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Abstract
Manually detecting bugs in concurrent programs is hard due to
the myriad of thread interleavings that needs to be accounted for.
Higher-order programming features only exacerbate this difficulty.
The need for tool support therefore increases as these features be-
come more widespread. We investigate the P(CEK⋆)S abstract ma-
chine as the foundation for tool support for detecting concurrency
bugs. This abstract interpreter analyzes multi-threaded, higher-
order programs with shared-store concurrency and a compare-and-
swap synchronization primitive. In this paper, we evaluate two
different approaches to reduce the size of the state space explored
by the abstract interpreter. First, we integrate abstract garbage col-
lection into the abstract interpreter, and we observe that it does
not reduce the state space as expected. We then evaluate the im-
pact of adding first-class support for locks on the machine’s client
analyses. To this end, we compare a cas-based and a lock-based
formulation of race condition and deadlock detection analyses. We
show that adding first-class support for locks not only significantly
reduces the number of abstract program states that need to be ex-
plored, but also simplifies formulating the client analyses.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis; D.1.3 [Software]: Concurrent Programming

General Terms Theory, Languages, Verification

Keywords Abstract Interpretation, Deadlock Detection, Race
Condition Detection

1. Introduction
Concurrent programs can contain errors that are particularly hard to
find, such as race conditions and deadlocks. These tend to arise only
with certain thread interleavings and in a non-deterministic manner.

[Copyright notice will appear here once ’preprint’ option is removed.]

Tool support is in order, but it has proven difficult to provide this
for higher-order languages. In higher-order languages, functions
are first-class values that are allowed to flow freely through the
program in the same way as other values such as integers and
strings. Because function calls influence control flow, this results
in a mutual dependency between control flow and value flow.

In this work, we advance towards static tool support for detect-
ing concurrency bugs in higher-order programs with side-effects.
Our goal is to provide this support with reasonable accuracy, and
without requiring input from users. The P(CEK⋆)S machine, de-
scribed by Might and Van Horn [27], provides a suitable foundation
for this support. They adapt a sequential CESK machine, modeling
the semantics of a single thread, into the P(CEK⋆)S machine that
allows for concurrent threads of execution. The result is a modular
semantics, in which the concurrency concerns are separated from
sequential semantics. The original formulation of the P(CEK⋆)S
machine adds three concurrency constructs: spawn to create new
threads, the blocking construct join to wait for a thread to com-
plete, and cas (compare-and-swap) for synchronizing threads.

In this paper, we make the following contributions:

• We transpose abstract garbage collection [26] from the se-
quential CESK machine it was originally proposed for, to the
P(CEK⋆)S machine. In our experiments, the expected reduc-
tions in state space resulting from this optimization technique
are less pronounced than in the CESK setting. We observe no
consistent improvements in precision and performance as a re-
sult.

• We extend the original P(CEK⋆)S machine with first-class sup-
port for locks. Before, it was up to application developers to im-
plement them in terms of cas. We experimentally show that this
addition yields an important reduction in the number of states
that have to be explored by the machine and its client analyses.

• As clients of the extended P(CEK⋆)S machine, we formulate a
race condition and a deadlock detection analysis. We compare
two variants of each analysis: one for cas and one for locks.
We demonstrate that the latter are more straightforward to for-
mulate.

2. Input Language
The language we analyze is a Scheme-like language with concur-
rency features. Figure 1 depicts the core of this language, which we
will call Concurrent Scheme or CScheme. It consists of atomic and
complex expressions. The former can be evaluated in a bounded
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number of steps and do not cause side-effects, while the latter may
require an unbounded number of steps to evaluate and may perform
side-effects [16]. Similar to Scheme, functions can take multiple ar-
guments (v1 . . . vn), and letrec can introduce multiple bindings
at once.

v ∈ Var a set of identifiers

n ∈ Num a set of number literals

b ∈ Bool ::= #t | #f
e ∈ Exp ::= æ | cexp

f,æ ∈ AExp ::= lam | v | n | b
lam ∈ Lam ::= (lambda (v1 . . . vn) e)

cexp ∈ CExp ::= (f e1 . . . en)

| (begin e1 . . . en)

| (letrec ((v1 e1) . . . (vn en)) ebody)

| (if econd econs ealt)

| (set! v e)

| (spawn e)

| (join æ)

Figure 1: Grammar of CScheme.

The spawn operator takes an expression that is to be evaluated
by a new thread of which it returns the thread identifier. The join
operator expects such a thread identifier as its argument, waits for
the corresponding thread to complete, and returns the value com-
puted by the thread. For clarity reasons, and without loss of gener-
ality, the argument to join is an atomic expression. This precludes
the need to account for thread interleavings in its semantics.

The CScheme language lacks support for specifying rendez-
vous points between threads. Following the original description of
the P(CEK⋆)S machine in Might and Van Horn [27], the language
is extended with an atomic compare-and-swap (cas) primitive as
depicted in Figure 2, resulting in the CSchemeC language.

cexp ∈ CExp ::= . . .

| (cas v æold ænew)

Figure 2: CSchemeC as a CScheme extension.

The cas primitive takes a variable and two atomic expressions
as its arguments. If the value of v is equal to the value of æold ,
the variable is updated to take the value of ænew and the boolean
#t is returned. If the value of v is not equal to the value of æold ,
v remains unmodified and the boolean #f is returned. All of this
happens atomically, meaning that no other thread can step during
the comparison and update.

3. An Extended P(CEK⋆)S Machine
We recall the original formalization of the P(CEK⋆)S abstract ma-
chine. We then extend this abstract machine with abstract garbage
collection before adding first-class support for locks as a synchro-
nization mechanism.

3.1 The Original P(CEK⋆)S Machine
The P(CEK⋆)S abstract machine is a CESK machine that mod-
els shared-memory threading. We restate its original formalization
in Might and Van Horn [27] with minor changes. It is presented as
an embedding of sequential semantics inside concurrent semantics.
This distinction allows us to vary the concurrent semantics with-
out touching the underlying sequential behavior, or vice versa, for
example when extending the sequential machine with additional
synchronization primitives as in Section 3.3.

3.1.1 Sequential semantics
States explored by the sequential CESK machine consist of the tra-
ditional control, environment, store, and continuation components.
Following the AAM approach [33], continuations are allocated in
the store. Hence, they are represented as addresses inside states.
The sequential CESK defines the semantics for the sequential con-
structs of the input language, including atomic cas. Figure 3 de-
picts the state space for the sequential CESK. The transition rule
for the sequential language constructs ((→̂) ⊂ ΣCESK × ΣCESK) and
the injection function (ÎCESK : Exp → Σ̂CESK) are detailed in the
AAM literature [33].

ς̂CESK ∈ Σ̂CESK = Ĉontrol × Ênv × Ŝtore × Âddr

Ĉontrol = Exp + V̂al

ρ̂ ∈ Ênv = V ar ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

ĉlo ∈ Ĉlo = Lam × Ênv

v̂al ∈ V̂al = Ĉlo + Bool + N̂um + K̂ont + Âddr

κ̂ ∈ K̂ont :: = . . . | halt

â ∈ Âddr a finite set of addresses

Figure 3: State space explored by the sequential CESK machine.

Atomic Evaluation Function Atomic expressions are evaluated
by the atomic evaluation function Ê : AExp × Ênv × Ŝtore →
P(V̂al):

Ê(n, ρ̂, σ̂) = {n}
Ê(b, ρ̂, σ̂) = {b}
Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)}
Transition for cas The support of synchronization primitive cas
is added at the level of the CESK transition relation (→̂), since
the semantics of cas only depend on the thread evaluating it. The
function γ : V̂ al → P(Val) is the concretization function for the
abstract values, and gives the set of concrete values corresponding
to one abstract value. Using the concretization function, we define
the rule for cas as follows:

⟨(cas v æold ænew), ρ̂, σ̂, â⟩
→̂ ⟨{#t} , ρ̂, σ̂ ⊔ [ρ̂(v) 7→ Ê(ænew, ρ̂, σ̂)], â⟩

unless σ̂(ρ̂(v)) ⊓ Ê(æold, ρ̂, σ̂) = ⊥
→̂ ⟨{#f} , ρ̂, σ̂, â⟩

unless (σ̂(ρ̂(v)) = Ê(æold, ρ̂, σ̂) = {v̂al}

and γ(v̂al) = {val})
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This rule leads to two possible successor states: a success state in
which the swap of the value associated with the variable’s address
has been performed, and a failure state in which it has not. We
are sure that two abstract values are equal if they correspond to
the same concrete value, in which case only the success state is
generated. If there is no intersection between the possible sets of
values of the old and new abstract value, we know that the values
are different and the machine transitions to the failure state. In all
other cases, the machine transitions to both the success and the
failure state.

3.1.2 Concurrent semantics
The P(CEK⋆)S machine models the concurrent features of our se-
mantics, and falls back to an underlying sequential machine for
single-threaded sequential semantics. It keeps a mapping of thread
ids to threads, and defines the semantics of the concurrency prim-
itives in the input languages (spawn and join). The context re-
quired for thread execution is the same context as for the sequential
semantics, except for the store, which now becomes shared between
all threads. Figure 4 depicts the state space for the complete multi-
threaded language, explored by the P(CEK⋆)S machine. Note that
elements of T̂ID should be distinguishable from Âddr .

ς̂ ∈ Σ̂ = ̂Threads × Ŝtore

T̂ ∈ ̂Threads = T̂ID ⇀ P(Ĉontext)

ĉ ∈ Ĉontext = Ĉontrol × Ênv × Âddr

t̂id ∈ T̂ID a finite set of thread ids, included in Âddr

Figure 4: State space explored by the P(CEK⋆)S machine. The
unspecified components remain the same as for the CESK machine.

The P(CEK⋆)S machine moves between sequential and con-
current semantics: the sequential semantics are modelled by the
underlying CESK machine, while the transition function of the
P(CEK⋆)S machine adds support for thread-related operations.
For this purpose we define two conversion functions. Function
Ŝ : Ĉontext × Ŝtore → Σ̂CESK transforms a P(CEK⋆)S con-
text plus shared store into an individual CESK state, and function
Ĉ : Σ̂CESK → Ĉontext × Ŝtore does the opposite.

Ŝ(⟨e, ρ̂, â⟩, σ̂) = ⟨e, ρ̂, σ̂, â⟩
Ĉ(⟨e, ρ̂, σ̂, â⟩) = (⟨e, ρ̂, â⟩, σ̂)

Injection Function The injection function Î : Exp → Σ̂ makes
use of the injection function of the underlying CESK machine,
ÎCESK : Exp → Σ̂CESK, to inject an expression into an initial
P(CEK⋆)S state.

Î(e) = ⟨[t̂id0 7→ {ĉ}], σ̂⟩
where (ĉ, σ̂) = Ĉ(ÎCESK(e))

P(CEK⋆)S Transition Relation The transition relation of the
P(CEK⋆)S machine, (⇒̂) ⊂ Σ̂× T̂ID × Σ̂, is defined in terms of
the transition function of the CESK machine, (→̂) ⊂ Σ̂CESK×Σ̂CESK.

We write ς̂
t̂id

⇒̂ ς̂ ′ to denote that (ς̂ , t̂id , ς̂ ′) ∈ (⇒̂). There are four
rules that define the concurrent transition relation.

1. If one of the threads of the machine can perform a step (ac-
cording to the CESK transition relation), then the P(CEK⋆)S
machine can also perform the corresponding step. This rule is
non-deterministic: if more than one thread can step, it can be

used to step any of the threads, and is used for every steppable
thread during the analysis.

⟨T̂ [t̂id 7→ {ĉ} ∪ Ĉ], σ̂⟩
t̂id

⇒̂ ⟨T̂ ⊔ [t̂id 7→ {ĉ′}], σ̂′⟩
if Ŝ(ĉ, σ̂) →̂ ς̂CESK and

(
ĉ′, σ̂′) = Ĉ(ς̂CESK)

2. When a thread halts, its final value is saved in the store, at the
address corresponding to the thread identifier.

⟨T̂ ′, σ̂⟩
t̂id

⇒̂ ⟨T̂ ′, σ̂ ⊔ [t̂id 7→ {v̂al}]⟩

where T̂ ′ = T̂ ⊔ [t̂id 7→ {⟨v̂al , ρ̂, âhalt⟩}]

3. To evaluate spawn, the machine creates a new thread with the
given expression as control component.

⟨T̂ [t̂id1 7→ {

ĉ︷ ︸︸ ︷
⟨(spawn e), ρ̂, â⟩} ∪ Ĉ], σ̂⟩
t̂id1

⇒̂ ⟨T̂ ⊔ [t̂id1 7→ {ĉ1}, t̂id2 7→ {ĉ2}], σ̂⟩

where t̂id2 = n̂ewtid(ĉ, T [t̂id1 7→ {ĉ} ∪ Ĉ])

ĉ1 = ⟨t̂id2, ρ̂, â⟩
ĉ2 = ⟨e, ρ̂, âhalt⟩

4. A join can only be evaluated when the thread we join on has
finished its execution. If this is the case, the value computed by
the thread is returned.

⟨T̂ ⊔ [t̂id 7→ {

ĉ︷ ︸︸ ︷
⟨(join æ), ρ̂, â⟩}], σ̂⟩
t̂id

⇒̂ ⟨T̂ ⊔ [t̂id 7→ {⟨v̂al , ρ̂, â⟩, ĉ}], σ̂⟩

if σ̂(âv) = v̂al

where âv ∈ Ê(æ, ρ̂, σ̂)

In order to have a monotonically increasing mapping of thread
ids to threads, for the analysis to be finite, the concurrent transition
rules weakly update the thread map through a join operation. If it
can be determined that an abstract thread id corresponds to exactly
one concrete thread, thread ids can be strongly updated, leading to
increased precision [27]. Additionally, when a thread finishes its
execution (rule 2), it can be safely removed from the thread map.
The abstract interpreters we used in our experiments (Section 5)
implement these optimizations.

Evaluation Function The evaluation function êval : Exp →
P(Σ̂) uses the transition relation to explore the state space. It
computes the set of states that are reachable from an expression,
using the transitive closure of (⇒̂).

êval(e) = {ς̂ | Î(e) ⇒̂∗ ς̂}
where: ς̂ ⇒̂∗ ς̂

ς̂ ⇒̂∗ ς̂ ′′ iff ς̂
t̂id

⇒̂ ς̂ ′ ∧ ς̂ ′ ⇒̂∗ ς̂ ′′

It is often useful to reason about the state graph instead of the
set of reachable states. The state graph is represented by a set of
vertices, connected by edges that are annotated with a thread id,
that is, Vertices = P(Σ̂), Edges = P(Σ̂ × T̂ID × Σ̂), and
Graph = Vertices × Edges . This graph is computed by the
function ĝeval : Exp → Graph . This function uses the helper
function G : P(Σ̂)×P(Σ̂)×Graph → Graph which performs an
exploration of the state space generated by the P(CEK⋆)S transition
function in order to build the state graph.
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ĝeval(e) = G({Î(e)}, ({}, {}))
G({}, S, (V,E)) = (V,E)

G({ς̂} ⊎ T, S, (V,E)) = G(T, S, (V,E)) if ς̂ ∈ S

otherwise G(T, {ς̂} ∪ S,

(V ∪ {ς̂ ′ | ς̂ t̂id⇒ ς̂ ′},

E ∪ {(ς̂ , t̂id , ς̂ ′) | ς̂ t̂id⇒ ς̂ ′}))

In Section 4 we express how properties such as the presence
of a race-condition and deadlock in a program can be inferred by
analyzing this state space and state graph.

3.2 Incorporating Garbage Collection
Because the P(CEK⋆)S machine has a non-deterministic transition
rule that branches at each step to take into account every possible
thread interleaving, it will generate a large number of states, al-
though the state space remains finite. It is therefore important to
find techniques that reduce the state space explored by this ma-
chine. Abstract garbage collection [26] is a state space reduction
technique that aims to increase the performance of abstract inter-
preters. It has not yet been applied in the context of the P(CEK⋆)S
machine, which is what we explore in this section.

Abstract garbage collection is a two-phase process: first the set
of reachable addresses is determined, then the store is narrowed to
only those addresses, thereby erasing all non-reachable addresses.
In a sequential CESK machine, the computation of the reachable
addresses is performed in the context of a single state with all
its components. In the P(CEK⋆)S machine, however, we have as
many CESK states as there are threads, which can and usually will
be more than one. Because the CESK states share the same store,
garbage collection has to be adapted such that it will only reclaim
addresses that are unreachable by all threads.

If we have a function R : ΣCESK → P(Addr) that computes
the set of reachable addresses for a CESK state (such as the one
in Might and Shivers [26]), we can define the transition relation
(⇒′) : Σ × Σ that performs abstract garbage collection on a
P(CEK⋆)S state by computing the set of reachable addresses as the
union of the set of addresses reachable by each thread.

⟨T̂ , σ̂⟩ ⇒′ ⟨T̂ , σ̂|L⟩

where L =
∪

ĉ∈range(T̂ )

R(S(ĉ, σ̂))

This transition relation can be used at any point in the execu-
tion of the P(CEK⋆)S machine to reclaim unreachable addresses.
This will lead to more free addresses, less allocation to the same
addresses, and therefore may lead to an improved precision as well
as a reduced state space. The reason is that some unreachable states
will not be generated anymore.

However, as we will observe in Section 5.1, the impact of ab-
stract garbage collection on the state space is not as pronounced as
it is on a sequential machine [26]. We therefore investigate another
possible source of state space reduction: changing the synchroniza-
tion primitive for which the abstract interpreter has first-class sup-
port.

3.3 Adding First-Class Support for Locks
In the original description of the P(CEK⋆)S machine, cas is the
only synchronization primitive supported by the machine. This
choice enables supporting a wide variety of programs, as other
synchronization primitives can be built on top of cas. For example,
a simple implementation of locks is the following.

(letrec ((a-lock #f)
(acquire (lambda ()

(if (cas a-lock #f #t)
nil
(acquire))))

(release (lambda ()
(set! a-lock #f))))

...)

A lock is considered locked when its value is #t. The acquire
function will actively try to change the value of the lock from #f to
#t until it eventually succeeds, meaning that the lock was free and
that it has now been updated to be locked. The release function
will simply release the lock by setting it to the unlocked value.

As many concurrent programs make use of locks, it is important
to support them. However, we claim that supporting locks as a
library built on top of cas can induce a negative impact on the size
of the state space generated by the P(CEK⋆)S machine, and that
adding first-class support for locks (i.e., locks implemented directly
in the abstract interpreter instead of build on top of cas) will reduce
the size of the generated state space. This is because with first-class
support for locks, we can formally encode the blocking nature of
locks, which is not possible with cas. A failing cas that is retried
until it succeeds generates many new states, whereas a blocking
acquire prevents a thread from generating new states until the
lock is available.

Extending the Language Figure 5 depicts how we extend the
base language to support locks, resulting in the CSchemeL lan-
guage.

l ∈ Lock ::= #locked | #unlocked
f,æ ∈ AExp ::= . . . | l
cexp ∈ CExp ::= . . .

| (acquire v)

| (release v)

Figure 5: CSchemeL as a CScheme extension.

The acquire operation is a blocking construct that blocks the
current thread until the lock given as argument becomes available,
and then acquires this lock and returns. The release operation
releases an acquired lock, making it available to blocked and future
acquire operations.

Extending the CESK machine The support for locks is added at
the level of the CESK machine, because even though locks are used
in a multi-threaded setting, their semantics does not depend on the
fact that there can be multiple threads acting upon them. The CESK
state space is extended to support locks as values (Figure 6).

v̂al ∈ V̂al = · · ·+ L̂ock

Figure 6: CESK state space extension to support locks

CESK Transition for Locks In order to add first-class support for
locks in the P(CEK⋆)S machine, we extend the CESK transition
function to support acquire and release.

• When evaluating an acquire, the machine can only step if
the corresponding lock is available, and then acquires the lock.
Otherwise, the machine is stuck. From the perspective of a
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P(CEK⋆)S machine, this would represent a thread waiting on
a lock, and the thread will be live again when another thread
releases the lock.

⟨(acquire v), ρ̂, σ̂, â⟩
→̂ ⟨#t, ρ̂, σ̂[ρ̂(v) 7→ {#locked}], â⟩

if σ̂(ρ̂(v)) ⊓ {#unlocked} ̸= ⊥

• The rule for release releases the lock by setting it to the
unlocked value.

⟨(release v), ρ̂, σ̂, â⟩
→̂ ⟨#t, ρ̂, σ̂[ρ̂(v) 7→ {#unlocked}], â⟩

With these additions, programs making use of locks are directly
supported by the P(CEK⋆)S machine without needing to encode
the locks with cas. The main advantage of this extension is that
acquire is now a blocking operation. When acquire is encoded
in terms of cas, a thread trying to acquire a lock will still generate
new states as the cas fails and is tried again. With first-class sup-
port for locks however, the thread is stuck until the lock becomes
available. It cannot generate new states. When the lock becomes
available, the waiting thread can continue its progress.

3.4 Soundness
Theorem 1. The abstract P(CEK⋆)S machine performs a sound
simulation of its concrete semantics.

Proof. Soundness has been proven for the cas variant of the
P(CEK⋆)S machine [27]. Adapting this proof to the lock variant
requires two adjustments. First, we need to define the concrete
transition rules for evaluating acquire and release. They are
trivially adapted from the abstract rules of Section 3.3 by taking
into account the fact that addresses are infinite: the store therefore
becomes a mapping from addresses to concrete values (instead of
sets of abstract values), and the condition of the rule for acquire
becomes a simple equality check. Then, since the proof is a case
analysis, the cases where a context evaluates (acquire v) and
(release v) have to be added. The theorem holds trivially from
the definition of the transition rule.

4. Client Analyses
We now introduce two static analyses that are built on top of
the P(CEK⋆)S machine: one for detecting race conditions (Sec-
tion 4.2), and one for detecting deadlocks (Section 4.3). The race
condition analysis is based on a conflict analysis inspired by the
original may-happen-in-parallel analysis [27], which we extend to
avoid a specific case of false positives in Section 4.1. We compare
the cas-based and lock-based variants for both bug detectors, and
demonstrate that the lock-based detectors are more straightforward
to formulate.

While the abstract interpretation is sound, this might not be the
case for client analyses derived from the output of the abstract in-
terpreter. A client analysis CP ⊆ Exp deciding whether a property
P ⊆ Exp (e.g., “contains a race condition”) may hold for a pro-
gram can be:

• sound if it contains no false negatives, i.e., ∀e ∈ Exp, CP (e) ⇒
P (e), or

• complete if it contains no false positives, i.e., ∀e ∈ Exp, P (e) ⇒
CP (e).

However, any finite static analysis cannot be both sound and
complete. Static analyses therefore sacrifice completeness, while
trying to keep an acceptable precision. That is, the number of pro-
grams e for which P (e) ⇒ CP (e) does not hold should be mini-

mized in order to maintain a high precision. Precision and sound-
ness tend not to mix well: an analysis can often gain precision by
sacrificing soundness, but then becomes subject to false positives,
which are problematic in the context of critical systems. Like most
practical static tools [3], ours implement a particular trade-off be-
tween soundness and precision that leans toward the latter. This is
because end users carry the burden of investigating every reported
error.

4.1 May-Happen-in-Parallel Analysis
A may-happen-in-parallel (MHP) analysis accompanies the origi-
nal abstract P(CEK⋆)S machine. Expressions e1 and e2 may hap-
pen in parallel in program e if at some point during execution of e
there is one thread that evaluates e1 while another thread evaluates
e2. This analysis is the foundation of our conflict analysis, and we
formulate it as follows.

MHPe(e1, e2) ⇔

∃⟨T̂ , σ̂⟩ ∈ êval(e) ∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1︷ ︸︸ ︷
⟨e1, , ⟩ ∈ T̂ (t̂id1) ∧

ĉ2︷ ︸︸ ︷
⟨e2, , ⟩ ∈ T̂ (t̂id2)

∧ ĉ1 ̸= ĉ2

Our formulation of MHP differs from the original in Might and
Van Horn [27] in that we extended the definition with the additional
conjunct requiring that ĉ1 ̸= ĉ2. Without this last conjuct, if there
exists a context ĉ1 associated with t̂id1 that evaluates expression
e, then MHP(e, e) would always report e to possibly happen in
parallel with itself (take t̂id1 = t̂id2 and ĉ1 = ĉ2). Because
two different contexts for evaluating the same expression e may
be associated with the same abstract thread identifier, requiring
t̂id1 ̸= t̂id2 would be too restrictive, but ĉ1 ̸= ĉ2 is appropriate.

This extension renders the MHP analysis more precise, but also
unsound, because we can never know for sure that for the case
where ĉ1 = ĉ2, this context corresponds to a single concrete thread.
This analysis can therefore lead to false negatives, identifying two
expressions as will not happen in parallel, while they may in fact
happen in parallel. However, this should only happen in a very lim-
ited number of cases, when the whole execution context of each
concrete thread is the same (since the continuation part of the con-
text should match). We have not been able to find an example case
where this analysis would lead to false negative. This is a case
where we voluntarily lose soundness in order to gain precision: this
precision gain allows us to formulate our race condition analysis
(where we need to know if two write expressions, possibly equiva-
lent ones, may happen in parallel), and only introduces a very spe-
cific case of false negatives, that does not occur in most programs.

4.2 Race Condition Detection
A race condition occurs when the value of a shared variable de-
pends on the order in which threads are interleaved during program
execution.

4.2.1 Detecting Race Conditions: cas Variant
There are two reasons for race conditions to happen in programs
that use cas.

1. A race condition can be the result of a read-write conflict or a
write-write conflict. If at some point the execution can continue
either by first performing a read followed by a write on the same
address, or by performing the write before the read, then there
is a read-write conflict. A write-write conflict is the result of
two concurrent writes that can happen on the same address.
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2. If a cas returns false, it means that the update failed and should
be retried. If a failing cas is never retried, this may lead to a
race condition if the cas could have succeeded with a different
thread interleaving.

Extracting Reads and Writes Because we need to reason over
reads and writes that occur during program evaluation, we define
two relations Read ⊂ Ĉontext × Âddr and Write ⊂ Ĉontext ×
Âddr . They respectively describe the language constructs that per-
form a read or write operation, as well as the address touched by
this operation.

Read(⟨v, ρ̂, ⟩, ρ̂(v))
Write(⟨(set! v ), ρ̂, ⟩, ρ̂(v))
Write(⟨(cas v ), ρ̂, ⟩, ρ̂(v))

Detecting Conflicts An execution contains a read-write conflict if
at some point the execution can continue either by first performing,
on the same address, a read followed by a write or a write followed
by a read. Similarly, an execution contains a write-write conflict
when the execution is faced with two possible orderings for writing
to the same address.

The relations RWConflict ⊂ Exp and WWConflict(e) ⊂
Exp are inspired by the MHP relation and define that an expression
contains a read-write conflict (resp. write-write conflict) if a read
and a write (resp. two writes) on the same address may happen
in parallel. We take special care to avoid detecting writes on the
same address from the same thread in the same way as for MHP ,
by requiring ĉ1 ̸= ĉ2. This condition is not needed for read-write
conflicts, since a read expression and a write expression can never
be equal to each other.

RWConflict(e) ⇔ ∃⟨T̂ , σ̂⟩ ∈ êval(e),∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1 ∈ T̂ (t̂id1) ∧ Read(ĉ1, â) ∧

ĉ2 ∈ T̂ (t̂id2) ∧Write(ĉ2, â)

WWConflict(e) ⇔ ∃⟨T̂ , σ̂⟩ ∈ êval(e),∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1 ∈ T̂ (t̂id1) ∧Write(ĉ1, â) ∧

ĉ2 ∈ T̂ (t̂id2) ∧Write(ĉ2, â) ∧
ĉ1 ̸= ĉ2

These two relations are combined in the Conflict ⊂ Exp relation.

Conflict(e) ⇔ RWConflict(e) ∨WWConflict(e)

Filtering Harmless Conflicts The result of the conflict analysis
will contain harmless conflicts that involve cas. This is because
cas is often used in a loop that retries cas until it succeeds, as
illustrated by the following program.

(letrec ((counter 0)
(inc (lambda ()

(letrec ((old counter)
(new (+ old 1)))

(if (cas counter old new)
#t
(inc)))))

(t1 (spawn (inc)))
(t2 (spawn (inc))))

(join t1)
(join t2)
;; will always be 2 (2 calls to inc)
counter)

With multiple concurrent calls to inc, the analysis would detect
a write-write conflict on cas in the example program. But this

conflict is harmless, because in this particular case one cas will
succeed, and the other will be retried and eventually also succeed.
Similarly, the conflict analysis would also detect a harmless read-
write conflict due to binding old and evaluating cas in parallel.
To avoid detection of harmless conflicts, our detector extracts the
addresses and expressions involved in the conflict, and filters out
some conflicts. Filtering happens after having found conflicts. For
each address â involved in such a conflict, and for each pair of
threads involved in the conflicts on â, we can ignore conflicts
involving â and the two threads if the only conflicts detected are
both of the following, or only the latter, and no other conflict is
detected for this address.

1. A read-write conflict between the evaluation of a variable living
at address â and a cas on the same address â.

2. A write-write conflict between two cas on the same address â.

Note that this filtering will only filter false positives for pro-
grams involving variables that are shared by two threads. The pat-
tern could be extended to more threads, but we leave this extension
and its implementation as future work.

Detecting Unretried cas In order to detect a cas that is not
retried, it is no longer sufficient to look at individual P(CEK⋆)S
states. We need to reason about relations between multiple states
of the program execution, i.e., we need to explore the state graph
generated by the P(CEK⋆)S machine through ĝeval. The following
relations will be useful when reasoning about this state graph.

• Successor ⊂ Edges × Σ̂ × Σ̂ is the relation of states that
directly follow another state.

Successor(E, ς̂1, ς̂2) ⇔ (ς̂1, , ς̂2) ∈ E

• Path ⊂ Edges × Σ̂ × Σ̂ is the relation of paths that join two
states.

Path(E, ς̂1, ς̂2) ⇔ Successor(E, ς̂1, ς̂2) ∨
(Successor(E, ς̂1, ς̂1′) ∧
Path(E, ς̂1′ , ς̂2))

• TidExp ⊂ ̂Threads × T̂ID × Exp is the relation of threads
that are currently evaluating a particular expression.

TidExp(T̂ , t̂id , e) ⇔ ⟨e, , , ⟩ ∈ T̂ (t̂id)

• PathToTidExp ⊂ Edges × Σ̂× T̂ID ×Exp is the relation of
paths that evaluate a given expression on any thread.

PathToTidExp(E, ς̂, t̂id , e) ⇔ Path(E, ς̂, ⟨T̂ ′, σ̂′⟩) ∧

TidExp(T̂ ′, t̂id , e)

Using these relations, we can construct our analysis for detect-
ing failed but unretried cas operations in programs. A failed cas
is not retried if there exists no path from the resulting failure state
to a state evaluating that same cas again. This means that every
correct use of cas has to loop to itself to ensure that the update is
eventually performed in case of failure. Figure 7 depicts the pattern
we want to detect in ĝeval .

6 2015/6/16



t1:(cas v old new)

t1:#f

...

failure state
t1:#t

success state

11

Figure 7: Pattern searched for by the unretried cas analysis for
CSchemeC .

We can now define the relation UnretriedCas(e) ⊂ Exp that
encodes our analysis of unretried cas:

UnretriedCas(e) ⇔ (V,E) = ĝeval(e)∧

∃⟨T̂1, σ̂1⟩ ∈ V, ∃t̂id ∈ dom(T̂1) ∧

TidExp(T̂1, t̂id ,

e︷ ︸︸ ︷
(cas )) ∧

Successor(E, ⟨T̂1, σ̂1⟩, ⟨T̂2, σ̂2⟩) ∧

TidExp(T̂2, t̂id , α(#f)) ∧

¬PathToTidExp(E, ⟨T̂2, σ̂2⟩, t̂id , e)

Combining Conflict and UnretriedCas Combining the conflict
analysis with the unretried cas analysis results in a race condition
analysis. Because any error detected by one of these analyses may
lead to a race condition, the definition of RaceCondition ⊂ Exp
is straightforward:

RaceCondition(e) ⇔ Conflict(e) ∨UnretriedCas(e)

When this relation holds for e, there might exist one execution of e
containing a race condition.

Since the MHP analysis is unsound, and the race detection is
based on this analysis, the race detection is also unsound. Again,
this unsoundness appears only in very specific and rare cases that
we did not encounter during our evaluation, and allows us to have
an analysis with an improved precision (see Section 5.2). Without
it, the analysis results would be flooded with false positives that
would render it unusable.

4.2.2 Detecting Race Conditions: Lock Variant
We now change the setting and look at programs that use locks
as first-class citizens instead of cas (or locks implemented on top
of cas) to synchronize between threads. We find that defining the
race condition analysis for lock-based programs becomes more
straightforward.

The Write relation now becomes the following (there is no cas
in the language).

Write(⟨(set! v ), ρ̂, ⟩, ρ̂(v))
The Conflict relation remains the same, but is now equivalent to
the RaceCondition relation as there is no more need for detecting
unretried cas.

RaceCondition(e) ⇔ Conflict(e)

Notice that in this case, the acquire and release are not
present in the definition of the race detection. This is because these
constructs act on the level of the graph computed by the abstract
interpreter. They prevent states to be generated when trying to
acquire a held lock. The static analysis therefore only has to look
for the presence of a bad state, and is independent of the fact that
locks are used as the concurrency primitive, but it does depend on
the fact that we are using a blocking synchronization mechanism
instead of a non-blocking one like cas.

For the same reason as the cas variant, this analysis is unsound
due to the unsoundness of our modified MHP analysis. Again, the

unsoundness should only appear in very specific cases, and allows
us to have a good precision for detecting write-write conflicts,
even though some defects might not be detected. This is one case
where we have to choose between a sound analysis with many false
positives, rendering the analysis useless in practice, and an unsound
analysis with good precision, potentially missing defects.

4.2.3 Comparison: cas Versus Locks
The race condition analysis is much more succinct and computa-
tionally less demanding for CSchemeL than for CSchemeC . First,
there is no need to check for unretried cas, which requires veri-
fying the absence of cycles in the state graph. Also, the conflicts
detected by the conflict analysis do not have to be filtered, as there
is no equivalent to the harmless cas conflict if the program only
uses set! for writing variables.

4.3 Deadlock Detection
A program execution reaches a deadlock when the execution no
longer makes any progress. Like race condition detection before,
we examine deadlock detection in the settings of cas and locks.

4.3.1 Detecting Deadlocks: cas Variant
As the cas operation can be used as a basic building block for
implementing locks, it may introduce deadlocks as illustrated by
the program below.

(letrec ((lock #t) ; lock already locked
(f (lambda ()

(if (cas lock #f #t)
nil
(f)))))

;; Trying to acquire the lock which is already held
(f))

Listing 1: Deadlock involving cas

This example program gets stuck while trying to acquire a lock that
is never released, resulting in a deadlock (technically a livelock).
When such a deadlock occurs, the state graph will contain a loop
where a thread tries to acquire a lock, fails, and goes back to
trying, without ever succeeding in acquiring the lock. However,
detecting this pattern will lead to many false positives for locks
used by more than one thread. If two threads try to acquire the
same lock and thread 1 succeeds, there exists a loop in the graph
where thread 1 never gets executed again and the lock is therefore
never released, preventing thread 2 from ever acquiring it. This is a
possible deadlock, but any real scheduler will eventually execute
thread 1 again, allowing it to release the lock and avoiding the
deadlock.

If a lock is used by only one thread, deadlocks are still possible,
as Listing 1 shows. For a deadlock to happen in this case, every
thread – except the one trying to acquire the lock – should be stuck.
The only construct possibly leading to a stuck state in CSchemeC
is join. Therefore, if one thread follows the loop pattern and every
other thread is currently executing a join, the analysis will detect
this as a deadlock. This is overly approximative, as for a deadlock
to happen the joins should be dependent on the thread performing
the cas, e.g., thread 3 joins on thread 2, which joins on thread 1
which is stuck in the acquire loop.

One problem remains: as the value of the lock can be an abstract
value, we may not always know whether the cas succeeds or not.
The resulting loop in the state graph will therefore have one exit
path, which may never be reached. Unfortunately, this pattern is
indistinguishable from a cas that is correctly used. We therefore
refine our deadlock analysis such that it only reports deadlocks for
which a loop with no exit path is found. This analysis is therefore
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unsound by design, in order to improve precision. Figure 8 depicts
the pattern we are looking for in ĝeval .

t1:(cas v old new)

1:#f

...

failure state
1:#t

success state

11

Figure 8: Pattern in the state graph of a CSchemeC program indi-
cating a deadlock.

Formalizing the deadlock analysis for CSchemeC programs re-
quires the following relations:

• Cycle ⊂ Edges × Σ̂ is the relation of states that cycle back to
themselves in the state graph.

Cycle(E, ς̂) ⇔ Path(E, ς̂, ς̂)

• FailingCas ⊂ Edges × Σ̂× T̂ID is the relation of states that
evaluate a cas on a certain thread, and for which the cas does
not succeed.

FailingCas(E, ⟨T̂ , σ̂⟩, t̂id) ⇔

TidExp(T̂ , t̂id , (cas )) ∧
¬(Successor(E, ⟨T̂ , σ̂⟩, ⟨T̂ ′, σ̂′⟩) ∧

TidExp(T̂ ′, t̂id , #t))

• NumberOfNotJoins ⊂ ̂Threads × T̂ID × N counts, for a
given thread in a given state, the number of expressions that do
not evaluate a join.

NumberOfNotJoins(T̂ , t̂id , n) ⇔

|{ĉ ∈ T̂ (t̂id) s.t. ĉ ̸= ⟨(join ), , ⟩}| = n

• TransitionsOnPath ⊂ Edges× Σ̂× Σ̂×P(T̂ID) computes,
along a path between two states, the set of threads for which a
transition rule is used.

TransitionsOnPath(E, ς̂1, ς̂2,Tr) ⇔

((ς̂1, t̂id , ς̂2) ∈ E ∧ Tr = {t̂id}) ∨

((ς̂1, t̂id , ς̂1′) ∈ E ∧
TransitionsOnPath(E, ς̂1′ , ς̂2,Tr

′) ∧

Tr = Tr ′ ∪ {t̂id})

• NumberOfTransitionsOnCycle ⊂ Edges × Σ̂ × N counts,
along a cycle from a state to itself, the number of different
threads for which a transition rule is used.

NumberOfTransitionsOnCycle(E, ς̂, n) ⇔
TransitionsOnPath(E, ς̂, ς̂,Tr) ∧ |Tr | = n

The deadlock analysis is formalized by the Deadlock ⊂ Exp
relation, which expresses that a deadlock is present when we have a
cas that fails and cycles back to itself, and either every other thread
is blocked, or more than one thread performs a transition along the

cycle.

Deadlock(e) ⇔

(V,E) = ĝeval(e) ∧ ∃⟨T̂ , σ̂⟩ ∈ V,

∃t̂id ∈ dom(T̂ ) ∧

FailingCas(E, ⟨T̂ , σ̂⟩, t̂id) ∧
Cycle(⟨T̂ , σ̂⟩) ∧

((∀t̂id
′
̸= t̂id ,

NumberOfNotJoins(T̂ , t̂id
′
, 0) ∧

NumberOfNotJoins(T̂ , t̂id , 1)) ∨
(∃n > 1,

NumberOfTransitionsOnCycle(E, ⟨T̂ , σ̂⟩, n)))

4.3.2 Detecting Deadlocks: Locks Variant
When a deadlock occurs with the CSchemeL language, the state
graph will contain a state which has not finished its evaluation
and has no successor (since the machine is completely stuck, by
definition of deadlock). Finding such a state is computationally less
demanding than finding a deadlock for CSchemeC , which involved
finding loops in the state graph.

A CESK state can only be stuck when evaluating acquire on
an already held lock, or when evaluating a join. A P(CEK⋆)S state
will therefore be in deadlock if the state has no successor, and if
every thread is blocked either by an acquire or join.

Deadlock(e) ⇔(V,E) = ĝeval(e),∃⟨T̂1, σ̂1⟩ ∈ V ∧
∄(⟨T̂1, σ̂1⟩, ⟨T̂2, σ̂2⟩) ∈ E ∧
∀ĉs ∈ range(T̂1), ∀ĉ ∈ ĉs,

(ĉ = ⟨(acquire ), , ⟩ ∨
ĉ = ⟨(join ), , ⟩)

We claim that this analysis is sound. If, for some reason, in
an abstract state corresponding to a concrete deadlock state, a
thread id is associated with more than one abstract thread, where
one thread does not evaluate either an acquire or join, then the
machine can take a step. The machine will make a step on this
thread (and any other similar thread, except the ones evaluating
a blocking construct) until they finish their execution. When this
thread finishes its execution, it is removed from the abstract state,
therefore leaving only the threads evaluating blocking constructs,
and the analysis will therefore detect this new state as a deadlock
state. Since the Deadlock predicate acts upon an entire program,
the program will correctly be detected as containing a deadlock.

4.3.3 Comparison: cas Versus Locks
The deadlock analysis for CSchemeC involves looking for a cycle
without exit path in the state graph, whereas the deadlock analysis
for CSchemeL only requires detection of stuck states. This gain
in simplicity also avoids a pitfall of the analysis for CSchemeC :
any deadlock found by the analysis for CSchemeL will lead to a
stuck state, whereas with CSchemeC we are unable to distinguish
between a deadlock and a correctly used cas.

5. Experimental Evaluation
Our implementation of the P(CEK⋆)S machine and the analyses de-
scribed in the previous section is publicly available1. Because the
P(CEK⋆)S machine has to explore every possible thread interleav-
ing, the programs it can handle remain small and involve a small

1 https://github.com/acieroid/pcesk
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number of threads. We nevertheless are able to evaluate the impact
of our extensions to the P(CEK⋆)S machine. It has been shown that
in practice, concurrency bugs tend to involve only a small number
of threads and variables [25]. Programs selected for this evaluation
are programs that use the concurrency features of the language, that
are small enough to be handled by our implementation, and that ex-
hibit various issues related to concurrent programs.

For example, the pcounter program models a counter shared
across multiple threads, supporting an inc operation. There are
multiple variants of this program, each corresponding to a way of
using one of the synchronization primitives to build this program,
some of them containing race conditions. The typical implementa-
tion of the pcounter program using locks is given in Listing 2.

(letrec ((lock #unlocked)
(counter 0)
(inc (lambda ()

(acquire lock)
(set! counter (+ counter 1))
(release lock)))

(t1 (spawn (inc)))
(t2 (spawn (inc))))

(join t1)
(join t2)
counter)

Listing 2: Shared counter implemented with locks.

The other benchmark programs in CSchemeC include dif-
ferent cases of deadlocks (deadlock1, deadlock1-release,
deadlock), programs containing race conditions due to improper
use of cas (race-cas, race-set-cas), an implementation of the
producer-consumer pattern where the producer is first executed in
a thread, and when it finishes, the consumer is executed in another
thread (producer-consumer-seq), a program containing a be-
nign race-condition (that has no influence on the outcome of the
program) between two threads (benign), and a program used to
check whether false positives are reported due to the allocation
scheme used (false-pos). In CSchemeL, the programs are sim-
ilar: there are multiple variants of the shared counter, one variant
with support for a decrease operation as well (incdec), programs
containing deadlocks due to incorrect use of locks (deadlock1,
deadlock1-release, deadlock, deadlock3), and due to circu-
larity in the joins (join-lock3).

5.1 Impact of Abstract Garbage Collection
Abstract garbage collection is an important technique to reduce the
number of states of sequential CESK machines, enabling support
for more complex programs [26]. In Section 3.2, we showed how
to incorporate it in the P(CEK⋆)S machine.

Tables 1 and 2 show the impact of garbage collection on the
state space produced by the P(CEK⋆)S machine. The first group
of columns represent the number of states in the state graph (n)
and computation time (t) for a program with garbage collection
disabled, the second group is with garbage collection enabled,
and the last group is the ratio between the number of states with
garbage collection enabled and disabled. We observe no consistent
improvements in the precision and performance. When analyzing
the CSchemeC language, garbage collection sometimes yields a
substantial reduction in the number of states (e.g., 97% in the case
of deadlock), but can also increase the number of generated states
(up to +115% for pcounter). The advantage of abstract garbage
collection for CSchemeC is therefore smaller than for a sequential
language.

This advantage disappears for the CSchemeL language. Except
for producer-consumer-seq, which benefits of a reduction of

Table 1: Impact of GC on CSchemeC programs, on the number of
states (n) and the time in seconds (t). The lowest number of states
and time for each benchmark are in bold.

Example Without GC With GC GC/NoGC
n t n t n t

pcounter1 305 1 123 ϵ 40% –
pcounter 8845 112 19047 343 215% 306%
pcounter5-seq 1768 12 588 3 33% 25%
pcounter-mutex 2705 27 2497 29 92% 107%
pcounter-race 457 3 669 5 146% 166%
pcounter-buggy 8845 110 19047 293 215% 266%
producer-consumer-seq 796 4 678 4 85% 100%
deadlock1 1530 8 331 1 22% 13%
deadlock1-release 3679 23 664 3 18% 13%
deadlock 234962 4258 6043 1368 3% 32%
race-cas 81 ϵ 81 ϵ 100% –
race-set-cas 95 ϵ 95 ϵ 100% –
false-pos 461 4 461 4 100% 100%
benign 75 ϵ 75 ϵ 100% –

Table 2: Impact of GC on CSchemeL programs, on the number of
states (n) and the time in seconds (t). The lowest number of states
and time for each benchmark are in bold.

Example Without GC With GC GC/NoGC
n t n t n t

pcounter1 26 ϵ 26 ϵ 100% –
pcounter 443 2 507 3 114% 150%
pcounter5-seq 200 1 200 1 100% 100%
producer-consumer-seq 710 3 662 3 93% 100%
join-lock3 422 4 422 4 100% 100%
pcounter3 3827 47 4827 64 126% 136%
deadlock1 12 ϵ 12 ϵ 100% –
deadlock1-release 19 ϵ 19 ϵ 100% –
deadlock 199 1 199 1 100% 100%
deadlock3 1793 21 1793 25 100% 119%
incdec 3829 60 4349 69 113% 115%

7% of its state space, every other program either maintains its
number of states or suffers from an increase in number of states.

In these experiments, the expected reduction in state space re-
sulting from abstract garbage collection are less pronounced than
in the CESK setting.

5.2 Race Condition Analysis
Table 3 lists the number of true positives and false positives of the

race condition analysis for CSchemeC , and Table 4 for CSchemeL.
Each benchmark has a number of line of codes (LOC), a number of
threads (#T), a number of expected defects (Expected), the number
of defects found, and how many among them are true positives (tp)
and false positives (fp). For CSchemeL, benchmarks also have a
number of locks used (#L). Both CSchemeC and CSchemeL are
subject to a false positive in the case of benign race conditions. A
race condition is benign if it has no impact on the end result of
a program (e.g., two concurrent updates of a shared variable to a
same value). Whether this should count as a true or false positive
is arguable. Except for this case, both analyses find every race
condition present without any false positives. We have subjected
more CSchemeC programs to the cas-based detector, because race
conditions may happen for various reasons in programs involving
cas, whereas race conditions with locks happen only in case of
conflicts. Note that the analysis for CSchemeL is able to handle
programs with 4 threads whereas the analysis for CSchemeC is not.

5.3 Deadlock Analysis
Table 5 lists the results of the deadlock analysis for CSchemeC ,
and Table 6 for CSchemeL. For CSchemeC , two false positives
are reported in one example, but due to the size of the resulting
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Table 3: Race condition detector for the CSchemeC language.

Example LOC #T Expected Results
found tp fp

pcounter 34 3 0 0 0 0
pcounter-mutex 45 3 0 0 0 0
pcounter-race 24 3 2 2 2 0
pcounter-buggy 34 3 3 3 3 0
false-pos 34 3 0 0 0 0
benign 17 3 0 1 0 1
race-cas 20 3 1 1 1 0
race-set-cas 19 3 1 1 1 0

Table 4: Race condition detector for the CSchemeL language.

Example LOC #T #L Expected Results
found tp fp

pcounter 32 3 1 0 0 0 0
pcounter3 38 4 1 0 0 0 0
incdec 52 4 1 0 0 0 0
pcounter-race 24 3 0 2 2 2 0
false-pos 34 3 0 0 0 0 0
benign 17 3 0 0 1 0 1

state graph, we were not able to pinpoint the reason of their detec-
tion. We conjecture that the two false positives are repetitions of the
two already found deadlocks, with only small changes in the states
making them different. Also, due to the fact that the analysis only
looks for cycles without exit paths, one deadlock is missed in a pro-
gram where the value of the lock gets abstracted. For CSchemeL,
no deadlock is missed, no false positives are present, and the anal-
ysis is able to handle programs involving more threads and locks.

Table 5: Results of the deadlock analysis for the CSchemeC lan-
guage.

Example LOC #T #L Expected Results
found tp fp

deadlock-simple 15 1 1 1 1 1 0
deadlock-abstract 18 1 1 1 0 0 0
deadlock1 27 3 1 2 2 2 0
deadlock1-release 29 2 1 1 1 1 0
deadlock 65 3 2 2 4 2 2
pcounter-mutex 45 3 1 0 0 0 0

Table 6: Results of the deadlock analysis for the CSchemeL lan-
guage.

Example LOC #T #L Expected Results
found tp fp

deadlock1 13 2 1 2 2 2 0
deadlock 39 3 2 1 1 1 0
deadlock3 58 4 3 1 1 1 0
deadlock1-release 16 2 1 1 1 1 0
pcounter 32 3 1 0 0 0 0
pcounter3 38 4 1 0 0 0 0
incdec 52 4 1 0 0 0 0

Due to the complexity of the analysis, the P(CEK⋆)S machine
for the CSchemeC language was only able to handle examples with
up to three threads (with only two concurrently accessing a shared
variable) and two locks, whereas for the CSchemeL language it
supports programs with four threads and three locks.

5.4 State Space Comparison
Even though the different analyses can only handle small programs
due to the complexity of computing every thread interleaving, our
evaluation shows that the analysis performs better for CSchemeL
than for CSchemeC , in terms of complexity of the programs sup-
ported.

This is due to the fact that cas is a non-blocking synchroniza-
tion construct, and can therefore generate many new states that are
not useful for the progress of the evaluation. On the other hand,
locking is a blocking mechanism that entirely stops a thread trying
to acquire a held lock, therefore preventing new states from being
generated by transitions on this thread. Figure 9 (raw numbers in
Table 7, along with a ratio for each benchmark of the number of
states generated using locks over the number of states generated
using cas, and similarly for a ratio of the computation time) com-
pares the number of states computed for programs implemented
once with cas and once with locks as synchronization primitives.
The reduction in number of states varies from ÷1.12 to ÷1181,
and leads in most case to a reduction of more than one order of
magnitude.

Table 7: State space size comparison between similar programs
implemented in CSchemeC and CSchemeL

Example CSchemeC CSchemeL L/C
n t n t n t

pcounter1 305 1 26 ϵ 8% –
pcounter 8845 112 443 2 5% 2%
pcounter5-seq 1768 12 200 1 11% 8%
producer-consumer-seq 796 4 710 3 89% 75%
deadlock1 1530 8 12 ϵ 0.8% <12%
deadlock1-release 3679 23 19 ϵ 0.5% <4%
deadlock 234962 4258 199 1 0.08% 0.02%
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10³

10⁴

10⁵

pcounter1

pcounter

pcounter5-seq

producer-consum
er-seq

deadlock1

deadlock1-release

deadlock

PCESK cas
PCESK locks

Figure 9: State size comparison between similar programs imple-
mented in CSchemeC and CSchemeL.

6. Related Work
Abstract Interpretation Our work is based on previous work
by Might and Van Horn [27] on the P(CEK⋆)S machine, an adap-
tation of the AAM approach [33] to concurrent programs. Another
approach to abstract interpretation for concurrent higher-order pro-
grams is Jagannathan et al.’s work [22, 23, 35]. Their abstract in-
terpreter computes the possible values of each variables at each
program point in order to perform compiler optimizations, but it is
not adapted to reason about race conditions and deadlocks. In their
abstract interpreter, synchronization is performed through block-
ing primitives based on shared locations that can be read from in
a blocking manner and written to. Other synchronization mecha-
nisms are implemented on top of these shared locations to justify
the usefulness of the language, but no first-class support is added
for those derived synchronization mechanisms.

Formal Verification Verification of concurrent programs is an
important application of model checking techniques. Most model
checking tools that support the verification of concurrent programs
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(e.g., SPIN [21]) require the program to be modeled into a spec-
ification language. Exceptions to this include Bandera [11], Java
PathFinder [20], VeriSoft [18], and McErlang [17]. Bandera, Java
PathFinder and VeriSoft are able to deduce the specification from
the program source, while McErlang implements an Erlang virtual
machine that supports temporal logic queries. All these tools per-
form verification by taking as input user-defined formulas written
in temporal logic that should hold during the program execution.
This is in contrast with our approach, which require no user-defined
formula dependent on the verified program to detect race condi-
tions and deadlocks. Our approach requires a formula which only
depends on the semantics of the language analyzed, and not on the
specific program being analyzed. On the other hand, the state space
generated by the P(CEK⋆)S machine could be explored to verify
temporal logic formulas [32].

Type Systems Multiple extension of the Java type system have
been described to ensure the absence of race conditions [6, 7, 15]
and deadlocks [5, 7, 14]. The resulting programs tend to require
heavy type annotations to be accepted by the type checker. Further
work has shown that some of the required annotations could be au-
tomatically inferred [1, 5, 31]. Approaches based on type systems
will generally reject some race-free and deadlock-free programs,
if those are not deducible from the types. Our approach, however,
precisely approximates the control-flow of the program, making the
analysis less prone to false positives.

Lock-Based Algorithms Various other techniques detect dead-
locks in imperative programs by using algorithms analyzing lock
usage. Such techniques are generally based on building a lock-order
graph capturing the locking information of the program [2, 34, 36],
or on computing the set of locks protecting each variable [13].
These techniques are only applicable to lock-based imperative pro-
grams, whereas the P(CEK⋆)S approach can support different syn-
chronization mechanisms as shown in this work, and is not re-
stricted to imperative features. Naik et al.’s approach to detect race
conditions [28] and deadlocks [29] have the specificity of combin-
ing multiple static analyses to try to refute a condition for the ab-
sence of the defect. This idea of describing a defect as a disjunction
of multiple smaller analyses is shared by our race condition analy-
sis.

7. Conclusion
In this work we explored how the P(CEK⋆)S machine could be
extended and used as a starting point for building client analyses
that detect concurrency bugs. We extended this machine with first-
class support for locks, as this synchronization primitive is more
widely used than cas. Experiments show that the state space for
programs containing first-class locks is generally more than one
order of magnitude smaller than the state space of corresponding
programs with locks implemented on top of cas. We also adapted
and applied abstract garbage collection to the P(CEK⋆)S machine,
but observed no consistent improvements in precision and perfor-
mance. We formulated deadlock and race condition analyses based
on state graphs computed by the P(CEK⋆)S machine. Querying
state graphs was significantly simplified by using locks as synchro-
nization mechanism instead of cas.

8. Future Work
We identify three ways to improve the precision and scalability of
our approach.

Pushdown analyses The P(CEK⋆)S machine is described follow-
ing the AAM approach to abstract interpretation. This approach
has the disadvantage of not precisely matching calls and returns

of functions. More recent techniques, such as PDCFA [12] and
AAC [24], allow call-return matching with the precision offered
by pushdown systems. Adapting the P(CEK⋆)S machine to these
techniques could lead to precision improvements, but represents a
substantial theoretical challenge.

State space reduction The state space computed by the P(CEK⋆)S
machine suffers from the state space explosion problem that is also
found in model checkers supporting concurrency. Research in the
area of model checking has been focused on tackling this prob-
lem [10], and thanks to techniques such as partial-order reduc-
tion [19, 30], binary decision diagrams [9], and bounded model
checking [4], models of up to 10120 states can be verified [8], and
states spaces can be significantly reduced. For example [19] re-
duces on average 73% of the states, and up to 99% of them on
some examples. Importing such techniques to abstract interpreta-
tion could yield a gain in performance and a reduction of state
space.

Other concurrency primitives As moving from cas to locks
yields an improvement in the simplicity of the analyses and the ef-
ficiency of the machine, investigating other concurrency primitives
(e.g., STMs), other concurrency models (e.g., the actor model),
could lead to other insights and improvements.
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