemble the car, on line 2, an asynchro-
nous message is sent to the plant to assemble the parts. The resulting future,
the first future, represents the promise of an assembled car and is stored in
the assembly_f variable. A callback closure is registered with the first future
using the when_resolved primitive. In the body of that callback, line 4, value
is bound to the value promised by the future, in this case an assembled car. The
return value of the when_resolved primitive is another future, the second fu-
ture. That second future is also the result of the invocation of make_car. When
the first future is resolved, the callback registered on line 3 is invoked and an
asynchronous message is sent to a painter to paint the assembled parts. The
result of that asynchronous message is a third future that will eventually be
resolved with a painted car. The third future is also the result of the callback
on line 3. This means that the second and third future are chained. Eventually
the second future, the future returned from invoking make_car will be resolved
with the painted car. On line 7, a callback is registered with the second future.
Once that future is resolved, the car has been assembled and painted and can
be driven. On line 8 value is bound to a painted car object.
The closure that is registered as a callback using the when_resolved primitive
has access to its surrounding lexical scope. Because of the way actors are sco-
ped, this lexical scope is always part of the actor that issued the callback. Thus,
to avoid race conditions and to keep the isolated turn principle valid, the invo-
cation of the callback cannot be executed in parallel with the other events of

55

4. Communicating Event-Loops

the actor that issued the callback. In SH A C L, when a future is resolved, all its
registered callbacks are enqueued in the event queue of the respective actors as
separate events. That means that invoking such a callback always happens in a
later turn than the invocation.

1 future: a<-message();
2 future.when_resolved(
3 display("Then here!\n"));
4 display("First here!\n");

Listing 4.9: when_resolved is an asynchronous primitive.

For example, in Lst. 4.9 the display on line 4 will always be executed before the
display on line 3. The turn of the main actor that is responsible for executing
the program first needs to end before the registered callback can be processed.

Scripts. A S H A C L function is always returned as a closure. Because a closure
has access to its surrounding scope, a closure is always sent by far reference
when it is passed as an argument of an asynchronous message. This severely
limits the use of higher order functions across actor boundaries because a far
reference to a closure cannot be called directly. To circumvent this issue SH A C L

introduces scripts. A script is a special type of SH A C L function that is not re-
turned as a closure. The body expression of a script has to be lexically closed.
This implies it can only access its formal parameters and local variables, such
that it is safe to pass the script by copy to another actor. The recipient actor
will then receive a near reference to a copy of the script, and can call the script
synchronously. To define a new script, the @script annotation needs to be used.
Lst. 4.10 illustrates the usage of a script to find a certain account that is owned
by a bank actor.

1 filter_joeri(account)@script:
2 account.name == "Joeri De Koster";
3

4 bank<-find_account(filter_joeri);

Listing 4.10: A script in S H A C L

56

4.3. Shared State in Shacl, A Motivating Example

4.3. Shared State in SH A C L, A Motivating Example

In pure actor systems, shared state is often represented using a delegate actor.
Sec. 3.1.2 already described a number of issues related to this approach. This
section revisits these drawbacks specifically for SH A C L using a small example
in Lst. 4.11. This example application has three components: the bank, a client
and a manager. The bank is represented by a delegate actor. The goal of the
client component is to transfer money from their account to another account.
The manager component can query the bank for the total sum of all account
balances.

1 bank: actor(
2 { db: ‘...‘;
3 withdraw(id, amount):
4 db[id]:= db[id] - amount;
5 deposit(id, amount):
6 db[id]:= db[id] + amount;
7 summary():
8 sum(db.values) });
9

10 client: actor(
11 { my_id: ‘...‘;
12 transfer(bank, other_id, amount):
13 { fut: bank<-withdraw(my_id, amount);
14 fut.when_resolved(
15 bank<-deposit(other_id, amount)) } });
16

17 manager: actor(
18 summary(bank):
19 { fut: bank<-summary();
20 fut.when_resolved(
21 display("Summary: ", value, eoln)) });

Listing 4.11: Motivating Example

Code fragmentation and Continuation Passing Style. Because S H A C L has
futures, the callback of the client actor after it has withdrawn money (line 13)
can be put directly after the asynchronous message (line 14). However, be-
cause both the message send as well as the when_resolved primitive are asyn-
chronous operations, using CPS is still necessary. This does not only affect the
implementation of the transfer method. A CPS transformation will have to be

57

4. Communicating Event-Loops

applied as well to any method that calls the transfer method. Also, because
of this transformation, the execution of the transfer method will span several
turns and we lose the benefit of the isolated turn principle. The transfer method
is not executed in isolation because it is possible for the manager to observe the
bank in a state where the whithdraw method was executed but not yet the
deposit.

No parallel reads Summing the account balances is a read-only operation.
However, any two summary messages are always serialized by the event queue
of the bank actor. This means that multiple managers cannot sum the account
balances in parallel.
Another solution would be to query the entire database one account at a time
using asynchronous messages. However, this has a number of drawbacks. Firstly,
sending messages is a costlier operation that synchronously iterating over the
database. Secondly, while calculating the actual sum can be done in parallel
with other managers, all individual queries are still serialized by the event
queue of the bank actor. Lastly, this solution splits the execution of the summary
method over several turns, losing the benefit of the isolated turn principle. If the
queries are interleaved with other withdraw or deposit messages the manager
might observe a wrong total sum.
The implementation of the summary method was intentionally specified on the
side of the bank to ensure that all read operations are done in a single turn
and thus are done in isolation. However, specifying the implementation on the
server side is not always feasible. For example, the manager might want to first
filter some of the accounts before making the summary. It is possible to send a
predicate using the @script annotation. However, a script is a lexically closed
expression and that means that the predicate cannot depend on state that is
local to the manager.
For read-only operations it is possible to send a copy of the shared state to the
client actor before each operation. In this case, a copy of the database can be
sent to the manager actor before summing the results. However, this is only
beneficial if the cost of the operation is significantly greater than the cost of
copying the data structure.

Message-level race conditions In the example, the withdraw and deposit
messages sent by the client can be interleaved with the summary message sent
by the manager, possibly introducing a race condition. In this case, changing
the interface of the bank actor to include a transfer method would be a valid

58

4.3. Shared State in Shacl, A Motivating Example

solution. However, this is not always entirely possible. Either the implementa-
tion of the bank is part of some library- or legacy code, or the messages that
are sent by the client have to be combined in some way that is dependent on
state that is local to the client. Ideally, the client would want to have synchro-
nous access to the bank actor during the transfer method without violating the
isolated turn principle.

Message-level deadlocks Because every operation in S H A C L is an asynchro-
nous operation it is impossible to provoke a deadlock. It is possible to lose
progress when a user-created future is never resolved. However, futures that
are the result of a message send are always resolved at some point in time.
Barring any infinite loops, any S H A C L turn is processed in a finite time.

4.3.1. An Idealized Implementation of the Motivating Example

In Lst. 4.11, the bank actor is a delegate actor that delegated any messages to
the database of account values. In the abstract, the bank is not an active soft-
ware entity but rather a database of values that can be accessed in a way that is
specified by its interface. Ideally, rather than using a delegate actor, we would
like to have an abstraction that allows us to encapsulate the state of the bank
in a separate software entity that is synchronously accessible. This software en-
tity then has to regulate any external access to the bank while maintaining the
isolated turn principle.
Lst. 4.12 illustrates what an ideal application could look like. For this example,
assume there exists a shared_state primitive that, similarly to the actor pri-
mitive, encapsulates all of its lexically enclosed state, the only difference being
that it does not add a behavior to that state. On line 1 we instantiate the bank
database using the shared_state primitive rather than the actor primitive.
Note that shared_state is here purely for illustrative purposes and is not a
valid SH A C L primitive function. SH A C L introduces a different concept to en-
capsulate shared state, namely a domain. There are various types of domains in
SH A C L, each with their own properties and guarantees (See Chapter 5). Howe-
ver, conceptually they all have the same two properties. Firstly, every domain
encapsulates some state and every domain ensures that when you access that
state in a particular turn, the isolated turn principle remains valid. The transfer
message of the client actor on line 10 now synchronously withdraws and de-
posits money between accounts in a single turn of the client actor. The summary
method of the manager actor on line 15 also synchronously sums all the account
balances in a single turn of the manager actor. The goal of the domain abstrac-

59

4. Communicating Event-Loops

1 bank: shared_state(
2 { db: ‘...‘;
3 withdraw(id, amount):
4 db[id]:= db[id] - amount;
5 deposit(id, amount):
6 db[id]:= db[id] + amount });
7

8 client: actor(
9 { my_id: ‘...‘;

10 transfer(bank, other_id, amount):
11 { bank.withdraw(my_id, amount);
12 bank.deposit(other_id, amount) } });
13

14 manager: actor(
15 summary(bank):
16 display("Summary: ", sum(bank.db.values), eoln)));

Listing 4.12: Ideal implementation

tion is to synchronise access to the bank during the turn of the client and the
manager in such a way that it does not violate the isolated turn principle.

4.4. Conclusion

The event-loop model has a number of desirable properties for designing com-
ponent based software or plugin architectures. However, in such applications, it
is common for different components or plugins to require access to a shared re-
source. Such a resource may be globally available for all plugins or just shared
between a subset of the plugins. Currently, there is no synchronization mecha-
nism for shared state that is tailored towards the communicating event-loop
model.

60

5
T H E D O M A I N M O D E L

With the domain model we sought to introduce shared state in the communica-
ting event-loop model by separating the event-loop and object heaps into two
different concepts. In the communicating event-loop model an actor is modeled
as the combination of an event-loop and an object heap. Each object in an object
heap is said to be owned by the actor that is associated with that object heap.
While an actor can own many objects, each object is owned by exactly one actor.
This means that actors in this model are strictly isolated from one another and it
is impossible for different actors to have direct synchronous access to the same
object. In the domain model, however, object heaps are unified with a different
concept called a domain. The main difference between a domain and a traditi-
onal object heap is that an event-loop can be associated with multiple domains
and a domain is not always owned by a single event-loop. However, the various
domains are still strictly isolated from one another. How an event-loop can ac-
cess a domain is dependent on the type of that domain and its association with
the event-loop. In this chapter we present the taxonomy that led to the design
of four types of domains, namely immutable, isolated, observable, and shared
domains. Subsequently, each of the different types of domains and their use in
SH A C L is discussed.

61

5. The Domain Model

5.1. The Design Space: Event-loops × Object Heaps

The possible design space of combining event-loops with object heaps (i. e. do-
mains) contains a large number of relevant points. However, starting from the
notion of CELs, only a few are desirable. One axis along which we restrict the
design space is by considering the number of event-loops that have synchro-
nous access to a domain. Aiming for a programming model that provides a
form of disciplined concurrency, the following property for the design space
is desirable: For any given execution, let RW(d) denote the set of event-loops
that are allowed to synchronously read from and write to objects owned by a
domain d. If N is the number of event-loops during this execution, it follows
that 0 <= |RW(d)| <= N for any given domain d. For a disciplined con-
currency model, the relevant cases are that either 0, 1 or N event-loops have
synchronous write access to the same domain d, and thus, the design space is
constrained by:

∀d : |RW(d)| ∈ {0, 1, N} (1)

The main notion is that for |RW(d)| = 0 the domain d is read-only, mea-
ning that no event-loop can ever have synchronous write access to that do-
main. For |RW(d)| = 1, there is a single event-loop that has synchronous write
access to the domain. We call this event-loop the owner of that domain. For
|RW(d)| = N, all event-loops in the system can potentially read from and write
to domain d. However, that does not necessarily imply undisciplined simulta-
neous writes, instead it means that any event-loop can at some point during
the execution have synchronous write access to objects owned by that domain.
Similarly, let R(d) denote the set of event-loops that have synchronous read-
only access (and no synchronous write access) to objects owned by domain d.
This implies that RW(d) and R(d) are disjoint sets (RW(d) ∩ R(d) = ∅). This
means that |RW(d) ∪ R(d)| is the number of event-loops that have some form
of access to domain d, whether it be read-only or read-write access. It follows
that 0 <= |RW(d) ∪ R(d)| <= N. If |RW(d) ∪ R(d)| = 0 then the domain
is inaccessible and therefore useless. For a disciplined concurrency model, the
relevant cases are that either 1 or N event-loops can have synchronous access
to a domain. This leads us to the following formula:

∀d : |RW(d) ∪ R(d)| ∈ {1, N} (2)

If |RW(d) ∪ R(d)| = 1 then only a single event-loop can synchronously access
objects inside that domain. In the domain model, that event-loop is said to be

62

5.2. Domains: Immutable, Isolated, Observable, Shared

the owner of that domain. If |RW(d) ∪ R(d)| = N, then every event-loop can
have synchronous access to the domain.

5.2. Domains: Immutable, Isolated, Observable, Shared

Based on the design space resulting from combining the formulas (1) and (2),
we identify five useful settings for domains. Tab. 5.1 names them in relation to
the design space.

|RW(d)| 0 1 N
|R(d)| 1 N 0 N − 1 0

immutable
isolated

immutable isolated observable shared

Tabel 5.1.: The different types of domains

Note, we will not consider immutable isolated domains as they are subsumed
under immutable domains where the creator of the domain does not expose
any reference to objects inside that domain.

Immutable domains hold data that is not owned by any particular actor and
is fully immutable. This data can be read synchronously by potentially
any actor.

Isolated domains hold data that is owned by one actor, who has the right to
read and update it synchronously. Other actors may only read or update
the data in the domain asynchronously.

Observable domains hold data that is owned by one actor, who has the right
to read and update it synchronously. Other actors may synchronously read
the data in the domain, but can update it only asynchronously.

Shared domains hold data that is not necessarily owned by any particular
actor. Any actor may synchronously read and write the data, but with an
enforced multiple-reader/single-writer policy.

5.3. SH A C L: A Language with Domains

In order to evaluate the usefulness of the proposed domains, the event-loop
model of SH A C L was extended with the notion of domains. SH A C L supports

63

5. The Domain Model

all four types of domains: immutable, isolated, observable and shared domains.
An instance of each of those domains is represented by the dotted boxes in
Fig. 5.1. SH A C L ’s domains are not first class, meaning that an event-loop can
never hold a direct reference to a domain but rather holds references to objects
inside that domain. In S H A C L, a domain can be created using any of the follo-
wing primitives: immutable, isolated, observable, and shared. Similar to the
actor primitive as seen in Sec. 4.2.3, evaluating a domain primitive creates a
domain of the appropriate type that is initialized with a single object for which
the interface is defined by the call-by-name parameter of the domain primitive.

event-loopevent-queue

Isolated

Communicating Event-Loop

Observable SharedImmutable

near
reference

domain
reference

object

owned by owned by

Figuur 5.1.: The domain model

In Fig. 5.1, objects are shown as circles and references between different objects
are shown as arrows. Also, the isolated domain and the observable domain
have an arrow to illustrate the ownership relation between the domain and the
shown event-loop. Within a domain, references to objects owned by the same
domain are called near references and have the same properties as in the original
model. Namely, near references can be used for synchronous communication.
References to objects within a different domain are called domain references.
A domain reference is always typed with the type of domain that owns the
referred object, e. g., a reference to an object owned by an isolated domain is
called an isolated domain reference. Furthermore derived from the CEL model,
the following general notions apply:
The type of domain reference and the domain’s relation with the event-loop de-
termine the access capabilities of that event-loop’s thread of execution to that
object. To clarify, the type of domain reference does not restrict whether that
reference is held exclusively by one actor or shared by multiple actors. Any re-
ference can be shared by an event-loop with other event-loops by sending it
via message passing. Rather, the type of domain determines whether the refe-
renced object can be synchronously or asynchronously accessed by a particular
event-loop. This is the same for references in the original model (see Chap-

64

5.3. Shacl: A Language with Domains

ter 4). Whether references are synchronously accessible in the original model
is determined by the type of reference (near or far).

Lexical ownership rule. Similar to the actor primitive as seen in Sec. 4.2.3,
the call-by-name parameter of each of the domain primitives has to be lexically
closed. Any lexically nested object expressions always evaluate to objects that
are owned by the lexically enclosing domain. Those objects can have direct refe-
rences to one another, near references, but any reference to an object belonging
to a different domain is called a domain reference. Because of this rule, distinct
domains are strictly isolated from one another.

Isolated turn principle. By allowing concurrent synchronous access to do-
mains we can potentially have parallel execution of certain operations on ob-
jects within the same isolated heap. This also means that, depending on the
way those objects are accessed, we need to introduce some synchronization me-
chanism to guarantee the isolated turn principle. The required synchronization
mechanism and its performance characteristics highly depend on the type of
the domain and its concrete realization.

Asynchronous communication with a domain reference. The general rule
is that, if the domain has an owner then the asynchronous message is always
enqueued in the event queue of the event-loop that owns the domain. If howe-
ver the domain does not have an owner, the message is enqueued in the event
queue of the sender of the message. The rationale here is to stay faithful to the
original model. In the original model an asynchronous message is always en-
queued in the event queue of the owner of an object. In the case that a domain
does not have a particular owner it makes sense to enqueue that message in
the senders own event queue.

Synchronous communication with a domain reference. The general rule
is that the owner of a domain has fully unrestricted synchronous access to the
domain. Whether or not other event-loops can synchronously invoke methods
on a domain reference wholly depends on the type of domain reference.
The following sections illustrate for each domain type what event-loops can
synchronously access objects owned by those domains.

The following section describes and evaluates for each domain type one
specific design in the context of S H A C L.

65

5. The Domain Model

5.4. Immutable Domains

An immutable domain represents, as the name implies, an object heap of im-
mutable objects. Immutable domains are useful when different actors need to
share immutable objects, for example, when sharing library code. A reference
to an object owned by an immutable domain is called an immutable domain
reference. Any event-loop can use such a reference to synchronously invoke
methods and read fields of the referenced object. Writing to a field of an object
that is owned by an immutable domain will result in a run-time error.

∀d ∈ Immutable : RW(d) = ∅ ∧ |R(d)| = N

SH A C L ’s immutable domains are created with the immutable primitive. Fig. 5.2
shows an example using an immutable domain. On line 1, the main event-loop
creates a new immutable domain using the immutable primitive. That newly
created immutable domain is initialized with a single object with one field,
pi and one method circle_area. Invoking the immutable primitive returns
an immutable domain reference to the object. In our example the reference is
stored in the variable formulas and then used on line 7 to synchronously invoke
the circle_area method. Any event-loop that obtains an immutable domain
reference to the object is allowed to synchronously invoke methods on that
object as long as that method is a read-only method, i. e., it does not modify
the state of objects in the domain. Creating a new object inside an immutable
domain is allowed because that operation does not mutate any fields. That
object will also be allocated on the heap of the immutable domain. By allocating
that object on the heap of the immutable domain all rules for immutability also
apply to that object. It’s uncommon practice to send asynchronous messages to
an immutable domain reference because synchronous access is always allowed.
However, when an actor sends an asynchronous message to an immutable
domain reference, that message is enqueued in the sender’s own event queue.

Properties. That the isolated turn principle still holds for immutable do-
mains can be trivially shown. During a turn of an event-loop that event-loop
is guaranteed to have a consistent view of all objects in the whole domain as
all of those objects are immutable. Furthermore, since no additional operations
are introduced, deadlock freedom is not affected either.

66

5.5. Isolated Domains

1 formulas: immutable(
2 { pi: 3.14;
3 circle_area(r):
4 pi * r * r });
5

6 r: 5;
7 A: formulas.circle_area(r);

event-loopevent-queue

Main Event-Loop

Isolated
formulas

owned by

Immutable

Figuur 5.2.: An immutable domain defining some constants

5.5. Isolated Domains

Isolated domains are most similar to the object heap of a vat in the original
communicating event-loop model. In the original model, only the “owner” of
the objects could synchronously read from and write to those objects. Similarly,
only one event-loop can synchronously read from and write to isolated domain
references, namely the owner of the isolated domain. Domains are a genera-
lization for an object heap in the original communicating event-loop model.
More specifically, in SH A C L, the object heap of each event-loop has been repla-
ced with an isolated domain. Such isolated domains share the same use cases
as communicating event-loops, i. e., they are ideal to represent coarse-grained
subsystems that do not need to share their internal state and benefit from the
strong consistency properties.

∀d ∈ Isolated : |RW(d)| = 1∧ R(d) = ∅

The initial configuration of the SH A C L VM consists of a main event-loop and
its associated isolated domain. The main program text is executed by the main
event-loop with respect to that domain (i. e. any new objects will be created
inside the main isolated domain). Spawning a new actor using the actor pri-
mitive creates a new event-loop together with its associated isolated domain.
Fig. 5.3 illustrates how an isolated domain is instantiated when creating a new
actor. On line 1 the main event-loop invokes the actor primitive. A new com-
municating event-loop will be created together with its own isolated domain in
place. An isolated domain is always owned by a single event-loop, in this case
the newly created one. The domain is initially empty but for a single object
that is initialized from the call-by-name parameter of the actor primitive. The
return value of the actor primitive is an isolated domain reference to that object,
which is stored in the variable a.

67

5. The Domain Model

1 a: actor(
2 say_hello():
3 display("Hello World!\n"));
4

5 a<-say_hello();

event-loopevent-queue

Main Event-Loop

Isolated
a

owned by

Isolated

event-loopevent-queue

Communicating Event-Loop

owned by

Figuur 5.3.: Two communicating event-loops and their isolated domains.

From the perspective of the owner of the isolated domain, isolated domain
references are the same as near references of the original model. The event-loop
that owns the isolated domain that can synchronously access that reference.
From the perspective of other event-loops, an isolated domain reference is the
same as a far reference of the original model. Any event-loop that obtained a
reference to the isolated object has to employ asynchronous communication to
access the object. In our example, the main actor has to send an asynchronous
say_hello message on line 5. That message will be enqueued in the event
queue of the owner of the domain. Any attempt to synchronously access a far
reference by an event-loop other than the owner of the domain is considered to
be an erroneous operation and will result in a runtime error in S H A C L.

1 o: isolated(
2 say_hello():
3 display("Hello World!\n"));
4

5 o.say_hello();

Listing 5.1: A standalone isolated domain

While not all that useful, it is possible to create a separate standalone isola-
ted domain using the isolated primitive in SH A C L. As shown in Lst. 5.1, the
main event-loop creates an isolated domain with a single object. By creating an
isolated domain, the main actor also becomes the owner of that domain and be-
cause of that it can synchronously invoke any method on any isolated domain
reference pointing to objects in that domain. Creating an extra isolated domain
could be useful to isolate different services within the same component from
one another.

68

5.6. Observable Domains

Properties To mimic the semantics of traditional event-loop actors, SH A C L

actors are created together with their own isolated domain in place. That means
that any objects that are created from lexically nested object expressions will
belong to the isolated domain of the actor. Because actors can only synchro-
nously access objects from their own isolated domain, actors and their state
are still fully isolated from one another. That also means that isolated domains
preserve the same properties with regard to isolated turns and deadlock free-
dom.

5.6. Observable Domains

The motivation behind observable domains is to allow the programmer to ex-
press shared state that belongs to (i. e. can be synchronously read and updated
by) a single event-loop but is synchronously observable by others. For example,
in an MVC application, a Model actor could define an observable domain for
objects to be observed (but not modified) by different View actors. Similar to
other domains, an observable domain is a container for observable objects. In
the context of S H A C L, an observable object is an object that is synchronously
readable by all event-loops in the system.1 Furthermore, it has a single owner
that is allowed to synchronously read from and write to objects that belong to
that domain. All other event-loops that have obtained an observable domain
reference are allowed to use that reference to synchronously invoke methods.
However, that method has to be read-only, if an event-loop attempts to modify
a field of an observable object, that will result in a runtime error.

∀d ∈ Observable : |RW(d)| = 1∧ |R(d)| = N − 1

Fig. 5.4 illustrates the use of observable domains in SH A C L. On line 1, the main
event-loop creates a new observable domain. That domain is initialized with a
single object that defines a get and a set method. By creating the observable
domain, the main event-loop becomes the owner of that domain. The return va-
lue of the observable primitive is an observable domain reference that is stored
in the counter variable. On line 8, the main event-loop creates a new actor. The
isolated domain reference that is returned from the actor primitive is stored in
the observer variable. On line 12, the main event-loop increases the value of
the counter synchronously. The main event-loop is allowed to do that because it
is the owner of the domain. On line 13, the main event-loop sends an asynchro-
nous increase message to the observer actor passing the observable domain

1Not to be confused with java.util.Observable.

69

5. The Domain Model

reference to the counter as an argument. On line 10, the observer actor can
synchronously read from the observable domain reference but has to send an
asynchronous message to write to that reference. Any attempt by a non-owner
event-loop to synchronously write to a field of an observable domain object will
result in a runtime error. The asynchronous set message sent to the counter on
line 10 is enqueued in the event queue of the owner of the observable domain,
in this case the main event-loop.

1 counter: observable(
2 { val: 0;
3 set(v):
4 val:= v;
5 get():
6 val });
7

8 observer: actor(
9 increase(counter):

10 counter<-set(counter.get() + 1));
11

12 counter.set(counter.get() + 1);
13 observer<-increase(counter);

event-loopevent-queue

Main Event-Loop

Isolated
counter

owned by

Observable

event-loopevent-queue

Observer Event-Loop

Isolated

owned byowned by

counter

Figuur 5.4.: An observable domain owned by an event-loop

5.6.1. Observable Actors

Actors in S H A C L are initialized with an event-loop and an isolated domain. It
is possible to envision actors that, upon creation, are associated with an obser-
vable domain [De Koster et al., 2013]. In that case, the whole state of the actor
becomes observable and any shared reference will be synchronously readable
by any other event-loop. However, in SH A C L, we chose to associate actors with
an isolated domain by default because of the similarities with the object heap
of a vat in the original model.

5.6.2. Properties

The execution of the program in Fig. 5.4 consists of three turns. Firstly, there is
the main event-loop that is executing the program text in a single turn (line 1
to line 13). Secondly, there is the turn of the observer actor that processes the
increase message (line 10). Thirdly, there is the turn of the main event-loop

70

5.6. Observable Domains

that has to process the set message sent by the observer actor (line 3). If the
isolated turn principle is to be preserved, during all of these turns the event-
loops have to have a consistent view over all synchronously accessible state.
For example, the observer actor can read from the counter several times and
will always observe the same value, regardless of whether the counter is being
updated concurrently by the main event-loop. Conceptually, the observer first
takes a snapshot of the whole observer domain before executing the increase
method. For the duration of its turn, the observer always observes the same
value from the counter, even when that counter is being modified concurrently.
From the perspective of the owner of the domain, the turn also has to be iso-
lated. That means that any update to the observable domain should only be
visible by other event-loops at the end of the turn. In our example this has
some implications on what value is observed by the observer actor at the start
of its turn. Either the main event-loop has not yet finished its first turn and the
observed value will be 0. Or the main event-loop has finished its turn (and is
now idle) and the observed value will be 1. Either way, once the turn of the ob-
server actor starts it will always see the same value for each invocation of the
get message regardless of any updates of the main event-loop. This exposes a
race condition on the event level because the value passed to the asynchronous
set message on line 10 might be based on an outdated value. Observable do-
mains offer a means to uncoordinated reads of shared state in a safe way but
any asynchronous writes still need to be coordinated in some way to avoid race
conditions; which is in this case viable because the isolated turn principle only
guarantees isolation during a single turn. Note that, in this simple example, the
observable domain only contains a single object. Per the lexical ownership rule
for domains, any nested object primitives will evaluate to objects that are also
owned by the same observable domain. During a single turn, any event-loop
always has a consistent view over the whole observable domain.

5.6.3. A Note on the Implementation

To guarantee the isolated turn principle, SH A C L uses a specialized version of
Software Transactional Memory [Shavit and Touitou, 1995] (See Chapter 7).
Other implementation strategies may be used to ensure consistency. However,
for S H A C L, we use transactional memory to ensure isolation for the processing
of events that use observable domains. The processing of events has a transac-
tional behavior, as such, STM is a good implementation method for observable
domains. However, it is important to note that while events have transactional
behavior, the SH A C L model does not have any STM specific keywords to deli-

71

5. The Domain Model

neate transactions. Rather than introducing new keywords, the processing of
a single event is considered a single transaction and observable domain refe-
rences are considered to be references to transactional memory. During a turn
an event-loop can execute non-idempotent operations such as side-effects on
non-transactional memory and I/O operations. A such, a conventional STM
model would not be suitable to implement observable domains. To ensure that
all events are processed only once the STM should avoid aborting transactions.
Not being able to support aborting transactions means we have the following
two restrictions for our STM. On the one hand, all writers have to have access
to the latest version of the memory. Writing to a memory location based on
an old version would otherwise cause the transaction to be in an inconsistent
state and would have to be aborted. On the other hand, all readers have to
see values from a single snapshot of the memory. Otherwise readers could
read from a memory location that changed value during a transaction which
would then need to be aborted. A Multi-Version History STM [Perelman et al.,
2010] is an optimistic approach to transactional memory where read-only trans-
actions are guaranteed to successfully commit by keeping multiple versions of
the transactional objects. The only transactions that can abort in such a sys-
tem are conflicting writers. An observable domain allows only a single writer
for each object, namely the owner of that domain. If there is only one writer,
there cannot be any conflicting writers. If all readers are guaranteed to succeed
and there are no conflicting writers, all transactions will succeed and we have
successfully supported both restrictions.

5.6.4. Revisiting the Motivating Example Using Observable
Domains

Lst. 5.2 illustrates how we could transform the motivating example as shown
in Sec. 4.3 using observable domains. The implementation of the transfer me-
thod has to be placed on the side of the bank because it requires a coordinated
update of the bank domain. However, any read-only operations can now be exe-
cuted without having to worry about coordination or consistency issues. The
summary method on line 13 can synchronously add each of the account values.
While summing the accounts, the manager event-loop will always observe the
account database where a transfer has either happened entirely or hasn’t happe-
ned yet. Also important to note is that during the turn of the summary message,
the manager event-loop has synchronous access to both its own isolated domain
as well as the observable bank domain.

72

5.7. Shared domains

1 bank: observable(
2 { db: ‘...‘;
3 transfer(id, other_id, amount):
4 { db[id]:= db[id] - amount;
5 db[other_id]:= db[other_id] + amount } });
6

7 client: actor(
8 { my_id: ‘...‘;
9 transfer(bank, other_id, amount):

10 bank<-transfer(my_id, other_id, amount) });
11

12 manager: actor(
13 summary(bank):
14 display("Summary: ", sum(bank.db.values), eoln));

Listing 5.2: Transformation of our motivating example using observable domains

5.6.5. Conclusion

The idea behind observable domains is to represent state that has a single ow-
ner (and thus a single writer), but is synchronously observable by others. The
owner of the domain is free to synchronously read and write to objects owned
by the domain. A reference to an observable object can be freely shared bet-
ween event-loops and those event-loops can synchronously invoke methods
on those objects, the only limitation being that the invoked methods have to be
read-only. From the writer’s perspective the isolated turn principle still holds
because the updates performed by the owner of the observable domain are not
visible to the other event-loops for the duration of a single turn. Only at turn
boundaries updates become visible for other event-loops. From the reader’s per-
spective, the isolated turn principle also holds. An event-loop that reads from
an observable domain takes the latest available snapshot of the observable do-
main at the start of its turn. Any consecutive reads during that turn will always
yield the same values. Since no additional blocking operations are introduced
and the software transactional memory used as an implementation technique
does not involve any blocking operations, deadlock freedom is not affected
either.

5.7. Shared domains

The motivation behind shared domains is to allow the programmer to express
shared state that does not belong to a particular event-loop but is rather shared

73

5. The Domain Model

among multiple event-loops. A shared domain allows any event-loop to syn-
chronously read from and write to objects belonging to that domain. A shared
domain does not have a particular owner but event-loops do have to obtain read
or write access rights before being able to access a shared domain reference.

∀d ∈ Shared : |RW(d)| = N ∧ R(d) = ∅

Any event-loop can synchronously access shared domain references for as long
as they have a so-called view on that domain. A view can be acquired using
either the when_exclusive or the when_shared primitive.

1 counter: shared(
2 { val: 0;
3 set(v):
4 val:= v;
5 get():
6 val });
7

8 counter.when_exclusive(
9 counter.set(counter.get() + 1)); event-loopevent-queue

Main Event-Loop

Isolated
counter

owned by

shared

Figuur 5.5.: A shared domain

Fig. 5.5 illustrates the usage of shared domains. On line 1 the main event-loop
creates a shared domain. Similar to other domain primitives, the shared domain
is initialized with a single object created from the call-by-name parameter of the
shared primitive. The result of invoking the shared primitive is a shared domain
reference to that object. In our example that reference is stored in the counter
variable. Any attempt to synchronously invoke a method on such a reference
outside of a view is considered to be an erroneous operation and will result
in a runtime error. On line 8, an exclusive view is requested on the domain
using the when_exclusive primitive. The request is stored in a view-scheduler
and immediately returns (i. e. the view primitives are asynchronous operations).
The main event-loop continues and ends its current turn. A shared domain is
available for exclusive access when it is not locked by any other event-loop
for shared or exclusive access. When the shared domain becomes available for
exclusive access two things happen. Firstly, the domain is locked for exclusive
access. Secondly, an event that is responsible for evaluating the call-by-name
parameter of the when_exclusive primitive is put in the event queue of the
main event-loop. This event is called a view. Because of this, views are only
processed between two turns of the event-loop that requested the view. While

74

5.7. Shared domains

that view is being processed, the main event-loop has exclusive synchronous
access to the shared counter domain. The evaluation of the view is considered
to be a single turn and once that turn ends, the shared domain is freed again,
allowing other event-loops to access it.

Note that, in this simple example, the shared domain only contains a single
object. Per the lexical ownership rule for domains, any nested object primiti-
ves will evaluate to objects that are also owned by the same shared domain.
During a view, the event-loop that requested the view always has a consistent
view over the whole shared domain, not only the object for which the view was
requested. A shared view can be requested by using the when_shared primitive.
Requesting a shared view is also an asynchronous operation. When the domain
becomes available for shared access a view is scheduled in the event queue of
the event-loop that issued the request. A domain is available for shared access
when it is not locked for exclusive access. Multiple shared views on the same
domain, requested by different event-loops, can exist simultaneously. During a
shared view the event-loop has synchronous read-only access to all objects in
the shared domain to which it holds a reference. Any attempt to modify a field
of a shared object during a shared view is considered to be an erroneous opera-
tion and will result in a runtime error. Note that the view expression has access
to its surrounding lexical scope. A view is always executed by the event-loop
that requested the view and during that view the event-loop has synchronous
access to both its own isolated domain as well as the shared domain.

5.7.1. Futures

Requesting a view using the when_shared or when_exclusive primitives are
asynchronous operations. Similarly to other asynchronous operations in SH A C L

(e. g. asynchronous messages and the when_resolved primitive) they return a
future. That future is resolved with the return value of the execution of the view
expression associated with the request.
Lst. 5.3 illustrates the use of futures when requesting a shared view. On line 1
the main event-loop requests a shared view on the counter domain. This is an
asynchronous operation that registers a view-request with the view-scheduler
and immediately returns a future. In our example, that future value is stored in
the future variable. On line 4 the main event-loop uses that future to register
a closure to be executed when that future is resolved. Lastly, on line 7 the
main event-loop displays a string and ends its turn. When the domain becomes
available for shared access, a view is scheduled in the event queue of the main

75

5. The Domain Model

1 future: counter.when_shared(
2 display("Then here!", eoln));
3

4 future.when_resolved(
5 display("Last here!", eoln));
6

7 display("First here!", eoln);

Listing 5.3: The when primitives return a future

event-loop. That view will only be processed by the main event-loop after it has
ended its first turn (the execution of the input program text). Once the view has
been processed the future will be resolved. When that happens, a second event,
responsible for evaluating the call-by-name parameter of the when_resolved
primitive, is scheduled in the event queue of the main event-loop.

5.7.2. Asynchronous Communication

A shared domain does not have an owner. Thus, asynchronous messages di-
rected at a shared domain reference have to have some distinct meaning. In
SH A C L, an asynchronous message directed at a shared domain reference is
syntactic sugar for requesting an exclusive view on the shared domain and in
the body of the request synchronously invoking the message. Any expression
of the form, r<-m() is translated to r.when_exclusive(r.m()) given that r is
a shared domain reference. Because it is impossible to statically determine if
method m will perform any mutation, an exclusive view is taken by default re-
gardless of whether the invocation of m is a read-only operation. The view that
is associated with the request will eventually be enqueued in the sender’s own
event queue to be processed by the sender’s event-loop.

5.7.3. Requesting a View on Multiple Domains

In SH A C L, the idiomatic use of shared domains is to put all shared objects
that have to be synchronized in the same domain. However, that also means
that all updates to those objects are serialized even if those updates are to dis-
tinct objects in the shared domain (only shared views are executed in parallel).
SH A C L also supports a generic view primitive for when the programmer needs
to synchronize access to multiple shared domains, namely the when_acquired
primitive.

76

5.7. Shared domains

1 find(n, root):
2 { iterate(node, path):
3 if(node.is_void(),
4 void,
5 { path:= path + [node];
6 node.when_shared(
7 if(node.data == n,
8 when_acquired(path, [],
9 if(valid_path(path),

10 node,
11 find(n, root))),
12 if(node.data < n,
13 iterate(node.left, path),
14 iterate(node.right, path)))) });
15 iterate(root, []) };

Listing 5.4: Using the when_acquired primitive to acquire a view on multiple domains

Lst. 5.4 illustrates how to use the when_acquired primitive to safely search a
binary search tree where each of the nodes is in a separate shared domain. The
when_acquired primitive takes three parameters. The first two parameters are
regular call-by-value parameters which have to evaluate to two tables of shared
domain references. The first table is a table of domain references on which
a shared view needs to be requested. The second table is a table of shared
domain references on which an exclusive view needs to be requested. When
requesting a view on multiple domains S H A C L uses global lock ordering to avoid
deadlocks (See Chapter 7). When views are requested on multiple domains,
all such locks should be requested together, instead of one-by-one. The third
and last parameter of the when_acquired primitive is a call-by-name parameter
that specifies the view that needs to be executed once all the domains become
available for shared and/or exclusive access. In our example, each iteration
of the search algorithm is executed in a different turn. That means that each
step of the recursion can be interleaved with other operations on the binary
search tree (e. g. insertions and deletions of other nodes). If we can guarantee
that all the parent-child relations are still valid then we can guarantee that
there is still a valid path between the root node and the result. On line 9 we
use the validate_path (implementation not shown here) to check whether
the followed path is still valid. However, to do this we require read access to
all the nodes along the path. On line 8, we require shared access to all those
nodes by using the when_acquired primitive. That primitive will request shared

77

5. The Domain Model

access to all the domain references in the first table and request exclusive access
to all the domain references in the second table. In the example the first table
contains all the nodes along the path and the second table is empty as we do not
require write access to any node to validate the path. If the path is no longer
valid, we restart the search (line 11). Similarly to the other when primitives,
when_acquired is an asynchronous primitive that returns a future. While going
deeper in the recursion, each future returned by when_shared is resolved with
another when_shared future until we find the correct node. Once the node is
found, the future of the when_acquired primitive is resolved with either the
result or a new chain of futures. In the end, when the node is found, the whole
chain of futures (See Sec. 4.2.3) is resolved with the node.

1 find(n, root):
2 { iterate(node):
3 if(node.is_void(),
4 void,
5 if(node.data == n,
6 node,
7 if(node.data < n,
8 iterate(node.left),
9 iterate(node.right))));

10 root.when_shared(
11 iterate(root)) };

Listing 5.5: Finding a node in a binary search tree

Lst. 5.5 illustrates how our algorithm would look like if all the nodes of the
binary search tree were owned by the same shared domain. In this case, only a
single view needs to be requested on the root node (line 10). Once the shared
view has been granted we can iterate over the whole binary search tree without
interference from any concurrent updates from other event-loops.

Nested view requests. In SH A C L, it is considered bad practice to have dy-
namically nested view requests. Requesting a new view during the execution
of an existing view can be problematic because, by the time the nested view is
granted, the outer view will already have expired.
Lst. 5.6 illustrates this problem. On line 2, when the view on the domain of
counter is granted, a second view is requested asynchronously. The request is
scheduled and the turn of the first view immediately ends, releasing the shared
view on the domain of counter. Once the shared domain of other_counter

78

5.7. Shared domains

1 counter.when_shared(
2 other_counter.when_shared(
3 counter.get() + other_counter.get()));

Listing 5.6: Nested view requests

becomes available for shared access, the second view can be processed. Howe-
ver, by that time the view on the domain of counter has already expired. The
synchronous message on line 3 will result in a runtime error because the main
event-loop no longer has access to the domain of counter.

5.7.4. Comparison with Multiple Reader/Single Writer Locks

Shared domains show a lot of similarities with multiple reader, single writer
locks. However, there are a number of important differences between the two
synchronization mechanisms.

1 public void increase(Counter counter,
2 ReadWriteLock lock) {
3 lock.writeLock().lock();
4 try {
5 counter.set(counter.get() + 1);
6 } finally {
7 lock.writeLock().unlock();
8 }
9 }

1 increase(counter):
2 counter.when_exclusive(
3 counter.set(counter.get() + 1));

Figuur 5.6.: Left, read/write lock in Java. Right, shared domain in S H A C L.

Fig. 5.6 shows a comparison between an implementation of a counter using
read/write locks in Java versus an implementation in SH A C L using a shared
domain. Both implementations first take a write lock before increasing the value
of the counter.

Non-blocking.
Requesting a view is a non-blocking operation. The problem with nested locking
leading to deadlocks is a known issue [Lee, 2006]. Because every potentially
problematic operation in SH A C L is asynchronous, the problem with deadlocks
is avoided altogether. The only primitive in SH A C L that acquires multiple locks
simultaneously is the when_acquired primitive and the implementation of that
primitive uses global lock ordering to avoid deadlocks.

79

5. The Domain Model

Synchronization enforced.
In Java, using the read/write lock is not enforced on the client-side. Because
the lock is not part of the abstract data-type, any thread is free to update the
counter regardless of whether it holds a reference to the lock or not.

Protects whole object graph.
Any leaked references to nested objects are also protected when using a shared
domain, which is typically not the case with traditional read/write locks.

5.7.5. Properties

Shared domains require that event-loops obtain a view to interact with the con-
tained objects. The view-scheduler guarantees that no conflicting views are
scheduled at the same time, which ensures that the isolated turn principle
is maintained. The view-scheduler prioritizes exclusive views to prevent star-
vation of exclusive view requests by repeated shared view requests and to en-
sure fair scheduling of the different views. Event-loops that request a shared
view have to wait until all exclusive view requests have been handled, even if
a shared view was already granted to a different event-loop (See Chapter 7).
Because all newly introduced view primitives are non-blocking, deadlock free-
dom is also guaranteed. The implementation employs a global lock ordering
technique to ensure that all domains can be locked at the same time in case of
a when_acquired.

5.7.6. Revisiting the Motivating Example Using Shared Domains

Lst. 5.7 illustrates how we could transform the motivating example as shown
in Sec. 4.3 using shared domains. This implementation is very close to the
idealized implementation, as shown in Sec. 4.3.1, except for the fact that a
view needs to be requested before executing the body of the transfer and the
summary methods. This effectively transforms these methods into asynchronous
invocations.
The multiple-reader/single-writer strategy of shared domains allows multiple
manager actors to execute the summary method in parallel. But not a summary
and a transfer. The transfer method is guaranteed to be isolated as the dif-
ferent accounts are owned by the same bank domain.
Shared domains are ideal for modeling passive software entities that do not
belong to any particular actor but are shared by two or more components of
the system.

80

5.8. Benefits of Domains

1 bank: shared(
2 { db: ‘...‘;
3 withdraw(id, amount):
4 db[id]:= db[id] - amount;
5 deposit(id, amount):
6 db[id]:= db[id] + amount };
7

8 client: actor(
9 { my_id: ‘...‘;

10 transfer(bank, other_id, amount):
11 bank.when_exclusive(
12 { bank.withdraw(my_id, amount);
13 bank.deposit(other_id, amount) }) });
14

15 manager: actor(
16 summary(bank):
17 bank.when_shared(
18 display("Summary: ", sum(bank.db.values), eoln)));

Listing 5.7: Transformation of our motivating example using shared domains

5.8. Benefits of Domains

In Chapter 3 a number of different strategies were discussed to represent sha-
red state in modern actor systems. In the case of pure actor systems the more
common solution was to encapsulate that shared state in a delegate actor. In
Sec. 4.3, a motivating example was given to illustrate how to share state in
SH A C L using a delegate actor. In this chapter we have shown that domains can
provide a solution for some of the issues with sharing state using a delegate
actor.

Message-level Race Conditions.
Isolation of any number of operations is only guaranteed during a single turn
(because of the isolated turn principle). Using a delegate actor requires the
client-side to send an asynchronous message upon each access of the shared
state. Because each asynchronous message is processed in its own turn, the
client loses the benefit of the isolated turn principle when combining different
messages. In other words, the client-side is unable to put extra synchronization
conditions on batches of messages. Note that message-level race conditions still
exist in S H A C L. However, using a domain allows the client to synchronously
access objects owned by that domain multiple times over the course of a single

81

5. The Domain Model

turn, effectively allowing the programmer to combine different operations on
the domain objects in a larger synchronous operation.

Parallel Reads.
The issue with a delegate actor representing shared state was that all of the
operations on that shared state were serialized by the event queue of that actor.
The immutable, observable and shared domains can all have many readers and
each of those domains allows all readers to synchronously read from objects
owned by those domains in parallel.

Continuation Passing Style.
Any asynchronous operation always forces the programmer to apply CPS to the
surrounding code. The domain abstractions allows programmers to transform
a number of asynchronous operations into synchronous operations effectively
avoiding a CPS transformation in those places. One exception is a shared do-
main where one level of CPS is still required, namely to request the view on
the domain. However, during that view, the event-loop has unlimited synchro-
nous access to any object owned by the shared domain without requiring a CPS
transformation.

Access to Its Own Isolated Domain.
During any given turn, if an event-loop in S H A C L has synchronous access to
a domain that event-loop can also still synchronously access its own isolated
domain. This means that an event-loop can combine access to its own state with
access to the domain during that turn. This can be beneficial when the update
to the domain depends on state that is local to the event-loop. When using
a delegate actor, this is impossible because different event-loops are strictly
isolated from one another.

5.9. Related work

The engineering benefits of semantically coarse-grained synchronization me-
chanisms in general, and the restrictions of the actor model have been recogni-
zed by others. In particular the notion of domain-like and view-like constructs
has been proposed before. In this section we will discuss the existing related
work by placing them into two different categories. On the one hand, there is a
body of related work that cares about abstracting away the synchronization of
access to shared state with view-like abstractions. On the other hand, there is

82

5.9. Related work

related work that cares about coarsening the object graphs that are shared with
domain-like abstractions.

Related work on domains

Ribbons Another approach similar to our notion of domains is Hoffman et al.
[2011]’s notion of ribbons to isolate state between different subcomponents of
an application. They propose protection domains and ribbons as an extension
to Java. Similarly to our approach, protection domains dynamically limit access
to shared state from different executing threads. Different threads are grouped
into ribbons and access rights are defined on those ribbons. While their appro-
ach is very similar to ours, they started from a model with fewer restrictions
(threads) and built on top of that while we started from the actor model which
already has the necessary isolation of processes by default. Access modifiers on
protection domains limit the number of critical operations in which data races
need to be considered. But if two threads have write access to the same data
structure, access to that data structure still needs to be synchronized.

Deterministic Parallel Java In Deterministic Parallel Java [Bocchino et al.,
2009] the programmer has to use effect annotations to determine what parts
(regions) of the heap a certain method accesses. They ensure data-race-free pro-
grams by only allowing nested calls to write disjoint sub-regions of that region.
This means that this approach is best suited for algorithms that employ a divide-
and-conquer strategy. In our approach we want a solution that is applicable to
a wider range of problems including algorithms that randomly access data from
different regions.

X10 Places In X10 [Charles et al., 2005], a place corresponds to a single
isolated address space. By default, an X10 process can only access a location in
a local place. However, using the at(place){...} construct allows a process
to send code across places while maintaining the mapping between the global
address space and each local address space. X10 is mainly used in a distributed
setting, however, it is possible to run with multiple places installed in a single
machine. The main difference between places and domains is that the code
executed in a domain is not sent to that domain but rather executed locally by
the actor that is accessing the domain. This has the benefit that the actor has
access to both the remote domain as well as its own local isolated domain.

83

5. The Domain Model

ETS Tables Erlang’s [Armstrong et al., 1996] sequential subset is a purely
functional language. However, Erlang does have some support for shared muta-
ble state in the form of Erlang Term Storage Tables which allows storing tuples
of key-value pairs. Each table is created by a process (the owner of the table)
and when the process terminates, the table is automatically destroyed. Upon
creating a table, the process can set its access rights to either public, protected
or private. Public is similar to shared domains as any process can read and write
to the table. Protected is similar to observable domains, only the owner of the
table can read and write to the table. Other processes can only read from the ta-
ble. Private is similar to isolated domains as only the owner can read and write
to the table. Different ETS tables are isolated from one another and while the
access rights are very similar to the different domains, they are not guaranteed
on turn boundaries. Any write to a public or protected table will be immediately
visible by other processes which violates the isolated turn principle.

Related work on view-like abstractions

Demsky views Closely related to our model are Demsky and Lam [2010]’s
views, which they propose as a coarse-grained locking mechanism for concur-
rent Java objects. Their approach is based on static view definitions from which,
at compile time, the correct locking strategy is derived. Furthermore, their com-
piler detects a number of problems during compilation which can aid the de-
veloper in refining the static view definitions. For instance they detect when a
developer violates the view semantics by acquiring a read view but writing to
a field. The main distinction between our and their approach comes from the
different underlying concurrency models. Since Demsky and Lam start from a
shared-memory model, they have to tackle many problems that do not exist in
the actor model. This results in a more complex solution with weaker overall
guarantees than what our approach provides. First of all, accessing shared state
without the use of Demsky and Lam’s views is not prohibited by the compiler
thereby compromising any general assumptions about thread safety. Secondly,
the programmer is required to manually list all the incompatibilities between
the different views. While the compiler does check for inconsistencies when
acquiring views, it does not automatically check if different views are incompa-
tible. Forgetting to list an incompatibility between different views again com-
promises thread safety. Thirdly, acquiring a view is a blocking statement and
nested views are allowed, possibly leading to deadlocks. They do recognize this
problem and partially solve this by allowing simultaneously acquiring different
views to avoid this issue. But prohibiting the use of nested views is not enfor-

84

5.9. Related work

ced by the compiler. Finally, in their approach views are compile-time primitives,
which means they cannot be used to safely access shared state depending on
runtime information.

Axum The idea of combining actor-based languages with multiple-
reader/single-writer semantics has been investigated previously with the Axum
language [Microsoft, 2008-09]. The Axum project shares the goal of creating
a high-level concurrency model that allows structuring interactive and inde-
pendent components of an application. It is an actor-based language that also
introduced the concept of domains for state sharing. Similarly to our approach
single writer, multiple reader access is provided to domains. Access patterns in
Axum have to be statically defined, which gives some static guarantees about
the program but ultimately suffers from the same problems as the views ab-
stractions from Demsky and Lam, especially since Axum provides an explicit
escape hatch with the unsafe keyword, which allows the language’s semantics
to be circumvented.

Proactive ProActive [Baduel et al., 2006] is middleware for Java that provi-
des an actor abstraction on top of threads. It provides the notion of Coordina-
tion objects to avoid data races similar to views. However, the overall reasoning
about thread safety is hampered since the use of coordination objects is not en-
forced. Furthermore, coordination objects are proxy objects that serialize access
to a shared resource, and thus, are not able to support parallel reads, one of the
main issues tackled with our approach. In addition, it is neither possible to add
synchronization constraints on batches of messages, nor is deadlock-freedom
guaranteed, since accessing a shared resource through a proxy is a blocking
operation.

Other related work

Semantics-preserving Sharing Actors Lesani and Lain [2013] realize a sha-
ring actor theory that is very similar to observable domains. Each actor is able
to share a number of abstract data types with other actors by keeping multiple
versions by storing the update function applied. Interestingly, they also chose
turn boundaries as the boundaries for isolation. Unfortunately, they only ap-
ply their theory to a small number of abstract data types and containers. The
domain model is an attempt at a more generic abstraction.

85

5. The Domain Model

Zero-copy message passing There is a body of related work that care about
sharing state through efficiently passing the arguments of a message between
actors by reference [Gruber and Boyer, 2013; Haller and Odersky, 2010; Ne-
gara et al., 2011]. This class of research wants to avoid the cost of deep co-
pying a data-structure when it is passed by reference. While this is useful in the
context of ownership transfer, it does not really solve the state-sharing issue in
the actor model. While objects can migrate between different actors, there is
always only one owner for each object. It is impossible for different actors to
read from a shared data structure in parallel.

Parallel Actor Monitors The strong restrictions of the actor model with re-
gard to shared state and parallelism have also been discussed earlier. One
example is Parallel Actor Monitors [Scholliers et al., 2014] (PAM). PAM ena-
bles parallelism inside a single actor by evaluating different messages that are
tagged as read-only in the message queue of an actor in parallel. The difference
with our approach is that the actor that owns the shared data-structure is still
the only one that has synchronous access to that resource. In our approach we
apply an inversion of control where the user of the shared resource has exclu-
sive access instead of the owner. This inversion of control allows an actor in
SH A C L to synchronize access to multiple resources which is not possible using
PAM.

5.10. Conclusion

The domain model is a synchronization mechanism for shared state that is tail-
ored towards integration with the communicating event-loop model such that
the isolated turn principle holds. The isolated turn principle also holds for a
number of other pure actor systems and the ideas discussed in this chapter can
be applied in the context of those systems as well (See Chapter 9). This chapter
gives a taxonomy that led to the design of four types of domains. The common
ground for each of the domains is that they provide coordinated synchronous
access to a heap of shared objects in a way that does not violate the properties
of the original model. Each of the domain types was implemented in a com-
municating event-loop language called SH A C L. The syntax and semantics of
how to use the different domains is explained. Each domain has its separate
application-dependent use-cases and some of them are shown in this chapter.

86

6
A N O P E R AT I O N A L S E M A N T I C S F O R A S I G N I F I C A N T S U B S E T
O F S H A C L

The exposition of the domain model in Chapter 5 was largely informal. In this
chapter we provide a small step operational semantics for a small but significant
subset of SH A C L, named SH A C L -L I T E. The aim of this operational semantics
is to serve as a reference specification of the semantics of our language ab-
stractions regarding domains. The operational semantics of SH A C L -L I T E was
primarily based on an operational semantics for the AmbientTalk language [Cut-
sem et al., 2014] which in turn was based on that of the Cobox [Schäfer and
Poetzsch-Heffter, 2010] model. Our operational semantics starts off by mode-
ling actors, objects and event-loops for a small communicating event-loop lan-
guage. On top of that we build semantic rules for adding the four types of
domains.

6.1. Introduction

The full operational semantics is built in four steps. In Sec. 6.2 we build an ope-
rational semantics for a regular communicating event-loop language. Isolated
domains are interchangeable with the object heap of a traditional event-loop
actor as they have equivalent properties. Thus, in the first version, the object
heaps of actors are already replaced with the associated isolated domains. In
the sections that follow we extend the operational semantics with immutable,
observable and shared domains. Each extension of the semantics can be done
with minimal changes to the original rules. If a semantic rule is replaced this
will be announced in the text.

87

6. An Operational Semantics for a Significant Subset of Shacl

6.2. Basic SH A C L -L I T E, Actors and Their Isolated
Domains

In this section we start off by modeling a small event-loop actor model. This
first version models objects, actors, event-loops, and object heaps. The object
heap of an actor is modeled as an isolated domains. The addition of isolated
domains is not visible in the syntax as no syntax was added for creating new iso-
lated domain. However, the fact that object heaps are already separated from
actors allows us to extend these semantics with additional domains with mi-
nimal changes to the existing rules. It also allows for a uniform definition of
object ownership.

Semantic Entities of SH A C L

K ⊆ Configuration ::= K〈A, D〉 Configurations
a ∈ A ⊆ Actor ::= A〈ιa, Q, e〉 Actors

D ⊆ Domain ::= I Domains
I ⊆ Isolated ::= I〈ιa, O〉 Isolated Domains

o ∈ O ⊆ Object ::= O〈ιo, F, M〉 Objects
m ∈ Message ::= M〈r, m, v〉 Messages

Q ⊆ Queue ::= m Queues
M ⊆ Method ::= m(x){e} Methods

F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null Values

r ∈ Reference ::= ιd.ιo References

ιo ∈ ObjectId, ιd ∈ DomainId, ιa ∈ IsolatedId, IsolatedId ⊆ DomainId

Figuur 6.1.: Semantic entities of S H A C L -L I T E

6.2.1. Semantic Entities

Fig. 6.1 lists the different semantic entities of SH A C L -L I T E. Calligraphic letters
like A and M are used as “constructors” to distinguish the different seman-
tic entities syntactically instead of using “bare” cartesian products. Actors, do-

88

6.2. Basic Shacl-Lite, Actors and Their Isolated Domains

mains, and objects each have a distinct address or identity, denoted ιa, ιd and ιo

respectively.
In SH A C L -L I T E a Configuration consists of a set of live actors, A and a set
of domains, D. A single configuration represents the whole state of a SH A C L -
L I T E program in a single step. In S H A C L -L I T E each Actor has an identity ιa.
Currently the only type of domain that is represented is the Isolated domain, I.
All actors are associated with a single isolated domain with the same identity as
the actor. This isolated domain represents the actor’s heap. This design decision
makes it so that all objects belong to a certain domain and that accessing these
objects can be uniformly defined. Because each actor is associated with a single
domain (the one with the same Id as the actor, i. e., ιa = ιd), the set of isolated
Ids is a subset of the set of domain Ids. Each actor also has a queue of pending
messages Q, and the expression e it is currently evaluating, i. e., reducing. An
Object has an identity ιo, a set of fields F, and a set of methods M. An asyn-
chronous Message holds a reference r, to the object that was the target of the
message, the message identifier m, and a list of values v, that were passed as
arguments. The Queue used by the event-loop of an actor is an ordered list of
pending messages. A Method has an identifier m, a list of parameters x, and a
body e. A Field consists of an identifier f , that is bound to a value v. Values can
either be a reference r or null. A reference identifies an object located within
a certain domain. In this version of the semantics only isolated domains exist.

6.2.2. SH A C L -L I T E Syntax

Syntax SH A C L -L I T E features both functional as well as object-oriented ele-
ments. It has anonymous functions (λx.e) and function invocation (e(e)). Local
variables can be introduced with a let statement. Objects can be created with
the object literal syntax. Objects may be lexically nested and are initialized
with a number of fields and methods. Those fields can be updated with new
values and the object’s methods can be called both synchronously (e.m(e)) and
asynchronously (e ← m(e)). In the context of a method, the pseudo variable
this refers to the enclosing object. this cannot be used as a parameter name
in methods or redefined using let. New actors can be spawned using the actor
literal expression. This creates a fresh actor that is linked with a fresh isolated
domain by sharing the same identifier. This isolated domain is instantiated with
a single new object, with the given fields and methods, in its heap. The newly
created actor executes in parallel with the other actors in the system. Expres-
sions contained in actor literals may not refer to lexically enclosing variables,
apart from the this-pseudo variable. That is, all variables have to be bound ex-

89

6. An Operational Semantics for a Significant Subset of Shacl

SH A C L Syntax

Syntax
e ∈ E ⊆ Expression ::= this | x | null | e ; e | λx.e | e(e) | let x = e in e |

e. f | e. f := e | e.m(e) | actor{ f := e, m(x){e}} |
object{ f := e, m(x){e}} | e← m(e)

x ∈ VarName, f ∈ FieldName, m ∈ MethodName

Runtime Syntax
e ::= . . . | r | objectιd

{ f := e, m(x){e}}

Evaluation Contexts
e� ::= � | let x = e� in e | e�. f | e�. f := e | v. f := e� | e�.m(e) | v.m(v, e�, e) |

e� ← m(e) | v← m(v, e�, e) | objectιd
{ f := v, f := e�, f := e, m(x){e}}

Syntactic Sugar

e ; e′ def
= let x = e in e′ x /∈ FV(e′)

λx.e def
= let xthis = this in xthis /∈ FV(e)

object {
apply(x){[xthis/this]e}
}

e(e) def
= e.apply(e)

Figuur 6.2.: Syntax of S H A C L -L I T E

cept this, which means FV(e) ⊆ { this } needs to hold for all field initializer
and method body expressions e. Because these expressions do not contain any
free variables, actors and domains are “isolated” from their surrounding lexical
scope, making them self-contained.

Runtime syntax Our reduction rules operate on so-called run-time expressi-
ons; these are a superset of source-syntax phrases. The additional forms repre-
sent references, r, and object literals that are annotated with the domain identi-
fier of their lexically enclosing domain. This annotation is required so that upon
object creation each object gets associated with the appropriate domain.

90

6.2. Basic Shacl-Lite, Actors and Their Isolated Domains

Evaluation contexts We use evaluation contexts [Felleisen and Hieb, 1992]
to indicate what subexpressions of an expression should be fully reduced before
the compound expression itself can be further reduced. e� denotes an expres-
sion with a “hole”. Each appearance of e� indicates a subexpression with a
possible hole. The intent is for the hole to identify the next subexpression to
reduce in a compound expression.

Syntactic sugar Anonymous functions are translated to objects with one me-
thod named apply. Note that the pseudovariable this is replaced by a newly
introduced variable xthis so that this still references the surrounding object in
the body-expression of that anonymous function. Applying an anonymous func-
tion is the same as invoking the method apply on the corresponding object.

Substitution Rules

[v/x]x′ = x′ [v/x]m(x){e} = m(x){e} if x ∈ x
[v/x]x = v [v/x]m(x){e} = m(x){[v/x]e} if x /∈ x

[v/x]e. f = ([v/x]e). f [v/x]e. f := e = ([v/x]e). f := [v/x]e
[v/x]null = null [v/x]e← m(e) = [v/x]e← m([v/x]e)

[v/x]e.m(e) = [v/x]e.m([v/x]e)

[v/x]let x′ = e in e = let x′ = [v/x]e in [v/x]e
[v/x]let x = e in e = let x = [v/x]e in e

[v/x]actor{ f := e, m(x){e}} = actor{ f := e, m(x){e}}
[v/x]immutable{ f := e, m(x){e}} = immutable{ f := e, m(x){e}}
[v/x]observable{ f := e, m(x){e}} = observable{ f := e, m(x){e}}

[v/x]shared{ f := e, m(x){e}} = shared{ f := e, m(x){e}}
[v/x]object{ f := e, m(x){e}} = object{ f := [v/x]e, [v/x]m(x){e}} if x 6= this

[v/this]object{ f := e, m(x){e}} = object{ f := e, m(x){e}}

Figuur 6.3.: Substitution rules: x denotes a variable name or the pseudovariable this.

6.2.3. Substitution and Tagging Rules

Substitution rules
Fig. 6.3 lists the different rules for propagating variable/value substitutions. For
completeness, the substitution rules for the different domains have already
been included at this stage. In most cases the variable is substituted by the

91

6. An Operational Semantics for a Significant Subset of Shacl

value within the different subexpressions of the compound expression. Expres-
sions contained in the actor literal and the different domain literals have to be
lexically closed, this means that subexpressions are not substituted.

Tagging Rules

[[x]]ιd = x [[m(x){e}]]ιd = m(x){[[e]]ιd}
[[e. f]]ιd = ([[e]]ιd). f [[e. f := e]]ιd = ([[e]]ιd). f := [[e]]ιd

[[null]]ιd = null [[e← m(e)]]ιd = [[e]]ιd ← m([[e]]ιd)
[[e.m(e)]]ιd = [[e]]ιd .m([[e]]ιd)

[[let x = e in e]]ιd = let x = [[e]]ιd in [[e]]ιd
[[object{ f := e, m(x){e}}]]ιd = objectιd

{ f := [[e]]ιd , m(x){[[e]]ιd}}
[[immutable{ f := e, m(x){e}}]]ιd = immutable{ f := e, m(x){e}}
[[observable{ f := e, m(x){e}}]]ιd = observable{ f := e, m(x){e}}

[[shared{ f := e, m(x){e}}]]ιd = shared{ f := e, m(x){e}}
[[actor{ f := e, m(x){e}}]]ιd = actor{ f := e, m(x){e}}

Figuur 6.4.: Runtime object tagging rules.

Tagging rules
Every object literal is tagged at runtime with the identifier of its lexically en-
closing domain, ιd, using the objectιd

runtime syntax. Fig. 6.4 lists a number of
rules on how this tag is propagated through the different subexpressions. Any
compound expression simply propagates the substitution to its subexpressions
except for the actor literal and the different domain literals.

6.2.4. Reduction Rules

Notation Actor heaps O are sets of objects. To lookup and extract values from
a set O, we use the notation O = O′ ·∪{o}. This splits the set O into a singleton
set containing the desired object o and the disjoint set O′ = O \ {o}. The nota-
tion Q = Q′ ·m deconstructs a sequence Q into a subsequence Q′ and the last
element m. In SH A C L -L I T E, queues are sequences of messages and are proces-

92

6.2. Basic Shacl-Lite, Actors and Their Isolated Domains

sed right-to-left, meaning that the last message in the sequence is the first to be
processed. We denote both the empty set and the empty sequence using ∅. The
notation e�[e] indicates that the expression e is part of a compound expression
e�, and should be reduced first before the compound expression can be reduced
further.
Any SH A C L -L I T E program represented by expression e is run using the initial
configuration:

K〈{A〈ιa, ∅, [[e]]ιa〉}, {I〈ιa, ∅〉}〉

The initial configuration contains a main actor and its associated empty isolated
domain. Every lexically nested object expression in the program is annotated
with the domain identifier of the main isolated domain using the [[e]]ιa syntax.

Actor-local reductions Actors operate by perpetually taking the next mes-
sage from their message queue, transforming the message into an appropriate
expression to evaluate, and then evaluating (reducing) this expression to a va-
lue. When the expression is fully reduced, the next message is processed.
If no actor-local reduction rule is applicable to further reduce a reducible expres-
sion, i. e., when the reduction is stuck, this signifies an error in the program. The
only valid state in which an actor cannot be further reduced is when its mes-
sage queue is empty, and its current expression is fully reduced to a value. A
value cannot be further reduced and the actor sits idle until it receives a new
message.
We now summarize the actor-local reduction rules in Fig. 6.5:

• L E T: Reducing a “let”-expression simply substitutes the value of x for v in
e.

• P R O C E S S -M E S S A G E: this rule describes the processing of incoming asyn-
chronous messages directed at local objects. A new message can be proces-
sed only if two conditions are satisfied: the actor’s queue Q is not empty,
and its current expression cannot be reduced any further (the expression
is a value v).

• I N VO K E: a method invocation simply looks up the method m in the re-
ceiver object (belonging to some domain) and reduces the method body
expression e with appropriate values for the parameters x and the pseud-
ovariable this. It is only possible for an actor to invoke a method on an

93

6. An Operational Semantics for a Significant Subset of Shacl

(L E T)
A〈ιa, Q, e�[let x = v in e]〉
→a A〈ιa, Q, e�[[v/x]e]〉

(P R O C E S S -M E S S A G E)
A〈ιa, Q ·M〈ιa.ιo, m, v〉, v〉
→a A〈ιa, Q, ιa.ιo.m(v)〉

(I N VO K E)
r = ιa.ιo I〈ιa, O〉 ∈ D

O〈ιo, F, M〉 ∈ O m(x){e} ∈ M

K〈A ·∪{A〈ιa, Q, e�[r.m(v)]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[[r/this][v/x]e]〉}, D〉

(F I E L D -A C C E S S)
I〈ιa, O〉 ∈ D

O〈ιo, F, M〉 ∈ O f := v ∈ F

K〈A ·∪{A〈ιa, Q, e�[ιa.ιo. f]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D〉

(F I E L D -U P DAT E)
o = O〈ιo, F ·∪{ f := v′}, M〉
o′ = O〈ιo, F ∪ { f := v}, M〉

D = D′ ·∪{I〈ιa, O ·∪{o}〉}
D′′ = D′ ∪ {I〈ιa, O ∪ {o′}〉}

K〈A ·∪{A〈ιa, Q, e�[ιd.ιo. f := v]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D′′〉

(C O N G R U E N C E)
a→a a′

K〈A ·∪{a}, D〉
→k K〈A ∪ {a′}, D〉

Figuur 6.5.: Actor-local reduction rules and congruence.

object within its associated isolated domain (with the same domain iden-
tifier, ιa).

• F I E L D -A C C E S S, F I E L D -U P DAT E. It is only possible for an actor to access
or update a field of an object within its associated isolated domain. A field
update modifies the owning domain’s heap so that it contains an object
with the same address but with an updated set of fields.

• C O N G R U E N C E: this rule simply connects the actor local reduction rules
to the global configuration reduction rules.

94

6.2. Basic Shacl-Lite, Actors and Their Isolated Domains

(N E W-O B J E C T)
ιo fresh r = ιa.ιo

o = O〈ιo, f := v, m(x){e}〉
K〈A ·∪{A〈ιa, Q, e�[objectιa

{ f := v, m(x){e}}]〉}, D ·∪{I〈ιa, O〉}〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D ∪ {I〈ιa, O ∪ {o}〉}〉

(N E W-A C T O R)
ιa′ , ιo fresh o = O〈ιo, f := null, m(x){[[e′]]ιa′ }〉

r = ιa′ .ιo a = A〈ιa′ , ∅, r. f := [r/this][[e]]ιa′ 〉
K〈A ·∪{A〈ιa, Q, e�[actor{ f := e, m(x){e′}}]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉, a}, D ∪ {I〈ιa′ , {o}〉}〉

Figuur 6.6.: Creational rules

Rules for object and actor literals We summarize the creation reduction
rules in Fig. 6.6:

• N E W-O B J E C T: An object expression can only be reduced once its field
initialization expressions have been reduced to a value. All object expres-
sions are tagged with the domain id of the lexically enclosing domain.
The effect of reducing an object literal expression is the addition of a new
object to the heap of that domain. The literal expression reduces to a
domain reference r to the new object.

• N E W-A C T O R: when an actor ιa reduces an actor literal expression, a new
actor ιa′ is added to the set of actors of the configuration. A newly created
isolated domain is associated with that actor. The new domain’s heap con-
sists of a single new object ιo whose fields and methods are described by
the literal expression. The [[e]]ιd syntax makes sure that all lexically nested
object expressions are tagged with the domain id of the newly created
domain. The actor literal expression reduces to a domain reference to the
new object, allowing the actor that created the new actor to communicate
further with that actor.

Asynchronous communication reductions We summarize the asynchronous
communication reduction rules in Fig. 6.7:

95

6. An Operational Semantics for a Significant Subset of Shacl

(L O CA L -A S Y N C H R O N O U S -S E N D)
A〈ιa, Q, e�[ιa.ιo ← m(v)]〉

→a A〈ιa,M〈ιa.ιo, m, v〉 ·Q, e�[null]〉

(R E M O T E -A S Y N C H R O N O U S -S E N D)
A = A′ ·∪{A〈ιa′ , Q′, e′〉}

A′′ = A′ ∪ {A〈ιa′ ,M〈ιa′ .ιo, m, v〉 ·Q′, e′〉}
K〈A ·∪{A〈ιa, Q, e�[ιa′ .ιo ← m(v)]〉}, D〉
→k K〈A′′ ∪ {A〈ιa, Q, e�[null]〉}, D〉

Figuur 6.7.: Asynchronous message rules

• L O CA L -A S Y N C H R O N O U S -S E N D: an asynchronous message sent to a lo-
cal object (i. e., an object owned by the isolated domain of the sender)
simply appends a new message to the end of the actor’s own message
queue. The message send itself immediately reduces to null.

• R E M O T E -A S Y N C H R O N O U S -S E N D: this rule describes the reduction of
an asynchronous message send expression directed at a remote isola-
ted reference, i. e., an isolated domain reference whose ιa′ is the same
as another actor in the system. A new message is appended to the
queue of the recipient actor ιa′ (top part of the rule). As in the L O CA L -
A S Y N C H R O N O U S -S E N D rule, the message send expression itself evalua-
tes to null.

6.3. Immutable Domains

An immutable domain is an object heap of immutable objects. Each lexically
nested object expression will reduce to an object that belongs to that immu-
table domain. This is achieved by the tagging rules as described in Sec. 6.2.3.
Immutability of objects owned by an immutable domain is achieved by not
specifying a reduction rule for updating the field of an object owned by an im-
mutable domain. The addition of immutable domains does not alter any of the
existing reduction rules.

6.3.1. Semantic Entities

The set of domains is extended with the set of immutable domains. An Im-
mutable domain has an identifier, ιc and an object heap. ImmutableId and
IsolatedId are a distinct subset of DomainId.

96

6.3. Immutable Domains

Semantic Entities of SH A C L

D ⊆ Domain ::= C ∪ I Domains
C ⊆ Immutable ::= C〈ιc, O〉 Immutable Domains
ιc ∈ ImmutableId, ImmutableId ·∪IsolatedId ⊆ DomainId

Figuur 6.8.: Additional semantic entities for immutable domains

SH A C L Syntax

Syntax
e ∈ E ⊆ Expression ::= . . . | immutable{ f := e, m(x){e}}

Evaluation Contexts
e� ::= . . . | immutable{ f := v, f := e�, f := e, m(x){e}}

Figuur 6.9.: Additional syntax for immutable domains

6.3.2. Syntax

The SH A C L -L I T E syntax is extended with syntax to create new immutable do-
mains. Similar to the object syntax, the field initialiser expressions of an isolated
domain expression need to be reduced to a value from left to right before the
isolated domain literal can be further reduced. An additional evaluation context
was added to specify this behavior.

(I M M U TA B L E - I N VO K E)
r = ιc.ιo C〈ιc, O〉 ∈ D

O〈ιo, F, M〉 ∈ O m(x){e} ∈ M

K〈A ·∪{A〈ιa, Q, e�[r.m(v)]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[[r/this][v/x]e]〉}, D〉

(I M M U TA B L E -F I E L D -A C C E S S)
C〈ιc, O〉 ∈ D

O〈ιo, F, M〉 ∈ O f := v ∈ F

K〈A ·∪{A〈ιa, Q, e�[ιc.ιo. f]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D〉

Figuur 6.10.: Immutable Domain Actor-Local Reduction Rules.

97

6. An Operational Semantics for a Significant Subset of Shacl

6.3.3. Reduction Rules

Actor-local reductions We summarize the actor-local reduction rules in
Fig. 6.10:

• I M M U TA B L E - I N VO K E: Similar to a method invocation on an isolated do-
main reference, the method m is simply looked up in the receiver object
(belonging to some domain) and reduces the method body expression e
with appropriate values for the parameters x and the pseudovariable this.
However, in this case any actor can invoke a method on an immutable do-
main reference, regardless of the identifier of the domain.

• I M M U TA B L E -F I E L D -A C C E S S. Any actor can access a field of an immuta-
ble domain object. The object is looked up in the appropriate immutable
domain and the field access is reduced to the associated value.

• I M M U TA B L E -F I E L D -U P DAT E. There is no rule specified for field updates
on immutable domain references. A field update expression on an immu-
table domain reference will not be further reduced and lead to a stuck
state.

(N E W- I M M U TA B L E -O B J E C T)
ιo fresh r = ιc.ιo

o = O〈ιo, f := v, m(x){e}〉
K〈A ·∪{A〈ιa, Q, e�[objectιc

{ f := v, m(x){e}}]〉}, D ·∪{C〈ιc, O〉}〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D ∪ {C〈ιc, O ∪ {o}〉}〉

(N E W- I M M U TA B L E -D O M A I N)
ιc, ιo fresh r = ιc.ιo

o = O〈ιo, f := v, m(x){[[e]]ιc}〉
K〈A ·∪{A〈ιa, Q, e�[immutable{ f := v, m(x){e}}]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D ∪ {C〈ιc, {o}〉}〉

Figuur 6.11.: Immutable Creational Rules

Rules for object and immutable domain literals We summarize the immu-
table domain creation reduction rules in Fig. 6.11:

98

6.4. Observable Domains

• N E W- I M M U TA B L E -O B J E C T: An object expression can only be reduced
once its field initialization expressions have been reduced to a value. The
effect of reducing an object literal expression is the addition of a new ob-
ject to the heap of the immutable domain. The literal expression reduces
to a domain reference r to the new object.

• N E W- I M M U TA B L E -D O M A I N: A domain literal will reduce to the construc-
tion of a new immutable domain with a single object in its heap. That
domain is added to the set of domains in the configuration. Similarly to
the rule for N E W-O B J E C T, the immutable domain expression can only be
further reduced once its field initialization expressions have been reduced
to a value. The domain expression reduces to an immutable domain re-
ference r to the newly created object. [[e]]ιc denotes a transformation that
makes sure that all lexically nested object expressions are annotated with
the domain id of the newly created domain.

(I M M U TA B L E -A S Y N C H R O N O U S -S E N D)
A〈ιa, Q, e�[ιc.ιo ← m(v)]〉

→a A〈ιa,M〈ιc.ιo, m, v〉 ·Q, e�[null]〉

Figuur 6.12.: Immutable Asynchronous Message Reduction Rules

Asynchronous communication reductions We summarize the asynchronous
communication reduction rule in Fig. 6.12:

• I M M U TA B L E -A S Y N C H R O N O U S -S E N D: an asynchronous message sent to
an immutable object simply appends a new message to the end of the
sender’s own message queue. The asynchronous message send itself im-
mediately reduces to null.

6.4. Observable Domains

An observable domain object is synchronously readable by every actor as long
as they have obtained a reference to that object. To ensure that the isolated turn
principle remains valid, any actor always reads values from a consistent snap-
shot of the object heap of an observable domain. That snapshot is stored in the
semantic function, f . The addition of observable domains alters the reduction

99

6. An Operational Semantics for a Significant Subset of Shacl

rule for processing messages, P R O C E S S -M E S S A G E, such that each actor takes
a snapshot of the various observable domains at the start of a turn and commits
any changes made at the end of a turn.

Semantic Entities of SH A C L

D ⊆ Domain ::= C ∪ I ∪ B Domains
B ⊆ Observable ::= B〈ιb, ιa, f , O〉 Observable Domains
ιb ∈ ObservableId, IsolatedId ·∪ImmutableId ·∪ObservableId ⊆ DomainId

Figuur 6.13.: Additional semantic entities for observable domains

6.4.1. Semantic Entities

The set of domains is extended with the set of observable domains. An Obser-
vable domain has an identifier (ιb) and an identifier that specifies the owner of
the domain (ιa). It also has a semantic funtion, f , that maps actor identifiers to
a temporary snapshot of the object heap of the observable domain. Each time
an actor accesses an observable domain, that actor will read from that snapshot.
Lastly, it has an object heap, O, that represents the latest consistent version of
the objects in the domain. ImmutableId, IsolatedId and ObservableId are dis-
tinct subsets of DomainId.

6.4.2. Syntax

The SH A C L -L I T E syntax is extended with a new syntax expression to create
new observable domains. Additional runtime syntax was added to ensure that
an actor commits any changes made to its observable domains at the end of
each turn. Similar to the object syntax, the field initialiser expressions of an
observable domain expression need to be reduced to a value from left to right
before the observable domain literal can be further reduced. An additional eva-
luation context was added to specify this behavior.

6.4.3. Reduction Rules

Actor-local reductions We summarize the actor-local reduction rules in
Fig. 6.15:

100

6.4. Observable Domains

SH A C L Syntax

Syntax
e ∈ E ⊆ Expression ::= . . . | observable{ f := e, m(x){e}}

Runtime Syntax
e ::= . . . | commit

Evaluation Contexts
e� ::= . . . | observable{ f := v, f := e�, f := e, m(x){e}}

Figuur 6.14.: Additional syntax for observable domains

• P R O C E S S -M E S S A G E: this rule replaces the rule for processing messages
in Fig. 6.5. A new message can be processed only if two conditions are sa-
tisfied: the actor’s queue Q is not empty, and its current expression cannot
be reduced any further (the expression is a value v). The processing of an
asynchronous message reduces to a synchronous method invocation fol-
lowed by the runtime syntax commit. The most important change is that
before the start of the turn, first a snapshot is taken of any domain which
is not owned by the actor using the auxiliary snapshot function. While
reducing the synchronous method invocation ιa.ιo.m(v), any field access
to an observable domain reference will be looked up using that snapshot.

• C O M M I T: The runtime syntax commit is always the last expression that
needs to be reduced before the end of a turn. The reduction of this rule
replaces all the object heaps of the observable domains owned by the
actor in D with its own local copy using the auxiliary commit function.

• O B S E RVA B L E - I N VO K E: In the case of method invocation, the method m
is looked up in the copy of the object that is located in the snapshot of the
observable domain, f (ιa). Note that the owner of the domain, ιa′ , does not
necessarily need to be the same as the actor that is invoking the method,
ιa. Any actor can invoke a method on an observable domain reference,
regardless of the owner of the domain. A method invocation reduces the

101

6. An Operational Semantics for a Significant Subset of Shacl

(P R O C E S S -M E S S A G E)
D′ = snapshot(ιa, D)

K〈A ·∪{A〈ιa, Q ·M〈ιa.ιo, m, v〉, v〉}, D〉
→k K〈A ∪ {A〈ιa, Q, ιa.ιo.m(v); commit〉}, D′〉

(C O M M I T)
D′ = commit(ιa, D)

K〈A ·∪{A〈ιa, Q, commit〉}, D〉
→k K〈A ∪ {A〈ιa, Q, null〉}, D′〉

(O B S E RVA B L E - I N VO K E)
r = ιb.ιo B〈ιb, ιa′ , f , O′〉 ∈ D f (ιa) = O

O〈ιo, F, M〉 ∈ O m(x){e} ∈ M

K〈A ·∪{A〈ιa, Q, e�[r.m(v)]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[[r/this][v/x]e]〉}, D〉

(O B S E RVA B L E -F I E L D -A C C E S S)
B〈ιb, ιa′ , f , O′〉 ∈ D f (ιa) = O
O〈ιo, F, M〉 ∈ O f := v ∈ F

K〈A ·∪{A〈ιa, Q, e�[ιb.ιo. f]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D〉

(O B S E RVA B L E -F I E L D -U P DAT E)
D = D′ ·∪B〈ιb, ιa, f , O′〉

f (ιa) = O ·∪{O〈ιo, F ·∪{ f := v′}, M〉}
f ′ = f [ιa → O ∪O〈ιo, F ∪ { f := v}, M〉]

D′′ = D′ ∪ B〈ιb, ιa, f ′, O′〉
K〈A ·∪{A〈ιa, Q, e�[ιb.ιo. f := v]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D′′〉

Figuur 6.15.: Observable Domain Actor-Local Reduction Rules.

method body expression e with appropriate values for the parameters x
and the pseudovariable this.

• O B S E RVA B L E -F I E L D -A C C E S S. Similar to method invocation, the field is
looked up in the copy of the object that is located in the snapshot of the
observable domain, f (ιa). Any actor can access a field of an observable
domain object.

• O B S E RVA B L E -F I E L D -U P DAT E. A field update to an observable domain
reference can only be reduced if the owner of the observable domain is
the same as the actor performing the update. Note that the field is only
updated in the local snapshot that the actor has of the domain’s heap. Any
field updates are only propagated to the observable domain’s heap at the
end of a turn when the actor commits.

Rules for object and observable domain literals We summarize the immu-
table domain creation reduction rules in Fig. 6.16:

102

6.4. Observable Domains

(N E W-O B S E RVA B L E -O B J E C T)
ιo fresh r = ιb.ιo D = D′ ·∪B〈ιb, ιa′ , f , O′〉

f (ιa) = O f ′ = f [ιa → O ∪O〈ιo, f := v, m(x){e}〉]
D′′ = D′ ·∪B〈ιb, ιa′ , f ′, O′〉

K〈A ·∪{A〈ιa, Q, e�[objectιb
{ f := v, m(x){e}}]〉}, D〉

→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D′′〉

(N E W-O B S E RVA B L E -D O M A I N)
ιb, ιo fresh r = ιb.ιo

o = O〈ιo, f := v, m(x){[[e]]ιb}〉
K〈A ·∪{A〈ιa, Q, e�[observable{ f := v, m(x){e}}]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D ∪ {B〈ιb, ιa, ιa → {o}, {o}〉}〉

Figuur 6.16.: Observable Creational Rules

• N E W-O B S E RVA B L E -O B J E C T: An object expression can only be reduced
once its field initialize expressions have been reduced to a value. The
effect of reducing an object literal expression is the addition of a new
object to the actor’s local snapshot of the heap of the observable domain.
The literal expression reduces to a domain reference r to the new object.

• N E W-O B S E RVA B L E -D O M A I N: A domain literal will reduce to the con-
struction of a new observable domain with the current actor, ιa as its ow-
ner and with a single object in its heap. That domain is added to the set of
domains in the configuration. Similarly to the rule for N E W-O B J E C T, the
observable domain expression can only be further reduced once its field
initialize expressions have been reduced to a value. The domain expres-
sion reduces to an observable domain reference r to the newly created
object. The [[e]]ιd syntax makes sure that all lexically nested object expres-
sions are tagged with the domain id of the newly created domain.

Asynchronous communication reductions We summarize the asynchronous
communication reduction rules in Fig. 6.17:

• O B S E RVA B L E -A S Y N C H R O N O U S -S E N D: this rule describes the reduction
of an asynchronous message send expression directed at an observable
reference. A new message is appended to the queue of the owner of the

103

6. An Operational Semantics for a Significant Subset of Shacl

(O B S E RVA B L E -A S Y N C H R O N O U S -S E N D)
B〈ιb, ιa′ , f , O′〉 ∈ D

A = A′ ·∪{A〈ιa′ , Q′, e′〉}
A′′ = A′ ∪ {A〈ιa′ ,M〈ιb.ιo, m, v〉 ·Q′, e′〉}
K〈A ·∪{A〈ιa, Q, e�[ιb.ιo ← m(v)]〉}, D〉
→k K〈A′′ ∪ {A〈ιa, Q, e�[null]〉}, D〉

Figuur 6.17.: Observable Asynchronous Message Reduction Rules

observable domain ιa′ (top part of the rule). The message send expression
itself evaluates to null.

Auxiliary functions

The auxiliary function snapshot ensures that at the start of a turn an actor
takes a snapshot of each observable domain by storing a copy of its object
heap. The first rule takes a new snapshot, f [ιa → O], of the latest version of the
object heap, O, for any observable domain and recursively calls snapshot on the
remaining domains. The second rule just returns the leftover set of domains, D,
if all observable domains have been visited.

Auxiliary functions

snapshot(ιa, D ·∪B〈ιb, ιa′ , f , O〉) de f
= B〈ιb, ιa′ , f [ιa → O], O〉 ∪ snapshot(ιa, D)

snapshot(ιa, D)
de f
= D ∀ιb : B〈ιb, ιa′ , f , O〉 /∈ D

commit(ιa, D ·∪B〈ιb, ιa, f , O〉) de f
= B〈ιb, ιa, f , f (ιa)〉 ∪ commit(ιa, D)

commit(ιa, D)
de f
= D ∀ιa : B〈ιb, ιa′ , f , O〉 /∈ D

The auxiliary function commit ensures that at the end of a turn any changes
made to domains owned by the actor during that turn are committed. The first
rule replaces the object heap, O, of any observable domain owned by the actor,

104

6.5. Shared Domains

ιa with the snapshot stored in the semantic function, f (ιa), and recursively calls
commit on the remaining domains. The second rule just returns the leftover set
of domains, D, if all observable domains owned by the actor have been visited.

6.5. Shared Domains

Objects owned by a shared domain can be accessed by any actor in the system
given they have obtained a reference to that object. However, before an actor
can read from and write to a shared domain object it first needs to obtain a
view on the associated shared domain. A view is processed in its own turn
and is called a notification. Adding shared domains does not change any of the
existing reduction rules.

Semantic Entities of SH A C L

D ⊆ Domain ::= C ∪ I ∪ B ∪ S Domains
S ⊆ Shared ::= S〈ιs, l, S, E, R, O〉 Shared Domains

R ⊆ Request ::= R〈ιa, t, e〉 View Requests
n ∈ N ⊆ Notification ::= N〈ιd, t, e〉 Notifications

Q ⊆ Queue ::= m | n Queues
v ∈ Value ::= r | t | null Values

t ∈ RequestType ::= S H | E X Request Types
l ∈ AccessModifier ::= R(n) | W | F Access Modifiers

ιa ∈ S, E ⊆ IsolatedId Actor Identifiers
i ∈N Integers

Figuur 6.18.: Additional semantic entities for shared domains

6.5.1. Semantic Entities

The set of domains is extended with the set of shared domains. A Shared do-
main has an identifier, ιs, a single Access Modifier l (or lock), a set of actor ids,
S, that currently have shared access to the domain and a set of actor ids, E, that
currently have exclusive access to the domain. It also has a set of pending view
requests, R, and its object heap, O. A pending Request has a reference ιa, to the
actor that placed the request, the type of request, t, and an expression e, that

105

6. An Operational Semantics for a Significant Subset of Shacl

will be reduced in the context of a view once the domain becomes available.
The Type of a request is either shared (S H) or exclusive (E X). A Notification
or view is a special type of event that has a reference to the domain on which
a view was requested, the type of view that was requested and the expression
that is to be reduced once the notification-event is being processed. The Queue
used by the event-loop of an actor is also extended to also allow the reception
of notifications. The request-type is also a first class Value.

SH A C L Syntax

Syntax
e ∈ E ⊆ Expression ::= . . . | t | shared{ f := e, m(x){e}} | acquiret(e){e}

Runtime Syntax
e ::= . . . | releaset(v)

Evaluation Contexts
e� ::= . . . | acquiree�(e){e} | acquirev(e�){e} |

shared{ f := v, f := e�, f := e, m(x){e}}

Syntactic Sugar

whenShared(e){e′} def
= acquireS H(e){e′}

whenExclusive(e){e′} def
= acquireE X(e){e′}

Figuur 6.19.: Additional syntax for shared domains

6.5.2. Additional Syntax for Shared Domains

New shared domains can be created using the shared literal. This creates
a new object with the given fields and methods in a fresh shared domain.
SH A C L ’s whenShared and whenExclusive primitives are represented by the
acquiree(e){e} primitive in S H A C L -L I T E. The aquire primitive is used to ac-

106

6.5. Shared Domains

quire views on a domain. It is parametrized with three expressions of which the
first two have to reduce to a request type and a domain identifier respectively.

Runtime syntax Additional runtime syntax was added to release a view at
the end of a turn.

Evaluation contexts An additional evaluation context was added to define
the order in which the expressions of the acquire primitive need to be reduced.
Similar to the object syntax, the field initializer expressions of a shared domain
expression need to be reduced to a value from left to right before the shared
domain literal can be further reduced. An additional evaluation context was
added to specify this behavior.

(I N VO K E)
r = ιs.ιo ιa ∈ S ∪ E S〈ιs, l, S, E, R, O〉 ∈ D

O〈ιo, F, M〉 ∈ O m(x){e} ∈ M

K〈A ·∪{A〈ιa, Q, e�[r.m(v)]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[[r/this][v/x]e]〉}, D〉

(F I E L D -A C C E S S)
ιa ∈ S ∪ E S〈ιs, l, S, E, R, O〉 ∈ D
O〈ιo, F, M〉 ∈ O f := v ∈ F

K〈A ·∪{A〈ιa, Q, e�[ιs.ιo. f]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D〉

(F I E L D -U P DAT E)
ιa ∈ E

o = O〈ιo, F ·∪{ f := v′}, M〉
o′ = O〈ιo, F ∪ { f := v}, M〉

D = D′ ·∪{S〈ιs, W, S, E, R, O ·∪{o}〉}
D′′ = D′ ∪ {S〈ιs, W, S, E, R, O ∪ {o′}〉}
K〈A ·∪{A〈ιa, Q, e�[ιs.ιo. f := v]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[v]〉}, D′′〉

Figuur 6.20.: Shared Domain Actor-Local Reduction Rules.

107

6. An Operational Semantics for a Significant Subset of Shacl

6.5.3. Reduction Rules

Actor-local reductions We now summarize the actor-local reduction rules in
Figure 6.20:

• I N VO K E: a method invocation simply looks up the method m in the re-
ceiver object (belonging to some domain) and reduces the method body
expression e with appropriate values for the parameters x and the pseud-
ovariable this. It is only possible for an actor to invoke a method on an
object within a domain on which that actor currently holds either a shared
or exclusive view (ιa ∈ S ∪ E).

• F I E L D -A C C E S S, F I E L D -U P DAT E: a field update modifies the owning do-
main’s heap so that it contains an object with the same address but with
an updated set of fields. Field accesses apply only to objects located
in domains on which the actor has either an exclusive or shared view
(ιa ∈ S ∪ E) while field updates only apply in the case of an exclusive
view (ιa ∈ E).

(N E W-O B J E C T)
ιo fresh r = ιs.ιo

o = O〈ιo, f := v, m(x){e}〉
K〈A ·∪{A〈ιa, Q, e�[objectιs

{ f := v, m(x){e}}]〉}, D ·∪{S〈ιs, l, S, E, R, O〉}〉
→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D ∪ {S〈ιs, l, S, E, R, O ∪ {o}〉}〉

(N E W-S H A R E D -D O M A I N)
ιs, ιo fresh r = ιs.ιo o = O〈ιo, f := v, m(x){[[e]]ιs}〉

D′ = D ∪ {S〈ιs, F, ∅, ∅, ∅, {o}〉}
K〈A ·∪{A〈ιa, Q, e�[shared{ f := v, m(x){e}}]〉}, D〉

→k K〈A ∪ {A〈ιa, Q, e�[r]〉}, D′〉

Figuur 6.21.: Shared Creational Rules

Rules for object, domain and actor literals We summarize the creation re-
duction rules in Figure 6.21:

108

6.5. Shared Domains

• N E W-O B J E C T: All object literals are tagged with the domain id of the lexi-
cally enclosing domain. The effect of evaluating an object literal expres-
sion is the addition of a new object to the heap of that domain. Evaluating
an object literal reduces to a shared domain reference r to the new object.

• N E W-S H A R E D -D O M A I N: A shared domain literal will reduce to the con-
struction of a new domain with a single object in its heap. Similarly to
the rule for N E W-O B J E C T, the shared domain expression can only be fur-
ther reduced once its field initialize expressions have been reduced to a
value. The domain expression reduces to a shared domain reference r to
the newly created object. [[e]]ιd denotes a transformation that makes sure
that all lexically nested object expressions are annotated with the domain
id of the newly created shared domain. The access modifier is initially set
to free. No actors have a view on the domain and the set of requests is
empty.

(S H A R E D -A S Y N C H R O N O U S -S E N D)
A〈ιa, Q, e�[ιs.ιo ← m(v)]〉

→a A〈ιa, Q, e�[acquireE X(ιs.ιo){ιs.ιo.m(v)}]〉

Figuur 6.22.: Shared Asynchronous Message Reduction Rules

Asynchronous communication reductions We summarize the asynchronous
communication reduction rules in Figure 6.22:

• S H A R E D -A S Y N C H R O N O U S -S E N D: this rule describes the reduction of an
asynchronous message send expression directed at a shared domain refe-
rence. Reducing an asynchronous message to a shared domain reference
is semantically equivalent to reducing an exclusive view request on that
reference and invoking the method synchronously while holding the view
(See View Reductions). The domain reference is the target of the request
and the body of the request is the invocation of the method on that refe-
rence. Further reduction of the acquire statement will eventually reduce
the entire statement to null.

109

6. An Operational Semantics for a Significant Subset of Shacl

(A C Q U I R E -V I E W)
K〈A ·∪{A〈ιa, Q, e�[acquiret(ιs.ιo){e}]〉}, D ·∪{S〈ιs, l, S, E, R, O〉}〉

→k K〈A ∪ {A〈ιa, Q, e�[null]〉}, D ∪ {S〈ιs, l, S, E, R ∪ {R〈ιa, t, e〉}, O〉}〉

(P R O C E S S -V I E W-R E Q U E S T)
l′ = lock(t, l) D = D′ ·∪{S〈ιs, l, S, E, R ·∪{R〈ιa, t, e〉}, O〉}

D′′ = D′ ·∪{S〈ιs, l′, S, E, R, O〉}
K〈A ·∪{A〈ιa, Q, e〉}, D〉

→k K〈A ∪ {A〈ιa,N〈ιs, t, e〉 ·Q, e〉}, D′′〉

(P R O C E S S -V I E W-N O T I F I CAT I O N)
D′ = snapshot(ιa, D) D′ = D′′ ·∪{S〈ιs, l, S, E, R, O〉}

S′, E′ = add(ιa, t, S, E) D′′′ = D′′ ·∪{S〈ιs, l, S′, E′, R, O〉}
K〈A ·∪{A〈ιa, Q · N 〈ιs, t, e〉, v〉}, D〉

→k K〈A ∪ {A〈ιa, Q, e; releaset(ιs); commit〉}, D′′′〉

(R E L E A S E -V I E W)
l′ = unlock(t, l) S′, E′ = subtract(ιd, t, S, E)

D = D′ ·∪{S〈ιs, l, S, E, R, O〉} D′′ = D′ ∪ {S〈ιs, l′, S′, E′, R, O〉}
K〈A ·∪{A〈ιa, Q, e�[releaset(ιs)]〉}, D〉
→k K〈A ∪ {A〈ιa, Q, e�[null]〉}, D′′〉

Figuur 6.23.: Views reduction rules.

View reductions We summarize the view reduction rules in Figure 6.23:

• A C Q U I R E -V I E W: This rule describes the reduction of acquire expressi-
ons. This rule simply adds the view-request to the set of requests in the
domain. Note that this set is not an ordered set and thus requests can
in principle be handled in any order. The acquire expression reduces to
null.

• P R O C E S S -V I E W-R E Q U E S T: Processing a view request is also considered
as a turn of the actor. That means we first have to commit any changes to
observable domains at the end of processing the notification. The request
is removed from the set of requests and the access modifier of the domain
is updated. How the access modifier is allowed to transition from one

110

6.5. Shared Domains

value to another is described by the auxiliary function lock. Any request
to a domain that is currently unavailable will not be matched by acquire
and cannot be reduced as long as that domain remains unavailable. The
auxiliary function lock yields the new value for the access modifier given
the type of request and the current access modifier of the domain. As a
result of processing a request a new notification is scheduled in the re-
questing actor’s queue. Processing a view request can be done in parallel
with reducing actor expressions.

• P R O C E S S -V I E W-N O T I F I CAT I O N: Processing a notification will add the
actor id, ιa, to the set of shared or exclusively accessible domains in the
shared domain. Analogous to the processing of messages, a new notifi-
cation can be processed only if two conditions are satisfied: the actor’s
queue Q is not empty, and its current expression cannot be reduced any
further (the expression is a value v). The domain’s set of available sha-
red or exclusive views is updated according to the request using the add
function. Processing a notification reduces to the the expression that is
associated with the notification, followed by a release expression and a
commit. Because processing a notification is regarded as a separate turn,
the actor needs to take a snapshot of the latest observable domains and
commit at the end of the turn (See Sec. 6.4).

• R E L E A S E -V I E W: Releasing a view on the domain removes the actor id
from the set of shared or exclusively views of the domain. The access
modifier of the domain is also updated, potentially allowing other view
requests on that domain to be processed. The release statement, which
is always the last statement that is reduced by an actor before reducing
other messages in its queue, also reduces to null.

Auxiliary functions and predicates The auxiliary function unlock(t, l) de-
scribes the transition of the value of an access modifier when releasing it. If a
domain was locked for exclusive access its lock will be W (write) and can be
changed to F (free). If that resource was locked for shared access we transition
either to F or subtract one from the read modifier’s value. Similar to the unlock
rule, the lock(t, l) rule describes the transition of the value of the access modi-
fier of a shared resource when acquiring it. These two rules effectively mimic
multiple-reader, single-writer locking.
The add and subtract rules with four parameters describe the updates to the set
of shared, S, and exclusive, E, actor ids of a shared domain. The add rule adds

111

6. An Operational Semantics for a Significant Subset of Shacl

actor ids to either sets while subtract rule subtracts actor ids from either sets,
depending on the type of the view.

Auxiliary functions and predicates

lock(E X, F)
de f
= W unlock(E X, W)

de f
= F

lock(S H, F)
de f
= R(1) unlock(S H, R(1))

de f
= F

lock(S H, R(i))
de f
= R(i + 1) unlock(S H, R(i))

de f
= R(i− 1)

add(ιa, E X, ∅, ∅)
de f
= ∅, {ιa} subtract(ιa, E X, ∅, {ιa})

de f
= ∅, ∅

add(ιa, S H, S, ∅)
de f
= S ∪ {ιa}, ∅ subtract(ιa, S H, S ·∪ιa, ∅)

de f
= S, ∅

6.6. Differences Between SH A C L and SH A C L -L I T E

The operational semantics for SH A C L -L I T E was based on the semantics for the
AmbientTalk language [Cutsem et al., 2014]. As such, we followed their syntax
for many of the concepts of the basic event-loop model, which is different from
the regular SH A C L syntax. Semantically both languages are identical except
for the fact that in S H A C L -L I T E an object expression is syntax that only allows
the specification of the fields and methods of an object while in S H A C L, object
is a primitive with a single functional parameter that accepts any valid SH A C L

expression for initialization.
While the operational semantics gives a correct formal specification of the se-
mantics of the different domains, it certainly does not reflect an optimal imple-
mentation strategy. A possible implementation of the domain model is discussed
in Chapter 7.
One difference between the actual implementation of the domain model and
the operational semantics is that the implementation prioritizes exclusive view
requests to prevent starvation. The operational semantics handles view requests
non-deterministically.

6.7. Conclusion

We have presented an operational semantics for a key subset of the S H A C L pro-
gramming language. The operational semantics provides a formal account of

112

6.7. Conclusion

SH A C L actors, objects, synchronous and asynchronous communication and the
four types of domains. What is novel about the semantics is that it generalises
the concept of an object heap.

113

7
I M P L E M E N TAT I O N : D O M A I N H A N D L E R S

The implementation of the SH A C L virtual machine is an abstract syntax tree
interpreter. The source code for any S H A C L program is translated to an AST
by the reader and evaluated by the evaluator. That evaluator is a reentrant im-
plementation that is parametrized by a runtime context. That runtime context
stores, among other things, the lexical domain in which the current expression
is being evaluated. In the implementation of SH A C L each domain is linked
to a specific domain handler. Each domain handler implements a number of
so-called “traps”, methods that can be triggered by the evaluator. When a rele-
vant operation is executed, the evaluator calls the corresponding trap. In other
words, domain handlers are the internal API with which the different domains
are implemented. This is a generic API that allows specification of the different
domains by means of redefining the different traps. In this chapter we focus on
this aspect of the implementation by presenting each individual domain handler
for the four types of domains.

115

7. Implementation: Domain Handlers

7.1. The SH A C L VM: An Implementation in Go

The SH A C L Virtual Machine was implemented in the Go Programming Langu-
age [Google, 2011]. The Go programming language is a systems language that
is recognizably in the tradition of C but has some features that make it more
accessible. The most important ones in the context of S H A C L are: a garbage col-
lector and a lightweight concurrency mechanism in the form of go-routines. The
original idea was that the combination of a garbage collector with lightweight
concurrency would allow us to experiment with scalable parallelism without
having to worry about those extra concerns. The Go implementation of the
SH A C L VM was implemented as an abstract syntax tree interpreter with a read-
eval-print loop. The current implementation has about 5600 lines of Go code
that can be found online [De Koster, 2014]. This implementation serves as a
platform for experimenting with new language abstractions for the communi-
cating event-loop model. There are many advantages of designing a new pro-
gramming language from scratch over a implementing a library for an existing
language. Most importantly, a programming language allows us to enforce cer-
tain properties of our model. In Chapter 8, we will discuss an implementation
of Domains in Scala as a library, where we will highlight the limitations of the
library approach. Rather than focussing on optimization, the implementation of
SH A C L focusses on reproducing correct semantics, and providing lightweight
syntax for the domain model.

7.2. The Domain Handler Interface

In the current implementation of S H A C L each expression is evaluated with
respect to a certain runtime context. A runtime context is defined by the cur-
rent dynamic receiver, the lexical environment, the lexical domain and the
currently executing actor. The current receiver is a pointer to the late-bound
receiver self. The environment represents the current lexical scope, i.e. a map
from visible variables to their values. The lookup of receiver-less messages will
start in the environment. Every lexical environment is always part of its lexically
enclosing domain and is subject to that domain’s restrictions. For example, an
immutable domain enforces immutability of all of its lexically enclosed environ-
ments. Because the lexical environment does not have an explicit back-pointer
to its lexically enclosing domain, the lexical domain is also part of the context
parameter.

116

7.2. The Domain Handler Interface

Fig. 7.1 shows the interface of a domain handler. The domain is the domain that
is associated with the domain handler. Each domain handler can define up to
seven different traps. If a particular trap is not defined the default one is used.

+bind(variable, value, context)
+locate(variable, context)
+assign(variable, value, context)

+invoke(message, context)
+receive_invocation(message, context)

+send(message, context)
+receive_message(message, context)

-domain
DomainHandler

Figuur 7.1.: UML class diagram of the domain handler interface

The different traps are introduced below. In the signature of the different traps
the context parameter is the context from which the trap was called. variable
should always be a symbol while value can be any S H A C L runtime value. A
message holds the receiver object, the method name as a symbol and a list of
arguments. One important observation to make is that in SH A C L object fields
and variables are unified. The bind, locate and assign traps apply for both
variables and object fields.

bind(variable, value, context) defines a new variable bound to a value in
the current lexical environment. The lexical environment is always grou-
ped with its lexically enclosing domain in the context. This means that
the bind trap is always invoked on the domain handler of the lexically
enclosing domain.

locate(variable, context) looks up the value that is bound to the variable
in the current lexical environment. Similarly to bind, this trap is always
invoked on the lexically enclosing domain.

assign(variable, value, context) rebinds the variable to a new value in
the current lexical environment. Similarly to bind and locate, this trap
is also always invoked on the lexically enclosing domain.

117

7. Implementation: Domain Handlers

invoke(message, context) is triggered on outgoing synchronous messages.
Each time a method is invoked, this trap is called on the domain handler
of the current lexical domain.

receive_invocation(message, context) is triggered on incoming method
invocations. The receiver object of the invocation can potentially be ow-
ned by a different domain than the one from which the invocation was
made.

send(message, context) is triggered on outgoing asynchronous messages. Si-
milarly to invoke, this trap is called on the domain handler of the current
lexical domain.

receive_message(message, context) is triggered on incoming asynchro-
nous messages. Similarly to receive_invocation, if the receiver of the
asynchronous message is a domain reference, this can potentially be cal-
led on a different domain handler.

Domain handlers are currently not first class entities in SH A C L. They are im-
plemented in Go and the implementation directly calls into them from the eva-
luator. However, in view of giving a concise description of the implementation
of the different domain handlers, this chapter shows a possible meta-circular
implementation written in S H A C L. Firstly the default domain handler is pre-
sented. The default domain handler defines the default behavior for each of the
traps. Other domain handlers can specialize this implementation by overriding
the different traps. Afterwards the implementation for the domain handlers of
the four types of domains is shown.

118

7.2. The Domain Handler Interface

7.2.1. Default Domain Handler

The default domain handler defines the default behavior for each of the traps.
Lst. 7.1 shows a possible implementation of the default domain handler.

domain. There is a bidirectional association between a domain and its domain
handler.

bind, locate, assign. These are the three traps that are triggered upon defi-
ning, referring to and assigning a variable or field. The default trap dele-
gates the call to the current lexical environment which then adds, looks
up or assigns the variable in the appropriate scope.

invoke. The default implementation for method invocation first checks the
type of the receiver object. If the receiver is a domain reference then the
actual method invocation will be handled by the domain of the receiver
object. On line 19 we unwrap the receiver object. The message is then fur-
ther processed by invoking the receive_invocation trap on the domain
handler of the owner of the unwrapped object. If the receiver object is not
a domain reference the processing of the invocation is simply forwarded
to the receive_invocation trap of the same domain (i. e. self).

receive_invocation. On line 25 the context in which the method will be
executed is switched to the domain of the domain handler. The domain in
which the method is invoked is always the domain that owns the receiver
object.

send. Similarly to method invocation, processing an asynchronous message
also forwards the actual processing of the message to another trap of the
domain handler of the domain that owns the receiver object, in this case
the receive_message trap.

receive_message. An asynchronous message in S H A C L is always translated
to a synchronous method invocation that is enqueued as an event in an
event queue. The default implementation will enqueue that event in the
sender’s own event queue and return the corresponding future as the
result of the asynchronous message. When the message is processed the
corresponding method is invoked on the target object and the future is
resolved with the return value of that invocation.

119

7. Implementation: Domain Handlers

1 default_domain_handler: object(
2 { domain: void;
3

4 initialize(a_domain):
5 domain:= a_domain;
6

7 bind(variable, value, context):
8 context.environment.bind(variable, value);
9

10 locate(variable, context):
11 context.environment.locate(variable);
12

13 assign(variable, value, context):
14 context.environment.assign(variable, value);
15

16 invoke(message, context):
17 { receiver: message.receiver;
18 if(receiver.type == "domain_reference",
19 { message.receiver := receiver.dereference();
20 receiver.domain.handler.receive_invocation(message, context) },
21 self.receive_invocation(message, context)) };
22

23 receive_invocation(message, context):
24 { ctx: context.clone();
25 ctx.domain := domain;
26 message.invoke(ctx) };
27

28 send(message, context):
29 { receiver: message.receiver;
30 if(receiver.type == "domain_reference",
31 { message.receiver := receiver.dereference();
32 receiver.domain.handler.receive_message(message, context) },
33 self.receive_message(message, context)) };
34

35 receive_message(message, context):
36 { event: create_event(message, context);
37 context.actor.event_queue.enqueue(event);
38 event.future } });

Listing 7.1: Default Domain Handler

120

7.2. The Domain Handler Interface

7.2.2. Immutable Domain Handler

An immutable domain is an object heap of immutable objects that are freely
accessible by all the different actors in the system. In that sense the immutable
domain handler mostly corresponds to the default domain handler. Actors are
free to define and lookup variables and to invoke methods on immutable do-
main references. Remember from Sec. 5.3 that asynchronous messages that are
sent to domain references of domains without an owner are enqueued in the
sender’s own event queue. Equally, asynchronous messages that are sent to an
immutable domain reference are enqueued in the actor’s own event queue. The
only entry point to an immutable domain is through method invocation. Invo-
king a method will lead to the creation of a new scope and any variables that are
declared during that method invocation are bound in that new scope. Because
that new scope is local to the actor executing the invocation, two actors can
never define a new variable in the same scope. This means that defining new
variables in an immutable domain can be allowed without the risk of possible
race conditions. The only trap that is overridden is assign to prevent actors
from mutating the heap of an immutable domain.
Lst. 7.2 illustrates a possible meta-circular implementation. The immutable do-
main handler inherits from the default domain handler by making a clone of
that handler. Attempting to assign to a variable of an immutable domain will
result in a runtime error.

1 immutable_domain_handler: object(
2 { super:= default_domain_handler.clone();
3

4 assign(variable, value, context):
5 error("Not allowed to write to immutable domain.") });

Listing 7.2: Immutable Domain Handler

7.2.3. Isolated Domain Handler

An isolated domain is always associated with a single actor, namely the ow-
ner of that domain. Only the owner of an isolated domain can read and write
to objects owned by that domain. Similar to Smalltalk [Goldberg and Rob-
son, 1983], in S H A C L, object fields are private and methods are public. Ac-
cessing a field of an object is translated to a method invocation. object.field
is translated to object.field() and object.field := expression is transla-
ted to object.field!(expression). This means that method invocations are

121

7. Implementation: Domain Handlers

the only entry points to a domain. In the default implementation shown in
Lst. 7.1 the receive_invocation is the one responsible for switching the do-
main in the context. To ensure isolation for isolated domains it is sufficient
to check whether the actor that is accessing the domain is the owner of the
domain. Lst. 7.3 gives a possible meta-circular implementation for an isolated
domain handler. The default domain handler is extended with an owner field
and the receive_invocation and receive_message traps are overridden. The
receive_invocation trap first checks whether the actor that is currently execu-
ting the invocation is also the owner of the isolated domain before delegating
the method invocation to the default domain handler. If the currently executing
actor is not the owner then a runtime error is thrown. Asynchronous messages
sent to an isolated domain reference are enqueued in the event queue of the
owner of the isolated domain rather than in the sender’s own event queue. The
receive_message is overridden to implement this semantics.

1 isolated_domain_handler: object(
2 { super:= default_domain_handler.clone();
3 owner: void;
4

5 initialize(a_domain, an_actor):
6 { owner:= an_actor;
7 super.initialize(a_domain) };
8

9 receive_invocation(message, context):
10 if(context.actor == owner,
11 super.receive_invocation(message, context),
12 error("Not allowed to synchronously access isolated domain"));
13

14 receive_message(message, context):
15 { event: create_event(message, context);
16 owner.event_queue.enqueue(event);
17 event.future } });

Listing 7.3: Isolated Domain Handler

7.2.4. Observable Domain Handler

Observable domains are domains that are owned by a single actor but, in con-
trast to isolated domains, are observable by others. Similarly to isolated do-
mains, the owner of an observable domain is allowed to synchronously read
and write to objects owned by that domain. However, other actors can also

122

7.2. The Domain Handler Interface

synchronously read from, but not write to, objects owned by that domain. To
ensure the isolated turn principle, during any turn, the observers of the do-
main should always observe an immutable consistent snapshot of the domain.
In later turns an observer might observe a newer version of the domain but
during a single turn the domain has to appear to be immutable. To guarantee
that other actors always see the same version of an observable domain, SH A C L

uses a Multi-Version History Software Transactional Memory [Perelman et al.,
2010] system. In SH A C L each turn executed by an actor is considered to be a
transaction. However, it is important to note that while in SH A C L a turn has a
transactional behavior, the domain model does not have any STM specific key-
words to delimit transactions. To support the multi-version history STM, SH A C L

actors were extended with an age field which specifies the age of an actor in
terms of the number of turns it has successfully completed since its creation. For
observable domains this means that the age in turns of the owner of an observa-
ble domain (owner.age) determines the version number of the last committed
version of an observable domain. Additionally, actors are also extended with
an associative data-structure, the version_store, to specify what version of a
domain an actor is currently reading. The observable domains owned by an
actor all share the same version, namely its age. The version_store relates to
versions of the domains owned by other actors. At the start of any turn, the
version_store is empty and it is only updated when an actor first attempts to
access an observable domain. This means the cost in terms of performance is
only paid when observable domains are actually used.

1 event_loop():
2 { version_store.empty();
3 event: event_queue.dequeue();
4 process_event(event);
5 age:= age + 1;
6 event_loop() }

Listing 7.4: The event-loop of a S H A C L actor

Lst. 7.4 illustrates a possible meta-circular implementation of the event-loop of
a SH A C L actor. On line 2, before starting the turn the actor empties the store of
versions. During the following turn the actor will read from the latest consistent
snapshot of any observable domain it accesses. Afterwards the actor dequeues
and processes the next event from its queue. During the processing of this event
the version_store will be populated with the version that is being read from
observable domains for which the actor is not the owner. On line 5, after the

123

7. Implementation: Domain Handlers

event is processed we have successfully finished the turn and the actor can
increase its age.
Lst. 7.5 gives a possible meta-circular implementation for an observable
domain handler. The software transactional memory is implemented by means
of three functions not shown here, namely stm_bind(variable, value,
version, environment), stm_locate(variable, version, environment)
and stm_assign(variable, value, version, environment). stm_bind
creates a new binding in the environment and sets up the STM for that binding.
stm_assign locates the variable in the environment and appends a new
version-value pair to the existing set of versions for that variable. If the version
already exists, the value in the version-value pair is overwritten. stm_locate
locates the variable in the environment and finds the most recent version-value
pair for which the version number is lower than the given version number.
That means the returned value is always as old or older than the given version
number.
The locate trap is shown on line 11. If the currently executing actor is the ow-
ner of the domain we always read the latest uncommitted version (owner.age
+ 1). Otherwise, on line 16 the version that is currently being read by the actor
is looked up. If this is the first time the current actor is reading from the domain
then we register the latest committed version (owner.age) on line 19. Until the
end of its current turn, read operations of the current actor on the same domain
will yield the same result. This is because the version read by an actor is stored
in the version_store per domain and is only emptied at the start of the next
turn.
Similar to immutable domains, actors with read-only access to an observable
domain can create new variable-value bindings. Invoking a method on an ob-
servable domain reference will lead to the creation of a new scope that is lo-
cal to the actor and any variables that are declared during that method in-
vocation are bound in that new scope. The implementation of the bind trap
is not shown but is similar to the implementation of locate. If the currently
executing actor is the owner of the domain the new binding is initialized,
using stm_bind, with a new version-value pair with the latest uncommitted
version (owner.age + 1) as its version number. Otherwise, the binding is cre-
ated with the version number that is currently being read by the the actor
(context.actor.get_version(self.domain)).

124

7.2. The Domain Handler Interface

1 observable_domain_handler: object(
2 { super:= default_domain_handler.clone();
3 owner: void;
4

5 initialize(a_domain, an_actor):
6 { owner:= an_actor;
7 super.initialize(a_domain) };
8

9 bind(variable, value, context): ‘...‘;
10

11 locate(variable, context):
12 if(context.actor == owner,
13 stm_locate(variable,
14 owner.age + 1,
15 context.environment),
16 { version: context.actor.get_version(self.domain);
17 if(not(version),
18 { version:= owner.age;
19 context.actor.set_version(self.domain, version) });
20 stm_locate(variable,
21 version,
22 context.environment) });
23

24 assign(variable, value, context):
25 if(context.actor == owner,
26 stm_assign(variable,
27 value,
28 owner.age + 1,
29 context.environment),
30 error("Only the owner of a domain can assign a new value"));
31

32 receive_message(message, context):
33 { event: create_event(message, context);
34 owner.event_queue.enqueue(event);
35 event.future } });

Listing 7.5: Observable Domain Handler

125

7. Implementation: Domain Handlers

The assign trap is shown on line 24. If the currently executing actor is the
owner of the domain then a new version-value pair is appended to the list
of versions for the variable in the environment. Unless the same variable was
written to before on that same turn, the version-value pair is simply overwritten.
A write is always done to the latest uncommitted version (owner.age + 1). If
the currently executing actor is not the owner of the domain a runtime error is
thrown.
Similar to isolated domains, the receive_message trap is also overridden to
enqueue incoming messages in the event queue of the owner of the domain
rather than the sender’s own event queue.

7.2.5. Shared Domain Handler

A shared domain does not have a particular owner. Any actor can have synchro-
nous read and write access to objects in a shared domain by first acquiring a
view. Lst. 7.6 gives a possible meta-circular implementation for an shared do-
main handler. The default domain handler is extended with a set of requests,
a list of actors that currently have read access to the domain, readers, and a
potential writer that has read and write access to the domain. The readers cor-
respond to the actors that currently have a shared view on the domain while the
writer corresponds to an actor that has an exclusive view on the domain. The
status field represents the lock of the shared domain. The status is 0 when the
domain is free for shared or exclusive access, the status is -1 when the domain
is locked for exclusive access and the status is any non-zero integer when the
domain is locked for shared access. Similar to isolated domains, because fields
are private in SH A C L, the only entry point for actors into a shared domain is
through invoking a method on a shared domain reference. Invoking a method
on a shared domain reference can be done by any actor that currently has a
shared or exclusive view on that domain. On line 14, the receive_invocation
trap checks whether the currently executing actor has read access to the do-
main. If this is not the case a runtime error is thrown. During the invocation
of the method any bind or locate operations are valid. However, assigning a
new value to a variable can only be done from within an exclusive view. This is
checked by the assign trap. If the currently executing actor does not currently
have an exclusive view on the domain, a runtime error is thrown.
The S H A C L when_shared and when_exclusive built-in functions are transla-
ted to calls to add_shared_request and add_exclusive_request respectively.
Adding a request groups the body expression of the built-in function with the
current context. A future value is also associated with that request and is imme-

126

7.2. The Domain Handler Interface

diately returned to the actor that issued the request. Once the domain becomes
available for shared or exclusive access, the body expression is enqueued as an
event in the event queue of that actor. Once that event is processed by the actor,
the future is resolved with the return value of calling that closure.
The receive_message trap translates asynchronous messages directed at a sha-
red domain reference into an exclusive request. The body expression of the ex-
clusive request is a synchronous invocation of the same method on the shared
domain reference. The message is translated into an exclusive request because
the interpreter does not now statically whether the method invocation is read-
only or not.

1 shared_domain_handler: object(
2 { super:= default_domain_handler.clone();
3 requests: [];
4 readers: [];
5 writer: void;
6 status: 0;
7

8 assign(variable, value, context):
9 if(context.actor == writer,

10 context.environment.assign(variable, value),
11 error("Can only write to a shared domain from an exclusive view"));
12

13 receive_invocation(message, context):
14 if(or(context.actor == writer, readers.include?(context.actor)),
15 super.receive_invocation(message, context),
16 error("Can only invoke methods on a shared domain from a view"));
17

18 receive_message(message, context):
19 add_exclusive_request(message, context);
20

21 add_exclusive_request(expression, context):
22 { future: requests.add_exclusive(expression, context);
23 handle_requests();
24 future };
25

26 add_shared_request(expression, context):
27 { future: requests.add_shared(expression, context);
28 handle_requests();
29 future } });

Listing 7.6: Shared Domain Handler

127

7. Implementation: Domain Handlers

Lst. 7.7 shows how shared and exclusive requests are handled in the imple-
mentation. Every time a request is added or every time a view has comple-
ted, other requests for views on the same domain are processed by invoking
handle_requests. To handle the next request, on line 2, we first attempt to get
an arbitrary exclusive request from the set of requests. If an exclusive request
was found and there are currently no readers and no writers of the domain
(i. e. status == 0) then that request can be granted. The status field is set to
-1 to denote that the shared domain has granted exclusive access to an actor.
On line 6 an exclusive view is created and is enqueued in the event queue of
the actor that originally requested the view. At this time, the writer field of the
shared domain is still void. That field is only changed when the view-event is
processed by the actor, thereby granting exclusive access to the shared domain
to that actor (See Lst. 7.8). If the status 6= 0 and there is an exclusive request
available no other requests are handled to prevent starvation of the exclusive
requests. If there is currently no exclusive request granted (status >= 0) then
all pending shared requests can be handled. For each request that is handled,
the status field is increased by one. On line 16 we create a new view for each
pending shared request and enqueue those views in the event queue of the
corresponding actors.

1 handle_requests():
2 { exclusive_request: requests.get_exclusive_request();
3 if(exclusive_request,
4 if(status == 0,
5 { status:= -1;
6 view: create_exclusive_view(exclusive_request.expression,
7 exclusive_request.future,
8 exclusive_request.context);
9 exclusive_request.context.actor.event_queue.enqueue(view) },

10 void), ‘stop here to prioritize writers‘
11 { shared_requests: requests.get_shared_requests();
12 if(and(shared_requests, status >= 0),
13 shared_requests.each(
14 { shared_request: element;
15 status:= status + 1;
16 view: create_shared_view(shared_request.expression,
17 shared_request.future,
18 shared_request.context);
19 request.context.actor.event_queue.enqueue(view) })) }) };

Listing 7.7: Handling Requests

128

7.3. Conclusion

Lst. 7.8 shows how the different views are processed. When a view is granted
and put into the event queue of the actor that requested the view, the actor
does not yet have access to the shared domain. Only when the view event is
processed by that actor, is shared or exclusive access granted. For example,
when processing an exclusive request on line 3, the actor first adds himself
as the writer before evaluating the body expression of the view. The future
that was associated with that view request is resolved with the result of that
evaluation. Once the body expression is evaluated, the view can be released by
nullifying the writer field and setting the status field to 0. Afterwards, any
other pending requests can be handled. Processing a shared view works in a
similar way. On line 11 the actor adds itself as a reader of the domain. After
the body expression has been evaluated, the actor removes itself from the set
of readers and decrements the status field before handling any other pending
requests.

1 process_exclusive_view(view):
2 { handler: view.context.domain.handler;
3 handler.writer := self;
4 view.future.resolve(evaluate(view.expression, view.context));
5 handler.writer := void;
6 handler.status := 0;
7 handler.handle_request() }
8

9 process_shared_view(view):
10 { handler: view.context.domain.handler;
11 handler.readers.add(self);
12 view.future.resolve(evaluate(view.expression, view.context));
13 handler.readers.remove(self);
14 handler.status := handler.status - 1;
15 handler.handle_request() }

Listing 7.8: Processing a View

7.3. Conclusion

This chapter presents domain handlers as a generic way to specify the seman-
tics of the different domains in SH A C L. The traps allow the domain handlers
to specify custom behavior for defining, referencing and modifying variables.
A domain handler can also specify custom behavior for incoming and outgoing
synchronous and asynchronous messages. This chapter presents a meta-circular

129

7. Implementation: Domain Handlers

implementation of the different domain handlers used in SH A C L for immuta-
ble, isolated, observable and shared domains. However, because of the generic
specification of domain handlers this technique could be used to extend SH A C L

with various other domains.

130

8
A P P LY I N G D O M A I N S I N P R A C T I C E : A C A S E S T U D Y I N
S C A L A

In an impure actor system such as the Scala or Akka actor library, programmers
already have a number of alternatives when it comes to representing shared
state. On the one hand, they can fall back on the underlying shared-memory
model and use traditional mechanisms such as locks to synchronize access to
a shared resource. On the other hand, they can employ the actor model for
synchronization by encapsulating a shared resource in a delegate actor. This
chapter shows that these two synchronization mechanisms are being used in
practice by executing a survey of a relevant set of existing Scala projects. In
addition, to further motivate why programmers might prefer one synchroni-
zation mechanism over the other, the advantages and disadvantages of each
approach are discussed. Afterwards a possible implementation of domains for
Scala is shown and the domain model is validated by providing an alternative
implementation for some of the code-examples found in the survey. The chap-
ter is concluded by showing that the domain model has a number of desirable
properties over the other synchronization mechanisms found in the survey.

131

8. Applying Domains in Practice: A Case Study in Scala

8.1. Shared State Synchronization Patterns: A Scala
Survey

A recent study [Tasharofi et al., 2013] on 16 large, mature, and actively main-
tained actor programs written in Scala has found that 80% of them mix the
actor model with another concurrency model for synchronizing shared state.
When asked for the reason behind this design decision, one of the main motiva-
tions programmers brought forward were some of the inadequacies of the actor
model when it comes to shared state, stating that certain protocols are easier
to implement using shared-memory than using asynchronous communication
mechanisms without shared state. In Scala, developers can fall back on the un-
derlying shared-memory concurrency model for modeling access to a shared
resource.

8.1.1. The Corpus of Actor Programs

For our case study we reuse the corpus of [Tasharofi et al., 2013] which is
publicly available online.1 From the initial set of around 750 Scala programs
available on github,2 16 real-world actor projects were selected based on the
following criteria:

• Actor Library: The program uses the Scala or Akka actor library to imple-
ment a portion of its functionality.

• Size: The program must consist of at least 3000 lines of code combined
over Scala and Java.

• Eco-System: At least two developers contribute to the project.

For our case study we updated the corpus to the latest version available on
github. Tab. 8.1 gives an overview of the corpus used in the survey. The Pro-
ject column shows the project’s name on github. The Library column indicates
which actor library was used in the project. The lines of code (LOC) were coun-
ted using the CLOC tool.3 This tool allows us to automatically detect which
language was used in each file and separates newlines and comments from the
actual lines of code. The Description column gives a short description of the
application.

1http://actor-applications.cs.illinois.edu/index.html
2https://github.com
3http://cloc.sourceforge.net/

132

8.1. Shared State Synchronization Patterns: A Scala Survey

Project Library ScalaLOC JavaLOC Description

bigbluebutton Scala 9459 65855 Web conferencing system
blueeyes Akka 23107 0 A web framework for Scala

CIMTool Scala 3915 26562
A modeling tool based on Com-
mon Information Model (CIM)
standards

diffa Akka 29947 5985 Real-time data differencing

ensime Scala 8765 43
Enhanced Scala Interaction
Mode for Emacs

evactor Akka 4743 0 Complex event processing
gatling Akka 19759 105 A stress test tool
geotrellis Akka 54200 7778 Geographic data engine

kevoree Scala 9694 37325
A tool for modeling distributed
systems

SCADS Scala 27119 963 Distributed storage system

scalatron Akka 12248 0
A multi-player programming
game

signal-collect Akka 12635 0
Parallel graph processing frame-
work

socko Akka 12505 121 A Scala web server
spark Scala 116983 7648 Cluster computing system
spray Akka 30770 0 RESTful web services library

ThingML Scala 10950 64238
Modeling language for distribu-
ted systems

Tabel 8.1.: The corpus of projects used in the survey

8.1.2. Evaluation of The Different Synchronization Mechanisms

This section gives an overview of a number of desirable properties for any
synchronization mechanism. The goal of this chapter is to evaluate the diffe-
rent synchronization patterns found in the survey according to these properties.
Throughout this chapter we will refer to the source-code that models the shared
resource as the server-side code while the source-code that models the access to
that shared resource will be referred to as the client-side code.

• No client-side CPS. When the employed synchronization mechanism is
non-blocking, then the client-side code typically needs to employ an event-
driven style where the code is structured in a continuation passing style.

• Deadlock free. Blocking synchronization mechanisms do not suffer from
this issue as any access to the shared resource will block until it yields
a result. However, blocking synchronization mechanisms can potentially

133

8. Applying Domains in Practice: A Case Study in Scala

introduce deadlocks when nested while non-blocking synchronization me-
chanisms are usually deadlock-free.

• Parallel reads. Multiple read-only operations can be trivially parallelized
without introducing race conditions. However, making the distinction bet-
ween read and write operations often comes with a cost and as such, not
all synchronization mechanisms include this optimization.

• Enforced Synchronization. If the synchronization mechanism is put on
the server-side, then the server-side can typically enforce synchronization
for any client-side access of the shared resource.

• Composable Operations. If the synchronization mechanism is only used
on the client-side than synchronization is not enforced. However, with
client-side synchronization the client can compose different operations
on the shared resource into a larger synchronized operation.

• Enforced Isolation. If the synchronization mechanism only enforces syn-
chronized access to the root object then any leaked reference to a nested
object will not be synchronized and can potentially lead to race conditi-
ons.

8.1.3. The Survey: Locks and Delegate Actors

For our case study we chose to investigate the use of two patterns to synchro-
nize access to shared state, namely locks and delegate actors. Those two syn-
chronization mechanisms are the two most prevalent patterns found in the cor-
pus. We opted to do a syntactic source code analysis. While that lowers the
precision over more advanced tools such as byte-code analyzers, we do feel
confident about the results as all actor classes are easily identified by finding
classes that implement an act (Scala) or receive (Akka) method. The use of
conventional locks in the Scala or Java code are found by searching for the
synchronized keyword. In this section we will investigate the occurrences of
the different patterns found in the corpus and evaluate them using the proper-
ties as described in Sec. 8.1.2.

8.1.3.1. Locks

Similar to Java, all Scala object instances are associated with an intrinsic lock
that can be used for synchronization with synchronized blocks. A synchronized
block in Scala is always invoked on some object (when no receiver is specified

134

8.1. Shared State Synchronization Patterns: A Scala Survey

it is invoked implicitly on the this pseudo-variable). All synchronized blocks
synchronized on the same object can only have one actor executing inside them
at the same time. All other actors attempting to enter the synchronized block
are blocked until the actor inside the synchronized block exits that block. The
lock used by the block is acquired at the start of the block and released at the
end. While analyzing the code examples found in the corpus we have identified
two ways programmers synchronize access to shared state using synchronized
blocks. On the one hand, the synchronization can be done on the server-side.
In that case typically (part of) the methods of the interface through which the
shared state is accessed are synchronized. On the other hand, the synchroniza-
tion can be done on the client-side. In that case it’s the client’s responsibility to
acquire the lock before accessing the shared resource. To distinguish between
objects that use server-side and client-side locking, the following metric was
used: if the target of the synchronized block is local to the object invoking that
block, then that object acts as the server-side interface through which the sha-
red resource needs to be accessed. If the target of the synchronized block is not
local to the object, then that object is a client that requires synchronous access
to the shared resource. The advantages and disadvantages of both server-side
and client-side locking will be discussed in this section.

Server-side locking
Throughout this section a simple toy example is used to illustrate the different
patterns. In the example, the resource that is being shared is a simple integer
value with a getter and a setter. In each example many clients will concurrently
increase the value of the integer. To avoid race conditions, every increase ope-
ration needs to be serialized.
Fig. 8.1 illustrates how to model such a shared counter using a server-side lock.
The only method that is publicly accessible is the increase method and that
method is serialized by using the synchronized keyword.
While analysing the corpus 166 examples of the use of server-side locking were
encountered. In most cases (116/166) access to the shared resource was syn-
chronized by making some or all of the methods of the interface to the shared
resource synchronized. In that case, the target of the synchronized block is the
server-side object. If the internal shared resource (in our case the integer value)
is not exposed to the clients then each access to the shared resource passes via
the server-side interface and is thus serialized. In other examples (34/166) the
data structure or container that represents the shared resource was used as the
target of the synchronized block. That allows for a more fine-grained locking

135

8. Applying Domains in Practice: A Case Study in Scala

1 class Server {
2 private var c: Int = 0
3 private def get(): Int = c
4 private def set(n: Int) {
5 c = n
6 }
7 def increase() = synchronized {
8 set(get + 1)
9 }

10 }

1 class Client(s: Server) extends Actor {
2 def act {
3 s.increase
4 }
5 }

Figuur 8.1.: A server-side lock in Scala.

strategy where only part of each method invocation is synchronized. In some
cases (16/166) an explicit lock was used by using the intrinsic lock of a newly
created dummy object. This is usually the case when the server-side object syn-
chronizes access to multiple shared resources and using the server-side object
as the target is too fine-grained.
The advantage of managing the synchronization on the server-side is that syn-
chronization is enforced when the shared resource is accessed on the client-
side. A malicious or poorly written client cannot introduce race conditions
when accessing the shared resource as each access to the shared resource is
synchronized by the server. The disadvantage of using this approach is that if
the server-side does not expose the lock that is used, then a client cannot com-
pose different server-side operations into a larger synchronized operation.

Client-side locking
Fig. 8.2 illustrates how to model the shared counter using a client-side lock. If
all the clients agree upfront to use a specific lock before accessing the shared
resource then each access to the shared resource will be serialized.

1 class Server {
2 private var c: Int = 0
3 def get(): Int = c
4 def set(n: Int) {
5 c = n
6 }
7 }

1 class Client(s: Server) extends Actor {
2 def act {
3 s.synchronized {
4 s.set(s.get + 1)
5 }
6 }
7 }

Figuur 8.2.: A client-side lock in Scala.

136

8.1. Shared State Synchronization Patterns: A Scala Survey

While analysing the corpus, 38 examples of the use of client-side locking were
encountered. In most cases (35/38) the intrinsic lock of the server object is
used. In a few cases (3/38) an explicit lock is used by using the intrinsic lock
of a newly created dummy object. This approach is mostly used when clients
can hold a reference to a nested object of the shared resource. In that case an
explicit lock needs to be used to ensure that all accesses to all nested objects of
the shared resource are synchronized.
The advantage of managing the synchronization on the client-side is that the
client can arbitrarily compose operations on the shared resource in a larger
synchronized operation. The downside to this approach is that there is no way
to enforce this type of synchronization. A single client that does not acquire
the lock before accessing the shared resource can introduce a race condition for
every other client.

Project Total Server Client

CIMTool 4 4 0
SCADS 25 22 3
ThingML 9 7 2
bigbluebutton 20 15 5
blueeyes 1 1 0
diffa 14 8 6
ensime 4 1 3
evactor 1 1 0
gatling 4 4 0
geotrellis 6 6 0
kevoree 10 9 1
scalatron 1 1 0
signal-collect 3 2 1
socko 1 1 0
spark 99 82 17
spray 2 2 0

Total 204 166 38

Tabel 8.2.: Locks in the projects

Conclusion
Tab. 8.2 summarizes the results of our survey concerning locking mechanisms.
In 80% of the cases synchronization is done on the server-side. Which suggests
that enforced synchronization is usually more important than composability
of different operations.

137

8. Applying Domains in Practice: A Case Study in Scala

A general advantage of using locks over other non-blocking synchronization
mechanisms is that the client-side does not need to apply CPS when accessing
the shared resource. Each access to the shared resource blocks until it yields a
result. However, the downside is the potential introduction of deadlocks when
two different locks are nested. In the entire corpus, no occurrences of nested
locking were found and while the results of our survey do not allow us to make
any hard claims as to the reason why, avoiding nested locking is a good tech-
nique to avoid potential deadlocks. Through its interoperation with Java, Scala
has access to Java’s java.util.concurrent.locks.ReentrantReadWriteLock
for allowing parallel reads of a shared resource. However, only a single occur-
rence of that type of lock was found in the entire corpus which might indicate
that programmers do not value parallel reads as an important optimization.
Using a lock in Scala does not enforce isolation as any access to a leaked refe-
rence to a nested object will not be synchronized.

8.1.3.2. Delegate Actor

Scala has two actor libraries, namely Scala Actors and Akka (See Chapter 2).
In our case study we investigated projects that use either of those libraries.
However, in both cases the use of a delegate actor as a synchronization pattern
was found. Because of how a delegate actor is used, it’s always a mechanism
to use for client-side synchronization. Two predicates were used for distinguis-
hing delegate actors from regular actors. Firstly, does the interface of the actor
directly translates to the interface of the shared resource? Secondly, does the
communication between the client actor and the delegate actor happen in a
request-response style and is there is no communication with other actors in-
volved?
Fig. 8.3 illustrates how the delegate actor pattern can be used in Scala to syn-
chronize access to a shared resource. All Increase messages sent by different
clients are serialized by the inbox of the server actor. The benefit of using a
delegate actor over locks is that using asynchronous communication is a non-
blocking synchronization mechanism and thus avoids deadlocks. Please note
that Scala does have support for synchronous communication with an actor.
However, when using exclusively synchronous communication with a delegate
actor the benefit of using actors over locks is lost. In this section we only consi-
der delegate actors in combination with asynchronous communication. One of
the disadvantages of using delegate actors is that the client-side code needs to
apply a CPS transformation when the result of a message is needed. Clients
are not able to perform read-only operations in parallel because each opera-

138

8.1. Shared State Synchronization Patterns: A Scala Survey

1 class Server extends Actor {
2 private var c: Int = 0
3 private def get(): Int = c
4 private def set(n: Int) {
5 c = n
6 }
7 def act {
8 loop {
9 react {

10 case Increase =>
11 set(get + 1)
12 }
13 }
14 }
15 }

1 class Client(s: Server) extends Actor {
2 def act {
3 s ! Increase
4 }
5 }

Figuur 8.3.: A delegate actor in Scala.

tion on the shared resource is serialized by the inbox of the delegate actor. Syn-
chronization is enforced because the client-side is forced to use the message-
passing protocol to access the shared resource. However, in contrast with other
actor languages, Scala does not provide actor isolation. Thus, any leaked refe-
rence to a nested object in the actor is not protected and can be freely accessed.
Using the delegate actor pattern in Scala does not protect the entire object
graph of the shared resource. Two messages sent by the same client can be in-
terleaved with messages sent by other clients. There is no way for a client to put
extra synchronization conditions on batches of messages. This means that the
client cannot compose several smaller operations into a larger synchronized
operation.
Tab. 8.3 summarizes the results of our survey concerning the use of actors in the
corpus. In slightly over half of the cases (57/102) an actor is used to model a
software entity that models some part of the application logic and is involved in
communication with several other actors. In some cases (28/102) the actor was
used as a delegate actor. In a minority of the cases (17/102) the actor served
some other purpose such as doing some logging or forwarding messages. From
these results we can conclude that in some cases the delegate actor pattern is
used by software developers as a synchronization mechanism in favor of other
mechanisms such as locks.

139

8. Applying Domains in Practice: A Case Study in Scala

Project Total Regular Delegate Other

CIMTool 4 1 3 0
SCADS 3 0 0 3
ThingML 2 1 0 1
bigbluebutton 9 6 2 1
blueeyes 10 0 5 5
diffa 2 1 1 0
ensime 5 3 2 0
evactor 12 6 3 3
gatling 4 4 0 0
geotrellis 5 5 0 0
kevoree 0 0 0 0
scalatron 1 1 0 0
signal-collect 3 1 1 1
socko 9 3 5 1
spark 18 11 5 2
spray 15 14 1 0

Total 102 57 28 17

Tabel 8.3.: Actors in the projects

No
CPS

Deadlock
free

Parallel
reads

Enforced
Synchro-
nization

Composable
Interface

Enforced
Isolation

Server-side Lock X × X X × ×
Client-side Lock X × X × X ×
Delegate Actor × X × X × ×

Tabel 8.4.: The different synchronization patterns and their properties

8.1.4. Conclusion

Tab. 8.4 summarises the different synchronization patterns found in the corpus
and their properties. When choosing a synchronization mechanism there is al-
ways a consideration between a blocking and a non-blocking mechanism. On
the one hand, a non-blocking synchronization mechanism such as the delegate
actor requires the client-side to apply a CPS transformation when the result of
an operation on the shared resource is required. On the other hand, blocking
synchronization mechanisms such as locks can potentially introduce deadlocks.
Another consideration to be made is whether or not the synchronization mecha-
nism is applied on the client or the server-side. On the one hand, the advantage
of server-side synchronization is that the synchronization is enforced. Any client

140

8.2. A Shared Domain Library for Scala

that tries to access the shared resource is forced to synchronize its access. On
the other hand, client-side synchronization allows the client to compose various
operations on the shared resource in a larger synchronized operation. Executing
read-only operations in parallel is an optimization that can be done using read-
write locks. However, only a single occurrence of such a lock was found in the
corpus. When using the delegate actor pattern it is impossible to execute read
operations in parallel because they are serialized by the inbox of the delegate
actor. Because a lock cannot be associated with an entire object graph, isolation
of the shared resource cannot be guaranteed. In pure actor systems, isolation is
guaranteed. However, Scala actors do not guarantee isolation.

8.2. A Shared Domain Library for Scala

To validate the claim that the synchronization patterns found in the previous
sections can be replaced with domain abstractions, a library was written for
Scala. Unfortunately, no amount of library code we can add to our implemen-
tation is going to guarantee that the different domains are fully isolated. When
representing a shared resource, developers can still choose the path of least re-
sistance and circumvent the use of domain references. This weakens the overall
guarantees of the library. Another issue with the library approach is that it is
impossible to distinguish between read-only and read-write methods. Without
access to the underlying VM, it is impossible to trap assignments at runtime.
Because an implementation of observable domains would require us to be able
to trap assignments at runtime, at this time, only a library for shared domains
was implemented. In SH A C L every object is owned by the lexically enclosed
domain. Because the Scala reflection API does not give access to that kind of in-
formation a more explicit approach for denoting object ownership was chosen.
When using our library the convention is that any object that is shared among
Scala actors needs to be “tagged” as a domain reference. For distinguishing bet-
ween read-only and read-write methods without having to trap assignments,
a similar technique was used. Our technique uses higher-order functions as
proxies to intercept method invocations with minimal syntactic overhead.
Lst. 8.1 illustrates how to use the domain library for Scala. Every object instance
that is eligible for sharing between different actors needs to define what domain
it belongs to. In the example the Server class extends the DomainReference
trait. That trait has one abstract field namely domain that needs to be defined
for every instance of a DomainReference. On line 2 we assign a new domain
to the domain field of our shared resource. If synchronization was needed over

141

8. Applying Domains in Practice: A Case Study in Scala

1 class Server extends DomainReference {
2 val domain = new Domain
3 private var c: Int = 0
4 def get(): Int = reader { c }
5 def set(n: Int) = writer {
6 c = n
7 }
8 }
9

10 class Client(s: Server) extends DomainActor {
11 def act {
12 whenExclusive(s) {
13 s.set(s.get + 1)
14 }
15 }
16 }

Listing 8.1: A domain reference in Scala.

different instances of the Server class then the instantiation of the domain
can be externalized. However, in our example the Server class is meant to
be instantiated only once so it’s fine to instantiate the domain together with
the server object. Because the Scala reflection API does not allow us to trap
assignments at runtime there is no way to distinguish between read-only and
read-write methods. To solve this issue a number of runtime tags were added
to the library to allow the programmer to make this distinction. In the example,
every method of the Server class is tagged as being a reader or a writer
method. Note that the code block after the tag is treated as an anonymous
function, while reader and writer take that block as call-by-name parameter,
which is only evaluated if the appropriate view is acquired. If an actor does
not have the appropriate view at the time of executing the method, a runtime
exception is thrown. Programmers should follow the convention to make any
instance variable or untagged method private to avoid unsynchronized access.
In our example the get method is tagged as a reader and the set method is
tagged as a writer.
On the client-side, any actor that wants to access a domain reference should
extend the DomainActor trait which itself extends the Scala Actor trait. Only a
DomainActor can request a view on a domain. On line 12 an exclusive view is
requested on the domain of s. Once the domain becomes available for exclusive
access, a notification is scheduled in the inbox of the Client actor.

142

8.2. A Shared Domain Library for Scala

8.2.1. Shared Domains for Scala: The Implementation

The implementation of the DomainReference trait is given in Lst. 8.2. The Do-
mainReference trait has an undefined field domain. Any concrete instance of
a class that extends the trait will have to provide a value for domain. To in-
tercept method invocations on domain references two methods were added as
tags. The reader and writer methods accept a single no-parameter function
(the body of the method) as a call-by-name parameter. Each of them checks if
the current actor has a shared or exclusive view on the domain of the Domain-
Reference. If the actor does not have the required view, a runtime exception is
thrown.

1 trait DomainReference {
2 val domain: Domain
3 def reader[T](body: => T): T = {
4 if(domain.hasReadAccess(Actor.self))
5 body
6 else throw DomainException("No read access to domain")
7 }
8 def writer[T](body: => T): T = {
9 if(domain.hasWriteAccess(Actor.self))

10 body
11 else throw DomainException("No write access to domain")
12 }
13 }

Listing 8.2: The DomainReference trait.

The implementation of the DomainActor trait is given in Lst. 8.3. The receive
and react methods of the original actor trait are overridden such that messages
that are sent to a DomainActor are intercepted. The implementation of react
is similar to receive and was intentionally left out. If a notification is received,
the notification’s closure is executed before any other messages are processed.
The first parameter of the whenShared and whenExclusive primitives is the do-
main reference on which a view needs to be acquired. The second parameter
is a code block that needs to be executed once the domain of the domain refe-
rence becomes available for shared or exclusive access respectively. The return
value of both primitives is a Scala future that represents the return value of
executing the block. Executing whenShared or whenExclusive is an asynchro-
nous operation. The view request is scheduled with the domain of the domain
reference and the future is returned immediately. That future will eventually
be resolved with the return value of executing the view. The implementation

143

8. Applying Domains in Practice: A Case Study in Scala

of the whenExclusive primitive is similar to the whenShared primitive and is
intentionally left out.

1 trait DomainActor extends Actor {
2 override def receive[R](body: PartialFunction[Any, R]): R = {
3 val wrapper: PartialFunction[Any, R] = {
4 case Notification(closure) =>
5 closure()
6 receive(body)
7 case any =>
8 body(any)
9 }

10 super.receive(wrapper)
11 }
12

13 override def react[R](body: PartialFunction[Any, R]): R = { ... }
14

15 def whenShared[T](domainReference: DomainReference)(view: => T): Future[T] = {
16 val p = promise[T]
17 domainReference.domain.requestShared(Request(Actor.self, () => {
18 p success view
19 }))
20 p.future
21 }
22

23 def whenExclusive[T](domainReference: DomainReference)(view: => T): Future[T] = {...}
24 }

Listing 8.3: The DomainActor trait.

8.2.2. Properties of the Domain Model

No
CPS

Deadlock
free

Parallel
reads

Enforced
Synchro-
nization

Composable
Interface

Enforced
Isolation

Server-side Lock X × X X × ×
Client-side Lock X × X × X ×
Delegate Actor × X × X × ×
Shared Domains × X X X X X

Tabel 8.5.: The different synchronization patterns and their properties

Tab. 8.5 summarizes the different synchronization mechanisms, including Sha-
red Domains, and their properties. Because the whenExclusive is an asyn-

144

8.2. A Shared Domain Library for Scala

chronous primitive, the client will need to apply CPS if the result of the
whenExclusive block is needed. However, inside a view, the actor has unlimited
synchronous access to the objects owned by the domain and no CPS is needed.
Because every operation of the domain model is non-blocking, using domains
as a synchronization mechanism remains deadlock free. Any number of read-
only operations can be executed in parallel by requesting a shared view. The
synchronization is enforced as any attempt to access a domain reference out-
side of a view will result in a runtime error. During a view the client-side actor
can compose any number of operations in a larger synchronous operation. Be-
cause synchronization is enforced on a per-domain basis rather than per-object,
isolation of the whole domain is enforced.

8.2.3. Pattern Transformation to Scala Library

This section shows how to transform any of the synchronization mechanisms
and patterns shown in Sec. 8.1.3 by using the domains library. For each pattern
an example was chosen among the code examples found during the survey. The
examples and how they were transformed to the domain library can be found
in Appendix A.

8.2.3.1. Delegate Actor

Lst. A.1 shows an instance of the delegate actor found in the spark project. From
the comments associated with the code it is clear that the developers chose
an actor as a synchronization mechanism to guarantee deadlock freedom. The
translation of the delegate actor pattern into domains is a straightforward one
and preserves deadlock freedom. In Lst. A.2, the LocalActor class now extends
the DomainReference class instead of the Actor class. Please note that this also
means that instances of this class will no longer spawn a new actor. On line 6,
a new domain is created and is associated with the LocalActor. If we wanted to
achieve full isolation of the shared resource and all of its nested objects, that
domain could be associated with those nested objects. The behavior description
of the actor (the receive statement) was translated into method definitions.
Each method was tagged with the writer tag as none of the methods were
read-only. The client-side code is not shown here. However, each asynchronous
message can be trivially translated into first acquiring an exclusive view and
during the view synchronously invoking the corresponding method.

145

8. Applying Domains in Practice: A Case Study in Scala

8.2.3.2. Server-side lock

Lst. A.3 shows an instance of a shared resource in the signal-collect project
where the synchronization is done on the server-side. The shared resource is
a Map that maps names to actor systems. Each method of the interface of the
ActorSystemRegistry is synchronized. The transformation to domains is shown
in Lst. A.4. The ActorSystemRegistry now extends the DomainReference trait
and each of the methods is tagged with either the reader or writer tag depen-
ding on whether the method is read-only or not. Please note that before the
transformation, the ActorSystemRegistry did not make a distinction between
read-only and read-write methods. By switching to domains we can identify
read-only operations and allow parallel reads. On line 3, a new domain is cre-
ated and is associated with the registry. On the client-side, which is not shown
here, each of the clients needs to acquire a view before invoking any of the
methods on the ActorSystemRegistry.

8.2.3.3. Client-side lock

Lst. A.5 shows an instance of client-side synchronization in the diffa pro-
ject. The handleMismatch method is executed on the client and the writer
is the shared resource that needs to be sychronized. In the example the
handleMismatch method uses the intrinsic lock of the writer to ensure that
the clearUpstreamVersion method is synchronized. Lst. A.6 shows the trans-
formation of the example using domains. Instead of using the intrinsic lock of
the writer an exclusive view on the domain of the writer is requested (line
9). That request returns a future. On line 17 we register a closure with that
future, using onSuccess, to retrieve the return-value of the request, namely the
correlation. Please note that the onSuccess method is an asynchronous ope-
ration and thus the handleMismatch method will now also be asynchronous
where it previously was a synchronous method (Unless we use Await to ensure
that the future becomes completed). This means that CPS will need to be ap-
plied to each method that calls handleMismatch and requires its result to be
synchronously applied.

8.2.3.4. Conclusion

For delegate actors, the transformation to domains is straightforward because
both synchronization mechanisms are non-blocking. In the case of locks, the
transformation can only be applied if the client-side code does not require an
immediate result.

146

8.3. Discussion

In the translation of the examples to domains there is always only a single
object associated with each domain. Currently, in Scala, full isolation of the
whole object graph of a shared resource cannot be enforced with either locks or
delegate actors. For that reason the translation of the examples does not have
that property either. However, if we would associate each object of the shared
resource with the same domain we would get that property as well.

8.3. Discussion

With the survey we have identified several code patterns for synchronizing ac-
cess to a shared resource. The survey was conducted with a purely syntactical
analysis of the code. While this approach was sufficient for identifying the dif-
ferent patterns, it does lack precision in some cases.
With the survey we have shown that developers use both client-side and server-
side synchronization mechanisms. Unfortunately the analysis did not identify
cases when both approaches are combined. For example, because Scala locks
are reentrant, it is possible to use the same lock on the client-side as on the
server-side to get some of the benefits of both approaches.
The survey does not identify which of the programs are distributed over the
network. If a shared resource is distributed over the network then that could
influence the choice of synchronization mechanism.
Using a delegate actor has the additional benefit that queries to the shared re-
source are computed in parallel with the client-side code. If the client does not
require the result of the query immediately then it can do some other computa-
tions while the server-side computes the result of the query. With the syntactical
analysis we are unable to ascertain whether or not the delegate actor was used
purely as a synchronization mechanism or also as an optimization.
Scala has methods of concurrency other than actors such as futures. Shared
domains are a synchronization mechanism tailored towards the actor model
and in its current inception does not interact favorably with futures. A domain
reference can only be accessed from within a DomainActor.

8.4. Conclusion

A survey of existing Scala projects was conducted to identify the different code
patterns used by developers to synchronize access to a shared resource. That
survey has shown that developers mix different synchronization mechanisms
based on application-specific demands. We have shown that the domain mo-

147

8. Applying Domains in Practice: A Case Study in Scala

del has a number of desirable properties for combining both server-side and
client-side synchronization and have shown a possible Scala implementation
for shared domains. This chapter also gives an overview on how to transform
the different synchronization patterns found in the survey to our domain library.

148

9
C O N C L U S I O N

This dissertation presents the domain model as an abstraction for object heaps
in view of synchronizing access to a shared resource within the Actor Model
in a safe, expressive way. This final chapter summarizes the advantages of our
model, gives an overview of the contributions of this dissertation and highlights
some directions for future work.

149

9. Conclusion

9.1. Summary

This dissertation presents the domain model as a synchronization mechanism
for shared state in modern actor systems. The domain model allows safe and
expressive state sharing among actors. The advantages of domains over other
traditional synchronization mechanisms is that it is integrated with the actor
model in such a way that it can provide the same safety guarantees as the
original model.

Safety With the introduction of the domain model actors are no longer strictly
isolated software entities. However, the domains themselves are comple-
tely isolated from one another. We have shown that the domain model
maintains the strong language-enforced guarantees of the pure actor mo-
del and prevents low-level data races and deadlocks by design. We have
also shown that the domain model maintains the isolated turn principle
which is important for formal reasoning about program semantics, and
provides additional guarantees to facilitate application development. The
isolated turn principle guarantees that any turn can be regarded as a sin-
gle isolated operation. That means that developers can make operations
on domains as large or small as needed without potentially introducing
deadlocks or race conditions.

Expressiveness When designing software, many of the concepts can be divided
in either passive or active software entities. The strict isolation of pure
actor languages forces developers to model a passive shared resource by
encapsulating it in a shared actor, which is an active software entity. The
domain model allows the programmer to make better distinction between
the two by representing shared passive software entities as domain ob-
jects and active software entities as actors. On top of that developers can
choose between four types of domains for specifying the access capabili-
ties of the different software entities using that shared resource. Immuta-
ble domains can be used for representing read-only shared resources that
can be freely shared between the different actors. Isolated domains can
be used when full isolation of the resource is required, only a single actor
will be able to read and write to objects in an isolated domain. Observable
domains can be used to represent a resource that is “owned” by a single
actor but can be exposed as a read-only resource to other actors. Shared
domains can be used in the case where any actor is free to read from and
write to the shared resource.

150

9.2. Contributions

9.2. Contributions

This section gives an overview of the different chapters in this dissertation and
their specific contributions.

• Chapter 2 gives an overview of a selection of state of the art actor systems
and classifies them according to four distinct families of the actor model.
The four families are: the original actor model, processes, active objects
and communicating event-loops. In addition to the categorization of the
different actor systems this chapter gives an overview of the different
properties of specific actor systems and ties those back to their respective
family. This chapter also defines the isolated turn principle which is an key
concept throughout this dissertation.

• Chapter 3 gives an overview of the different synchronization mechanisms
that can be used to synchronize access to a shared resource in both pure
and impure actor systems. This chapter shows that impure actor systems
are often flexible when it comes to representing shared state but compro-
mise on overall safety. Programmers have to rely on synchronization me-
chanisms provided by the underlying shared-memory model such as locks
or software transactional memory. However, these are not always well in-
tegrated with the actor model itself and lead to known concurrency issues
such as deadlocks and race conditions. Pure actor systems provide more
safety guarantees but are more stringent and thus compromise on expres-
siveness. A shared resource needs to be either encapsulated in a delegate
actor or replicated over the different actors in the system. In this chapter
we show that there is a need for a synchronization mechanism that is well
integrated with the Actor Model.

• Chapter 4 gives an overview of the communicating event-loop model and
illustrates why it has some desirable properties over other actor models
when it comes to designing modular, reusable, secure, and fault-tolerant
systems. In contrast with other actor models, the communicating event-
loop model was designed for coarse-grained concurrency. The fact that
each actor can export multiple interfaces as distinct behaviors allows
for modular software design. This chapter also gives an overview of the
SH A C L programming language as a research tool for designing language
abstractions. SH A C L is an imperative, prototype-based programming lan-
guage with communicating event-loop actors as its main abstraction for
concurrency.

151

9. Conclusion

• Chapter 5 presents the core contribution of this dissertation, the domain
model. We present the taxonomy that led to the design of four distinct
types of domains, namely immutable, isolated, observable and shared do-
mains. We give an overview of the different types of domains and their
instantiation in SH A C L. We show for each individual type of domain that
it maintains the guarantees of the original pure actor model with regards
to deadlock freedom, race condition freedom, and the isolated turn princi-
ple. This chapter illustrates that domains have some desirable properties
over other synchronization mechanisms and relates our approach to some
of the related work.

• Chapter 6 gives an operational semantics that serves as a precise specifica-
tion of the semantics of the domain model. This chapter starts by giving
an operational semantics for a core subset of the SH A C L programming
language without the domain model. We show that unifying object heaps,
that come from the original model, with isolated domains maintains the
semantics of the original model. This calculus is extended with new se-
mantic rules for adding the three other types of domains and we show
that the unification of object heaps and domains allows for a clean speci-
fication of this extension.

• Chapter 7 introduces domain handlers as a generic implementation stra-
tegy for enforcing the semantics of the different types of domains. A do-
main handler defines a number of traps that serve as callbacks for the
interpreter. Each domain handler can then specify the behavior of a cer-
tain domain type by specializing the default traps.

• Chapter 8 validates the domain model by means of a survey of a relevant
set of existing open source Scala projects. The survey lists the different
synchronization mechanisms and patterns used by the developers of the
projects for synchronizing access to a shared resource. We give an over-
view of the advantages and disadvantages of each pattern. We also show
that developers mix synchronization patterns depending on what proper-
ties are desirable for each specific use-case. An implementation of shared
domains in Scala is given and we show that the different patterns found
during the survey can be transformed to domains. We show that the do-
main model has some desirable properties over the other synchronization
mechanisms.

152

9.3. Future Work

9.3. Future Work

This section outlines several possible avenues for future work. First, while we
have shown that the domain model has a number of desirable properties when
combined with the communicating event-loop model, it remains to be investiga-
ted if the domain model can be successfully combined with other concurrency
models. Second, the current implementation of the domain model in SH A C L

put more emphasis on semantics than performance. Another interesting ave-
nue for future work would be to investigate additional optimization techniques.
Third, the implementation and specification of other domains can be investiga-
ted by making domain handlers first class. Last, the specification of the diffe-
rent properties of the domain model have remained largely informal and those
properties could be strengthened by a formal proof using the operational se-
mantics.

9.3.1. Domains for Other Concurrency Models

Domains for Other Families of Actor Languages
The domain model was originally designed for the communicating event-loop
model. Sec. 8.2 shows that a translation to a language in the process family
is possible but the translation has a number of limitations. For example, in
contrast with the CEL model, in the process model a single turn is not a well
defined concept. In our implementation we defined a turn as all the statements
executed between two receive statements. Where a turn starts and ends stron-
gly depends on the control flow of the program. That limits our understanding
of the guarantees the domain model provides as it works on turn boundaries.
We have not yet investigated how the translation of the domain model to actor
systems that model other actor models such as the original actor model or the
active objects model would work.

Synchronous Domains
Some actor systems (e. g., Scala Actors) allow different actors to communicate
synchronously. This has the disadvantage that deadlock freedom can no longer
be guaranteed. However, synchronous communication has the benefit that CPS
no longer needs to be applied on the client-side. In the current domain model
every view request is an asynchronous operation and the view is executed in
a later turn of the actor that issued the request. Another avenue for future
work would be to investigate how the properties of the domain model would
be influenced when considering a synchronous version of the model.

153

9. Conclusion

Domains for Other Concurrency Mechanisms
The domain model is designed to synchronize access to a shared resource within
the communicating event-loop model. However, the idea of isolating part of
the heap in a separate software entity for synchronization has been applied
for other concurrency mechanisms (See Sec. 5.9) as well. One of the most im-
portant properties of the domain model is that it guarantees the isolated turn
principle. This means that one of the first challenges to make the domain model
useful for other concurrency models would be to define the notion of a turn in
those models.

9.3.2. Performance

Performance Evaluation
Each of the types of domains in our model solves the same set of issues while
maintaining the guarantees of the original pure actor model. For each type
of domain this involves a different synchronization mechanism. The developer
has to choose a mechanism based on the use case and the acceptable perfor-
mance trade-off. One of the main points for future work is determining that
performance trade-off and comparing the overhead of domains to traditional
approaches.

Static Type System
The current implementation of S H A C L, as discussed in Chapter 7 is an abstract
syntax tree interpreter for a dynamically typed language. The current imple-
mentation uses domain handlers to dynamically dispatch field accesses, method
invocations and message sends to the appropriate domain handler. Another
avenue for future work would be to investigate whether a static type system
could help reduce the dynamic overhead of these calls. Also, the current ver-
sion throws a runtime error when a domain is illegally accessed by an actor. A
static type system could help with determining these errors at compile-time.

A Better Multi-Version History STM
The current implementation of observable domains uses a multi-version history
STM to ensure that the different actors always see a consistent snapshot of the
observable domain. The current implementation of the STM is a naive imple-
mentation that stores all the versions of each object. Another part of the future
work is to investigate whether known techniques in that field [Perelman et al.,
2010] can be used to optimize this implementation.

154

9.4. Closing Conclusion

Integration of domains with the runtime To improve performance we could
integrate the implementation of the domain model with the runtime by using
the memory protection mechanism of the underlying operating system or VM
for efficiently intercepting writes. A similar technique was used in Hoffman et al.
[2011] to leverage the existing memory protection mechanism of the hardware,
avoiding the need for inline security checks or write barriers.

9.3.3. Other

First-class Domain Handlers
The current implementation of domain handlers as discussed in Chapter 7 treats
domain handlers as second-class objects. We have already shown that domain
handlers can be used to implement domains with various other properties. Ano-
ther potential avenue for future work would be to investigate how a first-class
treatment of domain handlers can even further improve their flexibility and
allow the specification of other domain types.

Formal Proofs for Properties of the Domain Model
The evaluation of the different properties of the domain model in this disserta-
tion remain largely informal. The current version of the operational semantics
does not serve any other goal than to provide a specification of the semantics
of our model. These operational semantics could be used to provide proofs for
each of the properties of the model.

9.4. Closing Conclusion

Historically, concurrent and parallel programming were mainly used as a specia-
list technique for systems programming or high performance computing. Howe-
ver, during recent years, commodity hardware from desktops to smartphones
are being transformed into multi-core machines. This has led to an increased
interest in more advanced concurrent programming models that are able to
exploit the heterogeneous concurrency of desktop applications with more com-
plex interactions between its different components. In a larger context, the fo-
cus of this dissertation is about the contrast between flexible concurrency con-
trol and manageable concurrency control that aims to guarantee safety and live-
ness. The starting hypothesis of this dissertation is that developers of complex
interactive applications benefit most from a concurrency model with high safety
and liveness guarantees. Throughout this dissertation we have shown that the
actor model is a model that provides many desirable properties for designing

155

9. Conclusion

modular, reusable, secure and fault-tolerant software. Several mainstream lan-
guages, such as Clojure [Hickey, 2008] and Scala [Haller and Odersky, 2007],
are adopting the actor model as a concurrency model. We have shown that pure
actor languages provide strong safety guarantees but, because of the strong iso-
lation between different actors, lack the necessary language abstractions to mo-
del shared resources in an expressive way. However, we have shown that strict
isolation between the different processes is not a necessary property to provide
these guarantees. This dissertation presents the domain model as a set of lan-
guage abstractions for controlling access to shared mutable state. We show that
by unifying domains and object heaps, we can neatly integrate the domain mo-
del within the communicating event-loop actor model without compromising
on its safety guarantees. We have shown that the synchronization mechanisms
used in existing projects that use actors can be translated to domains with the
added benefit that the domain model can combine server-side and client-side
synchronization in a safe and expressive way.

156

A
S C A L A PAT T E R N T R A N S F O R M AT I O N

157

Bijlage A. Scala Pattern Transformation

A.1. Delegate Actor

URL: https://github.com/apache/spark/blob/master/core/src/main/sc
ala/org/apache/spark/scheduler/local/LocalBackend.scala

1 /**
2 * Calls to LocalBackend are all serialized through LocalActor. Using an actor makes the calls on
3 * LocalBackend asynchronous, which is necessary to prevent deadlock between LocalBackend
4 * and the TaskSchedulerImpl.
5 */
6 private[spark] class LocalActor(
7 scheduler: TaskSchedulerImpl,
8 executorBackend: LocalBackend,
9 private val totalCores: Int) extends Actor with ActorLogReceive with Logging {

10

11 val executor = new Executor(
12 localExecutorId, localExecutorHostname, scheduler.conf.getAll, isLocal = true)
13

14 override def receiveWithLogging = {
15 case ReviveOffers =>
16 reviveOffers()
17

18 case StatusUpdate(taskId, state, serializedData) =>
19 scheduler.statusUpdate(taskId, state, serializedData)
20 if (TaskState.isFinished(state)) {
21 freeCores += scheduler.CPUS_PER_TASK
22 reviveOffers()
23 }
24

25 case KillTask(taskId, interruptThread) =>
26 executor.killTask(taskId, interruptThread)
27

28 case StopExecutor =>
29 executor.stop()
30 }
31

32 def reviveOffers() {
33 val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
34 for (task <− scheduler.resourceOffers(offers).flatten) {
35 freeCores −= scheduler.CPUS_PER_TASK
36 executor.launchTask(executorBackend, task.taskId, task.name, task.serializedTask)
37 }
38 }
39 }

Listing A.1: A delegate actor

158

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala

A.2. Delegate Actor Transformation

A.2. Delegate Actor Transformation

1 private[spark] class LocalActor(
2 scheduler: TaskSchedulerImpl,
3 executorBackend: LocalBackend,
4 private val totalCores: Int) extends DomainReference {
5

6 val domain = new Domain
7 val executor = new Executor(
8 localExecutorId, localExecutorHostname, scheduler.conf.getAll, isLocal = true)
9

10 def reviveOffers() = writer {
11 val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
12 for (task <− scheduler.resourceOffers(offers).flatten) {
13 freeCores −= scheduler.CPUS_PER_TASK
14 executor.launchTask(executorBackend, task.taskId, task.name, task.serializedTask)
15 }
16 }
17

18 def statusUpdate(taskId, state, serializedData) = writer {
19 scheduler.statusUpdate(taskId, state, serializedData)
20 if (TaskState.isFinished(state)) {
21 freeCores += scheduler.CPUS_PER_TASK
22 reviveOffers()
23 }
24 }
25 def killTask(taskId, interruptThread) = writer {
26 executor.killTask(taskId, interruptThread)
27 }
28 def stopExecutor() = writer {
29 executor.stop()
30 }
31 }

Listing A.2: Transformation of the delegate actor pattern

159

Bijlage A. Scala Pattern Transformation

A.3. Server-side Lock

URL: https://github.com/uzh/signal-collect/blob/master/src/main/s
cala/com/signalcollect/configuration/ActorSystemRegistry.scala

1 object ActorSystemRegistry {
2

3 var systems = Map[String, ActorSystem]()
4

5 def register(system: ActorSystem) {
6 synchronized {
7 systems += ((system.name, system))
8 }
9 }

10

11 def contains(system: ActorSystem): Boolean = {
12 synchronized {
13 systems.contains(system.name)
14 }
15 }
16

17 def remove(system: ActorSystem) {
18 synchronized {
19 systems −= system.name
20 }
21 }
22

23 def retrieve(name: String): Option[ActorSystem] = {
24 synchronized {
25 systems.get(name)
26 }
27 }
28 }

Listing A.3: A server-side lock

160

https://github.com/uzh/signal-collect/blob/master/src/main/scala/com/signalcollect/configuration/ActorSystemRegistry.scala
https://github.com/uzh/signal-collect/blob/master/src/main/scala/com/signalcollect/configuration/ActorSystemRegistry.scala

A.4. Server-side Lock Transformed

A.4. Server-side Lock Transformed

1 object ActorSystemRegistry extends DomainReference {
2

3 val domain = new Domain
4

5 var systems = Map[String, ActorSystem]()
6

7 def register(system: ActorSystem) = writer {
8 systems += ((system.name, system))
9 }

10

11 def contains(system: ActorSystem): Boolean = reader {
12 systems.contains(system.name)
13 }
14

15 def remove(system: ActorSystem) = writer {
16 systems −= system.name
17 }
18

19 def retrieve(name: String): Option[ActorSystem] = reader {
20 systems.get(name)
21 }
22 }

Listing A.4: Transformation of the server-side lock

161

Bijlage A. Scala Pattern Transformation

A.5. Client-side Lock

URL: https://github.com/lshift/diffa/blob/6fe49c01c777fab37832b2c
13763f9dbe58a7c44/kernel/src/main/scala/net/lshift/diffa/kernel/di
fferencing/BaseScanningVersionPolicy.scala

1 def handleMismatch(scanId:Option[Long],
2 pair:PairRef,
3 writer: LimitedVersionCorrelationWriter,
4 vm:VersionMismatch,
5 listener:DifferencingListener) = {
6 vm match {
7 case VersionMismatch(id, attributes, lastUpdate, usVsn, _) =>
8

9 val corrrelation = writer.synchronized {
10 if (usVsn != null) {
11 writer.storeUpstreamVersion(VersionID(pair, id), attributes, lastUpdate, usVsn, scanId)
12 } else {
13 writer.clearUpstreamVersion(VersionID(pair, id), scanId)
14 }
15 }
16

17 handleUpdatedCorrelation(corrrelation)
18 }
19 }

Listing A.5: A client-side lock

162

https://github.com/lshift/diffa/blob/6fe49c01c777fab37832b2c13763f9dbe58a7c44/kernel/src/main/scala/net/lshift/diffa/kernel/differencing/BaseScanningVersionPolicy.scala
https://github.com/lshift/diffa/blob/6fe49c01c777fab37832b2c13763f9dbe58a7c44/kernel/src/main/scala/net/lshift/diffa/kernel/differencing/BaseScanningVersionPolicy.scala
https://github.com/lshift/diffa/blob/6fe49c01c777fab37832b2c13763f9dbe58a7c44/kernel/src/main/scala/net/lshift/diffa/kernel/differencing/BaseScanningVersionPolicy.scala

A.6. Client-side Lock Transformed

A.6. Client-side Lock Transformed

1 def handleMismatch(scanId:Option[Long],
2 pair:PairRef,
3 writer: LimitedVersionCorrelationWriter,
4 vm:VersionMismatch,
5 listener:DifferencingListener) = {
6 vm match {
7 case VersionMismatch(id, attributes, lastUpdate, usVsn, _) =>
8

9 val f = whenExclusive(writer) {
10 if (usVsn != null) {
11 writer.storeUpstreamVersion(VersionID(pair, id), attributes, lastUpdate, usVsn, scanId)
12 } else {
13 writer.clearUpstreamVersion(VersionID(pair, id), scanId)
14 }
15 }
16

17 f onSuccess {
18 case correlation =>
19 handleUpdatedCorrelation(corrrelation)
20 }
21 }
22 }

Listing A.6: Transformation of the client-side lock

163

R E F E R E N C E S

N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Hals-
tead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J.
Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand, and H. Abelson. Revised5
report on the algorithmic language scheme. SIGPLAN Not., 33(9):26–76,
September 1998. ISSN 0362-1340. doi: 10.1145/290229.290234. URL
http://doi.acm.org/10.1145/290229.290234. 48, 50

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-01092-5. 11, 13

Gul Agha. Concurrent object-oriented programming. Commun. ACM, 33(9):
125–141, September 1990. ISSN 0001-0782. doi: 10.1145/83880.84528.
URL http://doi.acm.org/10.1145/83880.84528. 11, 13, 14

Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation
for actor computation. J. Funct. Program., 7(1):1–72, January 1997. ISSN
0956-7968. doi: 10.1017/S095679689700261X. URL http://dx.doi.org
/10.1017/S095679689700261X. 30

Jamie Allen. Effective Akka. O’Reilly Media, Inc., 2013. ISBN 1449360076,
9781449360078. 4, 21, 41

Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in ERLANG (2Nd Ed.). Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1996. ISBN 0-13-508301-X. 3, 16, 33, 46, 84

E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language
with iteration. Commun. ACM, 20(7):519–526, July 1977. ISSN 0001-
0782. doi: 10.1145/359636.359715. URL http://doi.acm.org/10.1145/
359636.359715. 1

Mark Astley. The actor foundry: A java-based actor programming environment,
1998-99. URL http://osl.cs.uiuc.edu/foundry. 3

165

http://doi.acm.org/10.1145/290229.290234
http://doi.acm.org/10.1145/83880.84528
http://dx.doi.org/10.1017/S095679689700261X
http://dx.doi.org/10.1017/S095679689700261X
http://doi.acm.org/10.1145/359636.359715
http://doi.acm.org/10.1145/359636.359715
http://osl.cs.uiuc.edu/foundry

References

Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet,
Matthieu Morel, and Romain Quilici. Grid Computing: Software Environ-
ments and Tools, chapter Programming, Deploying, Composing, for the Grid.
Springer-Verlag, 2006. URL http://www-sop.inria.fr/oasis/proactive/
doc/ProgrammingComposingDeploying.pdf. 3, 19, 85

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Lei-
serson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207–216, August 1995. ISSN 0362-
1340. doi: 10.1145/209937.209958. URL http://doi.acm.org/10.1145/
209937.209958. 1

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin
Sung, and Mohsen Vakilian. A type and effect system for deterministic
parallel java. SIGPLAN Not., 44(10):97–116, October 2009. ISSN 0362-
1340. doi: 10.1145/1639949.1640097. URL http://doi.acm.org/10.1145/
1639949.1640097. 83

Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Compu-
ting, PODC ’00, pages 7–, New York, NY, USA, 2000. ACM. ISBN 1-58113-
183-6. doi: 10.1145/343477.343502. URL http://doi.acm.org/10.1145/
343477.343502. 34

Jean-Pierre Briot. Actalk: a testbed for classifying and designing actor langua-
ges in the smalltalk-80 environment. pages 109–129. University Press, 1989.
14

Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous se-
quential processes. Inf. Comput., 207(4):459–495, April 2009. ISSN 0890-
5401. doi: 10.1016/j.ic.2008.12.004. URL http://dx.doi.org/10.1016/
j.ic.2008.12.004. 18

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:
An object-oriented approach to non-uniform cluster computing. SIGPLAN
Not., 40(10):519–538, October 2005. ISSN 0362-1340. doi: 10.1145/
1103845.1094852. URL http://doi.acm.org/10.1145/1103845.1094852.
83

166

http://www-sop.inria.fr/oasis/proactive/doc/ProgrammingComposingDeploying.pdf
http://www-sop.inria.fr/oasis/proactive/doc/ProgrammingComposingDeploying.pdf
http://doi.acm.org/10.1145/209937.209958
http://doi.acm.org/10.1145/209937.209958
http://doi.acm.org/10.1145/1639949.1640097
http://doi.acm.org/10.1145/1639949.1640097
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://dx.doi.org/10.1016/j.ic.2008.12.004
http://dx.doi.org/10.1016/j.ic.2008.12.004
http://doi.acm.org/10.1145/1103845.1094852

References

Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2):345–363, April 1936. 11

Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide
Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. Ambienttalk:
programming responsive mobile peer-to-peer applications with actors. Com-
puter Languages, Systems Structures, (0):–, 2014. ISSN 1477-8424. doi:
http://dx.doi.org/10.1016/j.cl.2014.05.002. URL http://www.sciencedire
ct.com/science/article/pii/S1477842414000335. 87, 112

Joeri De Koster. The shacl programming language. http://soft.vub.ac.be/
~jdekoste/shacl/, 2014. 116

Joeri De Koster and Tom Van Cutsem. Shacl: Operational semantics. Technical
report, Vrije Universiteit Brussel, 2013. http://soft.vub.ac.be/Publicat
ions/2013/vub-soft-tr-13-26.pdf.

Joeri De Koster, Stefan Marr, and Theo D’Hondt. Synchronization views for
event-loop actors. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages 317–318,
New York, NY, USA, 2012a. ACM. ISBN 978-1-4503-1160-1. doi: 10.1145/
2145816.2145873. URL http://doi.acm.org/10.1145/2145816.2145873.

Joeri De Koster, Tom Van Cutsem, and Theo D’Hondt. Domains: Safe sharing
among actors. In Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! ’12, pages 11–22, New York, NY, USA, 2012b. ACM.
ISBN 978-1-4503-1630-9. doi: 10.1145/2414639.2414644. URL http://do
i.acm.org/10.1145/2414639.2414644.

Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. Tanks:
Multiple reader, single writer actors. In Proceedings of the 2013 Workshop
on Programming Based on Actors, Agents, and Decentralized Control, AGERE!
’13, pages 61–68, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2602-
5. doi: 10.1145/2541329.2541331. URL http://doi.acm.org/10.1145/
2541329.2541331. 70

W. De Meuter, S. Gonzalez, and T. D’Hondt. The design and rationale behind
pico. Technical report, Vrije Universiteit Brussel, 1999. URL ftp://prog.v
ub.ac.be/pub/Courses/CPL/PDF.dir/PicoRationale.pdf. 48

167

http://www.sciencedirect.com/science/article/pii/S1477842414000335
http://www.sciencedirect.com/science/article/pii/S1477842414000335
http://soft.vub.ac.be/~jdekoste/shacl/
http://soft.vub.ac.be/~jdekoste/shacl/
http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-26.pdf
http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-26.pdf
http://doi.acm.org/10.1145/2145816.2145873
http://doi.acm.org/10.1145/2414639.2414644
http://doi.acm.org/10.1145/2414639.2414644
http://doi.acm.org/10.1145/2541329.2541331
http://doi.acm.org/10.1145/2541329.2541331
ftp://prog.vub.ac.be/pub/Courses/CPL/PDF.dir/PicoRationale.pdf
ftp://prog.vub.ac.be/pub/Courses/CPL/PDF.dir/PicoRationale.pdf

References

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-
0782. doi: 10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/
1327452.1327492. 1

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D'Hondt, and
Wolfgang De Meuter. Ambient-oriented programming in ambienttalk. In
Proceedings of the 20th European Conference on Object-Oriented Programming,
ECOOP’06, pages 230–254, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN
3-540-35726-2, 978-3-540-35726-1. doi: 10.1007/11785477_16. URL http:
//dx.doi.org/10.1007/11785477_16. 21

Brian Demsky and Patrick Lam. Views: Object-inspired concurrency control.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 395–404, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-719-6. doi: 10.1145/1806799.1806858. URL http:
//doi.acm.org/10.1145/1806799.1806858. 84

Matthias Felleisen and Robert Hieb. The revised report on the syntactic the-
ories of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
September 1992. ISSN 0304-3975. doi: 10.1016/0304-3975(92)90014-7.
URL http://dx.doi.org/10.1016/0304-3975(92)90014-7. 91

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983. ISBN 0-201-11371-6. 121

Google. The go programming language. http://golang.org/, 2011. Accessed:
2014-09-15. 116

Olivier Gruber and Fabienne Boyer. Ownership-based isolation for concurrent
actors on multi-core machines. In Proceedings of the 27th European Conference
on Object-Oriented Programming, ECOOP’13, pages 281–301, Berlin, Heidel-
berg, 2013. Springer-Verlag. ISBN 978-3-642-39037-1. doi: 10.1007/978-
3-642-39038-8_12. URL http://dx.doi.org/10.1007/978-3-642-39038-
8_12. 23, 86

Philipp Haller and Martin Odersky. Actors that unify threads and events. In
Proceedings of the 9th International Conference on Coordination Models and
Languages, COORDINATION’07, pages 171–190, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-72793-4. URL http://dl.acm.org/citat
ion.cfm?id=1764606.1764620. 4, 21, 41, 156

168

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/11785477_16
http://dx.doi.org/10.1007/11785477_16
http://doi.acm.org/10.1145/1806799.1806858
http://doi.acm.org/10.1145/1806799.1806858
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://golang.org/
http://dx.doi.org/10.1007/978-3-642-39038-8_12
http://dx.doi.org/10.1007/978-3-642-39038-8_12
http://dl.acm.org/citation.cfm?id=1764606.1764620
http://dl.acm.org/citation.cfm?id=1764606.1764620

References

Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci., 410(2-3):202–220, February
2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2008.09.019. URL http://dx.d
oi.org/10.1016/j.tcs.2008.09.019. 42

Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing.
In Proceedings of the 24th European Conference on Object-oriented Program-
ming, ECOOP’10, pages 354–378, Berlin, Heidelberg, 2010. Springer-Verlag.
ISBN 3-642-14106-4, 978-3-642-14106-5. URL http://dl.acm.org/citat
ion.cfm?id=1883978.1884002. 4, 86

C. Hewitt. Viewing control structures as patterns of passing messa-
ges. Artificial Intelligence, 8(3):323–364, 1977. ISSN 00043702. doi:
10.1016/0004-3702(77)90033-9. URL http://dx.doi.org/10.1016/0004-
3702(77)90033-9.

C. Hewitt and B. Smith. A plasma primer (draft), 1975. 12

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd Internatio-
nal Joint Conference on Artificial Intelligence, IJCAI’73, pages 235–245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc. URL http:
//dl.acm.org/citation.cfm?id=1624775.1624804. 2, 8, 11, 12

Rich Hickey. The clojure programming language. In Proceedings of the
2008 Symposium on Dynamic Languages, DLS ’08, pages 1:1–1:1, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-270-2. doi: 10.1145/
1408681.1408682. URL http://doi.acm.org/10.1145/1408681.1408682.
156

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. URL
http://doi.acm.org/10.1145/359576.359585. 2

Kevin J. Hoffman, Harrison Metzger, and Patrick Eugster. Ribbons: A parti-
ally shared memory programming model. SIGPLAN Not., 46(10):289–306,
October 2011. ISSN 0362-1340. doi: 10.1145/2076021.2048091. URL
http://doi.acm.org/10.1145/2076021.2048091. 83, 155

Gregor Hohpe. Programmieren ohne stack: Ereignis-getriebene architekturen.
OBJEKTspektrum, 2:18–24, 2006. ISSN 0945-0491. 36

169

http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dl.acm.org/citation.cfm?id=1883978.1884002
http://dl.acm.org/citation.cfm?id=1883978.1884002
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://doi.acm.org/10.1145/1408681.1408682
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/2076021.2048091

References

S. Rougemaille J.-P. Arcangeli, F. Migeon. Javact : a java middleware for mobile
adaptive agents, February 2008. URL http://www.irit.fr/PERSONNEL/SMAC
/arcangeli/JavAct.html. 3

Myeong-Wuk Jang. The actor architecture manual, March 2004. URL http:
//osl.cs.uiuc.edu/aa. 3

Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22–35, June/July 1988. 36

Dennis Kafura. Act++: Building a concurrent c++ with actors. J. Ob-
ject Oriented Program., 3(1):25–37, April 1990. ISSN 0896-8438. URL
http://dl.acm.org/citation.cfm?id=90482.90493. 14

Brian W. Kernighan. The C Programming Language. Prentice Hall Professional
Technical Reference, 2nd edition, 1988. ISBN 0131103709. 48

Wooyoung Kim. Thal: An actor system for efficient and scalable concurrent
computing, 1997. 14

Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. Domains:
Safe sharing among actors. Science of Computer Programming, 98, Part 2
(0):140 – 158, 2015. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/j.s
cico.2014.02.008. URL http://www.sciencedirect.com/science/article
/pii/S0167642314000495. Special Issue on Programming Based on Actors,
Agents and Decentralized Control.

Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May
2006. ISSN 0018-9162. doi: 10.1109/MC.2006.180. URL http://dx.doi
.org/10.1109/MC.2006.180. 2, 41, 79

Mohsen Lesani and Antonio Lain. Semantics-preserving sharing actors. In
Proceedings of the 2013 Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE! ’13, pages 69–80, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2602-5. doi: 10.1145/2541329.2541332. URL
http://doi.acm.org/10.1145/2541329.2541332. 85

Microsoft. Axum programming language, 2008-09. URL http://msdn.micro
soft.com/en-us/devlabs/dd795202.aspx. 85

Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concurrency among
strangers: Programming in e as plan coordination. In Proceedings of
the 1st International Conference on Trustworthy Global Computing, TGC’05,

170

http://www.irit.fr/PERSONNEL/SMAC/arcangeli/JavAct.html
http://www.irit.fr/PERSONNEL/SMAC/arcangeli/JavAct.html
http://osl.cs.uiuc.edu/aa
http://osl.cs.uiuc.edu/aa
http://dl.acm.org/citation.cfm?id=90482.90493
http://www.sciencedirect.com/science/article/pii/S0167642314000495
http://www.sciencedirect.com/science/article/pii/S0167642314000495
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://doi.acm.org/10.1145/2541329.2541332
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx

References

pages 195–229, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-
30007-4, 978-3-540-30007-6. URL http://dl.acm.org/citation.cfm?id=
1986262.1986274. 3, 19, 45

Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965. 1

Stas Negara, Rajesh K. Karmani, and Gul Abdulnabi Agha. Inferring ownership
transfer for efficient message passing. In Proceedings of the 16th ACM sympo-
sium on Principles and practice of parallel programming, PPoPP ’11, pages 81–
90. ACM, 2011. ISBN 978-1-4503-0119-0. doi: 10.1145/1941553.1941566.
86

Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in
stm. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’10, pages 16–25, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-888-9. doi: 10.1145/1835698.1835704. URL http:
//doi.acm.org/10.1145/1835698.1835704. 72, 123, 154

Constantine Plotnikov. Asyncobjects framework. http://asyncobjects.sourc
eforge.net/, 2007. 3

Mike Rettig. Jetlang, 2008-09. URL http://code.google.com/p/jetlang/. 3

Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: Generalizing active objects to
concurrent components. In Proceedings of the 24th European Conference on
Object-oriented Programming, ECOOP’10, pages 275–299, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-642-14106-5. URL http:
//dl.acm.org/citation.cfm?id=1883978.1883996. 87

Christophe Scholliers, Eric Tanter, and Wolfgang De Meuter. Parallel actor moni-
tors: Disentangling task-level parallelism from data partitioning in the actor
model. Sci. Comput. Program., 80:52–64, February 2014. ISSN 0167-6423.
doi: 10.1016/j.scico.2013.03.011. URL http://dx.doi.org/10.1016/j.sci
co.2013.03.011. 38, 86

Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, pages 204–213, New York, NY, USA, 1995. ACM. ISBN 0-89791-
710-3. doi: 10.1145/224964.224987. URL http://doi.acm.org/10.1145/
224964.224987. 2, 71

171

http://dl.acm.org/citation.cfm?id=1986262.1986274
http://dl.acm.org/citation.cfm?id=1986262.1986274
http://doi.acm.org/10.1145/1835698.1835704
http://doi.acm.org/10.1145/1835698.1835704
http://asyncobjects.sourceforge.net/
http://asyncobjects.sourceforge.net/
http://code.google.com/p/jetlang/
http://dl.acm.org/citation.cfm?id=1883978.1883996
http://dl.acm.org/citation.cfm?id=1883978.1883996
http://dx.doi.org/10.1016/j.scico.2013.03.011
http://dx.doi.org/10.1016/j.scico.2013.03.011
http://doi.acm.org/10.1145/224964.224987
http://doi.acm.org/10.1145/224964.224987

References

Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for java. In
Proceedings of the 22Nd European Conference on Object-Oriented Programming,
ECOOP ’08, pages 104–128, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-70591-8. doi: 10.1007/978-3-540-70592-5_6. URL http://dx.d
oi.org/10.1007/978-3-540-70592-5_6. 3, 22

D.C. Sturman and G.A. Agha. A protocol description language for customi-
zing failure semantics. In Reliable Distributed Systems, 1994. Proceedings.,
13th Symposium on, pages 148–157, Oct 1994. doi: 10.1109/RELDIS
.1994.336900. 14

Gerald Jay Sussman and Guy L Steele. Scheme: An interpreter for extended
lambda calculus, 1975. 11

H. Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. http://www.gotw.ca/publications/concurrency-ddj.htm,
2005. 1

H. Sutter. Welcome to the jungle. http://herbsutter.com/welcome-to-the-
jungle/, 2011. 5

Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why do scala developers
mix the actor model with other concurrency models? In Proceedings of the
27th European Conference on Object-Oriented Programming, ECOOP’13, pages
302–326, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-39037-
1. doi: 10.1007/978-3-642-39038-8_13. URL http://dx.doi.org/10.1007/
978-3-642-39038-8_13. 132

C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and G. Agha. Ro-
sette: An object-oriented concurrent systems architecture. In Proceedings
of the 1988 ACM SIGPLAN Workshop on Object-based Concurrent Program-
ming, OOPSLA/ECOOP ’88, pages 91–93, New York, NY, USA, 1988. ACM.
ISBN 0-89791-304-3. doi: 10.1145/67386.67410. URL http://doi.acm.o
rg/10.1145/67386.67410. 14

David Ungar and Randall B. Smith. Self: The power of simplicity. In Con-
ference Proceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA ’87, pages 227–242, New York, NY, USA, 1987. ACM.
ISBN 0-89791-247-0. doi: 10.1145/38765.38828. URL http://doi.acm.o
rg/10.1145/38765.38828. 51

172

http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://www.gotw.ca/publications/concurrency-ddj.htm
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://doi.acm.org/10.1145/67386.67410
http://doi.acm.org/10.1145/67386.67410
http://doi.acm.org/10.1145/38765.38828
http://doi.acm.org/10.1145/38765.38828

References

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and
Wolfgang De Meuter. Ambienttalk: Object-oriented event-driven program-
ming in mobile ad hoc networks. In Proceedings of the XXVI International Con-
ference of the Chilean Society of Computer Science, SCCC ’07, pages 3–12, Was-
hington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3017-6. doi:
10.1109/SCCC.2007.4. URL http://dx.doi.org/10.1109/SCCC.2007.4. 3,
21

Carlos Varela and Gul Agha. Programming dynamically reconfigurable open sys-
tems with salsa. SIGPLAN Not., 36(12):20–34, December 2001. ISSN 0362-
1340. doi: 10.1145/583960.583964. URL http://doi.acm.org/10.1145/
583960.583964. 3, 17, 33

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented
concurrent programming abcl/1. In Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications, OOPLSA ’86, pages 258–
268, New York, NY, USA, 1986. ACM. ISBN 0-89791-204-7. doi: 10.1145/
28697.28722. URL http://doi.acm.org/10.1145/28697.28722. 15, 39, 54

William Zwicky. Aj: A systems for buildings actors with java, 2008. 4

173

http://dx.doi.org/10.1109/SCCC.2007.4
http://doi.acm.org/10.1145/583960.583964
http://doi.acm.org/10.1145/583960.583964
http://doi.acm.org/10.1145/28697.28722

	Abstract
	Samenvatting
	Acknowledgements
	1 Introduction
	1.1 Problem Statement
	1.2 Research Vision
	1.3 Contributions
	1.4 Supporting Publications and Technical Contributions
	1.5 Dissertation Outline

	2 Context: Actor Systems
	2.1 The History of Actor Systems
	2.1.1 Agha's Actor Model: ACT, SAL and Rosette
	2.1.2 ABCL/1
	2.1.3 Erlang
	2.1.4 SALSA
	2.1.5 Asynchronous Sequential Processes and ProActive
	2.1.6 E Programming Language
	2.1.7 Scala Actor Library and Akka
	2.1.8 Kilim

	2.2 Actor System Classification and Properties
	2.2.1 Classification of Actor Systems
	2.2.1.1 Original Actor Model
	2.2.1.2 Processes
	2.2.1.3 Active Objects
	2.2.1.4 Communicating Event-Loops

	2.2.2 Actor Properties
	2.2.2.1 Message Processing
	2.2.2.2 Message Reception
	2.2.2.3 State Changes
	2.2.2.4 Actors Per Node

	2.3 The Isolated Turn Principle
	2.4 Conclusion

	3 Shared State in Modern Actor Systems
	3.1 Shared State in Pure Actor Systems
	3.1.1 Replication
	3.1.2 Delegate Actor
	3.1.2.1 Code Fragmentation and Continuation-passing Style Enforced
	3.1.2.2 No Parallel Reads
	3.1.2.3 Message-level Race Conditions
	3.1.2.4 Message-level Deadlocks
	3.1.2.5 Conclusion

	3.2 Shared State in Impure Actor Systems
	3.2.1 Locks
	3.2.2 Software Transactional Memory

	3.3 Conclusion

	4 Communicating Event-Loops
	4.1 Why Communicating Event-Loops?
	4.1.1 Fine-grained versus Coarse-grained Concurrency
	4.1.2 Flexible versus Fixed Behavior

	4.2 Shacl: A Communicating Event-Loop Language
	4.2.1 Imperative Programming in Shacl
	4.2.2 Object Oriented Programming in Shacl
	4.2.3 Actor Oriented Programming in Shacl

	4.3 Shared State in Shacl, A Motivating Example
	4.3.1 An Idealized Implementation of the Motivating Example

	4.4 Conclusion

	5 The Domain Model
	5.1 The Design Space: Event-loops Object Heaps
	5.2 Domains: Immutable, Isolated, Observable, Shared
	5.3 Shacl: A Language with Domains
	5.4 Immutable Domains
	5.5 Isolated Domains
	5.6 Observable Domains
	5.6.1 Observable Actors
	5.6.2 Properties
	5.6.3 A Note on the Implementation
	5.6.4 Revisiting the Motivating Example Using Observable Domains
	5.6.5 Conclusion

	5.7 Shared domains
	5.7.1 Futures
	5.7.2 Asynchronous Communication
	5.7.3 Requesting a View on Multiple Domains
	5.7.4 Comparison with Multiple Reader/Single Writer Locks
	5.7.5 Properties
	5.7.6 Revisiting the Motivating Example Using Shared Domains

	5.8 Benefits of Domains
	5.9 Related work
	5.10 Conclusion

	6 An Operational Semantics for a Significant Subset of Shacl
	6.1 Introduction
	6.2 Basic Shacl-Lite, Actors and Their Isolated Domains
	6.2.1 Semantic Entities
	6.2.2 Shacl-Lite Syntax
	6.2.3 Substitution and Tagging Rules
	6.2.4 Reduction Rules

	6.3 Immutable Domains
	6.3.1 Semantic Entities
	6.3.2 Syntax
	6.3.3 Reduction Rules

	6.4 Observable Domains
	6.4.1 Semantic Entities
	6.4.2 Syntax
	6.4.3 Reduction Rules

	6.5 Shared Domains
	6.5.1 Semantic Entities
	6.5.2 Additional Syntax for Shared Domains
	6.5.3 Reduction Rules

	6.6 Differences Between Shacl and Shacl-Lite
	6.7 Conclusion

	7 Implementation: Domain Handlers
	7.1 The Shacl VM: An Implementation in Go
	7.2 The Domain Handler Interface
	7.2.1 Default Domain Handler
	7.2.2 Immutable Domain Handler
	7.2.3 Isolated Domain Handler
	7.2.4 Observable Domain Handler
	7.2.5 Shared Domain Handler

	7.3 Conclusion

	8 Applying Domains in Practice: A Case Study in Scala
	8.1 Shared State Synchronization Patterns: A Scala Survey
	8.1.1 The Corpus of Actor Programs
	8.1.2 Evaluation of The Different Synchronization Mechanisms
	8.1.3 The Survey: Locks and Delegate Actors
	8.1.3.1 Locks
	8.1.3.2 Delegate Actor

	8.1.4 Conclusion

	8.2 A Shared Domain Library for Scala
	8.2.1 Shared Domains for Scala: The Implementation
	8.2.2 Properties of the Domain Model
	8.2.3 Pattern Transformation to Scala Library
	8.2.3.1 Delegate Actor
	8.2.3.2 Server-side lock
	8.2.3.3 Client-side lock
	8.2.3.4 Conclusion

	8.3 Discussion
	8.4 Conclusion

	9 Conclusion
	9.1 Summary
	9.2 Contributions
	9.3 Future Work
	9.3.1 Domains for Other Concurrency Models
	9.3.2 Performance
	9.3.3 Other

	9.4 Closing Conclusion

	A Scala Pattern Transformation
	A.1 Delegate Actor
	A.2 Delegate Actor Transformation
	A.3 Server-side Lock
	A.4 Server-side Lock Transformed
	A.5 Client-side Lock
	A.6 Client-side Lock Transformed

