
Analyzing Code Evolution to Uncover Relations
between Bad Smells

Angela Lozano
Vrije Universiteit Brussel

Brussels, Belgium
alozanor@vub.ac.be

Kim Mens
Université catholique de Louvain

Louvain-la-Neuve, Belgium
kim.mens@uclouvain.be

Jawira Portugal
–

La Paz, Bolivia
jawitugal@gmail.com

Abstract—This paper reports on evidence found of five possi-
ble relations (Plain Support, Mutual Support, Rejection, Common
Refactoring, and Inclusion) among four bad smells (God Class,
Long Method, Feature Envy, and Type Checking). We analyzed
several releases of three open-source applications (16 for Log4j,
34 for Jmol, and 45 for JFreeChart) using four direct and two
indirect metrics. This analysis uncovered correlations between
three of these bad smells, namely, Feature Envy, Long Method,
and God Class. The strongest correlation discovered was between
Feature Envy and Long Method, followed by a mild correlation
between Long Method and God Class, and between Feature Envy
and God Class. These findings seem to provide initial evidence
of the co-existence of bad smells and therefore, the need for bad
smell removal plans to take into account these correlations in
order to minimize code improvement efforts.

I. INTRODUCTION

Structural guidelines for implementing software are diffi-
cult to follow because local and global optimization are usually
in conflict. An example of this conflict is cohesion (local)
and coupling (global). The assignment of functionality among
classes should be such that cohesion is high for each class,
and coupling is low for the whole application. However, while
a perfect coupling can be achieved by putting all functionality
in a single class, it would result in poor cohesion. Similarly,
making a class per feature needed would result in perfect
cohesion but rather high coupling. Although it is not possible
to ensure that the functionality of an application is perfectly
distributed, there are several indicators of structural issues.
These indicators, called bad smells, point to parts of the code
that may need to be refactored. One example of these bad
smells is having a long method. In object oriented languages,
long methods are typically considered harmful because they
are complex or they might have too many responsibilities.
Dividing the method into several methods, each one with a
single responsibility would reduce the complexity of each
one of these methods, and facilitate their usage in different
contexts.

Recent studies have shown that bad smells can indeed
have a negative impact on program comprehension [1], on
change proneness [2], and on fault proneness [2]–[5]. This
paper presents a study on the evolution of the source code to
look for co-occurences of bad smells. In particular, we want
to measure to what extent bad-smells co-occur, and whether
or not there is evidence of over-time degradation of the source
code due to the presence of bad smells.

II. APPROACH

This paper presents an empirical study that analyzes the
following five (out of the seven) inter-smell relations proposed
by Pietrzak & Walter [6]:

• Plain Support from A to B occurs when a source
code entity having the bad smell A implies with high
certainty that the source code entity also has the smell
B. We represent plain support with a single arrow that
indicates the direction of the relation (i.e., A→ B).

• Mutual Support occurs when there is symmet-
rical plain support, which means that is impossible
to identify the direction of the relation. We represent
mutual support with a single arrow with two ends (i.e.,
A↔ B).

• Rejection is the contrary of plain support. Rejec-
tion from A to B means that having the bad smell
A implies with high likelihood that the smell B is
not present in the source code entity. We represent
rejection with a single negated arrow that indicates
the direction of the relation (i.e., A 6→ B).

• Common Refactoring indicates that a single
refactoring could remove both bad smells. We repre-
sent it with a single arrow that indicates the direction
of the relation where both bad smells are negated. This
indicates that both smells can co-occur, but whenever
one is removed then the other one will likely cease to
exist as well (i.e., !A→!B ).

• Inclusion occurs when there are no occurrences
of a bad smell (A) that are not accompanied by
another bad smell (B). In other words, for every source
code entity where A is present, B is present too. We
represent inclusion with a double arrow that indicates
the direction of the relation (i.e., A⇒ B)

A. Metrics Extracted

For each source code entity, at each version, and for each
bad smell analyzed we record the following metrics:

• exist(BS): number of source code entities
(Classes or Methods) where the bad smell BS was
detected

• co-exist(BS1, BS2): number of SCEs (Classes
or Methods) where both bad smells are detected



• disappear(BS): number of SCEs (Classes or
Methods) where the bad smell was present in the
previous analyzed version of the source code but is
no longer present in the currently analyzed version

• co-disappear(BS1, BS2): number of SCEs
(Classes or Methods) where both both bad smells BS1
and BS2 disappeared from the analyzed entity with
respect to the previous analyzed version of the source
code

1) Indirect Metrics: Using on these basic metrics we
derive additional metrics:

exist− overlap(BS1, BS2) =
co− exist(BS1, BS2)

exist(BS1)

disappear − overlap(BS1, BS2) =
co− disappear(BS1, BS2)

disappear(BS1)

Note that these metrics are not symmetric e.g., exist-
overlap(BS1, BS2) is not necessarily the same as exist-
overlap(BS2, BS1)

2) Metrics Used to Identify Relations between Bad Smells:
Relation between metrics and inter-smell relations

• Plain Support (A→ B)): if
exist-overlap(A, B) > exist-overlap(B, A)

• Mutual Support (A↔ B): if
exist-overlap(A, B) ≈ exist-overlap(B, A)

• Rejection (A 6→ B): if
co-exist(A, B) ≈ 0

• Common Refactoring (!A→!B): if
disappear-overlap(A, B) >
disappear-overlap(B, A)

• Inclusion (A⇒ B) : if
exist-overlap(A, B) ≈ 1

B. Bad Smells Analyzed

JDeodorant can detect bad smells by trying to identify
possible refactorings. We decided to use JDeodorant’s bad
smells [7]–[9] because its detection approach is reliable for
analyses over time1. The bad smells that JDeodorant can detect
are Feature Envy (FE), God Class (GC), Long Method (LM),
and Type Checking (TC).

C. Case Studies

We analyzed three open source Java applications over sev-
eral releases. Log4j, a logging library that is part of the Apache
Foundation. Log4j was analyzed from version 1.2.1 to 1.2.17
(i.e., sixteen releases). Jmol is a viewer for chemical structures
(including crystals, bio-molecules and DNA sequences) in 3D.
Versions 1 until 11.0 (34 releases) were analyzed for Jmol.
Finally, JFreeChart, a chart library (bar charts, pie charts, line
charts, etc.). We analyzed forty-five releases of JFreeChart
(from version 0.5.6 to 1.0.14).

1Note that the source code entities that are above/below a threshold may
change from one version to the other. Also note that avoiding metrics make
the results more likely to be replicable across different case studies.

III. RESULTS

Figure 1 shows the amount of bad smells accumulated
trough all versions analyzed. The most common bad smells in
all case studies were long method (LM) and god class (GC).
The least frequent bad smell is type checking (TC).

Fig. 1: Cumulative number of bad smells found per case study

Table I shows that the number of instances per type of bad
smell are similar across case studies, and also that they tend
to increase over time.

TABLE I: Number of bad smells per case study in the first
and last versions analyzed

App Version TC FE GC LM

Log4j 1st. 8 16 45 96
Last 8 17 53 114

Jmol 1st. 10 16 47 79
Last 19 35 130 200

JFreechart 1st. 17 6 21 38
Last 13 35 153 199

However when looking at both (Figure 1 and Table I)
we can see that the growth of bad smells varies across
applications. While Log4j seems to have a controlled growth
of their bad smells, Jmol and JFreechart degrade over time.
In particular, there seems to be an explosion of long methods
and god classes. The only case of bad smells being reduced
in comparison with the first version are type checkings in
JFreechart.2

A. Evidence for Inter-smell Relations

Table II shows the median result for the metrics that can
identify relations between all the pairs of bad smells analyzed.

Note that type checkings did not exist or disappear with any
other bad smell. Therefore it seems that having type checking
is a good indicator that the entity does not suffer from other
of the bad smells analyzed. That is, TC 6→ FE, TC 6→ LM ,
and TC 6→ GC.

In contrast, feature envy seems to have a very strong
relation with long methods. Results indicate that whenever a
feature envy is found, that method is very likely to be a long
method as well (i.e. FE ⇒ LM ).

Feature envy existence overlaps more (30%, 58%, and
60%) with god classes than on the other way around. Therefore
we conclude that the existence of feature envy increases the
likelihood of that class to being a god class i.e., FE → GC.

2Although there are several versions in which the number of long methods
and god classes were reduced in JFreechart, the final count is higher than the
initial count for these two bad smells.



TABLE II: Median of the metrics used to identify relations

Bad Smells App exist-overlap(A, B) exist-overlap(B, A) co-exist(A, B) disappear-overlap(A, B) disappear-overlap(B, A)

A = FE, B = LM
Log4J 0.94 0. 15 15 1 0
Jmol 1 0 27 0 0

JFreechart 0.92 0.1 22 0.14 0

A = FE, B = TC
Log4J 0 0 0 0 0
Jmol 0 0 0 0 0

JFreechart 0 0 0 0 0

A = FE, B = GC
Log4J 0.44 0.16 7 0 0
Jmol 0.85 0.27 28 0.17 0

JFreechart 0.76 0.17 16 0 0

A = GC, B = LM
Log4J 0.75 0.34 33 0 0
Jmol 0.83 0.51 82 0.27 0.39

JFreechart 0.75 0.4 73 0 0.06

A = GC, B = TC
Log4J 0 0 0 0 0
Jmol 0 0 0 0 0

JFreechart 0 0 0 0 0

A = LM, B = TC
Log4J 0 0 0 0 0
Jmol 0 0 0 0 0

JFreechart 0 0 0 0 0

This difference between exist-overlaps is lower (40%, 30%,
and 35%) for god classes co-existing with long methods, so it
is difficult to decide whether god classes support long methods
(GC → LM ) or if there is mutual support (GC ↔ LM ). We
concluded that the relation between these two bad smells is
mutual support because there is not enough evidence to con-
clude a common refactoring (even though some refactorings
eliminate both of them).

B. Discussion

This study ignores the analysis of bad smells that cannot
be found by JDeodorant (and their corresponding relations).
That is, bad smells for which it could not find an automatic
refactoring, or whose refactoring does not ’improve’ the source
code entity analyzed.

Moreover, the fact that these bad smells are located by
proposing a refactoring alternative must be taken into account
to understand the results. Therefore, a method with feature
envy should not be interpreted as a method that uses more
methods of other classes than its own, but rather a method
that should be moved to a specific class. JDeodorant’s long
methods can be divided, while the control and data flow of
long methods in the general case may be tangled so that the
amount of long methods analyzed might be just a fraction
than those that have issues. Similarly, the god classes analyzed
here correspond to classes that have sets of methods that are
disjoint among themselves (i.e., a class whose methods can
be separated into cohesive subsets). However, the definition
commonly used is more vague: classes that represent mul-
tiple abstractions or have too many responsibilities. Finally,
methods with type checkings are those methods that can be
implemented with a strategy or template pattern. In this case,
JDeodorant’s definition is again more precise than using too
many switches or checks against the type of objects before
calling the appropriate methods.

Providing explanations for the results requires to consider
the specific definitions of these bad smells. It is easy to conjec-
ture possible relations between two bad smells. For instance,
if a method contains type-checks it is likely to be longer
than the average method, therefore, type-checks support long
methods. Nevertheless, where the specific definitions are taken
into account the results obtained seem evident. For instance,

there is no reason for methods that should be implemented with
the template or the strategy pattern to be longer, require more
services of classes other than its own, or be located in classes
that handle multiple abstractions/responsibilities (TC 6→ FE,
TC 6→ LM , and TC 6→ GC). Whenever a method is
located in the wrong class it is likely to be dealing with
separable data/control flow paths (FE ⇒ LM ). Methods that
are wrongly located are likely to be a part of a disjunct set
of methods within their class (FE → GC). Finally, separable
methods are likely to belong to classes with disjunct sets of
methods and classes with disjunct sets of methods are likely
to have methods that are handling more than one data/control
flow path (GC ↔ LM ).

C. Threats to Validity

The following aspects may affect the validity of these
results:

1) Internal Validity: As mentioned in the discussion sec-
tion, the bad smells detected are just a subset of those that a
developer (or another tool) may have encounter. Therefore, it is
likely that with another experiment setup the relations among
bad smells analyzed are found to be stronger. Notice that
JDeodorant, relies on eclipse’s AST which implies that only
the revisions that compiled were analyzed. However, given
than the variability among the metrics analyzed was low, we
are confident that the revisions missing do not have a signifi-
cant impact in the results. This study does not perform origin
analysis which means that for each version we count which
entities had each bad smell. In order, to identify which bad
smells were removed, a simple name comparison is performed
against the entities with bad smells from the previous revision.
Therefore, if there were source code entities that were renamed
or moved and their bad smells remained unchanged, they are
identified twice as ‘deleted’ and ‘added’ bad smells.

2) External Validity: Although the applications analyzed
belong to different domains these results may only hold
for small to medium sized, Java, open source applications.
Analyzing the limitations of these results for similar projects,
larger projects, in other programming languages, or within an
industrial setting remains as future work.

3) Construct Validity: We think this study has little con-
cerns regarding the relation between the evidence gathered and



the conclusion for several reasons. First, the data collection is
automatic so the chance of random errors is low3. Second,
there were no a priori hypotheses so we considered every
possible relation (in both directions) which makes it less
susceptible of researcher bias. Third, the identification of bad
smells does not rely on trespassing thresholds which may
change over time.

IV. RELATED WORK

Yamashita and Moonen [10] analyzed twelve bad smells in
four industrial applications implemented in Java with feedback
from the developers in order to identify problems (during main-
tenance) related to the interaction among bad smells located
in the same source code entity. Using principal component
analysis, they were able to determine whether the problems
were due to single or multiple bad smells. In contrast, our study
focuses on the prevalence of inter-smell relations and not on
their effect. However, the results are converging. Yamashita
and Moonen also found interactions between FE, GC, and
LM (hoarders). In addition, they showed that the effects of
collocated smells are equivalent to having these bad smells
in different but coupled files. Moreover, other studies on the
impact of bad smells have also reported the relation found
between GC and LM [1], [4].

Even though there is little evidence on the prevalence of
co-existing bad smells, Liu et al [11] proposed an algorithm to
reduce the number of refactorings (and their level of difficulty)
required to eliminate bad smells from a source code entity. By
analyzing the dependencies among bad smells in case they are
inside the same source code entity, the authors develop a tree
with the resolution order to tackle co-occurring bad smells.

Moreover, there are a couple of studies on the evolution of
bad smells. Peters and Zaidman [12] analyzed the evolution
of bad smells to identify to what extent they are refactored.
They analyzed three industrial and five open source java ap-
plications using JDeodorant and Ptdej. Finally, Chatzigeorgiou
and Anastasios [13] analyze two OSS and JDeodorant’s bad
smells in order to identify deliberate from accidental bad smell
removal.

V. CONCLUSION

This paper presents an analysis of bad smells over time.
We have recorded to what extent different bad smells are
located in the same source code entity, and whether or not
they are removed in the same version. These events allowed
us to identify six relations between bad smells. Methods with
type checkings are very unlikely to have feature envy, be
a long method, or to belong to a god class. This is, type
checkings reject feature envy, long method, and god class.
Almost all methods with feature envy were located in long
methods, which means feature envy methods are included in
long methods. Also several methods with feature envy were
located in god classes, which means feature envy methods
support the existence of god classes. And finally we found that
the percentage of god classes have long methods is similar to
the percentage of long methods that belong to god classes, i.e.,
god classes and long methods support each other. These results
can be used to plan the order in which bad smells detection

3An error in the data collection or analysis would be systematic for all bad
smells and applications analyzed. So, it would not affect the relations found.

should be tackled. For instance, if type checking is confirmed
first, it might be unnecessary to check for other bad smells
within the same source code entity. This planing can increase
the performance of tools that detect bad smells, with a low
cost in precision. Moreover, this planing could also be used
to analyze which bad-smells interact, and for which sets of
bad smells it is worth to prioritize the order in which they are
removed. For future work we expect to reproduce these results
in other case studies, with other bad smells detection tools, and
using additional metrics. Moreover, we would like to check
whether these results hold for a commit based analysis instead
of a release based analysis. Finally, we would also like to
analyze the effect of inter-smell relations on the prioritization
of refactorings.

ACKNOWLEDGMENT

Angela Lozano is funded by the Cha-Q SBO project (IWT-Vlaanderen),
Belgium.

REFERENCES

[1] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Proc. of the European Conf. on Software
Maintenance and Reengineering, ser. CSMR ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 181–190.

[2] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Softw. Engg., vol. 17, no. 3, pp. 243–275,
Jun. 2012.

[3] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical analysis
of fault-proneness in methods by focusing on their comment lines,” in
Proc. the 2nd Int’l Workshop on Quantitative Approaches to Software
Quality, ser. QuASoQ’14, 2014, pp. 51–56.

[4] N. Zazworka, A. Vetro’, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing four approaches for technical debt identification,”
Software Quality Control, vol. 22, no. 3, pp. 403–426, Sep. 2014.

[5] A. Vetro, N. Zazworka, F. Shull, C. Seaman, and M. A. Shaw, “Investi-
gating automatic static analysis results to identify quality problems: An
inductive study,” in Proc. of the 35th Annual IEEE Software Engineering
Workshop, ser. SEW ’12, 2012, pp. 21–31.

[6] B. Pietrzak and B. Walter, “Leveraging code smell detection with
inter-smell relations,” in Extreme Programming and Agile Processes
in Software Engineering. Lecture Notes in Computer Science, 2006,
pp. 75–84.

[7] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Identi-
fication and removal of feature envy bad smells,” in Proc. of the Int’l
Conf. on Software Maintenance (ICSM), 2007, pp. 519–520.

[8] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Iden-
tification and removal of type-checking bad smells,” in Proc. of the
European Conf. on Software Maintenance and Reengineering (CSMR),
2008, pp. 329–331.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: Identification and application of extract class refactorings,” in Proc.
of the Int’l Conf. on Software Engineering (ICSE), 2011, pp. 1037–1039.

[10] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in Proc. of
the Int’l Conf. on Software Engineering (ICSE), 2013, pp. 682–691.

[11] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detection
and resolution: A new way to save effort,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 220–235, 2012.

[12] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proc. of the European Conf. on Software
Maintenance and Reengineering (CSMR), 2012, pp. 411–416.

[13] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code
smells in object-oriented systems,” Innov. Syst. Softw. Eng., vol. 10,
no. 1, pp. 3–18, 2014.


