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ABSTRACT
This paper presents the implementation of an efficient in-
terpreter for a Scheme-like language using manually written
asm.js code. The asm.js specification defines an optimiz-
able subset of JavaScript which has already served well as a
compilation target for web applications where performance
is critical. However, its usage as a human-writable language
that can be integrated into existing projects to improve per-
formance has remained largely unexplored. We therefore
apply this strategy to optimize the implementation of an in-
terpreter. We also discuss the feasibility of this approach,
as writing asm.js by hand is generally not its recommended
use-case. We therefore present a macro system to solve the
challenges we encounter. The resulting interpreter is com-
pared to the original C implementation and its compiled
equivalent in asm.js. This way, we evaluate whether manual
integration with asm.js provides the necessary performance
to bring larger applications and runtimes to the web.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—interpreters,
optimization

Keywords
Interpreters, Optimization, JavaScript, asm.js

1. INTRODUCTION
Our study starts with the implementation of an efficient in-
terpreter for a Scheme-like language in JavaScript. Building
an interpreter in JavaScript enables a new language on the
web that inherently becomes available to millions of users,
as nearly each platform today is equipped with a browser
that includes a JavaScript virtual machine. In terms of per-
formance, however, a high-level language such as JavaScript
does not meet the necessary requirements for an efficient
language implementation. We therefore turn to a more op-
timizable, restricted subset of the language, asm.js [6] as
a means to improve the efficiency of performance-critical
JavaScript applications such as an interpreter. By eschew-
ing many of JavaScript’s dynamic features, asm.js promises
to deliver near native performance on the web. It limits the
language to numerical types, top-level functions, and one
large binary heap. With the addition of static typing, an

optimizing JS engine is able to compile and optimize asm.js
code ahead of time. The language remains a strict subset of
JavaScript, so existing engines are automatically backward
compatible with asm.js.

At this time, asm.js is mainly used as a compilation tar-
get. Developers start with an existing C/C++ application
which they can then efficiently port to the web by compiling
it to asm.js using Emscripten [9]. Our approach, however, is
different. We start with an existing JavaScript implementa-
tion and attempt to improve its performance by integrating
asm.js. The idea here is that using asm.js for the core com-
ponents of a JavaScript application improves the overall per-
formance of that application. Such a mix of JavaScript and
asm.js is possible, since the latter can interface with exter-
nal JavaScript code. We therefore apply this strategy to our
interpreter and rewrite its most crucial components (such as
the memory management) into asm.js. As a result, we itera-
tively refactor our application by lowering down its modules
into asm.js one-by-one. This produces a series of successive
implementations, where we expect to see an improvement
in performance for each iteration. We then benchmark each
such milestone to measure the actual performance impact of
this asm.js integration process.

Another point of interest is that we write this asm.js code by
hand. This is unconventional, as asm.js mainly serves as a
compilation target and is therefore not designed to be writ-
ten manually. As a result, we encounter several challenges
in our attempt to do so. For instance, we notice a severe
lack of readability and maintainability in asm.js applica-
tions. These are not really issues for a compiler, but they do
complicate the usage of handwritten asm.js at larger scales.
Furthermore, asm.js can be considered a low-level language,
offering similar functionality as C in a JavaScript syntax.
All data also has to be encoded into numbers and bytes, as
asm.js only supports numerical types. The top-level array
holding these numbers has to be managed manually, since
asm.js does not support any form of garbage collection.

These challenges, however, do not limit the possibilities of
asm.js. In order to deal with the restrictions in readability
and maintainability, we propose a solution using macros. By
using a specialized macro expander, many practical limita-
tions can be hidden into a more convenient syntax. Such
a preprocessor enables writing certain parts of the asm.js
code indirectly as a high-level, domain-specific language, and
therefore defines a more human-writable dialect of the lan-



guage. We illustrate this topic further in Section 3.1.

At the end, we take a step back and compare our handwrit-
ten implementation to the conventional strategy of compil-
ing an existing C application into asm.js. We also com-
pare the performance of our implementation with that of an
equivalent version as well as the native implementation itself.
In order to make this comparison, we first add some inter-
preter optimizations directly into the asm.js code. This also
enables us to evaluate the maintainability of macro-enabled
asm.js applications. The impact on development effort can
then determine whether it is worth to write such asm.js code
by hand.

Overall, this paper provides an experience report of our par-
ticular usage of asm.js. We make the following contributions:

• An overview of the performance impact that can be
achieved by integrating asm.js into existing projects.

• A solution by introducing a macro preprocessor to
improve readability, maintainability and performance
when writing asm.js code by hand.

• A comparison between two different strategies using
either handwritten or compiled asm.js to port runtimes
and codebases to JavaScript.

• A handwritten implementation of a garbage-collected
Scheme interpreter, written in asm.js to enable good
performance on the web.

2. SETTING
We apply the strategy of integrating asm.js to the field of
interpreters, where performance is usually a critical require-
ment. The language that the interpreter executes is Slip1,
a variant of Scheme. An implementation of the language is
available in C and is being used in a course on programming
language engineering2. It served as the basis for the design
and implementation of our own interpreter, named slip.js.

The semantics of Slip [3] closely resembles that of Scheme.
Differences are subtle and mostly limited to the usage of
certain natives and special forms. Slip intends to go back to
the original roots of the language and throws away many of
the recent, non-idiomatic additions that are targeted more
towards industrial engineering rather than an academic de-
sign language. For instance, it considers define to be the
most appropriate construct for variable binding, and only
provides a single let-form. Slip also enforces left-to-right
evaluation of arguments, since not doing so is usually re-
lated to an implementation issue rather than a sound design
choice.

The first version of the interpreter uses plain JavaScript only.
It is ported over from a metacircular implementation of Slip
and serves as a useful prototype that can be gradually low-
ered down to asm.js. Doing so enables the design of an ef-
ficient interpreter in a high-level language, without dealing
with the complexity of asm.js as yet.

1Simple Language Implementation Platform
(also an anagram for LISP)
2http://soft.vub.ac.be/~tjdhondt/PLE

2.1 Stackless design
The initial design already solves some of the shortcomings
of JavaScript and asm.js. For instance, a trampoline and
the continuation-passing style (CPS) alleviate the problem
of uncontrolled stack growth in JavaScript due to the lack
of proper tail-call recursion. The former allows putting all
function calls in tail position, while the latter ensures that
these tail calls do not grow the stack. This is necessary,
since asm.js, as a subset of JavaScript, currently does not
offer tail call optimization either.

Formally, we can define a trampoline [5, p. 158] as a func-
tion with input set S = {f |f : ∅ → S} ∪ {false}, which
keeps on calling its argument thunk until it becomes false.
Such a trampoline loop can be implemented in asm.js (or
JavaScript) using an iterative construct as illustrated below.
The example also shows the usage of bitwise operators and
a function table, which are explained later on in Section 3.2.

function run(instr) {
instr=instr |0;
for(;instr;instr=FUNTAB[instr &255]()|0);

}

Using this iterative loop, each function returns the function
table index of the next function to be called.3 A separate
stack is then used to store the continuation frames.

The result is a pure stackless design which does not rely upon
the runtime stack of the host language to store the control
context. Hence, stack overflows are no longer caused by the
JavaScript stack size, and instead depend on the available
heap memory. Using a custom stack for the CPS facili-
tates the implementation of advanced control constructs [8,
Ch. 3], such as first-class continuations. It also makes it
easier to iterate over the stack for garbage collection.

2.2 Optimized memory model
Instead of relying on the underlying memory management of
JavaScript, the interpreter allocates its own memory chunks.
It is accompanied by an iterative mark-and-sweep garbage
collector. The memory model takes over many optimizations
from the original C implementation, such as the usage of
tagged pointers. This allows us to inline simple values and
avoids indirections to unnecessary memory chunks.

Using a custom chunked memory model is a necessary pro-
vision, since asm.js does not provide any support for objects
or garbage collection. Moreover, Slip keeps all its runtime
entities in a single large address space. This makes it easier
to map this heap onto the single memory array that is used
to store values in asm.js.

2.3 Register-machine architecture
The interpreter also avoids the usage of local variables and
arguments and opts for a register-machine architecture in-
stead. This is possible because the evaluation process is
transformed into CPS and therefore only uses tail calls.
Such an iterative process is known to require only a fixed
amount of iteration variables. In summary, around twenty
dedicated registers are available for this purpose and shared

3due to the lack of first-class functions in asm.js



throughout the entire interpreter infrastructure. Each one
of them serves a specific purpose. For instance, the KON-
register stores the current continuation, whereas the FRM and
ENV hold the current frame and environment.

With only tail calls and no local variables or arguments,
the host stack remains untouched. This not only facilitates
the implementation of garbage collection, but also provides
significant performance improvements. Furthermore, asm.js
is able to store the contents of these registers very efficiently
by mapping them to raw 32-bit words.

2.4 Imperative style
Finally, due to the transformation to CPS and the usage of
registers, the interpreter follows a very low-level, imperative
style. In fact, the evaluator shows a lot of similarity with
the explicit-control evaluator from the SICP handbook [1,
pp. 547–566]. Having such code in the initial prototype
makes the transition to the low-level constructs of asm.js
easier later on.

3. ASM.JS INTEGRATION

3.1 Integration process
The integration process lowers down as many of the modules
in the interpreter to asm.js, starting with the most critical
ones. Each iteration is expected to improve performance of
the previous one by refactoring another component. Com-
pleting this process then results in an interpreter that is
almost entirely written in asm.js.

System decomposition Figure 1 shows the interpreter
pipeline. The program input is first preprocessed by two
analyzers, a parser and a compiler. The former constructs a
basic abstract syntax tree (AST), while the latter performs
some optimizations at compile-time. The compiler employs
a rich abstract grammar that is able to provide more static
information to the interpreter than the original AST. This
takes away some of the processing work for the evaluator
and thus improves run-time performance. A pool is used to
store all the symbols for enabling efficient comparisons using
pointer equivalence. The resulting AST is then interpreted
by the evaluator, which forms the core of the interpreter. Fi-
nally, a printer presents resulting values appropriately. Two
other important modules are the abstract grammar and the
memory management. As indicated by the heavy line in
Figure 1, these critical modules form the foundation for the
entire interpreter infrastructure, since all modules rely on
the memory management for allocation and garbage collec-
tion. Likewise, slip.js uses the unified abstract grammar

Figure 1: Interpreter pipeline
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Figure 2: asm.js integration process

extensively for both values as well as expressions.

Milestones While lowering down the modules into asm.js,
four different milestones were identified. asm0 refers to the
original prototype version in plain JavaScript. It makes no
use of asm.js. asm1 is the first step in the integration pro-
cess. It lowers down the memory management into asm.js,
as it is one of the most critical components in the inter-
preter. asm2 also refactors the abstract grammar and merges
it with the memory management into a single asm.js module.
asm3 is the biggest leap in the refactoring process. Due to
limitations in working with multiple asm.js and non-asm.js
modules (cf. Section 5) most of the other components are
lowered down into a single asm.js module at once. Figure 2
shows how much of the total code in each version is written
in asm.js. These ratios are not representative of the actual
contribution of asm.js, as some components are more im-
portant than others. Instead, they merely visualize how the
asm.js and JavaScript mix evolved over time.

Overview The integration process starts with the most
performance-critical components of our application, in this
case the memory management and abstract grammar. Af-
terwards, other core modules such as the evaluator and na-
tives are lowered down into asm.js as well. The colors in
Figure 1 indicate the final result after all the refactoring up
to asm3. Modules colored black are completely written in
asm.js, whereas the grey boxes indicate the presence of reg-
ular JavaScript. The only component that does not use any
asm.js is the printer, hence the white box in the diagram.
The memory management and the abstract grammar are the
first components lowered down into asm.js. This choice is
motivated by the fact that they are frequently used through-
out the interpreter, and therefore have a considerable impact
on performance. This transition is also quite gentle, since
the memory model was already designed at the bit-level in
the prototype. Similar performance considerations also hold
for the evaluator and the natives that make up the core of
the interpreter and should therefore be optimized as much
as possible. Having the compiler and parser partially low-
ered down into asm.js has more to do with convenience to
facilitate interaction with other modules, rather than true
performance concerns. They are only invoked once before
execution and are not considered a bottleneck in the inter-
preter. For this reason, the parser is not entirely written
in asm.js. String manipulation is also much easier in tradi-
tional JavaScript, so the parser relies on a separate external
module to iterate over the input program string. The same
argument also holds for the pool. Designing an efficient map
between Slip symbols (i.e. strings) and their respective in-
dex in the pool is not trivial in asm.js. This is much easier in
JavaScript, since we can simply use an object for this map.
As a consequence, the pool module still communicates with



external JavaScript to query the map for existing symbols.
The printer uses no asm.js at all. It is invoked only once
after evaluation to print the resulting output string.

3.2 Macros to the rescue
Manually integrating asm.js into the interpreter turned out
to have some practical limitations. Its low-level style en-
forces duplication and lacks proper mechanisms for abstrac-
tion. This results in poor maintainability for non-trivial
applications, such as our interpreter. For this reason, we
started to rely on the generated nature of asm.js and turned
to macros. Macros help to avoid low-level asm.js constructs
by providing a language that is more readable and writable
by humans.

We use sweet.js4 as a macro expander. It is an advanced,
hygienic macro expander for JavaScript (and therefore also
asm.js) that provides a macro framework similar to how
Scheme provides syntax-case and syntax-rule macro defi-
nitions. It can be run against a source file with macro def-
initions to produce a pure JavaScript file with all macros
expanded. We discuss some of our use-cases of macros.

Constants Constants are useful in the interpreter for
many different purposes, such as the efficient enumeration of
tags for the different abstract grammar items. Since asm.js
does not provide constants, plain (mutable) variables or
brute-force duplication are the only alternatives. Variables
might seem appropriate for this purpose, but they are not
an efficient solution. For instance, it is not possible to use
them in the branches of a switch statement in asm.js, as the
values for each case have to be known at compile-time. We
therefore introduce real constants into asm.js with a macro
which we call define. It implements a constant as a macro
that expands to the constant’s value whenever the constant’s
name is used. This is possible because of the multi-step ex-
pansion of macros in sweet.js. Below is an example of how
such a macro can be defined in sweet.js.

macro define {
rule { $nam $val } => {

macro $nam {
rule {} => {$val}

}
}

}

AST nodes Another macro called struct is more domain-
specific and enables us to concisely define the abstract gram-
mar of the interpreter. The macro transforms the descrip-
tion of an AST node into an actual implementation for
slip.js. Its main purpose is to improve readability and flex-
ibility and avoid duplication. Given a high-level descrip-
tion of an AST node, the macro expander generates the
corresponding constructor and accessors for this particular
AST item. It deals with all the necessary annotations for
asm.js and allocates the required amount of bytes through
the memory manager. For instance, we can use the fol-
lowing high-level description to define AST-nodes for if-
expressions.

define __IFF_TAG__ 0x0A
struct makeIff {

4https://www.sweetjs.org

pre => iffPredicate;
csq => iffConsequence;
alt => iffAlternative;

} as __IFF_TAG__

Macro define is used to generate a symbolic reference to the
tag used to identify this type of AST node. The accessors
produced by this macro are implemented as macros as well
(cf. Section 4.2). We demonstrate their usage later on in
another example.

Function table With the transformation to CPS (cf. 2.1)
and the register-machine architecture (cf. 2.3), it becomes
natural to think of functions and calls as instruction se-
quences and jumps between them. We therefore introduce
macro instructions that enables expressing control in the
interpreter using labels and gotos. While this may appear
a bad decision at first, it is no different from having zero-
argument functions that are only called from tail position.
The main reason to use a macro for this is because functions
are not first-class in asm.js, so it is not possible to return
them to the trampoline or store their reference somewhere in
the heap. A numerical encoding of functions is therefore nec-
essary. For this purpose, we employ a function table, which
asm.js allows as long as all functions have an identical signa-
ture and the size of the function table is a perfect power of
two. The index of a function inside that function table can
then be used as a pointer to that function. However, manag-
ing all these pointers manually becomes unmaintainable at
larger scales, as it becomes hard to associate each function
with its corresponding index. Moreover, asm.js requires that
the size of the function table is a perfect power of two, so
that it can be indexed using a bitwise AND operator with
a full bit mask instead of doing additional boundary checks.
The instructions macro therefore takes the following steps:
(i) it transforms all labels into zero-argument functions with
the corresponding instruction sequence as body, (ii) puts all
these functions into a function table and uses padding to in-
crease its size to a power of two, and (iii) defines a constant
to replace each function name with a function pointer ac-
cording to the index that function got in the function table.
Step (iii) is done using the define macro, so that each func-
tion name automatically gets replaced with its index into the
function table. Padding involves adding extra nop functions
at the end of the table. Table 1 demonstrates the usage of
this macro and compares it with the expanded source code.
Using symbolic names to refer to functions clearly improves
both readability as well as maintainability. Moreover, the
trampoline that is generated by the macro ensures that no
jumps between labels grow the stack. The example shows
how if-expressions are evaluated in the evaluator. For this
purpose, it uses the accessors that were generated by the
struct-macro. We omit certain parts of the original source
code here (indicated by ‘. . . ’) for the sake of brevity.

4. OPTIMIZATION
The previous sections discussed how the interpreter was first
designed in a high-level language (JavaScript), and then sys-
tematically translated into a low-level subset (asm.js). In or-
der to evaluate the maintainability of handwritten, macro-
enabled asm.js applications, however, it is also interesting
to add new functionality directly into that asm.js code. We



instructions {
...
E_evalIff {

...
EXP = iffPredicate(EXP )|0;
KON = E_c_iff;
goto E_eval;

}
E_c_iff {

...
EXP = ((VAL|0) == __FALSE__?

iffAlternative(EXP )|0:
iffConsequence(EXP )|0);

...
goto E_eval;

}
...

} generate trampoline

function _E_evalIff () {
...
EXP = MEM32[EXP+4>>2]|0;
KON = 209;
return 179;

}

function _E_c_iff () {
...
EXP = (VAL |0)==2147483621?

MEM32[EXP +12 > >2]|0:
MEM32[EXP+8>>2]|0;

...
return 179;

}

function nop() {
return 0;

}

function trampoline(p) {
p=p|0;
for(;p;p=FN[p&255]()|0);

}

var FN = [
nop ,
...
_E_evalIff ,
_E_c_iff ,
...,
nop ,
nop

]

Table 1: original source code (left) versus expanded equivalent (right)

therefore apply a series of optimizations to asm3 and pro-
duce an improved version called asm4. We then put this
final version into perspective by comparing its performance
with the original C implementation in Section 5.2.

4.1 Interpreter optimizations
Most of the optimizations included in asm4 are traditional
interpreter optimizations [8, Ch. 6]. We highlight some of
them below.

Lexical addressing The first major improvement is the
implementation of lexical addressing. Slip, as a dialect of
Scheme, employs static binding, where free variables are
looked up in lexical environments. The exact frame and
offset where a variable can be found therefore can be deter-
mined without executing the program. Lexical addressing
builds up a static environment at compile-time, and replaces
each variable occurrence with the index of the frame in the
environment and the variable’s offset into that frame (also
known as lexical addresses or De Bruijn indices [2]). The
evaluator can then use these indices to access a variable in
constant time instead of looking up the variable at run-time.

Rich abstract grammar Other large performance im-
provements are achieved by further diversifying the abstract
grammar and detecting more static features at compile-time.
Doing so provides more information to the evaluator and fur-
ther improves run-time performance of the interpreter. For
instance, any proper Slip implementation should support tail
call optimization. Whether a function call is in tail-position
is a static feature, and therefore it makes sense to detect
such tail calls at compile-time.Another major heuristic ob-
servation is that most function applications use a simple
expression (such as a variable) in operator position. Detect-
ing and marking such applications optimizes their execution
at run-time by avoiding unnecessary stack operations.

Tagged pointers In order to avoid unnecessary chunks
and indirections, the initial prototype already employs tagged
32-bit pointers to inline small values. More precisely, if the
LSB is set, the other 31 bits can hold any immediate value,
such as a small integer, instead of an actual pointer. Further
elaborating this strategy using a Huffman encoding of tags

makes the usage of these bits more efficient. This enables
more values to be inlined, which reduces memory access even
further, while still maintaining a reasonable value range for
each immediate type. For instance, small integers only use
two bits for their tag, leaving the remaining 30 bits free to
represent a numerical value. Local variables on the other
hand require five bits to recognize their tag. This still gives
them a substantial range of 227 values to indicate the offset
of the variable in the frame.

Enhanced stackless design The stackless design from
Section 2.1 uses a continuation-passing style in conjunction
with a trampoline to avoid growing the underlying JavaScript
stack. Using our own stack simplifies the implementation of
garbage collection and advanced control constructs such as
first-class continuations. However, returning to the tram-
poline causes a small performance overhead, as each jump
requires to return an index to the trampoline and lookup
the function in the function table. We therefore allow some
jumps to call the corresponding function directly, instead of
returning to the trampoline first. Such a call will make the
stack grow, as JavaScript does not implement tail call op-
timization. Hence, while the design is no longer completely
stackless, the stack still remains bounded by the maximum
nesting depth of expressions in the program,

4.2 asm.js optimizations
Another improvement in performance involved optimizing
the code we write and generate in the underlying language,
in this case asm.js. One weak point in writing asm.js by
hand is that it is designed as a compilation target. Some
JavaScript engines therefore assume that common optimiza-
tions, such as the inlining of procedures, are already per-
formed while generating the asm.js code in the first compi-
lation step. This enables faster AOT-compilation of asm.js
later on. To compensate for this, our handwritten applica-
tion requires some profiling to manually identify and opti-
mize certain bottlenecks in performance.

We therefore inline the most common functions in our ap-
plication by replacing them with macros. Doing so avoids
the overhead of function calls by replacing the call with the



functions body at compile-time. A macro expander enables
us to factor out these function bodies into isolated macros,
thereby maintaining the benefits of procedural abstraction.
The multi-step expansion of macros in sweet.js also makes it
possible to define macros that generate other macros. For in-
stance, the struct-macro generates macros for the accessors
and mutators of the AST nodes. Such a technique achieves
significant performance improvements with a relatively small
amount of effort.

5. EVALUATION
In order to evaluate performance, the runtimes of a fixed
benchmark suite is measured for different versions of the
interpreter. These include the four milestones discussed in
Section 3.1 (asm0,asm1,asm2,asm3), as well as a final version
asm4 that implements the additional interpreter optimiza-
tions described in Section 4. This final version can also
be compared with the original Slip implementation and the
asm.js output that the Emscripten compiler [9] generates
from this C implementation.

A description of the benchmarks is given below. Most of
them originate from the Gabriel and Larceny R7RS bench-
mark suites5.

tower-fib A metacircular interpreter is executed on top of
another metacircular interpreter. In this environment,
a slow recursive fibonacci is called with input 16. This
benchmark also serves as a useful test case, since it
provides almost full coverage of the interpreter.

nqueens Backtracking algorithm to solve the n-queens puz-
zle where n=11.

qsort Uses the quicksort algorithm to sort 500000 numbers.

hanoi The classical hanoi puzzle with problem size 25.

tak Calculates (tak 35 30 20) using a recursive definition.

cpstak Calculates the same function as tak, this time using
a continuation-passing style. A good test of tail call
optimization and working with closures.

ctak This version also calculates the Takeuchi function, but
uses a continuation-capturing style. It therefore mainly
tests the efficiency of call-with-current-continuation.

destruct Test of destructive list operations.

array1 A Kernighan and Van Wyk benchmark that involves
a lot of allocation/initialization and copying of large
one-dimensional arrays.

mbrot Generates a Mandelbrot set. Mainly a test of floating-
point arithmetic.

primes Computes all primes smaller than 50000 using a list-
based sieve of Eratosthenes.

Each version of the interpreter runs on top of the three major
JavaScript VMs found in today’s browsers: SpiderMonkey,
V8, and JavaScriptCore. SpiderMonkey deserves particular
attention here, as this is the only VM implementing AOT-
compilation for asm.js and should thus benefit from asm.js
code. The other engines optimize asm.js to a certain extent,
and should also benefit from other generic optimizations that

5http://www.larcenists.org/benchmarksAboutR7.html

are applicable to asm.js code [6]. The native version is com-
piled using Apple’s version (6.1) of the LLVM compiler. The
test machine is a Macbook Pro (Mid 2012), 2.6GHz Intel
Quad-Core i7, 16GB 1600Mhz DDR3 RAM. The VMs were
allocated with a 1GB heap to run the benchmarks.

5.1 Integrating asm.js
We first evaluate the performance impact of integrating asm.js
into an existing JavaScript application. We compare the
benchmark results of asm0, asm1, asm2 and asm3, represent-
ing different milestones in the asm.js integration process (cf.
Section 3.1). We slightly modify asm0 to use the underlying
JavaScript memory management for allocation and garbage
collection, instead of the memory model described in Sec-
tion 2.2. This enables a more representative comparison be-
tween JavaScript and asm.js, as JavaScript already provides
built-in memory management. Figure 3 shows a relative per-
formance ratio for each version in SpiderMonkey, which op-
timizes the execution of asm.js using AOT-compilation. We
obtain these ratios by normalizing all measurements with
respect to those of asm0 and summarize them with their
geometric means [4]. These results show that integrating
asm.js into the original JavaScript prototype (asm0) does
not yield the expected performance improvement. In fact,
lowering down the memory management, a crucial compo-
nent in the interpreter, slows down the entire system by a
factor greater than 5. On the other hand, the final version
with all modules refactored into asm.js does significantly
perform better than the original version. In this case, we
are seeing a performance improvement of around 80%.

In order to explain these results, we profile each version to
determine what causes the initial slowdown. As it turns
out, a lot of overhead in SpiderMonkey is caused by calling
in and out of asm.js code. This is a known issue with asm.js
code that is compiled ahead of time: external JavaScript
interfaces asm.js modules through a set of exported func-
tions and vice versa. Passing arguments to those functions
requires JavaScript values to be converted and (un)boxed,
even between two asm.js modules. Moreover, the function
call itself causes trampoline entries and exits in asm.js that
build up a severe performance penalty as well. For this rea-
son, it is recommended to contain most of the computation
inside a single asm.js module.

For our application, asm1 and asm2 have a lot of calls in and
out of asm.js modules, as they refactor the memory model
(asm1) and abstract grammar (asm2). Other components

Table 1

native slip.js (asm4) compiled

1,0 1,185 1,742

native asm4 compiled

tower-fib 3583 3518 4711 1,31481998325426

nqueens 1033 1296 1864 1,80445304937076

qsort 2749 3948 5003 1,81993452164423

hanoi 3890 4046 7204 1,85192802056555

tak 772 878 1483 1,92098445595855

cpstak 936 985 1517 1,6207264957265

ctak 3118 5222 4541 1,45638229634381

destruct 4216 4350 7801 1,8503320683112

array1 2710 3518 5900 2,17712177121771

primes 3461 3832 6105 1,76394105749783
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Figure 3: normalized runtimes in SpiderMonkey
(lower is better)



rely heavily on these modules, as previously discussed in
Section 3.1. In this case, the overhead caused by frequently
calling into these asm.js modules is apparently larger than
the performance benefits we achieve, hence the slowdown.
On the other hand, asm3 uses only a single asm.js module
for all the components in the interpreter. Moreover, all ma-
jor computation resides inside this module. It only calls to
external JavaScript for special services (such as I/O) and in-
frequent tasks (such as parsing and printing). This explains
why it does not suffer from the aforementioned overhead and
thus greatly benefits from the integration with asm.js.

It is also interesting to examine the performance impact of
asm.js on other, non-optimizing engines. After all, we ex-
pect asm.js to provide us with general performance improve-
ments, as it claims to be an optimizable subset of JavaScript.
Figure 4 shows how JavaScriptCore, an engine that does not
perform AOT-compilation for asm.js code, handles the dif-
ferent iterative versions. The results shown are geometric
means of normalized runtimes. In general, we can conclude
that the integration of asm.js is beneficial for the other en-
gines in terms of performance. These engines do not com-
pile asm.js ahead-of-time, and therefore do not benefit as
much from its presence compared to SpiderMonkey. How-
ever, even typical JIT execution of asm.js is able to achieve
a significant performance increase over the original version
here up to 70%. Moreover, the engine does not suffer from
the performance overhead of asm1 and asm2, unlike Spider-
Monkey.

5.2 Comparison
We now look at the final, optimized version of slip.js, which
we refer to as asm4. Table 2 shows how this version performs
in today’s most common JavaScript engines. These results
clearly demonstrate that the AOT-compilation of asm.js (in
SpiderMonkey) is able to provide a significant performance
improvement over traditional JIT execution (in JavaScript-
Core, V8). To put these numbers in a better perspective,
we can compare the results from SpiderMonkey with the
runtimes of an equivalent native C implementation of Slip.
Additionally, we compile this native version to asm.js us-
ing Emscripten. We refer to these versions as native and
compiled, respectively. Figures 5 and 6 illustrate how these
versions compare in terms of performance.

Table 1

native slip.js (asm4) compiled

1,0 1,185 1,742

native asm4 compiled

tower-fib 3583 3518 4711 1,31481998325426

nqueens 1033 1296 1864 1,80445304937076

qsort 2749 3948 5003 1,81993452164423

hanoi 3890 4046 7204 1,85192802056555

tak 772 878 1483 1,92098445595855

cpstak 936 985 1517 1,6207264957265

ctak 3118 5222 4541 1,45638229634381

destruct 4216 4350 7801 1,8503320683112

array1 2710 3518 5900 2,17712177121771

primes 3461 3832 6105 1,76394105749783
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Figure 4: normalized runtimes in JavaScriptCore
(lower is better)

SpiderMonkey JavaScriptCore V8
tower-fib 3518 6865 12142

nqueens 1296 2433 4677
qsort 3948 6934 14219
hanoi 4046 8899 18711

tak 878 1629 3374
cpstak 985 2110 4412

ctak 5222 7112 20380
destruct 4350 10029 19643

array1 3518 7724 16161
mbrot 12838 23648 49252

primes 3832 8185 16912

Table 2: runtimes of asm4
(in milliseconds; lower is better)
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destruct 4216 4350 7801 1,8503320683112
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Figure 5: comparison of runtimes using SpiderMonkey
(in milliseconds; lower is better)

Overall, we see that the performance of asm4 is compara-
ble to that of the native version. We only experienced a
slowdown factor of 1.19 in our benchmarks. The traditional
strategy, however, uses asm.js as a compilation target. Typ-
ically, asm.js code that is compiled from C/C++ with Em-
scripten is only twice as slow as the native version [9]. In
our experiments, the slowdown factor for the compiled ver-
sion in SpiderMonkey was 1.74. This makes it around 46%
slower than our handwritten implementation.

One case were both native and compiled significantly out-
perform asm4 is the ctak benchmark. Due to a small differ-
ence in the design of the original implementation and asm4,
the latter requires that the construction of the current con-
tinuation into a first-class value performs a shallow copy of
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Figure 6: slowdown factor over native using SpiderMonkey
(lower is better)

the stack, while the original implementation only needs to
copy the pointer to the current stack. This explains why
call-with-current-continuation, the main point of inter-
est in the ctak benchmark, is implemented more efficiently
in native and compiled.

Compilation to asm.js is not always straightforward. Em-
scripten requires that the original source code is “portable”.
For instance, the C implementation of Slip is not completely
portable due to unaligned memory reads and writes. This
resulted in some problems when working with floats in Spi-
derMonkey, which is why we have omitted the mbrot bench-
mark here. Similarly, JavaScriptCore was unable to run the
compiled version unless we lowered the LLVM optimization
level (which in turn worsened performance). Emscripten
specifies the behavior of unportable C code as undefined.

6. RELATED WORK
Emscripten [9] provides a compiler back-end to generate
asm.js from the LLVM intermediate representation format [7].
Any language that compiles into the LLVM IR can therefore
be compiled into asm.js. We used this toolchain to compile
the original C implementation of Slip to asm.js. Existing
language implementations, such as LuaVM and CPython,
have also been ported to the web with Emscripten.

PyPy.js6, which implements Python in a restricted subset
of Python which compiles to C and subsequently to asm.js,
uses a different strategy and features a customized JIT back-
end which emits and executes asm.js code at runtime.

LLJS7 is a low-level dialect of JavaScript that was initially
designed to experiment with low-level features and static
typing in JavaScript, but it never reached a mature and sta-
ble release. While our approach uses domain-specific macros
that translate directly into asm.js, LLJS defines a more
general-purpose, low-level language that can also translate
into asm.js.

7. CONCLUSIONS
Overall, our experiments allow us to evaluate the impact of
integrating asm.js and writing asm.js applications by hand
in general. In terms of performance, our strategy yields

6http://www.pypyjs.org
7http://www.lljs.org

considerable improvements, as we achieve near-native per-
formance on the web. The conventional toolchain of com-
piling an existing C application to asm.js using Emscripten
in fact performed almost 50% slower than our handwritten
implementation. Additionally, we can make the following
conclusions on asm.js:

• Frequently calling in and out of asm.js modules com-
piled ahead-of-time causes a major overhead in terms
of performance. Integrating asm.js into an existing
JavaScript application is therefore only beneficial if all
computation can reside in a single asm.js module.

• A macro preprocessor is necessary to alleviate the chal-
lenges in readability, maintainability and performance
when writing asm.js by hand.

• Using asm.js to improve the efficiency of web applica-
tions comes down to a tradeoff between development
effort and performance.

• At nearly native performance, writing asm.js by hand
appears to be the best solution to get the most out of
an application that can run on a billion-user VM.
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