
Blame Prediction: Early detection of type
errors in dynamically typed programming

languages

Dries Harnie

September 2015

Alle Rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, electro-
nisch of op welke andere wijze ook, zonder voorafgaande schriftelijke toestemming
van de auteur.

All rights reserved. No part of this publication may be produced in any form by print,
photoprint, microfilm, electronic or any other means without permission from the au-
thor.

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44

crazycopy@vub.ac.be
www.crazycopy.be

ISBN : 9789492312051

NUR CODE : 989

Samenvatting

Om software te ontwikkelen gebruiken programmeurs vaak dynamisch getypeerde program-
meertalen, die typetests uitvoeren en rapporteren terwijl het programma draait. Het ontwikke-
len en debuggen van programma’s in zulke talen is echter niet eenvoudig. Ten eerste, indien
het programma een type error rapporteert moet de programmeur de waarde met het verkeerde
type identifiëren en uitzoeken waar en hoe deze waarde werd berekend. Deze programmalo-
catie is niet noodzakelijk in dezelfde functie. De programmeur moet dus een handmatig
zoekproces opstarten, wat meestal veel tijd vergt. Een tweede probleem is de tijd nodig om
het programma uit te voeren na elke aanpassing, waardoor de programmeur moet wachten.

In deze doctoraatsthesis beschrijven we een programmatransformatie genaamd “blame pre-
diction” voor een kleine programmeertaal die gelijkt op de programmeertaal Scheme. Het
kernidee is om de typetests van ingebouwde functies en -operatoren concreet te maken en
deze zo vroeg mogelijk uit te voeren, erop lettend dat de semantiek van het programma niet
verandert. Indien zo’n typetest een fout ontdekt dan spreken we van “blame prediction” voor
een primitieve operatie verderop in het programma. Deze transformatie lost beide problemen
op: ten eerste kan de programmeur naar de fout beginnen zoeken vanaf de typetest in plaats
van de operatie die gaat falen. Tegelijkertijd moet het programma minder stappen uitvoeren
voor het een fout ontdekt, waardoor de programmeur minder lang moet wachten.

De “blame prediction” transformatie bestaat uit drie onderdelen. Het eerste onderdeel is
gebaseerd op een innovatief typesysteem dat niet alleen het type berekent van elke expressie
in een programma, maar ook de typetests die “onderweg” nodig zijn. De combinatie van
types en typetests maakt het mogelijk om typetests te propageren over functiegrenzen heen.
Als we dit typesysteem zonder meer toepassen zorgt de analyse van recursieve functies voor
recursieve types, welke eeuwig groeien. We gebruiken technieken uit de abstracte interpretatie
om dit probleem op te lossen. Een tweede luik van dit onderdeel is een effectanalyse, die
conservatief afschat welke variabelen aangepast kunnen worden door een gegeven expressie.
Het einderesultaat van dit onderdeel is een getransformeerd programma waar elke functie-
applicatie omringd is door een typetest.

Het tweede onderdeel zal deze typetests zo hoog mogelijk in het programma verplaatsen
zonder daarbij de betekenis van het programma aan te tasten. Concreet wil dit zeggen dat type-
tests niet mogen verwijzen naar ongebonden variabelen, en dat het programma geen typetests
mag uitvoeren voor expressies die anders niet zouden worden uitgevoerd. De effectanalyse
van het eerste onderdeel wordt gebruikt om deze verplaatsing bij te sturen: typetests mogen
niet zonder meer over expressies springen indien deze variabelen wijzigen waarop de typetest
van toepassing is.

Het derde en laatste onderdeel is een vereenvoudigingsstap welke overbodige typetests
weer wegwerkt. Het resultaat van deze stap — en dus van de blame prediction-transformatie
— is een programma dat sterk gelijkt op het invoerprogramma, maar met de toevoeging van
speciale expressies die typetests uitvoeren en “blame predicten” voor gekenmerkte expressies
als deze een typeerfout opmerken.

We hebben de blame prediction-transformatie toegepast op twee standaard programmacor-
pora. Het resultaat hiervan is dat typetests naar boven verplaatst werden in een aantal pro-
gramma’s, zowel statisch (in termen van de programmatekst, wat het eerste probleem oplost)
en dynamisch (in termen van de uitvoeringstijd, wat het tweede probleem oplost). Daaren-
boven merkten we dat de blame prediction-transformatie een groot aandeel van alle typetests

in een dynamisch getypeerd programma kan elimineren. Tenslotte hebben we bewezen dat de
blame prediction-transformatie geen extra fouten kan veroorzaken (zij het door ongebonden
variabelen te refereren, zij het door extra typetests te introduceren), en dat het het gedrag van
het invoerprogramma bewaart.

Abstract

In the context of software development, programmers often use dynamically typed program-
ming languages, which perform type tests at run-time and directly report any type errors.
However, developing and debugging programs in such languages is difficult for a number
of reasons. First, when a type error is reported, the programmer must identify the wrongly-
typed value and trace back through the program to find out how and where it was computed.
This place might be in a different part of a program and finding it requires a manual, time-
consuming search. Second, there might be a large number of computational steps in between
these two program locations, which slows down the edit-run-debug cycle by making the pro-
grammer wait.

In this dissertation we propose a program transformation called “blame prediction” for a
small core language similar to the programming language Scheme. The driving idea is to
make the type tests of built-in functions and operators explicit and perform them as early
as possible without changing the program semantics. When such an early type test fails, the
program “predicts blame” for primitive operations further down in the program. This solves
both problems: first, the programmer can start tracing where and how the value is computed
starting from the type test instead of the primitive operation, and second, some computational
steps are bypassed, thereby reducing the wait.

The blame prediction transformation consists of three parts. The first part is built around
a novel type system which not only infers types from dynamically typed programs, but also
records any (run-time) type tests which must be made “along the way” in order for the pro-
gram to succeed. Such types enable the propagation of type tests beyond function boundaries.
Under this type system, recursive functions induce ever-growing recursive types, which we
tackle using techniques from abstract interpretation. In addition, our type system makes a
conservative estimation of which variables are mutated by expressions. Finally, every function
application in the program is wrapped in a type test.

The second part moves these type tests upwards as far as possible, without changing the
semantics of the input program. This means making sure no unbound variables are referenced
and no type tests are performed which would otherwise not be performed. This part makes
use of the mutation information from the first step: since type tests inspect the type of values
inside variables, they may not be moved over expressions which mutate those variables.

The third part is a simplification step which eliminates redundant type tests. The result of
this step — and of the blame prediction transformation — is a program similar to the input
program, but augmented with special expressions which perform a type test and predict blame
for labeled future expressions if they detect a type error.

We have applied the blame prediction transformation to two standard program corpora. We
showed that it is capable of moving type tests upwards in a variety of programs, both statically
(solving the first problem) and dynamically (solving the second problem). In addition, we
found that the blame prediction transformation is able to eliminate a large fraction of the
type tests in a dynamically typed program. Finally, we have proved that the blame prediction
transformation does not introduce additional errors (either by referencing unbound variables
or introducing extra type tests) and that it preserves the behaviour of its input program.

Acknowledgements

This work, like many others, was not made in a vacuum. I owe a great deal of grat-
itude to Wolfgang De Meuter and Christophe Scholliers, without whom this book
would be significantly shorter, less developed and utterly incomprehensible. I would
like to thank the members of my jury who read this dissertation and challenged me
with insightful questions and suggestions: Ann Dooms, Ann Nowé, Coen De Roover,
Jacques Noyé, Tom Schrijvers, and Viviane Jonckers.

At home I was always given the chance to put away my work worries for a while,
be it by watching TV, gaming, or going on vacation. I could always count on you for
taking care of stuff when I could not, and you were there when I needed you.
Bedankt, papa, mama, Lia en Wiebrecht, alsook mijn meter en mijn peter.

At the lab I enjoyed the support and inspiration of my colleagues, specifically those
in “SOFT prime”: Eline (for being my role model); Joeri, Kevin and Lode (for the
Asian dinner dates); Laure (for her animal-friendly view on things); Mattias (for the
interesting puzzles); Nathalie (for being a fantastic officemate and enthousiastic sup-
porter); Reinout (for the coffee and the carry); and Simon and Yves (for the chats about
games).

Finally, I would like to thank my friends for being aboard the PhD train: both on
sunny days and when it passed through dark tunnels. In alphabetical order: Ben, Bregt,
Evert, Helder, Jonas, Kevin, Rein, Robbe, Romy and Toon. You each gave me your own
brand of diversions, good times, causes for celebrations and causes for worries.
I thank you all.

Tenslotte, als dit de enige pagina is die je leest moet je hier waarschijnlijk ook tussen
staan. Bedankt!

C O N T E N T S

Abstracts i

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Research Context . 1

1.2 Problem Statement: Locating Dynamic Type Errors 3

1.3 Research Goals . 4

1.4 Contributions . 8

1.5 Dissertation Outline . 9

1.6 Supporting Publications and Technical Contributions 11

1.7 Other Publications . 12

2 Functional Blame Prediction 15
2.1 Language Description . 16

2.2 Check Inference . 19

2.3 Check Introduction . 25

2.4 Check Mobility . 27

2.5 Check Simplification . 29

2.5.1 Or–true simplification . 30

2.5.2 And–check simplification . 31

2.5.3 Check–check simplification . 31

2.5.4 Note on simplification of failing tests 31

2.6 Correctness . 32

2.7 Proofs of lemmas . 35

2.8 Discussion . 38

2.8.1 Variable-arity functions . 38

vii

2.8.2 Supporting a full numeric tower in blame prediction 39

2.9 Conclusion . 39

3 Recursion 41
3.1 Syntax and Semantics . 41

3.2 Recursion . 46

3.2.1 Check Inference for Recursion . 47

3.2.2 Solving types for recursive functions 49

3.2.3 Non-terminating recursion patterns 53

3.2.4 Termination properties of Solve . 61

3.2.5 Worked out examples . 65

3.2.5.1 Fibonacci . 65

3.2.5.2 Ackermann . 66

3.2.5.3 Tak . 67

3.2.5.4 Infinite recursion . 69

3.2.5.5 Cyclic recursion . 70

3.2.5.6 Mutual Recursion . 71

3.3 Conclusion . 72

4 Mutation 75
4.1 Mutation . 75

4.1.1 Effect Inference for Schemeβ . 77

4.1.2 Check mobility . 82

4.1.3 Check Simplification . 84

4.1.4 Examples . 86

4.2 Proof of Safety . 87

4.2.1 Correctness of Effect Inference . 87

4.2.2 Program Properties after Blame Prediction 89

4.2.3 Traces and Trace Semantics . 90

4.2.4 Proof of equivalences . 93

4.2.5 Conclusion . 96

4.3 Discussion and Future Work . 97

4.3.1 Blame Prediction for Compound Data Structures 97

4.3.1.1 Supporting Immutable Data Structures 98

4.3.1.2 Mutable Data Structures 99

4.3.2 Blame Prediction and Modules . 100

4.3.3 Blame Prediction and Non-local Control Flow 101

4.3.4 Blame Prediction and Debug Prints 103

4.4 Conclusion . 104

5 Prototype Implementation 107
5.1 General remarks . 107

5.2 Architecture . 111

5.2.1 Parsing . 112

5.2.2 Preprocessing and ANF Transformation 113

5.2.3 Check Inference . 115

5.2.4 Check Mobility . 117

5.2.5 Check Simplification . 118

5.2.6 Postprocessing . 120

5.3 Optimizations . 121

5.4 Conclusion . 122

6 Evaluation 125
6.1 Metrics . 125

6.2 Program Corpora . 130

6.2.1 Gabriel Benchmarks . 130

6.2.2 Computer Language Benchmarks Game 130

6.2.3 Excluded programs . 131

6.3 Results . 132

6.3.1 Gabriel Benchmarks . 133

6.3.2 Computer Language Benchmark Game 135

6.4 Evaluating Blame Prediction by Random Mutation 135

6.5 Conclusion . 139

7 Related Work 145
7.1 The error detection landscape . 145

7.2 Criteria . 147

7.3 Compile-time error detection: Static analysis 148

7.3.1 Typed Racket . 149

7.3.2 Effect systems . 151

7.4 Run-time error detection: Dynamic analysis 152

7.4.1 Contracts . 152

7.4.2 Soft typing . 154

7.4.3 Deferred type errors . 155

7.4.4 Gradual typing . 156

7.4.5 Preemptive type checking . 157

7.4.6 Tagging/Untagging optimizations 158

7.5 Post-mortem error detection: Debuggers 160

7.5.1 Omniscient debugging . 160

7.5.2 Automatic debugging . 161

7.5.3 Scriptable debugging . 162

7.6 Conclusion . 163

8 Conclusion and Future Work 167
8.1 Summary . 167

8.2 Restating the Contributions . 168

8.3 Limitations . 169

8.3.1 Explicit type tests . 170

8.3.2 Cross-module blame prediction 171

8.4 Avenues for Future Research . 171

8.4.1 Other effect systems . 171

8.4.2 Tool support for blame prediction 173

8.5 Concluding Remarks . 174

References 175

L I S T O F F I G U R E S

2.1 Overview of the blame prediction transformation 15

2.2 Syntax of Schemeβ . 17

2.3 Run-time syntax and evaluation rules of Schemeβ 18

2.4 Overview of types . 20

2.5 Reduction rules for type fucntion application 22

2.6 Type inference rules . 23

2.7 Auxiliary definitions . 23

2.8 Conversion from types to check preconditions 26

2.9 Introduction of check expressions into the program 27

2.10 Rules for moving checks up the evaluation tree 27

3.1 Extended syntax and auxiliary definitions 42

3.2 Semantics for Schemeβ with support for recursion and mutable variables 43

3.3 Enforcing invariants: Splitting a letrec into nested let and letrec expressions 44

3.4 Translation of begin to let . 44

3.5 Check inference and mobility for letrec 47

3.6 Reduction rules used during the reduction stage of Solve 51

3.7 Definition of the partial order v over types in normal form 63

4.1 Inference of side effects and definition of the FunEffect helper function . 80

4.2 Check mobility in the presence of side effects 84

4.3 Template for set–check simplification . 86

4.4 Modified semantics for generating traces 92

6.1 Static prediction across all variables in the Gabriel benchmarks 134

6.2 Run-time prediction across all variables in the Gabriel benchmarks . . . 134

6.3 Remaining type tests in the Gabriel benchmarks (lower is better) 136

6.4 Static prediction across all variables in the CLBG benchmarks 136

6.5 Run-time prediction across all variables in the CLBG benchmarks 137

6.6 Remaining type tests in the CLBG benchmarks (lower is better) 137

xi

L I S T O F TA B L E S

6.1 Tables showing the reduction in static type tests, resp. for the Gabriel
and the CLBG benchmarks . 142

6.2 Tables showing the reduction in dynamic type tests, resp. for the Gabriel
and the CLBG benchmarks . 143

7.1 Overview of discussed related work . 164

xiii

L I S T O F L I S T I N G S

1.1 Motivating example: “n queens” solver with an error 5

1.2 Introducing an explicit type test in the motivating example 5

2.1 Example of why preserving all types in a let is necessary 19

2.2 Example of type functions and type function applications 21

2.3 Example program for check inference . 25

2.4 Example of check mobility: input program 29

2.5 Example of check mobility: after floating the inner let 29

2.6 Example of check mobility: After floating the outer let 29

2.7 Running example: factorial . 30

2.8 Example after applying or–true simplification 30

2.9 Example after applying and–check simplification 31

2.10 Example after check–check simplification 31

2.11 Example of ordering inconsistencies after blame prediction 35

2.12 Example of a variable-arity function and its use 38

3.1 Recursive function which leads to an infinite type 46

3.2 Definition of the sum function . 48

3.3 Factorial function . 52

3.4 Example of accumulation of type function applications 54

3.5 Construction of infinite types through recursion 56

3.6 Occurs check error in Haskell . 58

3.7 Example of a fractal type . 59

3.8 Fibonacci function . 66

3.9 Ackermann function . 67

3.10 Tak function . 67

3.11 Example of infinite recursion . 69

3.12 Cyclic recursion . 70

3.13 Mutually recursive functions: even and odd 71

4.1 Example of side effects using set! . 76

4.2 Listing 4.1 after check insertion . 76

4.3 Example of why effect inference is needed 78

xv

4.4 Example of type-preserving mutation . 81

4.5 Examples of type and effect inference . 82

4.6 Restrictions on check mobility . 83

4.7 Example where check–check simplification is not appropriate 85

4.8 Example of when check–check simplification cannot be applied first . . 86

4.9 Caching expensive computations . 86

4.10 Example of a common read–process–write helper function 87

4.11 Example program for tracing semantics 93

4.12 Pathological case for programs that contain loops 96

4.13 Example: taking the sum of elements in one part of a vector 99

4.14 Example of aliasing . 100

4.15 Example demonstrating the interplay between checks and exceptions . . 102

4.16 Example of a function affected by continuations 103

4.17 Example of how blame prediction can interfere with debug prints . . . 104

4.18 Example of how explicit barriers can prevent check mobility 104

5.1 Input program: tak . 108

5.2 Output from the blame prediction transformation 108

5.3 Abstract Syntax Tree representation . 109

5.4 Example of transform: inlining variables which are used only once . . . 110

5.5 Boilerplate code for getting, setting and modifying the effect of an an-
notation of an expression . 111

5.6 Lens code for getting, setting and modifying the effect of an annotation
of an expression . 111

5.7 Overview of the blame prediction pipeline 112

5.8 Parsec code for a lambda expression . 113

5.9 ANF transformation code . 114

5.10 Check inference for lambda expressions 116

5.11 Definition of types . 116

5.12 Example of check mobility . 117

5.13 Simplified overview of check simplification 119

5.14 Uniplate instance for the Check datatype 121

5.15 Naïve simplification for union types . 122

5.16 Modification-aware simplification for union types 123

6.1 Example where the static prediction is small, but run-time prediction
can be large . 126

6.2 Example of debugging errors in dynamically typed languages 126

6.3 Example of debugging errors with the help of blame prediction 127

6.4 The original tak program . 128

6.5 The tak program after blame prediction 129

6.6 Case study: nqueens . 139

6.7 Case study: spectralnorm . 140

6.8 Case study: reversefile . 140

7.1 Definition of map in Typed Racket . 149

7.2 Typed Racket: Occurrence typing in action 149

7.3 Documentation for the map function in Racket 153

8.1 Example of explicit type tests . 170

8.2 Example of explicit type tests after blame prediction 170

8.3 SQL query after injection . 172

1
I N T R O D U C T I O N

1.1 Research Context

Developing software is still predominantly a manual process: the programmer adds
code to a program or rewrites existing code in order to implement a feature and then
runs the program. If any errors occur, the programmer must diagnose the cause and
fix the error. For the programmer, this edit-run-test cycle is repeated until the desired
functionality is achieved. This process is the same regardless of which programming
language is used. One large category of errors is type errors: passing values of the
wrong type to primitive functions and built-in operations. When it comes to finding
and fixing type errors, the programming languages community is divided between
two approaches: statically typed programming languages and dynamically typed pro-
gramming languages. The chief difference between these two approaches is when type
errors are detected and reported.

Under the first approach we find statically typed programming languages such as
Java, C#, Haskell, ML, . . . [Gosling, 2000; Hejlsberg et al., 2006; Milner, 1997; Pey-
ton Jones, 2003]. These languages statically verify the program before it is allowed
to run. If the type system of such a statically typed programming language detects
an ill-typed expression, a type error is reported to the programmer and compilation
is aborted. Historically, type systems were used to prevent illegal operations, such
as indexing an array with a function pointer or adding an integer to a string, but
in recent years these type systems have scaled up to verify more complex program
properties. [Aldrich et al., 2009; Clarke et al., 1998; Girard, 1995; Honda et al., 1998]

Under the second approach we find dynamically typed languages such as Python,
JavaScript, Lua, Scheme, . . . [Abelson et al., 1998; Flanagan, 2006; Ierusalimschy et al.,
1996; Lutz, 1996]. Programs written in these languages are typically not compiled, but
interpreted or at least executed on a virtual machine. Every time an interpreter evalu-
ates a primitive function application such as x + 3, it must check the preconditions of
the function. If the preconditions are not satisfied, the interpreter reports a type error

1

1 Introduction

to the programmer. The dynamic nature of these languages makes it possible to ex-
press a large number of programming concepts. For example, some dynamically typed
object-oriented languages allow changing the class of objects at run-time, or even alter
the structure of class hierarchies. This flexibility comes at a cost, however: dynamically
typed languages are harder to compile to efficient machine code. One viewpoint on
dynamically typed languages [Wrigstad, 2009] states that these languages “optimize
development time rather than machine time”.

The debate between proponents of both approaches has been raging for decades.
Proponents of the static typing approach claim that the safety offered by the type sys-
tem allows for better productivity, while proponents of dynamic typing claim that the
increased flexibility of dynamic typing allows for better productivity. For example, Ha-
nenberg et al. [Hanenberg and Stuchlik, 2012; Kleinschmager et al., 2012; Mayer et al.,
2012] have performed empirical studies in an attempt to determine which approach —
if any — is better. One tentative result from this research is that smaller programs are
faster to write in a dynamically typed language, but for larger programs there is no
difference in productivity. Another result of this research, however, is that program-
mers find it easier to maintain programs in a statically typed language. Research into
this question will undoubtedly continue.

In recent years, there have been attempts to marry the two approaches in an attempt
to get the benefits of both worlds. One example of these hybrid approaches is the
retrofitting of static typing onto dynamically typed programs [An et al., 2011; Bierman
et al., 2014; Guha et al., 2010; Lerner et al., 2013; Tobin-Hochstadt and Felleisen, 2010;
Tobin-Hochstadt et al., 2011]. In theory, this allows programmers to write code using
the flexibility granted to them by dynamic typing, while still having the safety guaran-
tees offered by static typing. In practice, these approaches often work for a subset of
the language and require programmers to avoid some code patterns or rewrite them
such that type errors are reported at compile time.

Another hybrid approach is gradual typing [Siek and Taha, 2006, 2007; Siek and
Vachharajani, 2008]: it allows programmers to provide type annotations for parts of
their program, and annotate others with the “unknown” type, written ?. Type errors
in the statically typed part are reported as normal, whereas the interaction between
both parts of the program is mediated by run-time type casts. This overcomes the re-
quirement of making sure the entire program typechecks, while still providing safety
guarantees for the statically typed part of the program.

Finally, one approach that goes the other way is deferred type errors [Bayne et al., 2011;
Peyton Jones et al., 2012]. The authors transform their programs such that type errors
are still detected and reported, but the program is allowed to run. The type errors
are effectively deferred to run-time, where they only abort the program if evaluation
reaches the expression(s) involved. In these papers, and especially in [Bayne et al.,
2011], the authors report that being able to introduce and test modifications without
having to appease the type system is good for both prototyping programs and making
invasive API changes.

2

1.2 Problem Statement: Locating Dynamic Type Errors

Apart from the advances on academic front, people in industry have not stopped
developing software or inventing new programming languages either. When starting a
new project, the programmer needs to choose a language. This depends on many fac-
tors, such as the programmer’s experience with the language, the existence of libraries
and modules in that language, and any constraints imposed by the environment. A sur-
vey of the languages used for new projects on the GitHub code collaboration site [Bard,
2014] shows that more than half of all new projects in 2014 used dynamically typed
languages.

To summarize, both statically and dynamically typed programming languages have
their merits. Both approaches are used, each with a distinct approach to type errors.
Both the research and the debate on which is better are still ongoing. In this disserta-
tion, we will focus on debugging type errors in dynamically typed languages.

1.2 Problem Statement: Locating Dynamic Type Errors

In this section we identify and name two problems which occur during development
of programs in dynamically typed programming languages. In the course of develop-
ing a program in a dynamically typed programming language, the programmer will
find (and fix) many type errors. The edit-run-test cycle is then as follows: the program-
mer edits the program, runs it, and is presented with a type error on a specific line.
The first problem the programmer faces is finding which expression caused the type
error and why. We call this problem the “root cause analysis” problem. Depending on
the programming language used the type error can point to the exact expression, or
it can be very terse like Argument "hi" isn't numeric in addition (+) at line 1 or
String can't be coerced into Fixnum in +.

Once the cause is found, the programmer still needs to figure out where the ill-
typed value was computed or passed erroneously throughout the program’s abstrac-
tion boundaries. There are two main strategies for finding the cause. The first strategy
to debug these errors is to insert print statements to inspect intermediate values used
in the program. The purpose of these print statements is to identify which values
match the programmer’s expectations and which do not. In order to find the source
of the error, the programmer must — over several iterations — walk upwards in the
stack trace to see where program deviates from expectations. This strategy tends to
work well if the programmer starts the debugging process with a good idea of where
the error can be located. The second strategy is to use a debugger which can stop the
program at key points: either at program locations chosen by the programmer or when-
ever a specific memory location is altered. There the programmer can follow execution
until the program state no longer matches expectations. However, the granularity of
debugger steps can vary; according to [Boothe, 2000] it is easy to step past the pro-
gram location that harbors the cause of the error. If that is the case, the programmer
must restart the debugging process and again slowly inch towards the new probable

3

1 Introduction

location of the error. Recent developments like omniscient debugging can help the pro-
grammer avoid restarting the process, but at a huge cost to performance [Lewis, 2003;
Pothier and Tanter, 2011].

Another problem related to finding errors is actually running the program up to the
point where it fails. Depending on the program, such a run might take a considerable
amount of time. We call this problem the “long time to crash” problem. Some of the
code that is evaluated will not be relevant to the problem the programmer is trying to
fix, for example setting up data structures or pre-processing data. Ideally, program slic-
ing [Silva, 2012] can be used to reduce the program to the essentials, but this requires
a program analysis which itself takes time. In general, however, the programmer has
no choice but to execute the entire program and wait for it to succeed or fail.

To summarize, we put forth two problems in finding and fixing type errors in dy-
namically typed programming languages:

Root cause analysis: When a type error is reported, the programmer has to trace
backwards through the program in order to find where the epxression that
causes the type error is defined.

Long time to crash: During the course of debugging this type error, the program-
mer might modify and run the program several times. The longer the program
takes before it reports an error, the higher the time cost of debugging.

1.3 Research Goals

In this dissertation we propose to tackle both problems by performing dynamic type tests
earlier. As we stated in the beginning, in a dynamically typed programming language
a primitive operation only performs type tests for its arguments when its result is ac-
tually needed. Sometimes these arguments are computed long in advance, so the type
of their value can already be tested there. By testing the type earlier, the programmer
can start tracing back from the program location of the type test, rather than that of the
primitive operation which caused the error message. Depending on how early the type
test is performed, the root cause analysis problem is (partially) solved. In addition, the
earlier type test can skip over potentially expensive expressions, also alleviating the
long time to crash problem. On the other hand, some type tests may be performed
even though they are not needed.

We will illustrate this concept using the example in listing 1.1, presented in the
programming language Scheme. This code was taken verbatim from the well-known
Gabriel benchmarks [Gabriel, 1985], with a single variable reference replaced by an-
other. It is intended to produce a solution to the well-known “n queens” problem,
where a program must determine in how many ways one can place n queens on an
n× n chess board without attacking each other. The algorithm works by attempting to
place one queen in every column of the board, from left to right.

4

1.3 Research Goals

1 (define (nqueens n)
2

3 (define (one-to n)
4 (let loop ((i n) (l '()))
5 (if (= i 0) l (loop (- i 1) (cons i l)))))
6

7 (define (try-it x y z)
8 (if (null? x)
9 (if (null? y)

10 1
11 0)
12 (+ (if (ok? (car x) 1 z)
13 (try-it (append (cdr x) y) '() (cons (car x) z))
14 0)
15 (try-it (cdr x) (cons (car z) y) z)))) ; Error is reported here
16

17 (define (ok? row dist placed)
18 (if (null? placed)
19 #t
20 (and (not (= (car placed) (+ row dist)))
21 (not (= (car placed) (- row dist)))
22 (ok? row (+ dist 1) (cdr placed)))))
23

24 (try-it (one-to n) '() '()))
25

26 (nqueens 8)

Listing 1.1: Motivating example: “n queens” solver with an error

7 (define (try-it x y z)
8 (if (null? x)
9 (if (null? y)

10 1
11 0)
12 (if (pair? z)
13 (+ (if (ok? (car x) 1 z)
14 (try-it (append (cdr x) y) '() (cons (car x) z))
15 0)
16 (try-it (cdr x) (cons (car z) y) z))
17 (error "z is not a pair" z))))

Listing 1.2: Introducing an explicit type test in the motivating example

5

1 Introduction

The three functions in the program work together as follows:

one-to (lines 3–5) Generates a list of numbers 1 through n.

try-it (lines 7–15) Tries to place queens one column at a time. The z parameter con-
tains a list of the queens already placed; whenever a new queen is placed it is
checked against these queens. Initially, x contains a list of all queens that need
to be placed and y is empty. The + expression on lines 12–15 represents two
branching paths: the first (lines 12–14) attempts to place the queen at the head
of x and continues. In the second path (line 15), the queen at the head of x is
skipped, but remembered in y. Once a queen is placed, all queens in y become
eligible for placement again. After a number of iterations, x must become empty:
a successful board is recorded if all queens were placed (i. e. y is also empty).

ok? (lines 17–22) Determines whether a queen to be placed diagonally attacks any
queen already on the board. By construction, horizontal and vertical attacks are
already excluded.

Running the program results in a type error pointing to (car z) on line 15, with a
message reflecting the fact that car expects a non-empty list:

car: Contract violation
expected: pair?
given: '()

In terms of the “root cause analysis” problem, the programmer needs to determine
whether z was supposed to be a non-empty list and, if so, find out why it is empty
instead. To make matters worse, this error does not appear instantly: the program must
first enumerate all boards where the first queen has been successfully placed in the first row of
the first column. If the source of the error is not immediately obvious, the programmer
will have to insert print statements to record information along the way or slowly step
through the program to find the error.

As a start, however, the programmer can decide to perform the type test for z as
soon as possible. Where should the type test on z go, or equivalently: how much
earlier can the type test for (car z) be performed? Looking at line 15, the call to car is
an argument to cons, the result of which is an argument to try-it, which in turn is an
argument to +. In Scheme, arguments to a function are evaluated before the function
is entered, so any type tests on z can be performed as early as the invocation of + on
line 12. If the type test were moved upwards one more level, the program semantics
would be different: the first branch of the conditional does not require that z is a
list. For example, the expression (try-it '() '() 42) normally returns 1, but would
suddenly produce errors if the type test were to be moved out of the branch.

Listing 1.2 presents a modified try-it function, where the programmer inserted a
type test on line 12. If the type test fails, the call to error on line 17 stops the program
and reports the value of z. Running the program again now still results in an error

6

1.3 Research Goals

message, but much earlier. With this reduced run-time, the programmer can focus on
the try-it function and discover that he made a typo on line 16: (car z) should have
been (car x) all along. With the fix in place, the programmer runs the program again
and finds that it produces the desired output. The programmer can then remove the
type test and submit the code.

In terms of the “long time to crash” problem, the erroneous program performs
427,601 primitive operations before it reports the error, whereas the program with the
type test inserted now only needs 38 primitive operations. To put these numbers in
perspective, the corrected program performs 249,739 primitive operations in total. In
terms of real-world clock times, the erroneous program runs for 2.30 seconds before it
reports a type error, whereas the modified program only runs for 0.51 seconds.

In this thesis, we propose to automate part of this process by means of a program
transformation called blame prediction. This transformation decouples the type tests of
primitive operations and moves them upwards in the program. We can summarize the
essential properties of blame prediction as follows:

Blame prediction may not alter the semantics of a program If the input program ter-
minates successfully, a program which has undergone the blame prediction trans-
formation must do so as well. Vice versa, if the original program raises a type
error, the transformed program must also predict blame.

Blame prediction must accept unaltered programs We envision that blame prediction
is applied to a program just before it is evaluated. Any program that is accepted
by the unmodified interpreter must also be accepted by blame prediction.

This stands in stark contrast to many program analyses which only accept sub-
sets of the languages they study and report errors otherwise. Accepting unal-
tered programs enables programmers to turn blame prediction on or off in their
integrated development environment (IDE) without changing any code. This in
turn avoids the need for separate, unfamiliar tools, which can have a negative
impact on the edit–run–debug cycle.

Blame prediction is a must-fail analysis A program that has undergone blame predic-
tion can stop and predict blame at a certain point. This means that all paths under
that point must contain an expression that fails. The failing expressions in these
paths are thus “predicted”.

This is contrary to conventional type systems, which reject a program if an ex-
pression is ill-typed or one path might fail. For example, conventional type sys-
tems must be conservative and reject the expression

(if some-condition 'ok (sqrt "flower"))

because both paths have a different type, and the application of sqrt expects
a number but is given a string. However, if some-condition is always true at

7

1 Introduction

runtime this expression will never go wrong as the alternative will never be
executed. Therefore, a must-fail analysis can only report an error once it knows
which branch will be taken.

The thesis statement of this dissertation is:

In a dynamically typed program, the preconditions to primitive operations can be
made explicit and tested long before the primitive operation expression is evaluated.
When these preconditions do not hold, “blame” will be predicted for an expression,
which stops the program. This means that, if the program were to proceed, evalua-
tion of the blamed expression would result in a type error.

The case we presented in this example is not synthetic, we will present it again in sec-
tion 6.4 as part of our validation. In addition to raising type errors much earlier in the
program’s execution, the blame prediction transformation is able to significantly re-
duce the number of type tests which must be performed. In concordance with the first
property of blame prediction, the transformation is allowed to remove type tests which
do not provably alter the semantics of the program. For example, type tests on literals
or identical type tests on variables can be resolved during processing and elided. In
general, this leads to a significant reduction (compared to an un-transformed program)
in the number of type tests written in the program text, as well as the number of type
tests performed dynamically. For the nqueens example above, only 28.57 percent of the
type tests in the program text remain, and only 23.83 percent of dynamic type tests are
performed. This discrepancy is explained by the presence of recursion: a single type
test in the program may be executed multiple times dynamically.

1.4 Contributions

This dissertation makes the following contributions in the fields of static and dynamic
program analysis:

An error-tolerant type system for inferring type tests alongside types Our type sys-
tem infers types for expressions in a dynamically typed language. It is error-tolerant
because it incorporates potentially wrongly-typed terms in its analysis. For every ex-
pression, it records not only the resulting type but also any type tests which must be
made during evaluation, which is then used to generate explicit type tests for both
primitive operations and user-defined functions. For example, the expression (+ x 3)

has type (int ?= τx) · int, which records the type test on x. The blame prediction trans-
formation produces a new program regardless of whether τx is not equal to int.

A program transformation which performs type test mobility This dissertation de-
scribes a program transformation which makes type tests explicit and moves them

8

1.5 Dissertation Outline

upwards in a program without affecting the program semantics with respect to report-
ing errors. To the best of our knowledge, the blame prediction transformation is the
first of its kind to incorporate type test mobility.

Correct blame assignment and additional context for run-time type errors If a
blame predicted program performs a type test and detects a type error, it predicts
blame for the faulty expression. Additionally, values of all variables in the dynamic
scope of the type test are reported to aid in debugging.

Proofs of correctness We prove that the blame prediction transformation is correct
with respect to preservation of the program semantics. Concretely, this hinges on two
equivalences, the latter formed by two entailments:

1. “value preservation”: iff a program does not raise type errors, the transformed
program produces the same value;

2. “use–blame entailment”: if a program raises a type error, the transformed pro-
gram must predict blame;

3. “blame–use entailment”: if a transformed program predicts blame, the original
program must raise a type error or diverge.

Evaluation and validation of the blame prediction transformation We apply the
blame prediction transformation to programs from the well-known Gabriel bench-
marks and the Computer Language Benchmark Game (CLBG). We measure how well
our implementation of blame prediction can perform type tests earlier, both in terms
of the program text and in terms of the program run-time. Additionally, we mea-
sure how many type tests the blame prediction transformation is able to eliminate
statically, which is again reflected in the number of type tests remaining in the pro-
gram text and the number of type tests performed at run-time. Finally, we apply a
technique from mutation testing [Howden, 1982; Jia and Harman, 2011] in order to
generate faulty variants of those in the Gabriel and CLBG sets, and apply the blame
prediction transformation to these variants. This illustrates how blame prediction can
help programmers find and fix problems in their programs.

1.5 Dissertation Outline

This dissertation is structured as follows:

Chapter 2: Functional Blame Prediction
In this chapter we define syntax and semantics for a minimal functional subset of
the programming language Scheme called Schemeβ. Schemeβ is closely related

9

1 Introduction

to the λ-calculus without the Y combinator: it supports function abstractions,
function application, variable binding and conditionals.

We also define the blame prediction transformation in four stages: The first stage
uses a novel type system to identify type tests which are performed while eval-
uating a given expression in the program. The second stage uses these inferred
type tests to make the preconditions of primitive operations explicit. In a third
stage, the type tests are moved upwards in the program, with the guarantee that
the program semantics are not changed, i. e. type tests always reference bound
variables and they are only executed if the code they guard is also executed. The
fourth and final stage eliminates redundant type tests, with the aim of consol-
idating type tests as much as possible and only keeping type tests which are
critical to the program correctness.

We conclude the chapter by proving that the blame prediction transformation
is semantics-preserving: a blame predicted program succeeds if the original suc-
ceeds, and it fails if the original program fails.

Chapter 3: Recursion
This chapter first extends the syntax and semantics of Schemeβ to support recur-
sive functions by means of an explicit mutable heap. Next, it introduces support
for recursion into the core blame prediction transformation. Supporting recur-
sion is non-trivial as the type inference produces “infinite types”: types which
refer to themselves and induce infinite loops in the rest of the type inference pro-
cess. Instead, these types are “solved” first to finite types using techniques from
abstract interpretation. We show that this process always terminates.

Chapter 4: Mutation
This chapter describes how the blame prediction transformation can be extended
to cope with mutable variables. In this chapter we also speculate on support-
ing other common features of programming languages, such as compound data
structures, objects, non-local control flow, and debug prints. Finally, this chapter
proves that the extended blame prediction transformation is again semantics-
preserving.

Chapter 5: Implementation
This chapter describes the architecture of our prototype implementation in broad
strokes. Both the chapter and the implementation are patterned according to the
stages given in chapter 2. Finally, we describe two bottlenecks in the implementa-
tion which were discovered while performing benchmarks and how we tackled
them. The first bottleneck is related to a generic tree traversal library we used.
The second bottleneck is caused by a naïve implementation of simplification
which accidentally destroyed value sharing and rewrote types needlessly.

10

1.6 Supporting Publications and Technical Contributions

Chapter 6: Evaluation & Validation
The evaluation chapter applies the blame prediction transformation to programs
from two well-known benchmarking sets. The aim of this experiment is to eval-
uate blame prediction along two criteria: first, how well blame prediction can
move type tests upwards, and second, how many redundant type tests it can
eliminate. These criteria are applied both to the program text and its run-time
behavior. Finally, we apply the blame prediction transformation to mutated vari-
ants of the benchmarking programs to gauge how well it solves the “root cause
analysis” and “long time to crash” problems.

Chapter 7: Related Work
This chapter situates the work presented in this dissertation in the general re-
search context. We divide the related work into three approaches, which corre-
spond to the time(s) when errors are reported to the programmer. We conclude
by remarking that blame prediction occupies a niche in-between static analysis
(error reports before the program is run) and dynamic analysis (error reports
while the program runs).

Chapter 8: Conclusion and Future Work
The final chapter of this dissertation revisits the thesis and the contributions
made. We highlight some key areas where blame prediction can be improved
and speculate on other applications of blame prediction.

1.6 Supporting Publications and Technical Contributions

A number of publications, exploratory activities, and technical contributions directly
support this dissertation. This section discusses them briefly to highlight their rele-
vance to this work.

Publication

Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter. Blame Prediction.
TFP ’13: Trends in Functional Programming, 8322:91–106, 2013

This publication served to introduce the concept of blame prediction for a small
functional programming language. This paper already described much of the blame
prediction transformation in its current form, as in chapter 2. It was presented at the
“Trends in Functional Programming” symposium with the intent of gathering feedback
and related work.

Implementation

Dries Harnie. Prototype Implementation of Blame Prediction. Technical report,
September 2015

11

1 Introduction

As a proof of concept, we have created a prototype implementation of the blame
prediction transformation, which can be found at https://github.com/Botje/cry
stal. The result of the transformation is a program augmented with check expressions.
This program can be executed in any R5RS-compatible interpreter with the addition
of a macro definition for check. We will describe the implementation in more detail in
chapter 5. For experimentation purposes, an on-line tool is available at http://bit.l
y/blame-sandbox.

1.7 Other Publications

In this section we present other publications unrelated to this dissertation. The aim is
to document our academic track record outside of blame prediction.

Much of our work was in the context of the AmbientTalk/2 project, a so-called
“ambient-oriented programming language” [Mostinckx et al., 2005]. This program-
ming language defines a programming model where connections between devices are
established on ad-hoc discovery. These connections are very volatile as users can move
about and establish new connections or break existing ones. Communication over such
connections is thus done over so-called “far references”, which uniquely identify an
object hosted on a (mobile) device. In order to make applications be able to commu-
nicate in this hostile networking environment, all communication over far references
must be done asynchronously. If two-way communication is needed, programmers can
use the future pattern to (again asynchronously) capture a reply. Finally, far references
can be created either through service discovery or by passing a far reference as part of
a message.

As the first part of our participation, we defined “ambient contracts” which allow
programmers to declaratively define groups of services and automatically assemble
them once all parties have been discovered. The contract remains established as long
as all services remain connected. As long as this is the case, the programmer can deploy
aspects on the nodes of the service which implement a cooperation (e. g. playing a tune
on the sound system when a phone rings). The programmer can additionally install
event handlers to react on the dissolution of the contract (when a service disconnects)
and its re-establishment. All this taken together enables programmers to deal with
groups of services much more easily than dealing with the services separately.

Publication

1. Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter. Ambient
Contracts. Electronic Communications of the EASST, 28(0), March 2010

2. Christophe Scholliers, Dries Harnie, Éric Tanter, Wolfgang De Meuter, and
Theo D’Hondt. Ambient contracts: verifying and enforcing ambient object
compositions à la carte. Personal and Ubiquitous Computing, 15(4), April 2011

12

https://github.com/Botje/crystal
https://github.com/Botje/crystal
http://bit.ly/blame-sandbox
http://bit.ly/blame-sandbox

1.7 Other Publications

Also in the context of the AmbientTalk/2 language, we developed a new kind of
far reference which is aware of the actual network technology used to transport data.
This allows applications to, for example, conserve bandwidth when on a mobile data
plan or provide extra functionality when other nodes in the network are reachable
via BlueTooth. Network-aware references (NARs) maintain bundles of references to
the same device over multiple network technologies. The programmer can then attach
policies to messages to indicate which technology to use, as well as register listeners
to react on the (dis)connection of certain technologies.

Publication

3. Kevin Pinte, Dries Harnie, and Theo D’Hondt. Enabling Cross-Technology
Mobile Applications with Network-Aware References. In COORDINATION
’11: Proceedings of the 13th International Conference on Coordination Models and
Languages, pages 142–156. Springer Berlin Heidelberg, 2011a

4. Kevin Pinte, Dries Harnie, Elisa Gonzalez Boix, and Wolfgang De Meuter.
Network-aware references for pervasive social applications. PerCol ’11: Pro-
ceedings of the 2011 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pages 537–542, 2011b

Finally, we participated in formalizing the semantics of the AmbientTalk/2 language,
particularly with regards to the interaction between futures and asynchronous mes-
sage sending. This work was inspired by the semantics defined for a similar language
JCoBox [Schäfer and Poetzsch-Heffter, 2010], which also supports futures.

Publication

5. Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lom-
bide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. Am-
bientTalk: programming responsive mobile peer-to-peer applications with
actors. Computer Languages, Systems & Structures (), 40(3-4):112–136, October
2014

Next, we developed a hardware and software platform for deploying “city appli-
cations” on public transportation vehicles as part of an Innoviris project called “Ur-
ban area data structures for city applications in mobile nomadic networks”. The aim
of this project was to come up with a seamless networking infrastructure which en-
abled developers to create city applications which were accessible in the city of Brus-
sels, regardless of whether the user actually has a mobile data plan on their phone.
The key component of this platform was a so-called “urban-area tuple space”, using
techniques from delayed networking to propagate information across devices, be they
users’ phones, public transportation vehicles, or stationary network nodes.

13

1 Introduction

Publication

6. Dries Harnie, Elisa Gonzalez Boix, Theo D’Hondt, and Wolfgang De Meuter.
Programming urban-area applications. In SAC ’12: Proceedings of the 27th
ACM Symposium on Applied Computing, pages 1516–1521, 2012

7. Dries Harnie, Elisa Gonzalez Boix, Theo D’Hondt, and Wolfgang De Meuter.
Programming Urban-Area Applications by Exploiting Public Transportation.
Transactions on Autonomous and Adaptive Systems (TAAS), 9(2), July 2014

Finally, we collaborated with the ExaScience Life Lab at Imec to produce a fault-
tolerant, distributed coordination program for target prediction. Briefly summarized,
(protein) target prediction is the first step towards drug discovery, which aims to iden-
tify candidate molecules which have an effect on the protein targets which are respon-
sible for certain diseases. This is implemented by an expert system which consults a
number of individual predictor programs, written in C++. We developed a coordina-
tion program using the Spark framework [Zaharia et al., 2012] which automatically
runs these predictors on a cluster and aggregates the result. This coordination pro-
gram allows for better checkpointing and monitoring of the target prediction process.
In addition, it becomes easier to run multiple predictions in parallel and use the cluster
optimally.

Publication

8. Dries Harnie, Alexander E Vapirev, Jörg Kurt Wegner, Andrey Gedich, Mar-
vin Steijaert, Roel Wuyts, and Wolfgang De Meuter. Scaling Machine Learn-
ing for Target Prediction in Drug Discovery using Apache Spark. In CCGRID
Life ’15: Proceedings of the 2015 Workshop on Clusters, Clouds and Grids for Life
Sciences, 2015

14

2
F U N C T I O N A L B L A M E P R E D I C T I O N

In the introductory chapter we gave a high level overview of the goal of this disserta-
tion, namely making type tests in dynamically typed programs explicit and moving
them upwards in the program. In this chapter we present the blame prediction trans-
formation. The blame prediction transformation accepts programs written in the func-
tional core of a Scheme-like language called Schemeβ, and introduces explicit type
tests by way of check expressions.

In this chapter, we first define the syntax and semantics of Schemeβ (section 2.1).
Next, we define the blame prediction transformation in four stages (sections 2.2 to 2.5),
which are explained below. Finally, section 2.6 and section 2.7 prove the correctness of
the blame prediction transformation with regards to not introducing additional errors
and preserving the program semantics.

Scheme

Checked
Scheme

Checked
Scheme

Checked
Scheme

Check
Introduction

Check
Mobility

Check
Elimination

Evaluate

Types

Check
Inference

Figure 2.1: Overview of the blame prediction transformation

The introduction of check expressions in the blame prediction transformation happens
in four stages. These stages are as follows, as illustrated in figure 2.1:

1. First, a type system infers the type tests made by the primitive operations in the
program. These result in conditional types for various parts of the program.

15

2 Functional Blame Prediction

2. Conditional types are then used as a guide to insert explicit check expressions
into the program directly around function application expressions.

3. The explicit check expressions are moved upwards in the program, without
changing its semantics.

4. Finally, redundant check expressions are eliminated and the remaining check ex-
pressions are simplified.

2.1 Language Description

Before explaining the blame prediction transformation in detail, we describe the lan-
guage Schemeβ, a functional subset of Scheme [Abelson et al., 1998] extended with
check expressions.

Syntax Figure 2.2 presents the syntax of Schemeβ. An expression is either:

• a simple expression (a variable reference, a constant or a lambda expression).
Constants are either booleans, numbers, or primitive operations;

• a function application, where operator and operands are all simple expressions;

• a conditional expression which chooses between two expressions depending on
the result of the condition, also a simple expression;

• a let expression;

• a check expression.

We require that the input program to the blame prediction transformation is well-
formed, i. e. a closed expression which does not contain free variables apart from prim-
itive operations. Additionally, every expression in the program must be uniquely as-
sociated with a source location (or label) `. Two functions exist that map labels to
expressions and vice versa: Label returns the label for a given expression, and Expr

returns the expression pointed at by a label.
check expressions serve to explicitly verify preconditions of primitive operations.

They evaluate their body e only if the precondition p holds. Preconditions, noted p,
are trees of conjunctions and disjunctions, with either type tests or no-ops (#t) at the
leaves. These type tests verify whether the given variable or constant, denoted x/c, is of
the specified type. If the precondition p does not hold, a blame prediction error is raised,
which predicts blame for the set of labels L, which correspond to expressions in the
program. The blame prediction transformation will introduce check expressions into
the program, the programmer does not have to write them.

The distinction between ordinary expressions e and simple expression s guaran-
tees that any Schemeβ expression is automatically in Administrative Normal Form

16

2.1 Language Description

e ∈ Exp ::= s Simple expressions
| (s s1 . . . sn) Application
| (if s e e) Conditional
| (let ([x e]) e) Let
| (check p e) Check

s ∈ Simp ::= x Variables
| c Constants and literals
| (lambda (x1 . . . xn) e) Lambda expressions

c ∈ Const ::= #f | #t Boolean constants
| n Integer literals
| “. . . ” String literals
| o Primitive operations

o ∈ PrimOp ::= + | − | ∗ | . . .
p ∈ Pred ::= (τ? x/c)L Simple type test

| p∧ p Conjunction
| p∨ p Disjunction
| #t No-op

x/c ::= x | c
` ∈ L ⊂ Lab
Label : Exp 7→ Lab Labels of expressions
Expr : Lab 7→ Exp Expressions at labels

Figure 2.2: Syntax of Schemeβ

(ANF), presented in [Sabry and Felleisen, 1993]. This formulation makes the order of
evaluation explicit, which is commonly done in program transformations. The speci-
fication in terms of ANF does not diminish the generality of our approach, as Sabry
and Felleisen [1993] demonstrates a general transformation of arbitrary expressions to
ANF.

Semantics The semantics of Schemeβ are presented in figure 2.3, using the notation
in Felleisen and Hieb [1992]. Evaluation of a well-formed program proceeds by repeat-
edly reducing an applicable expression e inside an evaluation context E, written E〈e〉.
This evaluation context is either the whole program, or the expression part of a let

expression. Because there is exactly one evaluation context that can be reduced fur-
ther at all times during the evaluation process, evaluation is deterministic. When no
evaluation context applies, the remaining expression must be either a run-time value
(such as #f, 98, "hello" or a function), or an error. We write P v for the reduction of
program P to a value v and P err-ω in case of an error.

17

2 Functional Blame Prediction

v ::= #f | #t | n | λx1 . . . xn.e Run-time values
E ::= � | (let ([x E]) e) Evaluation contexts

(E-If-False) E〈(if #f e1 e2)〉 → E〈e2〉
(E-If-True) E〈(if v e1 e2)〉 → E〈e1〉 if v 6= #f

(E-Let) E〈(let ([x v]) e)〉 → E〈e[v/x]〉
(E-Lambda) E〈(lambda (x1 . . . xn) e)〉 → E〈λx1 . . . xn.e〉
(E-Apply) E〈(v f v1 . . . vn)〉 → E〈δ(v f , v1, . . . , vn)〉
(E-Error) E〈err-ω〉 → err-ω

(E-Check-Pass) E〈(check p e)〉 → E〈e〉 if p holds
(E-Check-Fail) E〈(check p e)〉 → err-blame(p) otherwise

δ(o, v1, v2) = err-not-int(vi) if ∃i : ¬int? vi
δ(o, v1, v2) = o(v1, v2) otherwise

δ(o, v1, . . . , vm) = err-args-λ(o)
δ(λx1 . . . xm.e, v1, . . . , vm) = e[v1 . . . vm/x1 . . . xm]

δ(λx1 . . . xm.e, v1, . . . , vn) = err-args-λ(λx1 . . . xm.e) if m 6= n
δ(v, . . .) = err-not-λ(v) if ¬function?(v)

Figure 2.3: Run-time syntax and evaluation rules of Schemeβ

Evaluation of the various language constructs themselves is defined as usual. In a let

expression, references to the bound variable in the body are replaced by the computed
value. This is enforced by the separate evaluation contexts for let: (let ([x ex]) e) cannot
be reduced before ex has been reduced to a value.

Evaluation of function applications (both primitive and user-defined) is handled by
the δ operator. For simplicity, we assume all primitive operators o receive two integer-
typed values and return an integer, but other operations can be added similarly. There
are three possibilities:

1. The value in function position is a primitive operator such as o: the primitive
operation is applied to the operands. If a primitive operation is called with a
different amount of parameters, it raises an err-args-λ(o). If one of the parameters
is not a number, an err-not-int(vi) error is raised.

2. The function is user-defined: evaluation continues with a copy of the body, where
every formal parameter x1 . . . xm is replaced by its corresponding value. If the
number of actual parameters does not match the number of formal parameters,
an err-args-λ(λx1 . . . xm.e) error is raised.

3. Finally, if the value in function position is not a function, an err-not-λ(v) error is
raised.

18

2.2 Check Inference

In the next sections we describe the blame prediction transformation, which aims to
insert check expressions into the program and move them upwards as high as possible.

2.2 Check Inference

The first stage of the blame prediction transformation determines types for all the
expressions throughout the program. Unlike regular type systems, our type inference
also encodes the various type tests made along the path that yields the final type.
There are three reasons for this choice: first, we can still ascribe types to expressions
which produce type errors at run-time. The second reason is that type tests can be
resolved statically and will not result in run-time type tests. Finally, type tests in a
function body can become part of its type, meaning that type tests become accessible
outside of the function.

To give an example, the expression (+ 7 5) is assigned a conditional type

(int ?= τ7) · (int ?= τ5) · int

Read as: “if τ7 (the type of 7) is equal to type int and τ5 (the type of 5) is equal to type
int, this expression has type int”. τ7 and τ5 are the types of the literals 7 and 5, i. e. int.
Therefore, the type of (+ 7 5) can be simplified to int.

Recall that we stated in the introductory chapter that check inference must accept
any program, even those with type errors. For example, most type systems would
reject the expression (+ 3 "hello") as wrongly typed. In our system, this expression
does not result in a failed compilation but gives rise to the type

(int ?= string) · int

A later part of the blame prediction transformation will introduce a (check (int? ”hello”) . . .)
expression that always fails, assigning blame to the expression (+ 3 "hello"). If this
expression never happens to be reached — for example because it resides in a lambda

that is never called or a never-reached branch of an if expression — the program exe-
cutes normally.

Another important property of check inference is that it must also make sure to
preserve all type tests made “en route” to reach a value. For example, the snippet
in listing 2.1 performs a sqrt operation on line 1 and binds the result to a variable y,
which is not used in the body.

1 (let ([y (sqrt x)])
2 z)

Listing 2.1: Example of why preserving all types in a let is necessary

In a traditional type system, the type of the expression (sqrt x) is bound to the vari-
able y during type checking of the body. If the body does not use the variable, as is the
case here, the type is discarded. Thus, the type tests made by the expression (sqrt x)

19

2 Functional Blame Prediction

τ ::= ? The “any” type
| γ ground types
| τ ∨ τ union types
| (τt ?= τ)`` · τ conditional type
| Π(α1...αn).τ type function
| α type variable
| (α τ1 . . . τn) type function application

γ ::= int | string | boolean

τt ::= γ | function-arity-0 | function-arity-1 | . . .
α, β, . . . ∈ TVar

Figure 2.4: Overview of types

would not be included in the final type, making the final type of the expression τz,
the type of the variable z. However, our type system preserves the type tests made by
(sqrt x), so this expression has type (number ?= τx) · τz. In our type system we use
a technique we call “chaining”, which preserves type tests made in let-expressions by
prepending any conditional types in the type of the expression to the type of the body.

Types The types that are employed in our type system are displayed in figure 2.4.
The “any” type ? is used for expressions of which no type information is known, they
can contain any value at run-time. Next are ground types γ, which are either int1,
string or boolean. In our system, the two branches of an if expression can have different
types. This is supported by combining them in a union type [Barbanera and Dezani-
Ciancaglini, 1995; Pierce, 1991]. For example, the type of (if some-test 3 "hi") is
int∨ string.

As stated above, recording type tests is done using conditional types: they consist of
the type test (the (τt ?= τ) part), and the type of the computation that is performed if
the test succeeds. τt must be a concrete type which matches the given type τ, or one
of function-arity-0, function-arity-1, . . . which match functions with zero, one, . . . argu-
ments. Each conditional type has two labels attached to it: a blame label (top) and a cause
label (bottom). These labels refer to the source positions of the function application and
the expression being tested, respectively. They are used to correctly assign blame in
the last stage of the transformation. For example, in the case of (+ 3 "hello"), the
blame label points to the application of +, and the cause label points to "hello".

Finally, type functions — either from user-defined functions or wrapped primitive
operators — are templates where type variables serve as placeholders for the types of
their arguments and the labels of the expressions that give rise to them. Applying a

1R5RS Scheme actually only has a number type, but in this dissertation we will stay with int. We will
discuss how blame prediction can support other kinds of numbers in section 2.8.2.

20

2.2 Check Inference

type function is done by substituting the actual types for the type variables, and updat-
ing the cause labels for any type tests involving these type variables. By performing
type function application in this manner, any conditional types inside the function are
made visible to its callers, where they are applied to the actual argument types.

(let ([f (lambda (x) (+ 3 x))])
(f 5))

Listing 2.2: Example of type functions and type function applications

For example, in listing 2.2 the function f has type function Π(α).(int ?= α) · int. The
constant 5 has type int, so to calculate the type of (f 5) we need to substitute int for α.
The result of this substitution is (int ?= int) · int, which can be simplified to just int.

This mechanism also supports higher-order functions, where function arguments
are themselves invoked as functions. An example of such a higher-order function is

(lambda (f) (f 3 "hi"))

which applies its argument f to two arguments. Since nothing is known about this
argument until it is supplied, f is bound to a type variable α f . The body applies f to
two arguments, therefore α f must be a type function of two arguments, which results
in the following final type:

Π(α f).(function-arity-2 ?= α f) · (α f int string)

where the conditional type tests whether α f is a function of two arguments. As we
stated above, applying this function will substitute an actual type for α f . For example,
passing in the function (lambda (a b) b) with type Π(δ,ε).ε yields the following type:

(function-arity-2 ?= Π(δ,ε).[ε]) · (Π(δ,ε).[ε] int string)

= (Π(δ,ε).[ε] int string)

= string

Finally, we must remark that the reduction rules for applied type functions are non-
standard. They are shown in figure 2.5. First, if the argument to a type function is a
union type, the type function application is duplicated for each of the branches in
the union. Next, if an argument is a conditional type, the conditional part is moved
outside of the type function application. Finally, passing type variables, type functions
and ground types as arguments to a function causes them to be substituted in the
body of the type function and the arity of the type function to be decreased. The one
exception in these reduction rules are type function applications: they are not to be
substituted in the body, as any conditional types or union types they carry will not be
properly represented in the final type.

21

2 Functional Blame Prediction

(Π().τ) = τ

([Π(α1,...,αn).τ] τ1 . . . τi−1 τi τi+1 . . . τn) =

if τi = τa ∨ τb ⇒ ∨ ([Π(α1,...,αn).τ] τ1 . . . τi−1 τa τi+1 . . . τn)

([Π(α1,...,αn).τ] τ1 . . . τi−1 τb τi+1 . . . τn)

if τi = (τt ?= τa) · τb ⇒ (τt ?= τa) · ([Π(α1,...,αn).τ] τ1 . . . τi−1 τb τi+1 . . . τn)

if τi = α ⇒ ([Π(α1,...,αi−1,αi+1,...,αn).τ[α/τi] τ1 . . . τi−1 τi+1 . . . τn)

if τi = γ ⇒ ([Π(α1,...,αi−1,αi+1,...,αn).τ[γ/τi] τ1 . . . τi−1 τi+1 . . . τn)

if τi = Π(β1,...,βm).τb ⇒ ([Π(α1,...,αi−1,αi+1,...,αn).τ[Π(β1,...,βm).τb/τi] τ1 . . . τi−1 τi+1 . . . τn)

Figure 2.5: Reduction rules for type fucntion application

As an example, we show how the following type function application is reduced:

(Π(αx).

type function body︷ ︸︸ ︷
[(int ?= αx) · int]

argument︷ ︸︸ ︷
[(string ?= αa) · αa] ∨ (αc int string))

= (Π(αx).[(int ?= αx) · int] [(string ?= αa) · αa]) ∨ (Π(αx).[(int ?= αx) · int] (αc int string))

= [(string ?= αa) · (Π(αx).[(int ?= αx) · int] αa)] ∨ (Π(αx).[(int ?= αx) · int] (αc int string))

= [(string ?= αa) · (int ?= αa) · int] ∨ (Π(αx).[(int ?= αx) · int] (αc int string))

Note that the (αc int string) argument is not substituted into the type function applica-
tion. Further reduction of this type can only happen once αc is known.

Inference The rules for inferring types from a program are given in figure 2.6. Each
rule is of the form Γ ` e : τ, meaning that the type environment Γ assigns a certain type
τ to expression e. Rules T-let and T-apply use helper functions, these are defined in
figure 2.7. We go over these rules one by one:

T-const Constants and primitive operations are assigned a type using the conven-
tional Typeof function.

T-var Types of variables are looked up in the environment.

T-if The type of a conditional expression is the union of the types of the two branches.
If types of the branches happen to be equal, only one type is returned.

T-let The inference rule for let expressions is at its core the same as for other type
systems: the type of the expression ex is inferred first and x is bound to this type
when the body is inferred. However, the type of ex might contain a conditional
type, so the Leaves function is used to strip away the conditional types, leaving
only the concrete types at the leaves of the returned type tree. Intuitively, this

22

2.2 Check Inference

Γ ` e : τ

Γ ` c : Typeof(c)
(T-const)

Γ(x) = τ

Γ ` x : τ
(T-var)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (if s e1 e2) : τ1 ∨ τ2
(T-if)

Γ ` ex : τx Γ, x : τL ` e : τ τL = Leaves(τx)

Γ ` (let ([x ex]) e) : (Π(αx).[τ] τx)
(T-let)

Γ, x1 : α1, . . . , xn : αn ` e : τ α1, . . . , αn fresh

Γ ` (lambda (x1 . . . xn) e) : Π(α1...αn).τ
(T-lambda)

Γ ` si : τi ∀i ∈ [0 . . . n] ` f = Label((s0 s1 . . . sn)) α1, . . . , αn fresh

Γ ` (s0 s1 . . . sn) : (Π(α1...αn).[Apply(τ0, ` f , α1 . . . αn)] τ1 . . . τn)
(T-apply)

Figure 2.6: Type inference rules

Apply(Π(α1 ...αm).τf , ` f , τ1 . . . τn) = τf [τ1 . . . τn/α1 . . . αm][`τ1 . . . `τm /`α1 . . . `αm] if m = n
Apply(τα ∨ τβ, ` f , τ1 . . . τn) = NoError(Apply(τα, ` f , τ1 . . . τn), Apply(τβ, ` f , τ1 . . . τn))

Apply(Π(α1 ...αm).τf , ` f , τ1 . . . τn) = (function-arity-n ?= Π(α1...αm).τf)
` f
` f
· error(` f) if m 6= n

Apply(α, ` f , τ1 . . . τn) = (function-arity-n ?= α)
` f
`α
· (α τ1 . . . τn)

Apply(γ, ` f , τ1 . . . τn) = (function-arity-n ?= γ)
` f
` f
· error(` f)

Leaves(τ1 ∨ τ2) = Leaves(τ1) ∨ Leaves(τ2)

Leaves((τt ?= τ) · τ1) = Leaves(τ1)

Leaves(τ) = τ

NoError(error(` f), error(`g)) = error({` f , `g})
NoError(error(` f), τβ) = τβ

NoError(τα, error(` f)) = τα

NoError(τα, τβ) = τα ∨ τβ

Figure 2.7: Auxiliary definitions

23

2 Functional Blame Prediction

reflects the fact that any type tests have already been done by the time the let

body is entered. The type of the body is then inferred with a type union of the
concrete types bound to the variable x.

When constructing the type for the whole let expression, care must be taken to
ensure that any type tests performed by the expression are not discarded (re-
member listing 2.1). This is done using an immediately-applied type function:
according to the reduction rules for applied type functions (figure 2.5), condi-
tional types are pushed outwards and the body is duplicated for union types.
Type variables and concrete types are substituted as normal, only type function
applications are not reduced.

Leaves is defined in figure 2.7.

T-lambda The body of a lambda is first inferred with fresh type variables bound to
its parameters. These type variables are then bound by a type function construc-
tor.

T-apply This last rule is the most complex. First it infers the types of the function and
its arguments, then it uses the Label function to find the label for the application
expression. These are passed to the Apply function, which traverses the type tree
τf . The cases in the Apply function (figure 2.7) are as follows:

1. The first case covers the application of a type function to the correct number
of arguments. Apply then substitutes the arguments and their labels for the
corresponding variables and labels in the type function body.

2. For the application of a union type, Apply tries to apply the types on both
sides to the given arguments. The NoError helper function (defined at the
bottom of figure 2.7) removes branches that return error. If all branches are
error, the entire type is error.

3. The next case is concerned with application of a type function with the
wrong number of arguments.

4. Applying a type variable yields a conditional type with a type function
application in its body, as explained above.

5. Finally, trying to apply a ground type as a function is an error, but a condi-
tional type is still generated.

Check inference at work We work through a small example (shown in listing 2.3) to
demonstrate check inference. The centerpoint of this example is the partial function
which partially applies the given function to a given argument.

First, the type of partial is inferred. Following T-lambda, the parameters f and
x are bound to type variables α f and αx. The body of partial is again a function,
so y is bound to the type variable αy. The next applicable rule is T-apply, which

24

2.3 Check Introduction

1 (let ([partial (lambda (f x)
2 (lambda (y)
3 (f x y)))])
4 (let ([g (partial + "hello")])
5 (g 9)))

Listing 2.3: Example program for check inference

invokes Apply(α f , `, αx, αy), where ` references the source location of the application
expression. The fourth case of the Apply function is applicable, which returns a type
function application guarded by a conditional type. We can thus construct the type of
partial as

τpartial = Π(α f ,αx).[Π(αy).[(function-arity-2 ?= α f) · (α f αx αy)]]

Next, the type of g is constructed by filling in the type variables with the types of
the arguments. This time, a known function is applied, so we enter the first case of
Apply, which replaces the type variables α f and αx with the types of + and "hello",
respectively τ+ and string, with

τ+ = Π(αw,αz).(int ?= αw) · (int ?= αz) · int

Note that we have renamed the type variables in the type of + to avoid variable capture.
The type of g is

τg = Π(αy).(function-arity-2 ?= τ+) · (τ+ string αy)

= Π(αy).(τ+ string αy)

= Π(αy).(int ?= string) · (int ?= αy) · int

Finally, the type of the application (g 9) becomes

τ(g 9) = (int ?= string) · (int ?= int) · int

= (int ?= string) · int

Unlike traditional type systems, the program is not rejected even though it clearly
contains a type error. The expression might be part of a function that is never executed,
or it might reside in a branch of an if expression that is never taken. Instead, the faulty
expression will be guarded by a run-time type test, which raises an error only if the
containing function or branch are entered. Run-time type test are introduced by the
check introduction stage in the next section.

2.3 Check Introduction

The result of check inference is a final type environment Γ which associates each ex-
pression in the program with a type. This stage will insert check expressions around

25

2 Functional Blame Prediction

all function application expressions. The preconditions of these check expressions are
derived from the conditional types (if any) of the function applications.

Conversion to preconditions The algorithm for converting conditional types to pre-
conditions is defined by the function ToPrec, shown in figure 2.8.

ToPrec((τt ?= τc)
`b
`c
· τ) = ToPrec(τ) if τt ∼= τc

ToPrec((τt ?= τc)
`b
`c
· τ) = (τt? s){`b} ∧ ToPrec(τ) where s = Expr(`c)

ToPrec(τ1 ∨ τ2) = ToPrec(τ1) ∨ ToPrec(τ2)

ToPrec(τ) = #t

Figure 2.8: Conversion from types to check preconditions

The first two rules here are the most important: the first prevents the generation of
preconditions where types are statically known and equal, such as (int ?= int). We
use the ∼= operator instead of strict equality, such that function-arity-2 ∼= Π(α1,α2).τ also
holds. The second rule actually generates preconditions: it first uses the Expr function
to look up the variable or constant associated with cause label `c . The condition
part of the conditional type is then converted into a predicate τt? on that variable
or constant. This predicate assigns blame to the labels in the singleton set {`b}. The
resulting precondition is then the conjunction of this predicate and the precondition
for the rest of the conditional type. Note that conditional types are associated with
one label, while every predicate is associated with a set of labels. In the case of ToPrec,
these are singleton sets. For a union type, the precondition is simply the disjunction
of preconditions. Other types such as ground types, type variables and type functions
are converted to the no-op precondition #t, as they do not result in a run-time check.

For a conditional type, the type test is derived from τt: there exists a corresponding
type test function for every ground type. For example, (int ?= τ) becomes (int? τ). If
τt is of the form function-arity-n, the run time test checks whether the argument is a
function of arity n using the function-arity-n predicate. Remember that such types occur
when a type variable is applied to arguments.

Check introduction Having defined how types are converted to preconditions, we
now explain how and where check expressions are inserted into the program. The
Insert function for check introduction can be seen in figure 2.9. It is applied to every
expression in the program, with the type environment Γ from the previous stage as
input. We introduce checks only around function applications; other expressions are
left alone. For each function application, we look up its type in the environment Γ and
convert it into a precondition using the ToPrec function. The function application is
then wrapped with a check expression. Even if function application does not give rise

26

2.4 Check Mobility

to a conditional type, a (check #t e) is still generated. This simplifies the rules in the
next stage.

Insert(Γ, e) =

{
(check p e) with p = ToPrec(Γ(e)) if e is of the form(s s1 . . . sn)

e otherwise

Figure 2.9: Introduction of check expressions into the program

At the end of this stage, every function application in the input program is guarded
by a check expression.

2.4 Check Mobility

In this stage of the transformation, check expressions in the program are moved (or
“floated”) upwards in the program tree. The rules for doing so are described in fig-

e→ e′ ↑ p
e→P (check p e′)

(F-program) c→ c ↑ #t (F-const)

x→ x ↑ #t (F-var)
si → s′i ↑ #t ∀i ∈ 1 . . . n

(check p (s1 . . . sn))→ (s′1 . . . s′n) ↑ p
(F-apply)

s→ s′ ↑ #t e1 → e′1 ↑ p1 e2 → e′2 ↑ p2

(if s e1 e2)→ (if s (check p1 e′1) (check p2 e′2)) ↑ p1 ∨ p2
(F-if)

ex → e′x ↑ px e→ e′ ↑ p p′ = mask(x, p)

(let ([x ex]) e)→ (let ([x e′x]) (check p e′)) ↑ px ∧ p′
(F-let)

e→ e′ ↑ p
(lambda (x1 . . . xn) e)→ (lambda (x1 . . . xn) (check p e′)) ↑ #t

(F-lambda)

mask(x, (τ? x′)`b) = (τ? x′)`b if x 6= x′

mask(x, (τ? x′)`b) = #t if x = x′

mask(x, p1 ∨ p2) = mask(x, p1) ∨mask(x, p2)

mask(x, p1 ∧ p2) = mask(x, p1) ∧mask(x, p2)

mask(x, #t) = #t

Figure 2.10: Rules for moving checks up the evaluation tree

27

2 Functional Blame Prediction

ure 2.10. Check mobility rules are of the form e → e′ ↑ p, with a reading of “expres-
sion e is rewritten to expression e′, propagating precondition p upwards”. The only
difference between e and e′ is the position of check expressions and their precondi-
tions.
The rules of figure 2.10 are as follows:

• Check mobility is initiated by the F-program rule2, which invokes the check
mobility rules on the top-level expression. Any preconditions propagated up-
wards from the root expression are captured and inserted at the top of the pro-
gram.

• Rules F-const and F-var are for completeness: constants and variables will
never have preconditions, as check expressions are only introduced at function
application sites.

• The F-apply rule rewrites a function application to itself while propagating the
precondition of its associated check upwards. As we converted the program to
ANF in the first stage of the blame prediction transformation, the arguments are
all simple expressions. Therefore, they are either constants, variables or lambda

terms, which cannot contribute preconditions.

• Conditional expressions (the F-if rule) combine two paths through the program,
which can have different expectations from their environment. For example, one
branch might expect variable foo to be a string, while the other might use foo

as an int or not use it at all. Rule F-if reconciles the differing expectations of
the two branches by propagating the disjunction p1 ∨ p2 of the two preconditions
upwards. Each branch of the if is still guarded by its own check (respectively p1
and p2).

• In the rule F-let, there are two sources of preconditions: the expression ex bound
to the variable x and the body e. Since ex will be evaluated before the body,
its preconditions px are propagated upwards without changes. By contrast, the
preconditions propagated upwards from the body may contain references to the
bound variable x, which is unbound outside of the let expression. Therefore, we
take care not to propagate these checks beyond the binding for x.

The mask(x, p) function traverses the structure of a precondition and replaces all
type tests on the variable x with the no-op precondition #t. The resulting pre-
condition p′ is propagated upwards in conjunction with px. Additionally, the re-
turned expression checks the precondition p again at the top of the let body, such
that any preconditions on x are checked there. This introduces some duplication
of checks, but the next stage will remove some of them again.

2This rule is a separate rule for programs, indicated by the use of→p.

28

2.5 Check Simplification

• Rule F-lambda captures the preconditions propagated from its body and in-
serts them again at the top of the body. This is important to preserving the
program behavior: preconditions must be verified when anonymous functions
are executed, not when they are defined.

Example of check mobility We clarify the F-let rule by applying check mobility
to the small example in listing 2.4. Note that the number? type test for tmp1 was never
generated, as the type system asserts that string-length returns a number.

1 (let ([x (generate-x)])
2 (let ([tmp1 (check [string? x] (string-length x))])
3 (check [number? y] (+ y tmp1))))

Listing 2.4: Example of check mobility: input program

Applying F-apply to the calls to string-length and + moves their respective checks
upwards. Applying rule F-let for the inner let yields listing 2.5. The preconditions on
x and y are simply moved up and out of the inner let, as they do not mention tmp1.

1 (let ([x (generate-x)])
2 (check [string? x ∧ number? y]
3 (let ([tmp1 (string-length x)])
4 (check [number? y] (+ y tmp1)))))

Listing 2.5: Example of check mobility: after floating the inner let

Applying check mobility to the outer let yields the code in listing 2.6. This time, the
preconditions to be moved mention the bound variable x, so in the outer check it has
been replaced by #t. The original precondition is left at the top of the let body; it will
be eliminated by the simplification stage. The duplicate number? checks on lines 3 and
5 will also be eliminated, as number? y has already been checked on line 1.

1 (check [#t ∧ number? y]
2 (let ([x (generate-x)])
3 (check [string? x ∧ number? y]
4 (let ([tmp1 (string-length x)])
5 (check [number? y] (+ y tmp1))))))

Listing 2.6: Example of check mobility: After floating the outer let

2.5 Check Simplification

The transformation presented above implements the core idea of blame prediction: it
makes preconditions of primitive operations (whether applied directly or indirectly)
explicit and subsequently moves them upwards in the program. In the resulting pro-
gram a number of preconditions are checked multiple times, however. Obviously, re-
ducing the number of check expressions has a big impact on the run-time performance

29

2 Functional Blame Prediction

of a blame predicted program. The goal of this section is therefore to present a number
of simplifications which reduce the number of checks in the program without altering
its semantics.

Each subsection will present a different simplification, but they can be applied in
any order. For example, removing a precondition from a check expression (section 2.5.3)
can enable an or–true simplification (section 2.5.1). For convenience we omit the braces
around single labels (i. e. (number? n)< instead of (number? n){<}).

The running example for this section can be found in listing 2.7. It is the result of
applying the previous stages of the blame prediction transformation to the well-known
factorial function. The arithmetic operations in the alternative of the if expression
give rise to several number? preconditions, labeled with the operation that generated
them.

1 (define (factorial n)
2 (check [number? n<

3 ∧ (#t ∨ number? n− ∧ number? n∗)]
4 (if (< n 1)
5 1
6 (check [number? n− ∧ number? n∗]
7 (let ([tmp-fac (factorial (- n 1))])
8 (* n tmp-fac))))))

Listing 2.7: Running example: factorial

2.5.1 Or–true simplification

The first simplification removes preconditions that have #t in one branch of a disjunc-
tion. These arise as a result of conditional expressions that do not perform any type
tests in one of the branches, such as the one on line 4. Since a precondition with #t∨ p
will always be true regardless of p, the precondition can simply be replaced by #t. This
does not alter the program semantics, as the branch that does perform a type test still
has a check expression at the head, as shown by check mobility rule F-if. The result
can be seen in listing 2.8.

1 (define (factorial n)
2 (check [number? n<]
3 (if (< n 1)
4 1
5 (check [number? n− ∧ number? n∗]
6 (let ([tmp-fac (factorial (- n 1))])
7 (* n tmp-fac))))))

Listing 2.8: Example after applying or–true simplification

30

2.5 Check Simplification

2.5.2 And–check simplification

The second simplification that can be performed removes duplicate predicates in the
same precondition. In the running example (listing 2.8), the second check expression
tests (number? n) two times. Duplicate predicates in a conjunction can be removed,
taking care to preserve the blame labels in case the check expression fails. If a duplicate
predicate is removed, its blame labels are added to the first remaining predicate. The
result is shown in listing 2.9.

1 (define (factorial n)
2 (check [number? n<]
3 (if (< n 1)
4 1
5 (check [number? n{−,∗}]
6 (let ([tmp-fac (factorial (- n 1))])
7 (* n tmp-fac))))))

Listing 2.9: Example after applying and–check simplification

2.5.3 Check–check simplification

The final simplification opportunity lies in eliminating repeated preconditions across
check expressions. Continuing with the example in listing 2.9, there are two checks that
verify whether the variable n contains a number. Moreover, the second check (line 5) is
in the scope of the first check (line 2), meaning that the same property is verified twice.
The inner check can thus safely be removed. The result of this simplification can be
seen in listing 2.10. This does not change the semantics of the program, as evaluation

1 (define (factorial n)
2 (check [number? n{<,−,∗}]
3 (if (< n 1)
4 1
5 (let ([tmp-fac (factorial (- n 1))])
6 (* n tmp-fac)))))))

Listing 2.10: Example after check–check simplification

will already predict blame at the first check if n is not a number. Again, care must be
taken to preserve blame information: we must also merge the sets of blame labels in
nested checks into outer checks.

2.5.4 Note on simplification of failing tests

It is tempting to simply substitute #f for failing tests on literal expressions such as
(string? 9), as logically speaking these behave the same. However, this would have

31

2 Functional Blame Prediction

two immediate consequences: first, this #f would not identify the actual primitive
operation that failed, and multiple blame labels would be assigned to the precondition
“#f”, confusing the programmer. The second consequence is worse: the semantics of
programs would change! Consider the expression

(if decision (+ 3 "hello") (string-length x))

Applying blame prediction results in the precondition (number? "hello") ∨ (string? x).
Substituting #f for the number? test yields #f ∨ (string? x), which could then be simpli-
fied to (string? x). This simplification disregards the role of decision: it predicts blame
if x is not a string.

2.6 Correctness

In order to prove that the blame prediction transformation does not change program
semantics, we will prove two equivalences3 between an original program P and its
transformation P′. Recall from section 2.1 that P v means that program P evaluates
to value v, and similarly P err-ω means that evaluation of the program P results in
an error err-ω.

Value Preservation
Iff P runs to completion and produces a value v, P′ produces the same value v.
Formally: P v⇔ P′ v.
Use–Blame Entailment
If P raises an error, the blame predicted program P′ must predict blame.
Formally: P err-ω ⇒ P′ err-blame(p).
Blame–Use Entailment
If P′ predicts blame, the original program P must raise an error.
Formally: P′ err-blame(p)⇒ P err-ω.

We prove these properties through trace equivalence, where the traces consist of the
expressions encountered along the path through the input program P and the blame
predicted program P′. The preconditions of primitive operations which might fail are
represented by “use(p)” expressions in a trace.
For example, the expression (+ 3 "hello") with precondition (number? "hello") man-
ifests in a trace as

[. . . , use(number? "hello"), . . .]

Definition 1 (Traces). We define a trace T for a program P as a sequence of check

and use expressions, as they are encountered while evaluating a program. Schemeβ

programs that return a value or raise an error must have finite traces.

3The second equivalence is constructed from two entailments.

32

2.6 Correctness

Definition 2 (Equivalence modulo check). Two Schemeβ programs are equivalent mod-
ulo check iff the syntax trees are identical after replacing check expressions with their
body, i. e. (check p e) 7→ e. This equivalence extends to traces: if two programs are
equivalent modulo check, removing the check nodes from their traces results in identi-
cal traces.

Next, we define four lemmas that will be used in the proofs of the equivalences
above. Proofs for these lemmas will follow in section 2.7.

Lemma 1. Verifying the preconditions p of a (check p e) expression in a well-formed
program never gives rise to an error.

Lemma 2. A blame-predicted program P′ is equivalent modulo check to its input pro-
gram P.

Lemma 3. In a blame-predicted program P′, every primitive operation which relies on
a precondition p is in the scope of a (check p∧ p′ . . .) expression.

Lemma 4. A blame-predicted program P′ only contains check expressions that refer-
ence preconditions from the primitive operations in their scope, or conjunctions and
disjunctions of such preconditions.

Proof of Value Preservation

Proof. We prove each direction separately.
⇒: Given that P v, prove that P′ v.
The successful evaluation of P yields a trace

T = [use(p1), use(p2), . . . , use(pn)]

where every pi must be true. Therefore, the trace describes properties on variables
in the program, such as (number? x) or (string? y). Moreover, it must be internally
consistent, so a variable x cannot be both a number? and a string?. Because Schemeβ

does not allow mutation of variables, a precondition tested in a use expression must
be true for the entire lifetime of the variable.

We generate a hypothetical trace T′ for P′ by walking the same path as program P
and recording the checks encountered. In order for P′ to result in a value, every use

and check in T′ must succeed. T′ is equivalent modulo check to T, so only the checks
make T′ differ from T. For every element of T′, there are two possibilities:

1. use(pi): These are also present in T, where all uses succeeded.

2. check(pi): From lemma 4, we know that the checks in P′ are conjunctions and
disjunctions of the uses in P. Since every use in T succeeded, this check must
also succeed. Moreover, the evaluation of the precondition will not raise an error
because of lemma 1.

33

2 Functional Blame Prediction

Since all checks and uses in T′ succeed, the evaluation of P′ must also succeed and
produce the same value.

⇐: Given that P′ v, prove that P v.
The trace T′ of program P′ is equivalent modulo check to the trace T of program P.
In other words, removing the checks from T′ yields T. T′ succeeds, so T must also
succeed, and thus program P must produce the same value as program P′.

Proof of Use-Blame Entailment

Proof. As described by the evaluation rules, the only expressions in the program P that
can raise errors are primitive operations. Let

T = [use(p1), use(p2), . . . , use(pk)]

be the trace of the program P up to and including the use(pk) that raised the error.
Since the trace T′ of P′ is equivalent modulo check to T, use(pk) must also be a

member of T′. Lemma 3 states that use(pk) must be in the scope of a check(pj) which
critically depends on pk (¬pk =⇒ ¬pj). Upon reaching check(pj), evaluation of pro-
gram P′ will definitely stop, as pk does not hold. However, it is possible that another
check in the trace fails even earlier. Regardless of which check actually raises the error,
the program stops and predicts blame.

Proof of Blame-Use Entailment

Proof. P′ evaluates to an err-blame(p) error, which must be raised by a check(pk) expres-
sion in P′. The traces up to that point for P′ and P are, respectively

T′ = [. . . , use(p1), . . . , use(pj), . . . , check(pk)]

T = [use(p1), . . . , use(pj)]

There can be many paths that continue with T as prefix. Lemma 4 states that pk is
a combination of preconditions further in the program. Moreover, this lemma holds
for all traces with T as prefix, so every such trace must contain at least one use for a
precondition in pk within its scope. In program P, these traces will fail as soon as they
reach use(pk).

Check mobility and ordering
For the two entailments we do not claim that a transformed program P′ predicts the

same error as raised by program P. The reason for this is that the blame prediction
transformation does not take ordering of checks into account. For example, consider
the blame predicted program in listing 2.11. Because of the structure of the program,
the property (number? x) is verified before (number? z).

34

2.7 Proofs of lemmas

1 (define (f x y)
2 (check (number? x)
3 (let ([z y])
4 (check (number? z)
5 (let ([y (+ z 1)])
6 (let ([w (/ x 2)])
7 ...))))))

Listing 2.11: Example of ordering inconsistencies after blame prediction

Assume f is called with two strings (f "hello" "world"): under blame prediction, the
very first check expression on line 2 will fail and predict blame (err-blame(number? x))
for the / expression on line 6. The non-blame predicted program will raise a err-not-int(z)
error when evaluating the call to + on line 5.

2.7 Proofs of lemmas

In this section we prove lemmas 1 to 4.

Lemma 1: Verifying preconditions of a check never raises an error in a well-formed
program

Proof. Evaluation of the precondition of a check expression can only go wrong if the
referenced variables are unbound. We consider the check introduction and mobility
stages as potential sources of references to unbound variables:

1. The definition of well-formed programs in section 2.1 forbids free variables and
therefore unbound variables. Therefore, variable references in the program can
only appear in the scope of a let or lambda expression higher up in the program.
The check introduction stage inserts check expressions directly around function
application expressions. Any variable in a precondition must come from the ap-
plication expression it wraps, so the precondition cannot contain unbound vari-
able references.

2. The check mobility stage can potentially lift a precondition out of the scope in
which it is defined. We perform case analysis on the check mobility rules (fig-
ure 2.10), especially for the let and lambda forms:

a) In rule F-let, the preconditions p from the body e can reference the bound
variable x. The preconditions floated up from a let are filtered through the
mask function, which prevents unbound references to x by replacing them
with #t.

b) Rule F-lambda simply prevents preconditions from floating out of the
lambda body, so unbound references cannot occur.

35

2 Functional Blame Prediction

c) The other check mobility rules only move existing preconditions of check

expressions upwards, so they cannot cause references to be unbound.

Lemma 2: Equivalence modulo check after transformation

Proof. For every stage of the transformation, we consider the input program P and the
program P′ under transformation: At the start of the transformation, the programs are
identical and thus trivially equivalent modulo check.

1. Check introduction: As per figure 2.9, check expressions are inserted around func-
tion application expressions. Removing these again yields the input program.

2. Check mobility: This stage moves check expressions around, as per figure 2.10.
Removing all the check expressions from the flotation rules results in the identity
transformation.

3. Check simplification: This stage again only merges or removes check expressions,
other expressions are not touched. Therefore, after this stage the input program
and the blame-predicted program are equivalent modulo check.

Lemma 3: every primitive operation is guarded by a check

Proof. The proof for this lemma is split in three parts: first we prove that the check intro-
duction stage establishes the property to be proven. We then prove that this property
is unaffected by check mobility or simplification.

Proof for check introduction The type system relates check expressions and primi-
tive operations as follows: the type of a primitive operation corresponds to its internal
preconditions, and check introduction generates checks based on that type. In this part
of the proof we intend to show that the type inference stage correctly assigns ground
types where types can be assigned at compile time, and that conditional or union
types are assigned where types depend on the path taken by execution. We show this
by induction on the inference rules from figure 2.6.

• Rules T-const and T-var are for constants and variables, evaluating these will
not give rise to errors.

• Rule T-if combines the types of both paths in a union type.

• The T-let rule ensures that any checks made by the bound expression ex are
prefixed to those in the body.

36

2.7 Proofs of lemmas

• Rule T-lambda wraps the type of the body in a type function. When this is later
applied, this type is made accessible to the caller, along with any conditional
types it contains.

• Rule T-apply is the base case: applications of primitive operations give rise to
checks on the arguments. As stated above, these checks correspond with the use

expressions inside the wrappers. If s f is not a primitive operation however, the
type of the function being applied may also contain conditional types, but their
preconditions will be checked both at the call site and inside the function body.
At run-time, the preconditions of the function will be checked at the top of the
function body as well as call sites. This means that there will be more than one
check for the primitive operations in the function body.

Proof for check mobility The previous stage has inserted check expressions around
application expressions, so we need to prove that check mobility reinserts check ex-
pressions with these preconditions higher up in the tree. We will thus not consider
F-const, F-var or F-apply, as they are leaf expressions in the expression tree.

• Rule F-if captures the preconditions floated up by each branch and inserts them
at the top of each branch.

• Rule F-let has two preconditions to consider: px from ex, and the p from e. px
is simply floated upwards and captured higher up in the program, whereas p is
inserted at the top of the let body.

• Rule F-lambda captures the preconditions floated upwards from its body and
inserts a check at the top.

Finally, Rule F-program makes sure preconditions are reinserted at the top of the
program. Every precondition floated up from a check is thus inserted again higher up
in the program, therefore every use is still covered by at least one check.

Proof for check simplification Check simplification does not affect the property
to be proven. We discuss every simplification strategy in turn:

• And–check simplification: duplicate predicates are removed from the precondi-
tion, but a single copy always remains.

• Or–true simplification: this simplification removes check expressions from the
program. However, disjunctions of preconditions can only be generated from an
if expression, which keeps copies of preconditions at the top of its branches.

• Check–check simplification: this stage removes duplicate preconditions in nested
checks. Since the inner check is merged into the outer check, the precondition is
still preserved and the property still holds.

37

2 Functional Blame Prediction

We have shown that the three major stages of the blame prediction transformation
introduce and maintain the property to be proven, so the property holds for the output
of the transformation.

Lemma 4: check preconditions only reference (combinations of) use preconditions

Proof. In the previous proof we already showed that the check introduction stage in-
serts check expressions that exactly match the preconditions of the primitive operations
they guard. We therefore only need to prove that the check mobility stage generates
checks from combinations of existing preconditions. Like the previous proof, we per-
form case analysis on the flotation rules. Almost all rules insert preconditions floated
up from subexpressions, either directly (F-apply, F-lambda, F-program) or a com-
bination of preconditions (F-if).

This leaves the F-let rule: the precondition px is floated upwards, in conjunc-
tion with the result of mask(x, p). The latter constructs a new precondition by re-
moving parts of the precondition p floated up from the let body. The precondition
px ∧mask(x, p) thus only consists of preconditions floated up from subexpressions.

In conclusion, every rule satisfies the property we set out to prove.

2.8 Discussion

In this section we discuss some extensions to our analysis.

2.8.1 Variable-arity functions

Scheme allows programmers to define functions of variable arity and call them just
like regular functions. Such functions can have a number of required arguments, and
any arguments after those are bound to a list. Listing 2.12 illustrates this: it defines a
function flexible with fixed parameters a and b, with the remaining arguments bound
to the variable rest. Some of the built-in functions (such as + and for-each) can also
vary in their arity.

1 (define (flexible a b . rest)
2 (display (+ a b)) (newline)
3 (display rest) (newline))
4

5 ; First displays "6", then "(5 8 13)"
6 (flexible 2 4 5 8 13)

Listing 2.12: Example of a variable-arity function and its use

Adding support for variable-arity functions requires a few changes to our analysis.
First, support for list types must be added such that types can be inferred for func-
tion bodies with variable arguments. Next, the type system must make a distinction

38

2.9 Conclusion

between fixed-arity and variable-arity functions: in case of a variable-arity function,
the Apply and ToPrec helper functions must check if the number of arguments passed
to the function is greater than or equal to the amount of fixed arguments. Finally,
the built-in functions must receive a special type that performs type tests on all their
arguments.

2.8.2 Supporting a full numeric tower in blame prediction

In section 2.2 we remarked that R5RS Scheme, on which Schemeβ is based on, only
has a single numeric type number. Many other languages make a distinction between
various kinds of numbers, typically arranged in a “numeric tower” where higher tiers
are subsets of lower tiers. These towers resemble the numeric tower in math, where
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

In the Racket language, for example, the vector-ref primitive operation requires a
non-negative-integer? for its index argument, which is a specific subset of the values
which satisfy the integer? predicate. As another example, the numerator primitive
operation requires a rational? argument and returns an integer?. Contrast this to
our approach, which only checks for type equality, not type subsumption.

In order to introduce support for a numeric tower in the blame prediction trans-
formation as described in this chapter, two changes have to be made. Firstly, in the
check inference stage, conditional types such as (rational ?= int) · τ must be allowed to
simplify to just τ, as int ⊂ rational. Secondly, a similar change is needed for the check

simplification stage: type subsumption must be used as criterium in the and–check
simplification as well as the check–check simplification steps.

2.9 Conclusion

In this chapter we introduced the blame prediction transformation on Schemeβ, a
functional Scheme-like language without recursion. This transformation annotates the
input program with check expressions that make the preconditions of primitive opera-
tions explicit. Every primitive operation is now guarded by one or more check expres-
sions which check its preconditions ahead of time. The check expressions are inserted
into the program such that they report errors as early as possible, but only if an error
is guaranteed to occur. This makes it a “must-fail” analysis

The blame prediction transformation consists of four stages:

Check inference uses a type system to infer types for all expressions in the program,
in addition to the type tests which must be made “along the way”.

Check introduction converts these type tests to the preconditions of check expressions
inserted around function application expressions.

Check mobility moves these check expressions upwards, making sure no wrong errors
are predicted;

39

2 Functional Blame Prediction

Check simplification finally eliminates duplicate or ineffective checks.

We have proven that the blame prediction transformation does not alter the seman-
tics of a program: if a program finishes successfully, its transformed version will also
finish. The same cannot be said for programs that fail: we have proven that programs
where blame is predicted will fail, although not necessarily with the same error. Vice
versa, a normal program that fails will also fail after blame prediction, though again
not with the same error.

In the next chapter of this thesis we expand the coverage of the blame prediction
transformation with support for recursion. The addition of recursion introduces “infi-
nite types”, which need to be reduced to finite types before they can be used.

40

3
R E C U R S I O N

In the previous chapter we defined blame prediction for a functional core language
Schemeβ. In this chapter we first extend the syntax and semantics of the language to
add an explicit heap in order to support both recursion and mutable variables (sec-
tion 3.1). Next, we augment the stages of the blame prediction transformation in order
to support recursion (section 3.2).

3.1 Syntax and Semantics

Before we extend the blame prediction transformation with support for recursion and
mutation (in the next chapter), we need to add syntax and semantics for these features
to Schemeβ. Unfortunately, the semantics presented in the previous chapter eagerly
substitute values for variables, for example the evaluation of let and lambda expres-
sions. This makes it impossible to describe programs which perform assignments, as
variables need to be changed after they have been substituted. Likewise, definition
of recursive functions is impossible as functions cannot refer to themselves except by
substituting their definition, which gives rise to infinitely large programs. Therefore
we need new semantics for Schemeβ that incorporates support for variable mutation
and recursion. This semantics adds an explicit heap, which maps addresses to values,
and an environment, which maps variables to addresses.

Syntax The extended syntax is presented in figure 3.1. Most of the syntax is the same
as in figure 2.2, but the letrec and set! special forms are new. For recursion we define the
letrec special form: the binding groups in the letrec keyword define variables x1, . . . , xn

which are bound to expressions e1, . . . , en. The variables in the binding group x1, . . . , xn

are in scope in every ei as well as in the body. In order to support mutation, we add
the set! keyword. (set! x s) assigns the value of the simple expression s to a previously
defined variable x.

41

3 Recursion

e ∈ Exp ::= s Simple expressions
| (s s1 . . . sn) Application
| (if s e e) Conditional
| (let ([x e]) e) Let
| (check p e) Check
| (letrec ([x1 e1] . . . [xn en]) e) New Recursive definition
| (set! x s) New Variable assignment
| (begin e1 . . . en) New Expression sequencing

s ∈ Simp ::= x Variables
| c Constants and literals
| (lambda (x1 . . . xn) e) Lambda expressions

v ∈ Val ::= void | #f | #t | n | 〈E , x1 . . . xn, e〉 Run-time values
` ∈ Loc ⊂ N Memory locations
E ∈ Env ::= Var ⇀ Loc Environments
H ∈ Heap ::= Loc ⇀ Val Heaps

Figure 3.1: Extended syntax and auxiliary definitions

The second part of figure 3.1 defines environments and heaps in terms of partial
functions from variables to memory locations (`) and memory locations to values,
respectively. These values can be one of the primitive boolean or integer values, or
they can contain a closure. Both environments and heaps are partial functions, as they
only contain mappings for bound variables resp. allocated heap cells. A closure is
represented as a triple 〈E , x1 . . . xn, e〉, where E is the captured environment, x1 . . . xn

are the names of its formal parameters, and e is its body.
In order to simplify the presentation of the check inference rules, we require that

letrec expressions only consist of groups of mutually recursive functions. However,
the input program might include letrec expressions containing either non-function
expressions or non-recursive function definitions. To enforce this invariant, we require
a transformation such as defined in [Peyton Jones, 1987, Section 6.2.8] and Waddell
et al. [2005]. After the transformation, expressions and non-recursive functions are
bound in let expressions, and every recursive function in the original letrec is contained
in the smallest possible binding group of mutually recursive functions. A worked out
example, taken from Peyton Jones [1987], is shown in figure 3.3. Going further, we
assume this transformation has taken place, and that the binding part of a letrec only
contains one or more mutually recursive functions.

For the sake of simplicity (and presentation) we will also allow begin expressions
into the language. A begin expression evaluates its expressions from left to right and
returns the value of the last expression. Any begin expression can be translated to a
set of nested let expressions, as shown in figure 3.4. In the last rule, the ignore variable

42

3.1 Syntax and Semantics

H, E , x H,H[E [x]] (E-var) H, E , c H, c (E-const)

H, E , (lambda (x1 . . . xn) e) H, 〈E , x1 . . . xn, e〉 (E-lambda)

H, E , s H, vc

i = 2 if vc = #f, 1 otherwise
H, E , ei H1, v

H, E , (if s e1 e2) H1, v
(E-if)

H, E , si H, vi ∀i ∈ [0 . . . n]
H1, E1, e = δ(H, E , v0, v1 . . . vn)

H1, E1, e H2, v

H, E , (s0 s1 . . . sn) H2, v
(E-apply)

` fresh
H, E , ex H1, vx

E2 = E [x→ `] H2 = H1[`→ vx]
H2, E2, e H3, v

H, E , (let ([x ex]) e) H3, v
(E-let)

H, E , p H, vp

If vp = #f, raise a err-blame(p) error.
H, E , e H1, v

H, E , (check p e) H1, v
(E-check)

`1, . . . , `n fresh
E1 = E [x1 → `1, . . . , xn → `n]

H, E1, ei H, vi ∀i ∈ [1 . . . n]
H1 = H[`1 → v1, . . . , `n → vn]

H1, E1, e H2, v

H, E , (letrec ([x1 e1] . . . [xn en]) e) H2, v
(E-letrec)

H, E , s H, v H1 = H[E [x]→ v]

H, E , (set! x s) H1, void
(E-set)

δ(H, E , o#, v1, . . . , vm) = err-not-int(vi) if ∃i : ¬number? vi
δ(H, E , o#, v1, . . . , vm) = H, E , o#(v1, . . . , vm) otherwise

δ(H, E , 〈Ef , x1 . . . xn, e〉, v1, . . . , vm) = err-args-λ(λx1 . . . xn.e) if m 6= n
δ(H, E , 〈Ef , x1 . . . xn, e〉, v1, . . . , vm) = H[`1 → v1, . . . , `n → vn], Ef [x1 → `1, . . . , xn → `n], e

δ(H, E , v, . . .) = err-not-λ(v) if ¬function?(v)

Figure 3.2: Semantics for Schemeβ with support for recursion and mutable variables

43

3 Recursion

1 (letrec ([x (fac z)]
2 [fac (lambda (n) (if (= n 1) 1 (* n (fac (- n 1)))))]
3 [z 4]
4 [sum (lambda (x y) (if (= x 0) y (sum (- x 1) (+ y 1))))])
5 (sum x z))

(a) Before separation

1 (let ([z 4])
2 (letrec ([sum (lambda (x y) (if (= x 0) y (sum (- x 1) (+ y 1))))])
3 (letrec ([fac (lambda (n) (if (= n 1) 1 (* n (fac (- n 1)))))])
4 (let ([x (fac z)])
5 (sum x z)))))

(b) After separation

Figure 3.3: Enforcing invariants: Splitting a letrec into nested let and letrec expressions

J(begin)K = (void)

J(begin e)K = e

J(begin e1 e2 ...)K = (let ([ignore e1]) J(begin e2 ...)K)

Figure 3.4: Translation of begin to let

may not occur free in e2 or later expressions. The bodies of functions, let and letrec-
expressions are implicitly wrapped in a begin expression.

Semantics The new semantics, shown in figure 3.2, add an extra indirection between
variables and values. Rather than having variables directly contain values (and sub-
stituting value for variables when evaluating let expressions), variables now point to
memory locations in a heap. Assignment expressions designated by the set! keyword
can update the value in the heap at the location indicated by the variable. Evaluation
of lambda expressions also becomes more complex, as free variables are no longer sub-
stituted into their body; Instead, the evaluation of lambda expressions now need to
capture the environment in which they are defined, which may differ from the envi-
ronment in which they are called. Evaluating a lambda expression returns a closure,
which is represented as a triple 〈E , x1 . . . xn, e〉, where E is the captured environment,
x1 . . . xn are the names of its formal parameters, and e is the body. A function with no
parameters (also called a thunk) is represented as 〈E , (), e〉.

Evaluation rules in the new semantics are of the form H, E , e H′, v: given a start-
ing heap H and environment E , the expression e evaluates to v, returning a potentially
modified heapH′. We use the syntax E [x] andH[`] to denote lookups in environments

44

3.1 Syntax and Semantics

and heaps, respectively. E [x→ `] or H[`→ v] denote a new environment or heap with
an updated binding, respectively for x and `.
The new evaluation rules are as follows:

• E-const: evaluating a constant simply returns the constant.

• E-var: to evaluate a variable, its memory location is first looked up in the envi-
ronment, which is then used to look up its value in the heap.

• E-lambda: a lambda expression captures the environment in which it is defined.

• E-if: the correct subexpression is evaluated depending on s being #f or not.

• E-apply: after evaluating the function v f and arguments v1 . . . vn, the δ function
returns an expression, along with an environment and heap to evaluate it in.

• E-let: after evaluating the expression ex, a new memory location ` is initialized
with the value vx. The variable x is bound to this memory location, and the body
is evaluated in this new heap and environment.

• E-check: the check expression raises an error if its precondition evaluates to #f.
All pending evaluation steps are aborted and the evaluation returns an err-blame(p)
error.

• E-letrec: every expression ei is evaluated in the environment E1, which as-
sociates every variable in the binding group with a memory location. Note that
attempting to read from or write to any of the bound variables during evaluation
of these expressions will result in a stuck evaluation. Because of the restriction
that letrec expressions only bind functions, this will never happen. After all func-
tions have been evaluated to closures over the new environment E1, the heap
is extended to associate the function names with these closures and finally the
body is evaluated in the extended environment and heap.

• E-set: finally, evaluating a set! expression looks up a variable’s memory location
in the environment and updates the heap at that location with the new value.
Evaluating set! expressions always results in a void return value.

In this semantics we allow a rule to evaluate subexpressions directly, where the pre-
viously defined semantics (presented in figure 2.3) would rely on evaluation contexts
and substitution. If any of these subexpressions raises an error — or in the case of
E-var, the variable is not bound in the environment — evaluation immediately stops
with the raised error.

The extended syntax and semantics are sufficient to describe and evaluate programs
that use recursion or mutate variables. In the next section we discuss how recursion
can be integrated into the three steps of the blame prediction transformation.

45

3 Recursion

3.2 Recursion

The blame prediction transformation as introduced in the previous chapter does not
support recursion, as the combination of recursion and the type system presented
there gives rise to infinite types. In order to explain what infinite types are and how
they might arise from recursive functions, consider the recursive function in listing 3.1,
which counts down from n and returns the symbol done when the counter reaches
zero:

1 (define (count n)
2 (if (= n 0)
3 'done
4 (count (- n 1))))

Listing 3.1: Recursive function which leads to an infinite type

Inferring the type of this function yields the following type:

ταcount = Π(αn).(int ?= αn) · [symbol∨ (ταcount int)]

This is an infinite type, as ταcount contains itself. We can attempt to expand the function
application inside the body of the type function and reduce it again:

= Π(αn).(int ?= αn) · [symbol∨ (Π(αn).[(int ?= αn) · [symbol∨ (ταcount int)]] int)]

= Π(αn).(int ?= αn) · [symbol∨ [(int ?= int) · [symbol∨ (ταcount int)]]]

= Π(αn).(int ?= αn) · [symbol∨ [symbol∨ (ταcount int)]]

= Π(αn).(int ?= αn) · [symbol∨ (ταcount int)]

which produces the original type again. Clearly this process can be repeated an infinite
number of times, hence the name infinite type.

In the previous chapter we used a type system for the basis of check inference, where
conditional types such as the int? test in the above type result in check expressions in
the final program. When functions with infinite types such as ταcount are used, the type
will be expanded an infinite number of times and the type inferencer will diverge. In-
stead of working with infinite types, we define a Solve function in section 3.2.2 that re-
duces infinite types to finite types, which do not contain self-references. The Solve func-
tion is based on well-known fixpoint techniques from abstract interpretation [Cousot
and Cousot, 1977b].

In the rest of this chapter we develop support for recursion in the blame prediction
transformation. The development is structured as follows: first, section 3.2.1 shows the
check introduction and mobility rules for recursion. The check inference rules create
infinite types, which must be reduced to finite types in order to be used in the check in-
troduction stage. Section 3.2.2 defines the Solve function which performs this reduction.
Some recursion patterns produce ever-growing types, which cause the Solve function

46

3.2 Recursion

to diverge. We show these patterns and introduce a widening operation to remove
these patterns in section 3.2.3. After that, we present a proof that the Solve function
always terminates in section 3.2.4. Finally, section 3.2.5 shows worked-out examples of
check inference on common recursion patterns.

3.2.1 Check Inference for Recursion

Inferring types for a letrec expression is different from a let expression for two reasons.
First, due to the transformation described in section 3.1, all expressions in the letrec

binding group must be function definitions. This means that evaluation of the values
in the binding group can never result in an error. Secondly, the functions in the bind-
ing group can refer to both themselves and other functions in the group. The check

inference and mobility rules for letrec expressions are shown in figure 3.5:

α1, . . . , αn fresh Γ, x1 : α1, . . . , xn : αn ` ei : τi ∀i ∈ 1 . . . n
τ1 . . . τn = Solve(τ1 . . . τn; α1 . . . αn)

Γ, x1 : τ1, . . . , xn : τn ` e : τ

Γ ` (letrec ([x1 e1] . . . [xn en]) e) : τ
(T-letrec)

ei → e′i ↑ #t ∀i ∈ 1 . . . n
e→ e′ ↑ p p′ = mask(x1 . . . xn, p)

(letrec ([x1 e1] . . . [xn en]) e)→ (letrec ([x1 e′1] . . . [xn e′n]) (check p e′)) ↑ p′
(F-letrec)

Figure 3.5: Check inference and mobility for letrec

To infer checks for a letrec expression, the various expressions in the binding part
of the letrec are check-inferred separately, with the variables x1, . . . , xn bound to fresh
type variables α1, . . . , αn. This allows the functions to refer to themselves and other
functions in the same binding group. The resulting types τ1, . . . , τn are all type func-
tions which contain unexpanded applications of the type variables α1, . . . , αn. As stated
earlier, the Solve function (section 3.2.2) is responsible for reducing these types to finite
types τ1, . . . , τn. As the finite types no longer contain recursive type function applica-
tions, they can be used in the rest of the check inference process. Finally, the type of
the body is inferred with the new types bound to the variables x1, . . . , xn. The type of
the body is returned as the type inferred for the entire letrec expression.

Next to the check inference rule, figure 3.5 also defines a check mobility rule. This
rule is functionally identical to check mobility for let expressions, with two differences.
Since all the expressions in the binding parts are function expressions, evaluating these
expressions does not contribute any preconditions. Any preconditions propagated by
the body are masked against all of the bound variables, to ensure they do not escape
the letrec expression.

47

3 Recursion

(letrec ([sum (lambda (x y)
(if (= x 0)

y
(sum (- x 1) (+ y 1))))])

...)

Listing 3.2: Definition of the sum function

Having described the necessary rules, we will now demonstrate how check inference
for letrec expressions works by applying it to the sum function from figure 3.3. For
reference, a letrec expression defining the sum function is replicated in listing 3.2.

First, a fresh type variable αsum is generated and bound to the sum variable; check

inference is then performed on the function body. This yields the following type:

τsum = Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (αsum int int)]

To verify that this type is infinite, we can substitute τsum for αsum and reduce the type
function application:

Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (τsum int int)]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (int ?= int) · [int∨ (int ?= int) · (αsum int int)]]

We can now simplify the conditional types:

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · [int∨ (αsum int int)]]

If we substitute τsum for αsum again, we get the following:

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · [int∨ (τsum int int)]]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · [int∨

↪→ (int ?= int) · [int∨ (int ?= int) · [int∨ (αsum int int)]]]]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · [int∨ int∨ (αsum int int)]]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · [int∨ (αsum int int)]]

which is identical to the first expansion. Therefore, τsum is an infinite type.
In order to reduce the recursive type function to a finite type function, we must

apply the Solve function. We will show the intermediate steps in section 3.2.2, but the
end product is a finite type τsum:

τsum = Solve(τsum) = Π(αx ,αy).[(int ?= αx) · [αy ∨ (int ?= αy) · int]]

Looking back at the definition of sum, we see that the function first performs a = test
on x, followed by either returning y or performing a recursive call with (+ x 1) and

48

3.2 Recursion

(- y 1) as arguments. The type we have inferred and then made finite therefore cor-
rectly describes the actual behavior of the function.

An equivalent function in a conventional type system such as the one of Haskell
would receive type int→ int→ int. Unlike Haskell, however, our function can also be
invoked as (sum 0 "hi"), which does not perform a type test on the second argument.

We can now infer the body of the letrec with the sum variable bound to this type. It
is only applied once, to two variables of type int. The type of this expression (and the
entire letrec expression) is thus:

(τsum int int) = int∨ (int ?= int) · (int ?= int) · int = int

and check inference is complete.
In the next section, we describe how the Solve function reduces (groups of) recursive
type functions to finite type functions.

3.2.2 Solving types for recursive functions

As the previous section showed, naïve expansion of infinite types can get stuck in an
infinite loop. In this section we define the Solve function and show how it reduces
infinite types to finite types. Instead of expanding the infinite types, the Solve function
is based on a well-known technique from abstract interpretation and program analysis
called the “frontier method” [Cousot and Cousot, 1977b].

Definition 3. The Solve function receives a list of infinite types τ1 . . . τn and a list of
corresponding type variables α1 . . . αn. It calculates a list of finite types τ1 . . . τn using
the following three steps:

1. Solve starts by parameterizing the infinite type functions over the type variables
α1 . . . αn bound by the letrec expression. The resulting types are called function-
als Fi. The functional for every infinite type is thus constructed as follows:

F1 = Π(f1 ... fn).τf1 [f1 . . . fn/α1 . . . αn]

F2 = Π(f1... fn).τf2 [f1 . . . fn/α1 . . . αn]

...

Fn = Π(f1 ... fn).τfn [f1 . . . fn/α1 . . . αn]

The original infinite type functions τfi can be reconstructed from the functionals
by applying the functionals to all type variables α1 . . . αn bound by the binding
group:

τfi = (Fi α1 . . . αn)

49

3 Recursion

2. Next, the Solve function constructs better approximations of the desired finite
types by applying the functionals to earlier approximations. We write Fi

j for the
jth approximation of the finite type for the ith function. The first approximation
Fi

0 for every finite type is ⊥, the type which only contains diverging computa-
tions. Formally, these approximations form a (possibly infinite) ascending chain
Fi

0 v Fi
1 v Fi

2 v · · · v Fi
j v · · · according to a partial order v defined over types.

According to the fixpoint theorem this series converges to a fixpoint, which is
the desired finite type. We will discuss this further in section 3.2.4, as part of the
discussion on termination.

The progression of the approximations can be seen below from left to right, with
the general case shown at the far right.

F1
0 = ⊥ F1

1 = (F1 F1
0 · · · Fn

0) . . . F1
j+1 = (F1 F1

j · · · Fn
j)

F2
0 = ⊥ F2

1 = (F2 F1
0 · · · Fn

0) . . . F2
j+1 = (F2 F1

j · · · Fn
j)

...
...

. . .
...

Fn
0 = ⊥ Fn

1 = (Fn F1
0 · · · Fn

0) . . . Fn
j+1 = (Fn F1

j · · · Fn
j)

3. Finally, after some k iterations this process stabilizes, such that:

F1
k+1 = (F1 F1

k · · · Fn
k) = F1

k

F2
k+1 = (F2 F1

k · · · Fn
k) = F2

k
...

Fn
k+1 = (Fn F1

k · · · Fn
k) = Fn

k

When this point is reached, Solve returns a list of finite types F1
k . . . Fn

k . We prove
that stabilization (and thus termination) is guaranteed in section 3.2.4.

After every iteration in the second step, the types must be reduced as much as pos-
sible. Especially applications of type functions must be reduced, according to the rules
we defined earlier in section 2.2 (figure 2.5). Additionally, the reductions in Figure 3.6
must be applied. The intuition behind these reductions is as follows:

1. Rules (3.1) through (3.5) define ⊥ as the absorbing element with respect to the
given kinds of types. For example, rule (3.2) states that a type test with ⊥ can be
reduced to ⊥ directly. ⊥ here is a computation which diverges instead of produc-
ing a type. Rule (3.4) short-circuits the reduction of applied type functions when
the body of the function is ⊥, and (3.5) reduces applications of ⊥ to arguments
to just ⊥.

2. Type unions, however, can discard a ⊥ branch (rule (3.6)), which corresponds to
gathering all choices from the type union which do not diverge.

50

3.2 Recursion

3. Rule (3.7) states that the union of identical types is the same as just taking one
branch.

4. Rule (3.8) reduces a type by moving identical type tests out of a type union.

5. Finally, rule (3.9) enables us to remove conditional types which are “covered” by
identical conditional types higher up in the type. The construct T〈τ〉 used here is
a “type context” with a type τ in the focus, similar to the evaluation context E〈e〉
used in chapter 2. In this case, the reduction rule searches for a conditional type
which contains a type context where another conditional type (with the same
type test) is in focus.

(γ ?= ⊥) · τ = ⊥(3.1)

(γ ?= τ) · ⊥ = ⊥(3.2)

(Π(α).[τ] ⊥) = ⊥(3.3)

(Π(α).[⊥] τ) = ⊥(3.4)

(⊥ τ1 . . . τn) = ⊥(3.5)

τ ∨⊥ = ⊥∨ τ = τ(3.6)

τ1 ∨ τ2 = τ1 if τ1 = τ2(3.7)

((γ1 ?= α1) · τ1) ∨ ((γ2 ?= α2) · τ2) = (γ1 ?= α1) · (τ1 ∨ τ2) if γ1 = γ2 ∧ α1 = α2(3.8)

(γ1 ?= α1) · T〈(γ2 ?= α2) · τ〉 = (γ1 ?= α1) · T〈τ〉 if γ1 = γ2 ∧ α1 = α2(3.9)

Figure 3.6: Reduction rules used during the reduction stage of Solve

In the rest of this section we show a concrete example of using Solve. We will use
the following typographical conventions:

1. This and later examples will make a number of successive simplification steps;
the parts under consideration will be highlighted using a darker background
like this . In the first few examples the reduction rule applied is shown in [brack-

ets];

2. In order to conserve space, parts of the type can be elided with dots (. . .);

3. To conserve even more space, subsequent identical type tests are merged. For
example, (int ?= αx) · (int ?= αy) · τ is abbreviated as (int ?= αx, αy) · τ;

4. Repeated applications of F to ⊥ are named Fn, so:
F1 = (F ⊥), F2 = (F (F ⊥)), F3 = (F (F (F ⊥))), . . .

5. Finally, a type that does not fit on one line will be wrapped to the next line.
Wrapped lines are indented and start with a gray arrow like so: ↪→.

51

3 Recursion

1 (define (fac n)
2 (if (< n 2)
3 1
4 (* n (fac (- n 1)))))

Listing 3.3: Factorial function

In order to illustrate the Solve function, we show how it can produce a finite type
for the well-known factorial function. The factorial function is defined as shown in
listing 3.3 and it gives rise to the following recursive type:

α f ac = Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (α f ac αn))]

We can rewrite this type as a functional, where α f ac is an argument:

F = Π(α f ac).Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (α f ac int))]

We apply F to ⊥, which yields a first approximation F1:

F1 = Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (⊥ αn))] [Rule (3.5)]

= Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] ⊥)] [Rule (3.3)]

= Π(αn).(int ?= αn) · [int∨⊥] [Rule (3.6)]

= Π(αn).(int ?= αn) · int

Note that, because of the elimination rules for ⊥, the recursive path has effectively
been removed from the type. We can now apply F to F1:

F2 = Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (F1 αn))] [Expand F1]

= Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (Π(αm).[(int ?= αm) · int] αn))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] (int ?= αn) · int)] [Rule (3.9)]

= Π(αn).(int ?= αn) · [int∨ (Π(αx).[(int ?= αx) · int] int)] [Apply function]

= Π(αn).(int ?= αn) · [int∨ (int ?= int) · int] [Trivial test]

= Π(αn).(int ?= αn) · [int∨ int] [Rule (3.7)]

= Π(αn).(int ?= αn) · int

We have now reached a fixpoint, as F2 = (F F1) = F1.
The final type of the factorial function is therefore

α f ac = Π(αn).(int ?= αn) · int

which matches the conventional type int→ int.

52

3.2 Recursion

Finally, we can apply Solve to find the finite type of the sum function as well. Its
functional is:

F = Π(αsum).Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (αsum int int)]

For sum, approximation stabilizes after three iterations:

F1 = Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (F0 int int)]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (⊥ int int)]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · ⊥]

= Π(αx ,αy).(int ?= αx) · [αy ∨⊥]

= Π(αx ,αy).(int ?= αx) · αy

F2 = Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (F1 int int)]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (int ?= int) · int]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · int]

F3 = Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (F2 int int)]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (int ?= int) · [int∨ (int ?= int) · int]]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (int ?= int) · [int∨ int]]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · (int ?= int) · int]

= Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · int]

The final type is

αsum = Π(αx ,αy).(int ?= αx) · [αy ∨ (int ?= αy) · int]

as stated in the previous section.
In the next section we discuss some recursion patterns where the Solve function is not
able to terminate, and we introduce a widening operation which ensures termination.

3.2.3 Non-terminating recursion patterns

In this section we discuss three recursion patterns, for which every iteration of the
Solve function yields a different, larger type. For types which contain these patterns,
iteration will thus never stabilize and Solve will never terminate.

In order to still guarantee termination, we will show how type terms can be trans-
formed such that these problematic patterns no longer appear. These transformations
are lossy: they will remove problematic parts of the type in exchange for termina-
tion. They are an instance of a technique from abstract interpretation called “widen-
ing” [Cousot and Cousot, 1977a, 1992a]. In the original formulation, widening was
introduced as a means of making the frontier method (which is the basis for our Solve

function) converge faster, with a separate “narrowing” step afterwards.

53

3 Recursion

Pattern 1: Accumulation of type function applications

In chapter 2 we showed how the type inference rules for let expressions give rise to
immediately-applied type functions. The resulting type terms can often be simplified
immediately, except when the expression being bound to the value is a type variable
application. Consider the function rep in listing 3.4, which applies the function f n

times to the starting value x. For example, the result of (rep double 2 3) is 12.

1 (define (rep f n x)
2 (if (= n 0)
3 x
4 (let ([tmp1 (f x)])
5 (rep f (- n 1) tmp1)))

Listing 3.4: Example of accumulation of type function applications

Its type and functional are as follows:

αrep = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(αrep α f int αy)] (α f αx))]

F = Π(αrep).Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(αrep α f int αy)] (α f αx))]

Applying fixpoint iteration yields the following:

F1 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(⊥ α f int αy)] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[⊥] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨⊥]

= Π(α f ,αn,αx).(int ?= αn) · αx

F2 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(F1 α f int αy)] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(int ?= int) · αy] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[αy] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (α f αx)]

F3 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(F2 α f int αy)] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(int ?= int) · [αy ∨ (α f αy)]] (α f αx))]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[αy ∨ (α f αy)] (α f αx))]

A pattern emerges: every expansion adds an extra application of the type function α f ,
which cannot be reduced further until f is known, which will not happen until rep is
applied to its arguments.

54

3.2 Recursion

As the size of the type never stops growing, a fixpoint will never be reached and
the iteration will never stop. The widening technique we will apply approximates the
type by replacing the type function α f by a type function which returns the “any
type” ?, of which nothing is known. We introduced this type in chapter 2, as the type
of expressions “of which nothing is known”. Inserting a type function which returns
? ensures termination, as the type function being applied is now known and can be
reduced immediately. There are two direct results from applying this widening: first,
the loss of any record of that function being invoked. Any conditional types which
would have been introduced by the higher order function being passed in will never
be exposed when the recursive function is called. Second, the introduction of the “any
type” ? will reduce the precision of the final finite type. For example, the set of values
denoted by the type αx ∨ ? is the same as that by ?, so a type test will always be
generated.

Applying widening to the rep function above results in the following modified func-
tional F∗, where α f has been replaced with Π(αz).[?]:

F∗ = Π(αrep).Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(αrep α f int αy)] (Π(αz).[?] αx))]

= Π(αrep).Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (Π(αy).[(αrep α f int αy)] ?)]

= Π(αrep).Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (αrep α f int ?)]

If we now apply fixpoint iteration, we get a finite type after three iterations.

F∗1 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (⊥ α f int ?)]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨⊥]

= Π(α f ,αn,αx).(int ?= αn) · αx

F∗2 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (F∗1 α f int ?)]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (int ?= int) · ?]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ ?]

F∗3 = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (F∗2 α f int ?)]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ (int ?= int) · [? ∨ ?]]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ [? ∨ ?]]

= Π(α f ,αn,αx).(int ?= αn) · [αx ∨ ?]

The final type for the rep function is thus:

αrep = Π(α f ,αn,αx).(int ?= αn) · [αx ∨ ?]

which only tests whether its n argument is a number and produces αx ∨ ?, which is
the same as ?.

55

3 Recursion

Let us briefly consider two alternative widening strategies:

• The first alternative strategy is to keep the first type function application in each
path of the type and replace subsequent type function applications with ?. This
is similar to the simplification rule for nested conditional types. On the upside,
this widening strategy exposes the type function application to the caller, which
means that its conditional type tests can be exposed through calls in the body
of the letrec. As a downside, it is unclear whether one type function application
suffices, e. g. for a function which performs polymorphic recursion.

• The second alternative is to replace all type function applications of an unknown
type variable α f with a new type variable αr which represents the result type
of such an application. However, this technique ignores dependencies on the
argument types (e. g. Π(αa).αa), any type unions returned by the function (e. g.
Π(αa).[αa ∨ int]) and any type tests made along the way (e. g. Π(αa).[(int ?= αa) ·
int]). In effect, this type variable αr would yield no more precise types than a
type function returning ? would.

Pattern 2: Construction of true infinite types

The second pattern involves the construction of infinite types by functionals which
add layers of type functions. Consider the functions wrap, wrap2 and unwrap in list-
ing 3.5. wrap and wrap2 both wrap the function f in n layers of dummy functions,
except one is tail-recursive and the other is not. The unwrap function undoes this
wrapping by passing #t to all added functions. For all non-negative n, the identity
(unwrap n (wrap n f) x) ≡ (f x) holds, similarly for unwrap and wrap2.

1 (define (wrap n f)
2 (if (= n 0)
3 f
4 (wrap (- n 1) (lambda (x) f))))
5

6 (define (wrap2 n f)
7 (if (= n 0)
8 f
9 (lambda (x) (wrap2 (- n 1) f))))

10

11 (define (unwrap n f x)
12 (if (= n 0)
13 (f x)
14 (unwrap (- n 1) (f #t) x)))

Listing 3.5: Construction of infinite types through recursion

We first construct the type and functional for wrap:

αwrap = Π(αn,α f).(int ?= αn) · [α f ∨ (αwrap int Π(αx).α f)]

56

3.2 Recursion

F = Π(αwrap).Π(αn,α f).(int ?= αn) · [α f ∨ (αwrap int Π(αx).α f)]

Let us now attempt to calculate its fixpoint:

F1 = Π(αn,α f).(int ?= αn) · [α f ∨ (⊥ int Π(αx).α f)]

= Π(αn,α f).(int ?= αn) · [α f ∨⊥]

= Π(αn,α f).(int ?= αn) · α f

F2 = Π(αn,α f).(int ?= αn) · [α f ∨ (F1 int Π(αx).[α f])]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).[α f]]

F3 = Π(αn,α f).(int ?= αn) · [α f ∨ (F2 int Π(αx).[α f])]

= Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[α f] ∨Π(αy).[Π(αx).[α f]]]]

F4 = Π(αn,α f).(int ?= αn) · [α f ∨ (F3 int Π(αx).[α f])]

= Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[α f] ∨ [Π(αy).[Π(αx).[α f]] ∨Π(αz).[Π(αy).[Π(αx).[α f]]]]]]

With every iteration, the argument to wrap is added to the type, and the argument to
the recursive type invocation is wrapped in another type function. The approximations
for wrap will thus always grow larger and a fixpoint will never be reached.
For wrap2, we get the following type and functional:

αwrap2 = Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).(αwrap2 int α f)]

G = Π(αwrap2).Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).(αwrap2 int α f)]

We attempt fixpoint iteration again:

G1 = Π(αn,α f).(int ?= αn) · [α f ∨Π(αx). (⊥ int α f)]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).⊥]

G2 = Π(αn,α f).(int ?= αn) · [α f ∨Π(αx). (G1 int α f)]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).[α f ∨Π(αy).⊥]]

G3 = Π(αn,α f).(int ?= αn) · [α f ∨Π(αx). (G2 int α f)]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).[α f ∨Π(αy).[α f ∨Π(αz).⊥]]]

G4 = Π(αn,α f).(int ?= αn) · [α f ∨Π(αx). (G3 int α f)]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).[α f ∨Π(αy).[α f ∨Π(αz).[α f ∨Π(αw).⊥]]]]

Similarly to wrap, wrap2 produces a type that keeps on growing.
In statically typed programming languages, this kind of functions cannot be pro-

cessed. For example, attempting to enter a literal translation of the wrap function above

57

3 Recursion

into the Glasgow Haskell Compiler prints the following error, with a nearly identical
error for wrap2:

wrap.hs:4:31:
Occurs check: cannot construct the infinite type: t1 ~ t -> t1
Relevant bindings include
x :: t (bound at wrap.hs:4:26)
f :: t -> t1 (bound at wrap.hs:1:8)
wrap :: a -> (t -> t1) -> t -> t1 (bound at wrap.hs:1:1)

In the expression: f
In the second argument of 'wrap', namely '(\ x -> f)'

Listing 3.6: Occurs check error in Haskell

The famous occurs check [Robinson, 1965] mentioned in listing 3.6 is a part of the
constraint resolution stage of the Hindley-Milner type system [Hindley, 1969; Milner,
1978]. It prevents a type variable from unifying with a type that includes itself but is
not just the same type variable. Attempting to do so would introduce an infinite type
and thus a diverging substitution.

In some systems, such infinite types are avoided by introducing an explicit recursive
binder. However, this is exactly the kind of type our Solve function attempts to reduce
to a finite type! Instead, we propose the following widening strategy: replace all nested
type functions which contain references to the bound type functions or their bound
argument type variables with a type function that returns ?. Type functions which only
contain ground types or references to external type variables (i. e. those bound outside
the letrec expression) are left intact. By leaving out such “varying” type variables,
the body of a type function can only reference ground types, its own argument type
variables and type variables bound by the environment.

Let us apply this widening to F (call it F∗) and attempt to calculate the fixpoint
again:

F∗ = Π(αwrap).Π(αn,α f).(int ?= αn) · [α f ∨ (αwrap int [Π(αx).[?]])]

F∗1 = Π(αn,α f).(int ?= αn) · [α f ∨ (⊥ int [Π(αx).[?]])]

= Π(αn,α f).(int ?= αn) · [α f ∨⊥]

= Π(αn,α f).(int ?= αn) · α f

F∗2 = Π(αn,α f).(int ?= αn) · [α f ∨ (F∗1 int [Π(αx).[?]])]

= Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[?]]]

F∗3 = Π(αn,α f).(int ?= αn) · [α f ∨ (F∗2 int [Π(αx).[?]])]

= Π(αn,α f).(int ?= αn) · [α f ∨ [[Π(αx).[?]] ∨ [Π(αx).[?]]]]

= Π(αn,α f).(int ?= αn) · [α f ∨Π(αx).[?]]

58

3.2 Recursion

After three steps, fixpoint iteration terminates, with resulting type

αwrap = Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[?]]]

We now calculate the fixpoint for G after widening, which we call G∗:

G∗ = Π(αwrap2).Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[?]]]

G∗1 = Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[?]]]

Since G∗ no longer contains any calls to αwrap2, fixpoint iteration immediately termi-
nates. The type for wrap2 is then

αwrap2 = Π(αn,α f).(int ?= αn) · [α f ∨ [Π(αx).[?]]]

Pattern 3: Fractal types

The final recursion pattern that will cause non-termination is a pattern we call “fractal
types”: functions which contain un-applied references to themselves or other functions
in the letrec binding group. The name stems from the self-referential nature of fractals,
as every approximation of the fractal type contains another copy of itself. For example,
listing 3.7 is a function that calls itself recursively until its input is odd or smaller than
two. However, the programmer wrote f instead of n by mistake in the last line, so the
type of f effectively contains itself.

1 (define (f n)
2 (if (< n 2)
3 n
4 (if (even? n)
5 (f (div n 2))
6 f)))

Listing 3.7: Example of a fractal type

We can see this in the type and functional of f:

α f = Π(αn).(int ?= αn) · [int∨ (α f int) ∨ α f]

F = Π(α f).Π(αn).(int ?= αn) · [int∨ (α f int) ∨ α f]

Fixpoint iteration yields the following steps:

F1 = Π(αn).(int ?= αn) · [int∨ (⊥ int) ∨⊥]

= Π(αn).(int ?= αn) · [int∨ [⊥∨⊥]]

= Π(αn).(int ?= αn) · [int∨⊥]

= Π(αn).(int ?= αn) · int

F2 = Π(αn).(int ?= αn) · [int∨ (F1 int) ∨ F1]

59

3 Recursion

= Π(αn).(int ?= αn) · [int∨ int∨ F1]

= Π(αn).(int ?= αn) · [int∨ [Π(αm).(int ?= αm) · int]]

F3 = Π(αn).(int ?= αn) · [int∨ (F2 int) ∨ F2]

= Π(αn).(int ?= αn) · [int∨ int∨ [Π(αm).(int ?= αm) · int] ∨ F2]

= Π(αn).(int ?= αn) · [int∨ [Π(αm).(int ?= αm) · int]∨
↪→[Π(αo).(int ?= αo) · [int∨ [Π(αp).(int ?= αp) · int]]]]

We can see that with every iteration the size of the approximation increases without
end, leading to non-termination. The widening strategy here is the same as the strategy
in the previous pattern, namely to replace the “fractal” reference to the function α f by
a type function of equal arity which returns ?.

The widened functional and fixpoint iteration steps now are as follows:

F∗ = Π(α f).Π(αn).(int ?= αn) · [int∨ (α f int) ∨ [Π(αx).?]]

F∗1 = Π(αn).(int ?= αn) · [int∨ (⊥ int) ∨ [Π(αx).?]]

= Π(αn).(int ?= αn) · [int∨ [⊥∨ [Π(αx).?]]]

= Π(αn).(int ?= αn) · [int∨ [Π(αx).?]]

F∗2 = Π(αn).(int ?= αn) · [int∨ (F∗1 int) ∨ [Π(αx).?]]

= Π(αn).(int ?= αn) · [int∨ [int∨ [Π(αx).?]] ∨ [Π(αx).?]]

= Π(αn).(int ?= αn) · [int∨ [Π(αx).?]]

Fixpoint iteration on the widened functional now stops after two steps and yields
the type

α f = Π(αn).(int ?= αn) · [int∨ [Π(αx).?]]

Final widening strategy
We have discussed three problematic cases which prohibit termination and presented
widening strategies to ensure termination. We now combine these strategies into a
final widening strategy.

Definition 4 (Widening strategy). Given a set of functionals F1, F2, . . . , the following
widening operations must be applied to ensure termination:

1. Type function applications where the function is a type variable not bound by
the letrec binding group must be replaced by ?;

2. If any nested type functions exist which contain references to type variables not
bound by the environment, replace their bodies with ?;

60

3.2 Recursion

3. References to functionals α f1 , α f2 , . . . outside of type function applications must
be replaced with type functions of equal arity, with ? as body.

We will prove that widening guarantees termination in the next section.

Summary
To recap the contribution of this section: in the beginning of this chapter we remarked
that applying type inference to recursive functions yields types which reference them-
selves. In order to infer types for applications of these functions the infinite types must
be expanded first, which results in an infinite loop. In this section we described how
the Solve function reduces these infinite types to finite types, which do not contain self
references. Solve uses the well-known “frontier method” [Cousot and Cousot, 1977b]
to reduce a group of infinite type functions into a group of finite type functions. With
these finite type functions, the type inference part of the blame prediction transforma-
tion is able to produce types for all expressions in the program in a finite amount of
time.

However, because our type system features conditional types, there are three recur-
sion patterns which induce infinitely large types and therefore cause the Solve function
to diverge. For each pattern we showed how to apply appropriate widening strategies
— first introduced by Cousot and Cousot [1977b, 1992a] — to sacrifice precision in
order to guarantee termination.

3.2.4 Termination properties of Solve

As stated in the previous section, the Solve function only produces a finite type if the
repeated applications of the functional reach a fixpoint. Every step of the Solve function
expands its argument by substituting function applications and subsequently reduces
it again through simplification. However, not all parts of types can be simplified, or at
least not immediately.

In this section we will prove that the Solve function always terminates for a set of
functional equations, given that the widening operations from the previous section
have been applied.

Before we begin, we define a normal form and partial ordering for types.

Definition 5 (Normal form for types). The general shape of a type in normal form
is shown below: a type union where every branch consists of zero or more type tests
followed by either an atomic type term, a type function, an immediately-applied type

61

3 Recursion

function, or a type function application of a type variable. A type can reference type
variables bound by the environment, named α1 through αn.

τ =
∨
(γ1 ?= α1) · · · · (γn ?= αn) ·

atom atom ∈ {⊥, ?, γ, α1, . . . , αn}
Π(αn+1,...,αn+m).[τ]

(Π(α).[τb] (τ τ1 . . . τn)) τb is in normal form

(τ τ1 . . . τn)

Additionally, the following restrictions apply:

1. Satisfied conditional types of the form (γ ?= γ) are not present.

2. None of the reduction rules from figure 3.6 are applicable.

3. The arguments to a type function application are reduced as far as possible, per
figure 2.5. For example, for arbitrary types τa, τb, τc, and τd:

(Π(α2,α3,α4).[(α1 α2 α3 α4)] [(int ?= αm) · τa] [τb ∨ τc] τd)

is not in normal form, but it can be reduced to the following, which is:

(int ?= αm) · [(Π(α2,α3,α4).[(α1 α2 α3 α4)] τa τb τd)∨ (Π(α2,α3,α4).[(α1 α2 α3 α4)] τa τc τd)]

4. Type tests from conditional types must be grouped by target variable, then sorted
by cause label. There can only be one conditional type test per type–variable
combination, as figure 3.6 eq. (3.9) compresses multiple conditional types on the
same variable for the same type into one conditional type. Note that a type in
normal form may contain several groupings of conditional types, for example
inside a type function.

Definition 6 (Partial ordering for types). We define a partial order τ1 v τ2 (read: “τ2

is equal to or more defined than τ1”) over the domain of types in normal form, shown
in figure 3.7. This partial order has seven properties:

1. ⊥ makes up the bottom end of the partial order;

2. Directly above ⊥ in the hierarchy is ?, with ⊥ @ ? v τ for any non-⊥ τ. Recall
that ? types are introduced by mutable variables or as a result of applying the
widening operator. Therefore, ? is not at the top of the hierarchy, as it only
represents a single type for values of which nothing is known, and which cannot
be refined later on; item Types are equal to themselves;

3. A type union is more defined than its constituent parts. Type unions must be
compared point-wise.

62

3.2 Recursion

4. type functions with the same amount of arguments are compared with respect
to their bodies;

5. If two types start with the same conditional type, their bodies are compared. A
type with more conditional types (i. e. a longer one) is considered more defined;

6. Immediately-applied type functions are also compared with respect to their bod-
ies.

τ 6= ⊥
⊥ @ ? v τ

τ v τ τ1 v τ1 ∨ τ2 τ2 v τ1 ∨ τ2
α1 v α3 α2 v α4

α1 ∨ α2 v α3 ∨ α4

τ1 v τ2

Π(α1 ...αn).τ1 v Π(α1...αn).τ2

τ1 v τ2

(τt ?= α) · τ1 v (τt ?= α) · τ2

τ1 6= (τt ?= α) · τ1

τ1 v (τt ?= α) · τ2

τ1 v τ2

(Π(αz).[τ1] (α f αx1 . . . αxn)) v (Π(αz).[τ2] (α f αx1 . . . αxn))

Figure 3.7: Definition of the partial order v over types in normal form

Having defined the normal form for types, we turn to the criteria necessary for
termination of the Solve function. We focus on the case where there is only a single
function in the letrec binding group, but the results generalize to multiple functions.

The fixpoint iteration algorithm attempts to find the fixpoint of the functional of this
function by constructing the Kleene sequence {Fi | i ≥ 0 ∧ Fi v Fi+1}. The algorithm
terminates when a j ≥ 0 is found such that Fj = Fj+1. We will show that there are a
finite number of variations of types in normal form, given a fixed functional F and a
restricted set of type variables α1, . . . , αn bound by the environment.

We define names for the following sets of type variables:

Ext the set of “external” type variables α1, . . . , αn, i. e. type variables bound by the
environment;

Arg the set of type variables αn+1, . . . , αn+m bound by the function;

In addition, we define Gnd as the set of ground types (e. g. int, string, . . .).

Definition 7 (Type universe). For a given step j of the fixpoint iteration algorithm, Fj
is of the form:

Fj = Π(αn+1,...,αn+m).
∨

τg where τg ∈ Gen(Ext∪ {αn+1, . . . , αn+m})

63

3 Recursion

The helper function Gen(Vars) constructs the set of all types in normal form which can
reference the type variables in Vars. Every type has the following shape:

τg = (γ1 ?= α1) · · · · (γn ?= αn)·︸ ︷︷ ︸
1

{
atom 2 atom ∈ {⊥, ?} ∪ Gnd∪ Ext∪ Arg

Π(αn+m+1,...,αn+m+o).[τ] 3

Note that the bottom two cases of definition 5 are not present in the approximations Fj.
This omission is explained as follows: the widening applied to the functional prevents
type function applications of anything but the type variables bound by letrec, which
are filled in by successive steps of the Solve function. We therefore only need to be
concerned with atoms and nested type functions.

Theorem 1. The set of all types in the set G = Gen({α1, . . . , αn} ∪ {αn+1, . . . , αn+m}) is
finite.

Proof. We prove this by calculating the number of possible variations for every num-
bered component above. By construction, |G| =

∣∣∣ 1 ∣∣∣× (
∣∣∣ 2 ∣∣∣+ ∣∣∣ 3 ∣∣∣). For every com-

ponent, we calculate the number of variations:

1 The set of ground types Gnd is finite, and each of the n + m type variables can be
tested for at most once for every ground type. The number of variations is thus
the number of subsets of Gnd(the powerset P) times the number of variables
which can be tested:∣∣∣ 1 ∣∣∣ = |P(Gnd)| × |Ext∪ Arg| = 2|Gnd| × (n + m)

2 The number of atom type terms is limited:∣∣∣ 2 ∣∣∣ = |{⊥, ?}|+ |Gnd|+ |Ext|+ |Arg|

3 Any type functions present in a step of the Solve function may only contain
references to type variables in the Ext set. Moreover, they must already be part
of the functional (i. e. there is a finite amount of such functions), as the widening
we applied ensures new type functions cannot be created. Successive steps may
insert these type functions elsewhere in the type, but their depth never increases.

There are a finite number of variations for every component, therefore the set

G = Gen({α1, . . . , αn} ∪ {αn+1, . . . , αn+m})

is finite.

Finally, we can prove our original goal:

64

3.2 Recursion

Theorem 2 (Guaranteed termination for fixed type universes). Fixpoint iteration by
the Solve function always terminates, provided that widening has been applied to the
functionals.

Proof. As we showed in definition 7, every step of the fixpoint iteration algorithm
contains a type union of one or more elements of the finite set
G = Gen({α1, . . . , αn} ∪ {αn+1, . . . , αn+m}) for that step. Recall that every step in the
fixpoint iteration process forms an ascending chain F0 v F1 v · · · v Fj v Fj+1 v · · ·.
In terms of the partial order we have defined, this means either adding a branch to the
type union at the top level, or replacing a branch with a better-defined branch. As the
set G is finite, every extended branch must eventually reach a supremum. Likewise,
only a finite number of distinct branches can be added. Therefore, fixpoint iteration
must terminate after a finite number of steps j, for which Fj+1 = Fj.

Conclusion With this section proving the termination of the Solve function, our treat-
ment of recursive functions in the blame prediction transformation is complete. We
started by extending Schemeβ to support the letrec keyword and defining how type
inference could be extended to letrec expressions. The inferred types were infinite, how-
ever, which needed to be converted to finite functions by the Solve function. After defin-
ing this function, we discussed some recursion patterns which induced ever-growing
types and thus an infinite loop in the Solve function. With the widening operation de-
fined in section 3.2.3 and the proof contained in this section, we are guaranteed that
Solve — and thus check inference for recursive functions — always terminates.
In the next section we show a number of common recursive functions and apply the
Solve function to calculate finite types for them.

3.2.5 Worked out examples

In the absence of a formal reference work on recursion schemes, we have opted to
present some recursion patterns commonly found in programs. For each example we
show a function definition, the inferred recursive type, and the functional F derived
from this type. This is followed by the fixpoint iteration steps necessary to reach a
fixpoint.

3.2.5.1 Fibonacci

The first function we examine is the Fibonacci function, which invokes itself twice in
its own body, see listing 3.8. The type and functional that correspond with this code
also contain two invocations:

α f ib = Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] (α f ib int) (α f ib int))]

F = Π(α f ib).Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] (α f ib int) (α f ib int))]

65

3 Recursion

1 (define (fib n)
2 (if (< n 1)
3 0
4 (+ (fib (- n 1)) (fib (- n 2)))))

Listing 3.8: Fibonacci function

We approximate until a fixpoint is reached:

F1 = Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] (⊥ int) (⊥ int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] ⊥ (⊥ int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] ⊥ ⊥)]

= Π(αn).(int ?= αn) · [int∨⊥]

= Π(αn).(int ?= αn) · int

F2 = Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] (F1 int) (F1 int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[· · ·] (Π(αn).(int ?= αn) · int int) (F1 int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[· · ·] (int ?= int) · int (F1 int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] int (F1 int))]

= Π(αn).(int ?= αn) · [int∨ (Π(αx1,αx2).[(int ?= αx1) · (int ?= αx2) · int] int int)]

= Π(αn).(int ?= αn) · [int∨ (int ?= int) · (int ?= int) · int]

= Π(αn).(int ?= αn) · [int∨ int]

= Π(αn).(int ?= αn) · int

After two steps, the fixpoint F2 = (F F1) = F1 is reached.
The final type of the Fibonacci function is

α f ib = Π(αn).(int ?= αn) · int

3.2.5.2 Ackermann

The Ackermann function is known for growing very quickly given small inputs; its
definition is shown in listing 3.9. The main reason for this phenomenon is the recursive
invocation on line 6 below, where the output of a recursive call is used as parameter
for another recursive call. We can infer the following type and functional:

αack = Π(αm,αn).(int ?= αm, αn) · [int∨ (αack int int) ∨ (Π(αd).[(αack int αd)] (αack int int))]

F = Π(αack).Π(αm,αn).(int ?= αm, αn) · [int∨ (αack int int) ∨ (Π(αd).[(αack int αd)] (αack int int))]

66

3.2 Recursion

1 (define (ack m n)
2 (if (= m 0)
3 (+ n 1)
4 (if (and (> m 0) (= n 0))
5 (ack (- m 1) 1)
6 (ack (- m 1) (ack m (- n 1))))))

Listing 3.9: Ackermann function

1 (define (tak x y z)
2 (if (< y x)
3 (tak (tak (- x 1) y z)
4 (tak (- y 1) z x)
5 (tak (- z 1) x y))
6 z))

Listing 3.10: Tak function

We approximate until a fixpoint is reached:

F1 = Π(αm,αn).(int ?= αm, αn) · [int∨ (⊥ int int) ∨ (Π(αd).[(⊥ int αd)] (⊥ int int))]

= Π(αm,αn).(int ?= αm, αn) · [int∨⊥ ∨ (Π(αd).[⊥] ⊥)]

= Π(αm,αn).(int ?= αm, αn) · [int∨⊥ ∨⊥]

= Π(αm,αn).(int ?= αm, αn) · int

F2 = Π(αm,αn).(int ?= αm, αn) · [int∨ (F1 int int) ∨ (Π(αd).[(F1 int αd)] (F1 int int))]

= Π(αm,αn).(int ?= αm, αn) · [int∨ int∨ (Π(αd).[(F1 int αd)] int)]

= Π(αm,αn).(int ?= αm, αn) · [int∨ int∨ (F1 int int)]

= Π(αm,αn).(int ?= αm, αn) · [int∨ int∨ int]

= Π(αm,αn).(int ?= αm, αn) · int

After two steps, the fixpoint F2 = (F F1) = F1 is reached.
The final type of the Ackermann function is therefore

αack = Π(αm,αn).(int ?= αm) · (int ?= αn) · int

3.2.5.3 Tak

The Tak function is another well-known recursive function, defined in listing 3.10. It
features a recursive call that requires three other recursive calls. Its type and functional
are as follows:

αtak = Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

67

3 Recursion

↪→(Π(αd,αe,α f).[(αtak αd αe α f)] (αtak int int int) (αtak int int int) (αtak int int int))]

F = Π(αtak).Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·
↪→(Π(αd,αe,α f).[(αtak αd αe α f)] (αtak int int int) (αtak int int int) (αtak int int int))]

We approximate until a fixpoint is reached.

F1 = Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (Π(αd).[· · ·] (⊥ int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (Π(αd).[· · ·] ⊥)]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · ⊥]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨⊥]

= Π(αx ,αy,αz).(int ?= αx, αy) · αz

F2 = Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (Π(αd).[· · ·] (F1 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (Π(αd,αe).[· · ·] int (F1 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→(Π(αd,αe,α f).[(F1 αd αe α f)] int int (F1 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→ (Π(αd,αe,α f).[(F1 αd αe α f)] int int int)]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (F1 int int int)]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · int]

F3 = Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→(Π(αd,αe,α f).[(F2 αd αe α f)] (F2 int int int) (F2 int int int) (F2 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→(Π(αd,αe,α f).[(F2 αd αe α f)] int (F2 int int int) (F2 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→(Π(αd,αe,α f).[(F2 αd αe α f)] int int (F2 int int int))]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz)·

↪→ (Π(αd,αe,α f).[(F2 αd αe α f)] int int int)]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · (F2 int int int)]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · [int∨ int]]

= Π(αx ,αy,αz).(int ?= αx, αy) · [αz ∨ (int ?= αz) · int]

68

3.2 Recursion

After three steps, the fixpoint F3 = (F F2) = F2 is reached.
The final type is

αtak = Π(αx ,αy,αz).(int ?= αx) · (int ?= αy) · [((int ?= αz) · int) ∨ αz]

In other type systems this function simply has type int→ int→ int→ int, but note that
z is returned immediately if (>= y x), so (tak 1 1 "hello") will produce the string
"hello". Therefore, the type produced by approximation is correct.

3.2.5.4 Infinite recursion

The examples above were well-behaved with respect to termination. However, pro-
grammers will sometimes accidentally write functions that do not terminate. For ex-
ample, consider the following function:

1 (define (wrong x y)
2 (if (= x 0)
3 (wrong y x)
4 (wrong (- x 1) (+ y 1))))

Listing 3.11: Example of infinite recursion

Its type and functional are:

αwrong = Π(αx ,αy).(int ?= αx) · [(αwrong αy int) ∨ (int ?= αy) · (αwrong int int)]

F = Π(αwrong).Π(αx ,αy).(int ?= αx) · [(αwrong αy int) ∨ (int ?= αy) · (αwrong int int)]

Note that all paths through the function go through a recursive call, therefore the
function can never end. We approximate until a fixpoint is reached:

F1 = Π(αx ,αy).(int ?= αx) · [(⊥ αy int) ∨ (int ?= αy) · (⊥ int int)]

= Π(αx ,αy).(int ?= αx) · [⊥∨ (int ?= αy) · ⊥]

= Π(αx ,αy).(int ?= αx) · [⊥∨⊥]

= Π(αx ,αy).(int ?= αx) · ⊥

F2 = Π(αx ,αy).(int ?= αx) · [(F1 αy int) ∨ (int ?= αy) · (F1 int int)]

= Π(αx ,αy).(int ?= αx) · [(int ?= αy) · ⊥ ∨ (int ?= αy) · (F1 int int)]

= Π(αx ,αy).(int ?= αx) · [(int ?= αy) · ⊥ ∨ (int ?= αy) · (int ?= int) · ⊥]

= Π(αx ,αy).(int ?= αx) · [⊥∨ (int ?= αy) · ⊥]

= Π(αx ,αy).(int ?= αx) · [⊥∨⊥]

= Π(αx ,αy).(int ?= αx) · ⊥

69

3 Recursion

After two steps, the fixpoint F2 = (F F1) = F1 is reached.
The final type is

αwrong = Π(αx ,αy).(int ?= αx) · ⊥

Note that the ⊥ remains in the type, which indicates that the function will never return.
During the check insertion stage, expressions that come after a call to this function
could be marked as dead code.

3.2.5.5 Cyclic recursion

We have remarked before that dynamically typed programming languages allow a
function to have multiple return types. The rotate function below returns one of its
three last arguments when its first becomes zero:

1 (define (rotate n a b c)
2 (if (= n 0)
3 a
4 (rotate (- n 1) c a b)))

Listing 3.12: Cyclic recursion

Its type and functional are as follows:

αrot = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (αrot int αc αa αb)]

F = Π(αrot).Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (αrot int αc αa αb)]

We approximate until a fixpoint is reached:

F1 = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (⊥ int αc αa αb)]

= Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨⊥]

= Π(αn,αa,αb,αc).(int ?= αn) · αa

(F2 ⊥) = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (F1 int αc αa αb)]

= Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ αc]

(F3 ⊥) = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (F2 int αc αa αb)]

= Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ αc ∨ αb]

(F4 ⊥) = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ (F3 int αc αa αb)]

= Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ αc ∨ αb ∨ αa]

= Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ αc ∨ αb]

After four iterations we have F4 = (F F3) = F3, with a resulting type of

rot = Π(αn,αa,αb,αc).(int ?= αn) · [αa ∨ αc ∨ αb]

70

3.2 Recursion

3.2.5.6 Mutual Recursion

even and odd are a textbook example of two mutually recursive functions, they are
shown in listing 3.13. The types of even and odd are:

αeven = Π(α).(int ?= α) · [boolean∨ (αodd int)]

αodd = Π(α).(int ?= α) · [boolean∨ (αeven int)]

The corresponding functionals E and O:

E = Π(αeven,αodd).Π(αx).(int ?= αx) · [boolean∨ (αodd int)]

O = Π(αeven,αodd).Π(αx).(int ?= αx) · [boolean∨ (αeven int)]

1 (letrec ([even (lambda (n)
2 (if (= n 0)
3 #t
4 (odd (- n 1))))]
5 [odd (lambda (n)
6 (if (= n 0)
7 #f
8 (even (- n 1))))])
9 (even 13))

Listing 3.13: Mutually recursive functions: even and odd

We first expand with ⊥ for both E and O:

E1 = Π(αx).(int ?= αx) · [boolean∨ (⊥ int)]

= Π(αx).(int ?= αx) · [boolean∨⊥]

= Π(αx).(int ?= αx) · boolean

O1 = Π(αx).(int ?= αx) · [boolean∨ (⊥ int)]

= Π(αx).(int ?= αx) · [boolean∨⊥]

= Π(αx).(int ?= αx) · boolean

E2 = Π(αx).(int ?= αx) · [boolean∨ (O1 int)]

= Π(αx).(int ?= αx) · [boolean∨ boolean]

= Π(αx).(int ?= αx) · boolean

O2 = Π(αx).(int ?= αx) · [boolean∨ (E1 int)]

= Π(αx).(int ?= αx) · [boolean∨ boolean]

= Π(αx).(int ?= αx) · boolean

71

3 Recursion

After two iterations, we have O1 = O2 and E1 = E2. The resulting types for even and
odd are thus:

αeven = Π(αx).(int ?= αx) · boolean

αodd = Π(αx).(int ?= αx) · boolean

3.3 Conclusion

In chapter 2 we developed blame prediction for a subset of Scheme, reminiscent of the
λ-calculus, which did not support for recursion or mutable variables. In this chapter
we added support for recursion, such that blame prediction can be applied to pro-
grams which make use of these features.

Extended syntax and semantics First we extended the syntax and semantics of Schemeβ

in order to accommodate the new set! and letrec special forms. The simple substitution-
based semantics in chapter 2 were replaced by semantics where variables reference
memory locations on a heap, which contains the actual values. With these new se-
mantics we are able to evaluate programs that define recursive functions or perform
variable mutation.

Recursion In the remainder of this chapter we developed support for analysing and
transforming recursive functions in the context of blame prediction. Recall that the
first stage of the blame prediction transformation is check inference, which is based
on type inference. We started by remarking that letrec expressions give rise to types
which reference themselves. Upon encountering a function call expression involving
such an infinite type, the type inferencer starts expanding the infinite type and goes into
an infinite loop, hence the name. In order to perform blame prediction for expressions
which make use of recursive functions, we require finite types, which do not contain
self references.

In order to transform infinite types into finite types, we developed the Solve function
(based on the “frontier method” [Cousot and Cousot, 1977b]), which iteratively pro-
duces better approximations of the sought-after finite types. This method relies on the
existence of an upper bound for these types, however, and we discovered three recur-
sion patterns which would produce ever-increasing terms, inducing non-termination.
In order to ensure termination, we again applied a technique from abstract interpre-
tation, called widening [Cousot and Cousot, 1977b, 1992a], which sacrifices precision
to ensure termination. In our case, this means that some preconditions of recursive
functions are not tested as early as they could be.

Finally, after check inference the blame prediction transformation can then intro-
duce check expressions around function call expressions. These check expressions can
then be moved upwards and simplified as described in chapter 2. In conclusion, this

72

3.3 Conclusion

chapter has enabled blame prediction for functional programs which contain recursive
functions.

In the next chapter we extend the transformation again to also support mutable vari-
ables (with the changed semantics from section 3.1). The next chapter also contains the
proof that the extended blame prediction transformation is still semantics-preserving,
similar to the proof in section 2.6. Finally, at the end of the chapter we speculate on
how blame prediction could support additional language features commonly found in
programming languages.

73

4
M U TAT I O N

In the previous two chapters we only considered functional Schemeβ programs, i. e.
programs which do not use mutation. In this chapter we add support for mutation
to the blame prediction transformation (section 4.1). Section 4.2 proves that the blame
prediction transformation, extended with support for recursion and mutation, still
preserves program semantics. Finally, in the discussion section (section 4.3) we specu-
late on how to support other language features such as user-defined data structures,
objects, non-local control flow, and more.

4.1 Mutation

In the context of program analysis and type systems, mutation is considered to be a
prominent member of the “awkward squad” [Peyton Jones, 2001], as most analyses
only study functional cores of languages. Mutation severely limits program optimiza-
tions, as expressions cannot be reordered freely for example. In the context of type sys-
tems, mutation is always limited to be type-preserving: an assignment may not change
the static type of a variable.

In this section we introduce support for mutation in blame prediction in the form of
variable assignment. Unlike mutation in statically typed languages, the blame predic-
tion transformation allows variable assignments to change types of variables. Recall
that the goal of blame prediction is to accept any program and produce a new pro-
gram which performs its type tests as early as possible, even in the face of arbitrary
mutation.

Consider the program in listing 4.1. Running it in an interpreter will print

43 hi hi world

Unlike the programs we studied in the previous chapters, the value (and its type) in
tmp changes over time: on line 2 it is #f (boolean), on line 3 it becomes 42 (int), and on
line 7 it becomes "hi" (string). Moreover, the call to + on line 5 triggers a int? check,

75

4 Mutation

while the string-append on line 8 triggers a string? check. It is an error to move the
second check “over” the set! on line 7, as that is where its type changes.

The result of check insertion for listing 4.1 can be seen in listing 4.2. For brevity we
assume there is an implicit begin in the body of a check expression, such that it can
contain multiple expressions. Note how the check expression on line 4 has jumped over
the set! on line 5, while the check on line 9 has not moved above the set! on line 8.

1 (let* ([hold #f]
2 [tmp hold])
3 (set! tmp (or hold 42))
4 (set! hold "hi")
5 (display (+ tmp 1))(display " ")
6 (display hold)(display " ")
7 (set! tmp (or hold 42))
8 (display (string-append tmp " world"))))

Listing 4.1: Example of side effects using set!

1 (let* ([hold #f]
2 [tmp hold])
3 (set! tmp (or hold 42))
4 (check [int? tmp]
5 (set! hold "hi")
6 (display (+ tmp 1))(display " ")
7 (display hold)(display " ")
8 (set! tmp (or hold 42))
9 (check [string? tmp]

10 (display (string-append tmp " world")))))

Listing 4.2: Listing 4.1 after check insertion

To cope with side effects such as variable mutation, the research community devel-
oped techniques to analyse not only the types of expressions, but also the side effects
they may have. The original type and effect system put forward in [Gifford and Lucassen,
1986] simply identified whether an expression is pure, or whether it reads or writes
some memory external to the expression. Talpin and Jouvelot [1992] extended this
system to take distinct memory regions into account. Jouvelot and Gifford [1991] first
proposed an inference system for such systems, such that programmers do not need
to add effect annotations. Finally, a “pluggable” generic type and effect system was
proposed by Marino and Millstein [2009].

Note that the meaning of “side effects” can be defined in multiple ways. For exam-
ple, in the work by Gifford and Lucassen [1986] a side effect meant “allocation of, or
access to a memory location outside of the expression”. More recent work [Marino
and Millstein, 2009] has shown that throwing exceptions can also be considered to be
a side effect.

76

4.1 Mutation

For the rest of this chapter, our definition of “side effects” (or just effects) is as
follows:

Definition 8 (Side effects). An expression in Schemeβ has side effect x (which is a set
of variables) if, out of all traces1 which can be generated from the expression, at least
one trace records the evaluation of a (set! x s) expression, with x ∈ x.

We will consider the side effects of expressions as barriers during the check mobility
stage of the blame prediction transformation. Therefore, the smaller the inferred side
effect, the more check expressions can be moved upwards.

At run-time only one of the possible traces will effectively be chosen, making x a
superset of the actual set of variables mutated by the expression. We can always over-
approximate the side effect of expressions as ?!, the set of all variables mutated in
the program. However, we can typically derive a much smaller side effect for a given
expression, with one exception: the application of a function received as a parameter
or returned from a function call. In that case, we must be conservative and assign side
effect ?!.
The rest of this section is subdivided as follows:

• First, we augment the blame prediction transformation with (side) effect infer-
ence, in order to determine which variables can be mutated by a given expres-
sion (section 4.1.1);

• The results of this effect inference is used in the check mobility stage (section 4.1.2);

• check simplification must also be slightly altered to account for mutable vari-
ables (section 4.1.3);

• Finally, we show how the augmented blame prediction transformation handles
some common idioms in dynamically typed programming languages (section 4.1.4);

4.1.1 Effect Inference for Schemeβ

In this section, we define effect inference, a process which determines the side effects of
every expression in a Schemeβ program. The inferred effects will enable check mobility
to move checks upwards where possible, without changing its meaning. To see how
side effects interact with check mobility, consider the function in listing 4.3, right after
applying check introduction.

We would like to move the check on line 6 upwards as much as possible, but this
depends on the side effects the expression some-expression has with respect to the
global variable name. Intuitively, there are four possibilities:

1The traces from chapter 2 can be trivially extended to record set! expressions.

77

4 Mutation

1 (define name "Dries")
2 ...
3 (define (some-function f)
4 (display (check [string? name] (string-length name)))
5 some-expression
6 (check [string? name] (string-append "Hello, " name)))

Listing 4.3: Example of why effect inference is needed

1. some-expression definitely mutates the variable name:
In this case, the check may not be moved over some-expression. The type of name
might have changed, therefore the check on name must be performed after it has
been mutated.

2. some-expression definitely mutates the variable name, but the assignment pre-
serves the type (string): In that case the check could be elided.

3. some-expression invokes the argument f:
We have no information about the side effects of f, therefore we must conser-
vatively assume it can mutate name as well. The check may not be moved over
some-expression.

4. some-expression definitely does not mutate name:
In this case, the check can safely be moved over some-expression and merged
with the first check.

In order to determine which case applies, the blame prediction transformation per-
forms effect inference in addition to the type inference in the previous chapters. With
effect inference we can determine which of the cases above is applicable and use this
information to correctly move (or not move) check expressions upwards. Effect infer-
ence must sometimes assign the ?! effect, which denotes that the side effects of the
expression contain all the mutated variables in the program. The set ?! is constructed
by traversing the AST at the start of the transformation and collecting all variables
which are the target of a set! expression.

Figure 4.1 describes our type and effect inference rules for Schemeβ. The typing rules
are almost unmodified from those in section 2.2, so we will focus on the effect part of
the rules. Judgments are now of the form Γ `E e : τ ! x, meaning that, according to
environment Γ, expression e has type τ and side effect x. There is one small change in

the types: type-level functions are now denoted
x
Π(α1...αn) . τ, where x is the side effect

of applying the function.
Mutable variables receive type ?, the “any” type, as introduced in figure 2.4. In this

work types are only used to statically eliminate type tests, so functions that are applied
on variables of type ? will always result in a run-time type test. The idea is that after
the check mobility stage, most of the type tests on variables of type ? are grouped right

78

4.1 Mutation

below expressions which (potentially) mutates such variables. The check simplification
stage can then eliminate all duplicate type tests.

In the inference rules, we restrict the scope of side effects to the parts of the pro-
gram where the affected variables are actually bound. This complicates the rules for
expressions which bind variables somewhat. However, restricting the scope of effects
like this has the benefit that the effects inferred are only those which are externally
observable. This significantly aids in the implementation of the check mobility stage, as
expressions will have smaller effect sets.

The type- and effect inference rules are as follows:

• TE-var looks up the types of non-mutable variables in the environment.

• TE-var-mut always assigns mutable variables type ?.

• TE-const is unchanged.

• TE-if states that a conditional expression receives a union type consisting of
the types of the two branches, and its effect is the union of the effects of both
branches.

• TE-let uses an immediately-applied type function to combine the types of the
expression and body. The effect is the union of the effects of both subexpressions,
but without the bound variable x.

• The type returned by TE-lambda is a type-level function with given parameters
and body type. The lambda expression itself has no effects, but any side effects of
its body (minus those made against the arguments) are stored as an annotation
on the returned type function.

• TE-apply constructs its return type using the same Apply function as in sec-
tion 2.2. The effects of a function application are determined by the FunEffect

function, shown at the bottom of figure 4.1. This function analyzes the type τ0 be-
ing applied and returns its side effect. Applying a known type function results
in the effect stored in the type function, while applying a union type results in
the union of the effects. Applying a function whose type is a type variable or the
“any type” ? results in the ?! effect.

• TE-letrec is largely the same as in section 3.2. Recall that the transformation
described in the beginning of section 3.1 ensures that only functions reside in
a letrec binding group, and that all functions are called by at least one of the
other functions in the binding group. Therefore, the effect of every function in
the letrec binding group is the union of the effects of all functions. The Solve

function assigns this effect E to all returned types τ1 . . . τn.

• Finally, TE-set has type void and the intended effect.

79

4 Mutation

Γ `E e : τ ! x

Γ(x) = τ

Γ `E x : τ ! ∅
(TE-var)

x ∈ ?!

Γ `E x : ? ! ∅
(TE-var-mut)

`E c : Typeof(c) ! ∅
(TE-const)

Γ `E e1 : τ1 ! x1 Γ `E e2 : τ2 ! x2

Γ `E (if s e1 e2) : τ1 ∨ τ2 ! x1 ∪ x2
(TE-if)

Γ `E ex : τx ! xx τL = Leaves(τx) Γ, x : τL `E e : τ ! x

Γ `E (let ([x ex]) e) : (Π(α).[τ] τx) ! xx ∪ x
(TE-let)

Γ, x1 : α1, . . . , xn : αn `E e : τ ! x α1, . . . , αn fresh

Γ `E (lambda (x1 . . . xn) e) :
x
Π(α1...αn) . τ ! ∅

(TE-lambda)

Γ `E si : τi ! ∅ ∀i ∈ [0 . . . n] ` f = Label((s0 s1 . . . sn)) α1, . . . , αn fresh

Γ `E (s0 s1 . . . sn) : (Π(α1...αn).[Apply(τ0, ` f , α1 . . . αn)] τ1 . . . τn) ! FunEffect(τ0)
(TE-apply)

α1, . . . , αn fresh Γ, x1 : α1, . . . , xn : αn `E ei : τi ! ∅ ∀i ∈ 1 . . . n
E = FunEffect(τ1) ∪ · · · ∪ FunEffect(τn) τ1 . . . τn = Solve(τ1 . . . τn; α1 . . . αn; E)

Γ, x1 : τ1, . . . , xn : τn `E e : τ ! x

Γ `E (letrec ([x1 e1] . . . [xn en]) e) : τ ! x
(TE-letrec)

Γ `E (set! x s) : void ! {x}
(TE-set)

FunEffect(
x
Π(α1...αn) . τ) = x

FunEffect(τ1 ∨ τ2) = FunEffect(τ1) ∪ FunEffect(τ2)

FunEffect(α) = ?!
FunEffect(?) = ?!
FunEffect(τ) = ∅

Figure 4.1: Inference of side effects and definition of the FunEffect helper function

80

4.1 Mutation

One important property of our type and effect system is that we always assign type ?

to mutable variables, even if these variables are initialized and mutated with the same
types. Listing 4.4 shows such a program: it defines a simple counter function which
references a global variable count. When called, the function increments this number
and returns the new number. Note that count is initialized with the value 1 (a number)
and updated with the results of (+ count 1) (also a number). Unfortunately, our type
and effect system assigns type ? to count. All applications of the function will then
result in a run-time type test (because n is of type ?) even though counter always
returns a number.

1 (define count 1)
2

3 (define (counter)
4 (set! count (+ count 1))
5 count)

Listing 4.4: Example of type-preserving mutation

In the absence of type annotations and with the impossibility of raising type errors
at compile time, this is the best our system can do. Assume that we optimistically
use the initial value for variables to infer their type, and we encounter a set! with a
radically different type. At this point, the variable may have been used in other expres-
sions, which only saw the initial type. In order to remain correct, these intermediate
expressions thus need to be inferred again, this time with the variable bound to a
union type of the old type and the new type. Alternatively, we could raise a type er-
ror, but this goes against our goal of accepting all programs. In section 4.1.3 we will
introduce a new simplification that aims to simplify check expressions which appear
immediately after a set!.

To conclude the section on type and effect inference, we will apply it to some small
example functions and expressions. For each function in listing 4.5, we will show its
type and the set of variables it mutates. Both x and y are assigned to in this program, so
they belong to ?! and receive type ?. The set-x function sets the x variable to the given
value only if it is set to #f, but still receives effect { x }. twice applies the function f

twice on the argument w. Since f could mutate potentially any variable in the program,
it has effect ?!, even if f is a pure function as shown on line 15. Finally, the begin block
on line 18 calls set-x! (thus mutating x, then assigns to y and then displays y. This
expression thus potentially mutates both x and y.

Now that we have defined effect inference for Schemeβ with mutation, we can use
the type and effect inference as the basis of check introduction. The check introduction
stage only uses the inferred types: check expressions are still inserted around function
application expressions according to the inferred types. In the next section we discuss
check mobility with mutable variables, which makes use of the inferred side effects.

81

4 Mutation

1 (define x #f) ; type = ?
2 (define y 9) ; type = ?
3

4 ; type = Π(αnv).[void∨ boolean], effect = { x }
5 (define (set-x! new-value)
6 (if (not x)
7 (set! x new-value)
8 #f))
9

10 ; type = Π(α f , αw).[(Π(αa).[(Π(αb).[αb] (α f αa))] (α f αw))], effect = ?!
11 (define (twice f w)
12 (f (f w)))
13

14 ; type = (int ?= αy) · int, effect = ?!
15 (twice (lambda (x) (+ x 1)) y)
16

17 ; type = void, effect = { x, y }
18 (begin (set-x! 5)
19 (set! y 32)
20 (display y))

Listing 4.5: Examples of type and effect inference

4.1.2 Check mobility

We now turn to the check mobility stage of the blame prediction transformation. Recall
from chapter 2 that it is very important that the blame prediction transformation does
not change the semantics of the program. In the original formulation of check mobility,
we enforced two invariants:

1. checks on variables may not escape the let expressions that bind them. Otherwise,
check expressions might perform run-time type tests against variables that are
not bound;

2. checks may not escape lambda expressions. Otherwise, run-time type tests might
be performed for code that is not executed, e. g. if the lambda is never applied.
Additionally, these type tests may reference the arguments of the lambda expres-
sion, which are only bound in the function body.

We now add a third invariant, namely

3. checks on mutable variables may not freely move over expressions with side
effects which mutate them. If such an expression happens to change the type
of the value stored in the variable, moving the run-time type test changes the
semantics of the program.

To illustrate this new invariant, consider the code in listing 4.6. As x is a mutable
variable, it receives type ? in every expression where it is used, meaning that every

82

4.1 Mutation

1 (define (foo x) ; type of x is unknown
2 (check [number? x] (set! x (+ x 1))) ; type of x becomes number
3 (check [number? x] (set! x (integer->string x))) ; type of x becomes string
4 (check [string? x] (string-append "Hello, " x)))

Listing 4.6: Restrictions on check mobility

use of x in a primitive function will generate a check. The comments on each line
indicate the run-time type of the value of x. If the number? test on x on line 2 succeeds,
a number is assigned to x. The next line replaces this value with a string, using the
integer->string function. Finally, the last line applies the string-append function to
x, which requires it to be a string.

If mutability is not taken into account, check mobility would move the string? test
to the top of the function, together with the number? test. A variable cannot contain
a value that is both a number? and a string?, so the resulting program would predict
blame for a program that otherwise succeeds.

By enforcing the third invariant, however, the string? test is not allowed to move
over the set! expression on line 3. Likewise, the number? test on line 3 is not allowed
to move over the set! expression on line 2. The function thus remains as shown and
the transformed program only reports an error if foo is called with a value other
than a number. While the checks on lines 3 and 4 have not been moved, they will be
eliminated in the check simplification stage, in section 4.1.3.

In figure 4.2 we present a set of rules (updated from those in section 2.4) for check

mobility. Every rule is of the form e→ e′ ↑ p, meaning that check mobility transforms
expression e to e’, propagating the predicate p upwards. The new and updated check

mobility rules are as follows:

• The FE-set rule handles mobility for set! expressions. Since its argument expres-
sion is always a simple expression like a constant value, a variable or a lambda

expression, set! expressions never propagate preconditions upwards. However,
the argument might be a lambda expression, so check mobility still needs to be
applied to the argument.

• FE-let is similar to the rule in section 2.4, where only the checks in the body that
do not involve x are propagated. However, any predicate on variables mutated by
ex cannot be moved up beyond the let expression. This is done by a generalized
version of the mask function from section 2.4, which masks the predicate p against
a set of variables instead of one variable. In order to enforce the third invariant,
preconditions are masked against variable x and all variables x mutated by ex.

As before, any predicates which are propagated out of the program are captured and
inserted into the program again.

83

4 Mutation

e→ e′ ↑ p

e→ e′ ↑ p
e→P (check p e′)

(FE-program) c→ c ↑ #t (FE-const)

s→ s′ ↑ #t

(set! x s)→ (set! x s′) ↑ #t
(FE-set) x→ x ↑ #t (FE-var)

si → s′i ↑ #t ∀i ∈ 0 . . . n

(check p (s0 s1 . . . sn))→ (s′0 s′1 . . . s′n) ↑ p
(FE-apply)

s→ s′ ↑ #t e1 → e′1 ↑ p1 e2 → e′2 ↑ p2

(if s e1 e2)→ (if s′ (check p1 e′1) (check p2 e′2)) ↑ p1 ∨ p2
(FE-if)

ex → e′x ↑ px e→ e′ ↑ p x = Effects(ex) p↑ = mask(x∪ x, p)

(let ([x ex]) e)→ (let ([x e′x]) (check p e′)) ↑ px ∧ p↑
(FE-let)

ei → e′i ↑ #t ∀i ∈ 1 . . . n
e→ e′ ↑ p p′ = mask(x1 . . . xn, p)

(letrec ([x1 e1] . . . [xn en]) e)→ (letrec ([x1 e′1] . . . [xn e′n]) (check p e′)) ↑ p′
(FE-letrec)

e→ e′ ↑ p
(lambda (x1 . . . xn) e)→ (lambda (x1 . . . xn) (check p e′)) ↑ #t

(FE-lambda)

Figure 4.2: Check mobility in the presence of side effects

4.1.3 Check Simplification

After check introduction and mobility, the resulting program still contains some extra-
neous check expressions and -predicates. In section 2.5, we defined three check simpli-
fication rules, which either remove check expressions or simplify their predicates. The
simplification rules were as follows:

Or–true simplification check expressions where the predicate is of the form p ∨ #t or
#t ∨ p can be elided, as the type tests in the non-#t branch will be immediately
repeated in the corresponding conditional branch.

And–check simplification Sometimes a predicate contains multiple type tests on the
same variable, for example p1∧p1∧p2∧p1∧p3∧p2 can be simplified to p1 ∧ p2 ∧ p3.
All but the first of the duplicate tests on each variable can be removed, merging
the blame labels into the remaining test.

84

4.1 Mutation

Check–check simplification Similar to and–check simplification, sometimes a check

expression tests a predicate in the scope of a check expression higher up in the
program, where the same predicate has already been tested. Again, the predicate
in the inner check expression can be removed and its labels merged with the
predicate in the outer check expression.

These simplification rules still apply, with one important caveat: check–check simpli-
fication on a mutable variable may not be applied if there is an expression between the
two check expressions which mutates the variable. The function in listing 4.7 shows
why this restriction is necessary. It first uses the variable x in an addition (line 3),
then sets it to the result of (f x 5) (line 4), and finally tries to use it as a number
again (line 6). Check–check simplification clearly applies to the check expressions on
lines 2 and 5. However, the type of the value in x is potentially changed on line 4,
depending on the function f which is unknown. Eliminating the inner check on line 5

could thus result in the application of + raising a run-time type error.

1 (define (simple f x)
2 (check (number? x)
3 (let ([y (+ x 1)])
4 (set! x (f x 5))
5 (check (number? x)
6 (+ x 1)))))

Listing 4.7: Example where check–check simplification is not appropriate

As we remarked in section 4.1.1, the choice of always using type ? for mutable vari-
ables results in extraneous check expressions which accumulate after a set!. We now
concretize this remark as an extra simplification:

Set–check simplification Typically the expression used as argument to a set! expres-
sion is one with a ground type, rather than a union type or type variable. At the
same time, the first expression after the set! is often a check expression with a pre-
condition on the mutated variable. In such cases, we allow set–check simplification
to simplify the precondition of the check with regards to the mutated variable.

Figure 4.3 shows the general template for set–check simplification: if the pattern
on the left-hand side appears with a type judgment Γ ` s : γ ! ∅ then any predi-
cates of the form γ? x may be replaced by #t.

As in the check simplification stage for functional programs, simplification continues
until no rules are applicable.

With the addition of set–check simplification, however, the rules can no longer be
applied in an arbitrary order. The snippet in listing 4.8 demonstrates this: if the check

on line 3 is removed first by set–check simplification, the check on line 5 remains. If
check–check simplification is performed first, however, the check on line 5 is removed,
followed by the check on line 3. In order to remove a maximal number of checks from
the program, set–check simplification must be performed last.

85

4 Mutation

(begin ...
(set! x s) ; s has type γ

(check (... (γ? x) ...) e)
...)

(a) Template to be matched, for some type γ

and simple expression s

(begin ...
(set! x s)
(check (... #t ...) e)
...)

(b) Resulting simplified expression

Figure 4.3: Template for set–check simplification

1 (let ([x 5])
2 (set! x 42)
3 (check (int? x)
4 ...
5 (check (int? x)
6 ...)))

Listing 4.8: Example of when check–check simplification cannot be applied first

Having shown how the blame prediction transformation needs to be adapted to deal
with mutation, we now show how it applies to some examples.

4.1.4 Examples

Example: Memoizing Consider the code in listing 4.9: a simple example of applying
memoization to an expensive computation. The variable computed? is used to remem-
ber whether the expensive computation has taken place, the result of this computation
is stored in computed-value.

1 (define computed-value #f)
2 (define computed? #f)
3

4 (define (get-or-compute)
5 (if computed?
6 computed-value
7 (begin (set! computed? #t)
8 (set! computed-value (expensive-computation))
9 computed-value)))

Listing 4.9: Caching expensive computations

The type and effect inference as defined in section 4.1.1 assigns type ? to both
computed? and computed-value, as they are mutated in the program. The get-or-compute

function, meanwhile, has type ? ∨ ?, or just ?. At the start of the program, both
computed? and computed-value contain a value of type boolean. After invoking get-or-compute

once, computed-value will contain the value computed by expensive-computation.

86

4.2 Proof of Safety

Example 2: Read–process–write Listing 4.10 defines a common helper function to
perform an arbitrary operation on a file and write back the results. The operation
to be performed is defined in the process function, which is passed in by the pro-
grammer. This function should return a string, as the write-file function requires a
string for the file’s body. The blame prediction transformation will generate a check

for (string? input) around write-file. The check mobility stage will attempt to move
this test upwards, past the set!. Because the set! modifies the variable input, the check

is not allowed to go past the set!. At run-time, this check correctly verifies whether
process returned a value of type string.

1 (define (with-file-do filename process)
2 (let ([input (read-file filename)])
3 (set! input (process input))
4 (write-file filename input)))

Listing 4.10: Example of a common read–process–write helper function

4.2 Proof of Safety

In this section we show that the extensions made to the blame prediction transforma-
tion do not affect program correctness. We first prove two lemmas which establish
basic properties of the blame prediction transformation (sections 4.2.1 and 4.2.2). Next,
we extend the trace semantics first presented in section 2.6 with support for muta-
tion (section 4.2.3). Finally, we prove the safety properties first defined in section 2.6
using these trace semantics (section 4.2.4).

4.2.1 Correctness of Effect Inference

Central to our proof of correctness is the effect inference from section 4.1.1: for any
given expression e, it must correctly infer its side effect (as per definition 8 in sec-
tion 4.1), i. e. all variables x that might be mutated by the evaluation of that expression.
Formally, a variable x might be mutated by an expression e if, out of all traces which
can be generated from the expression, at least one trace mutates the variable. Unfor-
tunately, the number of traces becomes infinite if the expression invokes a function
passed by argument or extracted from a data structure. In that case our analysis must
be conservative and assign the ?! effect, which is trivially correct for any expression.
We start by showing that the type and effect inference correctly over-approximates the
set of variables which are mutated.
As a simple example, consider the snippet below:

1 (if (even? x)
2 (set! even (+ even 1))
3 (set! odd (+ odd 1)))

87

4 Mutation

It modifies either even or odd, but which variable exactly depends on the run-time
value of x. Effect inference must therefore be conservative and infer the side effect of
this expression as {even, odd}.

Lemma 5. Let e be a Schemeβ expression; then the judgment Γ `E e : τ ! x infers the
side effect of the expression e as x.

Proof. By induction on the evaluation rules from section 3.1:

• E-var, E-const: evaluation simply returns a value, no side effects.

• E-lambda: this evaluation rule constructs a closure from current environment
and the function body. This evaluation rule also has no side effects, as it simply
returns a value. Applying the induction hypothesis on the body e yields that it
has side effect x. In the effect inference rule TE-lambda, this side effect is stored
as an annotation on the returned type, we will use this fact in the E-apply rule.

• E-if: the condition is a simple expression, so it cannot have side effects. The side
effects of this expression are those of the chosen branch, which is unpredictable.
It is guaranteed that the union of the side effects of both branches covers the side
effects of whichever branch is chosen, which is what TE-if does.

• E-apply: all sub-expressions of a function application are simple expressions,
so they cannot produce side effects. The side effects of a function application
entirely depend on the function being applied. There are two possibilities, given
the inferred type τ0 of the function s0:

1. τ0 is a union type where one or more branches is a type variable or ? :
By inversion on the type, the value v0 can be any function. In the absence
of precise information, we must assume it can affect any variable, therefore
such a function application has side effect ?!. This is exactly the definition
of FunEffect.

2. Otherwise, τ0 is fully known or a union type where all branches are concrete
type functions:
In this case the function being applied must fit one of these type functions.
As with the conditional expression, by taking the union of side effects we
are certain to cover all mutated variables.

• E-let: we apply the induction hypothesis to ex, which yields a side effect xx.
Applying the induction hypothesis to the body yields side effect x. The side
effect of the let expression is thus just xx ∪ x.

• E-check: the predicate of a check expression cannot contain set! expressions by
construction. The side effect of a check expression is thus that of its body.

88

4.2 Proof of Safety

• E-letrec: As we remarked in section 3.1, binding groups of letrec expressions
only contain functions which (in)directly call every other function. When the
body applies one of these functions, it can either follow a path where it calls one
or more of the other functions, or it can follow a path where it does not. In the
first case, that function again has paths where it calls other functions, and paths
where it does not. We can cover the side effects of all possible paths through the
functions by taking the union of the side effects of the individual functions. The
TE-letrec rule annotates each type function with this over-approximating side
effect, which will be ascribed to every function call which invokes one of the
bound functions. Otherwise, side effects in the letrec body will occur as normal.

• E-set: Finally, the side effect of a set expression is exactly the variable it modifies,
as the argument is again a simple expression.

Having proved that effect inference calculates side effects correctly, we can focus
on the correctness of the blame prediction transformation in the presence of mutable
variables.

4.2.2 Program Properties after Blame Prediction

Lemma 6. The check mobility and simplification stages preserve the following prop-
erties:

1. check expressions never refer to unbound variables;

2. check expressions verify the same values as the preconditions they guard.

The proof of lemma 6 is split across the check mobility and check simplification
stages. We begin the proof with check mobility.

Proof. For check mobility, we prove the lemma by induction over the mobility rules (fig-
ure 4.2).

• FE-program simply captures any preconditions that escape the program and
reinserts them.

• FE-const, FE-set and FE-var do not propagate any preconditions upwards.

• FE-apply simply propagates any preconditions attached to it. This is the base
case, as any preconditions start from the function application expressions.

• FE-if lifts the preconditions p1 and p2 out of its branches. Property 1 is preserved
because a conditional expression does not introduce new bindings, and property
2 is preserved because the condition s cannot contain any set! expressions.

89

4 Mutation

• FE-let is the most important rule in regards to the two properties. Regarding
property 1, it must ensure that the preconditions to be propagated do not men-
tion x, as that would introduce a reference to an unbound variable. Regarding
property 2, preconditions on variables mutated by the expression ex may not
be lifted out of the body. Both are satisfied by the generalized mask function: it
masks p against x and any of the variables x mutated by ex. p↑ is thus guaranteed
not to contain any references to any of these variables. Moreover, lemma 5 states
that ex mutates at most the variables returned by the Effects function.

• FE-lambda, as before, prevents any preconditions from floating out of the
lambda expression.

Proof. For the check simplification stage, we simply enumerate the simplifications (sec-
tion 4.1.3):

• Or–true simplification removes predicates of the form #t ∨ p, where p would
never be evaluated. checks are removed, not added, so both properties still hold.

• And–check simplification merges multiple identical predicates on the same vari-
able in an aggregate predicate. From the previous stage we know that the indi-
vidual preconditions would not reference unbound variables or check values
different from the blame label, therefore the new predicate maintains these prop-
erties.

• Check–check simplification maintains the first property: we remove an inner-
most check expression which must already satisfy the first property, and we
merge it with the outermost check expression, which must also already satisfy it.

There is potential to violate the second property, however. Duplicate predicates
in nested check expressions may only be merged into outer check expressions if
the expressions between the check expressions are guaranteed not to mutate the
variable being tested. As we remarked in the description of check–check simplifi-
cation, check mobility depends on the output of effect inference, and in lemma 5

we showed that expressions do not mutate any variables outside their inferred
effect set. Therefore, the mutation-aware check–check simplification maintains
the second property.

• Set–check simplification removes check expressions which appear directly after
a set!. Both properties must hold before and after this simplification.

4.2.3 Traces and Trace Semantics

In the next section we prove that the blame prediction transformation, augmented with
support for recursion and mutation, still preserves the program semantics. Before we
can prove the three properties described in section 2.6, however, we need to extend

90

4.2 Proof of Safety

traces to record the effects of mutating variables. We defined traces in section 2.6 as
a means of matching up check expressions (check elements) with the primitive opera-
tions whose preconditions they verify (use elements). With the addition of an explicit
heap and mutable variables to Schemeβ, we need to keep track of the type of their
values when they are used in a check or primitive operation. In order to do that we
record the run-time type of a mutable variable whenever one is initialized or mutated.
Subsequent check(p) elements in the trace can then be verified against the last known
type.

The extended definition of traces is shown in figure 4.4. Appending a step s to a trace
T is denoted as T · s. Traces can consist of a use(p) or check(p) step like in section 2.6, or
a “set type” step `← τ. A “set type” step indicates that a memory location belonging
to a mutable variable has been set, changing the run-time type of its value to τ.

To obtain traces, we execute the program in a modified version of the semantics
presented in section 3.1. The modified semantics, shown in Figure 4.4, build up a trace
T while evaluating the program. We will only discuss the most important tracing rules,
the others simply thread the trace through the evaluation.
In these tracing semantics, rules take the form H, E , e, T T H′, v, T′, meaning that
evaluating expression e with heap H and environment E results in a value v and new
heap H′, extending the trace T to T′.

In contrast to the tracing semantics of section 2.6, traces track memory locations
rather than variable names. The reasoning behind this is that recursive function in-
vocations can cause multiple copies of the same variable name to appear in a trace,
while the scoping enforced by the environment ensures that their memory locations
are distinct. Aliasing multiple variables to the same memory location is ruled out by
definition, as every variable in the program uniquely corresponds to one memory lo-
cation.

The modified rules are as follows:

• ET-let evaluates the expression ex and updates the heap to store its value to
a new memory location `. If the variable being bound is not in the “mutated
variables” set (i. e. x /∈ ?!), the memory location is not recorded in the trace. If the
variable being bound is mutated in the program however, the trace is amended
to note that the newly allocated memory location now contains a value of type τ.
The Typeof function determines the run-time type of a value, so either a ground
type like int, string or a type function.

• ET-check records the fact that the precondition p has been tested. We use the
syntax p[E [x]/x] to denote “replace all variable references in p with their location
in the heap”.

• ET-set updates the trace to note that the variable x has been updated.

To illustrate the tracing semantics, let us examine the trace produced by the program
listing 4.11. This program only has one possible trace, but in general there are many

91

4 Mutation

T ::= T · s | ε | err-blame(p) | err-use(p)
s ::= use(p) use step, as before
| check(p) check step, as before
| `← τ Update memory at ` to type τ

H, E , e, T T H′, v, T′

H, E , ex, T T H1, vx, T1

` fresh E ′ = E [x→ `] H2 = H1[`→ vx]

τx = Typeof(vx)

{
T2 = T1 · (`← τx) if x ∈ ?!

T2 = T1 otherwise
H2, E ′, e, T2 T H3, v, T3

H, E , (let ([x ex]) e), T T H3, v, T3
(ET-let)

H, E , p, T T H, vp, T

{
T1 = err-blame(p) if vp = #f

H, E , e, T · check(p[E [x]/x]) T H1, v, T1 otherwise

H, E , (check p e), T T H1, v, T1
(ET-check)

H, E , s, T T H, v, T H1 = H[E [x]→ v] τx = Typeof(v) T1 = T · (E [x]← τx)

H, E , (set! x s), T T H1, void, T1
(ET-set)

H, E , x, T T H,H[E [x]], T (ET-var) H, E , c, T T H, c, T (ET-const)

H, E , (lambda (x1 . . . xn) e), T T H, 〈E , x1 . . . xn, e〉, T (ET-lambda)

H, E , s, T T H, vc, T

{
H, E , e2, T T H1, v, T1 if vc = #f

H, E , e1, T T H1, v, T1 otherwise

H, E , (if s e1 e2), T T H1, v, T1
(ET-if)

H, E , si, T T H, vi, T ∀i ∈ [0 . . . n]
H1, E1, e = δ(H, E , v0, v1 . . . vn) H1, E1, e, T T H2, v, T1

H, E , (s0 s1 . . . sn), T T H2, v, T1
(ET-apply)

`1, . . . , `n fresh E1 = E [x1 → `1, . . . , xn → `n] T0 = T{
H, E1, ei, T T H, vi, T Ti = Ti−1 · (`i ← Typeof(vi)) if xi ∈ ?!

H, E1, ei, T T H, vi, T Ti = Ti−1 otherwise
∀i ∈ [1 . . . n]

H1 = H[`1 → v1, . . . , `n → vn] H1, E1, e, Tn T H2, v, Tn+1

H, E , (letrec ([x1 e1] . . . [xn en]) e), T T H2, v, Tn+1
(ET-letrec)

Figure 4.4: Modified semantics for generating traces

92

4.2 Proof of Safety

traces a program might produce, depending on external inputs such as user input, the
random seed, contents of the file system, network communication, etc. We will not
consider these factors: we will be comparing every path through the same program,
before and after the blame prediction transformation.

1 (let* ([counter 0]
2 [add! (lambda (x)
3 (let ([new-counter (+ counter x)])
4 (set! counter new-counter)))])
5 (display counter)
6 (add! 5)
7 (display counter)
8 (add! 2)
9 (display counter))

Listing 4.11: Example program for tracing semantics

The trace is then:

T = [`c ← int︸ ︷︷ ︸
line 1

, check(number? `c)︸ ︷︷ ︸
line 3

, `c ← int︸ ︷︷ ︸
line 4

, check(number? `c)︸ ︷︷ ︸
line 3

, `c ← int︸ ︷︷ ︸
line 4

]

The first part of the trace shows how the let expression assigns type int to the memory
location `c, which it allocated for the variable counter. The memory location of add!

is not recorded, as it is not a member of ?!. The next two parts of the trace are the
invocation of add! on line 6, which adds 1 to counter (the check), then stores the result
back (the← part). The final two parts are identical to the second part.
This trace exhibits two important properties:

1. First, mutable variables (or rather the memory locations they point to) are always
initialized with a type. It is an error to refer to a variable before it is bound, which
corresponds to the first property of section 4.2.2.

2. Second, every check refers to the type of the value that was last assigned to a
particular memory location. We could therefore rearrange checks in a trace, as
long as they do not skip over an assignment of the variable(s) they inspect. This
corresponds to the second property of section 4.2.2.

4.2.4 Proof of equivalences

Having defined traces for Schemeβ with mutation, we now turn to proving the two
equivalences 2from section 2.6. They are repeated below, where P is the input program
and P’ is the transformed program. Note that the equivalences are formulated slightly
differently: with the introduction of recursion it is possible to construct programs

2As in chapter 2, the second equivalence is constructed from two entailments.

93

4 Mutation

that loop indefinitely. This requires a small modification to the definition of value
preservation and blame–use entailment:

Value Preservation
Iff P runs to completion and produces a value v, P′ produces the same value v.
Formally: P v⇔ P′ v.
Use–Blame Entailment
If P raises an error, the transformed program P′ must predict blame.
Formally: P err-ω ⇒ P′ err-blame(p).
Blame–Use Entailment
If P′ predicts blame, the original program P must raise an error or loop indefinitely.
Formally: P′ err-blame(p)⇒ P err-ω ∨ P 6 .

Before we prove the equivalences, we prove lemma 7, which is analogous to lemma 3.

Lemma 7. Check introduction guards all type tests that could fail in primitive opera-
tions with a check expression.

Proof. The proof for this is largely analogous to the proof in section 2.6. In the chapter
on recursion we defined a widening operator which eliminated conditional types from
infinite types in order to guarantee termination. These conditional types give rise to
type tests inside the function definitions, however, so this property is still holds for
recursive functions.

In this chapter we defined check inference to always assign type ? to mutable vari-
ables, as per inference rule TE-var-mut. Therefore, any use of these variables will
generate a conditional type and thus a check expression, trivially satisfying the prop-
erty.

Proof of Value Preservation

Proof. We prove each direction separately.
⇒: Given that P v, prove that P′ v.
Analogously to the proof in section 2.6, we start by comparing the trace T of P with T′

from the transformed program P′. P returned a value, so it finished and every use(p) in
the trace T succeeded. check introduction will insert a check expression to guard every
primitive operation that might fail (see lemma 7). We now use lemma 6, which states
that the mobility and simplification stages will preserve the following properties of
check expressions: 1) no unbound variables are referenced, and 2) the preconditions
verify the same values as the primitive operations they guard

For every check in T′, there is a use in T′ (and thus T) that requires the same predi-
cate to be true. Every check and use expression in T succeeds, thus T′ cannot contain
any errors; it must produce a value.

94

4.2 Proof of Safety

⇐: Given that P′ v, prove that P v.
The trace T′ of program P′ is equivalent modulo check to the trace T of program P.
In other words, removing the checks from T′ yields T. T′ succeeds, so T must also
succeed, and thus program P must produce the same value as program P′.

Proof of Use-Blame Entailment

Proof. Evaluation of the program P raises an error on a use(p). We discriminate on the
form of p:

1. p = (τ? c): a check expression would be generated and propagated upwards as
high as possible, the proof is analogous to that in section 2.6.

2. p = (τ? x), with x 6∈ ?!: the check expression for this precondition is propagated
as high as possible, up to the binding of x or the nearest enclosing function. The
proof is also analogous to that in section 2.6.

3. p = (τ? x), with x ∈ ?!: in this case, the check expression must be propagated up
to the binding of x, the nearest enclosing function, or the most recent assignment
of x. Lemma 6 ensures that both the check and the use expressions verify the type
of the same value. Therefore, at the very latest the check expression will predict
blame for the use expression.

Proof of Blame-Use Entailment

Proof. P′ evaluates to an err-blame(p) error, which must be raised by a check(pk) ex-
pression in T′. The proof is analogous to that in section 2.6, the only difference is the
presence of ` ← τ steps in the trace, but lemma 6 guarantees that these do not af-
fect the values tested by check expressions. Alternatively, it is possible that P loops
indefinitely instead of producing an error; we present one such example below.

Note that blame–use entailment does not hold if the original program loops indef-
initely. In listing 4.12 for example, the collatz function is invoked on a large number.
If this function returns, sqrt is applied to the value of x, which is mistakenly defined
as a string. It is an open mathematical problem whether the collatz function stops for
all inputs, so it is possible that the sqrt is never reached.

Blame prediction will however always propagate the (number? x) precondition of the
sqrt function to right below the definition of x, on line 1. In this case it will point out
an error that might never manifest itself, which in turn hinders programmers attempt-
ing to develop and debug their program. Unfortunately, we do not foresee a general
solution to this problem, bar specific situations such as “(while true ...)” loops. This
and other patterns could be treated specially by the blame prediction transformation
in the future. More involved techniques such as abstract interpretation could discover
more infinite loops, at the cost of more processing time.

95

4 Mutation

1 (define x "5")
2

3 (define (collatz n)
4 (if (= n 1)
5 #t
6 (if (even? n)
7 (collatz (/ n 2))
8 (collatz (+ 1 (* 3 n))))))
9

10 (collatz 109889544521617720)
11

12 (display (sqrt x))

Listing 4.12: Pathological case for programs that contain loops

4.2.5 Conclusion

In the first part of this chapter we developed support for mutation in Schemeβ. We
remarked that other type systems and program analysis techniques have varying sup-
port for mutation: either they support a subset of the language without mutation, they
only support type-preserving mutation, or they only support mutation of local vari-
ables. As our goal is to help programmers find errors in unmodified code, we have
opted to support full-blown type-changing mutation of all variables in the program.

We first defined how type- and effect inference is performed for Schemeβ. This
analysis complements the type inference of chapter 2 by inferring the side effects of
every expression in the program. During type inference, all mutable variables (i. e.
variables mutated anywhere in the program) received type ?, the “any” type. This
means that passing mutable variables to primitive operations always results in a check

expression and thus a run-time type test.
In the check mobility stage, type tests are moved upwards as before. The expressions

with side effects now act as a barrier for type tests: a check predicate involving a
variable x may not be moved over an expression which can potentially mutate it. The
most extreme barriers are applications of variables whose type is a type variable (such
as function arguments): they block all predicates involving mutable variables.

Finally, in the check simplification stage some check expressions can be eliminated
again. From the simplifications in section 2.5, two (“or–true” and “and–check” simpli-
fication) can be applied without modifications. The third, check–check simplification
— which removes check predicates covered by an earlier check expression — can be
applied as well, with the caveat that the variable in the predicate may not have been
mutated inbetween the check expressions. We defined a fourth simplification which at-
tempts to remove check expressions which were moved to just under a set! expression:
if the type of the value being assigned matches the type being tested in a predicate of
the check expression immediately afterward, the check can be simplified.

96

4.3 Discussion and Future Work

This concludes our discussion on mutable variables in blame prediction. In the second
part of this chapter we will discuss how the blame prediction transformation could be
expanded to over the remaining features of a modern dynamically typed language.

4.3 Discussion and Future Work

The goal of this chapter was to expand blame prediction to take mutation into account.
In this section we discuss some remaining features of dynamically typed languages
and how they could be implemented in the blame prediction transformation.

4.3.1 Blame Prediction for Compound Data Structures

In this chapter we have developed support for blame prediction with mutable vari-
ables. However, any non-trivial program also uses compound data structures such as
lists, vectors, dictionaries, In this section we speculate on how basic support for
these types could be added and discuss what would be necessary to fully support
(im)mutable compound data structures.

Looking at the documentation of a modern dynamically typed programming Scheme-
like language such as Racket, we can find the following compound data structures:

Pairs and Lists The most basic compound data structure available is the immutable
pair which can store two values, historically accessed using car and cdr. Lists
can be created by nesting pairs such that the second value is either the empty
list, or again a pair which defines a list. The elements of the list are then all
those in cars of the pairs. A more convenient way of constructing lists is using
the (list ...) or '(...) constructs. Accessing individual elements of the list
(list-ref) requires time linear in the index, while the entire list can be operated
on using the map and for-each functions. There are also mutable pairs and lists,
which can be manipulated using the set-mcar! and set-mcdr! functions.

Vectors Vectors represent a dense array of values, indexed using natural numbers.
These are typically stored contiguously, but this is not required. Immutable vec-
tors can be defined from their parts using the vector-immutable function or the
#(...) construct. The elements of a vector can be accessed using the vector-ref

function. Mutable vectors are created by the vector function, and vectors can be
updated at a certain index with the vector-set! function.

Structures Structures define a record of named fields, which can be mutated indepen-
dently. A single (struct foo ...) definition defines the make-foo constructor
function, as well as a foo? type test. Each value can be accessed using a ded-
icated accessor function foo-fieldname. In Racket, fields are immutable by de-
fault unless they are created with the #:mutable option. For every mutable field
fieldname, a setter function set-foo-fieldname! is generated.

97

4 Mutation

Objects Objects are much like structures, except that every object is an instance of
a class which defines a set of fields and methods. Moreover, classes can inherit
fields and methods from other classes. While objects are not strictly immutable,
they can be considered immutable if their fields are not altered after construction.

4.3.1.1 Supporting Immutable Data Structures

The biggest change necessary to support immutable data structures in blame pre-
diction is in the check inference stage. Every compound data structure in the pro-
gram must now be associated with one or more type parameters for the types con-
tained within. For example, the type of (vector-immutable 3 5 7) is “vector int”, while
(cons 1 "hi") has type “pair int string”. Structures and objects can be tagged similarly
with their struct or class name and a mapping of field names to types (also known as
structural typing [Madsen and Møller-Pedersen, 1989]). These type parameters can con-
tain union types as well, for example a vector with elements of different types can be
of type “vector (int∨ string)”. vector (int∨ string) Inferring types for applications of the
various constructor functions is then a matter of inferring types for the components,
and constructing a union type where necessary. For example, (vector-immutable 1

"hello" #t) has type “vector (int∨ string ∨ boolean)”.
In order to extract these type parameters from compound data types, we could

introduce a new kind of type construct called binders, which bind fresh type variables
to the type parameters associated with the compound data types. The various accessor
functions can then use these binders to make the type parameters available to the rest
of the function. For example, the type of vector-ref, which accesses a vector at a given
index, becomes:

vector-ref :: Π(αv,αi).(vector αe ∼ αv) · (int ?= αi) · αe

The (vector αe ∼ αv) binder first asserts that αv must be a vector and then binds the
element type to a fresh type variable αe. We propose the following reduction rules for
types involving binders, in this case as applied to vector-ref, where αv is bound to
the type of its first argument. There are three possibilities:

• The argument αv is a “vector τ”:
τ is substituted for αe in the type of vector-ref, so the return type becomes τ.
The binder has bound a type variable, so it can be eliminated from the type. The
remaining type is then (int ?= αi) · τ. If the index parameter to vector-ref also
has type int, the type of the whole application is further reduced to τ.

• The argument αv is a type variable α:
α is substituted for αv, but nothing else happens.

• The argument αv is a ground type γ, but not a vector:
The binder is replaced by a conditional type (vector ?= γ), αe is replaced by ? in
the rest of the type.

98

4.3 Discussion and Future Work

Listing 4.13 shows a function that returns the sum of the list found at a given index
i in the vector v. sum has type Π(αl).(list αe ∼ αl) · (int ?= αe) · int. If we apply type

1 (define (sum-at v i)
2 (let ([l (vector-ref v i)])
3 (sum l)))

Listing 4.13: Example: taking the sum of elements in one part of a vector

inference to sum-at and apply the reduction rules for binders like above, the type for
sum-at becomes:

sum-at :: Π(αv,αi).(vector αe ∼ αv) · (int ?= αi) · (list α f ∼ αe) · (int ?= α f) · int

while this type is quite bulky, it has the advantage of linking each test made to the
primitive function which requires it.

We think that the above description is a workable approach on supporting im-
mutable data structures in the blame prediction transformation, however further re-
search is necessary. An alternative approach is to assign type ? to all values extracted
from such compound data structures, which is is far easier to implement but sacrifices
precision. The type for sum-at is then simply

sum-at :: Π(αv,αi).(vector ?= αv) · (int ?= αi) · ?

In either case, more research on supporting immutable data structures in blame
prediction is needed. The next section will speculate on mutable data structures, which
pose additional challenges.

4.3.1.2 Mutable Data Structures

Compound data structures like cons cells and vectors typically are first class values,
so they can be passed around by reference and these references can be stored in other
memory locations as well. In our setting, this introduces the problem of aliasing, where
two expressions can evaluate to references to the same (location in a) data structure. In
listing 4.14, we create an alias to the mutable vector numbers in the variable numbers2.
Then, we mutate an element of numbers2 (and numbers), and fetch the same element
from numbers. Evaluating this example will raise a type error, as (+ "hello" 1) fails.

This example demonstrates two difficulties in accommodating mutable compound
data structures. First, mutation can change the types of elements in a data structure,
and therefore the type of the data structure as well. For example, the assignment on
line 5 changes the type of numbers2 to vector (int ∨ string). However, because numbers2

is an alias of numbers, its type should also be changed, such that the vector-ref on
line 6 returns a value of type int ∨ string. Secondly, aliasing introduces an “action at
a distance” effect, where mutation through one reference also affects other references

99

4 Mutation

1 (define numbers (vector 4 8 15 16 23 42))
2 (define numbers2 numbers)
3 (define number-pair (cons numbers numbers2))
4

5 (vector-set! numbers2 3 "hello")
6 (vector-set! numbers 3 (+ (vector-ref numbers 3) 1))

Listing 4.14: Example of aliasing

pointing to the same data structure. For example, after the calls to vector-set!, the type
of number-pair changes to pair (vector (int∨ string)) (vector (int∨ string))

Instead, we suggest a simpler approach for blame prediction involving mutable
compound data structures: mutable compound data structures have their proper types,
but with the element types set to ?. For example, numbers2 will have type vector ?. This
approach is similar to the decision to have type ? for mutable variables, except now
type tests are generated for values extracted from mutable compound data structures.
For example, the vector-ref call in listing 4.14 (line 5) would be guarded by a number?
type test.

Most compound data structures share a common interface for the mutable and
immutable variant. For example, vector-ref works on both kinds of vectors, while
vector-set! only works on mutable vectors. Passing a mutable vector to a function
which expects an immutable vector will work fine, as its type vector ? matches with
the binder (vector αe ∼ α). In order to prevent the opposite, the type for vector-set!

could be as follows:

vector-set! :: Π(αv,αi ,αe).(vector ?= αv) · (mutable? αv) · (int ?= αi) · void

where the mutable? test verifies whether αv is a mutable vector.

Summary In this section we briefly sketched how the blame prediction transforma-
tion could be adapted to support compound data structures. For immutable data
structures it suffices to encode the element types as type parameters. For mutable
data structures we suggest a similar approach as to mutable variables: their element
types are always ?, which results in type tests whenever they are accessed. However,
more research is needed to evaluate whether this approach is viable or whether better
approaches exist.

4.3.2 Blame Prediction and Modules

We presented blame prediction for isolated programs where all the program text is
known in advance. However, a key property of modern programming languages is the
ability to split up programs into several modules. There are several reasons for doing
so; in this section we consider two chief reasons and discuss how blame prediction
might accommodate them.

100

4.3 Discussion and Future Work

The first use of modules is to organize code according to its responsibilities: one
module might provide functionality for logging, another for networking, and so on.
The program as a whole then becomes a graph of modules which import and export
functionality from and to each other. If the graph does not contain cycles, blame pre-
diction can take a similar approach to Typed Racket [Tobin-Hochstadt and Felleisen,
2008], where the results of applying blame prediction to a module can be attached as
metadata. Subsequently, blame prediction can perform a topological sort on the mod-
ule graph and use metadata from already-analyzed modules. If the module import
graphs does contain cycles, the modules which form strongly-connected components
need to be analyzed together.

The second use of modules is to import common functionality from external reposi-
tories, a la Perl’s CPAN or Ruby’s RubyGems. These modules should be analyzed once, for
example when they are uploaded to the repository; their blame prediction metadata
can then again be distributed along with the code. Note that these analysis results can
strongly vary as different versions of dependent modules are used. Complementary
to inferred types, the blame prediction transformation could also use types written by
module authors as part of their documentation.

Finally, if a module is imported whose program text is not known, blame prediction
cannot be applied. The imported variables and functions are then treated as having or
returning type ?. Unfortunately, values flowing into the unknown module cannot be
tested.

4.3.3 Blame Prediction and Non-local Control Flow

In Schemeβ, function execution always goes to the leaves of the syntax tree and return
values are the result of evaluating the expressions at these leaves. There are no mecha-
nisms or syntactic constructs for changing the control flow. In this section we discuss
three techniques that alter the control flow of a program, and how blame prediction
might be extended to support them.

Return expressions In almost all programming languages, evaluating a return expres-
sion immediately ends the current function with its argument as return value. Code
after a return expression is never executed, so it could be removed before — or as
part of — the ANF transformation. Therefore, the blame prediction transformation we
described can be applied to languages with support for explicit returns.

Exceptions A second means of altering control flow is to use exceptions. In most
languages, errors such as dividing by zero or opening a nonexistent file result in ex-
ceptions, which can be caught and handled without aborting the program. When an
exception is raised, execution of the current function is aborted and resumed at the
nearest enclosing catch expression which applies. Recall that the aim of blame pre-
diction is to prevent run-time type errors by checking the preconditions of primitive

101

4 Mutation

operations ahead of time. However, this does not cover other run-time errors such as
failing to open a file or dividing by zero. The difficulty stems from the interaction
with checks produced from blame prediction: which source of errors gets precedence
in reporting?

Listing 4.15 is a simple example which opens the high-scores.txt file, reads the
contents, and compares it against the given current-score variable. It contains two
sources of run-time errors: either the call to open-input-file (line 2) raises a “file
not found” exception because the file does not exist, or the call to >= (line 8) raises
an error because one of its operands is not a number. What happens now if the file
does not exist and current-score is not a number? Should the program report the
“current-score is not a number” error before or after the call to read-file?

1 (define (read-file filename)
2 (let ([port (open-input-file filename)])
3 (let ([contents (read port)])
4 (close-input-port port)
5 contents)))
6

7 (define (is-high-score? current-score)
8 (>= current-score (read-file "high-scores.txt")))

Listing 4.15: Example demonstrating the interplay between checks and exceptions

One approach is to ignore all exceptions when doing blame prediction: this means
that transformed programs might report errors that would be masked by an exception
happening. With this approach, the example above would abort stating that current-score
is not a number regardless of whether the file exists.

Another approach is to make the existing type system sensitive to exceptions — as
we did with side effects in this chapter — by inferring thrown exceptions for expres-
sions and recording them in type functions. The check mobility stage could then treat
exception-raising primitives as a barrier. This approach yields prediction accuracy at
the cost of not propagating check expressions upwards as much as possible. Another
big drawback is that this analysis must be conservative: a function passed as argu-
ment to another function could raise any kind of exception, similar to the side effects
of higher-order functions. With this approach the example would abort with a “file
not found” error without predicting blame for the current-score variable.

Continuations Finally, continuations are the most extreme form of exerting control
over the flow of the program. Continuations record the execution state at a certain
point in time into a value and later restore the execution to that point again, aborting
the current execution. There are several variations of continuations (escape, one-shot,
and delimited, to name a few), but we will focus here on “full-blown” continuations.

102

4.3 Discussion and Future Work

1 (define (f g x)
2 (check (number? x)
3 (+ x (g 2))))

Listing 4.16: Example of a function affected by continuations

In Scheme, invoking continuations is syntactically identical to invoking functions.
This makes it impossible to impossible to reason about programs that use continu-
ations. For example, consider the function in listing 4.16: if our language does not
support continuations, the type of a call to f only depends on the type of g and x. If
g is a continuation, however, the expression (g 2) aborts the computation of f. This
means that not only does (g 2) not produce a value, but the + computation will never
be executed. In that case, blame prediction will perform the (number? x) test for a
computation that never happens!

One way of supporting continuations in the blame prediction transformation re-
quires a bit of programmer cooperation: instead of allowing continuations to be in-
voked directly as (k x), we could introduce a primitive operation (invoke-continuation k x)

with the same semantics. Duba et al. [1991] suggest a similar approach: continuation
invocations are made distinct from function applications with the throw keyword. With
this information, the blame prediction transformation can assume all function appli-
cations are just function applications, and applications of continuations can be treated
as function exit points.

Without programmer cooperation, the blame prediction transformation must con-
servatively assume that every function passed as argument is a continuation as soon
as call-with-current-continuation appears anywhere in the program. Type tests are
then not allowed to move beyond applications of functions passed as arguments. This
severely limits the ability of the blame prediction transformation to move type tests
upwards, and is thus not desirable.

4.3.4 Blame Prediction and Debug Prints

When encountering a problem in their code, many programmers insert print state-
ments to visually determine whether the code behavior matches their expectations.
For example, in listing 4.17, generate-vector is some kind of computation that is
supposed to return a vector. This vector is then indexed using vector-ref at index
(calculate-index i). We have annotated it with the check expressions generated by
blame prediction. The programmer’s intention was to print the values of vec, i and idx

before they are used in the call to vector-ref. However, if (calculate-index i) does
not return a number, the check expression on line 4 will immediately (correctly!) pre-
dict blame and stop the program. Unfortunately, the program will then not execute the
three display expressions that follow, which were supposed to help the programmer
diagnose the error.

103

4 Mutation

1 (let ([vec (generate-vector)])
2 (check (vector? vec)
3 (let ([idx (calculate-index i)])
4 (check (number? idx)
5 (display vec)
6 (display i)
7 (display idx)
8 (vector-ref vec idx)))))

Listing 4.17: Example of how blame prediction can interfere with debug prints

In order to prevent this scenario from happening, we could introduce a primitive
operation barrier which acts as a barrier for check mobility, much like let, set! and
lambda expressions. Adding such an operation would alter the above code as shown
in listing 4.18. Note how the check expressions generated by the vector-ref call are not

1 (let ([vec (generate-vector)])
2 (let ([idx (calculate-index i)])
3 (display vec)
4 (display i)
5 (display idx)
6 (barrier)
7 (check (and (vector? vec) (number? idx))
8 (vector-ref vec idx))))

Listing 4.18: Example of how explicit barriers can prevent check mobility

propagated over the barrier expression on line 6. This allows the program to execute
the debug prints on lines 3–5 before aborting because of the check expression on line 7.

4.4 Conclusion

In this chapter we extended the blame prediction transformation for Schemeβ to sup-
port programs which use mutable variables.

Mutation Section 4.1 discussed how programs using mutation can be supported by
the blame prediction transformation. Typically, program analyses only support muta-
tion in dynamically typed languages if it is type-preserving, or scoped to local vari-
ables. Our analysis allows unrestricted mutation of variables. This introduces the com-
plication that, in the worst case, every expression could modify (the type of) the value
inside a variable. This conflicts with the goal of testing preconditions on variables in
advance: preconditions on mutable variables can only be tested in advance if there is a
guarantee that their value will not change between the test and the primitive operation
which requires it. Moreover, we cannot assume anything about the type of a mutable
variable, so we must assign the “any type” ? to mutable variables.

104

4.4 Conclusion

We developed a conservative analysis which infers the side effect of every expres-
sion, i. e. the variables which evaluation of that expression might mutate. These ex-
pressions then form “barriers” for the check mobility and simplification stages: pre-
conditions cannot be moved past barriers to which they apply, and nested checks may
not be removed if there is a barrier inbetween. Type tests on mutable variables tend to
accumulate right after expressions which potentially modify them, in the case of a set!
we can eliminate such checks depending on the type of the value being assigned.

Safety proof In section 4.2 we demonstrated that the blame prediction transforma-
tion does not change the behavior of a terminating program with respect to type tests.
Central in this proof are extended traces (from chapter 2). These traces not only regis-
ter type tests, but now also track the types assigned to mutable variables to prove that
type tests on these variables are applied to the correct value. The “terminating” qual-
ifier is important, as a non-terminating program might raise blame prediction errors
for expressions which are never reached.

Other features In Section 4.3, we discussed a number of other language features com-
mon to (dynamically typed) programming languages and how they might be sup-
ported in the blame prediction transformation as explained in this thesis. Supporting
these features well would enable one to apply blame prediction to say, JavaScript,
Ruby or Python, which are popular among beginning programmers. Concretely, we
discussed our research roadmaps for 1) the addition of mutable and immutable com-
pound data structures; 2) modular programs; 3) non-local control flow; 4) and the
impact of blame prediction on debug print expressions.

Conclusion With the additions in this chapter, we have fully developed the blame
prediction transformation and proved it correct.

In the next chapter we describe our prototype implementation in broad strokes, i. e.
its architecture and techniques used for program representation and transformation.
In addition, we also discuss how we found and solved two bottlenecks.

105

5
P R O T O T Y P E I M P L E M E N TAT I O N

In this chapter we describe our prototype implementation1 of the blame prediction
transformation as presented in the preceding chapters. Section 5.1 contains some gen-
eral remarks about our program representation and some of the libraries used to ma-
nipulate it. Section 5.2 describes the architecture and design decisions in our imple-
mentation. In section 5.3 we discuss how we solved two important bottlenecks in our
prototype implementation. Some of the code snippets presented in this chapter have
been adapted for presentation and do not exactly match the code as published.

To give a small taste of the effects of the blame prediction transformation, we have
transformed the tak program from the Gabriel benchmarks. The input program is
shown in listing 5.1, the transformed program in listing 5.2. Most notable are the addi-
tion of check expressions and @ expressions. Every precondition in a check expression
is followed by a series of numbers; these are labels identified by the @ expressions
further down in the program.

5.1 General remarks

Before we explain the components of our prototype implementation, we must first
make some general remarks. Our prototype implementation is written in Haskell [Pey-
ton Jones, 2003], a statically typed purely functional programming language. In the
following sections we will present small snippets of Haskell code to exemplify our ar-
chitecture. We therefore assume the reader is familiar with basic Haskell syntax such
as type declarations, expressions and pattern matching.

Intermediate representation Our implementation keeps an intermediate representa-
tion of the input program as an Abstract Syntax Tree (AST). Every expression carries

1 This code is available via DOI doi:10.5281/zenodo.30614 [Harnie, 2015], which is gener-
ated from a Git repository hosted on GitHub (https://github.com/Botje/crystal). The
eval-phd-final release was used to perform our experiments.

107

https://github.com/Botje/crystal

5 Prototype Implementation

1 (define (tak x y z)
2 (if (not (< y x))
3 z
4 (tak (tak (- x 1) y z)
5 (tak (- y 1) z x)
6 (tak (- z 1) x y))))
7

8 (let ([input (with-input-from-file "input.txt" read)])
9 (time

10 (let loop ([n 500] [v 0])
11 (if (zero? n)
12 v
13 (loop (- n 1) (tak 18 12 (if input 6 0)))))))

Listing 5.1: Input program: tak

1 (letrec ([tak (lambda (x y z)
2 (check (and (number? y 1004 1020) (number? x 1004 1012))
3 (if (not (@ 1004 < y x))
4 z
5 (check (number? z 1028)
6 (tak (tak (@ 1012 - x 1) y z)
7 (tak (@ 1020 - y 1) z x)
8 (tak (@ 1028 - z 1) x y))))))])
9 (let ([input (with-input-from-file "input.txt" read)])

10 (time (letrec ([loop (lambda (n v)
11 (if (zero? n)
12 v
13 (check (number? n 1050)
14 (loop (@ 1050 - n 1)
15 (tak 18 12 (if input 6 0))))))])
16 (loop 500 0)))))

Listing 5.2: Output from the blame prediction transformation

108

5.1 General remarks

an annotation such as its source position or type. This representation was inspired
by that of the Glasgow Haskell Compiler (GHC), as described in [Brown and Wilson,
2012, Chapter 5]. There are two benefits to this representation: first, every node in
the tree must have an annotation of the same type, forcing the code which modifies
it to consider every case of the AST when changing the type of the annotation. This
enables the compiler to raise a type error if a portion of the AST is not modified. The
second benefit is that the annotations are readily available while traversing the tree, as
opposed to looking them up in an external data structure and dealing with missing
annotations. We will describe the various annotations attached to the AST as they are
introduced.

1 type Ident = String
2 data Expr a = Expr a (InExpr (Expr a))
3 data InExpr e = Lit LitVal
4 | Ref Ident
5 | Appl e [e]
6 | If e e e
7 | Let [(Ident, e)] e
8 | LetRec [(Ident, e)] e
9 | Lambda [Ident] (Maybe Ident) e

10 | Begin [e]

Listing 5.3: Abstract Syntax Tree representation

The Haskell definition of our AST is shown in listing 5.3. Concretely, the AST is
of type Expr a, where a represents the type of the annotation(s) attached to every
expression. The constructors of the InExpr e type represent (in order): literal expres-
sions, variable references, function applications, if-expressions, let-expressions, letrec-
expressions, lambda-expressions, and begin-expressions. All expressions correspond
directly with the definitions in figure 2.2 (and letrec in figure 3.1), except for lambda
expressions.

For our prototype implementation we implement a superset of Schemeβ (but still a
subset of full R5RS Scheme). Most notably, the implementation does support all of the
data types defined in R5RS, almost all of the library functions, variadic functions (see
below), and special forms for control such as cond and do. Our implementation does
not support syntax macros, nor does it support continuations or dynamic-wind.

Variadic functions In the previous chapters we only considered lambda expressions
with a fixed number of parameters. As we discussed in section 2.8, the Scheme pro-
gramming language also supports functions with a variable number of parameters.
We opted to add support for this feature in our implementation, as a number of the
benchmarks we evaluate in chapter 6 use variadic functions.

The Maybe argument to the Lambda constructor represents the name of the optional
variable to capture extra arguments. For example, the expression

109

5 Prototype Implementation

(lambda (a b . rest) body)

is represented by the term (a1 and a2 are annotations)

Expr a1 (Lambda ["a", "b"] (Just "rest") (Expr a2 body))

Mutation The AST as presented above does not have an explicit data constructor for
assignment. Instead, assignment is modeled as an application of the set! “function”.
This enables our implementation to share a large portion of the code for variable
mutation with the code for function application. In addition, it simplifies the code for
check mobility significantly.

Uniplate: Generic AST traversals Our implementation performs many different trans-
formations on the AST, but typically only on specific parts of the program. In regular
Haskell, we would have to write lots of boilerplate code to perform the transformation
everywhere in the program and manually recombine the results. Instead, we have im-
plemented almost all of the transformations in this chapter using Uniplate [Mitchell
and Runciman, 2007a]. This library contains functions such as universe, which auto-
matically traverses a data structure and returns all values of the specified type. For
example, it enables us to find the free variables of an expression with a one-liner:

freeVariables :: Expr a → Set Ident
freeVariables expr = fromList [r | Ref r ← universe expr]

In addition, the Uniplate library contains transform, which performs a bottom-up
traversal of a data structure and applies a function to every value of a certain type. We
use this function to selectively perform modifications by using pattern matching. For
example, the snippet in listing 5.4 identifies let expressions which bind one variable
and inlines their definition into the let body if they are only used once. The interesting
case here is on line 5, when both the pattern match on line 3 and the extra condition is
satisfied. If the expression is a let expression which either binds more than one variable
or the bound variable is used more than once, the case on line 6 returns the original
expression If the expression is not a let expression, it is immediately returned without
modifications.

1 inlineSingleUse :: Expr a → Expr a
2 inlineSingleUse expr = transform go expr
3 where go orig@(Expr a (Let bnds bod)) =
4 case bnds of
5 [(id, e)] | 1 == numberOfUses id bod → inline id e bod
6 otherwise → orig
7 go orig = orig

Listing 5.4: Example of transform: inlining variables which are used only once

110

5.2 Architecture

1 getEffect :: Expr (Label, Type, Effect) → Effect
2 getEffect (Expr (_, _, ef) _) = ef
3

4 setEffect :: Effect → Expr (Label, Type, Effect)
5 → Expr (Label, Type, Effect)
6 setEffect ef (Expr (l, t, _) ie) = Expr (l, t, ef) ie
7

8 modifyEffect :: (Effect → Effect) → Expr (Label, Type, Effect)
9 → Expr (Label, Type, Effect)

10 modifyEffect f (Expr (l, t, ef) ie) = Expr (l, t, f ef) ie

Listing 5.5: Boilerplate code for getting, setting and modifying the effect of an annotation of
an expression

Lenses: Composable structure introspection and modification Finally, our imple-
mentation often needs to inspect and modify values which are deeply nested in an-
other data structure. For example, say that we have an expression of type
Expr (Label, Type, Effect). In order to get, set and modify the Effect part of this
value, we must write the three functions in listing 5.5. These functions cannot be reused
for expressions with different annotations such as Expr (Label, Effect).

In order to avoid writing several such functions, our implementation makes use of
the lens library by Edward Kmett. This library consists of a large variety of small com-
binators called lenses which focus on sub-parts of a compound value. Several lenses
can be composed to focus even further. The focused value can then be read or mutated
easily. We can reimplement getEffect and setEffect as follows:

1 -- Given ann :: Simple Lens (Expr a) a
2 annEffect = ann . _3
3 getEffect expr = expr ^. annEffect
4 setEffect ef expr = expr & annEffect .~ ef
5 modifyEffect f expr = expr & annEffect %~ f

Listing 5.6: Lens code for getting, setting and modifying the effect of an annotation of an
expression

As this example demonstrates, lenses can be composed using the . (dot) operator.
Once focused, the value can be accessed using the ^. operator, mutated using the .~

operator, and transformed using the %~ operator. In our implementation we do not
write the helper functions, but just use the lenses and their combinators directly.

5.2 Architecture

The overall architecture of our implementation is a pipeline (shown in listing 5.7),
where every stage performs a specific part of the blame prediction transformation.
These stages are monadic actions in the Step monad, which combines two different
monads. The first is ReaderT Config, which makes the command-line options available

111

5 Prototype Implementation

1 type Step a = WriterT [StepResult] (ReaderT Config IO) a
2 type StepResult = (String, Text)
3

4 pipeline = transformC >=> infer >=> addChecks >=> postprocess

Listing 5.7: Overview of the blame prediction pipeline

to the stages, and the WriterT [StepResult] enables steps to report arbitrary informa-
tion which is printed either during program execution, or when it exits. The four parts
of pipeline are as follows:

1. transformC (section 5.2.2), which establishes some invariants and transforms the
code to Administrative Normal Form (ANF);

2. infer (section 5.2.3), which infers types for all expressions in the program;

3. addChecks (sections 5.2.4 and 5.2.5), which converts the conditional types into
check annotations, performs check mobility, and renders the check annotations
into the code.

4. postprocess (section 5.2.6), which largely undoes the ANF transformation. This
part is not integral to the transformation, but it aids significantly in manual
inspection of the resulting program.

We start by explaining how our implementation parses programs into their in-memory
representation.

5.2.1 Parsing

We use the well-known Parsec [Leijen and Meijer, 2002] library for parsing Schemeβ

programs, which enables a declarative, top-down style of writing parsers. For exam-
ple, listing 5.8 shows a vertical slice of the parser code involved in processing a lambda

expression. The parameters function is responsible for processing the parameter list of
the lambda expression. The subset of Scheme supported by our prototype implemen-
tation allows three forms of parameter bindings:

1. (lambda (a b) ...), which expects two parameters a and b;

2. (lambda (c . d) ...), which expects at least one parameter c and other argu-
ments are bound to a list in d; and

3. (lambda e ...), which simply binds its arguments to a list in e.

The lambda parser is invoked by the sexp parser after it encounters a lambda key-
word in parentheses. This parser uses the parameters and letBody parsers to parse the
lambda’s parameters and body, respectively. Finally, the makeExpr function generates a
label for the lambda expression.

112

5.2 Architecture

The parameters parser works as follows: if it can consume an open parenthesis
character "(", the code reads one or more identifiers (line 1), optionally followed by
a dot and another identifier (line 2). If such an identifier is not found (case 1), rest is
Nothing. If an identifier is found (case 2), rest is bound to Just the identifier. Line 3

returns a tuple of a list of static parameters and the optional extra identifier. If there
is no open parenthesis character at the start of parameters, line 6 attempts to parse an
identifier (case 3).

1 parameters = parens (do vars ← many1 ident
2 rest ← optionMaybe (symbol "." >> ident)
3 return (vars, rest))
4 <|> do i ← ident
5 return ([], Just i)
6

7 lambda = do (fixed, rest) ← parameters
8 body ← letBody
9 makeExpr $ Lambda fixed rest body

10

11 sexp = parens ((reserved "lambda" >> lambda) <|> ...)
12

13 makeExpr ie = do s ← getState
14 putState (succ s)
15 return $ Expr s ie

Listing 5.8: Parsec code for a lambda expression

The result of the parsing stage is an AST where every expression is identified by
a unique label, i. e. Expr Label. Our implementation keeps a counter for these labels
as the “user state type”. If there was a parse- or logic error, this is reported and our
implementation stops further processing.

5.2.2 Preprocessing and ANF Transformation

After parsing, the program consists of a number of declarations and a number of
expressions. These are combined into one letrec expression, such that the rest of the
transformation pipeline can work on a single expression. This expression undergoes a
number of transformations, as described below.

First, alpha renaming is performed. This is a common technique used in program
transformations, which ensures that variable bindings are not shadowed by others.
This makes identification of free variables and function inlining trivial.

Next, our implementation splits the binding groups of letrec expressions in strongly-
connected components (SCCs). This technique is described in [Peyton Jones, 1987, Sec-
tion 6.2.8] and Waddell et al. [2005]. The main result of this technique is that every
letrec expression binds exactly one (group of) mutually recursive function(s). This
makes the inference of side effects of any function as simple as taking the union of

113

5 Prototype Implementation

the side effects of all functions in the binding group. In addition, the reduction of
infinite types to finite types (by Solve) becomes faster. Any variable or non-recursive
function definitions in a letrec binding group become ordinary let expressions.

Next, our implementation eliminates let expressions with an empty binding group.
Also, let expressions which bind multiple variables are split into nested let expressions.
This has the effect of making the order of evaluation of expressions in a let expression
explicit, and ensuring every let expression binds exactly one variable, as in the type
rules.

Next, the and, or, do, cond, when, and unless Scheme special forms are transformed
into regular Scheme expressions according to the expansions in R5RS [Abelson et al.,
1998]. R5RS also defines some functions which compose successive car and cdr calls.
Our implementation transforms such functions into their constituent parts, so (cadr x)

becomes (car (cdr x)).
Finally, the program is transformed to administrative normal form (ANF; [Sabry

and Felleisen, 1993]). This transformation, as explained in chapter 2, makes the order
of evaluation explicit by enforcing one simple rule: arguments to function applications
or conditional expressions may only be simple expressions such as variable references
or constants. The ANF transformation then ensures that nested function applications
are bound to temporary variables before they are used.

Listing 5.9 describes a part of the ANF transformation responsible for generating let

expressions for these temporary variables.. The entire transformation runs in a State

monad which keeps track of allocated labels. Key to the transformation is a continu-
ation function k, which represents a “hole” that must be filled in with an expression.
In order to transform a function application, first the function and its arguments must
be transformed. If any of these is again a function application, the float function is
applied, which generates code to assign the nested function application to a variable.
It does this by generating a variable name (line 4), transforming the nested function ap-
plication (line 7), calling the continuation k with a reference to this new variable (line 8),
and finally constructing the let expression (line 9).

1 float :: Expr Label -> (Expr Label -> State Int (Expr Label))
2 -> State Int (Expr Label)
3 float expr k =
4 do var <- next "tmp-"
5 labRef <- nextSeq
6 labLet <- nextSeq
7 expr_ <- anf expr return
8 rest <- k (Expr labRef $ Ref var)
9 return $ Expr labLet $ Let [(var, expr_)] rest

Listing 5.9: ANF transformation code

At the end of this stage, the program is still an expression of type Expr Label, but
with a number of invariants:

1. Every bound variable has a unique name.

114

5.2 Architecture

2. Every letrec expression binds one or more mutually recursive functions.

3. Every let expression binds exactly one variable.

4. Function applications and conditional expressions have only simple expressions
(such as variable references and constants) as arguments.

5.2.3 Check Inference

After parsing the program into an expression and establishing the aforementioned
invariants above, we turn to check inference. Recall from chapter 2 that check inference
consists of type inference and check introduction. In order to perform type inference,
we must walk the program tree and, using the rules outlined in chapters 2 to 4, assign
a type and an effect (the variables it can mutate) to every expression. The process itself
is structured around the Infer monad, defined as follows:

type Infer a = ReaderT (Map Ident Type) (State TVar) a

This monad combines a reader monad with a state monad: the first is used to prop-
agate variable bindings downwards into the program, while the second is used to
allocate fresh type variables.

The type rules themselves are implemented by a function with the following type:

Expr Label -> Infer (Expr (TLabel, Type, Effect))

There is a one-to-one correspondence between the type rules and the various clauses
of this function. The output is a program annotated with labels (real or synthetic),
types, and effects.

For example, listing 5.10 shows how the type is inferred for a lambda expression.
For brevity, we only show the code for fixed-length functions. Line 2 generates fresh
type variables for all of the function arguments, and lines 3–4 construct a new typing
environment env' which maps the argument names to these type variables. Line 5

performs check inference of the body in this new environment. Finally, lines 6–9 con-
struct a new Lambda expression with the inferred type t_lambda and an empty effect.
Note that any effects produced by the body are recorded in the TFun constructor. For
comparison, figure 4.1 defined the type rule for lambda expressions as follows:

Γ, x1 : α1, . . . , xn : αn `E e : τ ! x α1, . . . , αn fresh

Γ `E (lambda (x1 . . . xn) e) :
x
Π(α1 ...αn) . τ ! ∅

(TE-lambda)

The support for recursion in our prototype implementation is implemented by a
call to solveLetrec in the check inference clause for letrec expressions. It receives the
labels and (infinite) types of the functions defined in the letrec binding group. After
performing the widening as described in section 3.2.3, it repeatedly applies the func-
tionals to approximations and reduces them to normal form until the approximations

115

5 Prototype Implementation

stop changing. The resulting finite types are returned to the inference process, which
uses them in the inference of the letrec body.

1 infer (Expr l (Lambda ids Nothing bod)) =
2 do a_ids <- mapM (const freshTVar) ids
3 let t_ids = map (\v -> (LVar v, TVar v, emptyEffect) a_ids
4 env' <- asks (extendMany ids t_ids)
5 e_bod <- local (const env') (infer bod)
6 let (t_bod, ef_bod) = (e_bod ^. ann._2, e_bod ^. ann._3)
7 let t_lambda = TFun a_ids ef_bod $ simplify t_bod
8 return $ Expr (LSource l, t_lambda, emptyEffect)
9 (Lambda ids Nothing e_bod)

Listing 5.10: Check inference for lambda expressions

1 data Type = TAny -- ? in this dissertation
2 | TError
3 | TVar TVar
4 | TInt | TString | TBool | TSymbol | TVoid | TVec | TPair | TList
5 | TNull | TChar | TPort | THash
6 | Tor [Type]
7 | TFun [TVar] Effect Type
8 | TVarFun VarFun
9 | TIf (TLabel, TLabel) Type Type Type -- (blame label, cause label)

10 | TAppl Type [(TLabel, Type)]
11 | TChain Type TVar TLabel Type
12

13 type Effect = Set Ident
14 data VarFun = VarFun Ident TLabel ([(TLabel, Type)] -> TLabel -> Type)
15

16 data Check = Cnone
17 | Cand [Check]
18 | Cor [Check]
19 | Check [TLabel] Type (Either LitVal Ident)

Listing 5.11: Definition of types

For completeness, the definition of the Type and Check data types is shown in list-
ing 5.11. Most of the data constructors of Type correspond directly to the types declared
earlier2. One exception is the TVarFun constructor, which represents the type of vari-
adic built-in Schemeβ (and Scheme) functions. For example, the + function can take
any number of arguments and returns an int, but it also requires that each argument
is an int. The corresponding VarFun value contains a Haskell function which generates
the correct type given the types and labels for its arguments (the labels are required

2As in chapter 2, we use TInt instead of TNumber. The run-time type test generated for TInt is
number?.

116

5.2 Architecture

to correctly ascribe blame). Another non-standard data constructor is TChain, which
represents immediately-applied type functions.

The Check data type is used to represent preconditions of check expressions in anno-
tations. The Cnone data constructor is the “no-op” precondition #t. Cand and Cor repre-
sent conjunctions and disjunctions of preconditions, respectively. Finally, the fields of
the Check data constructor are, in order: a list of labels to blame if the precondition is
not met, a concrete type τt to test against, and either a literal value or a variable which
is to be tested.

Finally, after inferring types and effects for every expression in the program, check in-
troduction transforms the types into predicates for check expressions. Converting types
into check predicates is done exactly as specified in section 2.3, i. e. it only inserts checks
in the annotations for Appl expressions and performs check simplification afterward.
The final type after check introduction becomes Expr (TLabel, Check, Type, Effect).

5.2.4 Check Mobility

The check mobility stage is implemented as a bottom-up transformation which runs
over the program. For every expression, it analyses the Check annotations of its sub-
expressions and alters them according to the rules laid out in sections 2.4 and 4.1.2.
Listing 5.12 shows an extract of this functionality, with clauses for function applica-
tions, variable references and conditional expressions.

1 move :: Expr CheckedLabel -> Expr CheckedLabel
2 move simple@(Expr lctef@(l, c, t, ef) e) =
3 case e of
4 Appl op args -> Expr lctef $ Appl (move op) (map move args)
5 Ref r -> simple
6 If cond cons alt ->
7 let (cond', cons', alt') = (move cond, move cons, move alt)
8 (cons_c, alt_c) = (cons' ^. annCheck, alt' ^. annCheck)
9 c' = simplifyC $ Cor [cons_c, alt_c]

10 lctef' = lctef & annCheck .~ c'
11 in Expr lctef' $ If cond' cons' alt'
12 {- other cases -}

Listing 5.12: Example of check mobility

For comparison, figure 4.2 defined check mobility for these constructs as follows:

si → s′i ↑ #t ∀i ∈ 0 . . . n

(check p (s0 s1 . . . sn))→ (s′0 s′1 . . . s′n) ↑ p
(FE-apply) x→ x ↑ #t (FE-var)

s→ s′ ↑ #t e1 → e′1 ↑ p1 e2 → e′2 ↑ p2

(if s e1 e2)→ (if s′ (check p1 e′1) (check p2 e′2)) ↑ p1 ∨ p2
(FE-if)

117

5 Prototype Implementation

The clause for function applications simply performs mobility on its simple sub-
expressions, which might still contain lambda expressions. The clause for variable ref-
erences returns itself, as such a reference is never annotated with checks.

The clause for conditional expressions is more elaborate. It performs a number of
steps: first, check mobility is applied to all three sub-expressions (line 7). Next, the
check annotations on the branches of the conditional expressions are extracted using
the ^. lens operator (line 8). The checks are combined with a Cor constructor and
simplified on line 9. Finally, the .~ lens operator replaces (only) the Check part of the
annotation with the composed checks (lines 10–11).

Although we treat begin expressions as syntactic sugar for nested let expressions,
for performance reasons we treat them in a separate clause. In short, the predicates
are “bubbled up” through the begin expression, where every expression can both con-
tribute new predicates and block some predicates from propagating. The check predi-
cates which arrive at the top of a begin expression are moved into the annotation of the
entire begin expression. For ease of implementation, predicates are not reduced to their
minimal form at this stage, meaning that the check annotation for the nth expression
in a begin expression consists of the union of all propagated predicates below it. These
will be cleaned up in the check simplification step, described next.

5.2.5 Check Simplification

In this stage, the remaining check expressions are analysed and any redundant pred-
icates or expressions are removed. It consists of two separate transformations: one
implements and–check and check–check simplifications as described in section 2.5, and
the other implements set–check simplification as specified in section 4.1.3.

The first transformation is very difficult to implement in a purely functional setting
due to the nature of check–check elimination. This specific simplification not only elim-
inates predicates in nested check expressions where the outer check already verified
the predicates, but it also merges the blame labels of the inner check into the outer
check. In essence, the simplification needs to proceed from the top down, while accu-
mulating labels into the check expressions at the top. To further complicate things, this
simplification may only be performed if there is no intermediate mutation of the vari-
ables being tested, as mutation can invalidate the results of an earlier type test (recall
section 4.1.3).

We have opted to implement this transformation as follows: first, our implementa-
tion walks the AST and constructs a checksMap :: Map TLabel (Check, Type, Effect),
which maps each expression to its annotation. In addition to this, a second map
varMap :: Map Ident (TLabel, Type) keeps track of the label where a variable was
last successfully checked, and which type it was tested against. When a nested check

expression is encountered, the variables involved in the predicates are looked up in
varMap. For every variable — where the type being tested for matches that in varMap —
the predicate is removed from the check and added to the one in checksMap where the

118

5.2 Architecture

1 eliminateRedundantChecks ast = do
2 let exprs = universe ast
3 let startChecks = M.fromList [(l,(c,t,ef)) | Expr (l,c,t,ef) _ <- exprs]
4 let (augChecks, _) = execState (walk expr) (startChecks, M.empty)
5 let finalChecks = M.map (_1 %~ (simplifyC . mergeSameChecks)) augChecks
6 return $ updateChecks finalChecks ast
7

8 walk :: Expr (TLabel, Check, Type, Effect)
9 -> State (ChecksMap, VarMap) (Expr (TLabel, Check, Type, Effect))

10 walk (Expr (l,c,t,ef) ie) = do
11 c' <- removeAlreadyChecked l c
12 updateVarMap l c'
13 case ie of
14 (Appl f args) -> do
15 mapM_ walk (f:args)
16 forM_ (effectToList ef) $ \id -> modify (varMap %~ M.delete id)
17 (Lambda ids r bod) -> do
18 (cm, vm) <- get
19 forM_ allSet $ \id -> modify (varMap %~ M.delete id)
20 case r of
21 Nothing -> return ()
22 Just x -> modify (varMap %~ M.insert x (l, TList))
23 walk bod
24 modify (varMap .~ vm) -- restore varMap
25 -- other cases

Listing 5.13: Simplified overview of check simplification

predicate was last checked. However, if an expression is encountered which mutates
variables, the variables are removed from varMap, as their type could have changed.
Finally, the altered checks in checksMap are applied to the AST again.

Because the full code is too complex to present (it is almost one hundred lines
of Haskell code), we have chosen to show a very simplified overview of this algo-
rithm in listing 5.13. The walk function implements check–check simplification as a
monadic action in the State (ChecksMap, VarMap) monad. We have defined associ-
ated lenses checksMap and varMap which access the correct part of the state tuple. The
removeAlreadyChecked function on line 11 performs three tasks at once: it removes
predicates from c if they are already satisfied according to varMap, it re-adds those
predicates to the outer check expressions in checksMap, and finally returns a simpli-
fied check predicate without the duplicate predicates. updateVarMap on the next line
examines the check predicate and adds or updates the types of any predicates which
must have succeeded into varMap. Finally, the remainder of the walk function walks the
actual expression, updating varMap where necessary.

The clause for Lambda expressions (lines 17–24) processes the body without assuming
any knowledge about mutable variables (line 19) and restores varMap after processing

119

5 Prototype Implementation

the function. Merging redundant predicates in the same check predicate (and–check

simplification) is done by the call to mergeSameChecks on line 5.
The second transformation is the set–check simplification, which is much simpler.

It walks the sub-expressions of begin expressions, searching for a set! expression fol-
lowed by an expression with check predicates which test the mutated variable. If the
predicates are satisfied by the type of the value passed to set!, they are replaced with
Cnone (#t) and the check predicate is simplified.

After check simplification has finished, the check expressions are reified in the pro-
gram. The expressions that are referred to by the check expressions are identified with
an @ marker. At the same time, the type of the AST is reduced to Expr TLabel, dropping
all annotations.

5.2.6 Postprocessing

In the beginning of this chapter we described the preprocessing stage, which enforces
certain invariants in the program. This stage undoes most of the structural changes
made to the program, in order to produce a program which is as close as possible to
the input program. The aim of this postprocessing is to make it easier to manually
inspect the resulting program.

The first transformation undoes the ANF transformation by inlining any temporary
variables it generated. Recall that the ANF transformation makes the order of eval-
uation explicit by binding the results of nested function applications to temporary
variables. This transformation looks for let expressions which bind such a temporary
variable and replaces them with their body, with the variable replaced by the bound
expression. There is one important restriction however: the variable may not be used
in a check precondition, as otherwise this will cause an unbound variable to be refer-
enced. This step can eliminate almost all temporary variables introduced by the ANF
transformation.

The very final transformation step in our implementation undoes the conversion
made after parsing: the nested letrec expressions are turned into define statements
for (groups of) functions. Similarly, any let expressions become define statements too.
The expression at the bottom of the program is the first non-let, non-letrec expression
encountered while traversing the program.

In order to actually produce output, our implementation uses a pretty-printer in
the style of Hughes [1995] and Wadler [2003]. It could just emit the S-expressions
that make up the program on a few lines without any significant whitespace, but
the addition of a pretty printer makes it easier to manually inspect the program for
debugging.

120

5.3 Optimizations

1 instance Uniplate Check where
2 uniplate (Cnone) = plate Cnone
3 uniplate (Cand cs) = plate Cand ||* cs
4 uniplate (Cor cs) = plate Cor ||* cs
5 uniplate (Check labs typ lv) = plate Check |- labs |- typ |- lv

Listing 5.14: Uniplate instance for the Check datatype

5.3 Optimizations

During the development of our prototype implementation, we paid much attention to
correctness, but only little to the memory and CPU usage of our code. When some of
the benchmark programs (from chapter 6) took over a minute to process, we started
profiling our prototype application and eliminating the biggest bottlenecks. In this
section, we discuss these bottlenecks and show how we removed them.

Uniplate The Uniplate library, as mentioned earlier in this chapter, was key in rapidly
implementing transformation passes over our AST. However, as the number of passes
grew, our run-time profile showed more and more time was being spent inside Uni-
plate. Rewriting some of these passes naïvely by manually traversing the program AST
resulted in a program speedup, but this would result in significant code bloat if done
for all passes.

Explaining the solution requires some background knowledge about the Uniplate
library and generic programming in Haskell first. In order to function correctly, Uni-
plate needs to know — given a data constructor for a type — which of its fields can
contain values of that type. For example, when using the universe function to look for
values of type Check, the Cnone constructor contains none, while the Cand constructor
contains a list of Check values. In the absence of user annotations, Uniplate can make
use of the Typeable and Data subclasses to locate these fields, explained in [Lämmel
and Peyton Jones, 2003, 2005]. However, the decision of which fields to examine must
be made at run-time, which leads to a lot of overhead. We implemented the necessary
Uniplate instances by hand and saw an order of magnitude speedup.

For example, listing 5.14 shows the required instance for the Check data type (defined
in listing 5.11). In essence, each clause of the uniplate function must return a tuple
containing 1) a list of all the Check values contained in its argument, and 2) a function
which reconstructs the value given a new identically-sized list of Check values. The
plate function constructs such a tuple and the ||* and |- operators extend this tuple
for every field of the various data constructors. The ||* operator signals that the field
to the right contains a list of the desired Check values. The |- operator used in the
Check constructor indicates there will never be a value of the right type in that field.
In case of the Check constructor, those fields are a list of labels, a ground type, and a
variable name, neither of which can contain a value of type Check.

121

5 Prototype Implementation

Simplification and sharing Another source of excessive memory and CPU usage
was our simplify function for types. When types are generated or constructed from
other types, we use the simplify function to both reduce the size of the type and canon-
icalize it. For example, our first implementation simplified union types as shown in list-
ing 5.15. Aside from the use of nub — which isO(n2) but n is always very small — there

1 simplify (Tor ts) = let l = nub $ map simplify ts
2 in case l of
3 [t] -> t
4 ts' -> Tor ts'

Listing 5.15: Naïve simplification for union types

is another problem with this implementation: every invocation of this simplify func-
tion will return a completely reconstructed value. This destroys sharing (i. e. where
multiple references to the same variable reference the same address), and forces our
implementation to spend a lot of time and memory in constructing identical types.

Our solution was to make the simplify function more complex in order to keep track
of which invocations of simplify actually performed a simplification. If no simplifica-
tion was performed, it returns the original input, preserving sharing and avoiding
unnecessary allocations. Listing 5.16 presents the modification-aware simplify func-
tion. The simplify function is now a wrapper around the simp function, which returns
Nothing if no simplification was made and Just the simplified type otherwise.

Lines 5–12 show how simplification of union types is done in a modification-aware
way. The value of ts' (line 5) is a list of Maybe Type values, where a Just constructor
indicates simplification happened, and Nothing indicates no simplification happened.
This list is zipped together (line 7) with the input types, producing a list of either the
modified type if simplification happened, or the original type if not. Finally, if any
simplification happened in the first step (anySimplified) or the new list of types is
shorter than the input list (anyDuplicate) Just a new type is returned, otherwise simp

returns Nothing.
The addition of this modification-aware simplification trades complication and a bit

of extra CPU usage for reduced memory use and no more useless value reconstruc-
tions.

5.4 Conclusion

In this chapter we described our prototype implementation of the blame prediction
transformation. The architecture was built around the three stages outlined in chap-
ter 2, namely:

Parsing This stage reads in a file with S-expressions and constructs an Abstract Syntax
Tree (AST) with labels.

122

5.4 Conclusion

1 simplify :: Type -> Type
2 simplify t = maybe t id $ simp t
3

4 simp :: Type -> Maybe Type
5 simp (Tor ts) = let ts' = map simp ts
6 anySimplified = any isJust ts'
7 ts'' = zipWith (\t m -> maybe t id m) ts ts'
8 ts''' = nub ts''
9 anyDuplicate = length ts''' < length ts''

10 in if anySimplified || anyDuplicate
11 then Just (Tor ts''')
12 else Nothing

Listing 5.16: Modification-aware simplification for union types

Preprocessing and ANF Transformation This stage does macro expansion and applies
the ANF transformation [Sabry and Felleisen, 1993] to the program to make con-
trol flow explicit and ensure that there are no nested function applications.

Check Inference This stage performs check inference as outlined in sections 2.2, 3.2.1
and 4.1.1: at the end, every expression in the program has a type and effect
associated with it.

Check Mobility This stage transforms the conditional types in the program to explicit
check annotations and performs check mobility as defined in sections 2.4, 3.2.1
and 4.1.2.

Check Simplification This stage attempts to eliminate duplicate check expressions. It
uses the rules in section 2.5 and the extra rule from section 4.1.3.

Postprocessing This stage undoes the ANF transformation where possible, resulting
in output close to the input program. Additionally, it inserts labels for the check

expressions.

Finally, we discussed two key optimizations we performed to make our prototype
fast enough for interactive development, namely hand-written annotations for the Uni-
plate library and modification-aware simplification in order to preserve sharing and
prevent unnecessary type reconstruction.

In the next chapter we evaluate our prototype implementation of the blame predic-
tion transformation against programs from the well-known Gabriel benchmarks, as
well as from the Computer Language Benchmark Game (CLBG). We evaluate these
programs according to two criteria: the first is a measure of how well the blame pre-
diction transformation can move type tests upwards. The second criterium is the re-
duction in type tests, which is a by-product of our type system. Finally, we apply
techniques from mutation testing to generate programs which contain type errors and

123

5 Prototype Implementation

subsequently show how the blame prediction transformation is able to identify these
errors significantly earlier.

124

6
E VA L U AT I O N

In the previous chapters we defined the blame prediction transformation, extended
it to support recursion and mutation, and described our prototype implementation.
The goal of the blame prediction transformation is to extract type tests from primitive
functions and move them upwards as far as possible, in order to reduce the amount
of code the programmer needs to inspect and the time spent waiting for the program
to report a type error. In this chapter we will evaluate the blame prediction trans-
formation according to two metrics: the distance between check expressions and the
primitive operations they guard, and the reduction in type tests. Both metrics can be
measured both in terms of the program text and run-time operations.

6.1 Metrics

In this section we define two metrics. The first metric measures the distance between
a check expression and its corresponding primitive operation. The second metric mea-
sures the number of type tests the blame prediction transformation is able to eliminate,
which attacks on the “long time to crash” problem. We will evaluate each metric both
in terms of the program text and the run-time behavior.

To give an intuition for the effect on run-time behavior, consider the code in list-
ing 6.1: a wrapper around a copy-file function which prints the number of bytes
copied. Unfortunately, the programmer made a mistake and applied the length func-
tion instead of the file-size function. Upon running the program, it will spend some
time copying the file (maybe a long time if the file is big), only to report an error on the
call to length, as source is not a list. By contrast, the blame prediction transformation
will insert a check expression before the call to copy-file. In terms of the program text,
moving the test on the precondition of length over one statement is not a huge win. In
terms of run-time behavior however, the program immediately predicts blame, so the
programmer does not need to wait for the program to copy the file first.

125

6 Evaluation

1 (define (copy-file-and-report source destination)
2 (copy-file source destination)
3 (display "Copied " (length source) " bytes"))

Listing 6.1: Example where the static prediction is small, but run-time prediction can be large

Metric 1: check–use distance
At the start of this dissertation we postulated the hypothesis that time spent debugging
a type error in a dynamically typed language is correlated with the distance between
the place where the value which causes the error is computed and where it is used in a
primitive operation. Consider the program in listing 6.2: when the programmer runs it
as-is, the program produces an error such as line 4: +: expected number, given "0".
The cause of this error is the string "0" passed as the second argument to the triangle

function. To discover this error, the programmer must search for the argument which
is faulty (res), and trace back through the program to find out where res received
its value. In listing 6.2, the point where the variable res is passed as argument to + is
marked with use , and the place where it is defined is marked with def . The use

coincides with check , the place where the preconditions of the function are checked.

1 (define (triangle n res) def
2 (if (= n 0)
3 res
4 (triangle (- n 1) (+ n res)))) check use
5

6 (triangle 10 "0")

Listing 6.2: Example of debugging errors in dynamically typed languages

As described in the previous chapters, the goal of the blame prediction transforma-
tion is to insert check expressions which perform type tests on variables before they are
actually used in primitive operations, reducing the distance the programmer needs to
cover. Listing 6.3 shows the program from listing 6.2 after the blame prediction trans-
formation has inserted check expressions. Because of the check expression on line 6, the
program can already predict blame for the res variable, which is only used on line 8.
When blame is predicted at check , the programmer receives a report stating which
precondition was violated (number? res), the def and use points for the variable(s)
involved, along with bindings for other local variables.

As can be seen, applying the blame prediction transformation makes the distance
between the definition def and the check expression check smaller than the distance
between the definition def and the application of + (use).

126

6.1 Metrics

1 (define (triangle n res) def
2 (check (number? n)
3 (if (= n 0)
4 res
5 (let ([tmp1 (- n 1)])
6 (check (number? res) check
7 (let ([tmp2 (+ n res)]) use
8 (triangle tmp1 tmp2)))))))
9 (triangle 10 "0")

Listing 6.3: Example of debugging errors with the help of blame prediction

To summarize the above, we define the check–use metric as the difference of the
following distances:

define–check the distance between the definition of a variable and the first check ex-
pression involving it.

define–use the distance between the definition of a variable and the first usage of this
variable in a primitive operation.

Note that the define–check distance must always be smaller than or equal to the
define–use distance. The check–use distance must therefore be a non-negative number.
In dynamically typed programs such as listing 6.2, the distance is zero, as primitive
operations check their preconditions themselves. The goal of the blame prediction
transformation is to maximize the check–use distance by inserting check expressions
into the program as high as possible.

We can express this metric in terms of the program text by counting “levels”; we call
this the “static prediction”. We count one level for every if or let expression between
a variable definition and its use in a primitive operation. In the case of listing 6.3
for example, the define–check distance for the res variable is two, as there are an if-
expression (line 3) and a let-expression (line 5) between the definition and the first
check expression. The define–use distance for the same variable is three, as the let-
expression on line 7 comes after the check expression. Having computed both distances,
the value for the check–use metric is the difference: one level.

We can also measure the check–use metric in terms of the program run-time; we call
this the “run-time prediction”. We take the evaluation of one primitive operation (+,
sqrt, string-append, . . .) as one unit of work or “tick”. The ticks are a measure for
the amount of computation that happens, invariant with regard to computer speed
or the particular evaluation technique used. In particular, the use of recursive func-
tions will cause a significant difference between static and run-time prediction. The
check–use metric is measured as the difference in the number of ticks recorded by an
instrumented interpreter at the check and use points.

One issue with this metric is that it depends on the input to the program and the
(dynamic) path taken through it. For example, in a program that reads a list of num-

127

6 Evaluation

bers from a file, sorts the list and performs a computation over the ten largest values,
the size of the list will determine the number of ticks between the start of the pro-
gram and a failing type test. A variable that is defined before the list is sorted the list
should ideally be checked before the work is done. In the benchmarks we perform in
section 6.3, only a small minority of variables are affected by the size of the input.

Finally, this metric is related to the “root cause analysis” and “long time to crash”
problems we defined in the introductory chapter. The first problem is related to finding
the root cause of the type error, when one is reported. The larger the check–use distance
in static prediction, the less code the programmer needs to inspect to find the real root
cause. The second problem is centered around the time the program takes to report
a type error and halt. This is the domain of run-time prediction, which measures the
number of ticks saved between the check and use points.

Metric 2: Reduction in type tests
The second metric we define in this chapter is the number of type tests that the blame
prediction transformation can statically verify and eliminate. In order to give an in-
tuition for this metric, consider the tak program shown in listing 6.4. This code is
annotated with black dots (•) at each location where evaluation must perform a type
test before continuing. For example, before performing the < primitive operation on
line 2, the evaluator must not only verify that the arguments x and y are numbers, but
also that < is a function. Similarly, the recursive invocations of tak must verify that tak
is a function before it can be invoked.

1 (define (tak x y z)
2 (if (not• (<• y• x•))
3 z
4 (tak• (tak• (-• x• 1•) y z)
5 (tak• (-• y• 1•) z x)
6 (tak• (-• z• 1•) x y))))

Listing 6.4: The original tak program

Compare this to the blame predicted tak program in listing 6.5, where the major-
ity of type tests have been removed by check inference, and check simplification has
merged duplicate type tests such as (number? x). As the figure shows, blame predic-
tion is able to remove almost all type tests1, with only three explicit check expressions
remaining. As with the check–use metric above, we can also measure this reduction in
terms of run-time steps. For example, evaluating (tak 10 5 2) with the definition in
listing 6.4 performs 5,427 type tests, while the definition in listing 6.5 only performs
1,685. This is a 69% reduction in the number of type tests performed!

1 Of course there are more advanced and more suitable type systems [Tobin-Hochstadt et al., 2011;
Wright and Cartwright, 1994] which are focused on eliminating the number of type tests. However,

128

6.1 Metrics

There are two ways of looking at this reduction: if we apply blame prediction to a
program and run it using a normal interpreter, the remaining check expressions rep-
resent overhead. Alternatively, if we run a blame predicted program using a trusting
interpreter — one which does not test any preconditions in its primitive operations
— only the check expressions explicitly introduced by the blame prediction transfor-
mation prevent the program from crashing. This metric thus relates to the “long time
to crash” problem as well. By reducing the number of type tests in the program, the
program spends less time verifying preconditions, reducing the time the programmer
needs to wait for the program.

1 (define (tak x y z)
2 (check (and (number?• y){<,−}

3 (number?• x){<,−})
4 (if (not (< y x))
5 z
6 (check (number?• z){−}

7 (let ([t1 (tak (- x 1) y z)]
8 [t2 (tak (- y 1) z x)]
9 [t3 (tak (- z 1) x y)])

10 (tak t1 t2 t3))))))

Listing 6.5: The tak program after blame prediction

We calculate the reduction in type tests by comparing against a “dumb” variant of
the type system. This variant does not infer types for variables and constants, it does
not propagate types obtained by function calls, and it does not perform check mobility
or simplification. In essence, this dumb type system produces check expressions at
every primitive operation, like a dynamically typed programming language would.
We can then count the reduction statically (the number of check expressions in the
program), and dynamically by counting the number of check expressions evaluated.
There can be a significant reduction in the number of dynamic type tests if blame
prediction can hoist checks out of loops, or remove them altogether.
To recap, we have defined two metrics in this section: check–use distance, and reduction
in the number of type tests. Additionally, both metrics can be measured both in terms
of the program expressions and in terms of the run-time behavior of the program.
In the next section we describe the program corpora on which we will apply these
metrics in order to evaluate blame prediction.

these type systems are traditional, i. e. they refuse to run the program if they find a type error. Con-
verting them to predict blame will require some work.

129

6 Evaluation

6.2 Program Corpora

In order to evaluate the effectiveness of blame prediction, we have applied it to pro-
grams from two well-known benchmark suites. These programs were originally writ-
ten to evaluate the performance of programming language implementations, but have
also served as program corpora for other program analysis techniques, such as type
reconstruction [Tobin-Hochstadt et al., 2011; Wright and Cartwright, 1994]. We chose
these two sets of programs in particular for two reasons: first, because they cover a va-
riety of program purposes and programming styles. Secondly, these sets of programs
are available in the Scheme programming language [Abelson et al., 1998], which is
a superset of the Schemeβ language we studied in this dissertation. As Scheme is a
superset of Schemeβ, there were some programs which our implementation could not
handle, which we briefly discuss in section 6.2.3. It is important to keep in mind that
the aim of this section is not the performance of the programs themselves, but rather
whether blame prediction can help with early detection of type errors.

6.2.1 Gabriel Benchmarks

The first corpus we use is a set of benchmarks collected by Gabriel [1985] to gauge
the performance of LISP implementations. This book builds on earlier work [Gabriel
and Masinter, 1982], where the authors discuss how to best benchmark programming
language implementations.

The programs in the Gabriel benchmarks have been used to measure the perfor-
mance of proposed interpretation or compilation techniques, such as concurrent garbage
collection [Appel et al., 1988; Boehm et al., 1991], optimizing compilers [Adams et al.,
1986], automatic parallelization [Harrison III, 1989], and more fundamental interpreter
techniques [Clinger et al., 1988; Steenkiste and Hennessy, 1987].

6.2.2 Computer Language Benchmarks Game

The second corpus we use to evaluate the effectiveness of blame prediction is that
in the Computer Language Benchmarks Game [Fulgham, 2008]. The purpose of the
Computer Language Benchmarks Game, or CLBG, is to compare a set of standard
programs between programming language implementations in terms of memory usage
and execution speed. Anyone in the community can submit an improved program, as
long as it adheres to a number of requirements. For example, the fibo program must
calculate Fibonacci numbers in a tree-recursive fashion rather than iteratively.

Programs from this benchmark set have been used recently to evaluate the per-
formance of new programming languages or implementations [Grossman et al., 2005;
Schäfer and Poetzsch-Heffter, 2010; Tobin-Hochstadt et al., 2011], supercompilers [Mitchell
and Runciman, 2007b], and interpretation techniques [Brunthaler, 2010].

The CLBG contains programs for a number of implementations of the Scheme pro-
gramming language (Bigloo Scheme, Chicken Scheme, Gambit Scheme, MzScheme),

130

6.2 Program Corpora

with minor variations with respect to input and output. We have chosen to ana-
lyze programs for Chicken Scheme [CHI] because this implementation is close to the
R5RS [Abelson et al., 1998] specification of Scheme, and still supported on our devel-
opment system. Some minor alterations have been made, such as removing optional
argument declarations from the program and hard-coding command-line arguments
where necessary.

6.2.3 Excluded programs

Both the Gabriel benchmark set and the CLBG set contain programs which our imple-
mentation could not handle. In this section we briefly discuss some of the language
features which were the reason for discarding these programs.

Use of define-record By default, Scheme has only two data types: vectors and pairs
(which can be used to construct lists, trees and other data structures). One
popular language extension — formalized in Scheme Request For Implementa-
tion 9 [Kelsey, 1999] — enables programmers to define custom compound data
types, like C structures. For example, in the nbody program from the CLBG pro-
gram set we find the following:

(define-record body x y z vx vy vz mass)

This declares a new record type body with the named fields, accessors and muta-
tors for these fields (such as body-x and body-x-set!), a constructor make-body,
and a predicate body?. Custom record types are not supported in either our im-
plementation or our formalism.

Use of syntax macros Scheme features hygienic macros [Kohlbecker et al., 1986], which
enable programmers to write custom syntactic constructs without fear of variable
capture. The nucleic2 and kanren programs of the Gabriel benchmark set make
extensive use of macros. Syntax macros can be expanded before passing the pro-
gram to the blame prediction transformation. Note that the use of macros might
hide extensive amounts of code, in which blame prediction might insert check

expressions. Predicting blame for expressions that originate inside such syntax
macros might be confusing to the programmer, therefore our implementation
only handles simple macros such as and, or, unless and when.

Use of call/cc The call-with-current-continuation primitive, or call/cc as it is com-
monly called, is a Scheme primitive for capturing and reifying the continuation
that is waiting for the result of the expression in the body. In the Gabriel bench-
marks, the ctak, maze and puzzle programs use call/cc as an early exit mech-
anism. In the CLBG, the heapsort and except programs also use call/cc like
this. We previously discussed call/cc as part of the section on non-local control

131

6 Evaluation

flow (section 4.3.3). We concluded that continuations can be used to express arbi-
trary control flow, and so all but the simplest uses of call/cc cannot be analyzed
statically. Therefore, we exclude programs which make use of call/cc.

Other extensions to Scheme Some programs in the CLBG use Chicken-specific ex-
tensions to Scheme. For example, the objinst and methcall programs use a
CLOS-like object system. The message, prodcons and process programs require
support for threading, as defined in SRFI 18 [Feeley, 2001]. Finally the regexdna,
regexmatch and wordfreq programs require support for regular expressions.

In the end, we retain 30 programs of the 39 originally from the Gabriel set, and 20

of the 43 programs originally from the CLBG set.

6.3 Results

In this section we will evaluate the blame prediction transformation according to the
metrics defined in the beginning of this chapter, using the selected programs from the
Gabriel benchmarks and the CLBG set. First, we describe how we present each metric.

Presentation of static prediction
We have instrumented our implementation of the blame prediction transformation to
produce the define–use and define–check distances for all variables which appear in
a check expression. We present our results (figs. 6.1 and 6.4) as a bar graph, with
variables on the X axis. The Y axis shows the define–use distance in dark grey, with
the define–check distance overlaid in light grey. The check–use distance is thus the light
grey part at the top of each dark grey bar. Intuitively, the smaller this part is, the
higher up the check expression is in the variable’s lifetime. Additionally, every bar
is scaled with respect to the size of the function, and variables are sorted according
to their define–use distance relative to the function size. This scaling accounts for the
cases where the blame prediction transformation inserts a check expression in small
functions, which would otherwise be counted as a misleading 50% decrease in the
define–check distance over normal dynamically typed programs. Finally, the bar chart
only shows variables where the blame prediction transformation was able to effectively
move a check expression upwards. For every benchmark set we describe how many
type tests were moved.

Presentation of run-time prediction
As described earlier, the transformed program is run under an instrumented Schemeβ

interpreter. This interpreter keeps a tick count, which is incremented for every invo-
cation of a primitive operation. Whenever a variable is introduced, checked, or used
in a primitive operation, the current tick count is recorded. The number we report for

132

6.3 Results

a given variable is then the number of ticks between the first check expression involv-
ing that variable and the first call to a primitive operation which uses it. Unlike the
distance in the program text, the results for this distance can span multiple orders of
magnitude. We therefore group the recorded distances in bins, where every bin is the
logarithm base 2 of the number of ticks between check and use, rounded upwards. We
present the bins on the X axis, and the number of variables for each bin on the Y axis.
As with the distance in the program text, we do not include results for variables where
check–use distance is zero. We report this metric in figs. 6.2 and 6.5.

Presentation of reduction in the number of type tests
Finally, we present the reduction in type tests (figs. 6.3 and 6.6) as a simple percentage:
tests remaining in the blame predicted program versus tests in the input program. We
measure this percentage both statically and dynamically, with programs on the X axis
and the percentage of remaining type tests on the Y axis. The reduction in terms of
program text (static) is presented in dark grey, the reduction in terms of dynamic type
tests is presented in light grey. Additionally, the raw tables containing the remaining
type tests in both the static and dynamic case can be found in tables 6.1 and 6.2 at the
end of this chapter.

6.3.1 Gabriel Benchmarks

Static prediction Figure 6.1 shows the aggregated static prediction for all variables
in the Gabriel benchmark. Out of 786 type tests, 48 type tests could be moved upwards
over a distance of half their containing function. 71 type tests more (for a total of 119)
could be moved up by 40%, and 63 more (for a total of 182) could be moved up by
30%. 604 type tests could be moved upwards by 20% or less, of which 95 could not be
moved up at all.

Run-time prediction Figure 6.2 shows the logarithm base 2 of the run-time predic-
tion on the X axis, and the number of type tests for each distance. We can see that the
overwhelming majority of dynamic type tests happen up to 28 (= 256) ticks before they
are used. While this is not a huge amount, it could still be a win for the programmer
if the run-time prediction spans across the invocation of a user-defined function.

Some type tests are performed significantly earlier than they normally would be:
respectively 211, 212, 215, 216 and 222 steps. These represent a significant number of
primitive function invocations and thus a significant amount of time savings.

Reduction in type tests Figure 6.3 shows a bar chart of the type tests remaining after
applying the blame prediction transformation. Statically only 29% of the type tests
remain, while dynamically 26% remain. For most programs, there are roughly as many
remaining type tests for both static and dynamic. deriv and lattice2 are exceptions,
where only 10% of dynamic tests remain, versus 20% of the static type tests. Vice

133

6 Evaluation

 0

 20

 40

 60

 80

 100

%
 o

f f
un

ct
io

n
de

pt
h

Variables

Define

Check

Use

Figure 6.1: Static prediction across all variables in the Gabriel benchmarks

 0

 5

 10

 15

 20

 25

 30

 35

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

of

 v
ar

ia
bl

es

of ticks

Figure 6.2: Run-time prediction across all variables in the Gabriel benchmarks

134

6.4 Evaluating Blame Prediction by Random Mutation

versa, we find that mazefun, nestedloop and triangle retained a considerable number
of dynamic type tests. The raw numbers can be found in tables 6.1a and 6.2a at the
end of this chapter.

6.3.2 Computer Language Benchmark Game

Static prediction Figure 6.4 shows an overview of all variables across all test pro-
grams in the CLBG benchmarks. Out of 141 type tests, only 8 could be moved upwards
over a distance of half their containing function. 5 type tests more (for a total of 13)
could be moved up 40%, and 10 more (for a total of 23) could be moved up by 30%.
118 type tests could be moved upwards by 20% or less, of which 9 could not be moved
up at all.

Run-time prediction Figure 6.5 shows the run-time prediction for the CLBG bench-
mark. There are fewer type tests overall, and the programs tend to run for a shorter
amount of time than the Gabriel benchmarks. We see a similar pattern as with the
Gabriel benchmarks: the majority of type tests are only up to 24 (=16) ticks before they
are used. As with the CLBG benchmarks only two type tests — at 29 and 214 ticks
respectively — represent early error detection opportunities.

Reduction in type tests Figure 6.6 shows a bar chart of the type tests remaining after
applying the blame prediction transformation. Statically only 33% of the type tests
remain, while dynamically 34% remain. For some programs (ary, binarytrees, matrix,
nestedloop) the number of dynamic type tests is substantially higher. This can be
attributed to type tests in loops which cannot be eliminated. The raw numbers can be
found in tables 6.1b and 6.2b at the end of this chapter.

6.4 Evaluating Blame Prediction by Random Mutation

In the previous section we evaluated the blame prediction transformation by applying
it to programs from both the Gabriel and the CLBG benchmarks. The programs in
these suites were intended for performance benchmarking, so they do not contain any
errors. In this section, we will techniques inspired by mutation testing [Howden, 1982;
Jia and Harman, 2011] to test how well blame prediction can detect the inserted type
errors and report them early.

Our methodology is as follows: we have taken benchmarks from both suites which
completed in less than one hour. For every benchmark, we generated ten mutants
where a variable was randomly replaced by another variable in scope. This simulates a
programmer making a typo or copy-paste error. We then applied the blame prediction
transformation to the mutants and ran the program under two configurations of our
interpreter: one where checks were ignored, and one where checks halt the program

135

6 Evaluation

 0

 20

 40

 60

 80

 100

conform

cpstack

dderiv
deriv

destruct

div dynamic2

earley
fft graphs

lattice2

mazefun

nboyer

nestedloop

nfa nothing

nqueens

paraffins

peval
sboyer

sort1
takl

triangle

%
 o

f r
em

ai
ni

ng
 te

st
s

Programs

Static
Dynamic

Figure 6.3: Remaining type tests in the Gabriel benchmarks (lower is better)

 0

 20

 40

 60

 80

 100

%
 o

f f
un

ct
io

n
de

pt
h

Variables

Define

Check

Use

Figure 6.4: Static prediction across all variables in the CLBG benchmarks

136

6.4 Evaluating Blame Prediction by Random Mutation

 0

 2

 4

 6

 8

 10

 12

22 23 24 25 26 27 28 29 210 211 212 213 214 215

of

 v
ar

ia
bl

es

of ticks

Figure 6.5: Run-time prediction across all variables in the CLBG benchmarks

 0

 20

 40

 60

 80

 100

ackermann

ary binarytrees

fannkuch

fasta
fibo

harmonic

mandelbrot

matrix
nestedloop

partialsums

random

recursive

reversefile

sieve
spectralnorm

strcat
sumcol

takfp
wc

%
 o

f r
em

ai
ni

ng
 te

st
s

Programs

Static
Dynamic

Figure 6.6: Remaining type tests in the CLBG benchmarks (lower is better)

137

6 Evaluation

if they detect a type error. In this section we show a few case studies where blame
prediction was able to significantly predict type errors in advance.

Case study: nqueens
The first example is the one we presented in our introductory chapter, namely the
nqueens program from the Gabriel benchmarks. In listing 6.6, the x in (car x) on line 15

has been replaced by z. The try-it function forms a tree-recursive process, where the
first branch (line 13) is able to immediately place a queen at the suggested position
and the second branch (line 15) skips a position and tries the next. By applying the
mutation however, this process errors out after exploring the entire left side of the tree,
because z is initially an empty list.

The blame prediction transformation will insert a check expression for this case
around the + expression on line 12. We see that the check expression aids the root
cause analysis by predicting blame for the (car z) expression, which turns out to be
the root cause itself. Additionally, with checks enabled, running the blame predicted
version of this program saves a large amount of time over regular execution. Con-
cretely, the erroneous program performs 384,420 primitive operations before it reports
the error, whereas with checks enabled it only needs 30 primitive operations. The cor-
rected program performs 222,905 primitive operations in total. In terms of real-world
clock times, the erroneous program runs for 2.30 seconds before it reports a type error,
whereas the transformed program with checks enabled only runs for 0.51 seconds. In
terms of the “long time to crash” problem, the numbers above show a clear reduction
in time needed to run the program.

Case study: spectralnorm
The next example is taken from the spectralnorm program from the CLBG, specifically
in its approximate function. The mutation is situated on line 16, where vBv has been
replaced by v. As can be seen, the mutated program has a type error, as v is a vector
whereas vBv is a number.

Applying blame prediction causes a check expression to be inserted right after the
definition of v. In essence, this check stops the program before all of the work on
lines 6–14 can be done. When the precondition fails, it blames the / operator which is
exactly the root cause of the problem. With checks disabled it needs 6,421,128 ticks, or
25.34 seconds. Conversely, with checks enabled the program only needs 3 ticks or 0.50

seconds. The “long time to crash” problem is thus also solved.

Case study: reversefile
Our final example is the short reversefile program from the CLBG benchmark set.
Listing 6.8 uses a simple recursive function to read lines from a file and print them out
in reverse order. However, the mutation on line 5 attempts to apply the line variable
as a function while it in fact a string.

138

6.5 Conclusion

1 (define (nqueens n)
2

3 (define (one-to n)
4 (let loop ((i n) (l '()))
5 (if (= i 0) l (loop (- i 1) (cons i l)))))
6

7 (define (try-it x y z)
8 (if (null? x)
9 (if (null? y)

10 (begin (if trace? (begin (write z) (newline))) 1)
11 0)
12 (+ (if (ok? (car x) 1 z)
13 (try-it (append (cdr x) y) '() (cons (car x) z))
14 0)
15 (try-it (cdr x) (cons (car x → z) y) z))))
16

17 (define (ok? row dist placed)
18 (if (null? placed)
19 #t
20 (and (not (= (car placed) (+ row dist)))
21 (not (= (car placed) (- row dist)))
22 (ok? row (+ dist 1) (cdr placed)))))
23

24 (try-it (one-to n) '() '()))

Listing 6.6: Case study: nqueens

The blame prediction transformation inserts a check expression right at the top of
the unless expression. In effect, the blame predicted program halts the program after
reading one line instead of the entire file. When it halts, it predicts blame for the call
of line as a function, which is again exactly the root cause. With checks disabled, the
program needs 21,468 ticks, or 0.73 seconds. With checks enabled, running the program
needs 3 ticks, or 0.58 seconds. For this case, the “long time to crash” problem is only
reduced slightly.
These were just a few case studies of where blame prediction can highlight program-
ming mistakes and help the programmer find them. In all three cases, the blame
prediction transformation was able to insert a check expression which pinpoints the
root cause exactly. In addition, running the transformed programs saved a significant
amount of time over the non-transformed programs in two out of three cases, thus
solving the “long time to crash” problem.

6.5 Conclusion

In this chapter we have evaluated how well the blame prediction transformation — as
described in this dissertation — can move type tests upwards in a program. Recall that
the aim of moving type tests upwards is to catch run-time errors earlier. This has two

139

6 Evaluation

1 (define (approximate n)
2 (let ([u (make-vector n 1.0)]
3 [v (make-vector n 0.0)]
4 [vBv 0.0] [vV 0.0])
5

6 (do ((i 0 (fx+ i 1)))
7 ((fx= 10 i))
8 (mulAtAv n u v)
9 (mulAtAv n v u))

10

11 (do ((i 0 (fx+ i 1)))
12 ((fx= n i))
13 (set! vBv (+ vBv (* (vector-ref u i) (vector-ref v i))))
14 (set! vV (+ vV (* (vector-ref v i) (vector-ref v i)))))
15

16 (sqrt (/ vBv → v vV))))

Listing 6.7: Case study: spectralnorm

1 (define (reverse-input)
2 (let ([line (read-line)])
3 (unless (eof-object? line)
4 (reverse-input)

5 (write-line → line line))))
6

7 (with-input-from-file "reversefile.input" reverse-input)

Listing 6.8: Case study: reversefile

benefits: the programmer only needs to consider the code between a variable’s defini-
tion and the first check expression involving it and it reduces the time the programmer
has to wait for errors.

We defined two metrics for evaluating blame prediction. The first is the check–use

distance, defined as the distance or time between the points where a variable is first
checked and where it is used in a primitive operation. The second metric is the re-
duction in type tests, as the blame prediction transformation statically eliminates a
number of type tests. Both metrics can be measured in terms of the program text and
in terms of its run-time behavior.

We applied these metrics to two well-known and frequently-used program corpora:
the Gabriel benchmarks [Gabriel, 1985] and the Computer Language Benchmarks
Game [Fulgham, 2008]. We concluded that the blame prediction transformation was
able to increase the check–use distance, both in terms of the program text and the
run-time behavior. We highlighted a few cases where blame prediction significantly
improved the distance and time the programmer needed to cover in order to find bugs
in their program.

140

6.5 Conclusion

In the introductory chapter we introduced two problems related to finding problems
in dynamically typed programs. The first problem was that of “root cause analysis”,
the process of finding the root cause of errors reported by the program. As we showed,
the blame prediction transformation introduces type tests close to or at the root cause
of the type error. The second problem was that of running the program and waiting
for it to report a type error. In the case studies we observed, the time to crash was
significantly reduced. In conclusion, we have shown that the blame prediction trans-
formation solves both problems.

In the next chapter we will situate blame prediction among related work in the fields
of program analysis, transformation, and debugging. We divide the related work in
three broad categories according to the time when the analysis is performed.

141

6 Evaluation

Filename LOC Dyn BP Remaining
conform 437 469 118 25.16%
cpstack 19 13 4 30.77%
dderiv 45 52 14 26.92%

deriv 35 56 15 26.79%
destruct 48 71 24 33.80%

div 34 43 10 23.26%
dynamic2 1518 1978 473 23.91%
dynamic 1518 1984 481 24.24%

earley 448 486 195 40.12%
fft 86 89 33 37.08%

graphs 479 211 91 43.13%
lattice2 174 112 55 49.11%
lattice 186 118 43 36.44%

mazefun 167 166 45 27.11%
nboyer 618 236 73 30.93%

nestedloop 58 55 16 29.09%
nfa 38 57 19 33.33%

nothing 1 1 0 0.00%
nqueens 27 42 12 28.57%
paraffins 165 155 56 36.13%

peval 494 777 266 34.23%
sboyer 626 241 74 30.71%

sort1 99 99 33 33.33%
takl 23 26 6 23.08%
tak 12 16 4 25.00%

triangle 64 62 23 37.10%
Total 7419 7615 2183 28.67%

(a) Gabriel Benchmarks

Filename LOC Dyn BP Remaining
ackermann 11 16 10 62.50%

ary 18 29 7 24.14%
binarytrees 27 75 21 28.00%

fannkuch 72 86 30 34.88%
fasta 78 71 27 38.03%
fibo 12 14 3 21.43%

harmonic 9 9 4 44.44%
mandelbrot 39 53 16 30.19%

matrix 50 57 27 47.37%
nestedloop 21 30 8 26.67%

partialsums 34 52 13 25.00%
random 18 19 7 36.84%

recursive 31 63 15 23.81%
reversefile 7 6 1 16.67%

sieve 24 28 7 25.00%
spectralnorm 41 71 30 42.25%

strcat 32 30 14 46.67%
sumcol 6 9 2 22.22%

takfp 12 19 5 26.32%
wc 14 19 2 10.53%

Total 556 756 249 32.94%
(b) CLBG Benchmarks

Table 6.1: Tables showing the reduction in static type tests, resp. for the Gabriel and the CLBG
benchmarks

142

6.5 Conclusion

Filename Dyn checks BP checks Dyn time (s) BP time (s) % of checks
conform 52,768,901 13,792,852 863.90 288.51 26.14%
cpstack 57,643,277 25,619,234 879.99 442.78 44.44%
dderiv 22,650,015 5,050,005 350.19 107.74 22.30%
deriv 21,900,003 2,050,001 353.75 88.52 9.36%
destruct 120,582,483 60,126,230 1,788.71 959.94 49.86%
div 144,780,905 48,060,431 2,431.82 919.26 33.20%
dynamic 28,574,151 7,703,107 687.39 200.93 26.96%
dynamic2 27,134,259 6,605,833 698.08 194.98 24.34%
earley 26,997,082 9,428,798 488.69 241.53 34.93%
fft 153,641,006 57,869,001 2,601.11 1,457.61 37.67%
graphs 78,727,812 27,022,212 1,337.54 717.70 34.32%
lattice 696,223,644 75,946,002 11,996.30 3,962.28 10.91%
lattice2 689,661,689 83,897,087 12,309.45 4,237.54 12.16%
mazefun 157,029,503 75,481,500 2,402.88 1,029.74 48.07%
nboyer 553,614,434 120,200,392 9,664.39 2,810.93 21.71%
nestedloop 292,104,980 144,051,770 4,277.72 1,852.91 49.32%
nfa 385,500,005 141,900,001 6,924.74 2,624.34 36.81%
nothing 0 0 0.00 0.00 0.00%
nqueens 124,871,003 29,762,000 1,949.82 820.23 23.83%
paraffins 23,332,703 5,155,900 453.42 394.76 22.10%
peval 79,621,099 18,123,300 1,437.67 482.73 22.76%
sboyer 2,062,783,135 463,245,198 33,426.71 11,722.28 22.46%
sort1 167,343,093 42,560,562 2,858.71 6,312.20 25.43%
tak 119,268,003 39,756,000 1,763.00 882.81 33.33%
takl 265,287,625 34,607,398 4,289.52 1,465.70 13.05%
triangle 214,000,122 133,300,111 3,230.57 2,167.76 62.29%
Total 6,566,040,932 1,671,314,925 109,466.07 46,385.71 25.45%

(a) Table showing the reduction in dynamic type tests, Gabriel benchmarks

Table 6.2: Tables showing the reduction in dynamic type tests, resp. for the Gabriel and the
CLBG benchmarks

143

6 Evaluation

Filename Dyn checks BP checks Dyn time (s) BP time (s) % of checks
ackermann 427 222 0.01 0.01 51.99%
ary 12,018 5,003 0.22 0.17 41.63%
binarytrees 3,708,480 1,983,586 71.48 39.79 53.49%
fannkuch 923,604 366,195 17.88 10.57 39.65%
fasta 258,445 126,853 5.09 2.88 49.08%
fibo 24,672,048 7,049,157 357.51 162.61 28.57%
harmonic 599,998 199,999 10.84 6.83 33.33%
mandelbrot 73 16 0.01 0.01 21.92%
matrix 2,507,072 1,923,881 46.66 38.68 76.74%
nestedloop 1,235,823 599,186 22.42 11.00 48.48%
partialsums 92,516 27,503 3.71 2.59 29.73%
random 9,007 2,004 0.22 0.09 22.25%
recursive 3,600,075 1,028,683 68.15 28.39 28.57%
reversefile 42,932 10,732 0.76 0.43 25.00%
sieve 144,410 37,131 2.91 1.25 25.71%
spectralnorm 7,225,303 2,012,774 131.32 61.88 27.86%
strcat 3,874,862 1,164,242 71.53 47.29 30.05%
sumcol 5,005 2,000 0.12 0.08 39.96%
takfp 379,511,862 126,503,953 5,943.16 3,735.15 33.33%
wc 42,979 12,355 0.96 0.47 28.75%
Total 428,466,939 143,055,475 6,754.96 4,150.17 33.39%

(b) Table showing the reduction in dynamic type tests, CLBG benchmarks

144

7
R E L AT E D W O R K

In this chapter we situate our work in past and ongoing research in preventing and
discovering program errors. This related work can be subdivided in three main strate-
gies, which we highlight in section 7.1. In order to compare the related work to blame
prediction, we define a number of criteria in section 7.2. Next, we discuss the actual
related work, grouped by strategy (sections 7.3 to 7.5). Finally, section 7.6 summarizes
and compares all related work.

7.1 The error detection landscape

In this section we discuss the three main strategies for detecting and preventing errors
in programs.

Static analysis The first strategy is static analysis, which analyses the program with-
out actually running it. The most basic static analysis, used in nearly every program-
ming language implementation, detects syntax errors and references to non-existant
variables.

The most well-known form of static analysis is the type checking found in statically
typed languages such as Java, C#, Haskell, ML, and others. There has recently been
a surge in research on retrofitting type systems onto dynamically typed languages
such as Ruby [An et al., 2011; Furr et al., 2009], Erlang [Sagonas and Luna, 2008], and
JavaScript [Anderson et al., 2005; Thiemann, 2005]. At the core of this type checking
is the type system: a set of logical rules that describe prerequisites for correct program
execution. The type checker takes the type annotations in a program and uses the rules
in the type system to verify these annotations. If a contradiction is found, the type
checker reports a type error. The type system determines the sort of errors that can
be detected, for example typestate properties [Aldrich et al., 2009; Strom and Yemini,
1986], variable tainting [Ørbæk and Palsberg, 1997; Shankar et al., 2001], and nullable
types [Fähndrich and Leino, 2003; Hubert, 2008].

145

7 Related Work

A more powerful form of static analysis is abstract interpretation, where the program
is executed with abstractions of values [Cousot and Cousot, 1977a, 1992b]. The degree
of abstraction for values and primitive operations determines the kind of errors an
abstract interpretation can detect. For example, abstracting numbers into “negative,
zero or positive” already allows the detection of “division by zero” and “square root of
negative number” errors. The downside to abstract interpretation is its potentially long
running time and high memory usage. We will not consider abstract interpretation in
depth for this reason.

Dynamic analysis The second strategy is dynamic analysis, which analyses the pro-
gram while it is running. The simplest analysis performs run-time type tests when
evaluating primitive operations or similarly performs null-pointer tests before access-
ing objects in object-oriented languages. A more involved method of dynamic analysis
is to instrument the run-time system. This can be used to detect errors beyond those
in primitive operations, such as printing warnings when variables are used without
initializing them, or use of untrusted user input in system commands.

A more advanced strategy is automatic instrumentation of programs. In recent years
there has been research into type systems that defer some checking to run-time. This
enables them to accept more programs while still guaranteeing safety. One example
of such a type system is gradual typing [Siek and Taha, 2006], where type casts are
automatically inserted and verified at run-time.

Finally, the programmer can manually alter the program to enable dynamic anal-
ysis. In dynamically typed languages, programmers can use metaprogramming or
annotations to automatically monitor their program for certain conditions. The most
prominent example of this is contract technology [Meyer, 1992], where the program-
mer expresses constraints about certain values that are verified as they are used further
on in the program.

Post-mortem analysis The last strategy is post-mortem analysis, which analyses pro-
grams that have already encountered an error. The main goal of this strategy is to work
back from the error to find its cause. Typically, post-mortem debugging is done using
debuggers, with the program stopped just after detecting the error or working from
a memory dump of a crashed program. Finding the exact cause of unwanted behav-
iors of crashes is often a time-consuming process, so we will mainly discuss strategies
which speed up this process [Bourdoncle, 1993; Lewis, 2003; Marceau et al., 2007].

In the rest of this chapter, we will discuss related work which fits in one of these three
strategies.

146

7.2 Criteria

7.2 Criteria

We define the following criteria:

C1 Time of error detection
While there are three strategies for error detection, we distinguish between four distinct
periods where errors can be detected in the edit-compile-run cycle. Each period rep-
resents a trade-off between the ability to detect errors, the time taken to perform the
analysis and the time the programmer has to wait for errors:

1. The first period is compile-time error detection: programmers get feedback about
errors in their program and potential improvements while their program is being
compiled. This is the most desirable, as feedback is instantaneous; the downside
is that the class of errors which can be detected is often limited.

2. The second period consists of “ahead of run-time” error detection. By this we
specifically mean approaches which report errors at run-time, but some time
before they would normally be detected. Approaches in this category could, for
example, report errors at the start of functions if some condition is not met or
an invariant is violated. These approaches typically perform an analysis on the
program up front and instrument the program, so feedback to the programmer
comes later than compile-time, but earlier than run-time.

3. The third period are the approaches which only do run-time error detection.
Many dynamically typed languages fall under this category, but the approaches
we reference attempt to improve on this baseline in some sense.

4. Finally, the fourth period is for post-mortem analysis techniques, i. e. approaches
where faults in the program are discovered by analyzing post-crash results.

C2 Amount of programmer intervention needed
Some of the related work described in this chapter requires extra work from the pro-
grammer in order to detect errors. For example, in a statically typed language this
extra work comes in the form of type annotations. Ideally the programmer does not
need to make any changes for errors to be detected, such that an unmodified program
can be run with better error detection. Finally, some approaches simply aid in a tedious
process, but the brunt of the work must still be done by the programmer.

C3 “Must-fail” analysis
In chapter 1, we outlined the reasons why we are looking for a “must-fail” analysis,
i. e. a technique which only report errors which are guaranteed to happen. Many tech-
niques form a conservative “might-fail” analysis and report errors even for impossible
situations. For example, compilers for statically typed languages will typically reject
programs where dead code contains a type error.

147

7 Related Work

C4 Short analysis time
Finally, using an error detection approach should not add much additional time to the
edit-compile-run cycle. This is a classical trade-off: the more time taken, the more er-
rors a technique can detect, but the more the programmer’s patience is tested. For our
purposes, we consider thirty seconds on a modern laptop as the cut-off point. When
examining related work, we will attempt to quantify the analysis time, but not many
papers give accurate timings.

The ideal approach for error detection while developing dynamically typed pro-
grams must adhere to these criteria: C1 errors must be detected as early as possible,
ideally at compile time. However, some erroneous situations can only be detected at
run-time, sometimes long before the error actually manifests; C2 as little program-
mer intervention as possible is desired, as not to distract from the program being
developed; C3 and C4 are a must, in order not to distract the programmer with
errors that will not be triggered in a test run or make the edit-compile-run cycle too
long.

7.3 Compile-time error detection: Static analysis

Type systems [Pierce, 2002] are a canonical solution to prevent illegal operations in
a program. Illegal operations are those for which the language’s semantics have no
definition, such as indexing an array using strings or invoking an integer as if it were
a function. A type system defines a logical system together with a set of rules for
generating logical statements from the program text. If there are no contradictions,
every expression in the program has a principal type; evaluating this expression will
result in a value that has the same run-time type as predicted by the type system.
Executing a well-typed program under a certain run-time system can then be proven
to never “go wrong” [Milner, 1978].

Statically typed languages traditionally analyse the program at compile time and
reject the program if a type error is detected. While this is desirable for the safety
purposes outlined above, it prevents the execution of programs as long as there is
an expression where the types are wrong, even if this expression is unreachable! For
example, the programmer might want to change the type of a variable or method in-
crementally, testing each changed site separately. A type system will typically prevent
the program from running until all sites have been changed, as it cannot guarantee
safety for the entire program. Research by Hanenberg and Stuchlik [2012] has shown
that this has an impact on development speed.

As we would like approaches to be “must-fail”, general type systems will not suffice.
In this section we describe type systems which are still “might-fail” analyses, but have
interesting properties with respect to making type test explicit.

148

7.3 Compile-time error detection: Static analysis

1 (define: (a b) (map [f : (a → b)] [l : (Listof a)]) : (Listof b)
2 (if (null? l)
3 l
4 (cons (f (car l)) (map f (cdr l)))))

Listing 7.1: Definition of map in Typed Racket

7.3.1 Typed Racket

Typed Racket [Tobin-Hochstadt and Felleisen, 2008] (formerly Typed Scheme) is a lan-
guage extension to Racket that enables programmers to assign types to their program.
Instead of the regular define keyword, programmers can use the define: keyword to
specify types along with expressions. Listing 7.1 shows how to define map in Typed
Racket. The first line can be read as: “for all types a and b, map takes a function f of
type a → b and a list l with elements of type a, and produces a list with elements
of type b”. Typed Racket only requires type annotations on top-level definitions and
occasionally on recursive bindings such as letrec. The types of expressions within
a function are determined by local type inference, as presented in Pierce and Turner
[2000].

The designers of Typed Racket define modules as the unit of typing, which means
that all top-level bindings in a Typed Racket module must have a type signature, and
the entire module must be accepted by the type checker. After compilation, every
module provides a type dictionary for each of its provided members, which allows
for separate compilation [Tobin-Hochstadt et al., 2011, Section 5]. Interaction between
Typed Racket modules is transparent: programmers can simply import and use code
from other Typed Racket modules, just like regular Racket modules. To import un-
typed Racket modules into a Typed Racket module, each imported member must be
annotated with a type. Vice versa, an untyped Racket module is allowed to import
Typed Racket modules, but every imported member is transparently wrapped with a
contract that enforces the correct use of that member at run-time.

One of the problems of adding a type system to an expressive dynamically typed
language such as Racket is the distinct typing of variables dependent on the code path
being followed. For example, the code in listing 7.2 defines a function that takes either
a number or a boolean, and always produces a boolean. In the two branches of the if

expression, x takes on a different type: it is a number in the true branch, and a boolean

in the false branch. Typed Racket supports this common idiom using “occurrence

1 (lambda (x : (
⋃

number boolean))
2 (if (number? x)
3 (= x 1)
4 (not x)))

Listing 7.2: Typed Racket: Occurrence typing in action

149

7 Related Work

typing”, where every occurrence of a variable can have a distinct type. This distinction
is made because of the number? test in the condition position of the if expression.
Therefore, x must be a number in the true branch, and definitely not a number in the
false branch (so a boolean). In Typed Racket, every predicate function is annotated with
a latent predicate that supplies extra information about the arguments it is called with.
The type inferencer then uses this latent predicate to modify the type environment
when descending into the branches. For example, the number? function applies a latent
number? predicate to its argument, so in the true branch x has type number, while in
the false branch it has type boolean. Assigning types in a flow-sensitive manner allows
the type system to follow along with the programmer’s intentions.

In a follow-up paper, occurrence typing was significantly improved to solve a num-
ber of fundamental limitations in the original formulation [Tobin-Hochstadt and Felleisen,
2010]. These limitations involve asymmetry in occurrence typing with the addition of
logical connectives (and, or, not). For example, (and (number? x) (>= x 1000)) guar-
antees that x is a number in the true case, whereas no information is gained in the false
case (x might not be a number, or a number smaller than 1000). This problem is tackled
by introducing two latent propositions for each predicate: one for when it succeeds and
one for when it fails. The latent predicates of combinations of expressions using and,
or, not can then be derived by combining the propositions in a logical manner.

Another limitation solved by this paper involve predicates on values in compound
data structures. For example, the test (number? (car x)) logically implies that x is a
pair, but also that (car x) is a number. The first implementation of occurrence typing
only supported a single latent predicate on variables. In the follow-up, this limitation
was removed by also recording the path taken to a value under test, which couples
the information gained about the nested value with its container. This allows the type
checker to make use of both facts.

Relevance to blame prediction Typed Racket rejects modules if they contain type er-
rors, before any of the module’s code is run. For this reason we classify it as “compile-
time” error detection, although “load-time” is a better name. The analysis overhead
of Typed Racket is small enough to not slow down the edit-compile-run cycle. The
flexible, flow-sensitive type system allows errors to be reported once they are certain
to occur, so it also is a “must-fail” analysis. However, Typed Racket requires program-
mers to annotate all top-level bindings, so its type safety does come at a cost to the
programmer.

Nevertheless, the concept of occurrence typing is an inspiration for dealing with
run-time type tests. Additionally, Typed Racket operates on entire modules: it demon-
strates how typed modules can interface with other typed modules (by means of em-
bedded type dictionaries), and with untyped modules (by means of wrapping code
with run-time type tests).

150

7.3 Compile-time error detection: Static analysis

7.3.2 Effect systems

We already explained type systems in section 7.3: they are logical rules which describe
how to compute types for given expressions. These types intuitively correspond to the
set of values that can be produced by evaluating the expression. However, types do
not say anything about the intermediate evaluation performed to reach these values. In
some contexts it might be necessary to determine whether a given expression performs
side effects such as writing to global variables or performing I/O. The appropriately
named effect systems [Gifford and Lucassen, 1986; Nielson and Nielson, 1999] do just
that: they not only infer types for expressions, but also any side effects incurred by
evaluation. For example, the print function has the effect IO, while an assignment to a
global variable has effect write(θ) where θ is its address. An example of a well-known
effect system is the exception system in Java: methods must declare all the exceptions
their body can throw or catch some of them.

Expressions that contain subexpressions must combine the effects of the subexpres-
sions in a certain way. For example, a sequence of statements might take the union of
effects of individual statements (for example, exceptions), or construct an ordered list
of effects (for example, ordered memory reads and writes). Other combinations can
be more complicated still, for example the exception set of a try–catch block does not
contain any exceptions caught by catch clauses.

One downside to the original formulation of effect systems is that the derivation and
calculation of effects was tightly woven into the type system, so a new effect system
also requires a new type system. Marino and Millstein [2009] introduced the notion of
a generic type and effect system. This system concentrates the interaction between type
and effect systems in two operators at the type level: check and adjust. In almost every
rule in the type system, the check function is invoked to verify whether the effect of
a subexpression is allowed according to a privilege environment. The adjust function
adjusts this privilege environment when the type system descends into subexpressions.
Another approach to implement effect systems was shown by Wadler and Thiemann
[2003]: they demonstrated how any effect system can be converted into an equivalent
system that uses monads [Moggi, 1989]. Finally, Talpin and Jouvelot [1992] showed
how to automatically infer types, effects, and the (memory) regions these effects work
on.

Relevance to blame prediction Effect systems present the type system with a “side
channel” for extra information: expressions have a type for the values they return, and
an effect for the side effects they made along the way. In our case, effects could be used
to model the required type tests for a primitive operation to succeed, while detecting
type errors at compile time. Recall that regular type systems only use the final types of
expressions to decide whether a given expression is well-typed. If the whole program
is well-typed, the types are typically erased and the program is allowed to run safely
(as “well-typed programs cannot go wrong”). An effect system, on the other hand,

151

7 Related Work

could be combined with a very basic type system which always succeeds but generates
“type-test” effect whenever a type test is needed.

Just like type systems, effect systems require annotations from the programmer. Ef-
fect inference is a part of type inference, which in turn only allows the program to run
if no type errors were detected. Effect systems are therefore not a “must-fail” analy-
sis. Finally, the type and effect analysis typically does not have a big impact on the
edit-compile-run cycle, unless an error is detected.

7.4 Run-time error detection: Dynamic analysis

In this section we describe techniques which analyse the program as it is running,
i. e. dynamic analysis. Interpreters for dynamically typed languages already perform
dynamic analysis in their primitive operations and semantics, for example to raise an
error when the expression (+ 3 #t) is executed, or when a division by zero occurs.
This analysis is only rudimentary, however: it only raises errors at the last possible
moment, often with a stack trace and nothing else.

In this section we explore different approaches to dynamic analysis which aim to
detect and report errors beyond the rudimentary analysis. Note that some approaches
already perform some analysis and/or code transformation at load-time, but the actual
time of error detection and reporting still occurs occurs run-time.

7.4.1 Contracts

“Design by contract” was proposed by Bertrand Meyer as a novel way of constructing
programs [Meyer, 1992]. In the original design philosophy, a “contract” is drawn up
between two software components that defines the responsibilities of each party in the
contract. When a contract is broken, one of the two parties is at fault; “blame” can
be assigned to it. This blame is reported back to the programmer, in order to help
discover why the contract is broken and which party is to blame. In this formulation,
applying a contract to a value is simply applying a boolean predicate such as int? or
natural-number? to it.

Findler and Felleisen [2002] introduced higher-order contracts, where contracts can
be combined into other contracts. This allows programmers to make precise claims
about functions and blame the correct party when a function receives the wrong input
or when it produces the wrong output. For example, consider the map higher-order
function: its contract states that it receives a function with a specific contract and a list
of values. The implementation of map applies the function to each element of the list,
so calling map with a function with contract C1 → C2 requires that each element of
the list passes contract C1, otherwise the module that provided the element is blamed.
The output of the function must pass contract C2, otherwise the module providing the
function can be blamed. Finally, Findler and Felleisen [2002] also introduced dependent

152

7.4 Run-time error detection: Dynamic analysis

contracts, a slight variation of function contracts where the output contract of a function
can make use of the input values provided.

After publication of that paper, a few variants of higher-order contracts were pro-
posed. Each contract either used slightly different definitions of contract satisfaction
or used higher-order contracts in another setting, for example in a lazy setting or dur-
ing theorem proving. Only in [Dimoulas and Felleisen, 2011] did Dimoulas et al use
observational equivalence to investigate contracts.

Contracts are used to document and verify built-in and library functions in the
Racket programming language [Flatt and PLT, 2010]. For example, the documenta-
tion for the map function is shown in listing 7.3. Here, procedure? and list? are flat
contracts over values.

1 (map proc lst ...+) -> list?
2 proc : procedure?
3 lst : list?

Listing 7.3: Documentation for the map function in Racket

Passing in values of the wrong type results in a contract violation, showing the user ex-
actly which value violated which contract. Racket encourages programmers to define
contracts for modules they write as well, which helps in tracking down errors.

Contracts can also be used to impose limits on program behavior; for example, Hei-
degger et al. [2012] define “monitoring contracts” for JavaScript functions. These con-
tracts allow the programmer to specify sets of objects, and whether they may be read,
written, or both. Their specification is in terms of “access paths”, which are sequences
of member selection operators starting from either a global variable, a function argu-
ment, or the receiver object this.

[Tobin-Hochstadt and Van Horn, 2012] combines contracts and symbolic execution,
which yields a powerful abstract interpretation technique. The technique replaces con-
crete values with abstract contracts that flow through the program. This enables the
verification of compositions of contracts, even if parts of the composition are only
known by their contract (for example, code imported from another module).

Relevance to blame prediction Contracts allow programmers to express specific con-
straints about expressions in their code. These constraints can range from simple type
tests all the way to complex predicates over values. Therefore, they are a powerful tool
for ensuring program correctness.

Because of the way contracts wrap values and functions, they can detect errors ahead
of normal run-time execution. Deploying contracts only requires the programmer to
specify the contract to apply to the value, much like type annotations. More complex
contracts require more work to specify. When a contract is broken, it assigns blame to
one of the parties; this constitutes a “must-fail” analysis, as the programmer explicitly
imposed the contract. Finally, deploying contracts in a program imposes a significant
cost at run-time. In [Tobin-Hochstadt and Van Horn, 2012], the authors state that

153

7 Related Work

“[C]ontract checks take more than half of the running time for large com-
putations such as rendering documentation and type checking large pro-
grams [Strickland et al., 2012].”

The remaining parts of this section about run-time error detection consists of ap-
proaches which transform programs to make type tests or -conversions explicit.

7.4.2 Soft typing

The goal of soft typing [Cartwright and Fagan, 1991] is to combine the best features of
dynamic typing (expressiveness and simplicity) with the best features of static typing
(early error detection and efficiency). To this end, the authors propose a modification
to the type system used in ML that inserts run-time checks wherever the type system
encounters an error. In other words, whenever the logical system reaches a contra-
diction, the failing rules is allowed to succeed (after inserting a type cast) and type
checking continues.

The authors list heterogeneity as one of the requirements of their type system, which
boils down to allowing expressions to belong to unions of types [Barbanera and Dezani-
Ciancaglini, 1995; Pierce, 1991] instead of one type. This allows the type system to
process programs in which for example the two branches of an if expression are of dif-
ferent types. Additionally, the type system has support for recursive types, where types
are defined in terms of themselves. These are necessary to support self-application,
among others.

The implementation of the soft typing system is done through two modifications
of the ML type system: first, circular unification is used instead of regular unification.
This allows the type inferencer to generate and solve recursive types. Second, types
are encoded to allow the inference of union types. This encoding makes use of a record
type that has a flag field for every possible type in the system. This flag indicates
whether the type must be present (+) or absent (−). After type inference, monotypes
are inferred where only one field of the record type is present, and union types where
several fields are present. Whenever the set of types for an argument is larger than
what a function accepts (for example a value of type int ∪ string is given to +), a
narrower is inserted that performs a run-time type check.

A follow-up paper expanded soft typing to cope with the realities of Scheme [Wright
and Cartwright, 1994]. This “Soft Scheme” supports variable-arity functions and con-
tinuations, both frequently used in Scheme. This expansion also supports mutation,
but only to local identifiers; assigning to global identifiers or fields in a pair “may
cause the accumulation of large, inaccurate types” in the author’s words. The authors
conclude the paper by remarking that up to 90% of run-time checks can be elided,
and that typical programs run up to 3.3 times faster than ordinary dynamically typed
programs.

There is still a problem with these approaches, namely that the types inferred are
flow insensitive: the outputs of a function are completely disconnected from the inputs.

154

7.4 Run-time error detection: Dynamic analysis

This is a problem especially given the lack of type annotations, as simple visual inspec-
tion can often yield a more accurate type. Aiken et al. [1994] tackle this problem using
conditional types: a type τ1?τ2 (read: “τ1 if τ2”) links a type with a certain condition.
This allows a form of flow sensitivity: the type of an if-expression is then a union of
the consequent if the condition is true and the alternative if the condition is false.

Relevance to blame prediction Soft typing combines a flexible type system with
fallbacks to run-time type tests. When the type system detects a contradiction at a
certain expression, it introduces a narrower or an ERROR tag instead of aborting. Errors
are therefore detected at run-time, when the interpreter would detect it as well. The
type system does not require annotations from the programmer, only a restriction on
certain features. Soft typing is a “must-fail” analysis: as the narrowers are inserted in
places where a conversion is needed, they can only raise errors along paths where the
baseline would also throw errors. The analysis does not take a significant amount of
time (twenty seconds for a 300-line program on a 1990-era machine), making analysis
fast enough on contemporary machines.

7.4.3 Deferred type errors

In section 7.3 we remarked on a study by Hanenberg and Stuchlik [2012], which shows
that making programs type-correct has an impact on development speed. Deferred
type errors temporarily turn off the type checker of a statically typed programming
language in order to quickly test changes. Allowing not completely type-safe programs
to run does discard all safety guarantees normally given by the type system, but at the
same time it allows the programmer to experiment and interact with the parts which
are type safe.

DuctileJ [Bayne et al., 2011] is a plugin to the Java compiler which defers all type
checking to run-time. Java’s run-time type information and reflection mechanisms then
replace the static type checking at a significant performance cost. The downside is that
all this extra work at run-time adds a significant slowdown in comparison to normal
execution. Apart from the technical contribution, this paper also outlines the software
engineering advantages of deferring type errors to run-time. The first advantage is dur-
ing prototyping: while exploring functionality, unused parts of a program can be left
in a wrongly-typed state while the programmer implements a new part. The second
advantage is during normal software evolution: performing a refactoring or change
of data representation can be done in isolation without maintaining global static type
correctness.

Another recent development is deferred type errors in the Glasgow Haskell Com-
piler [Peyton Jones et al., 2012]. While Haskell firmly falls in the statically-typed camp,
this extension allows the compiler to emit run-time type errors for expressions which
are ill-typed. The authors give a similar argument as the above paragraph for imple-
menting deferred type errors.

155

7 Related Work

Relevance to blame prediction Temporarily turning off the static typing in a stati-
cally typed language seems to be a good way to increase productivity when prototyp-
ing or evolving software. With the type system out of the way, the programmer can
immediately evaluate proposed changes, before committing to making the program
globally type-safe again.

These approaches turn the compile-time “might-fail” analysis of statically typed
languages into a run-time “must-fail” analysis, with no extra work from the program-
mer. In both cases the analysis does not hinder interactive development, although no
timings are given. In the Haskell work, the authors state that deferred type errors in-
troduce extra boxing and unboxing operations in the program, but that most of them
are promptly optimized away by the compiler. In case of DuctileJ the authors state
that iterating on the program development was faster, but at run-time their program
incurred a significant slowdown because their implementation relies on reflection.

7.4.4 Gradual typing

Dynamic and static typing have a different stance on programs that contain type errors.
Dynamic typing allows such programs to run but throw a type error when faulty ex-
pressions are reached, whereas static typing rejects such programs at compile time. As
such, programs and services are often prototyped in dynamically typed programming
languages for development speed, and later rewritten in a statically typed program-
ming language for safety and performance reasons. A direct rewrite has two distinct
disadvantages: First, depending on the size of the program, a rewrite might take a
significant amount of time, during which the old program must be supported. Second,
some expressions might not be directly expressible in the target language, increasing
complexity.

One approach to solve this software evolution problem is to gradually transform
the program to a statically typed one. Gradual typing [Siek and Taha, 2006] enables
programmers to gradually add type annotations to their program. A central part of
gradual typing is the “unknown type” ? which can represent any type1. Unannotated
parts of the program automatically receive the type ?.

In essence, a gradually typed program is divided into a typed part and an untyped
part. If the type system detects an error in the typed part, a type error is signaled
just like regular static typing. Errors in the untyped part are reported at run-time, as
normal. To make the type system sound, coercions are inserted at the boundary between
typed and untyped code. These coercions are similar to narrowers in soft typing: they
embody a run-time type test that must succeed for the program to continue.

At run-time, a cast verifies that the dynamic type of its argument is consistent (writ-
ten τ1 ∼ τ2) with the type it is being cast to. Type consistency is a broader concept
than type equality as used by other type systems: two types are consistent if they are
equal, or if one of them is ?, or if they are consistent in their respective components. It

1Early publications represented the unknown type with a question mark (?).

156

7.4 Run-time error detection: Dynamic analysis

is very important to note that type consistency is not transitive, i. e. given that α ∼ ?

and ? ∼ β, then α ∼ β does not automatically hold.
In a follow-up paper, the authors extend gradual typing with support for objects [Siek

and Taha, 2007]. In this system, objects are records of typed and named slots. They em-
ploy width-based subtyping, which means that an object A is a subtype of object B if
A contains at least all slots in B. To reconcile gradual typing with object subtyping,
the consistency relation from the original paper is augmented with masking, which
removes the parts that are unknown in one of the two types. The combination of con-
sistency and subtyping relation (.) consists of verifying whether the common parts of
both types are subtypes.
? is considered neutral to subtyping, so only ? <: ? holds. This formulation avoids

arbitrary type conversions: if ? is allowed as a top type, the gradual typing mechanics
would allow implicit up- and downcasts to and from the type ?. This would break
type safety for fully annotated parts of the program.

Type inference for gradually typed programs was introduced in [Siek and Vachhara-
jani, 2008], which allows programmers to omit the ? type annotations from most of
their program. The type inference algorithm consists of two steps: constraint genera-
tion and constraint solution. The first step associates a type variable with every node
in the input program and then uses the typing rules to generate constraints between
these type variables. The constraint solution step then solves these constraints, always
taking the least upper bound among types. Types are ordered by their “informative-
ness”, where types with fewer ? are considered more informative.

That paper realized the base goal of gradual typing: inferring as much information
as possible from an untyped program and then performing the remainder of the checks
at run-time. A more recent and mature type inferencer is found in [Rastogi et al., 2012],
where gradual type inference is applied to ActionScript, a language closely related to
JavaScript [Crockford, 2008]. Rastogi et al. report that they are able to recover all the
types in 13 out of 17 benchmarks chosen from the SunSpider and V8 benchmarks (V8

Team [2011]; WebKit Team [2010]).

Relevance to blame prediction Similar to soft typing, gradual typing inserts run-
time type tests closely around uses of expressions with the “any type”. These type
tests are inserted automatically, so no programmer intervention is required, and they
only trigger errors when they are encountered during execution. Type errors in the
fully statically-typed parts of the program still prevent the program from running.
There are no reports of the time taken for the analysis itself, although it is considered
to be on par with regular type systems.

7.4.5 Preemptive type checking

“Preemptive type checking”, a recent development, is described in [Grech, 2013]. Its
goal is “to force the termination of the program execution as soon as it can be detected

157

7 Related Work

that a type error is inevitable”. At the core of that work is an analysis that determines
so-called present and future types for every variable in the program. The present types
are a set of types that the variable can contain at any given point in time, while the
future types are those types that the variable could be used as. If any future type is
not present in the present types, the analysis reports that a type error may manifest
itself.

At the core of this approach is a k-CFA analysis [Shivers, 1988, 1991], working on
the bytecode of the program. This allows the approach to reason over call stacks (of
depth k) instead of only the code. In such a call stack, variable reassignments (present
types) can be matched against their uses (future types). If there is a mismatch, an
error statement is inserted into the program. The analysis makes sure that errors are
only inserted along critical paths, i. e. places where the erroneous statement must be
encountered. If this is not done correctly, the semantics of the program are different,
which is not desirable when debugging programs.

Relevance to blame prediction This work is very relevant to blame prediction, it has
the same goal of predicting future type errors. The correctness and usefulness of the
results are tied to the underlying static analysis, which requires more and more time
as the context size is increased.

Applying preemptive type checking to a program results in (as the name states)
preemptive checking of type errors. As presented in Grech [2013], the programmer
needs to avoid a lot of features of Python for the analysis to work, but the author
states that the analysis can be extended to cover the necessary features. As remarked
above, preemptive type checking only inserts error statements when it is certain that
an error will occur, so it is a “must-fail” analysis. Finally, the underlying analysis im-
poses a tradeoff between precision and speed: supplying more context enables better
and earlier errors, but at the cost of more time spent in the analysis. For medium to
large programs, the time spent on analysis can outweigh the time actually running the
program. This reducing the usefulness of this approach, as it becomes faster to just
run the program rather than wait for analysis to complete.

7.4.6 Tagging/Untagging optimizations

In the run-time system of interpreted languages, values are often tagged or boxed: they
are stored together with a tag that identifies their actual type. This allows the system to
perform run-time type tests in primitive operations. However, there is a cost associated
with this mechanism: for example, to sum two values together they must be untagged,
the native numbers must be added together, and the resulting number must be tagged
again. In code that uses a lot of primitive operations, values will often be tagged only
to immediately be untagged by the next operation.

One effort to avoid such situations is the work done in Henglein [1992]: it presents a
“calculus of coercion” that makes tagging and untagging operations explicit in a pro-

158

7.4 Run-time error detection: Dynamic analysis

gram. Subsequently, type inference is applied and (un)tagging operations are removed
where it is safe to do so, or where one value is tagged and immediately untagged. The
author reports that a simple analysis can already remove more than half of all tagging
and untagging operations from a small set of programs, ranging from 700 bytes to a
232 kilobyte program.

Another instance of a tagging/untagging optimization can be found at the end of
Tobin-Hochstadt et al. [2011], as an example of the use of providing language exten-
sions as libraries. Normally, arithmetic operators such as + and - support all numeric
types by dispatching on the type tags of the provided arguments and selecting an
appropriate type-specialized operator. After inferring types of all expressions in the
program, such generic arithmetic operations can be replaced by specialized operators
such as unsafe-fl+ if the types are known statically. This operator bypasses the tag
tests and produces a new value tagged as float. The authors report that replacing
general arithmetic operators with specialized ones yields a modest increase in perfor-
mance for arithmetic-heavy programs.

Finally, an early report on the development of the Glasgow Haskell Compiler [Pey-
ton Jones, 1996] discusses various optimizations done on the typed intermediate “Core”
language. In Haskell, values are only evaluated when they are needed. To this end, ev-
ery value is boxed: it either contains a computation that produces the value, or a
pointer to a concrete value. Similar to the tagging/untagging optimizations above, val-
ues need to be evaluated and unboxed before they can be used in a primitive operation.
One of the optimizations described in the paper exposes the boxing and unboxing of
values to the optimizer, which allows it to remove superfluous boxing/unboxing oper-
ations. This in turn allows the compiler to generate efficient low-level code.

Relevance to blame prediction The papers discussed above all serve the same pur-
pose: to make tagging/untagging (or boxing/unboxing) explicit and then remove su-
perfluous pairs of tagging/untagging operations. These approaches do not serve to
improve error detection or program debugging, but do make the point that making
tagging explicit is good for performance reasons. With blame prediction, we argue
that making tag tests explicit additionally improves error detection and debuggability,
as the tag tests are moved upwards without affecting the program semantics. Remov-
ing statically-known-to-be-safe operations yields an improvement in error detection,
as the programmer can focus on the remaining tag tests.

As for the criteria, all of the above approaches transform the program at compile-
time, they do not require any programmer intervention, and they have a short analysis
time. They will not remove tagging/untagging operations that are statically known to
fail, so we consider them as “must-fail” analyses, even though their main goal is not
error detection.

159

7 Related Work

7.5 Post-mortem error detection: Debuggers

Finally, this section covers error detection “after the fact”, i. e. when the program has
reported an error and the programmer needs to figure out the mistake(s) which led to
the error. The approaches described in this section fall along one of two lines: the first
attempts to give the programmer more information, i. e. a full history of the program
state instead of a snapshot. The second line of approach automates away some of the
labor involved in debugging, namely stepping through and searching for ‘interesting”
program states.

7.5.1 Omniscient debugging

Traditionally, debuggers are used to run a program under supervision and step through
it until either a programmer-defined point in the program is hit, the program crashes,
or the program exits normally. In case of a crash, the program state is captured right
before it is stopped and removed from memory. The programmer can then walk the
stack trace leading up to the crash and inspect some values in order to form a hypoth-
esis on why the program crashed. Future debugging sessions then focus on verifying
the hypothesis, discarding wrong hypotheses, making new ones, and so on.

One particularly hard hypothesis is centered around variables changing value unex-
pectedly. To verify this hypothesis, the programmer needs to do a search over various
states of the program to see where the variable changes. If the programmer steps too
far through the program, the value has been changed by some nested expression or
function call and the program must be restarted. This kind of debugging would be
easier if the debugger kept a history of program states up until a certain point, such
that a query “when did this variable change?” suffices. This was exactly the motiva-
tion for omniscient debugging [Lewis, 2003], where the author calls the above scenario a
“lost snake in the grass” problem. While keeping a history of program states is costly
both in terms of memory and performance, the overhead imposed by such systems is
slowly decreasing [Pothier et al., 2007]. The state of the art, according to [Pothier and
Tanter, 2011], is a 10x to 30x slowdown, while earlier systems manage a 100x to 300x
slowdown.

Once a history of program states is captured, the programmer can move forwards
and backwards in time to step through the execution of the code. For every variable a
list of successive states can be shown, which allows the programmer to pick out unex-
pected changes. Clicking these changes jumps to a different program state, with full
stack traces per thread. Unfortunately, such great power comes with a cost: the author
reports that programs under omniscient debugging are orders of magnitude slower
and consume memory proportionate to the number of events. Omniscient debugging
is therefore best left for isolated test cases.

In 2009, the GNU debugger GDB was released with support for “reverse debug-
ging” [Boothe, 2000; Saito, 2005], which allows programmers to run their programs

160

7.5 Post-mortem error detection: Debuggers

in reverse. At its core this technique is similar to omniscient debugging, but by recon-
structing program states the program can actually be run in reverse.

Relevance to blame prediction In contrast to regular debugging, omniscient debug-
ging allows the programmer to freely move forwards and backwards in the program
states in order to narrow down error causes. Omniscient debugging is still a manual
process: programmers must still trace back through the program to the specific point
where an error was made.

Omniscient debugging still requires the programmer to construct and test hypothe-
ses, which is a manual process (whereas little to no intervention is more desirable) and
requires a considerable amount of time (which should be minimized). The authors of
[Pothier et al., 2007] report a ten-times slowdown when running the program, which
results in one experiment taking thirty-eight minutes instead of four. The typical start-
ing point of a debugging session is the point where an error is detected, so we classify
omniscient debugging as “post-mortem”.

7.5.2 Automatic debugging

An important aspect of debugging is making assertions about properties of the code
and verifying whether these assertions hold. Program errors are typically caused by
these properties changing in some parts of the code. Automatic (or abstract) debug-
ging [Bourdoncle, 1993] allows properties to be automatically checked by means of
abstract interpretation. In the cited paper, the author proposes two classes of asser-
tions: invariant assertions and eventual assertions. The former are properties that must
always hold, whereas the latter must hold in some execution paths. In order to auto-
matically debug a program, the programmer specifies these assertions. The program
is then evaluated using an abstract interpreter and the resulting tree of program states
is inspected with respect to the assertions. If a subtree is found to violate one of the
assertions, an error is signaled and the programmer can inspect the states that caused
it.

Relevance to blame prediction The paper cited introduced the concept of a “might”
versus “must”-analysis, respectively for eventual and invariant assumptions. Blame
prediction only predicts blame in the “must” cases, not “might”.

Apart from this paper, we could not find other advances in automatic debugging2,
but the remarks from omniscient debugging apply here as well, as the programmer
still needs to construct and test hypotheses herself.

2Although there is related work for logic programming [Ducassé and Noyé, 1994].

161

7 Related Work

7.5.3 Scriptable debugging

Typically, debugging is a process where the programmer needs to manually halt and
resume the execution of the program under inspection. With the release of version 7,
the GNU debugger GDB has integrated support for plugins written in the Python
programming language. These plugins can also be used to automate repetitive tasks
and halt program execution based on complex conditions. An example plugin that
ships with GDB automatically pretty-prints the contents of C++ containers.

In order to speed up the debugging process, approaches have been proposed where
programmers interact with streams of events coming from the program instead of slowly
stepping through it. This approach is called “scriptable debugging” [Ducassé, 1999a,b;
Marceau et al., 2007]. These events can be method entries or exits, variable updates,
and so on. To actually aid in debugging the program, the programmer can combine
and consume these streams with FrTime [Cooper and Krishnamurthi, 2006], an im-
plementation of the functional reactive programming (FRP; Elliott and Hudak [1997])
paradigm. When these streams detect an interesting event, they can programmatically
halt the program. This enables programmers to describe invariants in their program
in a natural way and immediately catch errors before they manifest.

Yit Phang et al. [2013] presents a fusion of scriptable debugging with time-travel
debugging. Their approach represents the program execution as a stream of program
snapshots and events, which can be manipulated using standard stream-processing
primitives. Every point in the stream is materialized on-demand to avoid the exorbitant
memory cost associated with time-travel debugging. The authors state that program-
ming in this style (similar to FRP) eliminates problems caused by the callback-oriented
interface of other scriptable debuggers, while at the same time enabling reasoning over
events at different points in time.

Relevance to blame prediction Scriptable debugging is a powerful technique for rea-
soning about program execution and closing in on the points where execution starts
to go wrong. Unfortunately, using such a debugger requires a high familiarity with
both the run-time system and the scripting language used for the debugger. Addition-
ally, the programmer must have previously narrowed the problem down to a specific
hypothesis.

Depending on this hypothesis, scriptable debugging is either a post-mortem ap-
proach or a run-time approach. The programmer needs to define a script for the
debugger to use, which has the potential to be more complex than the code being
debugged. Finally, the time taken for analysis depends entirely on the script being
used and the original estimate of what the bug is.

This concludes our survey of related work. In the final section we summarize our
findings.

162

7.6 Conclusion

7.6 Conclusion

In this chapter we surveyed other research which aims to help programmers with error
detection. We first defined criteria for evaluating the related work with respect to our
goals. Next, we applied these criteria to the three main analysis strategies: compile-
time error detection, run-time error detection, and post-mortem error detection.

These strategies can be summarized as follows:

• Compile-time error detection attempts to identify errors in the program statically,
without running it. Type systems were discussed, which aim to eliminate illegal
operations at run-time by ensuring variables are defined and used consistently
with the same type.

• Run-time error detection runs programs with instrumentation. This instrumen-
tation mainly consists of run-time tests to ensure the program “does not go
wrong”.

• Finally, post-mortem error detection attempts to identify errors in the program
by backtracking after they have been encountered.

Table 7.1 summarizes our enumeration of related work. The three strategies are ar-
ranged as groups of rows, while the columns represent the criteria we used. The values
for the first two criteria are explained in the legend below the table.

The first group of related work is compile-time error detection. Both strategies report
errors at compile time, guided by annotations from the programmer. However, these
approaches are not a must-fail analysis.

The next — and largest — group of approaches perform run-time error detection.
The first approach (contracts) enables the programmer to specify properties of mod-
ules in their program; at run-time these properties are verified where necessary. Both
fail when the property is not satisfied, but this is still some time ahead of when the
property is actually used.

The remaining approaches in the run-time error detection group attempt to insert
explicit type tests or remove them altogether. The difference lies in what these ap-
proaches do with the remaining explicit type tests: Soft typing inserts explicit type
tests only when it cannot determine an exact type in advance. Deferred type errors
are run-time type tests inserted in lieu of the compile-time checking of statically typed
languages. Gradual typing inserts type conversions when going from and to typed
and untyped expressions, but additionally rejects the program when it detects type
errors in statically typed expressions. Preemptive type checking will not insert type
tests, but rather explicitly abort the program if some type tests are guaranteed to fail.
Finally, tagging optimizations simply eliminate redundant (un)tagging operations.

The error detection time for almost all approaches is run-time, except for gradual
typing which has additional compile-time checking, and preemptive type checking

163

7 Related Work

and contracts which can abort the program slightly earlier. Apart from preemptive
type checking, all approaches have a short enough analysis time to be usable during
periods of heavy development.

The last group of related work is post-mortem error detection. These approaches
require significant amounts of manual programmer intervention and are therefore not
suited for the problems we aim to solve.

Er
ro

r
de

te
ct

io
n

Pr
og

ra
m

m
er

in
te

rv
en

ti
on

“M
us

t-
fa

il”
an

al
ys

is

Sh
or

t
an

al
ys

is
ti

m
e

Typed Racket C A 7 3

Effect Systems C A 7 3

Contracts A A 3 3

Soft typing R N 3 3

Deferred type errors R A 3 3

Gradual typing C + R N 7 3

Preemptive type checking A N 3 7

Tagging optimizations R N 3 3

Blame Prediction A N 3 3

Omniscient debugging P M - 7

Automatic debugging P M - 7

Scriptable debugging P + R M - 7

Legend, least to most desirable

Error detection
(P)ost-mortem; (R)un-time; (A)head of run-time;
(C)ompile-time

Programmer intervention
(M)anual; (A)nnotations required;
(N)o programmer intervention

Table 7.1: Overview of discussed related work

Finally, we can situate blame prediction among the related work described in this
chapter. Blame prediction is a dynamic analysis strategy, as it aims to perform type
tests ahead in time compared to the normal interpreter. It runs on unmodified pro-
grams and presents a “must-fail” analysis, as it only fails when the original program
would fail too. As we will show in the next chapter, it only takes a small amount of
time to transform a program. Regarding run-time overhead, blame prediction signifi-
cantly reduces the amount of dynamic checks.

The next and final chapter concludes this dissertation. It reiterates the research goals
and the key insights from the earlier chapters. It also sums up a number of known con-

164

7.6 Conclusion

ceptual and practical limitations of blame prediction and outlines future avenues for
the blame prediction transformation itself, but also applications of blame prediction.

165

8
C O N C L U S I O N A N D F U T U R E W O R K

In the final chapter of this dissertation we reiterate on the research goals set out in
the first chapter (section 8.1). Next, we restate our contributions in terms of the work
discussed in the previous chapters (section 8.2). Finally, we discuss limitations of the
current approach in section 8.3, and future avenues for blame prediction that can be
explored (section 8.4).

8.1 Summary

This dissertation is formulated in the context of dynamically typed programming lan-
guages, which are typically interpreted or run in a virtual machine. The primitive
operations of these languages must ensure that their inputs are of the correct type,
and report a type error otherwise. For example, the string-append function must re-
ceive two string values as arguments. While these type tests are never made explicit,
programmers use them to reason about the types of expressions that make up their
programs.

When a type error does occur, the programmer receives a report of the type error,
typically with a stack trace of the program execution up to that point. The programmer
then needs to trace back through the program in order to find out where the wrongly-
typed value was computed or passed through the environment. We called this the

“root cause analysis” problem, as the programmer needs to find the root cause of the
problem. In addition, every change requires the program to run again, which might
take a lot of time. We called this the “long time to crash” problem.

This stands in sharp contrast to statically typed programming languages, where
either types must be declared up front or inferred, and programs are only allowed
to run if the type checker accepts the program. Programs written in statically typed
programming languages suffer from neither problem, but the downside is that getting
programs to be type error-free is not always trivial. Often, only a small slice of the
program is actually needed, but the entire program must be type error-free.

167

8 Conclusion and Future Work

In this dissertation we defined a program transformation, called blame prediction,
which makes the implicit type tests of dynamically typed programming languages
explicit and moves them upwards in the program as far as possible. This tackles the
“root cause analysis” problem by reducing the fraction of the program which must be
searched for the type error. The “long time to crash” problem is similarly tackled by
performing the type tests earlier, ideally before heavy computations.

8.2 Restating the Contributions

This section summarizes each chapter of the dissertation and lists their individual
contributions.

• Chapter 2 introduced the blame prediction transformation for a small functional
core language similar to the lambda calculus. This transformation consists of
four stages: 1) Check inference using a novel type system, which associates
every expression in the program with its type and the type tests which are per-
formed by evaluating this expression; 2) Check introduction, where the type tests
are inserted as check expressions; 3) Check mobility, which moves the type tests
upwards in the program in a semantics-preserving manner; 4) Check simplifi-
cation, which eliminates redundant check expressions and simplifies the precon-
ditions of the remaining checks. In addition, in this chapter we proved that a
transformed program has the same semantics as its input program, except that
the transformed program reports type errors earlier.

• Chapter 3 extended the blame prediction transformation with support for recur-
sion. It also introduced new syntax and semantics in order to support recursive
functions and mutable variables (used in chapter 4). In this chapter we observed
that type inference without unification leads to infinite types, which need to be
reduced to finite types before they can be used. As part of this process, we ob-
served several patterns where the reduction to finite types diverged. The solution
was to introduce a widening operator which sacrificed accuracy for guaranteed ter-
mination.

• Chapter 4 described how the blame prediction transformation is extended to
cope with mutation. The blame prediction transformation as defined in chap-
ters 2 and 3 assumes that the values stored by variables do not change. The key
insight here is the addition of effects [Gifford and Lucassen, 1986] to indicate
which variables could be mutated by an expression. This enabled us to ensure
type tests are not lifted over expressions which mutate variables and simplify
type tests for which there were no intermediate variable modifications. In this
chapter we proved that the extended blame prediction transformation is again
semantics-preserving. Finally, we speculated on blame prediction could support

168

8.3 Limitations

other features of dynamically typed languages such as compound data struc-
tures, objects, non-local control flow, and debug prints.

• Chapter 5 described our prototype implementation in broad strokes. It first dis-
cussed how our prototype represents the abstract syntax tree and the various
techniques used to manipulate it. Next, it described the implementation of the
blame prediction transformation, guided by the stages laid out in chapter 2. Fi-
nally, the chapter showed how we found and solved two performance bottlenecks
in our implementation.

• Chapter 6 defined two metrics by which we can evaluate our prototype im-
plementation of the blame prediction transformation. The first metric measures
how much earlier the blame prediction transformation is able to perform type
tests. The second metric measures the reduction in the number of type tests per-
formed. The first metric corresponds to the “root cause analysis” problem, the
second metric to the “long time to crash” problem. Both metrics can be measured
both in terms of the program text (static) and in terms of run-time behavior (dy-
namic). We applied these metrics to programs from two well-known benchmark
suites, namely the Gabriel benchmarks and the Computer Language Benchmark
Game (CLBG). Finally, we applied techniques from mutability testing to generate
small defects in our program corpora and made some case studies where blame
prediction was really able to help the programmer.

• Chapter 7 situated blame prediction among the fields of static, dynamic and
post-mortem program analysis. It defined four criteria according to which the
approaches were examined.

Among the static analysis approaches are type systems, which aim to detect
errors statically. These are so-called “might-fail” approaches, which prevent pro-
grams from running if there is a chance a type error might occur. In the dy-
namic analysis approaches, the emphasis is on dynamically verifying properties
of values in the program. The various approaches attempt to improve on dy-
namic typing either by performing type tests earlier and/or removing statically
checkable verifiable tests. Unfortunately, most approaches require programmer
intervention or, in the case of preemptive type checking, significant analysis. Fi-
nally, the post-mortem approaches help the programmer in figuring out the exact
point where a program “starts to go wrong”, i. e. the point where an invariant
is violated or a variable receives the wrong value. While these slightly allevi-
ate a tedious time-consuming process, they still require significant programmer
investment.

8.3 Limitations

In this section we discuss a number of limitations in the work presented here.

169

8 Conclusion and Future Work

8.3.1 Explicit type tests

As we remarked in the beginning of this thesis, dynamically typed programs differ
from statically typed languages in that values have types, not variables. Thus, a value
returned from a computation or received as a function parameter may have any type.
Programmers often exploit this to provide flexible interfaces in their code. To discrimi-
nate a value according to its type, dynamically typed programming languages provide
type test predicates such as number? and null?. These predicates are used to form the
preconditions we use in the final check expressions.

The type inference presented in chapter 2 does not take into account type tests
created by the programmer. Consider the program in listing 8.1, where the function
compute-list-or-num returns either a number or a list of numbers. The intent is to add
one to each number in the result, regardless of whether it is a int or a list. To this end,
the programmer has written a number? type test which governs the branch taken. If
the number? test fails, list-or-num is not a number and therefore assumed to be a list.
Vice versa, if the test succeeds then list-or-num is guaranteed to be a number.

1 (let ([list-or-num (compute-list-or-num)])
2 (if (number? list-or-num)
3 (+ list-or-num 1)
4 (map (lambda (x) (+ x 1)) list-or-num)))

Listing 8.1: Example of explicit type tests

Blame prediction as formulated in this dissertation cannot make use of the results
of such type tests. If we apply the blame prediction transformation to this snippet,
we receive the snippet in listing 8.2. Note that the number? test is repeated in the first
branch of the conditional expression.

1 (let ([list-or-num (compute-list-or-num)])
2 (check [number? list-or-num ∨ list? list-or-num]
3 (if (number? list-or-num)
4 (check [number? list-or-num] (+ list-or-num 1))
5 (check [list? list-or-num] (map (lambda (x) (+ x 1)) list-or-num))))

Listing 8.2: Example of explicit type tests after blame prediction

Other type systems do allow type tests to narrow the types of variables in a flow-
sensitive manner, notably Typed Racket’s occurrence typing [Tobin-Hochstadt and
Felleisen, 2010]. Under that type system, expressions are associated with type pred-
icates on variables and “paths” through data structures. Using these expressions in a
conditional then allows the type inferencer to adjust the type environment accordingly
for each branch.

As future work we propose to incorporate features from occurrence typing, which
will enable the blame prediction transformation to make use of explicit type tests.

170

8.4 Avenues for Future Research

8.3.2 Cross-module blame prediction

Almost every program written today makes use of code that is external to the program.
This code could be part of the standard language distribution (std::vector for C++ or
os in Python), added on to the system (downloaded from CPAN or Rubygems), or
previously written by the programmer. Code is organized in several modules, which
expose some values (functions and variables) to other modules.

Modules are a boon to the software engineering process: they can be developed and
tested separately from other parts of a program, and they can subsequently be pub-
lished for reuse in other programs. For an interpreted language, importing a module
typically means locating the file that contains said module, evaluating the contents
(which may trigger loading of other modules), and making the module’s exports avail-
able to the calling program. In a compiled language however, separate compilation is
desired, meaning that modules can be compiled separately and only combined in the
linking phase. For example, a C++ program which calls a function exposed by another
module results in a function call instruction whose address is filled in by the linker.
This represents a trade-off in performance for modularity: if the function being called
could have been inlined, this represents a missed inlining opportunity. Some of these
inlining opportunities can be reclaimed by link-time optimization [Lattner and Adve,
2004; Srivastava and Wall, 1993].

For type inference there is a similar problem with modules: a module’s source code
might not be available. The only way to interact with such a module is to save the
result of type inference when building the module somewhere, much like headers
which define types and declare values in C++. Users of the module can then reference
the saved types when inferring expressions that use the imported functionality.

Blame prediction as presented in this dissertation is a whole-program analysis. In or-
der to support modules, the inferred types and checks for every exported function
should be stored as part of the definition of a module. Unfortunately, the blame assign-
ment presented in the blame prediction transformation is not capable of representing
cross-module blame. Simply referencing the code inside foreign modules requires the
programmer to understand the structure and implementation of these modules. One
solution is to require contracts or type annotations for exported definitions, which
enables the blame prediction transformation to “short-circuit” the blame assignment.

8.4 Avenues for Future Research

8.4.1 Other effect systems

The motivation for this dissertation was the prediction of type errors raised by prim-
itive operations in dynamically typed languages. However, type errors are but one
subset of the larger group of errors a modern dynamic programming language can

171

8 Conclusion and Future Work

produce. We believe that blame prediction can be expanded to predict other groups of
errors. We highlight a number of likely targets below.

Coercion insertion A number of type systems [Aiken et al., 1994; Peyton Jones et al.,
2012; Siek and Taha, 2006], also described in chapter 7, insert run-time coercions in
code when they detect a type error. These coercions are situated in the place where
the type error was detected, even when the error can be detected much earlier. The
check mobility and simplification stages of blame prediction can be applied to the
output of these type systems, yielding ahead-of-time errors.

Null pointer detection In the software industry, a sizable amount of developer time
is lost on NullPointerExceptions [Ayewah et al., 2008]. These exceptions occur when
an object is created but one of its instance variables is not set, and these variables are
accessed later. The gap between the creation of the bug and when it is encountered can
span a large amount of real time. Moreover, it is an exception that is not caught by de-
fault, so long-running processes typically catch and report NullPointerExceptions (NPEs)
at a very high level. The question programmers need to answer when solving an NPE
then becomes either “when was this field set to null” or “when was this object cre-
ated”. Blame prediction can be used to record the point where objects are created and
more importantly, warn in advance when a NPE will occur.

Variable tainting In the modern Internet, there are millions of servers that interact
with untrusted user data. The news is full of security breaches or takeovers caused by
the input of maliciously crafted data, which was used to subvert these servers and give
attackers control. In fact, user data injections are the number one security vulnerability
for the past few years, as determined by the Open Web Application Security Project
(OWASP) Open Web Application Security Project [2013]. As an example, consider a
login form where the user has to supply a username and a password. Ordinary users
would supply their actual username and password, for example "bob" and "secret".

An attacker can send a cleverly formatted username that subverts the SQL query,
however. For example, supplying the following username:

Administrator' OR 'x' = '

yields a SQL query such as listing 8.3.

1 SELECT * FROM users WHERE username = 'Administrator’ OR ’x’ = ’'
2 AND password = 'aQN78goJ'

Listing 8.3: SQL query after injection

The condition of the query is now split in two parts, where one simply looks for a users

record with username Administrator, and the other can never succeed, as 'x' != ''.
In other words, submitting the username above allows an attacker to enter the system
as the Administrator user, without knowing the password.

172

8.4 Avenues for Future Research

There are defensive coding styles that eliminate SQL injections entirely, using so-
called prepared statements which keep the data and the query separated. However, pre-
pared statements are slow on the uptake among programmers as they have to go out
of their way to use these prepared statements, and some online web programming
tutorials still only teach the unsafe way of performing SQL queries.

Variable tainting [Clause et al., 2007] is a technique to prevent these kind of injections.
It works by “tainting” variables that contain user input, and considering tainted any
expression that involves tainted variables. As tainted values are passed through the
program, eventually they are passed to sensitive operations, which raise an error if
their input is tainted. In the example above, hash always produces untainted output,
so hashedPassword is safe to use, but username will still result in tainting errors.

We believe blame prediction can be applied for tainting as well, where “x is not
tainted” is a valid precondition.

8.4.2 Tool support for blame prediction

As we saw in chapters 2 to 4, the structure of the program influences the effectiveness
of blame prediction. For example, assigning a new value to a variable x will prevent
any checks on x from propagating past the assignment. If the programmer can move
the assignment expression towards the beginning of the function without affecting its
semantics, then blame prediction can also move checks further upwards.

Another important area that can be improved is the type tests performed at the start
of functions: currently blame prediction assumes nothing about function parameters,
leading to repeated checks that could be elided. For example, consider an implementa-
tion of the vector-ref function that performs some extra checks on its index argument
before actually accessing a vector. Our type system could give it a type like

Π(αv,αi).(int ?= αi) · (error∨ (vector ?= αv) · ?)

which always checks whether the i parameter is a number, but only checks whether v

is a vector after the tests on the index. Contrast this with the programmer’s intention,
who wants to ensure the v argument is always a vector. In that case, the programmer
could annotate the function and override the inferred type.

In order to augment the programmer’s interaction with blame prediction, we envi-
sion tool support in the form of an Integrated Development Environment (IDE) that
automatically applies blame prediction as the program is being edited. This IDE can
then annotate the program with the final locations of moved check expressions and
identify expressions that block check expressions from moving upwards. To solve the
function communication issue, the IDE could show the inferred type for each function
definition, inviting the programmer to propose a better type, leading to more checks in
other parts of the program. These types could then become part of the documentation
as well.

173

8 Conclusion and Future Work

8.5 Concluding Remarks

This section concludes the dissertation. In the beginning we described two problems
related to finding and debugging errors in dynamically typed programming languages.
The first problem was termed the “root cause analysis” problem, which describes the
process of finding the cause of a type error. The second problem was termed the “long
time to crash” problem, as the programmer needs to re-run the program after every
change.

We set out to develop a technique with the objective of solving these problems.
This technique automatically moves type tests in dynamically typed programming
languages upwards, such that they are performed as early as possible. This solves
both problems effectively, as the blame prediction transformation moves type tests
upwards in the program, to the program locations beyond which further evaluation
must lead to errors. At the same time, the time to crash is reduced: performing type
tests earlier also enables the program to stop much earlier.

We showed that the blame prediction transformation is effective at tackling these
problems in our evaluation chapter. We defined and applied two metrics to programs
from two well-known benchmark sets. The first metric measures the difference be-
tween the points where a variable is type tested in advance and where it is used in a
primitive operation. This metric can be measured both statically (in terms of the pro-
gram text) and dynamically (in terms of the program behavior), which corresponds to
the “root cause analysis” and the “long time to crash” problems. The second metric
was the ability of the blame prediction transformation to reduce the number of type
tests, which also contributes to solving the “long time to crash” problem.

Our technique still has room for improvement, however. For example, in this dis-
sertation we used a type inference system as a basis for generating check expressions.
Other techniques such as abstract interpretation might provide a better basis for check

introduction, yielding more precision and thus fewer type tests. Another area of im-
provement is better integration with the debugging process, either by helping the user
locate the cause of type errors or by taking advantage of user annotations.

We are convinced that the blame prediction transformation described in this disser-
tation can be of benefit to developers everywhere.

174

R E F E R E N C E S

CHICKEN Scheme: A practical and Portable Scheme System. URL http://www.cal
l-cc.org. 131

Hal Abelson, R Kent Dybvig, Christopher T Haynes, Guillermo Rozas, N I Adams, IV,
Daniel Friedman, Eugene Kohlbecker, D H Bartley, R Halstead, D Oxley, Gerald J
Sussman, G Brooks, Chris Hanson, Kent Pitman, and Mitchell Wand. Revised5 Re-
port on the Algorithmic Language Scheme. Higher-Order and Symbolic Computation,
11(1), August 1998. 1, 16, 114, 130, 131

Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and James
Philbin. Orbit: An optimizing compiler for Scheme. In SCC ’86: Proceedings of the
SIGPLAN Symposium on Compiler Construction, pages 219–233, New York, New York,
USA, 1986. ACM. 130

Alexander Aiken, Edward L Wimmers, and T K Lakshman. Soft typing with condi-
tional types. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 163–173. ACM Request Permissions,
February 1994. 155, 172

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-
Oriented Programming. In OOPSLA ’09: Proceedings of the 24th ACM international
conference on Object oriented programming systems languages and applications, pages
1015–1022, New York, New York, USA, 2009. ACM Press. 1, 145

Jong-hoon David An, Avik Chaudhuri, Jeffrey S Foster, and Michael Hicks. Dynamic
inference of static types for Ruby. In POPL ’11: Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 459–472.
ACM Request Permissions, January 2011. 2, 145

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type in-
ference for JavaScript. In ECOOP ’05: Proceedings of the 19th European conference on
Object-oriented programming, pages 428–452, 2005. 145

Andrew W Appel, John R Ellis, and Kai Li. Real-time Concurrent Collection on Stock
Multiprocessors. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conference on

175

http://www.call-cc.org
http://www.call-cc.org

References

Programming Language Design and Implementation, pages 11–20, New York, NY, USA,
1988. ACM. 130

Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and William
Pugh. Using Static Analysis to Find Bugs. IEEE Software, 25(5):22–29, 2008. 172

Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types:
syntax and semantics. Information and Computation, 119(2):202–230, 1995. 20, 154

Adam Bard. Top Github Languages of 2014, August 2014. URL http://adambard
.com/blog/top-github-languages-2014/. 3

Michael Bayne, Richard Cook, and Michael D. Ernst. Always-available static and dy-
namic feedback. In ICSE ’11: Proceedings of the 33rd International Conference on Software
Engineering, pages 521–530. ACM, 2011. 2, 155

Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In
ECOOP ’14: Proceedings of the 28th European conference on Object-Oriented Programming,
pages 257–281, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. 2

Hans-J Boehm, Alan J Demers, and Scott Shenker. Mostly parallel garbage collection.
In PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, pages 157–164, New York, New York, USA, 1991. ACM,
ACM Press. 130

Bob Boothe. Efficient algorithms for bidirectional debugging. In PLDI ’00: Proceedings of
the 21st ACM SIGPLAN conference on Programming language design and implementation,
pages 299–310. ACM, 2000. 3, 160

François Bourdoncle. Assertion-based debugging of imperative programs by abstract
interpretation. In ESEC ’93: Proceedings of the 4th European Software Engineering Con-
ference, pages 501–516. Springer Berlin Heidelberg, 1993. 146, 161

Amy Brown and Greg Wilson. The architecture of open source applications, volume 2.
Structure, Scale, and a Few More Fearless Hacks. Kristian Hermansen, 2012. 109

Stefan Brunthaler. Efficient Interpretation Using Quickening. In DLS ’10: Proceedings
of the 6th Symposium on Dynamic Languages, pages 1–14, New York, NY, USA, 2010.
ACM. 130

Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation, pages
278–292. ACM Request Permissions, June 1991. 154

Dave Clarke, John M Potter, and James Noble. Ownership types for flexible alias pro-
tection. In OOPSLA ’98: Proceedings of the 13th ACM international conference on Object

176

http://adambard.com/blog/top-github-languages-2014/
http://adambard.com/blog/top-github-languages-2014/

References

oriented programming systems languages and applications, pages 48–64. ACM, October
1998. 1

James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic taint
analysis framework. In ISSTA ’07: Proceedings of the 2007 International Symposium on
Software Testing and Analysis, pages 196–206. ACM Request Permissions, July 2007.
173

William D Clinger, Anne Hartheimer, and Eric Ost. Implementation strategies for con-
tinuations. In LFP ’88: Proceedings of the 1988 ACM conference on LISP and functional
programming, pages 124–131. ACM, 1988. 130

Gregory H Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow in a
Call-by-Value Language. In ESOP ’06: Proceedings of the15th European Symposium on
Programming, pages 294–308, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
162

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252, New York, New York, USA, 1977a. ACM
Press. 53, 146

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
recursive procedures. In FDPC ’77: Proceedings of the IFIP Conference on Formal De-
scription of Programming Concepts, pages 237–277, 1977b. 46, 49, 61, 72

Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In PLILP ’92: Proceedings of
the fourth international symposium on Programming Language Implementation and Logic
Programming, pages 269–295, 1992a. 53, 61, 72

Patrick Cousot and Radhia Cousot. Abstract Interpretation Frameworks. Journal of
logic and computation, 2(4):511–547, August 1992b. 146

Douglas Crockford. JavaScript: the good parts. O’Reilly Media, Incorporated, 2008. 157

Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-order
world. Transactions on Programming Languages and Systems, 33(5):27, November 2011.
153

Bruce F Duba, Robert Harper, and David B MacQueen. Typing First-Class Continua-
tions in ML. In POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 163–173, New York, New York, USA,
1991. ACM Press. 103

177

References

Mireille Ducassé. Coca: an automated debugger for C. In ICSE ’99: Proceedings of the
21st international conference on Software engineering. IEEE Computer Society Press,
May 1999a. 162

Mireille Ducassé. Abstract views of Prolog executions with Opium. In Paul Brna, Ben
du Boulay, and Helen Pain-Lewis, editors, Learning to Build and Comprehend Complex
Information Structures: Prolog as a Case Study, pages 223–243. Ablex, 1999b. 162

Mireille Ducassé and Jacques Noyé. Logic Programming Environments: Dynamic Pro-
gram Analysis and Debugging. J. Log. Program. () 19/, 19-20:351–384, 1994. 161

Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP ’97: Proceedings
of the second ACM SIGPLAN international conference on Functional programming, pages
263–273. ACM, August 1997. 162

Manuel Fähndrich and K Rustan M Leino. Declaring and checking non-null types
in an object-oriented language. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, languages, and applications,
pages 302–312. ACM, November 2003. 145

Marc Feeley. SRFI 18: Multithreading support, 2001. URL http://srfi.schemer
s.org/srfi-18/srfi-18.html. 132

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992. 17

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In ICFP ’02: Proceedings of the 7th International Conference on Functional Programming,
pages 48–59, 2002. 152

David Flanagan. JavaScript: the definitive guide. O’Reilly Media, Inc., 2006. 1

Matthew Flatt and PLT. PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc., 2010. 153

Brent Fulgham. (The Computer Language Benchmark Game), 2008. URL http://be
nchmarksgame.alioth.debian.org. 130, 140

Michael Furr, Jong-hoon David An, Jeffrey S Foster, and Michael Hicks. Static type
inference for Ruby. In SAC ’09: Proceedings of the 2009 ACM Symposium on Applied
Computing, pages 1859–1866, 2009. 145

Richard P Gabriel. Performance and evaluation of Lisp systems. MIT press Cambridge,
1985. 4, 130, 140

Richard P Gabriel and Larry M Masinter. Performance of Lisp systems. In LFP ’82:
Proceedings of the 1982 ACM symposium on LISP and Functional Programming, pages
123–142, 1982. 130

178

http://srfi.schemers.org/srfi-18/srfi-18.html
http://srfi.schemers.org/srfi-18/srfi-18.html
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org

References

David Gifford and John Lucassen. Integrating functional and imperative program-
ming. In LFP ’86: Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pages 28–38, 1986. 76, 151, 168

Jean-Yves Girard. Linear logic: Its syntax and semantics. London Mathematical Society
Lecture Note Series, pages 1–42, 1995. 1

James Gosling. The Java language specification. Addison-Wesley Professional, 2000. 1

Neville Grech. Preemptive type checking in dynamically typed programs. PhD thesis, Uni-
versity of Southampton, faculty of physical sciences and engineering, 2013. 157, 158

Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cyclone: A type-safe
dialect of C. C/C++ Users Journal, 23(1):112–139, 2005. 130

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of JavaScript.
In ECOOP ’10: Proceedings of the 24th European conference on Object-oriented program-
ming, pages 126–150, June 2010. 2

Stefan Hanenberg and Andreas Stuchlik. Static vs. dynamic type systems: an empirical
study about the relationship between type casts and development time. In DLS ’11:
Proceedings of the 7th symposium on Dynamic languages, pages 97–106, New York, New
York, USA, March 2012. ACM Request Permissions. 2, 148, 155

Dries Harnie. Prototype Implementation of Blame Prediction. Technical report,
September 2015. 107

Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter. Ambient Contracts.
Electronic Communications of the EASST, 28(0), March 2010.

Dries Harnie, Elisa Gonzalez Boix, Theo D’Hondt, and Wolfgang De Meuter. Program-
ming urban-area applications. In SAC ’12: Proceedings of the 27th ACM Symposium on
Applied Computing, pages 1516–1521, 2012.

Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter. Blame Prediction. TFP
’13: Trends in Functional Programming, 8322:91–106, 2013.

Dries Harnie, Elisa Gonzalez Boix, Theo D’Hondt, and Wolfgang De Meuter. Program-
ming Urban-Area Applications by Exploiting Public Transportation. Transactions on
Autonomous and Adaptive Systems (TAAS), 9(2), July 2014.

Dries Harnie, Alexander E Vapirev, Jörg Kurt Wegner, Andrey Gedich, Marvin Stei-
jaert, Roel Wuyts, and Wolfgang De Meuter. Scaling Machine Learning for Target
Prediction in Drug Discovery using Apache Spark. In CCGRID Life ’15: Proceedings
of the 2015 Workshop on Clusters, Clouds and Grids for Life Sciences, 2015.

179

References

Williams Ludwell Harrison III. The interprocedural analysis and automatic paralleliza-
tion of Scheme programs. LISP and Symbolic Computation, 2(3-4):179–396, 1989. 130

Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access permission contracts
for scripting languages. In POPL ’12: Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 111–122. ACM, Jan-
uary 2012. 153

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# programming language.
Adobe Press, 2006. 1

Fritz Henglein. Global tagging optimization by type inference. In LFP ’92: Proceedings
of the 1992 ACM conference on LISP and Functional Programming, pages 205–215. ACM
Request Permissions, January 1992. 158

Roger Hindley. The principal type-scheme of an object in combinatory logic. Transac-
tions of the american mathematical society, 146:29–60, December 1969. 58

Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP ’98: Proceed-
ings of the 7th European Symposium on Programming, pages 122–138, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg. 1

William E Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE Trans.
Software Eng. (), SE-8(4):371–379, 1982. 9, 135

Laurent Hubert. A non-null annotation inferencer for Java bytecode. In PASTE ’08:
Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for soft-
ware tools and engineering, pages 36–42, New York, New York, USA, November 2008.
ACM Request Permissions. 145

John Hughes. The Design of a Pretty-printing Library. Advanced Functional Program-
ming, 925(Chapter 3):53–96, 1995. 120

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho.
Lua—An Extensible Extension Language. Software: Practice and Experience, 26(6):
635–652, June 1996. 1

Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Trans. Software Eng. (), 37(5):649–678, 2011. 9, 135

Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects. In
POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 303–310. ACM, 1991. 76

Richard Kelsey. SRFI 9: Defining record types. Technical report, 1999. 131

180

References

Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, Éric Tanter, and Andreas
Stefik. Do static type systems improve the maintainability of software systems? An
empirical study. In ICPC ’12: Proceedings of the 18th International Conference on Program
Comprehension, pages 153–162. IEEE, 2012. 2

Eugene Kohlbecker, Daniel P Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In LFP ’86: Proceedings of the 1986 ACM conference on LISP and
functional programming, pages 151–161. ACM, August 1986. 131

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pat-
tern for generic programming. In TLDI ’03: Proceedings of the 2003 ACM SIGPLAN
international workshop on Types in languages design and implementation, pages 26–37,
New York, New York, USA, 2003. ACM Press. 121

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible
generic functions. In ICFP ’05: Proceedings of the 10th ACM SIGPLAN international
conference on Functional programming, pages 204–215, New York, New York, USA,
2005. ACM Press. 121

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In CGO ’04: International Symposium on Code Gener-
ation and Optimization, pages 75–86. IEEE, 2004. 171

Daan Leijen and Erik Meijer. Parsec: direct style monadic parser combinators for the real
world. 2002. 112

Benjamin S Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. TeJaS:
Retrofitting Type Systems for JavaScript. In DLS ’13: Proceedings of the 9th symposium
on Dynamic Languages, pages 1–16, 2013. 2

Bill Lewis. Debugging Backwards in Time. In AADEBUG ’03: Fifth International Work-
shop on Automated Debugging, pages 225–235, October 2003. 4, 146, 160

Mark Lutz. Programming Python, volume 8. O’Reilly, 1996. 1

Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual Classes: A Powerful Mech-
anism in Object-Oriented Programming. In OOPSLA ’89: Proceedings of the 4th ACM
international conference on Object oriented programming systems languages and applica-
tions, pages 397–406. ACM, 1989. 98

Guillaume Marceau, Gregory H Cooper, Jonathan P Spiro, Shriram Krishnamurthi,
and Steven P Reiss. The design and implementation of a dataflow language for
scriptable debugging. Automated Software Engineering, 14(1):59–86, March 2007. 146,
162

181

References

Daniel Marino and Todd Millstein. A generic type-and-effect system. In TLDI ’09: Pro-
ceedings of the 4th international workshop on Types in language design and implementation,
pages 39–50. ACM, 2009. 76, 151

Clemens Mayer, Stefan Hanenberg, Romain Robbes, Andreas Stefik, and Éric Tanter.
An empirical study of the influence of static type systems on the usability of undocu-
mented software. In OOPSLA ’12: Proceedings of the 27th ACM international conference
on Object oriented programming systems languages and applications, pages 683–702, New
York, New York, USA, November 2012. ACM Request Permissions. 2

Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., January 1992. 146, 152

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, December 1978. 58, 148

Robin Milner. The definition of standard ML: revised. MIT press, 1997. 1

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing. In Haskell
’07: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 49–60, New York,
New York, USA, September 2007a. ACM. 110

Neil Mitchell and Colin Runciman. A Supercompiler for Core Haskell. In IFL ’07:
Proceedings of the 19th international workshop on Implementation and Application of Func-
tional Languages, pages 147–164, Berlin, Heidelberg, 2007b. Springer Berlin Heidel-
berg. 130

Eugenio Moggi. Computational lambda-calculus and monads. In LICS ’89: Proceedings
of the fourth Annual Symposium on Logic in Computer Science, pages 14–23, 1989. 151

Stijn Mostinckx, Jessie Dedecker, Tom Van Cutsem, and Wolfgang De Meuter. Con-
versations for Ambient Intelligence. In EHOOS ’05: Proceedings of the 2005 ECOOP
Workshop on Exception Handling in Object-Oriented Systems, pages 1–12, June 2005. 12

Flemming Nielson and Hanne Riis Nielson. Type and effect systems. Recent Insight
and Advances to Correct System Design, pages 114–136, 1999. 151

Open Web Application Security Project. Top 10 security vulnerabilities of 2013, 2013.
URL https://www.owasp.org/index.php/Top_10_2013. 172

Peter Ørbæk and Jens Palsberg. Trust in the λ-calculus. Journal of Functional Program-
ming, 7(06):557–591, November 1997. 145

Simon Peyton Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, Inc., May 1987. 42, 113

Simon Peyton Jones. Compiling Haskell by Program Transformation: A Report from
the Trenches. In ESOP ’96: Proceedings of the 5th European Symposium on Programming
Languages and Systems, pages 18–44. Springer-Verlag, April 1996. 159

182

https://www.owasp.org/index.php/Top_10_2013

References

Simon Peyton Jones. Tackling the Awkward Squad. In CAR Hoare, Manfred Broy, and
Ralf Steinbrüggen, editors, Engineering Theories of Software Construction, pages 47–96.
2001. 75

Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003. 1, 107

Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães. Equality proofs
and deferred type errors: A compiler pearl. In ICFP ’12: Proceedings of the 17th In-
ternational Conference on Functional Programming, pages 341–352, March 2012. 2, 155,
172

Benjamin C Pierce. Programming with intersection types, union types, and polymor-
phism. Technical Report 2019, Carnegie Mellon University, 1991. 20, 154

Benjamin C Pierce. Types and programming languages. MIT Press, 2002. 148

Benjamin C Pierce and David N Turner. Local type inference. Transactions on Program-
ming Languages and Systems, 22(1):1–44, 2000. 149

Kevin Pinte, Dries Harnie, and Theo D’Hondt. Enabling Cross-Technology Mobile
Applications with Network-Aware References. In COORDINATION ’11: Proceedings
of the 13th International Conference on Coordination Models and Languages, pages 142–
156. Springer Berlin Heidelberg, 2011a.

Kevin Pinte, Dries Harnie, Elisa Gonzalez Boix, and Wolfgang De Meuter. Network-
aware references for pervasive social applications. PerCol ’11: Proceedings of the 2011
IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pages 537–542, 2011b.

Guillaume Pothier and Éric Tanter. Summarized Trace Indexing and Querying for
Scalable Back-in-Time Debugging. In ECOOP ’11: Proceedings of the 25th European
conference on Object-Oriented Programming, pages 558–582, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. 4, 160

Guillaume Pothier, Éric Tanter, and José M Piquer. Scalable omniscient debugging. In
OOPSLA ’07: Proceedings of the 22nd ACM international conference on Object oriented
programming systems languages and applications, pages 535–552, New York, New York,
USA, 2007. ACM Press. 160, 161

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual
type inference. In POPL ’12: Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 481–494, January 2012. 157

John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965. 58

183

References

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. LISP and Symbolic Computation, 6(3-4):289–360, November 1993. 17, 114, 123

Konstantinos Sagonas and Daniel Luna. Gradual typing of erlang programs: a wran-
gler experience. In Erlang ’08: Proceedings of the 7th ACM SIGPLAN workshop on
Erlang, pages 73–82, New York, New York, USA, September 2008. ACM. 145

Yasushi Saito. Jockey: A User-space Library for Record-replay Debugging. In AADE-
BUG ’05: Proceedings of the Sixth International Symposium on Automated Analysis-driven
Debugging, pages 69–76, New York, NY, USA, 2005. ACM. 160

Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In ECOOP ’10: Proceedings of the 24th European conference on
Object-oriented programming, pages 275–299. Springer, 2010. 13, 130

Christophe Scholliers, Dries Harnie, Éric Tanter, Wolfgang De Meuter, and Theo
D’Hondt. Ambient contracts: verifying and enforcing ambient object compositions
à la carte. Personal and Ubiquitous Computing, 15(4), April 2011.

Umesh Shankar, Kunal Talwar, Jeffrey S Foster, and David Wagner. Detecting format
string vulnerabilities with type qualifiers. In SSYM ’01: Proceedings of the 10th confer-
ence on USENIX Security Symposium. USENIX Association, August 2001. 145

Olin Shivers. Control flow analysis in scheme. In PLDI ’88: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation, pages
164–174. ACM, July 1988. 158

Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon
University, Carnegie Mellon University, May 1991. 158

Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In SFP ’06:
Proceedings of the 2006 Workshop on Scheme and Functional Programming, pages 81–92,
2006. 2, 146, 156, 172

Jeremy G Siek and Walid Taha. Gradual Typing for Objects. In ECOOP ’07: Proceedings
of the 21st European conference on Object-oriented programming, pages 2–27, July 2007.
2, 157

Jeremy G Siek and Manish Vachharajani. Gradual typing with unification-based infer-
ence. In DLS ’08: Proceedings of the 4th symposium on Dynamic languages, New York,
New York, USA, July 2008. ACM. 2, 157

Josep Silva. A vocabulary of program slicing-based techniques. ACM Computing Sur-
veys, 44(3):12–41, June 2012. 4

Amitabh Srivastava and David W Wall. A practical system for intermodule code opti-
mization at link-time. Journal of Programming Languages, 1(1):1–18, March 1993. 171

184

References

Peter Steenkiste and John Hennessy. Tags and type checking in LISP: Hardware and
software approaches. ACM SIGOPS Operating Systems Review, 21(4):50–59, 1987. 130

T Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
Chaperones and impersonators: run-time support for reasonable interposition. In
OOPSLA ’12: Proceedings of the 27th ACM international conference on Object oriented
programming systems languages and applications, pages 943–962. ACM, November 2012.
154

Robert E Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng. (), SE-12(1):157–171, January
1986. 145

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(03):245–271, July 1992. 76, 151

Peter Thiemann. Towards a type system for analyzing javascript programs. In
ESOP ’05: Proceedings of the 14th European Symposium on Programming, pages 408–422.
Springer, 2005. 145

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 395–406, 2008. 101, 149

Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In
ICFP ’10: Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming, pages 117–128, September 2010. 2, 150, 170

Sam Tobin-Hochstadt and David Van Horn. Higher-order symbolic execution via con-
tracts. In OOPSLA ’12: Proceedings of the 27th ACM international conference on Object
oriented programming systems languages and applications, pages 537–554. ACM Request
Permissions, November 2012. 153

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as libraries. In PLDI ’11: Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementation, pages 132–
141. ACM Request Permissions, June 2011. 2, 128, 130, 149, 159

V8 Team. V8 Benchmarks, 2011. URL http://code.google.com/apis/v8/benc
hmarks.html. 157

Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Car-
reton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: program-
ming responsive mobile peer-to-peer applications with actors. Computer Languages,
Systems & Structures (), 40(3-4):112–136, October 2014.

185

http://code.google.com/apis/v8/benchmarks.html
http://code.google.com/apis/v8/benchmarks.html

References

Oscar Waddell, Dipanwita Sarkar, and R Kent Dybvig. Fixing Letrec: A Faithful Yet
Efficient Implementation of Scheme’s Recursive Binding Construct. Higher-Order
and Symbolic Computation, 18(3-4), December 2005. 42, 113

Philip Wadler. A prettier printer. The Fun of Programming, 2003. 120

Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM Trans-
actions on Computational Logic, 4(1):1–32, January 2003. 151

WebKit Team. SunSpider Benchmarks, 2010. URL http://www.webkit.org/per
f/sunspider/sunspider.html. 157

Andrew K Wright and Robert Cartwright. A practical soft type system for Scheme.
In LFP ’94: Proceedings of the 1994 ACM conference on LISP and Functional Program-
ming, pages 250–262. LFP ’94: Proceedings of the 1994 ACM conference on LISP and
Functional Programming, July 1994. 128, 130, 154

Tobias Wrigstad. International Workshop on Scripts to Programs, 2009. 2

Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. Expositor: Scriptable time-travel
debugging with first-class traces. In ICSE ’13: 35th International Conference on Software
Engineering (ICSE), pages 352–361. IEEE, 2013. 162

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster computing. In NSDI ’12:
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementa-
tion, page 2. USENIX Association, April 2012. 14

186

http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html

	Colophon
	Abstracts
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Research Context
	1.2 Problem Statement: Locating Dynamic Type Errors
	1.3 Research Goals
	1.4 Contributions
	1.5 Dissertation Outline
	1.6 Supporting Publications and Technical Contributions
	1.7 Other Publications

	2 Functional Blame Prediction
	2.1 Language Description
	2.2 Check Inference
	2.3 Check Introduction
	2.4 Check Mobility
	2.5 Check Simplification
	2.5.1 Or–true simplification
	2.5.2 And–check simplification
	2.5.3 Check–check simplification
	2.5.4 Note on simplification of failing tests

	2.6 Correctness
	2.7 Proofs of lemmas
	2.8 Discussion
	2.8.1 Variable-arity functions
	2.8.2 Supporting a full numeric tower in blame prediction

	2.9 Conclusion

	3 Recursion
	3.1 Syntax and Semantics
	3.2 Recursion
	3.2.1 Check Inference for Recursion
	3.2.2 Solving types for recursive functions
	3.2.3 Non-terminating recursion patterns
	3.2.4 Termination properties of Solve
	3.2.5 Worked out examples
	3.2.5.1 Fibonacci
	3.2.5.2 Ackermann
	3.2.5.3 Tak
	3.2.5.4 Infinite recursion
	3.2.5.5 Cyclic recursion
	3.2.5.6 Mutual Recursion

	3.3 Conclusion

	4 Mutation
	4.1 Mutation
	4.1.1 Effect Inference for Scheme
	4.1.2 Check mobility
	4.1.3 Check Simplification
	4.1.4 Examples

	4.2 Proof of Safety
	4.2.1 Correctness of Effect Inference
	4.2.2 Program Properties after Blame Prediction
	4.2.3 Traces and Trace Semantics
	4.2.4 Proof of equivalences
	4.2.5 Conclusion

	4.3 Discussion and Future Work
	4.3.1 Blame Prediction for Compound Data Structures
	4.3.1.1 Supporting Immutable Data Structures
	4.3.1.2 Mutable Data Structures

	4.3.2 Blame Prediction and Modules
	4.3.3 Blame Prediction and Non-local Control Flow
	4.3.4 Blame Prediction and Debug Prints

	4.4 Conclusion

	5 Prototype Implementation
	5.1 General remarks
	5.2 Architecture
	5.2.1 Parsing
	5.2.2 Preprocessing and ANF Transformation
	5.2.3 Check Inference
	5.2.4 Check Mobility
	5.2.5 Check Simplification
	5.2.6 Postprocessing

	5.3 Optimizations
	5.4 Conclusion

	6 Evaluation
	6.1 Metrics
	6.2 Program Corpora
	6.2.1 Gabriel Benchmarks
	6.2.2 Computer Language Benchmarks Game
	6.2.3 Excluded programs

	6.3 Results
	6.3.1 Gabriel Benchmarks
	6.3.2 Computer Language Benchmark Game

	6.4 Evaluating Blame Prediction by Random Mutation
	6.5 Conclusion

	7 Related Work
	7.1 The error detection landscape
	7.2 Criteria
	7.3 Compile-time error detection: Static analysis
	7.3.1 Typed Racket
	7.3.2 Effect systems

	7.4 Run-time error detection: Dynamic analysis
	7.4.1 Contracts
	7.4.2 Soft typing
	7.4.3 Deferred type errors
	7.4.4 Gradual typing
	7.4.5 Preemptive type checking
	7.4.6 Tagging/Untagging optimizations

	7.5 Post-mortem error detection: Debuggers
	7.5.1 Omniscient debugging
	7.5.2 Automatic debugging
	7.5.3 Scriptable debugging

	7.6 Conclusion

	8 Conclusion and Future Work
	8.1 Summary
	8.2 Restating the Contributions
	8.3 Limitations
	8.3.1 Explicit type tests
	8.3.2 Cross-module blame prediction

	8.4 Avenues for Future Research
	8.4.1 Other effect systems
	8.4.2 Tool support for blame prediction

	8.5 Concluding Remarks

	References

