B0 —

Poster: Dynamic Analysis Using JavaScript Proxies

Laurent Christophe*, Coen De Roover*, Wolfgang De Meuter*
*Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

Abstract—JavaScript has become a popular programming
language. However, its highly dynamic nature encumbers static
analysis for quality assurance purposes. Only dynamic techniques
such as concolic testing seem to cope. Often, these involve an
instrumentation phase in which source code is extended with
analysis-specific concerns. The corresponding implementations
represent a duplication of engineering efforts. To facilitate
developing dynamic analyses for JavaScript, we introduce Aran;
a general-purpose JavaScript instrumenter that takes advantage
of proxies, a recent addition to the JavaScript reflection APIs.

I. INTRODUCTION

JavaScript has become ubiquitous on server and client tiers
of contemporary web applications. Recent advances in browser
technologies have encouraged the use of JavaScript in Rich
Internet Applications. JavaScript offers many dynamic and
reflective features (e.g., runtime code evaluation with evai,
scope chain modification through with, a dynamic inheritance
hierarchy) which makes it hard to analyze JavaScript programs
statically [4], [2]. However, dynamic analyses such as taint
analysis [7], concolic testing [9] and performance profiling [3]
seem to cope. Existing dynamic analyses each use their own
instrumentation mechanism which represent non-negligible en-
gineering efforts. In particular, correctly supporting the whole
of JavaScript can be challenging. In this work, we investigate
the use of a new JavaScript reflection API, proxies, as the
foundation for a general-purpose JavaScript instrumenter. The
motivation of our work is to facilitate the process of building
dynamic analysis for full JavaScript. General-purpose instru-
menters for JavaScript have already been proposed (e.g., [5],
[1]), but to the best of our knowledge we are the first to take
advantage of the new proxy APIL

II. HARMONY PROXIES

Proxies are a powerful reflection means discussed in the
upcoming 6th specification of ECMAScript named Harmony.
Based on the work of Van Cutsem et. al [8], they enable in-
tercepting object-related operations such as property accesses
without having to resort to metacircular interpretation. De-
spite still being under discussion, some environments already
support Harmony proxies; e.g., Node (with the ——harmony
flag) and Firefox. JavaScript environments supporting proxies
feature a constructor named rroxy which takes a handler object
that provides traps for operations on a given target object. For
instance, the below snippet creates a proxy object that will log
all property reads and writes:

var p = new Proxy(targetObject, {
get: function (o,k) { log("get "+k); return o[k]; }
set: function (o,k,v) { log("set "+k); return o[k]=v; }
3]

TABLE 1
COMPLEMENTARY TRAPS.
Code Instrumented Code Trap
"foo" wrap ("foo") wrap (Data)
X?y:z tobool ($x) ?Sy:$z tobool (val)
eval (x) eval (compile (tostring($x)))| tostring(val)
{} object ($Object .prototype) object (proto)
[] array () array ()
function () {}| lambda (function(){}) lambda (Fct)
I'x unary ("!", $x) unary (Op, arg)
x+y binary ("+", $x, $y) binary (Op, 1, r)
global (path,val)
unwrap (data)

Proxies open up interesting possibilities with respect to
instrumentation:

1) Object-related operations can be intercepted by simply
wrapping every newly created object in a proxy.

2) Accesses to the pre-existing global object can be in-
tercepted by shadowing it consistently with its proxy
through the witn construct (cf. Section IV-A).

3) Certain insights about the behavior of non-instrumented
functions (e.g., form third-party libraries) can be obtained
by passing them proxied objects as arguments.

However, proxies alone do not suffice for developing a
dynamic analysis. Proxies still need to be introduced in the
analyzed code. Moreover, the dynamic analysis needs to be
notified of calls to JavaScript primitives which cannot be
intercepted through proxies. We achieve both through a source-
to-source program transformation, accompanied by a runtime
that can be customized by developer-provided traps: Aran.

III. THE ARAN INSTRUMENTER

The Aran instrumenter and runtime, available on GitHub!,
can be steered through three kinds of traps: (i) traps from
the Harmony proxy API [8] (ii) complementary traps listed
in Table I (iii) generic observer traps that expose information
about each statement or expression that is about to be executed.

The trap global(path, value) provides a means for the
analyst to customize the handling of built-in functions. Within
these handlers, developers can either return an object or a
primitive value. Our framework takes care of automatically
wrapping the return value using an analysis-specific proxy or
datastructure. The constructor for the former is constructed
through a recursive descent of the value’s properties. The
constructor for the latter can be specified through the wrap
trap. The default handling of built-in functions corresponds to
the following:

Uhttps://github.com/lachrist/aran

w

S © ® 9 AW -

globalObjectShadow [wrap("parseInt")] = lambda(function (
string , radix) {
return wrap(global.parselnt(unwrap(string), unwrap(radix)

)
)

Here, the handler delegates to the built-in after unwrapping its
arguments. Note that our design enables constructing heavy-
weight dynamic analysis such as concolic testing. For instance,
the shadowing of the global object enables implementing the
symbolic counterpart of primitive functions while the toBool
trap enables accumulating conditionals to the path constraint.

IV. INSTRUMENTATION PITFALLS AND WORKAROUNDS
A. Shadowing the Global Object

In JavaScript, the pre-existing global object is the common
root of all scope chains. Among others, it provides access to
the DOM that is rendered by the browser. Access from the
instrumented code to the global object should be controlled:

1) The analyst might want to intercept global object func-
tionality (e.g., to record the number of times DOM
elements are fetched by class name).

The inner mechanisms of the instrumenter (e.g., traps,
parsers and stack accessors) present in the global object
should be protected from tampering.

Having the global object completely shielded from the
instrumented code enables multiple instrumentations to
be active within the same JavaScript execution instance.

2)

3)

In other words, a sandbox needs to be constructed by
shadowing the global object consistently with a proxy. To this
end, we wrap the instrumented code in a with construct:

var globalObjectShadow = ...
var proxy = new Proxy(globalObjectShadow , {
has: function (sb, key) {
if (key in sb) { return true; }

throw new Error("Undefined reference: "+key);

)3
with (proxy) {
// Sandboxed execution, outer variables are unaccessible.

The witnh construct enables using a specific object as the
starting scope for identifier lookup. For instance, evaluating
with ({a:1}) {console.log(a+2)} Will print out 3 to the console.
In the above example, accesses to undeclared identifiers within
the with body (e.g., DOM-related built-ins) will trigger the nas
handler of the sandbox and cause an exception to be thrown.
The only remaining door to the underlying global object is
the tnis keyword. Our source-to-source transformation there-
fore replaces its occurrences with a reference to the sandbox.
An identifier mangling, as evidenced by the $-signs in Table I,
separates the identifiers of our traps from user-defined ones.

B. Sound desugaring of complex expressions

The traps depicted in Table I have been designed as a
minimal complement to the existing proxy APIL. Rather than
registering a trap for intercepting post-increment expressions,
for instance, it suffices to register a trap for the corresponding
addition on the right-hand side of assignments. This requires

a desugaring from complex expressions to a composite of
simpler expressions in a manner that is true to the actual
JavaScript semantics. We have used a stack-based memory
for storing the composite’s intermediate results. Some example
desugarings are listed below:

o Post/pre increment/decrement expressions such as x++
become assignments ($x=binary ("+",push ($x),1),pop ()).
Note that the generic trap for assignments will notify the
analysis when their execution is about to begin.

e Object literals become a call to the object trap,
followed by calls to property definition traps: e.g.,
{a:1} becomes
get () [wrap ("a") J=wrap ("1")),pop()).

Note that the configuration of the stack before and after the
evaluation of a desugared expression should be the same. This
invariant has to be upheld in the presence of exceptional con-
trol flow. To this end, we push a marker at the beginning of the
execution in a try and pop all items above the last marker in its
corresponding finally. For instance, try {f()} catch (e) {g()}
becomes try {mark (),apply (f)} catch ($e) {apply(g)} finally
{unmark () }.

(push (object ($Object.prototype)),

V. CONCLUSION AND FUTURE WORK

We have presented Aran, a general-purpose instrumenter
based on the new proxy API for JavaScript. We have already
used Aran to implement different kinds of tracing. In the
future, we plan to further test the instrumenter in heavy-
weight dynamic analyses such as concolic testing. We will
also conduct experiments to properly assess the performance
overhead of our proxy-based approach.

REFERENCES
[

—

James W Mickens, Jeremy Elson, and Jon Howell. Mugshot: Determin-
istic capture and replay for javascript applications. In NSDI, volume 10,
pages 159-174, 2010.

Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G Zorn. Js-
meter: Comparing the behavior of javascript benchmarks with real web
applications. In Proceedings of the 2010 USENIX conference on Web
application development, pages 3-3. USENIX Association, 2010.
Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Auto-
mated construction of javascript benchmarks. ACM SIGPLAN Notices,
46(10):677-694, 2011.

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of javascript programs. In ACM Sigplan
Notices, volume 45, pages 1-12. ACM, 2010.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework for
javascript. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 488-498. ACM, 2013.

Bastian Steinert, Lauritz Thamsen, Tim Felgentreff, and Robert
Hirschfeld. Object versioning to support recovery needs: Using proxies
to preserve previous development states in lively. In Proceedings of the
10th ACM Symposium on Dynamic Languages, DLS 14, pages 113-124,
New York, NY, USA, 2014. ACM.

Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. Taj: effective taint analysis of web applications. ACM Sigplan
Notices, 44(6):87-97, 2009.

Tom Van Cutsem and Mark S Miller. Proxies: design principles for robust
object-oriented intercession apis. In ACM Sigplan Notices, volume 45,
pages 59-72. ACM, 2010.

Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi
Inamura, and Zhendong Su. Dynamic test input generation for web
applications. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 249-260. ACM, 2008.

2

[

—
W
—_

[4

=

[5

—

[6

—_

[7

—

(8]

(91

Dynamic Analysis Using JavaScript Proxies

| aurent Christophe

eval wilth

JS Static Analysis

setPrototypeOf

{Prob\em)

ConcoliC testing

@mentaﬂon

ce prOf\\\r\g

N\

¢

Taint analysis

Performan

Effort duplication!

JavaScript dynamic analysis tools often use their
Own specific source-to-source code transformation.

Coen De Roover

1. Harmony Proxies defi”ep"Operty

d

{Appmach) \

N\
Ve ~—— delete
—
- -
~ N~ getPrototypeOf
for .. in
2. Complementary Traps toBooL(val)
wrap(Data) object(proto) toString(val)
unwrap(data) array () unary(Op,arg)
global(path,val) lambda(Fct) binary(Op, 1, r)

3. Global Object Shadowing

var proxiedShadow = new Proxy(shadow, <{
get: function (s, k) {return s[k.substring(1)]},
set: function (s,k,v) {return s[k.substring(1)Il=v},
delete: function (s,k) {return delete s[k.substring(1)]},
has: function (s, k) {

if (k.substring(0,1)==="$") {return false}

if (k.substring(1) in s) {return true}

throw new Error(“Reference error”);

}

)
with (proxy) { /* global shadowed x/ }

4. Stack-based Memory
) || g()

\E> toBool(push(f()) ? pop() (pop(),qg())
q—777
f-2727? f-ret| |[f-ret| |f-ret

Traps

|

JS

(A) Instrumented
ran —
code

Target code ' {— Js

Wolfgang De Meuter

/—<:E5KEHTWKHE{j> A
vari=0_ Traps for Symbolic Execution

traps.wrap = function (data) { return {raw:data, sym:null} }
traps.unwrap = function (data) { return data.raw }
traps.toBool = function (val) {
if (val.sym) { console.log("Path constraint: "+val.sym) }
return Boolean(val.raw);
}
traps.object = function (proto) {
return {raw:0bject.create(proto), sym:null}
}
traps.global = function (path) {
if (path.join()==="valprompt") {
return function (msg, def) {
console. log("New symbol: x"+(++1));
‘ return {raw:prompt(msg.raw, def.raw), sym:"x"+i}
}
}
}
traps.binary = function (op,1,r) {
var sym = (l.sym]||1l.raw)+op+(r.sym||r.raw)
return {
raw: eval(l.raw+op+r.raw),
sym: (L.sym||r.sym) ? sym : null
}
} Incomplete trap set for gathering symbolic path constraints

var msg = "Enter your birthdate";
var user = {birthdate:prompt(msg)};
var age = 2015 - user.birthdate;
if (age > 18) {

alert("Welcome");
} else {

alert("Go away");

}

Instrumentation
\\

with (proxy) {

var $msg = wrap("Enter your birthdate");

var $suser = (
push(object($0bject.prototype)),
get().birthdate=$prompt($msqg),
pop());

var $age = binary("-", wrap(2015), $user.birthdate)

if (toBool(binary(">", $age, wrap(18)))) {
$alert(wrap("Welcome"));

N—

more info & download: www.github.com/lachrist/aran

lachrist@vub.ac.be

} else {
$alert(wrap("Go away"));
¥
. ; S
o® .
'@ - ﬁ”“a iteit
& Languages.Lab nversite
Brussel

https://github.com/lachrist/aran

