
A Declarative Foundation for Comprehensive
History Querying

Reinout Stevens
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Email: resteven@vub.ac.be

Abstract—Researchers in the field of Mining Software Reposi-
tories perform studies about the evolution of software projects. To
this end, they use the version control system storing the changes
made to a single software project. Such studies are concerned
with the source code characteristics in one particular revision,
the commit data for that revision, how the code evolves over
time and what concrete, fine-grained changes were applied to the
source code between two revisions. Although tools exist to analyse
an individual concern, scripts and manual work is required to
combine these tools to perform a single experiment. We present
a general-purpose history querying tool named QWALKEKO that
enables expressing these concerns in a single uniform language,
and having them detected in a git repository. We have validated
our work by means of replication studies as well as through MSR
studies of our own.

I. INTRODUCTION

The use of a Version Control System (VCS) is an indus-
try best practice to develop and maintain software projects.
A VCS allows developers to commit changes, share those
changes with other developers and undo changes. As a side-
effect, a VCS contains the history and evolution of the stored
software project up until the granularity of a single commit.
VCS are used by the Mining Software Repositories (MSR)
community to perform studies about the evolution of the
source code of software projects.

For such a study a researcher needs to be able to specify
the following characteristics:

Source Code Characteristics: Source code characteristics
are concerned with the detection of source code elements
that exhibit certain syntactical properties, as well as data- and
control flow properties.

Revision Characteristics: Revision characteristics con-
cern meta-information about a revision, such as the author,
timestamp and commit message of a revision.

Temporal Characteristics: Temporal characteristics con-
cern in which revision source code elements need to be
retrieved, and how these elements evolve over time. Examples
are ensuring that a class remains present throughout the
evolution of the software project, skipping revisions in which
a method is not present or finding consecutive revisions that
have the same author.

Change Characteristics: Change characteristics concern
fine-grained changes that were applied to the source code
between two revisions. Examples are deleting a source element
or moving a source element to a different location.

To the best of our knowledge, no tool exists that enables
specifying these characteristics in a uniform language.

II. STATE OF AFFAIRS

Currently, a researcher writes a script to help him retrieve
the required data from the correct revisions. To this end, he
is helped by a Program Query Language (PQL) to specify the
sought after source code characteristics.

This approach allows for the following:
Source Code Characteristics: Source code characteristics

are expressed using a PQL. A PQL enables a researcher to
express the characteristics a snapshot of a program needs to
exhibit.

Revision Characteristics: A VCS stores the meta-
information of every commit. Researchers can use the VCS
directly to access this information. Alternatively, libraries
can be used that enables accessing this information from an
ordinary programming language.

Temporal Characteristics: A PQL is suited to describe
characteristics of a single revision of a program. The re-
searcher needs to combine both the VCS and the PQL so
that the correct source code elements are retrieved from the
correct revision. For example by checking out a particular
revision in a separate directory and run tool on that directory.
Problems occur when source code elements retrieved in one
revision have to be used in other revisions as well. To this
end, information computed in a previous revision that has to
be used in a later revision needs to be stored so that it can be
accessed later.

Change Characteristics: Change characteristics can be
computed using existing tools such as ChangeDistiller [8].
These tools take as input two Abstract Syntax Trees (AST) and
output a sequence of operations that, when applied, transform
the first AST into the second AST. The researcher has to
ensure the original and updated ASTs are given to these
tools. These tools do not enable reasoning over the output
operations. Instead, it is up to the researcher to reason over
these operations and interpret them.

While solutions exist to specify each characteristic individ-
ually, no solution exists that enables specifying combinations
of these characteristics. As a result, it is up to the researcher
to write scripts that act as the glue between the different

solutions. Such endeavours are error-prone and cumbersome
to the researcher.

Besides the aforementioned issues, there is the issue of
reproducing existing studies. The ad-hoc manner of these
scripts makes reproducing the experiment on different data
sets hard. The scripts are written to work with a specific data
set on the researcher’s hardware, and are not easily ported to
a different setup.

To address these issues we propose an applicative logic
foundation for querying the history and evolution of software
project. We have instantiated this approach in the tool named
QWALKEKO, which combines the declarative programming
language EKEKO with the temporal specification language
QWAL, and which also provides its own set of predicates that
enable querying revision information and changes made to two
ASTs.

III. RELATED WORK

Our work lies at the intersection of program query lan-
guages, graph querying and program changes.

Program querying tools identify source code that exhibits
user-specified characteristics of interest. For instance, they
can be used to check architectural constraints. Enabling users
to specify these characteristics in logic-based languages has
proven to result in expressive, yet descriptive specifications.
To this end, code is reified as data that is queried using logic
predicates. Examples of such logic-based program querying
tools include CODEQUEST [9], PQL [10], SOUL [11] and
EKEKO [4].

Most VCS provide limited facilities to query files (e.g.,see
who touched a file, what lines were modified), they are limited
to query on a line level and have no notion of the programming
language of the stored project. The EVOLIZER platform sup-
ports history analyses of versioned software through dedicated
plugins. For instance, CHANGEDISTILLER [12] extracts code
changes between successive versions through tree differencing.
The general-purpose history querying tools that exist, (i.e.,
SCQL [13] and V-Praxis [14] do not feature a language
dedicated to specifying the temporal characteristics of fine-
grained code evolutions across multiple versions.

More advanced tools exist, namely Boa [18] and HAR-
MONY [19]. Boa is a query language for large-scale software
repositories. It enables answering high-level questions over a
plethora of software repositories. Examples of questions are
“What are the five most used licenses?”, “How many Java
projects using SVN were active in 2011?” and “What are the
projects that support multiple operating systems?”. Queries for
these questions do not range over source code but rather high-
level information of the queried software projects. Boa also
features an AST visitor that can be used in queries. This has
been used to detect whether and how new language features
are adopted in programming projects. Boa users are limited to
querying the projects that are made available on their website,
and thus no arbitrary projects can be queried.

HARMONY provides an extensible framework to perform
MSR studies. It supports importing different VCS, provides

several predefined analyses and enables the definition of
custom analyses on top of the HARMONY model. It has
support for parallelism. However, it is lacking a dedicated
declarative query language to specify source characteristics.
Thus, everything needs to be written in Java, making advanced
studies very complex.

In earlier work we have proposed a history querying tool
called ABSINTHE [5] [2]. ABSINTHE is an extension of
SOUL [11] allowing the querying Monticello repositories us-
ing quantified regular path expressions. ABSINTHE features an
incremental model that efficiently represent classes and their
methods throughout different revisions. The main differences
from QWALKEKO is that QWALKEKO directly reasons over
the source code.

IV. APPROACH

We propose an applicative logic foundation for querying the
evolution of software projects. Such a foundation applies the
approach from a PQL to history querying, which identifies
source code that exhibit user-specified throughout the history
of a software project. The declarative nature of PQLs have
proven themselves successfully in querying software project.
Thus, we propose a declarative approach for history querying
as well.

This foundation is instantiated in the history querying tool
QWALKEKO. It combines the the graph query language QWAL
with the logic program query language EKEKO, and extends
the latter with several predicates that only make sense in the
context of history programming. Foremost, it converts a git
repository into a graph of commits. This graph also contains
information such as the author, timestamp, commit message
and modified files of each commit. It uses EKEKO to query
revisions in this graph. It uses QWAL to navigate through
this graph, and to specify in what revision predicates need
to be evaluated. Finally, it features an implementation of a
tree differencer called CHANGENODES used to compute and
reason over source code changes.

A. Expressing Source Code Characteristics using EKEKO

EKEKO [4] is a Clojure library for applicative logic meta-
programming against an Eclipse workspace. It provides a
library of predicates that can be used to query programs. These
predicates reify the basic structural, control flow and data flow
relations of the queried Eclipse projects, as well as higher-level
relations that are derived from the basic ones.

EKEKO provides predicates that reify structural
relations computed from the Eclipse JDT. Binary
predicate (ast ?kind ?node), for instance, reifies the
relation of all AST nodes of a particular type. Here,
?kind is a Clojure keyword denoting the capitalized,
unqualified name of ?node’s class. Solutions to the query
(ekeko [?inv] (ast :MethodInvocation ?inv)) therefore
comprise all method invocations in the source code. We prefix
logic variables with a ?.

Ternary predicate (has ?propertyname ?node ?value) reifies
the relation between an AST node and the value of one of its

properties. Here, ?propertyname is a Clojure keyword denoting
the decapitalized name of the property’s
org.eclipse.jdt.core.dom.PropertyDescriptor (e.g.,
:modifiers). In general, ?value is either another ASTNode or
a wrapper for primitive values and collections. This wrapper
ensures the relationality of the predicate.

B. Expressing Revision Characteristics using QWALKEKO

QWALKEKO extends EKEKO with a set of predicates that
reify meta-information present in the queried VCS. For ex-
ample, unary predicate (author ?author) unifies ?author with
the author of the current revision. This information is added to
the fact base EKEKO uses to query a single program revision.
Thus, these predicates are indistinguishable from other EKEKO
predicates and are used in the same manner.

C. Expressing Temporal Characteristics using QWAL

QWAL enables querying graphs using regular path expres-
sions [15]. Regular path expressions are an intuitive formalism
for quantifying over the paths through a graph. They are
akin to regular expressions, except that they consist of logic
conditions to which regular expression operators have been
applied. Rather than matching a sequence of characters in a
string, they match paths through a graph along which their
conditions holds.

A QWAL query is launched using the function
(qwal graph begin ?end [& vars] & goals). It takes
as arguments a graph object, a begin node, a logical variable
that is unified with the end node of the expression, a
vector of local variables available inside the query and an
arbitrary amount of goals. The goals in a query either specify
conditions that must hold in the current node of the query, or
they modify the node against which conditions are checked
by moving through the graph. For example, the goal q=>

changes the current node to one of its successors. Users are
not limited to the goals provided by QWAL, but can easily
define their own goals.

D. Expressing Change Characteristics using CHANGENODES

QWALKEKO provides our own implementation of a tree
distilling algorithm based upon the work of Chawathe et.
al [16] called CHANGENODES. It takes as input two AST
nodes and outputs a minimal edit script that, when applied,
transforms the first AST into the second one. The edit script
will contain the following operations:

Insert A node is inserted in the AST
Delete A node is removed from the AST
Move A node is moved to a different location in the AST
UpdateA node is replaced with a different node
Chawathe’s algorithm has also been used in CHANGEDIS-

TILLER [8]. The main difference between CHANGENODES
and CHANGEDISTILLER is that CHANGENODES works di-
rectly on top of the JDT nodes. CHANGENODES uses
a language-aware representation, while CHANGEDISTILLER
uses a language-agnostic representation. The heuristics used
in CHANGEDISTILLER are also used in CHANGENODES.

QWALKEKO introduces a new predicate
(change ?change source target), which binds ?change to a
single change operation between the source AST and target
AST. The predicate (changes ?changes source target)

binds ?changes to a collection containing all the changes made
to both ASTs. QWALKEKO also provides predicates to retrieve
the AST of a node retrieved in a different version. For example,
the binary predicate compilationunit|corresponding

retrieves the corresponding compilation unit of a given
compilation unit in the current revision.

The following code demonstrates how one can use the
change predicate to retrieve changes made to two Java classes:

1(qwal graph root ?end [?left-cu ?right-cu ?change]
2 (in-source-code [curr]
3 (ast :CompilationUnit ?left-cu))
4 q=>
5 (in-source-code
6 (compilationunit|corresponding ?left-cu ?right-cu)
7 (change ?change ?left-cu ?right-cu)))

On line 3 it binds ?left-cu to a compilation unit in the root
version of the graph. It moves to one of the successors of that
version on line 4. On lines 5–6 we retrieve the correspond-
ing compilation unit using compilationunit|corresponding,
which looks for a compilation unit in the same package that
defines the same type. Finally we compute the changes be-
tween these two compilation units using the predicate change.

A current problem we are still facing is working with dif-
ferent change sequences that result in the same modifications
made to source code. For example, a method rename can
be performed by updating its name, as well as by deleting
the original method and inserting a new method with the
same body but a different name. A more complex example is
detecting a recurring change pattern, but in which each pattern
instance has a different list of operations. We are currently
working on more advanced predicates that allow reasoning
over multiple changes more easily, in which we combine
multiple changes into high-level changes that better express
the modifications that occurred. We envision that this library
will provide the foundation for a change calculus.

V. VALIDATION

As discussed earlier, QWALKEKO consists out of several
components. We have validated each individual component,
as well as the combination of components, by means of
replication studies as well as performing novel MSR studies.

A. Validation of QWAL

QWAL is used as the graph query language to navigate
through the graph of revisions. We have performed a study
in which we used Linear Temporal Logic (LTL), Computation
Tree Logic (CTL) and regular path expressions to write history
queries [1] that answer history questions developers frequently
ask [17].

We were able to write queries that answered each question
in all of the selected expression formalisms. Of those three
formalisms, regular path expressions is the most intuitive one,
mainly because developers are already familiar with regular
expressions.

B. Validation of QWALKEKO

QWALKEKO has been used in several studies. We have used
it to detect refactorings across multiple versions [3]. In this
study we reimplemented some refactorings specified by Prete
et al. in QWALKEKO. By using our graph query language we
could detect these refactorings over multiple revisions.

In a different study we used QWALKEKO and CHANGEN-
ODES to identify and classify which parts of SELENIUM tests
were most prone to change [6] [7]. This study combined the
different components of QWALKEKO and has shown it can be
used to perform large-scale MSR studies. For a corpus of 8
large open-source projects we needed to identify the different
SELENIUM files in every revision, compute changes made to
these files and classify these changes.

We plan on performing a more advanced study in which
we investigate how code clone instances are removed using
refactorings, and whether clone instances are removed in the
same manner, or which additional steps are performed. This
study forces us to reason over multiple changes at once,
while the SELENIUM classification study only reasoned over
individual changes.

VI. CONTRIBUTIONS

Our contributions are two-fold. We have created a unified
approach with a declarative specification language, instantiated
in a history querying tool that enables its users to write queries
that express source code characteristics, revision characteris-
tics, temporal characteristics and change characteristics in a
single uniform language. We have proven that our chosen
expression formalisms for each characteristic is suitable by
means of replication studies and novel studies. We have also
proven that the combination of these formalisms can be used
successfully to perform MSR studies. Each of these studies
also have their own scientific value, regardless of the used
tool.

In earlier work we have proven our approach to be scalable
for history queries up to the level of methods by introduc-
ing an incremental model that represents the classes present
throughout the history of the queried project [5].

VII. TIMELINE

We are currently lacking a change calculus enabling us to
combine low-level changes into higher-level ones in order to
eliminate the differences in which an AST can be transformed
into another AST. We plan on applying this calculus in
the detection of code clone instances that are removed via
refactorings, and what additional steps are performed besides
the refactoring on each clone instance. We plan to finish this
work at the beginning of February 2015.

We plan on starting to write our PhD after this work, and
aim to finish our PhD at the end of the year 2015.

REFERENCES

My Publications
[1] R. Stevens, “Source code archeology using logic program queries across

version repositories,” Master’s thesis, Vrije Universiteit Brussel, 2011.

[2] A. Kellens, C. De Roover, C. Noguera, R. Stevens, and V. Jonckers,
“Reasoning over the evolution of source code using quantified regular
path expressions,” in Proceedings of the 18th Working Conference on
Reverse Engineering (WCRE11), 2011, pp. 389–393.

[3] R. Stevens, C. De Roover, C. Noguera, and V. Jonckers, “A history
querying tool and its application to detect multi-version refactorings,” in
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR13), 2013.

[4] C. De Roover and R. Stevens, “Building development tools interactively
using the ekeko meta-programming library,” in Proceedings of the
CSMR-WCRE Software Evolution Week (CSMR-WCRE14), 2014.

[5] R. Stevens, C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “A
logic foundation for a general-purpose history querying tool,” Elsevier
Journal on Science of Computer Programming, 2014.

[6] L. Christophe, R. Stevens, and C. De Roover, “Prevalence and mainte-
nance of automated functional tests for web applications,” in Proceed-
ings of the 30th International Conference on Software Maintenance and
Evolution (ICSME14), 2014.

[7] R. Stevens and C. De Roover, “Querying the history of software projects
using qwalkeko,” in Proceedings of the 30th International Conference
on Software Maintenance and Evolution (ICSMe14), Tool Demo Track,
2014.

Other References
[8] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change distilling:

Tree differencing for fine-grained source code change extraction,” Trans-
actions on Software Engineering, vol. 33, no. 11, 2007.

[9] E. Hajiyev, M. Verbaere, and O. D. Moor, “Codequest: Scalable source
code queries with datalog,” in Proceedings of the 20th European
conference on Object-Oriented Programming (ECOOP06), 2006.

[10] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and
security flaws using pql: a program query language,” in Proceedings of
the 20th annual ACM SIGPLAN conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA05), 2005.

[11] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL tool
suite for querying programs in symbiosis with Eclipse,” in Proceedings
of the 9th International Conference on Principles and Practice of
Programming in Java (PPPJ11), 2011, pp. 71–80.

[12] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[13] A. Hindle and D. M. German, “SCQL: A formal model and a query
language for source control repositories,” in Proceedings of the 2005
International Workshop on Mining Software Repositories (MSR05),
2005.

[14] A. Mougenot, X. Blanc, and M.-P. Gervais, “D-Praxis: A peer-to-
peer collaborative model editing framework,” in Proceedings of the 9th
International Conference on Distributed Applications and Interoperable
Systems (DAIS09), 2009.

[15] O. de Moor, D. Lacey, and E. V. Wyk, “Universal regular path queries,”
Higher-Order and Symbolic Computation, 2002.

[16] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD96), 1996.

[17] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the 32nd International
Conference on Software Engineering (ICSE10), 2010, pp. 175–184.

[18] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 35th International Conference on Software Engi-
neering (ICSE13), 2013.

[19] J.-R. Falleri, C. Teyton, M. Foucault, M. Palyart, F. Morandat, and
X. Blanc, “The harmony platform,” CoRR, vol. abs/1309.0456, 2013.

