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Abstract

Developers often encode design knowledge through structural regularities
such as API usage protocols, coding idioms and naming conventions. As
these regularities express how the source code should be structured, they
provide vital information for developers using or extending that code. Ad-
herence to such regularities tends to deteriorate over time because they are
not documented and checked explicitly. This paper introduces uContracts ,
an internal DSL to codify and verify such regularities as ‘usage contracts’.
Our DSL aims at covering most common usage regularities, while still provid-
ing a means to express less common ones. Common regularities are identified
based on regularities supported by existing approaches to detect bugs or sug-
gest missing code fragments, techniques that mine for structural regularities,
as well as on the analysis of an open-source project. We validate our DSL
by documenting the structural regularities of an industrial case study, and
analyse how useful the information provided by checking these regularities is
for the developers of that case study.

1. Introduction

Being able to document and preserve architectural integrity and design
knowledge of an application is important to increase its longevity [5]. Given
that over time the actual implementation structure tends to drift away from
initial architecture and design documents, programmers turn to structural
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source code regularities, such as naming conventions, coding idioms and usage
protocols to embed design knowledge in the implementation. Complying
with these structural regularities facilitates future changes as they convey
coding and design assumptions that need to be respected for the program
to remain well designed and correct. In practice however, these regularities
often get violated simply because they are not encoded or checked explicitly.
Systematic violation of structural regularities can lead to several problems,
such as premature ageing of the application or the introduction of defects.
Matsumura et al. [30] report on a study in which they found that 32,7% of
all bugs in a legacy system were caused by violations of implicit structural
regularities.

In this paper we present uContracts , a tool for declaring structural source-
code regularities (like API usage idioms and coding conventions) in a concise,
explicit and verifiable way. The tool is conceived as a domain-specific lan-
guage (DSL), embedded in the host language and IDE. The proposed DSL
allows us to define low-level coding and implementation regularities, in terms
of which higher-level regularities related to architecture, design or framework
structure can be expressed. We use the generic term structural source-code
regularity for any of the patterns that can be described in our DSL, since the
DSL is not limited to expressing architectural, design or framework patterns,
but can also express more low-level coding idioms.

Our uContracts DSL was prototyped1 in the Pharo Smalltalk develop-
ment environment, because of Smalltalk’s facilities for prototyping such tools.
Nevertheless, the idea behind the tool remains essentially independent of the
language and will therefore be presented as such in the paper.

As illustrated schematically in Figure 1, in the uContracts DSL, structural
regularities are expressed as usage contracts between two parties: a provider,
i.e. the code entities that will be (re)used, and a consumer, i.e. the code
entities that will use or extend the (re)used entities. A usage contract defines
the expectations of and assumptions made by the reusable entities on the
entities that reuse it. Consider for example an application or framework
implementing some graphical editors. To maintain a consistent behaviour
among the classes implementing these editors, they should respect a variety
of implementation guidelines such as: extending the default editor instead
of the abstract editor, complying with certain naming conventions, being

1http://www.squeaksource.com/eContracts.html
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Figure 1: A usage contract, depicted as a contract between a provider and a consumer.

labeled with appropriate annotations, implementing the command pattern
(i.e., providing an isUndoable method, and an undo method when necessary,
and following a certain implementation template), etc. It is possible to define
a usage contract that describes such regularities and to verify that the classes
that implement such editors comply with these regularities.

The idea and terminology of declaring the assumptions that reusing code
can make about the code it reuses as a contract between two parties, is loosely
inspired by our previous work on reuse contracts [41]. The underlying ap-
proach is different however. The main purpose of the internal DSL presented
in the current paper is to offer developers the necessary primitives – similar to
what unit testing frameworks do – to express structural code regularities in a
straightforward way, while remaining as close as possible to the syntax of the
host language. Embracing the Pareto principle (a.k.a. the 80–20 rule), rather
than offering a full language that allows us to express any possible regularity,
we offer a simple and reduced set of language constructs that is sufficiently
powerful to support a majority of frequently occurring structural regulari-
ties. Our DSL is complemented with tool support that, after each change to
the source code, verifies automatically whether the source code still respects
the encoded structural regularities and that provides fine-grained feedback
regarding potential violations.

Our motivation for proposing an internal DSL to express structural regu-
larities stems from our prior experience with developing and using an external
DSL for that purpose. More specifically, in our earlier work on SOUL [9, 34]
and the IntensiVE tool suite [6, 32, 33] we explored how to express structural
regularities in a declarative program query language on top of an object-
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oriented host language. In spite of the good symbiosis of the declarative lan-
guage and supporting toolsuite with the underlying language and its IDE, the
fact that developers had to learn a new declarative language in which to ex-
press their regularities, turned out to be a major inhibitor towards adoption.
This prior experience also taught us that, while having a Turing-complete
specification language allowed for great flexibility, in practice describing most
regularities required only the use of a small subset of the features of our lan-
guage. We thus decided to develop instead a more lightweight and limited
language as an internal DSL, in order for the developer to remain in his
comfort zone when encoding these regularities.

The current paper introduces this DSL and presents the following contri-
butions:

• The definition of the uContracts DSL for defining usage contracts that
capture the structural regularities governing a software system;

• An argumentation that the uContracts DSL covers many common reg-
ularities, based on a thorough analysis of different kinds of commonly
occurring regularities, a literature study and an investigation of the
JHotDraw system;

• Prototype tool support in terms of an integration with the Smalltalk
language and Pharo IDE;

• A first industrial case study to assess the usefulness of declaring and
checking structural regularities by means of usage contracts.

2. Usage Contracts

We now introduce the notion of usage contracts in more detail, using an
example from the Smalltalk implementation of the FAMIX meta model [10].
FAMIX is the model underlying the Moose reverse engineering tool suite and
provides an extensible, object-oriented representation of various program-
ming languages. Developers extending this meta model need to obey a num-
ber of structural regularities in order to guarantee proper functioning of the
meta model. For example, when creating a subclass of FAMIXSourcedEntity,
it is imperative that overridden versions of the method copyFrom:within:

start with a super call.
Figure 2 depicts this regularity schematically as a usage contract. How-

ever, this structural regularity is not documented explicitly in the FAMIX
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Figure 2: Example of a structural regularity in FAMIX, depicted as a usage contract.

framework and is not checked automatically whenever copyFrom:within:

gets overridden. The absence of such documentation poses a threat to the
(re)usability of the framework [31, p.54]. Ideally, to use a framework suc-
cessfully, the structural assumptions, rules and constraints made by that
framework should be conveyed in a concise and explicit way to its users [31,
p.54]. Having an accurate and standard way of expressing such usage con-
tracts not only improves their awareness and comprehension but also allows
for their automatic validation. But usage contracts are not restricted to ap-
plication frameworks. In general, any object-oriented application can make
certain assumptions that should be obeyed by its subclassers and users.

The above example thus illustrates the need for tools and approaches
that:

1. Make the structural 2 contract between source code producers and con-
sumers explicit ;

2. Provide a means to concisely and precisely express the structural reg-
ularities defined by such a contract;

3. Provide support for automatically checking these regularities while cod-
ing;

4. Provide a means to easily distribute these contracts together with, or
as part of, the original source code.

2In fact, a usage contract could be behavioural as well, but in this paper we focus
mainly on contracts that describe structural regularities of more syntactic nature.
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The approach presented in this paper aims at fulfilling the above require-
ments by:

1. Explicitly embracing the contract metaphor detailed above. Our ap-
proach provides developers the ability to document their software with
contract-like rules;

2. Declaring these contracts in a simple, domain-specific language that
is embedded in the host programming language. This language offers
a minimal set of primitive language constructs for documenting the
structural regularities most commonly occurring;

3. Providing an integration with the surrounding development environ-
ment that checks compliance of the code to the defined contracts on
the fly, i.e. as soon as code gets added or modified;

4. Encoding the contracts using classes and methods, such that these
contracts can be distributed and versioned together with the source
code they govern.

3. Domain analysis

Before presenting our DSL in the next section, in this section we first pro-
vide a domain analysis of the kinds of regularities that our DSL should be
able to express and verify. We define a ‘structural regularity’ as a constraint
on the structure of a source-code entity that dictates how that source-code
entity should be reused or extended. As this definition is quite broad, it is
impossible to provide an exhaustive list of all possible kinds of structural
regularities. However, structural regularities may cover structural character-
istics such as:

• Which methods should a class implement? Which methods should be
inherited, and which ones overridden in complex inheritance hierar-
chies?

• Implementation standards such as naming conventions, coding idioms,
and patterns.

• Configuration requirements or dependencies such as initialization or
method-call orders.

• Dependencies between source code entities. E.g., when overriding equals,
you should override hashCode as well.
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To determine which language concepts to include in our DSL, we per-
formed an analysis of the domain of structural regularities, in two steps.
First we performed a literature study of approaches that discuss structural
regularities or that aim at identifying such regularities. From this literature
study, we compiled a list of common types of structural regularities. Sec-
ondly, we manually catalogued the structural regularities of an open-source
software system, and mapped the identified structural regularities onto the
types of regularities found in the first step.

3.1. Types of regularities based on literature study

Structural relation References JHotDraw Examples
class implements method [47] 3
method creates instance of class [47] 3
method overrides ancestorMethod [4] 4,5,6,7,12,15,17,18
method calls otherMethod [47, 29, 27, 26, 28] 1,2,8,9,10,11,13,14,16,21
method assigns to field [26]
method returns statement [43, 45] 6
method contains superSend [4] 5,19,20
statement1 comes before|after statement2 in method [46, 47, 3, 27, 7, 43] 8,10,14,16,21
statement comes first|last in method [46, 47, 3, 27, 7, 43] 19,20
method does not have constraint [43] 1,2,4,7,11
method has constraint1 and|or constraint2 [43] 8
method has constraint1 if constraint2 [7] 3,5,8,9,10,13,14,16,21

Table 1: Kinds of structural relations based on a literature study.

We analyzed the literature for typical structural regularities by consider-
ing two sources of information: 1) studies that have successfully used struc-
tural regularities for fault detection or code completion, and 2) a large body
of work regarding techniques that mine for various kinds of structural reg-
ularities. Given the vast amount of papers that address either of these two
topics, we limited the scope of our literature review to those papers that
appeared in the main software engineering conferences with a strong interest
in source code engineering (ICSE, MSR, ASE, ICSM, CSMR and WCRE),
and to approaches that mine from source code only. That is, we excluded
approaches that use code repository information (cvs, svn, git, etc), bug in-
formation, social media information about the code (e-mails, chats, forums,
etc), and local history information.

By studying these papers, we distilled a non-exhaustive list of different
kinds of structural relations, shown in Table 1. The first column presents the
canonical form of the identified structural relation; the second column lists
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/**
 * Deactivates the tool. This method is called whenever the user switches to another tool
 * Use this method to do some clean-up when the tool is switched.
 *  Subclassers should always call super.deactivate.
 * An inactive tool should never be deactivated.
 */
public void deactivate() {

if (isActive()) {
if (getActiveView() != null) {

getActiveView().setCursor(new AWTCursor(java.awt.Cursor.DEFAULT_CURSOR));
}
getEventDispatcher().fireToolDeactivatedEvent();

}
}

Figure 3: Example of a structural regularity in the source code of JHotDraw 5.4b2.

the publications documenting the corresponding structural relation. (The
third column will be explained in the next subsection.) Within this table we
distinguish three categories of structural regularities:

• Regularities which describe that a source code entity (class or method)
should exhibit some structural property (implementing or calling a par-
ticular method, assigning to some field, containing a super send, . . . );

• Regularities expressing the order of statements in a method (e.g., a
method should start by doing a super send, a method should call
prepareUpdate before calling update);

• Logic combinations of regularities and conditional constraints (e.g., if
some method calls method update, then it should also call method
prepareUpdate).

3.2. Analysis of a concrete system: JHotDraw

In order to assess to what extent the catalogue of structural regulari-
ties obtained from our literature analysis covers the most common structural
regularities, we matched it with JHotDraw (version 5.4.bis1), a well-known
open-source GUI framework in Java for drawing structured graphics, which
was originally developed as a “design exercise” to illustrate some well-known
design patterns. We chose JHotDraw because it is a unique example of
a medium-sized application in which important structural rules are docu-
mented by means of source-code comments. For example, Figure 3 shows
the implementation of a method deactivate() implemented by a class Tool.
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Within the comments of the method we see the regularity (indicated in bold)
that subclassers should always perform a super call.

To identify the various structural regularities of JHotDraw, we queried
the source code comments for occurrences of the words should, may, must,
can(not), could, ought, have, has, need, and require, and then analyzed the
context in which these words occurred to distill a (non-exhaustive) list of con-
straints. During this analysis, comments that were not related to structural
regularities were discarded. Eventually, we obtained the list of 22 structural
regularities below:

1. Methods inside class AbstractConnector must be used internally only.
2. The only caller of method connectorVisibility of class Connector should be

the method draw.
3. The classes implementing interface Tool must implement method activate if

method isUsable returns true.
4. The classes implementing interface Figure should override basicDisplayBox but

should not override displayBox.
5. Subclasses of AbstractFigure should perform a super call in methods deactivate

and viewSelectionClass.
6. Subclasses of DrawApplet, DrawApplication and VersionRequester should

override method getRequiredVersions and return an array of strings.
7. Subclasses of DrawApplication should not override basicDisplayBox but should

override exit.
8. The method init should be called after creating or loading a CompositeFigure,

that is, after calling the method new or read.
9. Calling method getLocator requires cloning the instance (calling method clone)

to avoid that the receiver of getLocator can change the internal behavior of a
LocatorHandle.

10. Calls to the method addInternalFrameListener should occur before calling the
method add when implementing or overriding the method addToDesktop in the
class MDIDesktopPane.

11. The constructor of StandardLayouter with parameters should be preferred over
the constructor without parameters.

12. Sublasses of UndoableAdaptor should override methods undo and redo.
13. Pop-up menus in subclasses of CustomSelectionTool must call setAttribute.
14. The status line must be created (i.e. call to setStatusLine) before a tool is set

(i.e. call to setTool).
15. Method addToDesktop should be overridden instead of overloaded (seen in class

MDIDesktopPane).
16. After calling viewDestroying on an object you cannot do anything else on that

object (seen in class ViewChangeListener).
17. When extending the class DrawApplication, the methods

createOpenFileChooser and createSaveFileChooser should be over-
ridden.
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18. When extending the class StandardDrawingView, the method
handleMouseEventException should be overridden.

19. If method mouseUp of class AbstractTool is overridden, the last statement should
be a super call.

20. If method mouseDown of class AbstractTool is overridden, the first statement
should be a super call.

21. If you call activate or deactivate from the class Tool you should call
isActive before (seen in class DrawApplication).

22. The names of the attributes of class FigureAttributeConstant should be used
as suffixes of the attributes of class ContentProducer starting with the prefix
ENTITY .

If we map these identified structural regularities onto our different kinds
of structural regularities (the third column of Table 1), we see that – with
the exception of field assignments – we effectively encountered examples of
all the various kinds of structural regularities we identified. Conversely, all
structural regularities encountered within JHotDraw are covered by the cat-
egories we identified with our literature study, except regularity #22 which
expresses a naming convention between the attributes of two different classes.

3.3. Completeness of the DSL

The purpose of our uContracts DSL, which will be developed in the next
section, is to offer a set of primitive constructs in terms of which develop-
ers can describe the structural regularities that govern their code. Just like
JUnit 3 or SUnit 4 offer a kind of DSL that allows developers to express,
document and execute unit tests, uContracts is a DSL that allows develop-
ers to express, document and validate the way in which a source code entity
is expected to be used. This implies that usage contracts are often specific
to a particular application (just like unit tests are), and that defining them
thus requires expert developer knowledge about that application. Therefore,
validating completeness of the DSL is not straightforward. Although it seems
that the types of structural regularities identified in the two previous subsec-
tions do cover most common structural constraints, further validation with
application experts is still necessary to confirm this. Section 6 will report on
a first industrial validation that was already conducted.

3http://www.junit.org
4http://sunit.sourceforge.net
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4. The uContracts DSL

In this section we provide an overview of the uContracts domain-specific
language for declaring usage contracts. Revisiting the example of the FAMIX
structural regularity introduced in Section 2 (Figure 2), that regularity can
be expressed as follows in our DSL:

copyFromWithinWithCorrectSuperCall

<selector:#copyFrom:within:>

contract

require:

condition beginsWith:

(condition doesSuperSend: #copyFrom:within:)

if: (condition isOverridden)

This regularity is named copyFromWithinWithCorrectSuperCall, after its
purpose. Quite literally, it expresses that we require overridden methods
with selector5 #copyFrom:within: to begin with a super call to the same
message copyFrom:within:.

Whereas this part of the contract expresses what regularity the overridden
methods should respect, another part of the contract specifies to what classes
the contract is applicable. In this particular example, the usage contract
should be applicable to all subclasses of FAMIXSourcedEntity:

classesInFAMIXSourcedEntityHierarchy

<liableHierarchy: #FAMIXSourcedEntity>

Note that both parts of the description of this usage contract are ac-
tually syntactically valid Smalltalk code, making use of the keyword-style
message syntax of this language and the notion of pragmas (a kind of anno-
tations). Within the Smalltalk method describing the regularity, contract
and condition are pseudo-variables that are part of the implementation of
our DSL. Furthermore, since usage contracts and their structural regularities
are defined directly by using classes and methods in the underlying Smalltalk
language, we can readily use features of that language such as inheritance,
to extend and reuse existing usage contracts and structural regularities.

In general, defining a usage contract requires the following steps and
parts:

5selector is Smalltalk terminology for a method name
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4.1. Defining a contract

Within our DSL, every usage contract is represented by a class that in-
herits from the class ECContract. Such a contract groups a set of related
structural regularities that are applicable to the same context. Before declar-
ing the structural regularity exemplified above, we should thus first create a
new subclass named6 FAMIXSourcedEntityContract of the class EContract.

4.2. Specifying the liable classes

The next step in declaring a usage contract lies in specifying the liable en-
tities of the contract: the classes to which the contract is applicable. Within
our DSL, we declare these liable classes by using a class method (static
method) on the contract class. We already illustrated how to declare a us-
age contract that is applicable to all subclasses of FAMIXSourcedEntity, by
defining a class method classesInFAMIXSourcedEntityHierarchy on the
contract class FAMIXSourcedEntityContract.

The actual conditions that declare the liable classes are defined using
pragmas. In the example above, the liableHierarchy: pragma with as
argument #FAMIXSourcedEntity indicated that our usage contract was re-
stricted to all classes in the hierarchy of the FAMIXSourcedEntity class. Our
DSL currently supports the following pragmas for defining the liable classes:

liableClass:aRegExp indicates that the contract is applicable to all classes
with name matching some regular expression aRegExp;

liableHierarchy:aClassName indicates that the contract applies to all classes
in the class hierarchy of the class named aClassName;

liablePackage:aRegExp indicates that the contract applies to all classes,
in all packages with name matching some regular expression aRegExp.

When the class method that declares the liable classes contains multiple
pragmas, these pragmas then represent multiple conditions that all need
to be satisfied. In other words, the liable classes of the contract are those
classes that satisfy the conjunction of all conditions specified by the different
pragmas in the class method (e.g., all the classes in a certain class hierarchy
that belong to a particular package).

6It is good policy to name the contract class after the class or hierarchy over which it
defines a usage contract.
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In case a single usage contract requires the disjunction of conditions for
specifying the liable classes of the contract, this can be done by specifying
multiple class methods7. In other words, we consider a class to be liable if it
matches all conditions of at least one of the class methods that specifies the
liable classes. This feature allows us, for example, to specify that a usage
contract is applicable to all classes of a package A or of a package B.

Furthermore, our DSL also provides pragmas that can be used within the
class method that declares liable classes, to exclude exceptional cases:

exceptClass:aRegExp excludes all classes of which the name match some
regular expression aRegExp;

exceptHierarchy:aClass excludes all classes that belong to the class hier-
archy of aClass;

exceptPackage:aPackage excludes all classes that belong to aPackage.

4.3. Determining liable methods

A single usage contract can group multiple structural regularities defined
over different sets of methods belonging to the liable classes of the contract.
Each of these regularities is declared by means of a separate instance method
on the contract class. Inside each such method, the liable methods (i.e.,
the methods which that structural regularity pertains to) are defined using
pragmas.

In our FAMIX example, we declared a regularity over all methods named
copyFrom:within:, by defining an instance method copyFromWithinWith-

CorrectSuperCall with pragma <selector:#copyFrom:within:>. In com-
bination with the liable classes declared for this example, the structural regu-
larity defined in the method copyFromWithinCorrectSuperCall is thus ap-
plicable to all methods named #copyFrom:within: implemented by a class
in the hierarchy of FAMIXSourcedEntity.

Our DSL currently offers the following pragmas for declaring liable meth-
ods:

selector:aRegExp takes all methods whose name matches the regular ex-
pression aRegExp;

7The names of those class methods are not important as long as they define pragmas
recognized by the DSL. Unrecognized pragmas are ignored.
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protocol:aRegExp takes all methods that are classified in a protocol8 match-
ing the regular expression aRegExp.

As was the case for the pragmas defining the liable classes, multiple prag-
mas defining the liable methods can be combined within a single method to
indicate a conjunction of conditions (e.g., to select all methods with a par-
ticular name in a certain protocol). Furthermore, exceptions to be excluded
can be declared using the following pragmas:

exceptSelector:aRegExp excludes all methods of which the name matches
the regular expression;

exceptProtocol:aRegExp excludes all methods in a protocol matching the
regular expression;

exceptClass:aClass selector:aSelector excludes the method with name
aSelector in class aClass.

Our DSL does not yet support declaring liable methods as a disjunction of
multiple pragmas, since each method corresponds to an individual regularity.
In order for the same conditions to be applicable to multiple, disjunctive sets
of methods, the same contract method needs to be duplicated, with different
pragmas indicating the liable methods.

4.4. Defining structural regularities

Having defined in the contract class, per structural regularity, an instance
method defining the liable methods to which that regularity applies, we still
need to complete the body of that method with the actual definition of the
regularity to be checked. At the start of this section, we already illustrated
how to define the FAMIX regularity that each method overriding the method
copyFrom:within: should start with a super call to the same message.

4.4.1. Contract terms

In general, each method representing a structural regularity consists of
one or more contract terms. Each contract term represents a single require-
ment that must be fulfilled by each liable method for the contract to hold.

8In Smalltalk, every method is annotated with a protocol. These protocols serve to
group sets of related methods, for example all accessor methods.
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Our DSL allows making a distinction between contract terms expressing a
hard requirement on the source code structure, in order for the program
to behave correctly, and mere suggestions for improvement, that are more
stylistic in nature and could for example increase program comprehensibility.

In our DSL, contract terms are created by sending keyword messages to
the pseudo-variable contract. In our example regularity above, we specified
a hard requirement as contract require: ... if: ... Our uCon-
tracts DSL currently supports the following contract terms:

require:aCondition states that the condition aCondition must be satis-
fied by each liable method;

suggest:aCondition only suggests that condition aCondition be satisfied
by each liable method;

require:aCondition if:aCondition2 requires aCondition to be satisfied
by each liable method for which aCondition2 holds as well;

suggest:aCondition if:aCondition2 suggests that aCondition be satis-
fied by the liable methods, but only if aCondition2 holds.

4.4.2. Contract conditions

Within each contract term (regardless of whether it be required or sug-
gested), the conditions of the contract need to be declared. Table 2 provides
an overview of the different kinds of conditions supported by our uContracts
DSL. It distinguishes three kinds of conditions: structural conditions, logic
conditions and locality conditions.

The first group of conditions allows us to specify structural constraints
on liable methods. For example, these conditions can be used to declare
whether a method’s source code should contain a particular message send,
assign to a particular field, whether the method is overridden, and so on.

Of special interest is the custom: condition, which takes as argument
a visitor that visits the AST of the liable method, and allows developers
to express custom-made conditions. As mentioned earlier, the goal of our
DSL is to support a large amount of regularities with as simple a language as
possible. A limitation of this approach is therefore that not all regularities can
be expressed. To alleviate this limitation, the custom: condition was added
to our language to allow developers to express in a relativily straightforward
manner many regularities that are not supported currently by our DSL. In
Subsection 6.3.4 we will revisit the custom: condition and illustrate its use.
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Structural conditions
assigns:aRegExp Does the method assign to a field whose name matches the reg. exp.?
calls:aRegExp Does the method send a message matching the reg. exp.?
references:aRegExp Does the method refer to a class matching the reg. exp.?
returns:anExpression Does the method contain a return expression anExpression?
doesSuperSend:aRegExp Does the method contain a super send of a message matching the reg. exp.?
doesSelfSend:aRegExp Does the method contain a self send of a message matching the reg. exp.?
inProtocol:aRegExp Does the method belong to a protocol matching the reg. exp.?
isOverridden:aSelector Is the method named aSelector overridden?
isOverridden Is the liable method overridden?
isImplemented:aSel Is the method named aSel implemented by the class of the liable method?
custom:aVisitor Does the AST of the liable method match the conditions expressed by

aVisitor?
Logic conditions

and:aCond1 with:aCond2 Do aCond1 and aCond2 hold for the method?
or:aCond1 with:aCond2 Does aCond1 or aCond2 hold for the method?
not:aCond Does the condition aCond not hold for the method?

Locality conditions
beginsWith:aCond Does the first statement of the method satisfy the condition aCond?
endsWith:aCond Does the last statement of the method satisfy the condition aCond?
does:aCond after:aCond2 Is aCond satisfied after a statement that satisfies aCond2?
does:aCond before:aCond2 Is aCond satisfied before a statement that satisfies aCond2?

Table 2: Possible contract conditions provided by the uContracts DSL

The second and third group contain a number of higher-order conditions.
These higher-order conditions allow for the logic combination of other con-
ditions (and, or, not), and provide a means to constrain where a particular
condition should be satisfied in the liable method’s body. For example, the
locality conditions allow us to express that a particular condition should
be satisfied by the first or last statement of the method, or before/after a
statement matching another condition.

5. Tool support

In order to get the cooperation needed for the industrial case study we
conducted (see Section 6), and in the hope of reaching wider adoption of
our tool, we implemented our uContracts DSL as an extension to the Pharo
1.4 Smalltalk development environment. In addition to implementing this
domain-specific language within the Smalltalk language, we tightly inte-
grated the DSL with the development tools of the surrounding Pharo en-
vironment and added some additional tools as well 9. Figure 4 shows an
example of this integration.

9uContracts can be downloaded at http://www.squeaksource.com/eContracts.html
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Figure 4: A screenshot of Pharo’s class browser. Failure of only suggested terms is indi-
cated in yellow; failure of at least one required term in red.

Figure 5: A screenshot of our contract browser in Pharo, which shows all terms of the
chosen contract. A blue icon indicates a contract term (i.e. regularity) that is respected,
while red or yellow icons indicate violated contract terms.

Figure 6: A screenshot of the integration with Pharo’s Code Critics tool. This Lint-like
tool shows all contracts in the system. For each contract, it lists the conditions of that
contract along with the violations of the conditions.

As soon as a method is compiled, all usage contracts applicable to this
method are checked immediately by our uContracts tool. If the method
violates any of the contracts in which it is involved, this will be indicated
by either a yellow (signifying only violated suggestions) or red (signifying
violated requirements) exclamation mark to the left of the method name
(as is the case with the accept: method in Figure 4) in the class browser.
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Classes that contain methods with contract breaches are highlighted in a
similar way (also see Figure 4). Finally, via a context-sensitive menu, it is
possible from within the class browser to find all contracts to which a given
class or method is liable.

By checking structural regularities immediately during development, de-
velopers are warned of contract breaches early on. Our approach can thus be
considered as a kind of live documentation: each time either a contract or a
liable entity changes, the contract is rechecked and developers are informed
immediately of contract breaches. These checks do not pose a significant
overhead, as our language currently offers only structural conditions and all
conditions are always local to a certain method, and can thus be verified by
simply traversing the method’s parse tree.

Via a context-sensitive menu in the class browser, a developer can get
access to more detailed information regarding a breached contract. An ex-
ample of such detailed information is presented in Figure 5. For each of the
contracts that are applicable to the selected class, the tool indicates whether
the contract is violated or not. By clicking on a contract, all violated regu-
larities in that contract are shown. We use the blue colour to indicate that
there is no violation, yellow for suggestions, and red to indicate required reg-
ularities that were not respected. The tools described above allow developers
to assess which contracts are violated for a particular source-code entity, and
why (i.e. which of the regularities of the contract were breached).

Finally, by means of an integration with Pharo’s Code Critics tool (see
Figure 6), we also provide support for browsing all violations of a particular
contract, or of a group of contracts.

6. Checking Structural Regularities in an Industrial Application

To validate our approach, we applied it to an industrial case study.10 The
case study was a medium-sized (see Table 3), interactive web application that
supports event planning and resource management and was implemented us-
ing Pharo Smalltalk and the Seaside web development framework. The appli-
cation had been under continuous development for 4 years by 4 experienced
Smalltalk developers. It was designed as a component framework (reusable

10For reasons of confidentiality, we cannot disclose the name of the case study nor of
the company involved.
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editors, reusable views, reusable resources, etc.) so that it could be extended
in a controlled manner as the requirements of the clients evolved.

Number of packages: 45
Number of classes: 827
Number of methods: 11777
Number of lines of code: 94151

Table 3: Some size metrics about the industrial case study.

6.1. Case study setup

The main goal of the case study was to qualitatively assess the expressive
power of our DSL. We wanted to investigate to what extent it was able to
support structural regularities appearing in a realistic application.

For conducting the case study, we sat together with one of the main de-
velopers of the web application, to explain the concept of usage contracts for
expressing and checking structural regularities. A discussion followed result-
ing in the compilation of a list of potential structural regularities that were
deemed of interest by the developer. The developer picked these structural
regularities as they corresponded to frequently occurring errors, framework
constraints that could be violated easily and that could result in subtle bugs,
or violations of conventions that would have a detrimental effect on the con-
sistency or comprehensibility of the system.

The actual definition of these contracts was done by the authors of the
paper and required less than 2 working days, but we did not assess how dif-
ficult it would be for a non-expert of the system. It would have been ideal
if we would have been allowed to integrate the uContracts tool in the daily
development environment and process of the developers, to be used by them.
But given that it was a new tool of which we could not present any prior
experience reports yet on the return on investment of using the tool, it was
hard to persuade the developers to use the tool right away. Therefore, we
set up an alternative experiment, where the authors of this paper expressed
the list of 13 structural regularities (identified by a developer) as usage con-
tracts in the uContracts DSL. Compliance of the original implementation
with these usage contracts was then checked at two different points in time.
In December, all identified contract breaches were reported back to the orig-
inal developer of the system. Three months later, in March, the contracts
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were reverified to provide an assessment of the amount of new violations in-
troduced between December and March. In the end, the results of this initial
experiment turned out to be sufficiently convincing to actually persuade the
developers to start using the tool themselves.

6.2. Overview of documented regularities

Name of regularity Description Liable Exceptions Errors
methods December March

Usage contract for the model entities (214 liable classes)
Object equality idiom Equality is implemented

using a double dispatch
protocol

19 0 0 0

Marking dirty objects
(§6.3.2)

State changes must mark
model objects as dirty

333 5 7 2

Grouping initializa-
tion methods

Protocol naming conven-
tion

110 0 53 13

Initialization methods
idiom

Requires super call 110 0 0 0

Grouping internal
methods

Internal methods are put
in a special protocol

193 65 11 2

Usage contract for the persistent entities (75 liable classes)
Initialization via
database (§6.3.3)

Requires super call 44 0 1 0

Custom object iden-
tity

No overrides of hash or
equals

74 1 1 0

Usage contract for the interface code (598 liable classes)
Rendering methods
restriction

Use of internal methods
restricted to a certain
scope

7410 0 3 0

Certain methods
should not be called
directly (§6.3.1)

Certain methods should
not be called directly
from within interface
code

7410 0 3 2

Call ordering within
cascade (§6.3.4)

Certain messages need to
be sent at the end of a
method

531 0 0 0

Preferred framework
construct

Prefer particular con-
structs of the framework
over alternatives

801 0 2 0

Incorrect use of trans-
action mechanism

Code in transaction
blocks cannot perform
non-local returns

595 0 0 0

Immutable while ren-
dering

Rendering methods
should not assign to
instance variables

801 0 0 1

Table 4: Overview of the documented structural regularities in the industrial case study.

Table 4 gives an overview of the 13 structural regularities that were doc-
umented. Most of them were either related to the particular framework
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(Seaside) that was used to implement the web application, or were a con-
sequence of particular architectural choices in the design of the application.
For example, since the application was intended to be easily extended, part of
the application was conceived as a component framework with reusable edi-
tors, reusable views, etc. The use of these components is regulated by several
rules specific to the particular application, hence the need for a customizable
tool/language such as uContracts , in which these rules can be codified and
verified.

We divided the codified regularities in three categories, each of which
was documented as a separate usage contract consisting of several structural
regularities: those related to the model of the web application, those related
to how persistence is handled in the application, and those related to how
the interface is constructed via the Seaside web development framework.
For each of these usage contracts, we show the number of liable classes; for
each of the structural regularities we show the number of liable methods and
exceptions.

6.3. Examples of documented regularities

We now take a closer look at four of these documented regularities, before
analyzing and discussing the results of the case study in more detail.

6.3.1. Certain methods should not be called directly

Certain operations on particular business objects in the case study, that
require some additional handling, should never be called directly but always
be performed via a separate layer of manager objects. Given that the visi-
bility of methods in Smalltalk is always public and cannot be modified, the
developers of the case study introduced a naming convention (prefixing these
methods with ‘private’) to indicate which methods should not be called di-
rectly via the interface, but should pass via a manager object. As calling
these methods directly can result in that the object is put in an inconsistent
state, it is imperative that no such calls occur.

We document this regularity by adding a contract method to the class
implementing the usage contract for the interface code. As liable classes, this
usage contract selects the classes belonging to all packages of the system,
except those packages containing business object and database code. On the
class implementing the contract, this is reflected by a class method named
interfaceCode with as implementation:
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interfaceCode

<package:’App-*’>

<exceptPackage:’App-Model*’>

<exceptPackage:’App-Database*’>

The actual regularity is implemented by the method noCallsToPrivate:

noCallsToPrivate

<selector:’*’>

contract require:

(condition not: (condition calls:’private*’))

This regularity expresses that, for all methods in the interface code (selectors
matching the wildcard symbol *), it is required that the method does not
contain any call to a method with name matching the pattern private*.

6.3.2. Marking dirty objects

Within the model of the web application, a model-view-controller mech-
anism is employed to identify which model entities have changed and should
therefore be re-rendered in the interface. In order to ensure that the inter-
face properly reflects the current state of the model, it is imperative that
all locations in the model that actually change the state (i.e., that assign
to a field), also mark the changed model object as dirty, using the method
markAsChanged:.

To document this regularity we created a usage contract that is applicable
to all classes representing domain objects. These liable classes of the contract
are defined in terms of the hierarchy of domain objects in the system:

domainClasses

<hierarchy:#AppDomainObject>

Inside this usage contract we document the structural regularity as follows:

dirtyFlag

<selector:’*’>

contract

require: (condition calls: #markAsChanged:)

if: (condition assigns: ’*’)

This regularity applies to all methods on model classes and states that,
when the method performs an assignment to any field, it is required to call
markAsChanged: as well.
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6.3.3. Initialization via database

Objects in the model of the web application are initialized by means of
a method initializeWithDatabase:. This method is responsible for reg-
istering the object with the database session and keeping track of internal
bookkeeping. As all other initialization logic requires that the object is reg-
istered in the session first, it is important that all methods that override
initializeWithDatabase: start with a super call; if not, the rest of the
initialization of the object is potentially compromised. It is also suggested
that this method be classified in the protocol initialize-release.

This structural regularity was readily documented by adding a method
to the usage contract applicable to all persistent domain classes.

persistentDomainClasses

<hierarchy:#AppPersistentDomainObject>

And the actual regularity itself was expressed as follows:

initializationOfDatabase

<selector:#initializeWithDatabase:>

contract

require:

(condition beginsWith:(condition doesSuperSend))

if: (condition isOverridden).

contract suggest:

(condition methodInProtocol:’initialize-release’)

This regularity applies to all implementors of initializeWithDatabase:. It
actually consists of two separate contract terms: one that requires the super
send constraint, and another one suggesting the protocol naming convention
to be used.

6.3.4. Call ordering within cascade

The fourth regularity we discuss is related to the use of the Seaside web
development framework. Within Seaside, web pages are rendered program-
matically: the framework offers a canvas on which the application draws the
interface. This is done by creating particular nodes (e.g., paragraphs, ordered
lists, list items) that are each represented by a single object. The parameters
of these nodes are set by sending messages to these objects (mostly using a
message cascade); the contents of the node are set by sending the message
with: to the node. The Seaside framework dictates that these calls to with:
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within a cascade should always be the last call since all other messages sent
to the node after this call are ignored by Seaside. This was a frequent source
of bugs during development of the web application, which is why this rule
was important to be documented and checked with our tool. The bugs are
not hard to discover through testing, neither are they to correct, but they
are annoying and it would be preferable if they could be avoided altogether
with an automatic check as soon as a method gets compiled.

We documented this regularity as part of the usage contract that is ap-
plicable to all packages containing the user interface code (the same contract
as in Section 6.3.1). Within this contract, we declared the regularity below:

withShouldBeTheLastMessageInACascade

<selector:’render*’>

contract

require:

(condition not:(

condition

custom: WithInCascadeVisitor

description:’With: should be last’))

As liable methods, we select all methods within the interface code that are
prefixed by ‘render’. As our DSL has no native primitives yet to express
constraints on the order of messages in a cascade, we implement a custom
condition using a visitor called WithInCascadeVisitor. This visitor is
responsible for matching the AST of the liable methods for any cascade
nodes in which a with: is sent in any but the last position. In order for the
contract to succeed, the visitor should not find any such match within the
AST of the liable method.

The visitor class WithInCascadeVisitor subclasses from the class Custom-
ConditionVisitor that is provided by our uContracts tool. To express the
regularity above, we overrided a single method on WithInCascadeVisitor

that visits all cascade nodes within the method:

acceptCascadeNode: aNode

super acceptCascadeNode: aNode.

(aNode messages allButLast

anySatisfy: [:msg | msg selector = #with:])

ifTrue: [self match: aNode]

The first line of this method performs a super call in order to ensure that
the rest of the AST is traversed. The rest of the method checks if any of the
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messages in the cascade, except for the last one, send the message with:. If
this is the case, the node is added to the matches of the visitor.

We can observe that, thanks to the use of the CustomConditionVisitor,
this solution is only slightly more complex than if we would have used a
native condition of the DSL.

6.4. Case study discussion

After having declared all 13 regularities in a way similar to the 4 regu-
larities exemplified above, we checked compliance of the original source code
with those regularities at two different occasions (December and March) and
reported the results back to the original developer, who processed all vio-
lations marked by the tool together with us. We classified each reported
violation either as an exception (i.e., an accepted deviation to the regularity,
which we afterwards documented explicitly as an exception to the regularity,
by using the pragmas provided by our DSL to exclude exceptional cases), or
as actual errors (which the developer used as input to actually correct the
source code).

Table 4 shows, for each regularity, the number of identified errors at the
two different points in time. In December, 7 locations in the code were iden-
tified where the dirty flag was incorrectly omitted and which were bugs in the
system. Similarly, the tool identified 3 methods that incorrectly called, from
within the interface, methods tagged as ‘private’ and thus circumvented the
object manager infrastructure. All other errors indicated either a violation
of a naming convention, or of the intended design of the system. When veri-
fying the (evolved) system again in March, we found that, with three months
in between, although many of the previously detected errors had either been
corrected or flagged as exceptional cases, a number of new violations to the
documented regularities had been introduced in the system. Despite the fact
that the developers were made aware in December that certain important
regularities in their system do get violated, this did not prevent them from
accidentally introducing new violations of these regularities, thus serving as
an illustration of the need for tools like uContracts . In fact, the results of this
initial industrial case study eventually persuaded the developers to actually
integrate uContracts in their daily development environment, so that they
could get early feedback on detected violations as soon as they appear.

The description of 11 of the 13 regularities which we documented consisted
of only one or two simple contract terms. In spite of the limited scope of
this case study, it supports our intuition that a very simple language suffices
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to document already a large number of useful structural regularities. Only
in the case of the ‘Call ordering within cascade’ regularity discussed above,
and of the ‘Incorrect use of transaction mechanism’ regularity which checks
that code in transaction blocks cannot perform non-local returns (not shown
above), was the use of the custom: condition required.

7. Discussion

Having explained our approach and supporting tool, and their validation
on an industrial case study in the previous sections, in this section we now
discuss their main strengths and shortcomings.

Usefulness. Our industrial case study illustrated the relevance and useful-
ness of a tool like uContracts when building a reusable web application in
Smalltalk. It could be argued that the use of a language with a stronger
or static type system would reduce the need for such a tool. Most of the
regularities which we expressed in the Smalltalk case study, however, were
not related to types, nor caused by the lack of a static type system. Also, our
analysis of undocumented structural regularities in JHotDraw gives evidence
that similar regularities do in fact exist in programs written in statically-
typed languages like Java.

Practical expressivity. uContracts offers developers a simple and declarative
language to document structural regularities concisely and readily. The con-
structs provided by our DSL were determined by studying literature related
to checking structural regularities, and were cross-referenced with regulari-
ties discovered in JHotDraw. It is therefore not surprising that, when applied
to the industrial case, our approach was able to express almost trivially 11
of the 13 structural regularities that were deemed of interest by the original
developers. Note that it was not our goal to have a ‘complete’ language that
supports all possible types of regularities, but rather to offer an easy-to-use
language that can be adopted easily by developers and that readily supports
frequently occurring regularities.

The main limitation of our DSL is that it is not very flexible for expressing
regularities that are not directly supported by the primitive constructs of our
DSL. For example, the properties that can currently be checked with uCon-
tracts are mainly structural: they describe structural properties of the source
code entities of a system or higher-level architectural or design patterns that
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can be expressed in terms of such lower-level structural source code regulari-
ties. More fine-grained information like control-flow, call graphs, or relations
between source code entities are not yet supported, thus limiting the expres-
sive power of the language. Consider for example structural regularity #16
of JHotDraw, which expresses that after invoking a particular method on an
object, the state of that object can no longer be changed. As we only reason
over the structure of individual methods, we can only provide a very naive
approximation of this regularity at best. Likewise, regularity #22, which
states a naming convention between two groups of classes, cannot currently
be expressed by our approach.

However, our language does provide a custom: condition to offer full
access to the parse tree of a method. Given that this condition is expressed
by means of a visitor, the resulting regularities are still declarative and just
slightly more complex than regularities that are directly supported by our
DSL, as was illustrated by the fourth regularity of the industrial case study.
Hence, while our DSL is sufficiently expressive to cover many regularities as
simply as possible, the custom: condition complements our other language
constructs such that a large variety of realistic structural regularities can be
expressed.

Finally, we realize that our DSL definition is not definitive and will most
likely evolve over time to include new kinds of primitive conditions (e.g., for
reasoning at a sub-statement level).

Adoption of the DSL. While we opted for implementing uContracts as an
internal DSL, it is not a prerequisite for such a language to be useful. We
do however feel that, by bringing the DSL as close as possible to the host
language, it eases understanding of the declared regularities and encourages
developer adoption. Internal DSLs tend to eliminate the symbolic barrier of
the language while keeping the power and tooling of the base language [15].

In previous work, we explored tools such as IntensiVE [32, 33, 6] that pro-
vided more generic support for expressing source code regularities in terms of
the external DSL SOUL [9]. We are thus well-placed to compare both kinds
of approaches. We do not claim the uContracts approach to be “superior”,
since there are clearly pros and cons for each approach. However, frequent
objections to conduct industrial trials on our previous tools were the lan-
guage barrier, a lack of integration with the IDE, and a lack of support for
immediate feedback. In fact, similar problems (lack of tooling, interference
with the work-flow, inter-operation issues with the base language, and inte-
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gration with other DSLs) have been identified by others as common obstacles
for the adoption of external DSLs [16].

uContracts , being a DSL embedded in a dynamic language, avoids several
of these issues by blending in perfectly with the development process and
environment: with a shared syntax and IDE, ‘on-the-fly’ validation, and
seamlessly integrated with the source code entities of the base language. In
spite of that, as most other internal DSLs, uContracts is less expressive than
its external counterparts [15] such as Semmle [44] and SOUL [9].

In general, uContracts was implemented as an internal DSL for two main
reasons. Simplicity: the main goal of our DSL was to have a language that is
simple to use by an “average” developer without having to learn a completely
new language, yet powerful enough to support expressing a wide variety of
regularities. Productivity: by keeping its syntax close to the Smalltalk base
language, and by drastically limiting the number of available constructs, we
provide a light-weight approach to check simple but frequently occurring
regularities. In this sense, our approach is complementary to approaches
such as SOUL and Semmle. To some extent we trade-off expressiveness for
ease of use and ease of adoption.

Nevertheless, our tool still remains a proof of concept. Even though it
was stable enough to use on an industrial case, it would require additional
effort and validation to turn it into a tool that could be adopted on a wider
industrial scale. In that sense it is, at this stage of the research, too early to
provide statistically significant evidence backed up by user studies.

Integration with language and development environment. One of the main
advantages of our tool is that it does not hinder developers by disrupting
their mental and development process. The feedback provided by the tool is
directly integrated with the development environment and does not require
developers to switch between multiple tools. Furthermore, it does not en-
force the documented regularities; instead, source-code entities that breach a
contract are indicated as a warning. Although developers are made aware of
violations at development time, they are not forced to immediately act upon
these warnings, thereby disturbing their work flow.

In terms of computational overhead, the simplicity of our language results
in that even the most complex of our contracts can be checked at develop-
ment time in less than half a second and that therefore the developer is not
slowed down by the tool. Especially since our regularities are local to individ-
ual methods (for this reason, we do not check relations between source-code
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entities), they only need to be re-checked upon addition of a new method,
or when an existing method gets changed. Consequently, this allows our
approach to be used in an incremental fashion, thereby minimizing the com-
putational overhead of verifying all applicable contracts.

Explicit documentation. An important strength of our approach is that it
bridges the gap between structural regularities and source code, by mak-
ing regularities that were previously documented only implicitly (or not at
all), documented explicitly and verifiably, as part of the source code. As we
provide a tight integration with the surrounding development environment,
developers become aware of violations of such regularities immediately dur-
ing development and can take action accordingly. Therefore, our approach
provides a lightweight means – akin to unit testing – to detect violations of
structural regularities early on.

Support for other languages. As the uContracts tool is implemented as an
embedded DSL for Smalltalk, it is inherently tightly coupled with this host
language. This does not imply, however, that the ideas presented in this
paper are restricted to Smalltalk only.

First, our approach uses the reflective capabilities of Smalltalk as a means
to retrieve and validate the documented contracts. While this use of reflection
eases the implementation of our tool, it is not a requirement for implementing
a tool like ours. Although the validation of the contracts requires access to
a detailed representation of the source code of the analysed system, such
presentations are commonly available for a wide variety of languages (for
example, the Eclipse DOM for Java).

Second, our approach is implemented as an internal DSL embedded within
Smalltalk. Smalltalk is well-suited to host such embedded DSLs due to the
simplicity and structure of its syntax. Similar features can be found in lan-
guages such as Ruby, that have also been used successfully as host language
for internal DSLs [17]. While implementing an internal DSL for Java may
not be as straightforward and elegant as for Smalltalk or Ruby, it should be
possible to implement a similar language on top of Java as well.

It is difficult to speculate what uContracts would look like for another
programming language, without having explicitly tried to actually implement
it in that language. Any implementation of uContracts within, e.g., Java or
C# would look significantly different (both from the point of view of the user
as of the implementation) as one of its goals is to remain as close as possible
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to the base language. Implementation challenges include getting access to a
navigable representation of programs in that language, and embedding the
syntax within that language. These challenges have already been discussed
in literature [15, 16].

Several prototypes of uContracts for Ruby have been developed (indepen-
dently) by some of our students. Some students simply ported our Smalltalk
solution, which resulted in DSLs less expressive or with a more convoluted
design than alternative implementations. The alternative implementations
were rather different from our Smalltalk solution, in spite of the fact that
Ruby is also a dynamically typed language with powerful reflective capabil-
ities akin to Smalltalk. In general, the solutions of students who already
had a deep knowledge of Ruby, and whose prototypes kept a syntax close
to the base language, were judged as the better prototypes. This experience
resulted in two observations. First, to implement something like uContracts
for another language, having a deep and intimate knowledge of that language
and its reflective facilities is an advantage (which may make it less trivial to
quickly implement a prototype for other languages, especially for statically
typed languages which often have a more restricted or more intricate reflec-
tive API). Second, much care should be taken to devise a syntax that is as
close as possible to the syntax and spirit of the host language.

Correctness of uContracts. An incorrectly defined contract might acciden-
tally detect entities that do not actually breach regularities (false positives),
might fail to detect cases that require enforcement (false negatives), or might
miss needed structural constraints (incomplete specification). As soon as a
contract is defined, the developer should check which entities are covered
by the contract, and fix them if needed. Although incorrect contracts may
become obvious by reporting too many contract breaches or breaches that
shouldn’t occur, there is no guarantee that contracts are defined correctly. It
remains the responsibility of the developer who defined a contract to make
sure that its definition is as correct and complete as possible, or to fix the con-
tract when such situations are discovered. Given that the contract language
is relatively easy to use and remains close to the developer’s base language,
checking and correcting a contract should not be too cumbersome and, hope-
fully, should not happen too often. In any case, as with testing frameworks,
reported contract breaches should always be interpreted with care.

Suitability of uContracts to detect bugs. Since the focus of our approach is
not on functionality but rather on style and structural issues, detected con-
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tract breaches do not necessarily correspond to bugs, which does not imply
that such contract breaches are less important. In some cases, however, the
contracts may point at potential bugs which can be more difficult to detect
with traditional testing, because the cause of the bug is not in the algorithm
or in the data but in the way source code entities are used.

The uContracts reported on in this paper were obtained by asking the
developers which were the main sources of errors due to inappropriate reuse.
Our industrial validation experiment verified these rules with respect to the
existing code base. Detected contract breaches indeed revealed a number
of bugs in the code. When the tool was used later during actual develop-
ment, many of the bugs that were detected by our tool where avoided (solved
immediately upon detection) and therefore never even made it to the reposi-
tory, making it hard to provide quantitative assessments in hindsight on the
number and kind of bugs detected and solved during actual development.

Impact of source code evolution on the contracts. As for unit tests, any modi-
fication or restructuring of the source code (even behaviour-preserving refac-
torings) may affect some of the structural regularities. Contracts affected by
such code evolution need to be updated. The tool provides no automated
support for that, nor do we intend to add such support at this stage. Nev-
ertheless, restructurings can and should be seen as interesting opportunities
to add new contracts that encode the new structure. Whenever the code
structure is being improved or updated, it is a good idea to encode the new
desired structure as a set of contracts to be respected, thus adding guarantees
that the new structure is and remains respected by programmers.

8. Threats to validity

In this paper we introduced uContracts , an internal DSL tightly inte-
grated with the Smalltalk development environment, serving as a lightweight
specification language for documenting and verifying structural source-code
regularities. We conducted an initial validation by applying the DSL and
its corresponding tool to an industrial case study. The fact that most of
the contracts specified for the industrial case required less than 10 lines of
DSL code, that it took us less than two working days in total to define them
all, and that most of the regularities found in typical object-oriented appli-
cations such as JHotdraw too can be expressed straightforwardly using our
DSL, indicates that the primitives it provides are sufficient to express most
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common structural constraints. Besides, the fact that the tool is still in use
at the company to verify the already encoded regularities of their product,
indicates that implementing it as an internal DSL was an appropriate choice.

However, it should be kept in mind that our current DSL is still a proof
of concept. Given that is was evaluated on a single industrial case only, and
that the developers exposed to it were expert Smalltalk programmers, accom-
panied by the authors of this paper, we cannot claim yet that our findings
on the effort required to use the DSL are generalizable. The nature of the
application analyzed may introduce some bias too, because it was designed
as a framework that is easy to extend in a controlled manner (i.e., with clear
reusable components that were designed to be extended). Furthermore, given
that the company only has a single product, it was hard to assess the impact
of the tool on the developers’ productivity, because we had no no baseline
against which to compare the potential benefical impact of using uContracts .

Whereas our validation does seem to indicate a potential relevance for
such a tool, we are currently exploring if the idea is worth evolving into
an industrial-strength prototype which would allow us to conduct full user
studies and provide us more conclusive evidence regarding the usability, ex-
pressivity and relevance of the approach.

9. Related work

We were certainly not the first to propose an approach for documenting
and checking (structural or other) regularities in source code.

Contract-like approaches. Within the software engineering community, the
contract analogy has been widely used, the most well-known example prob-
ably being Eiffel’s design-by-contract [35]. Contracts in Eiffel allow to
describe obligations for the client (consumer) method to respect (precondi-
tion), so that the supplier (producer) does not need to verify its validity,
as well as to describe obligations of the supplier (postcondition), so that the
client can be oblivious to the internal details of the method. Eiffel’s contracts
have a different focus than uContracts , however. While Eiffel’s contracts fo-
cus on verifying behavioral assumptions, uContracts attempt to codify and
validate structural assumptions.

Reuse contracts [41] were initially introduced as a solution to the fragile
base class problem, i.e. the problem of evolving an existing class (producer)
which other classes (consumers) already reuse through inheritance. Such an
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evolution can cause subtle behavioral conflicts when the change invalidates
certain assumptions the subclasses made about their base class. Reuse con-
tracts make such assumptions explicit by specifying how the subclass reuses
its base class in terms of a set of primitive reuse modifiers such as ‘extension’,
‘concretization’ and ‘refinement’. Later variants of reuse contracts extrapo-
lated the idea to incorporate collaborations between different classes as well.

Component contracts [11] offer a framework to design object-oriented
components and discover composition errors. Using Prolog, component con-
tracts describe and verify structural and behavioral constraints related to
consistency, integrity, and evolution of components. This approach differs
from most other approaches discussed here as it is conceived for a model-
driven engineering process, so the contracts are supposed to be used for
instantiation and integration of components.

Verifying structural regularities. Various tools exist that aim at validating
the structural regularities governing a particular domain or framework. Ex-
amples of such tools are Lint [24] (for C); PREfast [39] (for C/C++);
JLint [25], ESC/Java [14], CheckStyle [1], FindBugs [22], or PMD [2]
(for Java); and Microsoft’s FxCop (for C#). While such tools identify a
wide variety of commonly-occurring bugs, they tend to be limited to a pre-
defined set of rules and typically provide only limited support for validating
high-level application-specific regularities. Only FindBugs [22] and Check-
Style [1] provide support for application-specific regularities by means of a
visitor, which is similar to our custom: condition. Nevertheless, these tools
aim at detecting inconsistent, unusual or deviant code which does not neces-
sarily reflect causes of semantic bugs caused by incorrect usage of classes or
methods, which is the purpose of uContracts .

Within literature we can also identify several approaches that enable
developers to document and validate the structural regularities governing
their systems. As early as 1996, Minsky [36, 37] proposed his formalism of
law-governed regularities to allow the explicit and formal declaration of
certain regularities in object-oriented software systems. These declarations
form the architectural constraints or ‘laws’ that the system should obey and
could be enforced by the development environment. Hakala et al. [19] devel-
oped FRED, a tool to generate a task list to instantiate a Java framework
(FRamework EDitor) based on the concept of specialization patterns.
Specialization patterns are defined in terms of roles (played by source code
entities) and contracts (commitments among the roles), each role partici-
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pating in a pre-established number of contracts. Roles can have structural
properties, called constraints. Specialization patterns aim at describing how
to initialize the hotspots of a framework. In this sense contracts are pro-
duction rules for a role, that can be optional, mandatory, done or undone.
Specialization patterns are defined in a graph to specify roles, contracts, and
multiplicity which can be matched to pieces of code to evaluate the comple-
tion of the pattern. But FRED does not check structural constraints at the
level of method bodies.

Oliveira et al. [38] present a framework to instantiate design models by
declaring constraints. They proposed the Reuse Description Language
(RDL) to describe framework extension points and the way in which they
should be extended. In this language, they define the invariants that should
be respected when instantiating a framework. The invariants express the
contextual conditions in which certain structural properties should be true
(much like describing a feature diagram in a structured way). Apart from
basic logic operators (implies, and, or), the language also defines constructs
for assignment, mutual exclusion, and parallel composition. An important
disadvantage of RDL, however, is the poor support for the analysis which is
done using XML/XSLT.

The Dependency Constraint Language DCL [42] was developed as
a declarative, statically checked language to describe structural constraints
between modules. Although DCL supports the analysis of a diverse set of de-
pendencies (access, declare, handle, create, extend, implement, derive throw
and use annotation), the definition of modules (sets of classes identified by
pattern matching on their name) limits its expressiveness.

Filho et al. [40] propose using aspects to document and validate software
regularities in an industrial MDE application. They provide a DSL devel-
oped in AspectJ to enforce those constraints that occurred frequently in their
case study. The main limitation of their approach is the lack of expressive-
ness offered by the aspect-oriented programming language used (insufficient
support for logic operators and advanced regular expressions).

Logic-based approaches. There exist a significant number of approaches that
rely on logic programming as a means to encode structural regularities. Ex-
amples of such approaches are SOUL [9], ASTLOG [8], JQuery [23], Cod-
eQuest [18], and Semmle [44]. These approaches offer developers a broad
range of constructs to query their source code. While their use is not limited
to verifying structural regularities only, they can be used to this end, by mere
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evaluation of the logic program that describes a regularity. Below we discuss
a number of more dedicated approaches that make use of such logic query
languages to provide support for structural regularities.

Hou and Hoover [20] proposed a framework constraint and specifi-
cation language (FCL) for defining framework-specific typing rules. Al-
though FCL is based on first-order predicate and set theory, it aims to be a
language as close as possible to a programming language. The idea behind
FCL is to include the constraints as part of the framework, and to validate
them using static analysis. The language includes a wide variety of con-
structs ranging from control flow to composition of constraints. However,
their approach was limited to framework instantiation, disregarding usage
patterns and design knowledge. Also, FCL originally did not have an au-
tomatic checker of constraints, even though a later extension of their tool
(SCL – Structural Constraint Language) was able to check encoded con-
straints [21]. SCL is however incapable of pointing out the reason for a rule
to fail.

Mens et al. [32, 33, 6] developed the model and tool-suite of intensional
views (IntensiVE) to help developers with documenting structural source-
code regularities, verifying them and offering fine-grained feedback when and
where the code does not satisfy those regularities. The IntensiVE tool-suite,
which builds upon the underlying Prolog-like logic metaprogramming lan-
guage SOUL [9], is tightly integrated with the Smalltalk host language, and
was purposefully designed as a non-coercive set of tools that could be used
to document and check structural regularities in source code. As explained
in the introduction, the main difference with IntensiVE is that the approach
described in the current paper does not rely on an underlying logic program-
ming language. Instead, it offers an internal DSL which is much closer to the
base programming language, thus avoiding the adoption barrier from which
the IntensiVE approach seemed to suffer. Also, instead of offering the full
expressiveness of a full logic programming language (which sometimes gave
rise to heavy computations due to search space explosion), the current DSL,
though more limited in expressiveness, was carefully crafted to be able to
provide an immediate response to developers when used in a unit testing like
way.

Eichberg et al. [12] proposed a DSL embedded in Datalog to validate de-
pendency constraints across sets of source code entities. These sets of entities
are declared as comments with a special prefix. Again, as for IntensiVE, while
the use of a full-fledged program query language results in that this approach
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is more expressive than uContracts , the strength of our current approach lies
in the fact that we can efficiently support a large amount of different kinds
of regularities with only a very basic set of language constructs that remain
close to the programming language in which they are embedded.

Several of the approaches discussed above have the disadvantage that they
document the structural constraints separately from the code [6, 11, 13, 38].
Even if this documentation is explicit and verifiable, it still requires the
developer to explicitly document the constraints and regularities in a separate
model outside the code and to explicitly check conformance of the model with
the source code. Consequently, programmers have to leave the comfort zone
of their programming language, thereby disrupting their development process
and lowering adoption of such tools.

As opposed to our current approach, for efficiency reasons many of the
approaches above do not provide feedback to the software developer imme-
diately upon a change to the source code. IntensiVE [32, 6], for example,
typically checks the structural regularities just before committing a new ver-
sion of the source code, so that problems can be fixed before the commit.
Eichberg et al. [12] integrated their logic queries to the IDE by adding the
validation to the build process of Eclipse. Terra and Valente [42] also validate
their dependencies constraints with nightly builds. This validation requires
several consecutive processes (each one dependent on the previous one) which
include extraction of dependencies, parsing of constraints, and validation of
constraints.

10. Conclusion and future work

In this paper we addressed the problem of documenting and validat-
ing structural regularities that describe how particular source-code entities
should be reused or extended. Based on an analysis of the domain of struc-
tural regularities, we proposed uContracts , a simple domain-specific language
integrated with the Smalltalk programming language and Pharo develop-
ment environment. uContracts supports the declaration of so-called ‘usage
contracts’ that allow developers to express structural regularities to be re-
spected by the source code.

Although our DSL offers a limited vocabulary, this vocabulary is suffi-
ciently expressive to describe a wide range of such regularities. Furthermore,
by means of the custom: construct, regularities that cannot be expressed

36



directly using our DSL can still be documented by means of a parse tree
traversal as exemplified in our case study.

Due to the tight integration with the development environment, these
structural regularities are checked whenever a developer changes a source-
code entity. As a result, developers are informed immediately of potential
breaches of the declared usage contracts. To validate our approach, we ap-
plied it to a medium-sized industrial application for which a set of regularities
was identified by one of its developers. This validation illustrated that, given
the fact that we offer a restricted language, we were able to express easily
relevant regularities and detect interesting violations in the source code.

This paper also presented a first validation of our approach and language,
focussing on whether we were able to express a variety of common regular-
ities in an industrial case study. For future work, we plan to conduct more
empirical studies in which we investigate the ease of use of the approach in
real-life development settings.

The language constructs selected for this paper were based on a literature
study and on an analysis of regularities in the JHotDraw system. However,
we also intend to further extend our language and the tool suite that accom-
panies it to support other types of regularities. These additional regularities
will be derived from a larger scale study of existing software systems to iden-
tify the most common kinds of regularities.

Finally, as future work we will also build a similar DSL and set of sup-
porting tools for other programming languages than Smalltalk, such as Java
and Ruby. In fact, a prototype for the Ruby language is currently being
implemented.
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