
Indexing RETE’s Working Memory

Catering to Dynamic Changes of the Ruleset

Simon Van de Water, Thierry Renaux, Lode Hoste, Wolfgang De Meuter
Vrije Universiteit Brussel

Pleinlaan 2
Elsene, Belgium

{svdewate, trenaux, lhoste, wdmeuter}@vub.ac.be

ABSTRACT
Complex Event Processing systems are used to detect pat-
terns in large streams of events. These patterns are de-
scribed by rules.

Due to changing requirements or updated security policies
for example, these rules need to be frequently updated at
runtime. Changing the ruleset at runtime, however, is a
costly operation because the events that occurred in the past
need to be re-evaluated.

In this paper we present an extension to the pattern-
matching algorithm called RETE. Our extension aims to
improve the performance of the re-evaluation of events when
the ruleset is modified. More specifically, we optimise the
addition of rules that match events by means of the inequal-
ity operators >, >, < and 6. We do this by introducing
indexes to order the events that are stored in the working
memory. Afterwards, we measure our performance improve-
ments on targeted micro-benchmarks.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
I.5.5 [Pattern Recognition]: Implementation

General Terms
Algorithms, Design, Performance

Keywords
Rete, Indexing, Dynamic ruleset

1. INTRODUCTION
Nowadays, businesses have to deal with large continuous

streams of data. Financial institutions want to process a
continuous stream of payments, withdrawals, money trans-
fers, etc. in order to discover fraud by detecting suspicious
patterns. For webshops, it is interesting to track purchases
in order to automatically detect which products are popular

and to ensure that these popular products are available in
stock. In security, it is interesting to track a stream of in-
and out-going network packets in order to detect system in-
truders.

Extracting useful information from these huge amounts
of data in near real-time is a complicated task. There are
many Complex Event Processing Systems (CEP) that offer
a solution to this. In this paper we will specifically focus on
one family of CEP called production systems. A production
system is a computer program that uses a set of condition-
action pairs (rules) in order to reason over a possibly large
set of data with acceptable latency [1, 7, 8].
The order in which the rules are matched against the in-
coming data, as well as what intermediate results are stored,
plays a very big role in the performance of the production
system. This part of the production system is taken care
of by a matching algorithm. This paper focuses on improv-
ing one aspect of such a matching algorithm, namely how it
handles runtime modifications to the ruleset. The matching
algorithm targeted in this paper is the RETE-algorithm [3].
Section 2 discusses the relevant parts of RETE.

As the behaviour of users changes over time (e.g. fraud-
sters continuously find new ways to avoid the system), the
ruleset needs to evolve to cope with these behavioural changes.
In current CEP systems based on RETE, rulesets evolve by
manually updating existing rules and adding new rules to
the ruleset at runtime. Updating the ruleset at runtime is
an expensive operation because (i) the algorithm has to re-
configure the underlying data structure it uses and, more
notably, because (ii) many updates to rules require a re-
evaluation of the data that already resided in the system
against rules that have been modified or added. However,
it is of utmost importance that the reconfiguration and re-
evaluation happens as quick as possible because new data is
continuously entering the system and needs to be processed
against the ruleset with as little latency as possible.

In this paper we present an extension of the RETE-algo-
rithm that is aimed at improving the performance of modify-
ing the ruleset at run-time. This extension will focus on im-
proving the speed of checking literal constraints that involve
a specific set of operators. The set of operators supported
by our extension consists of greater than(>), greater than or
equal(>), less than(<), and less than or equal(6). We will
refer to this set as “inequality operators” in the remainder of
this paper. We exclude = and 6= because these are already



supported by an extension that is complementary to ours [5].

The specification and implementation of our extension is
described in section 3. In section 4 we validate our extension
by comparing it with Drools, a state of the art production
system that uses the RETE-algorithm with many extensions
as its matching algorithm.
In section 5 we describe how we aim to extend the rule-
language in the future to cater to the increasing need of
rulesets that can easily be modified.
In section 6 related work is discussed. Section 7 finally comes
to a conclusion.

2. RETE-ALGORITHM
The RETE-algorithm [3] was designed to speed up the

matching of patterns with data (also referred to as “facts”).
The patterns against which the data is matched are defined
by a set of rules. Typically, these rules have a left-hand-side
(LHS) and a right-hand-side (RHS). A rule (of which exam-
ples are shown in Listings 1, 2, 3 and 4) can be considered
to be an if-then construct. The LHS describes the condition
and the RHS describes the consequent.

RETE compiles these rules into a graph called the RETE-
network which exists out of a Root node, Alpha-nodes, Join-
nodes (also referred to as beta-nodes) and Terminal nodes.
The Root node is an entry point for new facts and prop-
agates them to the Alpha-nodes. The Alpha-nodes, which
precede the Join-nodes in the RETE-network, evaluate lit-
eral conditions of the rules (e.g. Client.age == 18). Al-
though the specification of the algorithm only supports lit-
eral equality checks, all well-known implementations of the
algorithm today also support other operations such as“grea-
ter than” (>).
Once a fact successfully matches the Alpha-node(s) (i.e. the
condition that is checked by the Alpha-node evaluates to
true), it propagates to the Join-nodes. Join-nodes are re-
sponsible for upholding constraints that check conditions
across multiple facts and will combine them pairwise if there
is a match. The resulting pair is called a token. These to-
kens are the entities that are actually propagated through-
out the RETE-network. When a token reaches a Terminal
node (i.e. each condition of the LHS successfully matched
with a token), the RHS of the rule that was matched by the
token is executed.
We clarify this with the following example:

1 rule “ProcessPurchasePremiumMember”
2 when
3 c : C l i ent ( )
4 PremiumMember( c l i e n t I d == c . c l i e n t I d )
5 p : Purchase ( amount > 25 , ! paidFor , c . c l i e n t I d ==

c l i e n t I d )
6 then
7 c . chargePurchase (p , 5) ;
8 end

Listing 1: Example of a rule called
ProcessPurchasePremiumMember

This rule expresses that whenever a Client, who is also
a PremiumMember, makes a purchase for an amount that is
bigger than $25, the Client will receive a discount of 5%.
In our example, the Client class has the fields clientId,
age and points. The Purchase class has a purchaseId, an
amount and paidFor, a boolean that indicates whether that
purchase has been paid for already. Finally, the Premium-

Figure 1: An example of a simple RETE-network.

Member class simply refers to a clientId. The LHS of the
rule is described between lines 2 and 6 whereas the RHS is
described on line 7 (i.e. after the “then” keyword).
Line 3 takes a Client and matches it to the condition (i.e. in
this example the condition is“is the fact a Client”). If a fact
successfully pattern matches the condition (i.e. it satisfies
the condition) on line 3, the client is bound to the variable
c so that c can be used to refer to the matched Client fact
in the remainder of the rule. Line 4 unifies the clientId of
a PremiumMember with the clientId of c. Finally, in line 5,
we check whether the amount of the Purchase is bigger than
25, whether it still needs to be paid and if the Client is a
PremiumMember. The compilation of this rule results in a
network with one root-node, five Alpha-Nodes, three Join-
nodes and one Terminal node as illustrated in Figure 1. Ev-
ery RETE-network has a root node which forms the entry
point of the network. Each fact that is added to the working
memory –which is a collection of all the facts that have been
added to the network– is propagated to the root-node. The
facts that pass through this root-node then get propagated
further down to the nodes that are connected with the root-
node. In this example, the Root node is connected to three
Alpha-nodes (annotated as α1, α2, α3). These Alpha-nodes
simply match the type of the fact that has just entered the
network with a specific fact type (i.e. Client (line 3), Pre-
miumMember (line 4) or Purchase (line 5)). Apart from the
Alpha-node that only propagates facts of the type Premium-

Member, the condition of line 4 was also compiled into a Join-
node (β1) that matches facts of the type Client with facts
of the type PremiumMember based on their clientId. The
condition on line 5 results in three Alpha-nodes; α3 matches
each fact with the fact type Purchase, α4 matches each Pur-

chase with the literal constraint amount > 25 and α5 checks



whether the Purchase has been paid for already. If the Pur-

chase was not paid for, Join-node β2 will match the cli-

entId of the Purchase with the clientId of a Client that
matched a PremiumMember in Join-node β1. If this match
also succeeds, it means that the purchase was made by a
premium member and that the fact can propagate to the
Terminal node. The fact is then said to have matched the
pattern (i.e. the purchase was made by a premium member
and is eligible for a discount). Subsequently, the RHS (line
7) can be fired. The RHS in this case is a normal method
invocation that is responsible for charging the amount of p

to client c with a discount of 5%.

An essential part of RETE that is not yet discussed is
that Alpha- and Join-nodes keep track of intermediate re-
sults. Because of this, facts only need to be matched by a
node once. The Alpha-node that checks whether a fact is of
the fact type Client will store all the facts that match with
the condition of this node in its Alpha-memory. The same
holds for the other Alpha-nodes in the network. Facts that
are stored in memory are called tokens (which was already
described above). Whenever a Join-node manages to unify
two such tokens, it will store a tuple of these matching to-
kens in its memory (which is called the Beta-memory). In
the example listed above, the advantage of this strategy be-
comes clear whenever a new Purchase that has an amount
that is bigger than $25 and has not yet been paid for en-
ters the system. All the Clients that are PremiumMembers
are already unified by Join-node β1, which means that the
Beta-memory of this node already contains tokens for each
Client that is a PremiumMember. Because of this, when the
token of the Purchase fact is propagated from the Alpha-
node α5 –which checks that the Purchase has not yet been
paid for– to Join-node β2, it is not necessary to start iterat-
ing over all Clients and PremiumMembers. The clientId of
the Purchase just needs to be matched with the clientId

of the tokens that were already residing in the Beta-memory
of β1, rather than with every Client in the working memory.

3. INDEXING WORKING MEMORY
In section 2 we observed that current systems are opti-

mised to process events. However, rules and pattern defi-
nitions can also change. One challenge is that the running
system cannot be shut down to change the ruleset because
patterns should not be missed. Fortunately, the RETE-
algorithm allows one to change the ruleset at runtime. How-
ever, this is a costly operation. Not only does the RETE-
network have to be reconfigured at runtime, many updates
to rules also require that facts that were already processed
by the algorithm, need to be re-evaluated with the updated
configuration of the network. If for example a new pattern is
introduced to detect security threats, system administrators
not only want to find threats in the stream of data from the
moment the rule was added to the ruleset. They also want
to find out whether the pattern has occurred in the (recent)
past.

The modification or addition of a rule to the ruleset will
typically lead to the creation of new nodes and dependencies
in the RETE-network. Once the RETE network has been
reconfigured, all the facts that reside in the working mem-
ory are propagated to new nodes. The longer the produc-

Figure 2: An example of a Red-black tree.

tion system is used, the more events are stored. This means
that changing the ruleset becomes more expensive because
a lot of facts need to be re-evaluated. The extension of the
RETE-algorithm presented in this paper improves the per-
formance of matching facts with Alpha-nodes that involve
the inequality operators >, >, < and 6. We do not fo-
cus on Alpha-nodes performing equality tests because this
is already taken care of by an extension called Alpha-node-
Hashing [5] as described in section 6.

We aim to improve the performance by adding the notion
of Indexes to RETE. Indexes, which stem from databases [4],
are data structures that organise data in such a way that
only a limited number of steps is necessary to navigate to
a certain record. We take this idea and use it in RETE
by introducing a data-structure that will order the working
memory in such a way that every fact can –on average– be
retrieved in O(log2(n)) steps where n is the amount of facts
that reside in the working memory. Unfortunately, there are
extreme cases in which the retrieval will have a performance
of O(n). For example, when all of the facts in the working
memory will successfully match with the new Alpha-node,
the presented extension will not perform better than current
CEP systems based on RETE. We further elaborate on this
in section 4.
To get a better understanding of what an index is and how it
improves the performance of modifying the ruleset, consider
the following method-invocation:

1 create Index (“ idxPoints”, “Cl i ent”, “Points”, 10) ;

Listing 2: Creation of an index

This method will introduce an index called idxPoints. Such
an index is implemented as a red-black tree [2]. Red-black
trees are self-balancing binary search trees that offer a worst-
case performance of O(log(n)) for insertions, deletions and
searches. This index will consider the points of a Client as
its key, whereas the value will be a bucket of facts. The last
argument is used to define how big the range of the buck-
ets should be. To understand this better, consider Figure 2.
The Figure shows the red-black tree that was created by
invoking the method of Listing 2. Every circle corresponds
with a key in our red-black tree and each key has a bucket
of facts as its value. In Figure 2, we only visualised the
bucket for the keys 4 and 7. Figure 2 illustrates that each
bucket (visualised by the rectangles) contains clients that
fall within a range of 10 points. When a new key-value pair
is added, the key that will be used is divided by the number
that was passed as the last argument (in this case 10). The
resulting number is rounded down and we use that number



as the key. Because of this, node 7 for example, corresponds
with a bucket that stores all Clients with points that fall
in the range [70-79].

The current implementation of the indexes improve the
performance of the addition of a rule whenever a rule intro-
duces a new Alpha-node in the network. Consider a portion
of the following simplified ruleset:

1 rule “BronzeMember”
2 when
3 c : C l i ent ( po int s > 10)
4 then
5 sendBronzeDeals ( c ) ;
6 end
7
8 rule “SilverMember”
9 when

10 c : C l i ent ( po int s > 20)
11 then
12 sendS i l v e rDea l s ( c ) ;
13 end
14 //Additional ruledefinitions that define GoldMember and DiamondMember.

Listing 3: A simple ruleset

These rules are responsible for sending special offers to our
loyal clients. The more points a client has, the better the
special offers the client receives. When a Client reaches a
certain level (e.g. SilverMember, DiamondMember, etc.) the
client will not only receive the offers for her/his level, but
also the offers for all the preceding levels. SilverMembers

for example (i.e. Clients that have more than 20 points)
will receive offers for SilverMembers as well as for Bronze-

Members.
Now imagine the following rule was added at runtime:

1 rule “PlatinumMember”
2 when
3 c : C l i ent ( po int s > 50)
4 then
5 sendPlatinumDeals ( c ) ;
6 end

Listing 4: PlatinumMember rule

This rule will add a new Alpha-node to the RETE-network
that will check whether a Client’s points are bigger than
50. In traditional RETE, each fact that sits in the working
memory needs to be matched against this new Alpha-node.
By employing the indexes, this is no longer the case. Instead
of propagating all facts to the new Alpha-node, we only need
to propagate the values of the buckets that are stored with
keys 5 - 10. We can omit the propagation of the facts that
are stored with keys 1-4 because the red-black tree, which
uses the points of a Client as its key, ensures that all the
facts that are associated with these keys have too few points
to actually match with the test of the new Alpha-node. The
values that correspond with keys 5-10 can automatically be
propagated to the node that depends on the new Alpha-
node because we know that the points of all these values
are bigger than 50. In other cases, however, it can be that
a limited set of facts need to be checked by the new node.
If the new rule would check for all Clients that are bigger
than 55 for example, it would have to recheck all the facts
that are stored in the bucket that is associated with key 5

because some of the facts in this bucket will have more than
55 points whereas others will not. This process could be
sped up as well by implementing the buckets as an ordered
data-structure (e.g. a red-black tree, AVL-tree, etc.). The
facts that correspond with keys 6-10, however, can still be
propagated without performing checks.

Another use case that could benefit from using indexes
is a RETE-network with more than one Alpha-node per-
forming a test on the same property as illustrated in List-
ing 3. Because the red-black tree already orders the facts as
they enter the system, they no longer need to be explicitly
checked by each Alpha-node. This works in a similar way as
how the system decides whether a fact should be propagated
to the new Alpha-node in the use-case explained above with
the new Alpha-node. Our current implementation, however,
does not yet cater to this use-case.

3.1 Implementation
Our index extension to RETE is implemented in Drools

6.2. Rather than implementing the red-black tree in the
root-node, we decided to implement the red-black tree in
the ObjectTypeNodes. ObjectTypeNodes, which are specific
to Drools1, exist to make sure that the algorithm does not do
redundant work. Instead of matching every new fact with
each node that depends on the Root-node, the Root-node
knows – by means of hashing – to which ObjectTypeNode
it should propagate each new fact. Because of this, facts no
longer need to be explicitly checked against every type that
exists in the RETE-network (i.e. the first three Alpha-nodes
in Figure 1 are replaced by ObjectTypeNodes).

Each ObjectTypeNode holds a set of all facts that were
propagated to it. Whenever an index is created for the type
that corresponds with the ObjectTypeNode, an instance of
RbTreeDuplicates is added. RbTreeDuplicates is a mod-
ified version of the RbTree which stores a bucket of values
for each key rather than one value per key.
In order to fill our indexes with data, we made sure that
whenever an object is asserted to a certain ObjectTypeNode,
it is also added to our indexes.
To ensure that not all facts are propagated to a new Alpha-
node that was connected to an ObjectTypeNode, we mod-
ified the updateSink-method. This method is responsible
for propagating facts from the ObjectTypeNode to new nodes
that are added to the network. Before propagating the facts,
we check whether we have an index for the property that is
checked by the new Alpha-node. If such an index exists,
we use the red-black tree of that index to find the value
that is nearest to the value that is being compared with in
the Alpha-node (e.g. 50 in the example of Listing 4). After
finding the nearest node, we just add the values of its buck-
ets and navigate to the next or previous key if necessary
(i.e. if the Alpha-node performs a bigger-than or smaller-
than test). If no such index is found, we fall back to the
standard implementation of Drools.

4. BENCHMARKS
For the evaluation of our extension, we conducted a se-

ries of benchmarks. We used a server containing an AMD
Opteron 6300 “Abu Dhabi” 16 core processor and 128GB of
memory with NUMA properties. Dynamic frequency scal-
ing was disabled to reduce measurement errors. The server
uses Linux Ubuntu 15.04 with Oracle Java 1.8.0 51.

1for more information, visit
https://docs.jboss.org/drools/release/5.2.0.Final/drools-
expert-docs/html/ch03.html



Figure 3: A comparison of the runtime of our ex-
tension and Drools with a varying number of facts
in the working memory.

4.1 Scalability
The first set of benchmarks indicate how our extension

scales compared to an unmodified version of Drools 6.2. To
do so, we created different sets of data that contain a varying
number of facts. We then pass all the facts to the algorithm
and fire all the rules that were already present in the ruleset.
We then continue by updating the ruleset and re-evaluating
all the facts that were inside the working memory. We mea-
sure the time it takes to update the ruleset and re-evaluate
all the facts.
In total we measure the performance of 15 datasets. We
created datasets of different sizes; 1.000 facts, 10.000 facts,
100.000 facts, 1.000.000 facts and 10.000.000 facts. For
each of these sizes we created 3 datasets; each containing
facts of which 25%, 50% and 75% match successfully with
a new Alpha-node. The results are presented in Figure 3.
The numbers represent the average value of processing each
dataset 30 times. To observe how the extension of the al-
gorithm deals with a varying number of facts, we needed to
make our x- as well as y-axis logarithmic in order to present
meaningful information. The graph illustrates that up until
10.000.000 facts our extension to RETE as well as Drools
have a similar increase in time with respect to the size of
the working memory. The graph also shows that as soon as
the working memory grows larger than 1.000 facts, our ex-
tension performs better than Drools. It can also be observed
that as the number of facts that successfully match the new
Alpha-node grows smaller, the performance gain of our ex-
tension compared to Drools grows bigger. This observation

Figure 4: A comparison of the propagation of the
working memory to the new Alpha-node of our ex-
tension and Drools with a varying percentage of
facts that successfully match the new Alpha-node.

% of successful Our extension Drools
matches to new Alpha-node

0% 0,7ms 115,43ms
50% 144,8ms 200,53ms
100% 257,9ms 257,23ms

Table 1: Exact timings of propagation of the facts
in the working memory to the new Alpha-node

is better illustrated in the next set of benchmarks.

4.2 Propagation of facts
This set of benchmarks illustrates how long it takes for

facts to propagate from the working memory to a new Alpha-
node The time it takes to actually evaluate the facts is not
taken into consideration in these benchmarks.
To do so, 10 different datasets were created, each containing
1.000.000 facts The difference between the datasets is the
percentage of facts that successfully match with the new
Alpha-node. The values presented in Figure 4 are the aver-
ages of processing each dataset 30 times.
This graph clearly illustrates that if there are no facts that

successfully match the new Alpha-node, our extension needs
virtually no time (0.7ms) to propagate the facts to the new
Alpha-node as illustrated in Table 1. Drools on the other
hand takes up to 115,43ms. This means that in the best case,
our extension is 164 times faster than Drools in propagat-
ing the facts from the working memory to the Alpha-node.
This behaviour is expected since no fact is propagated to
the Alpha-node by our extension.
It can also be observed that as the number of facts that
successfully match the new Alpha-node grows, the differ-
ence between our extension and Drools of the time that
is needed to propagate the facts reduces. For the average
case in which 50% of the facts successfully match the new
Alpha-node, our extension (144,8ms) performs 28% faster
than Drools (200,53ms).
In the worst case scenario where all of the facts in the



working memory match the new Alpha-node, we even see
that our extension (257,9ms) performs slightly worse than
Drools (257,23ms). This is due to the fact that Drools
fetches facts from an array in O(1). If our extension however
needs to jump from one node to the subsequent node in the
red-black tree it takes O(log(n)) where n is the number of
keys in the red-black tree.
Except for this extreme case, however, we see that our ex-
tension outperforms Drools for every percentage.

5. FUTURE WORK
The current extension of the algorithm requires develop-

ers to explicitly create indexes. We envision to extend the
algorithm such that it can deduce when it could be benefi-
cial to create an index for a certain property by analysing
the ruleset and facts. For Listing 3 for example, the algo-
rithm should be able to deduce that it would be beneficial
to create an index on the points field of the Client-class
because there are so many rules that put a literal constraint
on points.

Apart from improving the performance when the ruleset
is modified, we also believe that the rule-language should
be extended with support for meta-variables and meta-rules
in order to make it easier for rule-developers to update the
ruleset.

1 Var X = 500;
2 rule “DetectPremiumMember”
3 when
4 c : C l i ent ( po int s > X)
5 then
6 i n s e r t L o g i c a l (new PremiumMember( c . c l i e n t I d ) ) ;
7 end

Listing 5: PremiumMember rule

Listing 5 illustrates the purpose of meta-variables. This rule
decides which Clients become PremiumMembers based on
their points. The rule-definition illustrates that for the mo-
ment, a Client is considered to be a PremiumMember when
they have more than 500 points. To attract more people
to their store, the owners can decide that Clients will be
treated as PremiumMembers as soon as they gathered 200
points. Current matching engines forces developers to ex-
plicitly change a ruleset. By adding the notion of variables,
this could be done by simply changing the variable. We
envision that these variables can be changed through other
rules (see below) or by regular imperative Java-code (in the
case of Drools). Moreover, our extension could anticipate
to rules with such variables by automatically creating an in-
dex for them. When the developer introduces a variable, it
would be safe to deduce that this rule (with its correspond-
ing Alpha-node) is expected to change often and would thus
benefit from the extension presented in this paper.
The behaviour of meta-variables can be mimicked on exist-
ing systems by introducing a new fact-type that could be
used to replace X in the example above. The details of this
workaround are omitted because it requires an additional
Join-node in the RETE-network which are easily outper-
formed by the Alpha-nodes that would be required by our
extension.

Due to changing functional requirements and updated se-
curity policies, it is important you can change rulesets. Be-

cause of this, we envision a rule language that goes further
than merely describing which patterns should be matched.

This rule language will expose information about rules
themselves, making it possible for developers to write rules
that reason over this information. Such rules are called
meta-rules.
Apart from reasoning over the information of other rules in
their LHS, meta-rules can also change the ruleset in their
RHS. Writing meta-rules allows developers to already anti-
cipate to changes that are expected to happen in the future.
Listing 6 provides an example of how such a rule could be
expressed. This code is pure fictional.

1 meta−rule “DetectBadSalesDay”
2 when
3 dpmRule : Rule (name = “ProcessPurchase”)
4 dpmRuleFires : dpmRule . f i r e s
5 dpmRuleFiresToday : dpmRuleFires . date (Today)
6 hoursOpened : CurrentHour − 10
7 ( dpmRuleFiresToday / hoursOpened ) < 20
8 then
9 X = 200;

10 end

Listing 6: An example of a meta-rule

This rule describes a bad day for a store. A day is considered
to be bad when we have an average of less than 20 purchases
per hour after being open for at least 4 hours. If the store
is having a bad day they will try to improve their sales for
that day by letting Clients with as little as 200 points en-
joy the discounts that PremiumMembers benefit. Line 3 binds
dpmRule to the rule called “ProcessPurchase”. Line 4 is re-
sponsible for retrieving meta-information (i.e. every time a
certain rule was fired). Since we are only interested in the
amount of times the rule has fired today, line 5 filters out
all the fires that happened before today. On line 6, we
calculate how long the store has been opened today. Since
the store opens at 10:00, we just have to deduce 10 from
CurrentHour which holds the current hour in 24-hour for-
mat. After checking whether the store has been open for
more than four hours, we check how many purchases per
hour we averaged on that day. If that amount is below 20,
we decide to change the value of X to 200. This will lead
to a re-evaluation of the rule of Listing 5, ensuring that all
Clients with more than 200 points get a discount on every
purchase that day since they are considered to be a Premi-

umMember for the remainder of the day.
Apart from knowing how many times a rule was fired, other
meta-information is useful as well. Currently, we are inves-
tigating which meta-information should be exposed in our
envisioned meta-rule language.

6. RELATED WORK
Over the past decades, many extensions to RETE have

been suggested. To the best of our knowledge however, none
of these extensions aim to specifically reduce recomputation
of Alpha-nodes when changing the ruleset at runtime. In
this section, we discuss a number of optimisations that im-
prove the performance of dynamically changing the ruleset.
TREAT [6] differs from the original specification of RETE
in that it does not maintain a Beta-network in memory over
multiple operations. TREAT only keeps track of the Work-
ing Memory and the conflict set2. Because of this, inserting
facts becomes very expensive as the beta-network needs to

2The conflict set is the set of facts that have reached a ter-
minal node



be rebuilt every time a fact is inserted. On the other hand,
deleting facts becomes inexpensive because there is no need
to backtrack through the RETE-network to ensure that the
fact is removed from the Beta-memories. Another advan-
tage of TREAT is that its memory consumption is signifi-
cantly lower than RETE. Because the Beta-network is not
maintained, adding rules dynamically will perform better
compared to RETE. However, when existing facts also need
to be matched against the new rules, the performance dete-
riorates significantly because the beta-network needs to be
created for every fact that is inserted.
The matching algorithm implemented in Drools is called
RETE OO, which is an extension of the RETE-algorithm.
Amongst other optimisations, the most interesting one, which
is called Alpha-node-Hashing, improves the performance of
matching Alpha-nodes that have an equality constraint (==)
[5]. When there are multiple Alpha-nodes that match an
equality constraint on the same field, a HashTable is cre-
ated. The keys are the literal values against which the facts
are checked. The value is the Alpha-node itself. This allows
the algorithm to decide in O(1) to which Alpha-node a fact
should be propagated, rather than matching the fact against
each Alpha-node. Unlike the optimisation suggested in this
paper, it does not take care of improving the performance
of matching Alpha-nodes that involve inequality operators.

7. CONCLUSION
In this paper we presented an extension to RETE that

aims to improve the performance of the algorithm in two
specific cases:

• When the ruleset is modified in such a way that new
Alpha-nodes are added to the RETE-network that in-
volve inequality operators (>, >, <, 6).

• When the RETE-networks contains multiple Alpha-
nodes that involve inequality operators (>, >, <, 6)
on the same field of a certain object.

The extension integrates the notion of an index (imple-
mented as a red-black tree) into the working memory of the
RETE-algorithm. This means that the working memory will
be an ordered collection of facts in which its predecessors and
successors can be found in O(log(n)) (where n is the num-
ber of keys). We can use this property to easily find all the
facts that will successfully match the Alpha-nodes without
actually performing the test.
Benchmarks have shown that our extension to RETE per-
forms better than Drools on average. In the best-case sce-
nario (viz. no facts should be propagated to the new Alpha-
node) our extension is 164 times faster than Drools. In
the average-case scenario (viz. 50% of the facts should be
propagated to the new Alpha-node) our extension is 28%
faster than Drools. Finally, worst-case (viz. 100% of the
facts should be propagated to the new Alpha-node) our ex-
tension is 0.2% slower than Drools.

8. REFERENCES
[1] L. Brownston, R. Farrell, E. Kant, and N. Martin.

Programming Expert Systems in OPS5: An
Introduction to Rule-based Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1985.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.
Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition, 2001.

[3] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artificial
intelligence, 19(1):17–37, 1982.

[4] H. Garcia-Molina. Database systems: the complete book.
Pearson Education India, 2008.

[5] D. Liu, T. Gu, and J.-P. Xue. Rule engine based on
improvement rete algorithm. In Apperceiving
Computing and Intelligence Analysis (ICACIA), 2010
International Conference on, pages 346–349. IEEE,
2010.

[6] D. P. Miranker. Treat: A better match algorithm for ai
production systems; long version. University of Texas at
Austin, 1987.

[7] M. Proctor. Drools: a rule engine for complex event
processing. In Applications of Graph Transformations
with Industrial Relevance, pages 2–2. Springer, 2012.

[8] G. Riley, C. Culbert, R. T. Savely, and F. Lopez. Clips:
An expert system tool for delivery and training. In
Proceedings of the Third Conference on Al for Space
Applications, 1987.


