
Poster: Tierless Programming in JavaScript
Laure Philips∗, Wolfgang De Meuter∗, Coen De Roover∗

∗Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Email: lphilips, wdmeuter, cderoove @vub.ac.be

Abstract—Whereas “responsive” web applications already of-
fered a more desktop-like experience, there is an increasing user
demand for “rich” web applications (RIAs) that offer collabo-
rative and even off-line functionality. Realizing these qualities
requires distributing previously centralized application logic and
state vertically from the server to a client tier (e.g., for desktop-
like and off-line client functionality), and horizontally between
instances of the same tier (e.g., for collaborative client function-
ality and for scaling of resource-starved services). Both bring
about the essential complexity of distributing application assets
and maintaining their consistency, along with the accidental
complexity of reconciling a myriad of heterogenous tier-specific
technology. Tierless programming languages enable developing
web applications as a single artefact that is automatically split
in tier-specific code —resulting in a development process akin
to that of a desktop application. This relieves developers of
distribution and consistency concerns, as well as the need to
align different tier-specific technologies. However, programmers
still have to adopt a new and perhaps esoteric language. We
therefore advocate developing tierless programs in a general-
purpose language instead. In this poster, we introduce our
approach to tierless programming in JavaScript. We expand upon
our previous work by identifying development challenges arising
from this approach that could be resolved through tool support.

I. INTRODUCTION

The vision of tierless programming is to develop, test and
maintain multi-tier web applications as a single artefact that
spans the traditional database, server and client tiers. This
eliminates the impedance mismatch between different tier-
specific technologies. Different approaches to tierless pro-
gramming exist: tierless languages (e.g., Links [1], Hop [2],
Ur/Web [3], WebDSL [4]) introduce a new language, while
tierless frameworks (e.g., Google Web Toolkit (GWT) 1 and
Meteor2), enable developing such applications in general-
purpose languages. Most of these approaches require the
developer to specify tier demarcation information: tier annota-
tions are used by a compiler or transpiler to split the program
into client, server and database tiers.

While tierless languages reduce essential and accidental
complexities of web development, the developer still needs to
learn a new language. Moreover, tool support for tierless lan-
guages is often lacking. We therefore advocate developing tier-
less applications in existing general-purpose languages, from
which existing tool support can be leveraged. In this poster,
we summarize our approach to tierless web development in

1http://www.gwtproject.org/
2http://www.meteor.com

JavaScript [5]. We focus on how the initial prototype presented
there can be extended to support full-fledged web applications,
while identifying challenges arising from this approach that
could be resolved through dedicated tool support.

II. TIERLESS PROGRAMMING USING STIP.JS

We introduce our tier splitting process [5] that takes a
tierless JavaScript program as input and produces tier-specific
code for the server and client tier. A prototype of this process
is implemented by the tool STIP.JS3, of which a screenshot
in figure 1 is given. This prototype supports tierless web
development for the JavaScript language. Many web devel-
opers are familiar with the language, ubiquitous on server
and client tiers alike, and it has an extensive set of tools
and libraries for developing RIAs. Programmers implement
the tierless web application as a normal JavaScript program,
where all data and functions are defined locally. After testing
and debugging the application locally, a minimum of code
needs to be annotated with @client or @server comments.
The prototype tool then performs a tier splitting process on
this code to separate client code from server code. The tier-
splitting process relies on a variant of program slicing [6],
a technique that can part a valid subset of a program. Our
algorithm constructs a distributed dependence graph using the
tier annotations in the program, and slices the graph into a
subset destined for the client and server tier respectively. These
slices are subsequently transpiled to add code that implements
appropriate distribution (e.g., through remote procedure calls)
and data sharing and replication concerns (e.g., through web
frameworks such as Meteor).

STIP.js
Tier Splitting Tool for JavaScript

/* @server */
{

var serverf = function (x) { return x }
}

/* @client */
{

var clientf = function (x) { return x };
var a = clientf(1) + serverf(2)
var b = serverf(3) + 4 + serverf(5) + clientf(6);
var c = a + b + serverf(7);
var d = clientf(serverf(clientf(serverf(c))));
var e = 42;

}

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/* CLIENT */
{
 var clientf = function (x) {
 return x;
 };
 Meteor.call('serverf', 2, function (err0, res0) {
 var a = clientf(1) + res0;
 Meteor.call('serverf', 3, function (err0, res0) {
 Meteor.call('serverf', 5, function (err1, res1) {
 var b = res0 + 4 + res1 + clientf(6);
 Meteor.call('serverf', 7, function (err0, res0) {
 var c = a + b + res0;
 });
 });
 });
 Meteor.call('serverf', 7, function (err0, res0) {
 var c = a + b + res0;
 });
 });
 Meteor.call('serverf', c, function (err, resarg) {

Fig. 1. Screenshot of the Stip.js tool

3http://bit.ly/stipjs

III. DISCUSSION

Our previous work demonstrated that this approach to
tierless programming is feasible for small, but representative
web applications. To fully realize our vision, however, sev-
eral challenges remain —some of which could be overcome
through dedicated tooling.

a) Exposing Control over Distributed Failure Handling:
The tierless program seemingly executes in a synchronous,
non-distributed manner. As such, the developer is not aware
of the failures that can occur once the tier split program
executes in a distributed setting. For example, a local call to a
function foo(42) gets transpiled to a remote procedure call
with a callback rpc("foo", 42, function (error,
result) {}), where rpc is a construct from a distributed
programming library. This particular library enables reacting
to distributed failures through the error callback function. In
the tierless call, however, this parameter does not exist. How
network errors are handled is different for each application.
A solution could be to introduce a new annotation that allows
custom failure handling at e.g., the tier level. However, this
control should not come at the cost of the tierless illusion.

b) Maintaining the Consistency of Replicated Data:
In our previous work, we focused on the design space for
distributing and replicating individual variables. Data replica-
tion enables collaborative and offline functionality across and
between tiers. Our prototype relied on the Meteor framework,
which offers an elegant way of replicating data between
clients. However, it offers no consistency guarantees when
e.g., two clients concurrently change the same variable. Dif-
ferent strategies have been proposed to keep distributed and
replicated data consistent. We are looking into the use of an-
notations to specify such strategies, while the implementation
is provided by our runtime. Eventual consistency provides a
good consensus between availability and strong consistency
of replicated data. We are therefore extending our prototype
with an open-source JavaScript implementation [7] of Cloud
Types [8]. In addition to consistency mechanisms, database-
aware slicing and replication need to be investigated, beyond
our current support at the level of individual variables.

c) Supporting Existing Tooling in the Presence of Tier-
specific Code: We demonstrated in [5] that our approach
allows reusing existing development and validation tooling
for JavaScript. However, certain tier-specific tasks like DOM
manipulation need to be reflected in the tierless variant of
the program. To this end, we currently provide tierless primi-
tives for common concerns in web applications. For instance,
there are communication primitives such as broadcast and
publish. The actual implementation of these primitives is
provided by the transpiler and depends on the chosen target
platform. Research is needed to see how existing tools can
cope with tier-specific code in a tierless program. Emulating
the browser through libraries such as JsDom might still enable
testing the tierless application as a whole on a Node.js server.

d) Dedicated Tooling to Maintain the Tierless Illusion: A
downside of transpiling a tierless program into several tiers,
is that developers may witness code at run-time that differs

from the code that they had implemented. The transpiled code
is at odds with their tierless model of the program. This
problem becomes apparent when developers need to debug
their program, as existing debuggers will be oblivious to the
transpilation process. Research is therefore needed on a spe-
cialized debugger capable of maintaining the tierless illusion
across tier-specific runtime artefacts. Along the same lines,
research is needed on other tier-specific tooling. A feedback
tool could warn developers about inconsistent tier-demarcating
annotations. For instance, when a variable is declared both
on the server tier and the client tier. We also believe that the
programmer can benefit from a graphical representation of our
distributed program dependence graph in which the different
tier-specific nodes and edges are marked appropriately.

e) Exploring Automatic Scaling of Server Tiers: Finally,
different application domains deserve exploring for our solu-
tion. The current tier splitting process focuses on the vertical
distribution of code and data across the server and client tiers.
Horizontal distribution, between instances of the same tier, is
required for collaborative client functionality and for scaling
of resource-starved server tiers. We believe that horizontal
distribution brings about problems similar to those that arise
from vertical distribution. Research is needed to transpose our
solution to this related problem.

IV. CONCLUSION

Our approach to tierless programming enables developing
web applications as JavaScript programs that span multiple
tiers. This while allowing existing JavaScript tooling to be
reused. While a prototype implementation has demonstrated its
feasibility, several challenges preclude us from fully realizing
this vision. This poster abstract explicates these challenges and
proposes potential strategies to overcome them, some of which
amount to dedicated tooling.

ACKNOWLEDGMENTS

Laure Philips is supported by a doctoral scholarship granted
by the Agency for Innovation by Science and Technology in
Flanders, Belgium (IWT).

REFERENCES

[1] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web programming
Without Tiers,” in FMCO. Springer-Verlag, 2006.

[2] M. Serrano, E. Gallesio, and F. Loitsch, “Hop: a Language for Program-
ming the Web 2.0,” in OOPSLA Companion, 2006, pp. 975–985.

[3] A. Chlipala, “Ur: Statically-typed Metaprogramming with Type-level
Record Computation,” in PLDI ’10. New York, NY, USA: ACM, 2010,
pp. 122–133.

[4] Z. Hemel, D. M. Groenewegen, L. C. L. Kats, and E. Visser, “Static
Consistency Checking of Web Applications with WebDSL,” J. Symb.
Comput., vol. 46, no. 2, pp. 150–182, Feb. 2011.

[5] L. Philips, C. De Roover, T. Van Cutsem, and W. De Meuter, “Towards
Tierless Web Development Without Tierless Languages,” ser. Onward!
2014. New York, NY, USA: ACM, 2014, pp. 69–81.

[6] M. Weiser, “Program slicing.” IEEE Trans. Software Eng., vol. 10, no. 4,
pp. 352–357, 1984.

[7] T. Coppieters, L. Philips, W. De Meuter, and T. Van Cutsem, “An Open
Implementation of Cloud Types for the Web,” ser. PaPEC ’14. New
York, NY, USA: ACM, 2014, pp. 2:1–2:2.

[8] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood, “Cloud Types
for Eventual Consistency,” in ECOOP’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 283–307.

