
Detecting Function Purity in JavaScript
Jens Nicolay, Carlos Noguera, Coen De Roover, Wolfgang De Meuter

Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
{jnicolay, cnoguera, cderoove, wdmeuter}@vub.ac.be

Abstract—We present an approach to detect function purity
in JavaScript. A function is pure if none of its applications cause
observable side-effects. The approach is based on a pushdown
flow analysis that besides traditional control and value flow
also keeps track of write effects. To increase the precision of
our purity analysis, we combine it with an intraprocedural
analysis to determine freshness of variables and object references.
We formalize the core aspects of our analysis, and discuss
our implementation used to analyze several common JavaScript
benchmarks. Experiments show that our technique is capable
of detecting function purity, even in the presence of higher-
order functions, dynamic property expressions, and prototypal
inheritance.

I. INTRODUCTION

Mathematically speaking, the only observable effect of
a function is turning input arguments into a result-
ing value. However, in imperative programming languages
like JavaScript, any callable entity (function, constructor,
method, . . . ) can do more than that. Anything a JavaScript
function does besides producing a value, is called a side-effect
of that function. A side-effect is observable when it is visible
from the point of view of the caller. This happens when during
function application the function modifies state visible to the
caller. A function is pure if it does not generate observable
side-effects.

Research in different areas has demonstrated that purity
aids program understanding, specification, testing, debugging,
and maintenance [1]. Therefore, detection, verification, or
even enforcement of purity is useful for software engineering
purposes. Purity facilitates establishing security and confiden-
tiality aspects of applications. Pure functions are more secure
than impure ones, because they interfere less with the rest of
the application. Purity also potentially reduces the number of
bugs, and makes it easier to reproduce bugs. Pure functions can
be safely called from assertions, they allow for more and better
program optimizations, and they can speed up concurrency
analyses by eliminating non-interfering interleavings. Proving
the absence of side-effects has many more advantages and
applications, which are discussed more extensively in related
work on purity and side-effect analysis (Section VII).

In JavaScript, observable side-effects are a consequence of
assigning variables and storing property values in objects.
Variables and objects are stored at specific memory locations,
and writing to a memory location is considered to be an
effect. Our notion of purity allows unobservable side-effects,
therefore allowing functions that allocate and mutate memory

locations to still be pure. In our approach pure functions may
return locally allocated objects.

Functions only generate effects upon application. Therefore
our notion of function purity — a function as a syntactic entity
appearing in a program — is linked to the behavior of all its
applications at runtime. We therefore consider a function pure
if all its applications are pure. We develop a formal definition
of purity in Sections III and IV.

A. Challenges

Developing a purity analysis for JavaScript is challenging
in several ways.

Purity analysis needs to correctly track control and value
flow. In the example program below, function f is pure, but
g and h are not.

1 function f() // pure
2 {
3 var o={};
4 function g(p) { h(p) } // impure
5 function h(q) { q.x=4 } // impure
6 g(o)
7 }
8 f()

Because functions h (directly) and g (indirectly) mutate an
object that exists in the caller state of their applications, they
are both impure. Upon the occurrence of a property write
effect, the analysis has to walk the call stack to correctly
handle the effect for every function application that is active.

While in the above example control flow is straightforward
to determine, JavaScript features higher-order functions. In the
following example, function g is passed as an argument to
function f.

1 var z=0;
2 function g(p) { z=z+1; p.x=z} // impure
3 function f(h) { var o={}; h(o)} // impure
4 f(g)

It is clear that function g is impure, since it not only writes
to global property z, but also mutates an object through its
parameter. However, the purity analysis has to determine that
the application of h in the body of f on line 3 applies function
g, making function f impure because it indirectly mutates z.

It is not always straightforward to determine the correct
effects. Because of the semantics of JavaScript, variable x in
the example program below is actually a property of the global
object.



1 var x;
2 this.x = 10; // property write effect
3 function f()
4 {
5 var y;
6 x = 10; // property write effect
7 y = 20; // variable write effect
8 }

Assigning to x on line 6 should generate a property write effect
on the global object, identical to the effect generated on line 2,
instead of a variable write effect. It is important to distinguish
between variables and properties because variables and objects
behave and therefore influence purity differently. Another
example of non-obvious effects happens when assigning an
array index that is equal or greater than the current length
of the array: this generates an additional write effect on the
length property of that array.

JavaScript has closures, and unlike purity analyses for more
traditional object-oriented languages without closures, purity
analysis for JavaScript has to be able to handle free variables.
1 function f() // pure
2 {
3 function g() // pure
4 {
5 var z = 10;
6 function h() { z = 20 }; // impure
7 h()
8 }
9 g()

10 }
11 f()

In the example above, when z is assigned on line 6, the call
stack consists of function applications of h, g, and f. Function
h is impure because it mutates z, which is a free variable of h
and therefore exists in the caller state in this example. Function
g is pure, because z is local to g. Function f is also pure,
because z is not part of its scope.

A final challenge we mention concerns the fact that func-
tions in JavaScript are also constructors when invoked through
new.
1 function f() { this.x = 10 } // impure function
2 new f(); // pure application
3 f(); // impure application

When function f in the above example is invoked as a
constructor (line 2), then it is a pure application since this in
the body of f is bound to a fresh object. The regular function
application on the next line is impure because this is bound
to the global object. As a result, function f is impure.

B. Overview of our approach

Our approach for designing a purity analysis is based on a
pushdown abstract interpretation of the program that integrates
control flow, value flow, and effects.

We define a core imperative language that represents an
interesting and non-trivial subset of standard JavaScript se-
mantics (Section II). The semantics of this input language
is expressed as an abstract machine that transitions between
states. The abstract machine generates appropriate write effects
caused by writing to variables and object properties. Starting

from an initial evaluation state, all possible successor states
are explored. This results in a flow graph, which is a finite
representation of the runtime behavior (control flow, value
flow, effects) of the input program.

We then examine the flow graph to determine whether a
given function is pure or impure by looking at all applications
of a certain function (Section III). If all applications of a
function are pure, then the function itself is pure. A function
application is pure if it does not generate observable side-
effects, i.e., it does not mutate state visible to the caller, during
application. A write effect is observable to a caller when the
address that is written to is mapped in the caller store that is
in effect at function entry.

Although checking addresses as described above corre-
sponds exactly with our definition of purity, we find that this
technique is problematic in a static analysis setting. Because
an analysis has to complete in finite space and time, the set of
addresses is made finite, which decreases the precision of our
purity analysis. We therefore recover some of this precision by
defining a small lexical and intraprocedural freshness analysis
on top of a flow graph (Section IV). Variables that are declared
in the corresponding function scope of an application are
fresh, while an object reference is fresh in a top-level function
application if the object the reference points to was allocated
during that application. The purity analysis can use freshness
of variables and object references to mask certain write effects,
thereby increasing the precision of the purity analysis.

After explaining our approach in detail, the remainder
of the paper discusses our implementation and experiments
(Sections V and VI), and we give an overview of related work
(Section VII).

The contributions presented in this paper are the following:
• We present an abstract machine for a core JavaScript-

like language that tracks write effects generated by
assignments to variables and object properties during
interpretation.

• We introduce a purity analysis over a flow graph anno-
tated with effects.

• We define an intraprocedural freshness analysis over a
flow graph to improve precision of our purity analysis.

• We implement a purity analysis for a substantial subset
of JavaScript, and experiment with it on several common
JavaScript benchmarks.

II. SETTING

Because function call and return is the dominant pattern
in higher-order, functional programs, an analysis needs to
model call/return precisely. For this reason, we use a pushdown
analysis [2] and not a more classic finite-state analysis.

A. Input language

In order to simplify the formalization of our approach, we
work on a core functional language with assignment. This
input language, depicted in Figure 1, most notably features
objects as maps, higher-order functions, prototypal inheritance,
and assignment. Although it is a small language, its set



e ∈ Exp ::=s [simple expr]
| f [function]
| v(s) [function call]
| s0.v(s1) [method call]
| new v(s) [new expr]
| v=e [assignment]
| s.v [property load]
| s.v=e [property store]
| var v [declaration]
| return s [return]

s ∈ Simple ::=v [reference]
| this [this expr]

f ∈ Fun ::=λ(v){e}

v ∈ Var = a set of identifiers

Fig. 1. Input language.

of features is sufficiently challenging for performing purity
analysis. Our implementation (Section V), used to validate
our approach, supports a larger subset of traditional features
like iteration, non-local return flow, and typical features of
JavaScript, including type coercions and parts of the standard
built-in functions and objects. We assume that every element
in our input language has a unique label ` so that different
occurrences of the same expression can be distinguished.

B. Semantics

The small-step semantics of the input language is expressed
as an abstract machine [3] that transitions between evaluation
(ev) and continuation (ko) states. The resulting machine is a
variation on the CESIK?Ξ abstract machine described in John-
son and Van Horn [2]. This machine actually is an abstract
abstract machine since it operates on abstract values, although
it can be parameterized to express concrete semantics.

Figure 2 shows the abstract state-space. The control (e),
environment (ρ), store (σ), and value (d) components of the
machine are standard.

Stacks are stored inside states and consist of a local con-
tinuation (ι) delimited by a meta-continuation (κ̂). The local
continuation is a (possibly empty) list of frames, while the
meta-continuation is a calling context. Calling contexts are
generated at call sites, except for the root calling context that
is created at the start of program evaluation.

Calling contexts that are generated at call sites serve as
stack addresses pointing to underlying stacks that are stored
in a stack store (Ξ). A stack address contains five components:
a call expression (e), a callable (c), a list of arguments (darg),
a this pointer (athis), and a caller store that is in effect
at function entry (σ). Allocating stacks with this kind of
precision describes unbounded stacks in a finite way with

the precision offered by pushdown systems, i.e., with full
call/return precision.

In the remainder of this section we detail the operation of
the abstract machine.

1) Program injection: The injection function I : Exp →
Ŝtate turns an expression into an initial evaluation state with
empty environment, initial store, empty local continuation, and
the root context as meta-continuation.

I(e) = ev(e, [], σ0, 〈〉, ε)
where κ̂0 = (e,⊥,⊥, a0, σ0)

σ0 = [a0 7→ []]

The initial store σ0 maps the global object at address a0, which
we assume to be globally available.

2) Address allocation: Address allocation is a parameter
of the semantics that can be used to control the context-
sensitivity of the resulting analysis. Any address allocation
scheme is sound [4], but not all allocation schemes are useful.
We assume the presence of allocation functions allocVar for
allocating variables, allocCtr for allocating constructor ob-
jects, allocFun for allocating function objects, and allocProto
for allocating prototypes of function objects.

To express concrete semantics, we can take Addr = N and
allocX (e, ρ, σ, ι, κ̂) = 1 + max(Dom(σ)), where allocX is
one of the allocation functions and Dom returns the domain
of a function.

For abstract semantics, a monovariant allocation scheme
(0CFA) would be Addr = Exp with allocVar(e, ρ, σ, ι, κ̂) =
e, and similar definitions for the other allocators.

3) Simple expressions: Function evalSimple : Simple ×
Env × Store × K̂ont 7→ D evaluates simple expressions:
references and this expression. Looking up a reference
means looking up its address in the lexical environment,
returning the value associated with that address in the store.

evalSimple(v, ρ, σ, κ̂) = σ(a)

if v ∈ Dom(ρ)

where a = ρ(v)

If the name is not available in the environment, then we
perform a property lookup on the global object at address a0.

evalSimple(v, ρ, σ, κ̂) = ω(v)

where ω = σ(a0)

The value for a this expression is retrieved from the current
calling context.

evalSimple([[this]], ρ, σ, (e, c, darg, athis, σ)) = athis

4) Transition relation: In order to determine function pu-
rity, we need to be able to reason about write effects that
occur as a result of mutating variables and object properties
during evaluation. We make write effects explicit by modeling
them on the transition relation that transitions between states:
(7→) v State×State×P(Eff ). Since reading and allocation
of variables and objects in itself can never influence the purity



ς̂ ∈ Ŝtate ::= ev(e, ρ, σ, ι, κ̂,Ξ) [eval state]
| ko(d, σ, ι, κ̂,Ξ) [kont state]

ρ ∈ Env = Var ⇀ Addr [environment]
σ ∈ Store = Addr ⇀ (D + Obj ) [store]

d ∈ D = P(Addr + undef) [value]
ω ∈ Obj = (Var ⇀ D)× (proto 7→ D)× (call 7→ P(Callable)) [object]

c ∈ Callable ::= (f, ρ) [callable]
ι ∈ LKont = Frame∗ [frame]
φ ∈ Frame ::= as(v, ρ) [assignment frame]

| st(s, v, ρ) [property store frame]

κ̂ ∈ K̂ont ::= (e, c, darg, athis, σ) [meta-continuation]

Ξ ∈ KStore = K̂ont ⇀ P(LKont × K̂ont) [stack store]
a ∈ Addr is a set of addresses [address]
eff ∈ Eff ::= Wv(a, v) [variable write effect]

| Wp(a, v) [property write effect]
E ∈ P(Eff ) is a set of effects [effects]

Fig. 2. State-space of the analysis.

of expressions, we are not interested in these effects and hence
do not consider them.

A simple expression is evaluated by delegating to
evalSimple .

ev(s, ρ, σ, ι, κ̂,Ξ) 7→ (ko(d, σ, ι, κ̂,Ξ),∅)

where d = evalSimple(s, ρ, σ, κ̂)

Evaluating a function expression yields a reference to a
function object (ωf ) that is allocated in the store. Following
JavaScript semantics, a function object has a fresh object
assigned to its prototype property.

ev([[

f︷ ︸︸ ︷
λ(v){e}]], ρ, σ, ι, κ̂,Ξ) 7→ (ko({a}, σ′, ι, κ̂,Ξ),∅)

where a = allocFun(f, ρ, σ, ι, κ̂)

a′ = allocProto(f, ρ, σ, ι, κ̂)

σ′ = σ t [a 7→ {ωf}, a′ 7→ {ωproto}]
ωf = [call 7→ {(f, ρ)},

proto 7→ ∅
prototype 7→ {a′}]

ωproto = [proto 7→ ∅]

A function call is evaluated by first evaluating operator and
argument, and then applying the evalCall helper function with

a reference to the global object (a0) as this value.

ev([[

e︷ ︸︸ ︷
v(s)]], ρ, σ, ι, κ̂,Ξ) 7→ evalCall(c, darg, σ, ι, κ̂,Ξ, κ̂

′)

where df = evalSimple(v, ρ, σ, κ̂)

darg = evalSimple(s, ρ, σ, κ̂)

af ∈ df
ωf = σ(af )

c ∈ ωf (call)
κ̂′ = (e, c, darg, a0, σ)

For a method call we additionally look up the method on the
receiver, and we set the receiver as value for this in the new
calling context.

ev([[

e︷ ︸︸ ︷
s0.v(s1)]], ρ, σ, ι, κ̂,Ξ) 7→ evalCall(c, darg, σ, ι, κ̂,Ξ, κ̂

′)

where dthis = evalSimple(s0, ρ, σ, κ̂)

darg = evalSimple(s1, ρ, σ, κ̂)

athis ∈ dthis

df ∈ lookupProp(v, athis, σ)

af ∈ df
ωf = σ(af )

c ∈ ωf (call)
κ̂′ = (e, c, darg, athis, σ)

Relation lookupProp looks up a property by traversing the
prototype chain of an object. If the property is not found in



the chain, it returns undefined.

lookupProp(v, a, σ)

=


ω(v) if v ∈ Dom(ω)

{undef} if ω(proto) = ∅
lookupProp(v, a′, σ) else

where ω = σ(a)

a′ ∈ ω(proto)

A constructor call allocates a new object on the heap, and
sets a reference to this object as value for this in the new
calling context. The internal prototype of the new object is the
value of the prototype property of the invoked constructor.
The caller store in the context is the store without the newly
created object.

ev([[

e︷ ︸︸ ︷
new v(s)]],ρ,σ,ι,κ̂,Ξ) 7→ evalCall(c,darg,σ

′,ι,κ̂,Ξ,κ̂′)

where df = evalSimple(v,ρ,σ,κ̂)

darg = evalSimple(s,ρ,σ,κ̂)

af ∈ df
ωf = σ(af )

c∈ ωf (call)
athis = allocCtr(e,ρ,σ,ι,κ̂)

ω= [proto 7→ ωf (prototype)]

σ′ = σt[athis 7→ {ω}]
κ̂′ = (e,c,darg,athis,σ)

Function evalCall applies a function to an argument in a
given context. It extends the static environment by binding the
argument, and moves evaluation to the body of the function.

evalCall((f,ρ),darg,σ, ι, κ̂,Ξ, κ̂
′) = (ev(e,ρ′,σ′,〈〉, κ̂′,Ξ′),∅)

where f = [[λ(v){e}]]

ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ darg]

a= allocVar(v,ρ,σ, ι, κ̂)

Ξ′ = Ξt [κ̂′ 7→ {(ι, κ̂)}]

Variable assignment pushes a continuation to assign the value
of the right hand side to the variable. No effects are generated
during this step.

ev([[v=e]], ρ, σ, ι, κ̂,Ξ) 7→ (ev(e, ρ, σ, φ : ι, κ̂,Ξ),∅)

where φ = as(v, ρ)

Loading a property involves evaluating the receiver, and look-
ing up the property in that receiver.

ev([[s.v]], ρ, σ, ι, κ̂,Ξ) 7→ (ko(d, σ, ι, κ̂,Ξ),∅)

where dr = evalSimple(s, ρ, σ, κ̂)

a ∈ dr
d ∈ lookupProp(v, a, σ)

Like assignment, storing a property requires evaluating the
right hand side and pushing a continuation to perform the
actual property update.

ev([[s.v=e]], ρ, σ, ι, κ̂,Ξ) 7→ (ev(e, ρ, σ, φ : ι, κ̂,Ξ),∅)

where φ = st(s, v, ρ)

A declared variable is added to the lexical environment with
a value of undefined, which is also the result of the entire
“expression”. Variable allocation does not generate an effect.

ev([[var v]], ρ, σ, ι, κ̂,Ξ) 7→ (ko({undef}, ρ′, σ′, ι, κ̂,Ξ),∅)

where ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ {undef}]
a = allocVar(v, ρ, σ, ι, κ̂)

Function return computes a return value and clears the local
continuation.

ev([[return s]], ρ, σ, ι, κ̂,Ξ) 7→ (ko(d, ρ, σ, 〈〉, κ̂,Ξ),∅)

where d = evalSimple(s, ρ, σ, κ̂)

When the machine has to continue with an assignment frame
on top of the stack, it assigns the value computed for the right
hand side to the variable on the left, if the variable is in scope.
It then continues with this value, generating a variable write
effect.

ko(d, σ,as(v, ρ) : ι, κ̂,Ξ) 7→ (ko(d, σ′, ι, κ̂,Ξ), E)

if v ∈ Dom(ρ)

where a = ρ(v)

σ′ = σ t [a 7→ d]

E = {Wv(a, v)}

If the variable is not found in the environment, the machine
performs a property update on the global object, generating a
property write effect.

ko(d, σ,as(v, ρ) : ι, κ̂,Ξ) 7→ (ko(d, σ′, ι, κ̂,Ξ), E)

where ω = σ(a0)[v 7→ d]

σ′ = σ t [a0 7→ ω]

E = {Wp(a0, v)}

Storing a property always happens directly on the receiver
and does not require traversing prototype links. It generates a
property write effect.

ko(d, σ, st(s, v, ρ) : ι, κ̂,Ξ) 7→ (ko(d, σ′, ι, κ̂,Ξ), E)

where dr = evalSimple(s, ρ, σ, κ̂)

a ∈ dr
ω = σ(a)[v 7→ d]

σ′ = σ t [a 7→ ω]

E = {Wp(a, v)}



5) Function exit: When the machine reaches a state with an
empty local continuation, the machine dereferences the stack
address to obtain an underlying stack. If no stacks are found
in the stack store, then the machine has reached a program
exit and halts, and the current value is the result value of
the program. In all other cases the machine has reached a
function exit, which is the consequence of either an explicit
return, or of an implicit return by reaching the end of a
function body. For simplicity we always return a reference to
the newly created object for a constructor call, regardless of
how function exit is reached.

ko(d, σ, 〈〉, κ̂,Ξ) 7→ (ko(d′, σ, ι′, κ̂′,Ξ),∅)

where (ι′, κ̂′) ∈ Ξ(κ̂)

d′ = {athis}
([[new v(s)]], _, _, athis, _) = κ̂

Similarly, we always return the current value when exiting
from a function call.

ko(d, σ, 〈〉, κ̂,Ξ) 7→ (ko(d, σ, ι′, κ̂′,Ξ),∅)

where (ι′, κ̂′) ∈ Ξ(κ̂)

6) Flow graph: We determine function purity by reasoning
about write effects that happen during program evaluation.
We therefore construct a flow graph representing program
evaluation, in which nodes are reachable states, and edges are
transitions between states that are labeled with the effects that
occur on transition. Let ↪→ be transition relation 7→ with the
effects removed: ς̂ ↪→ ς̂ ′ ⇐⇒ ς̂ 7→ (ς̂ ′, E). Evaluation can
be expressed as computing the transitive closure of ↪→ after
injection.

E(e) = {ς̂ | I(e) ↪→∗ ς ′}

The definition of flow graph Ge for expression e then is as
follows:

ς̂
E−→ ς̂ ′ ∈ Ge ⇐⇒ ς̂ ∈ E(e) and ς̂ 7→ (ς̂ ′, E)

Static analysis requires a finite flow graph for every possible
program. We can guarantee finiteness by plugging in finite
sets for Var and Addr into the state-space of the analysis
(Figure 2). For finite programs the entire state space is then
finite as well, and ↪→, which is monotonic, has a least fixpoint.

III. PURITY ANALYSIS

Using the flow graph from the previous section, we are
able to determine function purity by examining all function
applications. The result is a map P from functions to their
effect class.

class ∈ Class = {⊥, pure, impure}
P ∈ Purity = Fun 7→ Class

The effect class is a join semi-lattice in which ⊥ @ pure @
impure and pure t impure = impure.

Our definition of purity requires the set of active function
applications on the stack, with each active application coupled

to the caller store that was in effect at the respective call site.
Function contexts collects the set of active calling contexts
by walking over the stack. In order to guard against infinite
recursion, helper function contexts∗ keeps a set of seen
contexts (ctxs).

contexts(κ̂,Ξ) = contexts∗(κ̂,Ξ,∅)

contexts∗(κ̂,Ξ,ctxs) = ctxs if κ̂∈ ctxs

contexts∗(κ̂,Ξ,ctxs) =
⋃

(_,κ̂′)∈Ξ(κ̂)

contexts∗(κ̂′,Ξ,ctxs∪{κ̂})

The caller store is needed to check whether effects that occur
during function application are observable or not. If a write
effect occurs on an address that is mapped in the caller store,
then the effect is observable. If the address is not in the domain
of the caller store, then the effect is local to the application and
can be masked. The following write effect handler deals with
both variable and property effects by considering the address
of the effect. If the address is mapped in the caller store of an
active function application, then the effect is observable from
the point of view of the caller, and the function is marked as
impure.

handle(ς̂ ,Wv/p(a, _)) = P

where P = {[f 7→ impure] | a ∈ Dom(σ)

∧ (e, (f, ρ), darg, σ) ∈ ctxs}
ctxs = contexts(κ̂,Ξ)

(. . . , κ̂,Ξ) = ς̂

We define relation 7→purity that navigates flow graph Ge
and propagates information about function purity. For every
transition, it delegates to a handler for every effect that occurs
on that transition. We mark every active function pure here to
avoid burdening effect handlers with dealing with this case.
As a result, functions that are mapped onto ⊥ in the resulting
purity map are functions that were not applied during abstract
interpretation.

(ς̂ ,P) 7→purity (ς̂ ′,P ′)

where (ς̂
E−→ ς̂ ′) ∈ Ge

P ′′ = P
⊔
{[f 7→ pure] |

(e, (f, ρ), darg, σ) ∈ ctxs}

P ′ = P ′′
⊔
{handle(ς̂ , eff ) | eff ∈ E}

ctxs = contexts(κ̂,Ξ)

(. . . , κ̂,Ξ) = ς̂

Purity analysis is performed by taking the transitive closure
of 7→purity, starting from the bottom element of the analysis
domain.

purityAnalysis(Ge) =
⊔
{P | (ς̂0, []) 7→∗purity P}

where ς̂0 is the initial state of Ge

This purity analysis is finite if the underlying flow graph is
finite, because the purity map monotonically increases in a
finite domain.



1 function F(f) {
2 var a = this;
3 a.f = f;
4 }
5
6 F.create =
7 function (n) {
8 var f;
9 if (n < 1) {

10 f = null;
11 } else {
12 f = F.create(n-1);
13 }
14 return new F(f);
15 }
16
17 F.create(3);

Fig. 3. Example program with recursive pattern.

IV. FRESHNESS ANALYSIS

A. Problem: limited precision for addresses

The purity analysis from the previous section is attractive
because it exactly expresses our definition of purity: if a
function during application modifies an address that exists
in the caller store, then that constitutes an observable side-
effect which renders that function impure. But therein lies its
greatest weakness as well: side-effects are classified solely
based on their address. When the abstract machine from
Section III is configured with a concrete allocator, addresses
are generated with full precision. As a result, our purity
analysis will determine function purity with maximal precision
as well, without false positives (except for idempotent writes)
or negatives. However, in a static analysis setting this is not
realistic. In order to guarantee that an analysis runs in finite
time and space, we sacrifice concrete precision primarily by
limiting the number of addresses the abstract machine may
choose from while it is evaluating the input program. Since
our purity analysis hinges on addresses, we need to assess the
impact of this precision loss in our approach.

As it turns out, the purity analysis based solely on addresses
suffers from inherent imprecision introduced by selecting
addresses from a finite set. We say “inherent”, because while
it is always possible to recover some loss of precision by for
example generating context-sensitive addresses, at one point or
another the machine will run out of fresh addresses. Although
increasing context-sensitivity may cause more applications to
be considered pure by our analysis, only a single impure ap-
plication renders the function impure, and increasing context-
sensitivity only delays the inevitable.

Example: The program depicted in Figure 3 represents
the essence of a pattern for constructing a composite data
structure. Suppose that every object created on line 14 is
allocated at a single address a. When constructor F on line
14 is called after the recursive call F.create on line 12 in
the else branch, that recursive call has already allocated an
object at address a. Therefore our purity analysis concludes
that property load a.f on line 3 in the constructor writes

to an address that already exists in the caller store. As a
result, constructor F is considered to be impure, although a
constructor should be allowed to mutate the object referenced
by its this parameter without generating an observable side-
effect.

In the same example program in Figure 3, we identify a
second problem. Suppose that variable f on line 8 is always
allocated at the same address. Then in a recursive call to
F.create both assignments to f (lines 19 and 12) are also
considered to be a write to an address that exists in the caller
store.

B. Solution: freshness

Clearly we can do better by taking into account certain in-
variants that hold during concrete interpretation. For example,
mutating the newly created object in a constructor call is never
an observable side-effect. Writing to a local variable does
not generate an observable side-effect either. These and other
invariants have one thing in common that we want to check
for: freshness. We check freshness on the level of variables (for
variable effects) and object references (for property effects).

1) Variables: A variable is fresh with respect to a calling
context if it is a local variable in that context. Because purity
analysis needs to walk the stack of active function applications,
there are actually three cases to consider: variables in the
same scope (local variables), “outer” variables in an enclosing
scope (visible or not), and all other variables. We therefore
turn the check for freshness around by observing that only
outer variables are not fresh, and writing to them causes
observable side-effects. The handler for a variable write effect
can then be defined without the need for checking the address
of the written variable. Instead the handler only needs to
rely on lexical scoping information offered by helper function
declNode : Var 7→ Var that returns the variable declaration for
a reference, and predicate isOuter : Var×Fun, which returns
whether a variable is declared in an enclosing scope of a given
function scope or not.

handle(ς̂ ,Wv(a, v)) = P

where vdecl = declNode(v)

P = {[f 7→ impure] | isOuter(vdecl, f)

∧ (e, (f, ρ), darg, σ) ∈ ctxs}
ctxs = contexts(κ̂,Ξ)

(. . . , κ̂,Ξ) = ς̂

2) Object references: An object reference is fresh with
respect to the top-level calling context if it points to an object
that was created in that context. There are two operations that
need to come together: we have sources at which fresh objects
are created and/or bound to references, and we also have to
propagate reference freshness.

Sources for fresh references are intuitive to find in our small
language. Suppose that fresh is a set of variables, represented
by their declaration, known to reference fresh objects. Then
an object reference is fresh if its variable is in this set of
fresh references. Additionally, the result of object construction



through new is fresh, and a reference to the newly constructed
object through this in a constructor is fresh. All other
expressions are not fresh. The following rules define predicate
isFresh : Exp × K̂ont × P(Var) that captures our notion of
freshness.

isFresh([[v]], κ̂, fresh) = vdecl ∈ fresh

where vdecl = declNode(v)

isFresh([[new v(s)]], κ̂, fresh) = true

isFresh([[this]], ([[new v(s)]], . . .), fresh) = true

isFresh(e, κ̂, fresh) = false

Propagation of fresh references happens through variable
assignment only, making freshness analysis a limited in-
traprocedural analysis. We do not track freshness through for
example function calls or property loading and storing: for
these kinds of object flow we rely entirely on the underlying
abstract interpretation and the addresses it allocates.

Like purity analysis, freshness analysis piggybacks on the
underlying flow graph for control flow. We define it as a triple
of the following components: a set of seen states (S), a current
state (ς̂), and a mapping from calling contexts to a set of fresh
references (Fκ).

For a variable assignment expression, freshness propagates
from the right hand side to the reference on the left hand side.
We use predicate isFresh to determine whether the right hand
side is fresh. If this is the case, then we add the left hand side
variable to the set of fresh references for the calling context
at that state. Else, the variable is removed from this set.

(S,

ς̂︷ ︸︸ ︷
ev([[v=e]], ρ, σ, κ̂,Ξ), Fκ) 7→fresh (S′, ς̂ ′, F ′κ)

if ς̂ /∈ S
where fresh = Fκ(κ̂)

F ′κ = Fκ[κ̂ 7→ fresh ′]

fresh ′ =


fresh ∪ {vdecl}

if isFresh(vdecl, κ̂, fresh)

fresh \ {vdecl} else

vdecl = declNode(v)

(ς̂ −→ ς̂ ′) ∈ Ge
S′ = S ∪ {ς̂}

In all other cases, Fκ is unchanged.

(S, ς̂, Fκ) 7→fresh (S′, ς̂ ′, Fκ)

if ς̂ /∈ S
where (ς̂ −→ ς̂ ′) ∈ Ge

S′ = S ∪ {ς̂}

Even as an intraprocedural analysis, relation 7→fresh needs
to keep track of fresh references per calling context. When a
flow graph transition changes the calling context, then either
we are entering a function with a calling context we did not

previously encounter, or we exit a function restoring a previ-
ously encountered calling context. Because 7→fresh enforces the
condition ς̂ /∈ S on every transition, all other cases are ruled
out. Also because of condition ς̂ /∈ S, the transitive closure of
7→fresh is finite if the underlying flow graph is too.

While having a mapping from calling contexts to fresh
object references is required while traversing the flow graph,
our purity analysis needs to determine freshness of object
references per state. We therefore introduce mapping Fς from
states to their set of fresh references, by associating each state
with the list of fresh references for the state’s calling context
obtained from Fκ as follows:

Fς = {[ς̂ 7→ fresh] | (∅, ς̂0, []) 7→∗fresh (_, ς̂ , Fκ)

∧ (. . . , κ̂, _) = ς̂

∧ fresh = Fκ(κ̂)}

We can now combine purity analysis with freshness analysis
by defining handlers for property write effects that do not
mark functions as impure when a fresh reference is involved.
Property writes happen in two instances: explicit property
store, or when assigning to a top-level variable:

handle(

ς̂︷ ︸︸ ︷
ko(d, st(s, v, ρ) : ι, κ̂,Ξ),Wp(a, v)) = []

if isFresh(s, κ̂, Fς(ς̂))

handle(

ς̂︷ ︸︸ ︷
ko(d,as(v, ρ) : ι, κ̂,Ξ),Wp(a, v)) = []

if isFresh(v, κ̂, Fς(ς̂))

Installing these handlers before the property write effect han-
dlers from Section III ensures that freshness analysis for object
references improves precision of the purity analysis.

V. IMPLEMENTATION

We implemented the purity analysis and freshness analysis
discussed in this paper as a proof of concept1. Our implemen-
tation significantly extends the input language and semantics
presented in this paper. Notably, our implementation adds
support for computed properties. We also added many of the
built-in JavaScript functions and objects required to run our
benchmarks.

Our prototype implementation uses abstract garbage collec-
tion (AGC) as a technique to increase performance and preci-
sion of abstract interpretation [5]. Abstract garbage collection
reclaims unused addresses, and so in principle should increase
the precision of an address-based purity analysis. Disabling
AGC on smaller and synthetic benchmarks only incurred a
small negative impact on precision, which was dominated by
the absence or presence of freshness analysis. Furthermore,
AGC was required to run the larger benchmarks. Scaling up
the abstract interpreter and client analyses, also to better assess
the impact of AGC, is an ongoing effort.

1https://github.com/jensnicolay/jipda/tree/scam2015/protopurity

https://github.com/jensnicolay/jipda/tree/scam2015/protopurity


— Without fresh — — With fresh —
Benchmark Flow time #Func #Pure Purity time #Pure Purity time
access-nbody2 ε 11 2 ε 7 ε

controlflow-recursive2 ε 3 3 ε 3 ε

crypto-sha12 ε 17 6 ε 7 ε

math-spectral-norm2 ε 5 2 ε 2 ε

tree-add4 0’01" 8 1 ε 4 ε

navier-stokes3 1’33" 36 4 0’20" 4 1’05"
richards3 0’19" 38 5 0’02" 9 0’05"

Fig. 4. Purity analysis results. Flow time is the running time of the flow analysis creating a flow graph. #Func is the number of functions in the benchmark.
#Pure is the number of functions that our analysis determines pure. Purity time is the running time of the purity analysis on top of the flow graph. We use ε
to denote a running time smaller than 1 second.

VI. PRELIMINARY EXPERIMENTS

We used our prototype implementation to analyze several
JavaScript benchmarks using monovariant allocation. The ta-
ble depicted in Figure 4 reports, for each benchmark, the
number of pure functions detected, for both our purity anal-
ysis without freshness analysis, and for our purity analysis
combined with freshness analysis. We also report the time the
underlying flow analysis and the subsequent purity analysis
took.

A. Observations

a) Our purity analysis is able to detect pure functions:
We manually verified each function our analysis reported as
pure, and found no false positives. This also confirms that
our purity analysis is conservative. Absence of false positives
is especially important in the context of security, where pure
functions increase the confidence that there are no unintended
side-effects when running sensitive code. crypto-sha1 is
a Sunspider benchmark2 that tests cryptographic functions,
and our prototype is able to detect that the majority of the
functions that are actually called in that benchmark are indeed
pure functions. navier-stokes is an octane benchmark3

that passes around arrays between functions that update these
arrays in place. Our analysis correctly predicted that almost
all functions in this benchmark are impure.

b) The number of false negatives is low: In addition to
running with standard abstract semantics using a monovariant
allocation scheme, we also configured our flow analysis to
execute programs with concrete semantics, i.e. with concrete
values and concrete allocation. In this configuration, our
definition of purity based on checking address membership in
caller stores (Section III) is maximally precise. We found that,
for all benchmarks except navier-stokes which ran out
of memory (> 12GB) when executed with concrete semantics,
our abstract purity analysis (with freshness) detected every
pure function that the concrete semantics (without freshness)
identified as pure.

2https://www.webkit.org/perf/sunspider/sunspider.html
3https://developers.google.com/octane

c) Freshness analysis improves precision, at the expense
of performance: From the benchmark results we see that
incorporating freshness analysis significantly improves pre-
cision. Freshness analysis does increase the overall running
time of the analysis, but in our view adding it represents
a good trade-off between speed and precision. tree-add
is a JOlden benchmark4 that we converted from Java into
JavaScript. Although it is a relatively small benchmark, it
exhibited poor precision when analyzed without freshness:
only 1 pure function was detected out of 4 functions that are
determined pure with freshness analysis enabled. The pattern
in Figure 3, illustrating some of the weaknesses of address-
only purity analysis, was distilled from this benchmark.

B. Comparison to existing work

Comparing our approach to existing approaches in terms of
results is difficult, since to the best of our knowledge this is the
first purity analysis that specifically targets JavaScript. There
is related work, which we discuss in the next section, that
focuses on method purity for Java, and analyzes benchmarks
from the JOlden suite. tree-add is such a benchmark that
we manually converted to JavaScript. While the comparison
is not ideal, we observe that for this benchmark, according
to [6] both JPPA [7] and JPure [8] find 1 pure method out of
10 methods in total. ReImInfer [6] finds 6 pure methods out of
10. In our JavaScript version there are 8 methods (functions),
and our prototype implementation correctly infers that 4 of
these are pure.

VII. RELATED WORK

A. Related work

There exists a large body of work on purity and closely
related concepts such as side-effects analysis, referential trans-
parency, and memoization. We give a small overview of related
work.

Salcianu and Rinard [7] present a purity analysis that
is based on an underlying pointer analysis (JPPA). Their
analysis first constructs parameterized points-to graphs for
every method, in which nodes are objects and edges are
heap references. A later interprocedural step instantiates these

4ftp://ftp.cs.umass.edu/pub/osl/benchmarks

https://www.webkit.org/perf/sunspider/sunspider.html
https://developers.google.com/octane
ftp://ftp.cs.umass.edu/pub/osl/benchmarks


points-to graphs at every call. The goal of the analysis is to
distinguish objects allocated during invocation of a method
from objects that already exist in the caller state. From a high-
level perspective, our approach is comparable: we also perform
an intraprocedural analysis to compute freshness, which we
then complete with interprocedural information to determine
purity. However, our intraprocedural step is very lightweight
compared to that of Salcianu and Rinard, and most of the work
is performed by the underlying abstract interpreter computing
interprocedural properties of a program. Like our approach,
JPPA requires a whole-program analysis.

Pearce introduces JPure [8], a modular purity analysis
based on annotations that express freshness and locality, two
concepts that map closely to how we use these terms in this
work. When the focus is on maintaining purity, no whole-
program interprocedural analysis is required. JPure is rooted
in Java, and can automatically infer annotations. Similar to
our technique, the tool starts from an intraprocedural dataflow
analysis to model freshness and locality of object references.
Purity inference then interprocedurally propagates information
using static class hierarchy.

Madhavan et. al [9] present the pointer analysis used in
Salcianu and Rinard [7] as an abstract interpretation. Our
work is also based on abstract interpretation, but is different
from original JPPA formulation and thus also from its abstract
interpretation reformulation.

Huang et. al [6] present ReImInfer, a type inference analysis
for reference immutability in Java. ReIm, the underlying type
system, qualifies references as being readonly, mutable, or
polyread, the latter signifying that a reference is immutable in
the current context but may not be in other contexts. Methods
are pure if none of their parameters, including this, are
inferred to be mutable. Like the purity analysis we present
in this paper, ReImInfer is context-sensitive when applying
viewpoint adaptation. Our calling contexts are more precise
than any approach discussed in [6], but at the expense
of running time and scalability. ReImInfer does not handle
higher-order language constructs.

Rytz et. al. [10] present a modular type-and-effect system
for purity in Scala. It is strongly influenced by JPure, and it
also relies on annotations, while our analysis does not. Their
effect system is flow-insensitive to make it suitable for higher-
order languages, while our work is both flow-sensitive and
capable of handling higher-order constructs.

Pitidis and Sagonas [11] treat purity in the setting of a func-
tional language (Erlang), and they take the stricter definition of
purity where a function also may not depend on external side-
effects. Higher-order functions are supported, but the analysis
is based on a “pretty simple” dataflow analysis, while in this
work we employ a state-of-the-art flow analysis that offers full
call/return precision. Finifter et. al. [1] discusses purity from
the point of view of a deterministic object-capability language
(Joe-E) based on Java. Purity of methods can be enforced
by statically declaring all parameters as having an immutable
type. Declaring parameters as immutable is sufficient in a
language that does not have closures, but would not apply in

our setting of JavaScript, which has closures. Extending our
approach to the stricter definition of purity of [1], [11] would
involve tracking read effects in a manner similar to how we
already track write effects, and handling them appropriately.
This extension remains the focus of ongoing work.

VIII. CONCLUSION

We present a purity analysis for JavaScript that handles
closures, higher-order functions, and prototypal inheritance.
We employ pushdown flow analysis to compute the control
and value flow of a program, while generating write effects
when variables and object properties are written. By compar-
ing addresses in effects with addresses in caller stores, we
distinguish observable from unobservable side-effects. Doing
this for all write effects in all applications of a function enables
us to classify functions as pure or impure. While flow analysis
is adequate for tracking object flow in a program, it does
however lose precision when the number of addresses it can
choose from is limited. We therefore add a freshness analysis
that can identify unobservable write effects that would be
considered observable by the address-based purity analysis.
Adding freshness analysis improves precision of our purity
analysis considerably, as demonstrated in our preliminary
experiments.

ACKNOWLEDGMENTS

Jens Nicolay is funded by IWT Vlaanderen. Coen De
Roover is funded by the Cha-Q project also sponsored by
IWT Vlaanderen. Carlos Noguera is funded by the AIRCO
project of the “Fonds Wetenschappelijk Onderzoek”.

REFERENCES

[1] M. Finifter, A. Mettler, N. Sastry, and D. Wagner, “Verifiable functional
purity in java,” in Proceedings of the 15th ACM conference on Computer
and communications security. ACM, 2008, pp. 161–174.

[2] J. I. Johnson and D. Van Horn, “Abstracting abstract control,” in
Proceedings of the 10th ACM Symposium on Dynamic languages.
ACM, 2014, pp. 11–22.

[3] M. Felleisen and D. P. Friedman, “A calculus for assignments in higher-
order languages,” in Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM, 1987, pp.
314–.

[4] M. Might and P. Manolios, “A posteriori soundness for non-deterministic
abstract interpretations,” in Proceedings of the 10th International Con-
ference on Verification, Model Checking and Abstract Interpretation
(VMCAI 2009), Savannah, Georgia, USA, January 2009.

[5] C. Earl, M. Might, and D. V. Horn, “Pushdown control-flow analysis
of higher-order programs,” in Proceedings of the 2010 Workshop on
Scheme and Functional Programming (Scheme 2010), Montreal, Que-
bec, Canada, August 2010.

[6] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst, “Reim & reiminfer:
Checking and inference of reference immutability and method purity,”
in ACM SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp. 879–896.

[7] A. Salcianu and M. Rinard, “Purity and side effect analysis for java
programs,” Lecture notes in computer science, pp. 199–215, 2005.

[8] D. J. Pearce, “Jpure: a modular purity system for java,” in Compiler
Construction. Springer, 2011, pp. 104–123.

[9] R. Madhavan, G. Ramalingam, and K. Vaswani, “Purity analysis: An
abstract interpretation formulation,” in Static Analysis. Springer, 2011,
pp. 7–24.

[10] L. Rytz, N. Amin, and M. Odersky, “A flow-insensitive, modular effect
system for purity,” in Proceedings of the 15th Workshop on Formal
Techniques for Java-like Programs. ACM, 2013, p. 4.

[11] M. Pitidis and K. Sagonas, “Purity in erlang,” in Implementation and
Application of Functional Languages. Springer, 2011, pp. 137–152.


	Introduction
	Challenges
	Overview of our approach

	Setting
	Input language
	Semantics
	Program injection
	Address allocation
	Simple expressions
	Transition relation
	Function exit
	Flow graph


	Purity Analysis
	Freshness analysis
	Problem: limited precision for addresses
	Solution: freshness
	Variables
	Object references


	Implementation
	Preliminary experiments
	Observations
	Comparison to existing work

	Related work
	Related work

	Conclusion
	References

