Coordinating Collaborative Interactions in
Web-based Mobile Applications

Kennedy Kambona, Lode Hoste, Elisa Gonzalez Boix & Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel
Brussels, Belgium
{kkambona, lhoste, egonzale, wdmeuter} @vub.ac.be

ABSTRACT

Mobile applications for interactive surfaces that utilize the
web as a platform now have the ability to provide richer in-
teractions hitherto unrealized by running them on isolated
devices. These modern applications can now support prox-
imal and remote collaborative interactions for multiple clients
simultaneously connected to each other. Most technologies
however currently lack programming language abstractions
for coordinating complex interactions, such as to define, de-
tect and combine complex events coming from multiple cli-
ents or other software entities. Furthermore, they lack the
expressiveness required to support non-trivial levels of col-
laborative interactions for connected clients.

In this paper we identify two software mechanisms that
web-based mobile applications should provide to support the
development of collaborative interactions: distributed event
composition and group coordination. We present the Mingo
framework, which provides dedicated coordination program-
mer constructs for these two mechanisms by blending tech-
niques common in complex event processing and group com-
munication. Consequently, we validate our framework by im-
plementing a mobile drawing application with support for
collaborative interactions and evaluate it by comparing it with
a related implementation.

Author Keywords
Collaborative mobile applications; coordination; complex
event processing; interactive applications

ACM Classification Keywords

H.5.3 [Group and Organization Interfaces]: Collaborative
Computing, Computer-supported cooperative work, Web-
based interaction

INTRODUCTION
Traditional software applications have recently started exper-
iencing a fundamental shift due to cheaper broadband internet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITS 2015, November 15-18, 2015, Funchal/Madeira, Portugal.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3899-8/15/11...$15.00.

DOTL: http://dx.doi.org/10.1145/2817721.2817742

connections. Many applications are increasingly residing on
the web and their services provided to clients (e.g. mobile
phones) using a multitenant cloud-based architecture. These
applications can now run in vastly improved resources com-
pared to those available a decade ago, and have the ability to
provide richer functional interactions.

In this paper we investigate how to provide software support
for collaborative surface interactions using such contempor-
ary infrastructures. Coordination of interactions is vital in
applications running on the because it is involves managing
multiple users, tasks and devices. This is becoming increas-
ingly important as evidenced by the popularity of ubiquit-
ous devices with internet access. Recent advancements in
standardized web-based technologies such as HTMLS5 have
increased the support required for coordinating various types
of collaborative applications, such as document editing soft-
ware, instant messaging and online multiplayer games.

The common technique employed by existing applications,
however, is to impose restrictions on software entities in or-
der to deal with the complexities of simultaneous collaborat-
ive interactions of participants within the same session. An
example of such restrictions is to enforce exclusive access,
where interactions on an object is allowed for only one parti-
cipant at any one time. In a collaborative drawing application,
for instance, this means that a participant is said to exclus-
ively ‘own’ shape (e.g. by selecting and editing it), and it
can only be modified by that user until the ownership is re-
linquished (e.g. by deselecting it). Another type of limitation
is sequential access, where interactions on an object by sev-
eral participants are performed in succession — in the order
that they were detected. Rather than imposing such software
restrictions, we envision a programming model where events
coming from a group of different participants in interactive
devices can be composed and integrated. This will result in a
mechanism in which advanced collaborative interactions can
be orchestrated, a significant advantage in mixed interactive
surface applications.

We propose the Mingo framework, which provides program-
ming abstractions for coordinating collaborative interactions
in mobile applications running over the web. Mingo com-
bines techniques from complex event processing and group
coordination to assist developers implement applications sup-
porting collaborative interactions such as collaborative drag-

ging on a surface. Mingo has been implemented as an exten-
sion to JavaScript, the dominant language on the web. In-
teractions are modelled in the asynchronous message-passing
style which aligns with JavaScript’s event-driven program-
ming model. Mingo constructs thus allow developers to spe-
cify collaborative interactions involving several participants
in a declarative and reusable way. Mingo is targeted for
devices that are co-located or in low-latency environments to
provide immediate feedback for the interactions.

We present our model in the subsequent sections. We first
motivate the need for coordinating mobile applications on the
web and present some related concepts. We then present our
coordination model, the Mingo framework and its coordina-
tion constructs. Using Mingo, we proceed to implement a col-
laborative drawing editor and compare it with a similar imple-
mentation using the current state-of-the-art. We conclude by
discussing possible future improvements to the framework.

THE NEED FOR COORDINATING COMPLEX COLLABOR-

ATIVE INTERACTIONS

A number of research has identified the need for collaborat-
ive interactions — user actions spanning a distributed system
that occur together — such as synchronous gestures [9] and co-
browsing [2]. This allows users in proximity to combine mul-
tiple devices heterogeneously to exploit pooling input capab-
ilities, content and resources such as displays.

In this paper, we motivate the need for providing program-
ming support for such advanced coordination mechanisms for
complex interactions. We introduce a running example of a
sample application requiring these mechanisms: an illustrat-
ive collaborative drawing editor.

Motivating Example: Online Collaborative Drawing Editor
Consider a traditional collaborative drawing application sim-
ilar to Cacoo! where several distributed participants on mo-
bile phones are connected via the web using a server. The par-
ticipants share the same canvas on multiple mobile devices.
The users are participating in the same session and can there-
fore interact at the same time. The shared canvas can be used
by the several participants connected via the web to draw and
interact with (or manipulate) shapes already drawn on the
canvas.

In addition to the normal functionality provided by a tradi-
tional drawing application (as described thus far), we envision
that the collaborative web-based drawing application further
allows users on mobile devices to perform advanced collab-
orative interactions to users’. We illustrate two examples of
these collaborative interactions that can be applied:

(a) Collaborative resize interaction. Consider when one par-
ticipant on a mobile device starts to drag a drawn shape
to the right, while at the same time a different participant
in the same session drags the same shape to the left (Fig-
ure la). Typically an application recognizes two separate

!Cacoo - Create diagrams online, https : / /www.cacoo . com

The users should already be aware of this e.g. from a description of
the application features

(a) (b)

Figure 1. Collaborative interactions for a drawing application: (a) col-
laborative resize (b) collaborative bind

sequential interactions (e.g. drag-right and drag-left re-
spectively), and proceeds to enforce techniques to determ-
ine ownership and which action to apply. In contrast, our
sample application recognizes this as a single collaborative
resize interaction. As a result, the application then reacts
by causing the shape to resize according to the input of the
participants.

(b) Collaborative bind interaction. Consider when one par-

ticipant drags onto an empty canvas to the right, while an-
other one drags on the canvas to the left. When both parti-
cipants reach the canvas borders as shown in Figure 1(b),
an application could then virtually bind the canvases in the
two devices to give the impression of an extended shared
canvas. Participants can then for instance share objects by
‘throwing’ them to other devices using a sliding gesture.

Similar features can be applied to other applications in need
of collaborative interactions: for instance in a virtual dancing
game, where two or more users are required to press a se-
quence of button combinations or other actions at the same
time to successfully perform a cooperatively-synchronized
dance move in a group.

Requirements

We now identify two requirements that support coordination
of complex interactions for collaborative web-based mobile
applications.

i) Processing and Composition of Events:

Interactions in most mobile web applications are primarily
internally represented as events. A basic programming chal-
lenge in this setting is that it is arduous to detect and dis-
tinguish between simple events that the application receives
e.g. a local drag operation, from the composed collaborative
events e.g. the collaborative resize from two or more parti-
cipants in a session. A simple event involves one participant
and is usually local. The collaborative events can possibly
involve several distinct participants. Our vision is that de-
velopers of such collaborative applications need to be able
capture to both types of events.

Detecting simple (or local) events from different areas of
the application and subsequently creating a composed col-
laborative event is known as event composition. Program-
mers face great difficulties (denoted as accidental complexity
in [17]) when specifying and orchestrating such interactions
or events. Interactive applications developed using various

3The right border for the first participant and the left border for the
second.

https://www.cacoo.com

frameworks should be able to define and detect when such
composed events occur.

ii) Group Coordination:

In traditional mobile and desktop applications, software entit-
ies (like shapes objects in a drawing editor, or dancing avatars
in a dancing game) were designed to be implemented and
used autonomously in a local device. In contrast, distributed
applications using the web have the potential to run multiple
instances of software entities distributed over several mobile
clients, while at the same time exposing the more advanced
functionality. These replicas or groups of software entities
require a group coordination mechanism in order to address
them as one unit and to manage their respective objects with
the aim of making their operations resilient. For instance, in
a collaborative drawing application, a drag event performed
on a shape by a participant should be transparently propag-
ated to all the different mobile clients of the same session
that have this shape; in a dancing game a dancing avatar’s
local movements should be updated in all other participants’
screens. The coordination abstraction should provide a means
to manage the group behaviour of these replicas.

Summary

This paper envisions a programming framework that integ-
rates these two requirements to coordinate collaborative web-
based mobile applications. Developers can utilize abstrac-
tions that allow several participants in a session to interact
simultaneously and collaboratively, utilizing more advanced
combined distributed interactions.

RELATED WORK

Coordination Models

Most coordination models and languages for concurrent and
distributed systems are based on the fuple space model of
Linda [6]. A tuple space is a globally shared virtual data struc-
ture which allows processes to communicate by posting and
reading data objects known as fuples. Some tuple space im-
plementations have targeted the web such as WWWinda[7].
This approach employs a separate browser architecture with
tuple spaces shared across web applications. Conceptually,
a tuple represents local interactions or events. As such, de-
velopers using tuples for coordination still need to manually
apply additional logic in applications in order to manage com-
plex collaborative interactions from individual tuples.

Multi-device Interaction

Groupware frameworks such as GroupKit [15] and Sync [11]
expose extensible high-level architecture or interfaces that ap-
plications are required to adhere to in order to receive support
for collaboration. Sync embeds generic collaboration capab-
ilities into several base classes that need to be extended by
the application. Groupkit requires an application to extend a
registration client to create conferences that act as a mediator
between the application and the framework. Our vision is to
have no such restrictions on applications or objects in need of
coordination support.

PointRight [10] provides mechanisms for redirecting pointer
input across screens in an interactive workspace. For coordin-
ation, it uses a custom blackboard architecture derived from

tuple spaces which only allows a user to control a single dis-
play at a time. ARIS [3] is an interactive window space man-
ager that uses Gaia middleware. Gaia supports management
of distributed devices and services through an information re-
pository for entities. It however provides little or no support
for managing filtering and historical data context processing,
which is useful for coordinating more complex interactions.
Work in [9] allows support for multi-person or multi-display
interaction. The driving technique behind this approach is a
predetermined algorithm that uses various inputs to recognize
synchronous spikes in data. However, the approach is rigid
and does not support dynamic addition of gesture definitions
at runtime.

Web-based Collaboration

The web was primarily intended for single-person use in its
conception: the original architecture did not support real-time
synchronous interaction. Nowadays, however, support of
real-time interaction is increasingly popular with the advent
of web technologies supporting real-time collaboration. Eth-
erpad* and GoogleDocs’ allow users to collaborate on text
documents simultaneously. Schmid et al. [16] coordinate sim-
ultaneous collaborative web browsing by using specialized
proxy servers that intercept web page requests and inject
JavaScript code into the pages, providing functionality for
simultaneous access into web pages. However, their simpli-
fied approach of interaction of multiple pointers on the screen
is limited to single-pointer interaction per object. Further-
more the use of a proxy increases the a priori knowledge and
configuration needed.

Complex Event Processing

Complex event processing (CEP) is a technique that provides
support for detecting, analysing and composing multiple
simple interactions or events into more meaningful or higher-
level (complex) events. Computation-oriented CEP engines
focus on aggregating data from a number of incoming events
(e.g. Borealis [1]), while Detection-oriented CEP engines fo-
cus on finding patterns within multiple event instances rather
than the aggregation of these instances (e.g. Drools [13] and
Midas [17]). Computation-oriented engines are unable to de-
tect and compose events through specific, fine-grained co-
ordination interaction patterns, making detection-oriented en-
gines is better suited for composing collaborative interac-
tions. One of the most representative of detection-oriented
CEP engines is Drools [13]. However, Drools lacks con-
structs for spatial and temporal operators that can enable us
to easily express interaction patterns, significant when per-
forming composition of interactions. Nools® is a rule engine
for the web written in JavaScript. Both implementations are
based on the Rete algorithm [5], which employs an efficient
implementation for pattern-matching complex events.

MINGO
We now present our framework for coordination of complex
interactions in collaborative mobile applications running on

4http: //etherpad.org
5http ://google.com/docs/about
6http ://github.com/C2F0O/nools

http://etherpad.org
http://google.com/docs/about
http://github.com/C2FO/nools

the web. Mingo is an object-oriented framework employing
web-based infrastructure to coordinate collaborative interac-
tions found in interactive surfaces. JavaScript has emerged
as the de-facto language for web development due to the nat-
ive support of all modern web environments. The framework
therefore extends the language with blended constructs for
group coordination and complex event processing.

In particular, Mingo employs the CEP Midas engine [17] at
the heart of its execution model. Midas is a detection-oriented
rule-based CEP framework for the recognition of complex in-
teractions that allows developers to easily express advanced
interaction patterns. Consequently, Midas provides ample
support for modelling multi-user interactions as events. A be-
nefit of using the Midas engine is therefore that there is no dif-
ference in reasoning over simple events (represented as facts)
vis-a-vis composite or complex events. This provides sig-
nificant support for advanced software engineering abstrac-
tions [17]. The engine however lacks native support for dis-
tribution on the web. We therefore extended the engine to
support this, required for such collaborative interactions. The
Mingo framework is mainly targeted for co-located devices
and similar low-latency environments for the prompt feed-
back of the possible activated rules and interactions.

In addition, the abstractions supporting coordination of co-
llaborative interactions in Mingo are designed along the prin-
ciples of separation of concerns [12]. The main benefit that
this separation provides is that it enables developers to con-
centrate on an application’s functionality separate from the
coordination mechanisms that it may require. Papadopoulos
et al. [12] already identified this as a significant design prin-
ciple that helps in alleviating issues related to compositional-
ity and extensibility in the development of distributed appli-
cations.

Mingo Execution Model

The execution model of Mingo utilizes a number of technolo-
gies to achieve its coordination functionality, as illustrated in
Figure 2. The server manages the coordination mechanism of
the framework. It consists of the Mingo server later and the
Midas CEP engine, with the Mingo bridge acting as an inter-
face between them. The bridge translates Mingo constructs
received from the clients into rules and facts to be consumed
by Midas (and vice-versa).

A number of interactive client devices can be connected to
the server. The clients run JavaScript code augmented with
Mingo constructs necessary for coordination. When the con-
structs are applied in the application the Mingo runtime takes
care of packaging and sending this information to the server.
The Mingo layer on the server side will take care of trans-
forming and injecting the necessary rules in the Midas en-
gine, as represented in the constructs. Whenever a simple
event that has been denoted to comprise a complex interac-
tion is performed, Mingo intercepts its invocation and sends
the event information to the server. If a complex interaction
has been realised, Mingo propagates this new information to
all clients in the session.

To clarify Mingo’s coordination orchestration, we illustrate
how a collaborative interaction is realized.

Server

Application Code

|
Midas CEP Engine |

|

;
| 1
: Mingo Server Layer |2
j

Websocket interface

Mingo Client Layer
Application Code

Mobile Web Client n

Websocket interface

Mingo Client Layer
t 1

Application Code

Mobile Web Client 1

Figure 2. Mingo Execution Model

—_—

. A developer writes the application in JavaScript and em-
ploys Mingo Client constructs to coordinate the applica-
tion’s distributed interactions (described in the next sec-
tion).

2. The Mingo runtime sends the interactions and their relev-
ant information to the server by means of websockets.

3. The Mingo layer on the server assembles the local inter-
actions from client devices with their respective informa-
tion and sends them to the Midas CEP engine by mapping
invocations and their definitions into facts and rules that
Midas can consume. Thus in Mingo a fact is an internal
representation of a simple interaction in the application.

4. Midas then asserts the interactions. If the interactions trig-
ger a pre-defined rule created from constructs previously
defined by the developer, it can combine the simple inter-
actions into one composed event.

5. The composed event is then pushed back to the runtime
which in turn delivers it to the awaiting client devices that
defined a handler for the composed event.

Programming Support for Coordinating Complex

Interactions

In this section we describe the programming language con-
structs that Mingo avails for complex event composition and
group coordination. Although we employ our running ex-
ample in explaining these abstractions, they can also be ap-
plied to other application scenarios requiring these coordina-
tion mechanisms.

Group Coordination Abstraction.

Mingo provides the ability to coordinate the behaviour of dis-
tributed software entities by means of the groupObject
construct. When groupOb ject is applied to a new object,
Mingo proceeds to assign a group identifier to the object, and
transparently assigns the same group identifier to the replicas
in every client mobile device (Figure 3). The effect of this is
Mingo will subsequently replicate any specified actions per-
formed on that object to each replica of the object in the other
client devices through assertions to the CEP engine. There-
fore the group object can be visualized as a virtual object that

Figure 3. Two distributed object groups

links all replicated objects to it and will distribute interac-
tions or events to the all objects with the same identifier in
the same session. In our running example, we have employed
the groupObject construct to model the shapes drawn in
the shared canvas as shown in Listing 1.

Listing 1. Defining a Group Shape in Mingo

var shape = new Shape({
touchMove: function(e){
//update shape position
}
/..
195
var groupShape = Mingo.groupObject(shape, {
collabResize: Mingo.rule(/srule definition here /)

b;

O 001NN B W -

As shown in line 1, a developer defines a shape with basic op-
erations e.g. touchMove for a mobile client (equivalent to
amouseMove operation on a desktop device). Additionally,
in line 7 we define that shape as a Mingo group object us-
ing the groupOb ject construct. The construct takes as the
first argument the shape, and the second argument an object
containing the behaviour which will be part of collaborative
interactions in form of a rule (explained in the next section).
As shown in Listing 1, when the end user draws a shape, the
Mingo creates a groupShape object, and the canvases of
the rest of the participants in the drawing session will be pop-
ulated with a replica of this shape.

The groupShape object conceptually represents the
replicas of a shape which all belong to one group.
The developer can then replicate operations through the
Mingo replicateAction construct available on a
groupObject. For instance, when the t ouchMove oper-
ation (line 2) is performed on any member of groupShape,
this action will be replicated on all the other shape replicas in
the mobile application in the same session.

Listing 2. Replicating Actions on an Object Group

1 groupShape.replicateAction('touchMove');

Thus Mingo group coordination constructs address a number
of distributed object replicas as a single unit. Given a set
of group objects, when a client changes a copy of the object
Mingo transparently propagates updates to all the replicas in
the application. An invocation on touchMove sends the in-
formation to the server and which is then asserted in Midas.
The assertion of an replicated action triggers Mingo to sys-
tematically send the action to the rest of the users in the same
session. Each replicated action is internally represented in
Mingo as a rule that triggers upon the assertion related facts.

In the next section we explain how a developer can perform
distributed actions such as the collaborative resize operation
in line 8 of Listing 1.

Distributed Event Composition.

In web-based interactive applications, simple events are usu-
ally detected by registering a handler to a named event. In
order to detect collaborative events however, Mingo contains
rule composition operators similar to the ones found in rule-
based languages. A Mingo rule consists of a name, the left-
hand side (LHS) which contains conditions for the detection
of a complex event, a —, and a right-hand side (RHS) for
reactions after the complex event is detected. We introduce
the rule for the collaborative resize from our running example
in Listing 3. The rule is defined in the application in an ob-
ject literal using Mingo’s rule construct which packages the
rule. The construct which exposes syntax that developers to
write custom complex interactions declaratively.

Listing 3. A Collaborative Resize Rule in Mingo

1 rule('collabResizeRule',

2 ' (Invoked (function "touchMove") (dev ?d1) (args ?al) (time ?timel))
3 (Invoked (function "touchMove") (dev ?d2) (args ?a2) (time ?time2))
4 (test (time:within ?timel ?time2 1000))
5
6

N
(assert (collabResize (args ?al ?a2) (dev ?2d1 ?d2))")

The rule construct expects two arguments: the name of the
rule (which denotes the name of the collaborative interaction)
and the rule definition — a set of LHS statements followed by
a set of RHS statements.

The LHS of the definition (lines 2-4) captures the invocation
of simple events from the different entities of the mobile ap-
plication. This rule captures two touchMove invocations
and their arguments from two different devices (lines 2-3) that
occur within a certain amount of time (line 4).

When all the conditions specified in the LHS are satisfied,
then the actions defined in the RHS are activated. Here, we
store a new fact collabResize(line 6), which is the com-
position of the two invocations and their arguments. With this
assertion Mingo triggers a collaborative event and propagates
it to the devices as a collaborative action. In the LHS and
RHS of arule, the ? operator denotes a variable binding (e.g.
?devl in line 2).

The collaborative application can react to a collaborative ac-
tion by registering a listener. Recall from the previous sec-
tion that Mingo creates a group object to replicate actions on
a shape (thereby updating its changes) to all participants. On
this group object we register a listener to the group object by
using the Mingo on construct, as in Listing 4. The first argu-
ment to the on construct is a string denoting the collaborative
interaction, and the second is a callback that will be invoked
once the interaction is achieved.

Listing 4. Reacting to a Collaborative Resize

groupShape.on('collabResize', function(args){
//perform resizing of shape
collaborativeResize(this, args);

1
2
3
4D

The shape and its replicas can now receive coordination sup-
port. If there is only one client device interacting then a

normal, single action (e.g. a move) will be invoked. When
Mingo detects two actions (e.g. 2 touch downs) from dif-
ferent devices, it will treat this as a collaborative interaction
provided it meets the conditions in the LHS part of the re-
spective rules of the shape. On a shared tabletop, if the device
can distinguish inputs from different hands [4] we can create
a rule condition take this into account: for instance a test that
checks the handIds are different.

Managing States in Mingo

Composing complex events such as collaborative interactions
is simple when done as single-state events e.g. detecting when
two participants both perform a touch down interaction. Most
collaborative interactions, however, work in a multi-state pat-
tern e.g. recognizing a complete gesture done between touch-
Down and touchUp interactions. We observed that writing
single-state rules for a these kinds of higher-level events leads
to an inherent complexity in their rule definitions and addi-
tional orchestration logic is needed in the application code.
This is especially because when composing events into com-
plex events using rules, some inaccuracies that cause arbitrary
behaviour when a series of events are detected might delude
the developer.

Mingo solves this problem by providing a structured way to
define such multi-state rules to detect a series of complex
events in addition to single ones. Each collaborative operation
in Mingo can be represented as a state machine that will com-
pose invocation of multi-state events. A sfate in this case is
a phase in the detection of a complete composite event. Each
of these phases can be of interest to a developer to react to
in an application. Mingo rules provide the necessary support
to compose the state machine relating to such a composite
event. In order to exemplify the problem, consider again the
collaborative resize from Listing 3. Whenever a collaborative
drag is performed on a shape, a developer has to first check
if a collaborative touch down has been performed by the two
of the participants before proceeding to listen for a collab-
orative resize. To implement the detection of the interaction
in stages, we redefine the collaborative resize interaction in
terms of the following states:

1. Resize start — When the two participants perform a
touchdown at almost the same time; the collaborative
interaction has begun.

2. Resize body — After resize start, when one or both par-
ticipants start (and continue) performing a t ouchmove in
opposite directions.

3. End - When one or both participants perform a
touchup, the collaborative interaction comes to an end.

The states can be encoded in Mingo as shown in Listing 5.
The collabResize composite event now consists of the
three aforementioned states (denoted in the code as start,
body and end states). collabResize is actually an ob-
ject that simply contains a start, body and an end state defined
as Mingo rules. A developer can thus detect any number of
multi state operations separately — such as the start, body and
end of the collaborative resize operation — and execute code
in their respective handlers.

Listing 5. Collaborative Resize in Mingo - With States

collabResize = {
start: rule('collabResizeStart', /: rule definition here +/),
body: rule('..."), /+ rule indicating the body %/
end: rule('...") /* rule indicating the end %/
}
groupShape.on(collabResize.start, function(args){
//handle resize start operation

b

0N AW —

Note that the developer can react to any of these states of the
collaborative resize separately with a handler on each one.
For example, lines 7-9 show the reaction to a collaborative
resize event for the collabResize.start rule on the
shape object of our running example.

In the next section we illustrate how a developer defines a
multi-state rule.

Defining a Multi-State Collaborative Rule

Mingo provides an extended version of the rule construct
which allows developers to define a rule that is only triggered
when the application detects a concrete state of an extended
interaction. Listing 6 shows such a rule for the start state
of the collaborative resize seen in the previous listing List-
ing 5.

Listing 6. Structure of a Multi-state Rule

//SP

?2currstate <— (State (name "end") (operation "collabresize"))

/P

(Invoked (function "touchDown") (dev ?d1) (args ?al) (time ?t1))
(Invoked (function "touchDown") (dev ?d2) (args ?a2) (time ?t2))
(test (time:within ?t1 ?t2 1000))

s
//SS

(retract ?currstate)

10 (assert (State (name "start") (operation "collabresize") (args ?al ?a2)))
11 //CB

12 (assert (collabResizeStart (args ?al ?a2)))

O 001NN B WM -

The collabResizeStart rule has the LHS and RHS as
defined earlier. Every multi-state rule is further defined in a
four-part structure, each of which have specific purposes.

On the left-hand side (LHS) of the multistate rule we have:

State predicates (SP) — The conditions about the state of the
operation needed to detect the composed event. This is the
first part where we can detect any states that are needed
prior to the execution of this rule. For instance, in line 2 we
avoid multiple activation of a state by making sure that any
previous state must currently be in the end (or idle) state
before transitioning to the start state. Mingo provides
the ‘<’ symbol binds the end state to the ?currstate
variable, which can be used to modify the current state
within the rule, as shown in the third part.

Invocation predicates (IP) — Conditions about the invoca-
tions required to compose the event. This describes the
invocations that need to be detected in order to realize the
composed event. In lines 4-5 we detect that two touch
down operations are performed as the invocation condi-
tions for the collabResize start operation, which we
defined in Listing 5.

And on the right hand side (RHS) we have:

Application
Layer

Coordination
Layer

Bridging

Infrastructure

Midas EP Engine

Communication Pub/sub Web/Socket
Layer Intertace

Figure 4. Mingo’s layered architecture

State switching (SS) — Change in states of the operations
(e.g. start, body and end) based on the current state.
Here we provide the logic that will transform the state of
the composed complex event represented in this rule from
one state to another. This is often done simply by the re-
traction or deletion of the current state (in line 9, using the
bound variable ?currstate from line 2 representing the
end state); and the addition or assertion of a new state
(collabresize start state in line 10).

Callback (CB) - The callback part consists of one or more
asserts that produce the collaborative event. Here we
can deliver all the arguments that the callback may need
for handling the event. In this case, Mingo adds the
collabResizeStart fact, and triggers the associated
callback of this event in the application (line 12). Note that
this is different from the change of state, since this assert
actually triggers the collaborative interaction to all clients.

It is important to note that the multistate rules allow de-
velopers to coordinate collaborative multistate interactions
while avoiding the complexity introduced by composing rules
with multiple states. Without support for multistate rules,
the developer will be forced to manually maintain state logic
within the handler whenever a collaborative event is realized.

IMPLEMENTATION

We now have a look at the general Mingo architecture. The
structure is realized as a layered architecture, depicted in Fig-
ure 4. This is largely due to the target implementation tech-
nology that is the web, which imposes a layered architectural
style. We briefly discuss each of the layers of the stack in
detail in the rest of this section.

Communication Layer

The Communication Layer in Mingo is tasked with handling
the transportation of any possible event information from the
Application Layer to the Coordination Layer. For the intro-
ductory example, this layer would handle the multicasting of
all drawing interaction information to the event processing
engine, as well as to other participants in the session.

Mingo utilizes techniques from the publish/subscribe
paradigm in order to broadcast this event information to the
rest of the participants and to the Midas engine. This mul-
ticasting is propagated using a Node.js server, through the
use of HTMLS5 websockets. When an object is tagged as a
groupObject in Mingo, the actions that relate to a collab-
orative interaction on the object will be replicated to the rest
of mobile devices in the session.

Coordination Layer

The coordination layer handles the actual internal distributed
coordination mechanism of Mingo. It contains the event pro-
cessing engine Midas, the Node.js server and the bridging in-
frastructure needed for internal event subscription and detec-
tion. The Mingo runtime employs an extension of Midas to
provide this kind of bridging interface to register and listen to
activations of complex events as well as to replicate actions
on object groups, thus utilizing the engine for coordinating
collaborative interactions.

To coordinate collaborative events, every action on a
groupObject that may contribute to a collaborative inter-
action is sent to the server as an event. Mingo transparently
translates all simple interactions or events are into temporal
facts in the Midas engine. When a fact is asserted it can
trigger a collaborative event if all the conditions of the rule
hold. In this case Mingo will then invoke the respective col-
laborative interaction in all the mobile clients in the session —
through the callback provided as the second argument of the
on construct.

Application Layer

For the previous two layers to be helpful to the developer for
creating a collaborative application, there needs to be a suit-
able way to expose their functionality. The Application Layer
in Mingo provides the necessary abstractions for developers
of web-based mobile applications that make it simple to in-
troduce collaborative mechanisms to their applications using
the on and groupOb ject constructs. The Mingo client in-
tercepts calls to operations on objects and sends them to be
stored in the CEP engine.

When an object is tagged as a groupObject, Mingo as-
signs a unique identifier to the object and proceeds to create
replicas in the other mobile devices connected to the session.
Additionally, Mingo detects the rule defined and sends it to
the server to be stored in the event processing engine Midas.
The engine stores pre-defined rules with the aim of detect-
ing a possible distributed collaborative event in the mobile
application through the actions of the participants in the cur-
rent session. Subsequently, using the on construct on such
a replicated object will cause the callback assigned to be in-
voked whenever the engine triggers a collaborative event as
defined by its respective rule. The application layer thus ex-
poses these mechanisms to the developer of a collaborative
mobile application.

EVALUATION
In this section we demonstrate how Mingo’s language support
eases the development of complex cloud-based applications

192.168.6,167:8000/draw?nick=androic C' ()

Figure 5. mDraw mobile application

by implementing a collaborative drawing mobile application.
We then implement a similar application supported by a rule
based approach for the web. We subsequently compare the
two approaches and their support for implementing collabor-
ative interactions.

i) Collaborative Drawing Application: mDraw

mDraw is the concrete implementation of the collaborative
drawing application introduced in the motivating example. It
runs on mobile browsers supporting JavaScript and HTMLS.
To join a session, clients simply connect to the application us-
ing a url. The application code of the web app can be cloned
from Github’.

Having explained the collaborative resize operation used in
mDraw, we now explain the implementation of the collabor-
ative bind operation from the second motivating example of
collaborative interactions and illustrated in Figure 1 (b). This
interaction consists of a start state when two participants
touch the canvas, a body state where they continue dragging
in opposite directions and end state where the canvas bor-
ders have been touched by both participants. Since the start
and body states are similar to the collaborative resize interac-
tion, we illustrate the implementation of the completed end
state in Listing 7.

Listing 7. mDraw: Collab Bind Start Rule

1 rule('bindEndRule’,

2 '?bodystate <— (State (name "body") (operation "bind"))

3 (Invoked (function "touchMove") (args ?x1 ?yl) (time ?t1)))
4 (Invoked (function "touchMove") (args ?7x2 ?y2) (time ?t2)))
5 (Canvasbounds (right ?right))

6 (test (and (>= ?x1 ?right) (<= ?x2 0)))

7 (test (and (<= (abs (— ?yl ?y2)) 10) (time:within ?t1 ?t2 1000)
8 —

9 (retract ?bodystate)

0 (assert (State (name "end") (operation "bind")))

1

1
1 (assert (bindEnd (args ?x1 ?y1 7x2 ?y2)))")

To detect when the bind action has been completed we need
to first check if a bind was already detected (line 2) and that
it is currently in the body state. Next we check if there are
two touchMove operations (line 3-4) that have reached the
opposite sides of the border of the canvases in the two devices
(lines 6-7). We change the state to a bind end state (line 9-10),

7 http://bit.ly/mingomdraw

and finally assert that a completed collaborative bind interac-
tion has been realized (line 11). The application can then react
to the assertion of this event by invoking its callback.

ii) Implementation in JavaScript using Nools

In this section we employ mDraw to evaluate our approach by
comparing it with a similar ad-hoc implementation written in
JavaScript.

We identified Nools, a JavaScript rule engine as the closest
to our declarative approach for the cloud. Nools enables de-
velopers to specify complex interactions as logic rules in their
applications and trigger events though callbacks. Nools can
run in the server as a Node.js package or in the desktop client
as a library.

In order to provide functionality for collaborative interactions
using Nools, we were forced to provide static rule definitions
on the server. In Listing 8 we show the relevant sections when
defining collaborative bind interaction programmatically in
Nools.

Listing 8. Nools: Reacting to a Collaborative Bind

1 var collabBind = flow.rule("bindEnd", [

2 [Invoked, "inv1", "inv1.function == 'touchMove'", {x: "x1", y: "y1", time:
"1,

3 [Invoked, "inv2", "inv2.function == 'touchMove' && (Math.abs(yl — y2)
<= 10) && (Math.abs(tl — t2) <= 1000)", { x: "x2", y: "y2", time
:"2"}],

4 [Canvasbounds, "b", "(b.right <= x1) && (x2 <= b.left)", {right: "?right",
left: "left"}],

5 [State, "state", "state.name == 'body' && state.operation == 'bind""']
6 1,
7 function(facts){
8 var inv1 = facts.inv1, inv2 = facts.inv2;
9 var args = [facts.args1, facts.args2];
10 this.assert(new State('end’, 'bind', inv2.time));
11 this.assert(new bindEnd(args, inv2.time);
12 clientManager.sendCollabEvent('collabBind', [inv1.dev1, inv2.dev2],
args);
13 }

Because nools is a rule-based language, the rule structure is
similar to that of Mingo rules. Line 1 defines the collaborat-
ive bind detection operation using Nools’ f1ow.rule con-
struct. The construct takes an array that contains rule defini-
tions as the first argument. In lines 2,3 we detect if the touch-
Move operation has occurred from the client browsers within
a time range of 1000 milliseconds. Line 4 detects if the oper-
ations have both touched the canvas borders and line 5 is an
additional check to see if the bind operation already begun in
its previous body state.

The third argument to flow.rule is a callback (line 7),
which is invoked whenever the rule fires. The callback is in-
voked with the facts that triggered the rule as arguments. We
use the arguments to assert the new state of the collaborative
interaction (line 10-11), similar to the states in the multistate
rules. We then call the code that will eventually send to the
participants that the collaborative interaction has been detec-
ted, sending all the arguments in an array (line 12).

Discussion

We proceed to compare the approaches provided by the
Mingo framework and the Nools engine. We begin by a
lines of code (LOC) quantitative comparison illustrated in

http://bit.ly/mingomdraw

1800

1600 ® GROUP COORDINATION
COMPLEX INTERACTIONS

1400 APP LOGIC

1200

1000

800

LINES OF CODE (LOC)

600

400

200 i
. - EEE
NoOLS ‘ MINGO NooOLS ‘ MINGO
SERVER CLIENT

Figure 6. LOC Comparison of Sample Application

Figure 6. We measured the code on the server and client
sides in terms of group coordination (replication, communic-
ation, session management), complex interactions (collabor-
ative events definitions, detection and activations) aside from
the rest of the application logic. We find that the Mingo
framework reduces the code a developer writes to enforce col-
laborative interactions — particularly on the server side where
the orchestration of events is implemented.

Next we qualitatively compare each of the two approaches
in terms of support of various coordination features (illus-
trated in Table 7). For group coordination, Mingo maintains
consistency by transparently replicating specified actions to
all connected mobile clients within the same session while
Nools provides no mechanism for this. Both approaches are
rule-based, they therefore support definition of complex in-
teractions declaratively.

In Nools, the rules need to be statically defined in order to be
utilized in an application. This limits the dynamism of rule
definitions. Dynamically adding rules enables developers to
add separate rules for different groups of replicated objects
thereby providing specialized types of interaction on differ-
ent shapes (e.g. we can dynamically define separate collab-
orative interactions for rectangles and circles). Through Mi-
das, Mingo natively supports temporal abstractions such as
the time:within construct while in the Nools approach
we had to specify time calculations and assert the facts with
temporal annotations.

Mingo rules can be defined by a developer on the mobile cli-
ent side and registered to be processed on the server by the
runtime. Nools natively has no support for this distribution;
when one defines rules on the browser they work only in the
browser, and if on the server then only the server code can
utilize the rules.

In our sample application for Nools, we observed that most
coordination code was interspersed with the application logic
for the drawing editor and the server code, making debugging
difficult and modification prone to unexpected errors. This
goes against the principle of separation of coordination con-

Support for Mingo Nools

Group coordination v X
Declarative interactions v v
Dynamic definitions v X
Temporal abstractions v X
Distribution v X
DSL X v
SOC for coordination v X
Mobility v X

Figure 7. Feature Support Comparison

cerns. Mingo code isolates the coordination logic, making
development less vulnerable to such limitations.

Nools does provide a DSL (Domain-Specific Language) for
‘cleaner’ rule definition syntax, while Mingo does not. How-
ever, the Nools rules defined with the DSL need to be com-
piled before beforehand. A final point is that Nools lacks sup-
port for mobile devices.

LIMITATIONS & FUTURE WORK

Mingo utilizes HTMLS5 websockets for communication, iden-
tified as one of the best performing web technologies for
collaborative groupware [8]. Furthermore the performance of
the Midas CEP engine in processing real-time event streams
has been previously documented in [14]. In the prototypes
we developed and tested the applications were quite respons-
ive. Nevertheless, Mingo is currently restricted to low-latency
environments since it is constrained to the inherent limitations
of the distributed web architecture. For instance, when sev-
eral simultaneous interactions from different clients are as-
serted to the server, their effects may cause the replicas to di-
verge. In future we intend to investigate how enforcing tech-
niques such as eventual consistency with operational trans-
formation [18] will ensure that the operations eventually con-
verge on all the clients, thereby relaxing this restriction.

We would also like to investigate how Mingo can estimate
and handle small delays in communication between clients
and server with respect to the defined rules, which affects de-
tection of delayed events. Finally, we intend to create a DSL
for more intuitive definitions of Mingo’s collaborative rules
both on the server and in the mobile clients.

CONCLUSION

We have focused on programming support for interactive
web-based mobile applications in which a number of cli-
ents participate in performing collaborative surface inter-
actions. We identified requirements that a suitable pro-
gramming model for coordinating these kinds of interactions
should adhere to: event composition and group coordination.

We propose Mingo, an object-oriented framework that ex-
tends JavaScript with coordination abstractions that blend
complex event processing and group coordination. Mingo al-
lows developers to cohesively compose events coming from
distributed client devices by defining rules and to coordinate
behaviour of distributed objects by defining group constructs.
Furthermore, the framework enables developers to program

their coordination concerns separate from their application lo-
gic. The major contribution of Mingo is to merge techniques
found in declarative complex event processing and distributed
group coordination into a coherent object-oriented framework
for collaborating interactions in mobile applications running
on web architecture.

REFERENCES

1.

Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska,
Ugur Cetintemel, and Mitch Cherniack. 2005. The
Design of the Borealis Stream Processing Engine. In
Proceedings of the Second Biennial Conference on
Innovative Data Systems Research. (CIDR’05).
Asilomar, CA.

. Sriram Karthik Badam and Niklas Elmqvist. 2014.

PolyChrome: A Cross-Device Framework for
Collaborative Web Visualization. In Proceedings of the
Ninth ACM International Conference on Interactive
Tabletops and Surfaces (ITS "14). ACM, New York, NY,
USA, 109-118. DOTI:
http://dx.doi.org/10.1145/2669485.2669518

. Jacob T. Biehl and Brian P. Bailey. 2004. ARIS: An

Interface for Application Relocation in an Interactive
Space. In Proceedings of Graphics Interface 2004 (Gl
’04). Canadian Human-Computer Communications
Society, 107-116. http:
//dl.acm.org/citation.cfm?id=1006058.1006072

. Florian Echtler, Manuel Huber, and Gudrun Klinker.

2008. Shadow Tracking on Multi-touch Tables. In
Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI '08). ACM, New York, NY, USA,
388-391.DOT:
http://dx.doi.org/10.1145/1385569.1385640

. Charles Forgy. 1982. Rete: A Fast Algorithm for the

Many Pattern/Many Object Pattern Match Problem.
Artificial Intelligences 19, 1 (1982), 17-37.
http://dx.doi.org/10.1016/0004-3702 (82) 90020-0

. D. Gelernter. 1985. Generative communication in Linda.

ACM Transactions on Programming Languages and

Systems 7, 1 (Jan 1985), 80—112.

. Yechezkal-Shimon Gutfreund and John R Nicol. 1997.

WWWinda Orchestrator: a mechanism for coordinating
distributed flocks of Java Applets. In Society of
Photo-Optical Instrumentation Engineers (SPIE)
Conference Series (Electronic Imaging’97),

M. Freeman, P. Jardetzky, and H. M Vin (Eds.).
295-302.

. Carl A. Gutwin, Michael Lippold, and T. C. Nicholas

Graham. 2011. Real-time Groupware in the Browser:
Testing the Performance of Web-based Networking. In
Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work (CSCW ’11). ACM, New
York, NY, USA, 167-176. DOI :
http://dx.doi.org/10.1145/1958824.1958850

. Ken Hinckley. 2003. Synchronous Gestures for Multiple

Persons and Computers. In Proceedings of the 16th
Annual ACM Symposium on User Interface Software

10.

11.

12.

13.

14.

15.

16.

17.

18.

and Technology (UIST '03). ACM, New York, NY, USA,
149-158. DOI:
http://dx.doi.org/10.1145/964696.964713

Brad Johanson, Greg Hutchins, and Terry Winograd.
2000. PointRight: A System for Pointer/Keyboard
Redirection among Multiple Displays and Machines.
Technical Report.

Jonathan P. Munson and Prasun Dewan. 1997. Sync: A
Java Framework for Mobile Collaborative Applications.
Computer 30, 6 (June 1997), 59—-66. DOT :
http://dx.doi.org/10.1109/2.587549

George A. Papadopoulos and Farhad Arbab. 1998.
Coordination Models and Languages. In Advances in
Computers. (The Engineering of Large Systems).
Academic Press, New York, NY, USA, 329-400.

Mark Proctor. 2012. Drools: A Rule Engine for
Complex Event Processing. In Applications of Graph
Transformations with Industrial Relevance, Andy
Schiirr, Daniel Varro, and Gergely Varro (Eds.). Lecture
Notes in Computer Science, Vol. 7233. Springer Berlin
Heidelberg. DOT :
http://dx.doi.org/10.1007/978-3-642-34176-2_2

Thierry Renaux, Lode Hoste, Stefan Marr, and
Wolfgang De Meuter. 2012. Parallel Gesture
Recognition with Soft Real-time Guarantees. In
Proceedings of the 2Nd Edition on Programming
Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions
(AGERE! 2012). ACM, New York, NY, USA, 35-46.
DOI :http://dx.doi.org/10.1145/2414639.2414646

Mark Roseman and Saul Greenberg. 1992. GROUPKIT:
A Groupware Toolkit for Building Real-time
Conferencing Applications. In Proceedings of the 1992
ACM Conference on Computer-supported Cooperative
Work (CSCW ’92). ACM, New York, NY, USA, 43-50.
DOI :http://dx.doi.org/10.1145/143457.143460

Oliver Schmid, Agnes Lisowska Masson, and Béat
Hirsbrunner. 2012. Collaborative Web Browsing:
Multiple Users, Multiple Pages, Concurrent Access, One
Display. In Proceedings of the 4th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS *12). ACM, New York, NY, USA,
141-150. DOI:
http://dx.doi.org/10.1145/2305484.2305508

C. Scholliers, L. Hoste, B. Signer, and W. De Meuter.
2011. Midas: A Declarative Multi-Touch Interaction
Framework. In Proceedings of 5th International
Conference on Tangible, Embedded, and Embodied
Interaction. (TEI'11). Funchal, Portugal.

Chengzheng Sun and Clarence Ellis. 1998. Operational
Transformation in Real-time Group Editors: Issues,
Algorithms, and Achievements. In Proceedings of the
1998 ACM Conference on Computer Supported
Cooperative Work (CSCW ’98). ACM, New York, NY,
USA, 59-68.DOTI:
http://dx.doi.org/10.1145/289444.289469

http://dx.doi.org/10.1145/2669485.2669518
http://dl.acm.org/citation.cfm?id=1006058.1006072
http://dl.acm.org/citation.cfm?id=1006058.1006072
http://dx.doi.org/10.1145/1385569.1385640
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1145/1958824.1958850
http://dx.doi.org/10.1145/964696.964713
http://dx.doi.org/10.1109/2.587549
http://dx.doi.org/10.1007/978-3-642-34176-2_2
http://dx.doi.org/10.1145/2414639.2414646
http://dx.doi.org/10.1145/143457.143460
http://dx.doi.org/10.1145/2305484.2305508
http://dx.doi.org/10.1145/289444.289469

	Introduction
	The Need for Coordinating Complex Collaborative Interactions
	Motivating Example: Online Collaborative Drawing Editor
	Requirements

	Related Work
	Mingo
	Mingo Execution Model
	Programming Support for Coordinating Complex Interactions
	Group Coordination Abstraction.
	Distributed Event Composition.

	Managing States in Mingo

	Implementation
	Communication Layer
	Coordination Layer
	Application Layer

	Evaluation
	i) Collaborative Drawing Application: mDraw
	ii) Implementation in JavaScript using Nools
	Discussion

	Limitations & Future Work
	Conclusion
	REFERENCES

