
Just-in-Time

Data Structures
A Language Design Approach to Promote the Shift from Choosing a Single Data

Structure to Choosing a Set of Data Representations

Just-in-Time

Data Structures
A Language Design Approach to Promote the Shift from Choosing a Single Data

Structure to Choosing a Set of Data Representations

Mattias De Wael

A dissertation submitted in fulfilment of the requirements
for the award of the degree of Doctor of Science

May 2016

Promotors
Prof. Dr. Wolfgang De Meuter

Prof. Dr. Jennifer B. Sartor

Vrije Universiteit Brussel
Faculty of Science and Bio-Engineering Sciences

Department of Computer Science
Software Languages Lab

Jury:
Prof. Dr. Viviane Jonckers (chair), SOFT, Vrije Universiteit Brussel
Prof. Dr. Peter Vrancx (secretary), AI, Vrije Universiteit Brussel
Prof. Dr. Wolfgang De Meuter (promotor), SOFT, Vrije Universiteit Brussel
Prof. Dr. Jennifer B. Sartor (promotor), SOFT, Vrije Universiteit Brussel
Prof. Dr. Jan Hidders, WISE, Vrije Universiteit Brussel
Prof. Dr. Philippe Cara, DWIS, Vrije Universiteit Brussel
Prof. Dr. Richard Jones, School of Computing, University of Kent (UK)
Prof. Dr. Yvonne Coady, Computer Science Department, University of Victoria (Canada)

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / Fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789492312105
NUR 980 989

Acknowledgements:
Het werk in deze dissertatie werd gefinancierd door het Agentschap voor Innovatie door
Wetenschap en Technologie.
The work in this dissertation has been funded by the Agency for Innovation by Science
and Technology in Flanders (IWT).

Copyright:
Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotokopie, microfilm, electronisch of
op welke andere wijze ook, zonder voorafgaande schriftelijke toestemming van de au-
teur.

All rights reserved. No parts of this book may be reproduced in any form by print, pho-
toprint, microfilm, electronic or any other means without prior written permission from
the author.

©2016 Mattias De Wael

Misschien wel leuk om te vertellen:
“Ik heb het geschreven met in m’n

achterhoofd het thema dat bewustzijn
uiteindelijk niet bevrijdt maar veel
meer de muren van de gevangenis

zichtbaar maakt”.

THEO MAASSEN

Acknowledgements

First of all, I have to thank my jury (Viviane Jonckers, Peter Vrancx, Wolfgang De Meuter, Jennifer
B. Sartor, Jan Hidders, Philippe Cara, Richard Jones, and Yvonne Coady) and my promotors (Wolf-
gang and Jennifer) in particular. They have read my text and commented on my work in order to
lift it to a higher level. I also have to thank the Agency for Innovation by Science and Technology
in Flanders (IWT) for providing me with two times two years of funding. Further, I want to thank
the people of the administration offices of DINF and SOFT for helping me fight the bureaucracy
at the VUB and beyond. The other people that I want to thank for contributing to the scientific
part of the Ph.D endeavour are, in anti-chronological order, Theo and Eline (for proof reading),
Lode and Joeri (also for proof reading), Janwillem (for being the soundboard and participant in
many discussions), Dries and Thierry (and later on Christophe) (for find . -exec grep -l
-e ’*problem’ \; | solve), Stefan (for being a genuine co-author in most of my publica-
tions), David Ungar (for teaching me to be thorough and exact), and Tom (for guiding and advising
me during my final master’s year and my first Ph.D. years). Finally, I would like to thank Thibalt for
creating a cover for this dissertation that is maybe even more beautiful and elegant than the idea
of just-in-time data structures itself.

On a more personal note I want to thank my parents and my sister, just for being the most
important people in the world for me; Eline (Ponnetje), just for "de zoentjes" and because I love
her; Ellen and Sanne, just for being their supportive-selves; "de mannen van 86", just for being
there day and night, through thick and thin since for what seems like forever; "de mannen van den
voetbal", just for sharing beers in the Ghelamco Arena with me (for instance that time when KAA
Gent won their first championship); SOFT′, just for providing a relaxed atmosphere; JW, just for
never suggesting a "muziekje van de dag" and letting me do all the hard work; Laure, just for so
many small things (for instance sticking the "defence in progress"-sign on the door); Simon, just
for the support (although for the wrong team); the IWT-triangle, just for being the best batch of
Ph.D. students to have ever wandered the 10th floor since the existence of PROG, SSEL, and SOFT.

Mattias De Wael1

May 2016

1A version of the dissertation without typos is available on request.

i

Abstract

In 1978, Niklaus Wirth surveyed the set of most commonly used algorithmic tasks in
function of the accompanying data structures and vice versa. He published this survey in
a book titled “Algorithms + Data Structures = Programs”. After more than three decades,
it can still be considered to be an accurate title: Even today, software engineering prac-
tices focus on finding the “best” data structure for a program (i.e., the interplay of a set
of algorithms). A single program often consists of multiple algorithms that operate on
the same data. In such a program, the “best” data structure is the data structure that
yields the best overall performance, where performance can be interpreted as shorter ex-
ecution times, lower memory consumption, higher throughput, or any other desirable
non-functional feature.
However, we observe that for some programs, relying on a single data representation can
be less performant than changing the representation of the data at runtime. Hence, we
argue in favour of using the “best” data representation for each phase of a program, and
to enable changes between the different data representations at runtime. We call this
just-in-time representation changes. Implementing representation changes is a tedious
and error-prone task, for which little to no support exists in contemporary programming
languages.
In this dissertation we explore the idea of just-in-time representation changes and tax-
onomize the design space of programming languages in which such representation
changes can be implemented. From this taxonomy, we identify a vacuum in the land-
scape of programming languages, to allow developers to express data representations
changes in order to realise non-functional features, such as for instance improving per-
formance. Hence, the core contribution of this work is the design of a new programming
language called JITds, which fills this vacuum. Besides representation changes them-
selves, another core design feature of JITds is that it is possible to disentangle general
application logic from logic responsible for the representation changes. In short, with
JITds we want to promote the shift from choosing a single data structure to choosing a
set of data representations, in order to improve performance.

iii

Samenvatting

Niklaus Wirth schreef in 1978 een boek waarin hij de meest voorkomende algoritmen
en datastructuren beschrijft in functie van elkaar. De titel van dit boek is “Algorithms
+ Data Structures = Programs”. Dit is een titel die na meer dan 30 jaar nog steeds goed
gekozen blijkt te zijn, want ook vandaag gaan softwareontwikkelaars nog steeds op zoek
naar de “beste” datastructuur voor een programma. Vaak bestaat een programma uit
een samenspel van verschillende algoritmen die inwerken op dezelfde data. In zo een
programma is de “beste” datastructuur, die datastructuur die over het algemeen de beste
performantie oplevert. Hierbij kan performantie gezien worden als kortere executietijd,
lager geheugenverbruik, snellere reactietijd of om het even welke combinatie van gewen-
ste, niet-functionele eigenschappen.
We stellen echter vast dat voor sommige programma’s de performantie kan verbeterd
worden als tijdens de uitvoering van het programma gewisseld wordt van gekozen data-
structuur, i.p.v. zich te beperken tot het gebruik van één datastructuur. We stellen dus
voor om voor elke fase in een programma een “beste” datastructuur te kiezen en deze te
laten wisselen. We noemen dit just-in-time representation changes. Het implementeren
van just-in-time representation changes is een moeilijke opgave die bovendien zeer fout-
gevoelig is. We merken op dat hedendaagse programmeertalen weinig tot geen abstrac-
ties voorzien om just-in-time representation changes correct te implementeren.
In dit proefschrift spitten we het idee van just-in-time representation changes verder
uit in de context van programmeertaalontwerp. We brengen het landschap van de
programmeertalen, waarin zulke just-in-time representation changes kunnen geïmple-
menteerd worden, in kaart. We stellen echter vast dat er een vacuüm bestaat in dit
landschap: het uitdrukken van niet-functionele representation changes wordt door geen
enkele programmeertaal ondersteund. Daarom introduceren we in dit proefschift JITds,
een nieuwe programmeertaal die dit vacuüm moet opvullen. Omdat JITds als doel heeft
niet-functionele representation changes toe te laten is een belangrijke eigenschap van
JITds dat de logica die de representation changes (niet-functioneel) aanstuurt, volledig
losgekoppeld kan worden van de de logica van het programma (functioneel) zelf. Het
doel van JITds is de focus te verleggen van het kiezen van één datastructuur naar het
kiezen van een verzameling van datarepresentaties, met het oog op het verbeteren van
de performantie.

v

vi CONTENTS

Contents

Acknowledgements i

Abstract iii

Samenvatting v

Contents vi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Separating Interface from Implementation: History and Terminology . . . 3
1.3 Research Design . 4
1.4 Contributions . 5
1.5 Supporting Publications . 6
1.6 Limitations . 7
1.7 Roadmap . 7

2 Motivation 11
2.1 On the Complexity of Performance . 11

2.1.1 Calculating or Estimating Time and Space Complexity 12
2.1.2 Non-Uniform Memory Access Cost 15
2.1.3 Non-Uniform Instruction Execution Cost 19
2.1.4 Non-Uniform Cost Model . 23

2.2 On the Effect of Data Representation on Performance 25
2.2.1 The Matrix and its Representations 26
2.2.2 Effect of Representation on Performance 30
2.2.3 Effect of Changing Representation on Performance. 31
2.2.4 Changing Data Characteristics. 34
2.2.5 Ad-Hoc Representation Changes . 35
2.2.6 Levels of Granularity . 39

2.3 Towards A Language with Support for Representation Changes 40

CONTENTS vii

3 Matching Data and Computation 41
3.1 Representation Selection or Representation Change. 41
3.2 Seven Dimensions of Representation Changes 44

3.2.1 Q1: Who is responsible for data representation changes? 44
3.2.2 Q2: How is a data representation change realised? 45
3.2.3 Q3: When is a data representation change executed? 46
3.2.4 Q4: Which data representation changes are possible? 48
3.2.5 Q5: How long does a data representation change take? 51
3.2.6 Q6: What is altered after a data representation change? 52
3.2.7 Q7: Why are Data Representation Changes Introduced? 54
3.2.8 Summary . 57

4 Designing Just-in-Time Data Structures: How to Change the Representation 59
4.1 JITds: A Statically Typed Class-based Object-Oriented Language 60

4.1.1 JITds versus Java . 61
4.2 From one to many representations. 61

4.2.1 Combining Representations . 63
4.3 Representation Changes . 64

4.3.1 Transition Functions . 65
4.3.2 Swap Statement . 67

4.4 Member fields . 68
4.5 Intended Usage . 69

4.5.1 Specialised Representations . 69
4.5.2 Functional Swaps . 76

4.6 Managing the Number of Transition Functions 79
4.7 Just-in-Time Data Structures put into Context 81

4.7.1 Homomorphic Reclassification . 81
4.7.2 Multiple Inheritance . 82
4.7.3 Treaty of Orlando . 84

4.8 Conclusion . 85

5 JIT∆σ: A Formal Specification of JITds 87
5.1 User Syntax . 88
5.2 Operational Semantics . 89

5.2.1 Configurations, Heaps, Stacks, Objects, and Values 90
5.2.2 Selection Functions . 90
5.2.3 Transition Graph . 91

5.3 Reduction Semantics for Statements . 93
5.3.1 Reduction Object Construction . 94
5.3.2 Reduction Method Invocation and Method Return 96
5.3.3 Reduction Swap Statement and Transition Function Return 99

5.4 A Type System for JIT∆σ . 102
5.4.1 Static Types and Dynamic Types . 102
5.4.2 Types (Cn), Subtypes (Cn<:Cn′), and Valid Types (P `Cn) 103
5.4.3 Local Type Environment (Γ) . 104

viii CONTENTS

5.4.4 Type Checking . 104
5.5 Proof of Soundness . 109

5.5.1 Well-formed Configurations, Heaps, Local Stores, and Objects . . . 110
5.5.2 Progress . 111
5.5.3 Preservation . 114

5.6 JIT∆σ with Single Inheritance . 119
5.7 Conclusion . 121

5.7.1 Implicitly Changing the Representation of the Caller 121
5.7.2 A Case in favour of Unsupported Swap Exceptions 122

6 Designing Just-in-Time Data Structures: When to Change the Representation 123
6.1 Swap Rules . 123

6.1.1 External Swap Rules . 124
6.1.2 Internal Swap Rules . 127
6.1.3 Interface Swap Rules . 129
6.1.4 Scoping Rules for Swap Rules . 131

6.2 History Based Representation Changes . 132
6.2.1 Invocation Counters . 134

6.3 Learning Representation Changes. 137
6.3.1 First Class Representations . 137
6.3.2 An External Swap Rule with Reinforcement Learning 138

6.4 Domain Specific Aspects . 140
6.5 Conclusion . 141

7 JITds: The Language Implementation 143
7.1 Dynamic Object Reclassification . 143
7.2 The JIT class T: an Abstract Example Program 145
7.3 JITds-Java . 146

7.3.1 Technology used in the Implementation of JITds-Java 152
7.3.2 Design Patterns . 154
7.3.3 Forwarding and Delegation in Dynamic Languages 154
7.3.4 Limitation of Implementation by Forwarding 154

7.4 JITds-C . 155
7.4.1 Method Tables . 157
7.4.2 Technology used in the Implementation of JITds-C 160
7.4.3 Conclusion . 161

7.5 Summary . 161

CONTENTS ix

8 Evaluation 163
8.1 A set of synthetic benchmarks . 163

8.1.1 Caveat . 163
8.2 Experimental Setup . 164
8.3 Example Programs . 165

8.3.1 The Matrix Program . 166
8.3.2 The List Program . 172
8.3.3 The File Program . 179
8.3.4 The Sorting Program . 182
8.3.5 The String Program . 186

8.4 Conclusions . 191

9 Related Work 195
9.1 Languages and Paradigms . 195

9.1.1 Late Data Layout . 195
9.1.2 Object Replacement (in Smalltalk) . 199
9.1.3 Object Evolution . 201
9.1.4 Dynamic Reclassification (in FickleI I) 202
9.1.5 Typestate-Oriented Programming (in Plaid) 204
9.1.6 Gilgul . 206
9.1.7 Summary . 208

9.2 Frameworks and Environments for Changing Collections 208
9.2.1 Storage Strategies . 208
9.2.2 Brainy . 210
9.2.3 Chameleon . 212
9.2.4 Dynamically Transforming Data Structures 213
9.2.5 CoCo . 215
9.2.6 Summary . 218

9.3 Changing Computations . 218
9.3.1 PetaBricks . 218
9.3.2 Dimensions of Method Dispatch . 220

9.4 Summary . 220
9.5 Conclusion . 220

10 Conclusions and Future Work 223
10.1 JITds in a Nutshell . 223
10.2 Contributions . 224
10.3 Future Work . 226

10.3.1 Software Engineering . 226
10.3.2 Language Design and Language Implementation 228

10.4 Epilogue . 229

x CONTENTS

A The Case of the Missing Cache Hits 231
A.1 Introduction . 231
A.2 The platform: TILEPro64 processor . 232
A.3 The program: Tetrahedral Numbers . 233
A.4 Measured Performance . 234
A.5 Comparing Instruction Sequences . 234
A.6 Cache misses caused the processor to stall 236
A.7 Padding Resolves the Cache Misses . 238
A.8 Injecting Pipeline Bubbles . 240
A.9 Similar Performance Pitfalls . 241
A.10 Conclusions . 242

B Auxiliary Functions for JIT∆σ 243

C SparseMatrix implementations 245
C.1 Compressed Row Storage (CRS) . 245
C.2 Diagonal Matrix . 247

D Multiple Inheritance and Mitigating Ambiguity: How Do They Do It 249

Bibliography 253

Chapter 1

Introduction

In 1978, Niklaus Wirth surveyed the set of most commonly used algorithmic tasks in
function of their accompanying data structures and vice versa. He published this survey
in a book titled “Algorithms + Data Structures = Programs” [88]. After more than three
decades, it can still be considered to be an accurate title. Even today, software engineer-
ing practices focus on finding the “best” data structure for a program. A single program
often consists of a set of algorithms that operate on the same data. In such a program,
the “best” data structure is then considered to be the data structure that yields the best
overall performance, where performance can be interpreted as shorter execution times,
lower memory consumption, higher throughput, or any other desirable non-functional
feature.

There exist programs, however, where relying on a single data representation is
less efficient than changing the representation of the data at runtime. In this dis-
sertation, we argue in favour of using the “best” data representation for the different
phases of a program when the benefits of changing the data representation at runtime
exceeds the cost of the actual representation change. We call these just-in-time repre-
sentation changes. Even though the idea of just-in-time representation changes seems
like a straightforward approach towards improving the performance of programs, it is
not often implemented in actual software or libraries. We argue this is the case because
implementing representation changes is a tedious and error-prone task, for which little
to no support exists in contemporary programming languages.

In this dissertation we explore this idea of just-in-time representation changes and
present a taxonomy of programming language features to express representation changes.
This taxonomy is based on a survey of programming languages, and from this survey we
identify a lacuna in the landscape of programming languages. Today, no programming
language exists that enables developers to express data representation changes in order
to realise non-functional features, such as improving the performance. Hence, the core
contribution of this work is the design of a new programming language, JITds, which fills
up this lacuna. Besides enabling representation changes, another core design feature of
JITds is that it is possible to disentangle general application logic from the crosscutting
concern of representation changes.

1

2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

In the seventies and eighties, a significant amount of effort was needed to make software
efficient. CPUs were slow, memory banks were small, and these scarce resources had to
be put to best use. When Wirth [88] surveyed the set of most commonly used algorith-
mic tasks in combination with their accompanying data structures, these combinations
were often optimised for performance, generally for faster execution or lower memory
consumption, or a combination thereof. As a consequence of Moore’s law, writing effi-
cient programs became less important for the developers, because the performance of
their programs was virtually being doubled every three years by the hardware engineers.
Technically, Moore’s law applies to transistor densities only, but also in related areas,
such as clock speeds, the same growth has been observed until approximately the year
2000. Since the turn of the century, this so-called free lunch is over and developers will
need to take performance back into account [79].

Understanding and predicting the performance characteristics of an application that
is run on today’s hardware is not longer trivial. Today’s hardware architectures have
become evermore complex, e. g., we have non-uniform memory access (NUMA) and
branch prediction, but also multi-core and even many-core architectures. A great deal
of programming research effort has gone into investigating the potential of this parallel
hardware, e. g., [55, 24, 22, 19] to mention just our own work. However, also on a single
core, performance gains can still be realised.

When writing software today, the focus lays with finding the “best” representation
for the data, i. e., the representation that yields the best overall performance. There ex-
ist programs, however, where using this single data representation is less efficient than
changing the representation of the data during the execution of the program [21, 20]. In
these programs, the cost of these representation changes (e. g., execution time) is earned
back many times over by the reduction in cost of using an alternate representation for
the remainder of the execution.

Implementing representation changes is a difficult and error-prone task and today
no programming languages exist that help developers with this. One could argue that
implementing representation changes in dynamic (object-oriented) languages is rela-
tively easy, e. g., by using become in SmallTalk [36] or dynamic reparenting in Self [12].
However, dynamic languages cannot provide static guarantees about which messages an
object can understand, let alone in a setting where the representation of an object can
change at runtime. A small quorum of statically-typed languages exist that 1) support
representation changes and 2) guarantee type safety, e. g., Gilgul [15], Fickle [27], and
Plaid [78]. The limitation of these languages is that the representation changes are an
explicit part of the type signature of the data. Consider, for instance, the class File for
which two representations exist: OpenFile and ClosedFile. To open a closed file,
the class ClosedFile provides the open() method which changes the representa-
tion fromClosedFile toOpenFile. In Plaid1, for instance, such anopen()method
would have the type [ClosedFile»OpenFile]. Here, the explicit information is in-

1This introductory example uses syntax from the programming language Plaid [78], which is discussed in
section 9.1.5.

1.2. SEPARATING INTERFACE FROM IMPLEMENTATION: HISTORY AND
TERMINOLOGY 3

teresting because the representation change is introduced to model functional features
of the software, here opening a closed file. However, when the representation change
is introduced to implement non-functional features, such as reducing execution time,
adding transition signatures clutters the application logic.

Thus, what is missing in the landscape of programming languages is a program-
ming language that, first, enables representation changes, and second, provides suffi-
cient guarantees w.r.t. the expected behaviour (i. e., type safety) without cluttering the
general application logic.

1.2 Separating Interface from Implementation: History and
Terminology

“Separating interface from implementation” is a well-known principle in software engi-
neering (e. g., from [64]). Before the advent of object-technology, it was a mechanism for
allowing changes in the implementation in later stages of the development cycle without
needing to update the code that uses the interface, e. g., header files in C. Later, with the
advent of object-technology, late binding was introduced which enabled different im-
plementations to coexist at runtime. Today, most (object-oriented) programming lan-
guages allow the representation of a data object to be chosen at allocation time. This
evolution is a clear example of ever-later binding times in the history of software devel-
opment (paraphrased from Ralston et al. [67]).

In this context, the four terms we use most in this dissertation are data object, abstract
data type, data interface, and data representation. Without proper definitions, confusion
or ambiguity may arise due to multiple pre-existing meanings of these terms. Hence, to
avoid confusion, we find it important to define these terms explicitly here.

A Data Object is a referable value, e. g., by using an identifier. Concretely,
a data object is either a primitive data object (e. g., a number or a boolean)
or a compound data object (e. g., cons-cell, struct, array, . . .) [1].

An Abstract Data Type (ADT) defines a class (i. e., category) of data ob-
jects. This class is completely characterised by the available operations. Hence,
an abstract data type is defined by its characterising operations (definition
taken from [53]).

A Data Interface is the set of characterising operations of an abstract data
type (i. e., a class of data object) or a concrete data object. In other words: 1)
a data interface is the set of characterising operations applicable to a data
object to retrieve or update information; and 2) a data interface defines an
abstract data type.

A Data Representation is the concrete realisation or implementation of
a data interface (i. e., often realised in a concrete programming language).

4 CHAPTER 1. INTRODUCTION

Note that these four terms denote well-known and well-understood concepts. For
the latter two, we explicitly choose to use our own terminology, in order to avoid ambi-
guity with other, sometimes more popular, terminology. We now argue why we opt to
use Data Object, Data Interface, and Data Representation; rather than the popular alter-
natives.

Data Object instead of Data or Object In the context of computer science, (plain) “data”
can have the connotation of being unstructured and being only indirectly acces-
sible. In the context of object-oriented programming, “object” has a well-defined
meaning, i. e., encapsulated state and behaviour. Hence, if we want to denote an
referable piece of data we cannot use the words “data” or “object”, but use the com-
pound term “data object” instead.

Data Interface instead of Interface The term “interface” is overloaded. In Java, for in-
stance, an interface is a language construct introduced to support a safe but
restricted form of multiple inheritance. Because JITds has the look-and-feel of
Java, we explicitly want to avoid the confusion between “data interface”, as intro-
duced above, and the language construct “interface” as it is known in Java.

Data Representation instead of Implementation In the context of programming lan-
guage research, “implementation” can denote two completely different things: ei-
ther the implementation of a data interface or algorithm, or the implementation
of a programming language. We therefore refrain from using “implementation”
to mean the realisation of a data interface, but use the term “data representation”
instead.

1.3 Research Design

This research is motivated by two observations:

O1 The expertise of the average software engineer is no longer sufficient for him to
predict and understand the performance of the software he develops.

O2 Applications exist where the use of any single fixed data representation is less effi-
cient than changing the data representation at runtime.

In chapter 2 we extensively discuss O1 and O2: We explain how difficult performance
engineering has become and we show how various programs in various domains benefit
from online representation changes. We conclude that the ideal programming language
adequately supports developers in safely implementing non-functional representation
changes (cf. O2). We focus on non-functional representation changes that improve the
performance. Furthermore, the ideal programming language allows performance ex-
perts to introduce representation changes without interfering with the developer of the
application logic, in order to relieve the average developer from the cognitive burden of
implementing representation changes (cf. O1). In other words, such the ideal program-
ming language must meet the following three requirements:

1.4. CONTRIBUTIONS 5

R1 The language must enable data objects to change their data representation at run-
time.

R2 The language must provide type safety guarantees in the face of representation
changes.

R3 The language must allow programmers to disentangle application logic from rep-
resentation changing logic.

We have performed an extensive survey of programming languages and conclude
that, to the best of our knowledge, such a programming language does not exist today
[20]. Hence, the main contribution of this work is the design (and implementation) of
the programming language JITds that meets R1 (see chapter 4), R2 (see chapter 5), and
R3 (see chapter 6).

1.4 Contributions

The goal of this research is to provide programming language support for non-functional
representation changes, primarily intended to improve overall performance. The path to
this goal is described in section 1.3. This dissertation makes two major contributions, the
latter of which can be subdivided into four sub-contributions:

• A taxonomy of programming language features to express representation changes;

• The design of the programming language JITds, which supports non-functional
representation changes (cf. R1, R2, R3).

– We propose a set of language features to support (non-functional) represen-
tation changes (R1).

– We define an operational semantics for JITds (R1).

– We prove the soundness of the type system of JITds (R2).

– We propose a set of language features to decouple representation change
logic from general application logic (R3).

The technical contributions of this work are the two prototype implementations of
the language JITds, which we discuss in chapter 7. The first implementation, JITds-Java,
transpiles JITds code to Java. The second implementation, JITds-C, compiles JITds code
to a set of C-function calls that use our custom-built object runtime engine. We further
use the JITds-Java compiler in chapter 8, where we compare the execution times and the
code structure of five synthetic benchmark programs, written in JITds, against the same
programs written in plain Java.

6 CHAPTER 1. INTRODUCTION

1.5 Supporting Publications

The following publications support the key ideas of this dissertation:

Just-in-Time Data Structures [20] (Mattias De Wael, Stefan Marr, Joeri De Koster, Jen-
nifer B. Sartor, and Wolfgang De Meuter). In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Onward! 2015)
This paper presents the language JITds and the constructs needed to support just-in-
time representation changes. Two example programs are discussed where changing the
representation of a data object results in improved performance.

Data Interface + Algorithms = Efficient Programs: Separating logic from represen-
tation to improve performance [21] (Mattias De Wael, Stefan Marr, and Wolfgang De
Meuter). In Proceedings of the 9th International Workshop on Implementation, Compi-
lation, Optimization of Object-Oriented Languages, Programs and Systems (ICOOOLPS
’14)
This paper identifies the need for a structured approach to handle the transitions be-
tween different data representations and the descriptive programming constructs to ex-
press which representation fits a program fragment best.

Just-in-Time Data Structures: Towards Declarative Swap Rules [18] (Mattias De Wael).
In Proceedings of the 13th International Workshop on Dynamic Analysis (WODA ’15)
This paper presents just-in-time data structures to the community of researchers in dy-
namic analysis. It explains how internal swap rules are currently naively implemented,
and argues in favour of a more advanced implementation. Concretely, the paper advo-
cates to take advantage of the declarative nature of swap rules, and to rely on decades of
work in this area to obtain a more efficient implementation.

The following publications provide factual evidence for certain claims made in this
dissertation:

Partitioned Global Address Space Languages [19] (Mattias De Wael, Stefan Marr, Bruno
De Fraine, Tom Van Cutsem, Wolfgang De Meuter). In Computing Surveys, Volume 47 ,
Issue 4 (CSUR)
This paper presents a taxonomy of partitioned global address space (PGAS) languages.
Many of these languages pay special attention to the distribution and structure of regular
data, e. g., as summarised in section 3.3 of this paper.

When Spatial and Temporal Locality Collide: The Case of the Missing Cache Hits [23]
(Mattias De Wael, David Ungar, and Tom Van Cutsem). In Proceedings of the 2013 In-
ternational Conference on Principles and Practices of Programming on the Java platform:
Virtual machines, Languages, and Tools (ICPE ’13)
This paper reports on a multi-person, multi-month endeavour to pin-point the origin
of unexpected performance characteristics of a simple benchmark program. This paper

1.6. LIMITATIONS 7

provides factual evidence for our claim that performance engineering is difficult and that
understanding the performance characteristics of a larger piece of software is no longer
feasible for the average programmer.

Fork/join parallelism in the Wild: Documenting Patterns and Anti-patterns in Java
Programs using the Fork/Join Framework [22] (Mattias De Wael, Stefan Marr, and Tom
Van Cutsem). In Proceedings of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java platform: Virtual machines, Languages, and Tools (PPPJ
’14)
This paper studies a corpus of 120 Java fork/join applications and identifies best-practice
patterns and anti-patterns in those applications. This paper provides factual evidence
for our claim that the average programmer uses the path of the least resistance. To get
the job done, many developers write the easiest possible code, without necessarily being
aware of the implications, e. g., performance penalty of using a certain feature.

1.6 Limitations

There are two main limitations of this work. First, we have the technical limitation that
JITds was given two prototype implementations. The objective of these implementations
was to verify the feasibility of implementing the new programming features proposed in
this work, and not on the efficiency and completeness of the implementation. In the fu-
ture work section (see section 10.3), we already hint at possible improvements over the
current implementations. Second, JITds has not been evaluated in the context of real-
world applications, but rather was evaluated in the context of a set of synthetic bench-
mark programs. In chapter 8, we explain why we make this choice.

1.7 Roadmap

The remainder of this dissertation is organised as follows.

Chapter 2: Motivation Chapter 2 motivates the search for a programming language
with support for just-in-time representation changes and in which it is possible to disen-
tangle general application logic from the crosscutting concern of representation changes.
This motivation is twofold. First, section 2.1 provides factual evidence for O1, which
states that performance engineering has become too complex for the average program-
mer. From this claim we conclude that the average programmer prefers to hide the com-
plexity of performance engineering aspects in software engineering, or prefers someone
else (e. g., a performance expert) to worry about performance engineering. This can be
realised, for instance, by disentangling general application logic from logic responsible
for non-functional requirements such as performance. Second, in section 2.2 we illus-
trate that there exist programs where changing the representation of the data during the
execution of the program results in better overall performance than any version of the
program with a fixed data representation (cf. O2). Thus, combining the arguments from
both section 2.1 and section 2.2, we motivate the need for a programming language with

8 CHAPTER 1. INTRODUCTION

support for just-in-time representation changes and in which it is possible to disentan-
gle general application logic from logic responsible for the representation changes (cf.
R1, R2, and R3).

Chapter 3: Matching Data and Computation In chapter 3 we define more precisely
what we mean by just-in-time representation changes. Based on a survey of contempo-
rary programming languages with support for representation changes, we identify seven
dimensions of representation changes. Furthermore, from this survey we identify that no
programming language exists today that allows developers to express data representa-
tion changes to realise non-functional requirements, such as improving performance.

Chapter 4: Designing Just-in-Time Data Structures: How to Change the Representa-
tion Chapter 4 is the first of the two chapters that discuss the language design spectrum
of this work. Chapter 4 focuses on the language constructs in JITds that are introduced
to enable just-in-time representation changes, i. e., “How to Change the Representation”,
R1. Furthermore, chapter 4 places these language features in relation to well-known and
well-studied concepts such as dynamic object reclassification and multiple inheritance.

Chapter 5: JIT∆σ: A Formal Specification of JITds Chapter 5 presents a formalisation
of the core features of JITds presented in chapter 4. This chapter describes an opera-
tional semantics of JITds in the form of reduction rules, describes the type system in
the form of well-formedness rules, and proves the soundness of this type system. The
sound type system guarantees that a well-formed JITds program will never encounter a
“method not found” or a “field not found” exception at runtime (R2).

Chapter 6: Designing Just-in-Time Data Structures: When to Change the Representa-
tion Chapter 6 is the second of the two chapters that discuss the language design spec-
trum of this work. Chapter 6 introduces the language constructs in JITds that enable
developers to separate the logic responsible for representation changes from the gen-
eral application logic, i. e., “When to Change the Representation”, R2. Again, these new
constructs are placed in relation to established areas of research, e. g., aspect-oriented
programming and context-oriented programming.

Chapter 7: JITds: The Language Implementation Chapter 7 briefly presents the lan-
guage implementation aspects of this work. While language implementation is not the
focus of this dissertation, we want to show that it is possible to implement JITds. To this
end, we present two proof-of-concept implementations of JITds. A first implementation
compiles JITds code into plain Java augmented with aspects, and a second implementa-
tion compiles JITds code into C code augmented with a custom-built runtime engine.

Chapter 8: Evaluation Chapter 8 presents five small programs written in JITds. The
programs were designed to illustrate the different scenarios of applicability (see chap-
ter 3) and to use the main features of JITds (see chapters 4 and 6). Furthermore, these

1.7. ROADMAP 9

JITds programs are compared to plain Java programs in terms of efficiency and code
structure, in order to evaluate the applicability of JITds.

Chapter 9: Related Work In chapter 9 we present a survey of the research with the most
influence on JITds. We discuss this related work both in function of the seven dimensions
of representation changes (from chapter 3) as well as comparing it to JITds (from chap-
ters 4 and 6).

Chapter 10: Conclusions and Future Work Finally, chapter 10 recapitulates what just-
in-time data structures are about, presents our conclusions and formulates some future
topics of investigation, especially in the direction of an improved language implementa-
tion for JITds.

Chapter 2

Motivation

2.1 On the Complexity of Performance

Today, writing software entails adding yet another layer of abstraction on top of an ever
growing stack of technology. Let us consider a Clojure program as an example: such
a program is compiled to Java byte-code, the Java byte-code is interpreted by a virtual
machine (JVM), the JVM has an implementation for a specific operating system (OS),
each OS is run on actual hardware, . . . Moreover, each layer of abstraction adds an extra
level of cognitive burden for the developer using these contemporary setups. For in-
stance, an optimising compiler reorders instructions and restructures loops. The JVM
takes tasks such as memory management out of the hand of the developer and replaces
“hot code” by a highly optimised machine code version (just-in-time compilation). The
OS is responsible for managing physical and virtual memory. And finally the hardware
has become more complex than ever: multi-level caches, various coherence protocols,
out-of-order execution, pipelining, vector-instructions, multicore, . . . This stack of tech-
nology is sometimes referred to as the “ladder of abstraction” [86]. It is clear that this
metaphorical ladder is continuously growing. The expertise of the average programmer,
however, has not necessarily evolved along with it.

In 1975, for instance, it was still feasible to understand the expected performance of
a MOS 6502 chip (e. g., in the Commodore 64) from the smallest transistor to the most
high level instruction. Today, however, the average programmer can experience diffi-
culties in mastering even a single framework within a single language [22]. This lack of
knowledge could be attributed to the lack of proper training. According to Stackover-
flow’s 2015 developer survey [63], 48% of software developers never received a degree in
computer science.

Holding a degree in computer science, however, is not a guarantee for understand-
ing performance. Suppose, for the sake of the argument, that performance is the result of
the combination of the complexity of algorithms and the concrete hardware architecture
they are executed on. Then, today’s computer science curricula put forth two “bodies of
knowledge” that address performance [2]: Algorithms and Complexity (AL) and Archi-
tecture and Organisation (AR).

11

12 CHAPTER 2. MOTIVATION

The principles taught in courses on “Algorithms and Complexity” have been devel-
oped decades ago [14], and are encouraged to be taught independent of computer hard-
ware [2]. In this section we show by example that the models studied in these courses
are losing predictive power. More accurate models, on the other hand, are more com-
plex, highly specialised, and not often discussed in a computer science curriculum. The
“Idealised cache model”, for instance, is specialised towards analysing algorithms in the
context of cache behaviour [33]. In such an analysis, cache line size, data access pat-
terns, and memory latency need to be taken into account.

Courses on “Architecture and Organisation”, on the other hand, focus on digital logic,
machine representation, machine languages (assembly), and memory organisation [2].
Specialised courses on performance exist, but are suggested as optional (elective), and
only intended to make students aware of the existence of hardware features such as
branch prediction (familiarity 1).

We claim that understanding, predicting, and improving the performance of com-
puter programs is no longer within the expertise of the average software developer. In
this section we support this claim by presenting two examples. These examples are sim-
ple programs whose unexpected behaviour can only be explained when the knowledge
of certain low-level hardware details exceeds the level of “familiarity”. We opt to use
“academic” examples in this section for two reasons. First, even small academic pro-
grams can exhibit unexpected performance characteristics. This strengthens our claim
that performance engineering is no longer within the expertise of the average software
developer, because it is even hard in the smallest example programs. Second, using aca-
demic examples, instead of a more complex example, allows us to streamline that ar-
gumentation. In appendix A we report in detail on a non-academic example: a multi-
month, multi-person endeavour of understanding and explaining the performance of a
contemporary piece of hardware. The combination of these three examples allows us to
conclude that on contemporary hardware, the ladder of abstraction has become so high
that it is no longer feasible for an average programmer to fully understand the behaviour,
and thus the performance characteristics, of computer programs.

2.1.1 Calculating or Estimating Time and Space Complexity

In sections 2.1.2 and 2.1.3 we discuss two academic examples and analyse their perfor-
mance. First, we present the algorithm analysis techniques that we used to analyse these
examples. These techniques are well-know and are commonly part of any computer sci-
ence curriculum. According to ACM/IEEE-CS Joint Task Force on Computing Curricula
[2] “Computing and estimating a program’s performance characteristics” is fundamental
to computer science and software engineering.

While the program written for the theoretic Turing machine has access to unlimited
time and memory, a practical program has only access to limited resources. In many
cases writing software is making the standard tradeoff between using space and time.
Both can be considered equally important, depending on the context. In the following

1 “Outcomes listed at the Familiarity level will typically require less coverage than topics at the Usage level,
which in turn require less coverage time than Assessment outcomes.” – quoted from [2]

2.1. ON THE COMPLEXITY OF PERFORMANCE 13

chapters “performance” denotes both space and time complexity. In this section, how-
ever, we focus on time complexity only, as it suffices to make our case.

Typically, the analysis of a program is based upon the concept of “basic operations”
which represent (conceptually) indivisible units of work. The following steps describe
how such an analysis is to be performed:2

1. Implement the program.

2. Determine the various basic operations.

3. Determine the cost of each basic operation.

4. Determine the frequency of each basic operation.

5. Calculate the total cost by first multiplying the frequency of each operation by its
determined cost, then adding all the products.

The predictive power of the analysis depends on how precise each of the steps is
performed. Since algorithms and hardware have become more complex, simplifying the
analyses of some of the steps is necessary to ensure feasibility. Below we give an example
of such simplifications for each of the steps.

Determine the various basic operations. Scientific computations make heavy use of
floating-point calculations. For such algorithms, often only the number of floating-point
operations (FLOPs) are counted. Since the number of FLOPs dominate the performance
of scientific computations, counting only the FLOPs simplifies the analysis while retain-
ing the accuracy of the analysis. A second example is the class of sorting algorithms,
where commonly only the “number of comparisons” and the “‘number of moves”’ are
considered.

Determine the cost of each basic operation. The lowest level of basic operation is “the
instruction” and its cost is expressed in cycles per instruction (CPI). The CPI varies from
instruction to instruction, e. g., a division is often more expensive than a multiplication,
while the multiplication is often more expensive than an addition. Moreover, these num-
bers vary from processor to processor. In order to reduce analysis complexity, instruc-
tions can be grouped into classes with approximately the same CPI cost, where each class
is assigned a single “unit cost” which allows for easy computation. For example the fast
instructions (e. g., add) can be assigned a cost of 1, the medium instructions can be as-
signed cost of 5 (e. g., multiply) and the slow instructions (e. g., division) can be assigned
a cost of 10. In this example we thus differentiate between three classes of instructions
(i. e., fast, medium, and slow) which are assigned costs that allow for simple calculation
(i. e., 1, 5, an 10 respectively).

2Based on An Introduction to the Analysis of Algorithms (http://aofa.cs.princeton.edu)

http://aofa.cs.princeton.edu

14 CHAPTER 2. MOTIVATION

Determine the frequency of each basic operation. The frequency of each basic oper-
ation can be dependent on various (known) variables. To determine the frequency, one
often has to solve recurrence equations, e. g., for a merge sort the number of compar-
isons is given by eq. (2.1).

C (n) =
{

0 if n ≤ 1
2C (n

2)+n if n > 1
(2.1)

In practice, the frequency of a basic operation is often dependent on the input size.
However, other variables influence the frequency too. The recurrence equation eq. (2.1)
for instance gives the largest possible number of comparisons. For an already sorted se-
quence, however, the number of comparisons would be 2C (n

2)+ n
2 . In this case, “being

sorted” is a special characteristic of the input. To simplify the analysis, “special charac-
teristics” of the input are often ignored. Instead, the analysis of the cost of an algorithm
is split up into worst-case cost, average-case cost, and best-case cost.

Calculate the total cost. In larger and more complex algorithms the exact cost function
becomes difficult to reason about. Therefore, if only the limiting behaviour of the cost
function is of interest, one can resort to a variety of asymptotic bounds on the growth
rate of the cost function. The most commonly used bound is probably the upper bound
of the growth, also known as Big-Oh (O). Besides O, used bounds are o,Ω, ω, andΘ [14].

Experimental Verification. Above we briefly surveyed the five conventional steps in
algorithm analysis. Further, we showed for each step how analysis is often simplified for
convenience. An important feature of any analysis is of course that the expected result is
also observed in practice. This feature can be verified experimentally by comparing the
performance as expected by the analysis with the measured performance.

Experimental Counter Example. We observe that the suggested analysis is only accu-
rate in the context of a uniform cost model. In this model it is implicitly assumed that the
same basic operation always has the same cost. First, this means that memory accesses
are assumed to consume constant time. And second, this means that instructions (i. e.,
the most basic computational steps) are assumed to consume constant time. Note that
the uniform cost model does not imply the same cost for all instructions, but rather that
the same instruction always has the same cost. By providing a counter example we can
show that the uniform cost loses its predictive power.

Explanation. In the following sections we analyse two simple programs — using the
five steps surveyed above — and compare the expected performance with actual perfor-
mance as it can be measured on contemporary hardware. We measure the performance
of both programs, once with an input that results in the expected performance, and once
with an input where expected and measured performance are different. Finally, we ex-
plain the underlaying reason for the discrepancy between expected and measured per-
formance.

2.1. ON THE COMPLEXITY OF PERFORMANCE 15

2.1.2 Non-Uniform Memory Access Cost

We present a first example of a non-uniform cost model by studying memory access
costs. Using the five steps presented earlier, we analyse the performance of a function
that computes the length of a list. We then compare the expected results with the mea-
sured results.

Implement the program A (singly) linked list is a data structure that consists of nodes
containing a value (here int) and a pointer to the next node. To compute the length of
an acyclic list, we traverse the list — by transitively following this next-pointer — and
count the number of steps required to reach the end of the list. An implementation in C
is given in listing 2.1.

Determine the various basic operations. The basic operations that are used in this
fragment are assignment, NULL-test, pointer dereference (cf., current->next), and
addition.

Listing 2.1: Traversing a linked list by following the next-pointer.

1 typedef struct Node {
2 int value;
3 struct Node* next;
4 } Node_t;
5
6 int length(Node_t* first){
7 int counter = 0;
8
9 Node_t* current = first;

10 while (current != NULL){
11 current = current->next;
12 counter++;
13 }
14 return counter;
15 }

Determine the cost and frequency of each basic operation. Based on the assumption
of a uniform cost model, we assign a unit cost of 1 to each operation. Outside thewhile-
loop, the only real operation is the assignment to current. Inside the while-loop, we
always have one assignment, one pointer dereference, and one addition. The condition
to check the termination of the while-loop is a simple NULL-test. The body and the
condition of the while-loop are executed exactly n times, where n is the length of the
list.

Calculate the total cost. Assuming a list ofn nodes, we can estimate the time complex-
ity of the length-algorithm, as shown in listing 2.1, using the following computation:

16 CHAPTER 2. MOTIVATION

Figure 2.1: The execution time of length is proportional to the size of the list.

T (n) =1× assignment (current = first)

+n × NULL-test (current == NULL)

+n × pointer dereference (current->next)

+n × assignment (current = current->next)

+n × increment (counter++)

=4n +1 (unit costs of 1)

=O(n)

According to this analysis, the execution time of the length-function only depends
on the size of the list. Moreover, the expected execution time is proportional to the size
of the list.

Experimental Verification. As a first experiment we measure the actual execution time
of computing the length of a list. We let the size of the list vary from 0 to 16.000 elements.
To reduce measurement errors in this micro-benchmark, we repeat this short running
experiment 100 times and we report the average of the measured execution times.

2.1. ON THE COMPLEXITY OF PERFORMANCE 17

Figure 2.2: The execution time of length is not necessarily proportional to the size of
the list.

The results of this experiment are shown in figure 2.1, where the dots represent actual
measurements, whereas the continuous line is the computed fitting curve through all
measured points.3 Based on these data points it is fair to conclude that the size of the list
really is the only factor that has an impact on the performance, and that the uniform cost
model suffices to explain and predict the performance of the algorithm implemented by
length.

Experimental Counter Example. However, if we repeat the experiment described above,
but this time we let the the size vary from 0 up to 30.000 elements, we observe a com-
pletely different behaviour for those lists that contain more than 16k elements. Figure 2.2
shows these results: the actual measurements are represented as dots, the continuous
line is the same as in figure 2.1, but continued beyond 16k.

Explanation. A linked list data structure consists of nodes containing a value and a
pointer to the next node. Conceptually, node A and the node B=A->next are adjacent
nodes. Physically, however, nodes A and B can reside anywhere in memory. The physical
location depends on the allocator. Alternatively, a mismatch between conceptual and

3We used the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm from GnuPlot to compute
this fit.

http://www.softlab.ntua.gr/facilities/documentation/unix/gnu/gnuplot/gnuplot_21.html

18 CHAPTER 2. MOTIVATION

physical locations of nodes can occur by insertion and deletion of nodes, for instance by
sorting.

Figure 2.3: Adjacent nodes of a linked list stored in a round robin fashion with a stride of
2.

In this experiment we allocated a chunk of memory large enough to contain N nodes
(i. e., array Node_t[N]). Instead of placing consecutive nodes in consecutive memory,
we used a round robin stride of s. By construction we ensure that s divides N. Then,
the function f , as defined in eq. (2.2) gives the relation from physical location (index in
array) to conceptual location (index in list). Informally, this implies that the each node is
placed s locations further than its predecessor (except those that would fall outside the
reserved memory). The nodes in figure 2.3 are stored in a round robin fashion with a
stride of 2.

f (x) = N × (x mod s)

s
+

⌊ x

s

⌋
(2.2)

Each node consumes exactly 16 bytes in memory, i. e., four bytes for the int value,
eight bytes for the pointer to the next node, and four bytes of padding (see figure 2.3).
If we then take into account that the device this experiment was run on has a L2 data
cache of 256KiB, then we can compute the number of nodes that simultaneously fit in
the L2 cache: 256K i B

16B = 16,384. The striding causes the nodes to be scattered through the
allocated memory, which in turn results in low spatial locality when traversing the linked
list. As long as all nodes fit in the (L2) cache, execution times increase linearly with the
input size. Conversely, when the data set does not fit in the cache, the low spatial locality
incurs a high performance penalty which in turn destroys the linear performance. This
is clearly visible in figure 2.2.

While the aforementioned analysis is theoretically correct, experimentations reveals
that the execution time is not necessarily proportional to the input size. This experiment
allows us to conclude that the uniform memory access model is not a suitable model to
analyse memory bound computations. The alternative, a non-uniform memory access
model (NUMA), however, is much more complex to reason about [19].

2.1. ON THE COMPLEXITY OF PERFORMANCE 19

Listing 2.2: Counting the number of elements below some threshold t.

1 int count(int t) {
2 int counter = 0;
3 for (int i = 0; i < N; i++) {
4 if (numbers[i]<t) {
5 counter++;
6 }
7 }
8 return counter;
9 }

2.1.3 Non-Uniform Instruction Execution Cost

We now present a second example of a non-uniform cost model by zooming in on the
cycles consumed by each instruction (CPI). Using the five steps presented earlier, we
analyse the performance of a function that computes the cumulative frequency of an el-
ement in a given distribution. We then compare the expected results with the measured
results.

Implement the program In statistics, the cumulative frequency [87] is the sum of all
absolute frequencies of class intervals below a given upper bound.

The program count computes the cumulative frequency of integers below a cer-
tain threshold t. Listing 2.2 shows an implementation of the count function, where
numbers is a globally allocated array of constant size N containing the numbers. The
count function simply iterates over the array and increments a counter every time the
smaller than-test (numbers[i]<t) succeeds.

Determine the various basic operations. In contrast to the previous example, count
traverses the memory in a regular fashion. Therefore we can expect the execution time of
reading an element to be constant on average. Additionally, the operations introduced
in the header of the for-statement induce a constant overhead as well. Hence, we can
ignore both, reading and the for-loop header, in our estimate. Consequently, the only
basic operations of interest for analysing the performance of this program are those in
the body of the for-loop: a smaller than-test and an increment.

Determine the cost and frequency of each basic operation. Based on the assumption
of a uniform cost model, we assign a unit cost of 1 to both the less-than test and the
increment operation. The body of the for-loop is executed exactly N times, i. e., the
constant number of elements in the array numbers. Thus, the condition of the if-
statement is executed N times as well. The body of the if-statement, however, is only
executed when the less than condition holds. Because we defined the distribution of the
elements of numbers we can, for each value of t, determine exactly how many times
the condition holds.

20 CHAPTER 2. MOTIVATION

To simplify the analysis of the performance characteristics we ensure that the inte-
gers in the array numbers are uniformly distributed. Assume N to be the fixed length of
the array numbers and U the upper bound on the numbers appearing in the collection.
By construction we ensure that U divides N. Concretely, we construct the array numbers
such that the frequency of each number appearing in the array numbers is N

U . The cu-
mulative frequency F (x) is then given by eq. (2.3).

∀x ∈ [0,U] : F (x) = x × N

U
(2.3)

If count is called with parameter t and t ∈ [0,U], then F (t) gives the number of
times the conditionnumbers[i]<tholds, and thus the number of times the increment
operation on line 5 is performed.

Calculate the total cost. If we want to estimate the time complexity of the count-
algorithm as shown in listing 2.2 we get the following computation:

T (count (t)) =N × less-than test (numbers[i]<t)

+F (t)× increment (counter++)

=O(N + t) N is kept constant

=O(t)

According to this analysis, the execution time of the count-function is dominated
by the value of the parameter t . Stated more precisely, the execution time of count(t)
is proportional to t .

Experimental Verification As a first experiment we measure the execution time of count-
ing numbers between 0 and 999 inclusive, uniformly distributed in an array of size 106

elements. Thus, each number is present exactly 103 times (N
U). The physical location of

the numbers, however, is randomised. Figure 2.4 shows the measured execution times
of computing count as dots. In this experiment we vary t from 0 to 400.

The solid line in figure 2.4 is the best fit computed from the actual measurements (see
footnote 3). This shows that the measured execution times indeed match the expected
execution times.

Experimental Counter Example. We now repeat the same experiment but witht vary-
ing from 0 to 1000, i. e., the whole spectrum of numbers that occur in the array. Again,
we observe unexpected behaviour. The measured execution times of this second exper-
iment are shown in figure 2.5. The function representing the expected execution time,
as shown in figure 2.4, is plotted as a solid line. The actual measurements are plotted as
dots. It is clear to see that for values of t larger than ±500 the measured and expected
execution times start to diverge significantly.

2.1. ON THE COMPLEXITY OF PERFORMANCE 21

Figure 2.4: The execution time of count is proportional to the value of the counting
threshold t, for all t up to 400.

Explanation. The origin of the discrepancy in expected and measured execution time
is not apparent from the conceptual understanding of this program: increasing the amount
of work should increase the execution time. What is not taken into account in the analy-
sis presented above is the important role optimisations within contemporary CPUs play
in the execution time of a program.

Pipelining is a technique that increases the instruction level parallelism (ILP) and as
a result improves performance. Pipelining increases the instruction level parallelism by
starting to execute subsequent instructions before the previous instructions are finished.
Correctness is maintained by ensuring that only instructions that do not (directly) de-
pend on unfinished instructions can be started. A mov instruction, for example, should
not be executed before the source value is present in the source register. A second ex-
ample of instruction dependency that hampers instruction pipelining are conditional
branches: it is not possible to know which branch needs to be taken before the instruc-
tions computing the condition have produced their results. Consequently, it is not pos-
sible to pipeline “the next instruction” in the pipeline, because the next instruction is
simply unknown.

Branch prediction, however, is a CPU optimisation that tries to guess the next in-
struction when it encounters a conditional jump, and which already feeds the guessed
instruction to the pipeline. If the guess was wrong, the instruction is canceled and a
missprediction penalty cost is paid (pipeline stall). If the guess was correct, however,

22 CHAPTER 2. MOTIVATION

Figure 2.5: The execution time of count is not necessarily proportional to the value of
the counting threshold t.

the pipeline bubble that would otherwise be introduced by waiting for the conditional
jump to finish, is avoided. In general, avoiding pipeline bubbles results in better perfor-
mance. Branch prediction makes its guesses based on which branches where previously
taken. The two-bit Smith algorithm , for instance, encodes the history in a state machine
with four states (2 bits): strongly taken, weakly taken, weakly not taken, and strongly not
taken [38].

To understand what is going on in figure 2.5, consider lines 11-15 in listing 2.3, which
shows the machines instructions generated from the for-loop of count. These lines
compare the value numbers[i] with t (line 11), and jump to the label AFTER_IF if
the value numbers[i] greater than or equal to t (jge, line 12). Lines 13–15 simply
increment the variable counter if the branch was taken.

In our example, the number of times the same branch is taken as a function of t is
given by f (t) = N

U max(U − t , t). Thus for t = 0 and t = U the same branch is always
taken, while either branch becomes equally likely of being taken when t approaches
U
2 . Since branch prediction makes its guesses based on branches taken in the past, the

branch miss prediction rate is highest around t = 500. When t ≈ 500 the probability of
numbers[i]<t is around 50%. This means that the either branch is as likely to be taken
as the alternative branch. Moreover, there is no correlation with the history of branches
taken previously . Consequently, any guess is as good as the other: i. e., 50% success rate.
Once t exceeds 500, the number of right branch predictions exceeds 50%. As a result,

2.1. ON THE COMPLEXITY OF PERFORMANCE 23

Listing 2.3: Assembler code of the for-loop from listing 2.2.

1 ...
2 mov %edi,-0x4(%rbp) # init variable t (parameter)
3 movl $0x0,-0x8(%rbp) # init variable counter
4 movl $0x0,-0xc(%rbp) # inti variable i
5 #FOR_LOOP_HEADER:
6 cmpl $0x989680,-0xc(%rbp) # compare 10000000 and i
7 jge FOR_LOOP_END # conditinal escape loop
8 lea 0x227(%rip),%rax # read numbers
9 movslq -0xc(%rbp),%rcx # read i

10 mov (%rax,%rcx,4),%edx # read numbers[i]
11 cmp -0x4(%rbp),%edx # compare t and numbers[i]
12 jge AFTER_IF
13 mov -0x8(%rbp),%eax # read counter
14 add $0x1,%eax # increment counter
15 mov %eax,-0x8(%rbp) # store counter
16 #AFTER_IF:
17 mov -0xc(%rbp),%eax # read i
18 add $0x1,%eax # increment i
19 mov %eax,-0xc(%rbp) # store i
20 jmpq FOR_LOOP_HEADER # jump to loop header
21 #FOR_LOOP_END:
22 ...

the actual cost of executing the if statements’s consequent is hidden by the processor
and the measured performance is better then theoretically expected.

2.1.4 Non-Uniform Cost Model

In section 2.1.1 we revisited the well known steps for for analysing the performance of al-
gorithms. These same steps were used to analyse two example programs in sections 2.1.2
and 2.1.3, respectively. We present the observed measurements for these two example
programs as “surprising results”. Of course, both examples are carefully crafted to ex-
pose these “anomalous behaviours”. Note that crafting these examples to evoke such be-
haviour as clearly as possible is not at all trivial. Moreover, the inverse exercise, explain-
ing such unanticipated behaviour, is arguably even more difficult. Appendix A reports
in detail on such an exercise. Here, we present a summary of the search for explaining
anomalous performance in a program that computes triangular numbers.

The Nth triangular number is the sum of the first N integers (i. e.,
∑N

i=0 i). The Nth

tetrahedral number is the sum of the first N triangular numbers (i. e.,
∑N

i=0

∑i
j=0 j). List-

ing 2.4 shows a straightforward implementation in C to compute the Nth tetrahedral
number. Listing 2.5 computes the double of the Nth tetrahedral number by running the
inner-loop on lines 3–7 of listing 2.4 twice.

The second program (listing 2.5) performs twice the work of the first program (list-
ing 2.4). Thus running the second program is expected to take twice as long as running
the first program. When we measured the execution time of both programs, we observed

24 CHAPTER 2. MOTIVATION

Listing (2.4) Nested loops computing the N th

tetrahedral number.

1 long total = 0;
2 for (long i=0; i<N; ++i) {
3 long sum0 = 0;
4 for (long j0=0; j0<i; ++j0) {
5 sum0 += j0;
6 }
7 total += sum0;
8
9

10
11
12
13
14 }

Listing (2.5) Nested loops computing the N th

tetrahedral number twice.

1 long total = 0;
2 for (long i=0; i<N; ++i) {
3 long sum0 = 0;
4 for (long j0=0; j0<i; ++j0) {
5 sum0 += j0;
6 }
7 total += sum0;
8
9 long sum1 = 0;

10 for (long j1=0; j1<i; ++j1) {
11 sum1 += j1;
12 }
13 total += sum1;
14 }

that the second program was 1.8 faster than expected. Ruling out “programmer error”,
“inaccurate measurements”, “unanticipated compiler optimisation”, “compiler error”,
and “known hardware related performance pitfalls” as the origin of the mismatch be-
tween expected and measured performance proved to be a multi-month, multi-person
endeavour. Finally, we were able to attribute the 12% mismatch in execution time to
an undocumented performance anomaly present in a specific type of hardware, which
we named the read-after-write (RAW) hiccup [23]. This RAW hiccup occurs when a read
instruction is issued “too soon”, within 2 cycles, after a read instruction that targets the
same cache line. When this happens, the read instruction behaves as if a cache miss
occurs, resulting in a performance penalty. Because, sum0 and j0 accidentally share a
cache line, and because the update of sum0 (line 5 in both programs) happens just be-
fore j0 is read (++j0, line 4 in both programs) this first inner loop suffers from a RAW
hiccup in every iteration. The second loop in the second program performs significantly
better because sum1 and j1 do not share a cache line, and thus no performance degra-
dation occurs. In conclusion, because the program in listing 2.5 performs better than
initially expected because one of the loops performs better. A more detailed discussion
on this example can be found in appendix A.

The presented examples (sections 2.1.2 and 2.1.3 and appendix A) all support the
claim that “performance engineering” in general is hard. All three examples take the
low level approach, i. e., they study the effects of hardware on the execution time of pro-
grams. Alternatively, we could have presented a set of examples that exhibit anomalous
behaviour as a result of the software stack used. Such unexpected performance mea-
surements can, for instance, be caused by garbage collection pauses or VM warm-up
time [35], to name only two.

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 25

The Ladder of Abstraction causes Vertigo.

In this section we present anecdotical evidence for the fact that performance en-
gineering is hard. As shown in the examples, not all performance issues are re-
solved by the compilers, and thus performance engineering remains generally
the job of the software developer. Combining the two tasks of performance engi-
neering and program design at the same time, however, has become difficult and
complex.
We believe that to manage the aforementioned complexity, application logic
should be enhanced with additional logic that offers explicit technical support
in order to deal with performance concerns. While these two flavours of logic
should be causally connected, it should be possible to develop them lexically in-
dependent from each other. Such a lexical separation is beneficial as it allows
for each domain expert to operate on their own terrain: 1. the application de-
veloper can focus on the application logic, whereas 2. the performance engineer
can focus on the performance critical parts of the application’s code base.

2.2 On the Effect of Data Representation on Performance

Contemporary software engineering and computer science curricula train students to
be able to determine which data structure is the best fit for a given problem [2]. In a clas-
sical curriculum, students fairly early learn that interface and implementation are not
necessarily tightly coupled, and that for each abstract data type (ADT), a set of possi-
ble implementations might exist [1]. Further, such a curriculum introduces complexity
analysis (cf. section 2.1) to prepare students to make informed decisions on how to find
the “best representation” to use in combination with a given algorithm [2]. However, that
ideal representation does not necessarily exist.

First, in sections 2.2.1 to 2.2.3, we launch the idea that, for the sake of performance,
using a set of data representations can be better than relying on a single representation
only. First, we present an example program that manipulates matrices. When studied
carefully, we observe that the way the matrices are being used changes during the ex-
ecution of the program. Moreover, we show that, for various example programs, using
multiple data representations for the matrix data interface leads to better performance
than can be achieved by relying on a single representation only. We thus argue in favour
of “online data representation changes” to improve performance.

Then, in section 2.2.5, we show by example that in most programming languages im-
plementing sound and scalable representation changes is currently not practicable. We
subsequently argue that languages that are expressive enough to support dynamic repre-
sentation changes do not facilitate the separation of application logic from performance
logic as suggested in section 2.1.

Combining the insights from this section (section 2.2) and section 2.1, we argue in
favour of a new strand of programming language features to express data representation
changes (section 2.3). In chapters 4 and 6 we introduce JITds, a new programming lan-

26 CHAPTER 2. MOTIVATION

guage with these features. Programming languages are supposed to change the way de-
velopers think about programming [66]. Therefore, JITds facilitates the shift from choos-
ing a single data structure to choosing a set of data structures.

2.2.1 The Matrix and its Representations

A matrix is a well known and commonly used abstraction in science. Matrices are par-
ticularly useful in linear algebra, e. g., every matrix corresponds to a unique linear trans-
formation. In natural sciences, such as biology and physics, and in engineering sciences,
matrices — and their operations — are often used to model real life phenomena. Conse-
quently, matrices are also commonly used in computer programs, e. g., scientific appli-
cations.

In this section we present the data interfaceMatrix and two possible data represen-
tations. In the remainder of this text the matrix is used as recurring example, therefore
we discuss both the data interface and the data representations in considerable detail.

The Matrix Data Interface. We define the data interface of a Matrix as a constructor
that creates arows×colsmatrix; an accessorget and a mutatorsetwhich, based on
a row and a col parameter, respectively returns or sets a value in the matrix. For com-
pleteness and for use later in this text, we also added accessors to retrieve the number
of rows and columns of a matrix, these are getRows and getCols, respectively. More-
over, we added a copy constructor which creates a deep copy of the argument Matrix.
Listing 2.6 implements this data interface as a Java abstract class definition, specialised
for double values.

We explicitly choose to present the Matrix data interface as an Java abstract class
instead of using the interface construct. First, this allows us to define what the construc-
tor(s) need to look like in terms of types, which is not possible when using Java interfaces.
Second, it exemplifies and supports the claim — made earlier in this text, on page 4 —
that Java interfaces and data interfaces are not the same concept.

Two Matrix Data Representations. Let us now consider two similar data representa-
tions for the data interface defined above. Both representations store the elements of
the conceptually two-dimensional data structure in a one-dimensional array. One rep-
resentation, row-major order, stores elements of the same row in consecutive memory
locations. The second data representation, column-major order, stores elements of the
same column in consecutive memory locations. To visualise the difference, consider the
matrix M . The elements of M are letters.4 When laid out in memory, the letters of matrix
M read as “son pie alt” when stored in row-major order. When stored in column-major
order we would read the “spa oil net” in the memory occupied by M .

M =
 s o n

p i e
a l t


4We opt to use letters here because they do not have a natural ordering. The natural ordering of numbers,

for instance, would make one ordering unintendedly look more appealing, i. e., 1, 2, 3, ..., 9.

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 27

Listing 2.6: An abstract class Matrix providing a data interface.

1 public abstract class Matrix {
2 int rows, cols;
3
4 public Matrix(int rows, int cols) {
5 this.rows = rows;
6 this.cols = cols;
7 }
8
9 public Matrix(Matrix src) {

10 this(src.getRows(), src.getCols());
11 for (int r=0 ; r<src.getRows() ; r++)
12 for (int c=0 ; c<src.getCols() ; c++)
13 this.set(r,c,src.get(r,c));
14 }
15
16 int getRows() { return rows; }
17 int getCols() { return cols; }
18
19 double abstract get(int row, int col);
20 void abstract set(int row, int col, double val);
21 }

Listing 2.9: The struct Matrix combines data values and an access function.

1 struct Matrix {
2 int (*coord2idx)(int row, int col);
3 double data[N*N];
4 };
5
6 double get(Matrix* m, int row, int col){
7 return m->data[m->coord2idx(row,col)];
8 }
9

10 void set(Matrix* m, int row, int col, double val){
11 m->data[m->coord2idx(row,col)] = val;
12 }

Listings 2.7 and 2.8 show concrete implementations in Java of these two suggested
representations for Matrix, using the row-major and the col-major layout respectively.
Both representations store the matrix values in a one dimensional double array of ex-
actly the size of the matrix (i. e., r ow s × col s, line 7). The two representations only differ
in how the two-dimensional coordinate row,col is translated into a one-dimensional
coordinate in the double array (see lines 15 and 19).

This is even more clear in the C implementation which we use for experiments later
in this chapter. This alternative implementation is shown in listings 2.9 and 2.10. Here,
a matrix is implemented as a struct combining an array data and a function pointer f.
data contains the actual values in consecutive memory and f is responsible for con-

28 CHAPTER 2. MOTIVATION

Listin
g

(2.7)
R

ow
-m

ajo
r

d
ata

rep
resen

tatio
n

.

1
p
u
b
l
i
c

c
l
a
s
s

R
o
w
M
a
j
o
r
M
a
t
r
i
x

e
x
t
e
n
d
s

M
a
t
r
i
x

{
23

d
o
u
b
l
e
[
]

d
a
t
a
;

45
p
u
b
l
i
c
R
o
w
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t

r
o
w
s
,
i
n
t

c
o
l
s
)

{
6

s
u
p
e
r
(
r
o
w
s
,
c
o
l
s
)
;

7
t
h
i
s
.
d
a
t
a

=
n
e
w

d
o
u
b
l
e
[
r
o
w
s
*
c
o
l
s
]
;

8
}

910
p
u
b
l
i
c
R
o
w
M
a
j
o
r
M
a
t
r
i
x
(
M
a
t
r
i
x

s
r
c
)

{
11

s
u
p
e
r
(
s
r
c
)
;

12
}

1314
d
o
u
b
l
e
g
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
)

{

15
r
e
t
u
r
n

d
a
t
a
[

r
o
w
*
g
e
t
C
o
l
s
(
)
+
c
o
l

]
;

16
}

1718
v
o
i
d
s
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
,

d
o
u
b
l
e

v
a
l
)

{

19
d
a
t
a
[

r
o
w
*
g
e
t
C
o
l
s
(
)
+
c
o
l

]
=

v
a
l
;

20
}

21
}

Listin
g

(2.8)
C

o
l-m

ajo
r

d
ata

rep
resen

tatio
n

.

p
u
b
l
i
c

c
l
a
s
s

C
o
l
M
a
j
o
r
M
a
t
r
i
x

e
x
t
e
n
d
s

M
a
t
r
i
x

{

d
o
u
b
l
e
[
]

d
a
t
a
;

p
u
b
l
i
c

C
o
l
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t
r
o
w
s
,

i
n
t
c
o
l
s
)

{
s
u
p
e
r
(
r
o
w
s
,
c
o
l
s
)
;

t
h
i
s
.
d
a
t
a

=
n
e
w

d
o
u
b
l
e
[
r
o
w
s
*
c
o
l
s
]
;

}p
u
b
l
i
c

C
o
l
M
a
j
o
r
M
a
t
r
i
x
(
M
a
t
r
i
x

s
r
c
)

{
s
u
p
e
r
(
s
r
c
)
;

}d
o
u
b
l
e

g
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
)

{

r
e
t
u
r
n
d
a
t
a
[
r
o
w
+
c
o
l
*
g
e
t
R
o
w
s
(
)

]
;

}v
o
i
d

s
e
t
(
i
n
t

r
o
w
,
i
n
t

c
o
l
,

d
o
u
b
l
e
v
a
l
)

{

d
a
t
a
[
r
o
w
+
c
o
l
*
g
e
t
R
o
w
s
(
)

]
=

v
a
l
;

}
}

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 29

Listing 2.10: Functions for Row and Column Major Access.

1 int rowMajorOrder(int row, int col) {
2 return (row*N)+col;
3 }
4
5 int colMajorOrder(int row, int col) {
6 return row+(col*N);
7 }

verting a (row,col) coordinate into an index in data (listing 2.9). Listing 2.10 shows
two such functions, one for row-major access and one for column major access, respec-
tively. The representation of a Matrix is thus defined by the value of the field f.

A third Matrix Representation. Both representations above require at least one mem-
ory location per element. In scientific or engineering applications matrices are often
sparse, i. e., most of its elements are zero. For such matrices, it can be beneficial to adhere
to a storage scheme where only the non-zero elements are stored. Besides the reduction
in space complexity (denoted as S(x)), also a reduction in time complexity (denoted as
T (x)) can be achieved, e. g., by using dedicated algorithms tailored towards sparse ma-
trices. Changing between specialised algorithms, e. g., as studied by Ansel et al. [6], falls
outside the scope of this dissertation.

Row compressed format, column compressed format, hash-map (coordinate to value)
based, and tree based implementations are only a few of the possible sparse matrix rep-
resentation implementation techniques. The advantage of a sparse matrix representa-
tion over a dense matrix representation is the reduction in memory consumption. A
sparse representation occupies memory proportional to the number of non-zero values,
independent of the size of a matrix. Conversely, a dense matrix representation occupies
memory proportional to the size of a matrix. For the identity matrix In this is a difference
between S(In) =O(n) and S(In) =O(n2) respectively.

In practiceSparseMatrix implementations introduce some overhead, both in terms
of space and time, to encode the location of the elements which is given “for free” in an
array. It is thus important to note that in practice using SparseMatrix only pays off
when the matrix is actually sparse. Thus, the data representation does not necessar-
ily reveal the characteristics of the data. Note that the “definition” of SparseMatrix
above ignores special kinds of sparse matrices. An implementation of a diagonal matrix,
for instance, does store zeroes sometimes (i. e., when the first diagonal contains a zero),
and consumes memory proportional to the size of the matrix’s diagonal instead of to
the number of non-zero elements (e. g., an array of N values, where N is the number of
elements on the matrix’s diagonal).

For the remainder of this text, we use SparseMatrix to mean a data representa-
tion of Matrix that consumes memory proportional to the number of non-zero val-
ues in the matrix. Concrete implementations of SparseMatrix are considerably more
complex than listings 2.7 and 2.8 and are therefore omitted here. Appendix C, however,

30 CHAPTER 2. MOTIVATION

Listing 2.11: Classic Matrix-Matrix Multiplication Algorithm of two N ×N matrices

1 Matrix mul(Matrix mA, Matrix mB) {
2 Matrix mC = new Matrix(N, N);
3
4 for (int i=0 ; i<N ; i++)
5 for (int j=0 ; j<N ; j++)
6 for (int k=0 ; k<N ; k++)
7 mC.set(i, j, mC.get(i, j) +
8 mA.get(i, k) * mB.get(k, j));
9 return mc;

10 }

does provide a concrete implementation for SparseMatrix.

2.2.2 Effect of Representation on Performance

Let us now investigate the effect of the chosen representation on performance. To ease
the explanation, we ignore theSparseMatrix representation for a while, and we focus
on both dense representations, i. e., RowMajorMatrix and ColMajorMatrix.

The Classic Matrix-Matrix Multiplication Algorithm. One of the most commonly used
operations on matrices is the matrix-matrix multiplication, or in this context, multiplica-
tion for short. The classic multiplication algorithm is a straightforward implementation
of the formula Ci j =∑N

k Ai k ×Bk j . Each of the elements of matrix mC, is the dot-product
of a row of mA with a column of mB.

To simplify the discussion, we only consider square matrices of size N × N . List-
ing 2.11 shows a Java implementation of this algorithm: a method which takes two ma-
trices mA and mB as input parameters and returns a third matrix mC. Lines 6–8, the inner-
most loop, computes the dot-product.

Effect of Representation on Data Access Pattern. If we consider the conceptual access
pattern, i. e., the access pattern at the abstraction level of the data interface, we observe
that the matrix mA is continuously accessed row by row, while the matrix mB is contin-
uously accessed column by column. How this relates to the physical memory access
pattern depends on the representations of both mA and mB.

We say that the conceptual access pattern matches the representation when a Row-
MajorMatrix is accessed per row or when a ColMajorMatrix is accessed per col-
umn. If the conceptual access pattern matches the representation, then the physical
access pattern becomes more linear, which translates to better spatial locality. However,
when the conceptual access pattern conflicts with the used representation, the physi-
cal memory access pattern is non-linear, which translates to low spatial locality (cf. sec-
tion 2.1.2). Note that when relying on a single data representation only, it is impossible
to have matching access patterns in both mA and mB.

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 31

Effect of Representation on Performance. A simple experiment shows that the choice
of data representation of the matrices mA and mB has a significant effect on the ex-
ecution time of multiplying two matrices. In an experiment, we executed the afore-
mentioned mul function with all combinations of data representations for both input
matrices mA and mB, while we kept the data representation of the matrix mC fixed in the
row-major order representation. The measured execution times in seconds for all com-
binations are shown in table 2.1. We gathered these numbers from the C implementation
(cf. listings 2.9 and 2.10), compiled with gcc’s maximal optimisation i. e., -O3. The re-
sulting binary was executed on a 2.6 GHz Intel Core i7 processor with 256 KiB of L2 cache
per core and 6 MiB of L3 cache shared by all cores. The size of the matrices, 1024×1024
elements, is chosen such that the matrices do not fit in the last level cache (LLC). Conse-
quently, the effect of the representation is clearly observable from the experiment.

Data Representation mA Data Representation mB Execution Time
Row-Major Order Column-Major Order 3.58s
Column-Major Order Column-Major Order 7.92s
Row-Major Order Row-Major Order 10.52s
Column-Major Order Row-Major Order 16.31s

Table 2.1: The execution time of multiplying two 1024×1024 matrices depends on the
chosen data representation.

When relying on the row-major representation only we measure an execution time of
about 11s. The column major representation performs slightly better with an execution
time of about 8s. With an execution time of only 4s, matching data access pattern and
data representation, i. e., RowMajorMatrix × ColMajorMatrix, results in a signifi-
cantly better performance. Conversely, when the data access pattern and data represen-
tation conflict for both matrices, the execution time is significantly higher as it takes 16s.
This is because caches can only hide memory latency when the program exhibits high
spatial or temporal locality. This is the case when the the data access pattern and data
representation match. Otherwise, the program’s performance is dominated by a high
cache-miss rate, which results in low performance. Thus, to ensure a “fast” execution
one should use a RowMajorMatrix as the first argument to mul, and a ColMajor-
Matrix as the second argument.5

2.2.3 Effect of Changing Representation on Performance.

We now present a second experiment which shows that it is not always possible to use
a RowMajorMatrix as the first argument and a ColMajorMatrix as the second ar-
gument. For the predicate doCommute (see listing 2.12), for instance, it is impossible
to find a combination of representations for mA and mB, such that both calls to mul are
“fast”. Because mA as well as mB are used once as the first and once as the second argu-

5The results of this experiment are representative for matrices that do not fit into the cache. If the matrices
fit into the cache no cache misses will occur, hence no performance penalties apply.

32 CHAPTER 2. MOTIVATION

Listing 2.12: A predicate to check if two matrices mA and mB commute.

1 boolean doCommute(Matrix mA, Matrix mB) {
2 Matrix mAB = mul(mA, mB);
3 Matrix mBA = mul(mB, mA);
4 return mAB.equals(mBA);
5 }

Listing 2.13: Changing the representation of a matrix from row-major to col-major order
in C.

1 struct Matrix* m = alloc(sizeof(struct Matrix));
2 m.coord2idx = &rowMajorOrder;
3 ...
4 transpose(m);
5 m.coord2idx = &colMajorOrder;

ment of mul, thus the combination that yields the “fast” performance for the first mul-
tiplication, excludes the combination that yields the “fast” performance for the second
multiplication. By extrapolating the measurements presented in table 2.1 we expect that
calling doCommute(A,B) with two instances of ColMajorMatrix yields the fastest
execution (see table 2.2).

Data Representation Data Representation Execution Time
of mA of mB Expected Measured
Column-Major Order Column-Major Order 2×7.92s = 15.84s 15.45s
Row-Major Order Column-Major Order 3.58s +16.31s = 19.89s 18.24s
Column-Major Order Row-Major Order 16.31s +3.58s = 19.89s 19.59s
Row-Major Order Row-Major Order 2×10.52s = 21.04s 20.86s

Table 2.2: The execution time of doCommute by extrapolation of the measurements
from table 2.1 (expected) and by measuring.

Now, consider the function transpose which reflects the square matrix M over its
main diagonal (see listing 2.14). First note that a row-major order matrix M stores its
elements in exactly the same order as a the transposed col major order matrix M T , and
vice versa. To illustrate, consider

M T =
 s o n

p i e
a l t

T

=
 s p a

o i l
n e t

 .

Note also that, in the context of the C implementation, first calling the transpose
function (assume a C version of listing 2.14), and then replacing the value of the function
pointer coord2idx, which points to a function that converts the row-col coordinates

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 33

Listing 2.14: The function transpose reflects the square matrix mA over its main diag-
onal.

1 void transpose(Matrix mA) {
2 assert(mA.getRows()==mA.getCols());
3 int size = mA.getRows();
4 for (int r=0 ; r<size ; r++) {
5 for (int c=r+1 ; c<size ; c++) {
6 double temp = mA.get(r,c);
7 mA.set(r,c, mA.get(c,r));
8 mA.set(c,r,temp);
9 }

10 }
11 }

into an index in an array , to “the other version” effectively changes the representation of
a matrix (listing 2.13). Listing 2.13 shows this the transition from row-major order (line
2) to col-major order (lines 4 and 5).

We again compute the product of two square matrices. This time, however, we start
with both matrices in the RowMajorMatrix representation and change the represen-
tation of the second matrix mB to column-major order just before the actual multiplica-
tion. We use the transpose operation to convert mB.

This experiment, where the representation changes during the execution, takes 3.61s
to multiply two 1024×1024 matrices. First, compare this to the fastest execution from
table 2.1, which takes 3.58s, but does not perform a transposition. Second, compare this
to the 10.52s needed to multiply two row-major matrices, which also does not perform
a transposition but starts with the same representation as this experiment. We conclude
that for this example, changing the representation at runtime and performing the mul-
tiplication is significantly faster than performing the multiplication with the initial rep-
resentation. Second, changing the representation at runtime and performing the multi-
plication is only marginally slower than performing the multiplication with the optimal
combination of representations.

Although it might seem counter intuitive, the matrix multiplication example
illustrates the existence of programs where performing both a representation
change and an actual computation yields better performance than performing
that computation only.

Small Matrices In section 2.2.2 we experimentally determine the best combination
of representations with which to call the matrix multiplication method. However, all
presented numbers are gathered by measuring the execution time of multiplying two
1024× 1024 matrices. For such large matrices that do not fit in the cache, the chosen
representation has a significant impact on performance because of cache-effects. More-
over, in section 2.2.3 we showed that transposing the matrix first and then performing

34 CHAPTER 2. MOTIVATION

Listing 2.15: applyStencil updates the values of its arguments.

1 void applyStencil(Matrix src, Matrix tar, int iterations) {
2 for (int i=0 ; i<iterations ; i++) {
3 for (int r=0 ; r<src.getRows() ; r++) {
4 for (int c=0 ; c<src.getCols() ; c++) {
5 tar.set(r,c, heat(src,r,c));
6 }
7 }
8 Matrix tmp = src; src = tar; tar = tmp;
9 }

10 }

Listing 2.16: applyStencil updates the values of its arguments.

1 double heat(Matrix mA, int r, int c) {
2 return (mA.get(r+0,c+0) +
3 mA.get(r+1,c+0) +
4 mA.get(r+0,c+1) +
5 mA.get(r+1,c+1)) / 4.0 * 0.9;
6 }

multiplication yields a faster execution than eagerly multiplying without changing the
representation.

For small matrices that do fit in the cache, however, cache effects do not influence
the execution time. As a corollary, transposing a small matrix introduces overhead but
does not lead to improved performance in the actual multiplication. Thus, not only the
data access pattern (cf. mul) has an influence on which representation to use, but also
characteristics of the data itself, here the size of the matrix.

2.2.4 Changing Data Characteristics.

We now present a second example where changing the representation of a data object
at runtime turns out to be beneficial. The focus in this example will be the characteris-
tics of the data (cf. small matrix) as motivation for a representation change. We present
this example, as opposed to the matrix multiplication example which was discussed ex-
tensively, in a narrative form only. Later in this chapter, this second example serves as
a case to show the limitations of contemporary programming languages in regards to
expressing representation changes.

Stencil computations are a second type of commonly used computation involving
matrices. Amongst other applications, stencil computations are often used for numer-
ical approximations when solving partial differential equations. A classic implementa-
tion, as shown in listing 2.15, updates all values in an output matrix as a function of the
values in the neighbourhood of the corresponding element in an input matrix. In the
code examples tar and src, respectively, denote the input and output matrices. This

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 35

“neighbourhood function” is called a stencil. Iteratively applying this function on the
same two matrices, once as input then as output, models the effect of time.

The example we discuss here, models the heat distribution over time, hence the
heat-stencil, listing 2.16. Iteratively applying applyStencil on any data set visu-
ally reveals that the overall temperature converges to zero. This effectively means that
the number of zero values has greatly increased over time. First note that “the number
of zero values”, i. e., sparsity, is a characteristic of the data itself and is not a property of
the data representation. However, there is a relation between the two. For instance, it
is credible to assume that at the beginning of the computation one of the dense repre-
sentations is to be preferred, while after “some time” a SparseMatrix representation
would be a more efficient representation. Thus, ideally the representation changes dur-
ing the computation. In the matrix multiplication example, the representation change
is motivated by the change in computation, i. e., a matrix is accessed differently when
used as the left or as the right operand. Here, the representation change is motivated by
a change in the data itself, i. e., if the matrix becomes sparse, a sparse representation is
to be preferred.

Conclusion

In order to improve performance, in the widest sense of the term, we argue in
favour of data objects whose data representation can change at runtime. Such a
representation change can be favourable when the usage pattern changes (i. e.,
computation) or when the characteristics of the data change (i. e., data).

2.2.5 Ad-Hoc Representation Changes

Hitherto, we built up a case in favour of dynamic representation changes in order to im-
prove performance. In the second part of this chapter we show how this can be realised
in contemporary widespread programming languages. We do this by reimplementing
the examples discussed above, using explicit representation changes. Below we discuss
three implementation strategies to implement representation changes: by relying on a
type system, by resorting to local representation changes, and by building combinations
of representations. As we will discuss, each of these techniques to introduce ad-hoc rep-
resentation changes exhibits problems that hamper their adoption.

2.2.5.1 Relying on a Type System

The conclusion of the matrix multiplication experiment is that the ideal combination
of representations with which to call the mul method is RowMajorMatrix and Col-
MajorMatrix. In a statically-typed language it is possible to encode this conclusion
in the signature of the method mul, e. g., Matrix mul(RowMajorMatrix, Col-
MajorMatrix). Then, the type system of the language only accepts programs that use
mulwith the intended representations. Thus, the type system ensures thatmul is always
called with matrices that yield the best possible performance (cf. table 2.1). However, we
identify three problems with this approach: the burden of changing the representation

36 CHAPTER 2. MOTIVATION

lies with the client code, as a result, the logic for changing the representation is scattered
and entangled with the application logic, and static type systems are to rigid to allow for
“conditional representations”.

Putting the Burden on the Client Code. As a result of using a conventional type sys-
tem, the burden of producing a legal program lies with the code that calls mul. The im-
plication is that potentially each call to mul has to be surrounded by code responsible
for checking the “current representation” changing the current representation to the in-
tended representation if needed. Note that in dynamically typed languages, the burden
of passing the “right” arguments also lays with the client code. The difference between a
dynamically typed language and a statically languages is that in the former badly typed
arguments are detected at runtime only, whereas in the latter badly typed arguments are
detected before the execution.

Representation Change Logic is Entangled with Application Logic and Scattered
Throughout the Code Base. As already identified above, relying on the static type sys-
tem implies that the client code has to be augmented with logic responsible for checking
and changing representations. In software engineering, augmenting code with logic that
has a different intent, is known as code entanglement. Moreover, because client code is
scattered trough the code base, so is the representation change logic. Both entangled
and scattered code are considered bad smells, e. g., by Kiczales et al. [49], and language
features have been proposed to resolve them. These features have been studied in the
field of aspect-oriented programming[49].

Loss of Flexibility. In section 2.2.2 we experimentally determined the best combina-
tion of representations with which to call the matrix multiplication method. And in sec-
tion 2.2.3 we showed that, for large matrices, transposing the matrix and then performing
multiplication can yield a shorter execution time than multiplying without a represen-
tation change. As a side note, however, we also mentioned that for small matrices this
technique does not yield better performance but on the contrary introduces overhead
only. Thus, changing the representation of a small matrix before each multiplication
could even hamper performance.

The signature of mul, Matrix mul(RowMajorMatrix,ColMajorMatrix), which stati-
cally encodes the optimal representations, does not take the size of the matrix into ac-
count. A static type system, however, is inexorable and the expected type has to be
passed along. It is not possible to express “conditional types”, especially not those that
statically reason about dynamic properties such as “the size of a matrix”. Also concep-
tually, the static types are too strict. The multiplication is intended to work with “any
kind of matrix”, and the static types only suggest the ideal representations. In short, static
types put too hard a constraint on the program if one simply wants to express “intended”
or “preferred” behaviour.

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 37

Listing 2.17: Change the representation of the arguments locally.

1 Matrix mul(Matrix mA, Matrix mB) {
2 if (!mA instanceof RowMajorMatrix && (mA.getRows()*mA.getCols())>LARGE)
3 mA = new RowMajorMatrix(A);
4 if (!mB instanceof ColMajorMatrix && (mB.getRows()*mB.getCols())>LARGE)
5 mB = new ColMajorMatrix(mB);
6 Matrix mC = new RowMajorMatrix(N, N);
7
8 for (int i=0 ; i<N ; i++)
9 for (int j=0 ; j<N ; j++)

10 for (int k=0 ; k<N ; k++)
11 mC.set(i, j, mC.get(i, j) +
12 mA.get(i, k) * mB.get(k, j));
13 return mC;
14 }

2.2.5.2 Local Representation Change

A second ad-hoc implementation of representation changes is to update the value of a
local variable with a “transformed replica” of the original value. For the matrix multi-
plication example, this would look something like listing 2.17. Note that this approach
does allow expressing conditional representation changes, based on dynamic proper-
ties. Lines 2 and 4 check both the “current representation” and the “size of the matrix”,
and react accordingly.

For the stencil computation example, we argued that a representation change could
be beneficial when the matrix has become “sufficiently sparse”, i. e., after a certain num-
ber of iterations. The programs in figure 2.8 achieve this in two different ways. On the left
we show a program where the representation change should happen in iteration num-
ber T. A concrete value for T should be determined by a performance engineer, e. g., by
trial-and-error. The program on the right is a bit more subtle as it estimates the actual
sparsity of the matrices using the counter zeros. The sparsity of a matrix is a data char-
acteristic upon which it can be decided to perform a representation change. Here, when
the number of zeros exceeds the threshold S, then the sparse representation is chosen
and transition to.

Local Representation Changes and Identity Imagine the heat example to be augmented
with a graphical interface that continuously updates the thermographic images displayed
on the screen. To this end, the thread responsible for updating the screen holds a refer-
ence to both matrices. A local representation change, as the name suggests, only affects
the local scope. As a result, no updates are visible after a representation change. The
problem identified here is that local representation changes not only change the repre-
sentation of a variable but also its identity. A fresh data object, with a fresh identity, is
created and a reference is updated. The original object, however, still exists and retains
it original identity. The solution here would be to update the value of all references to
the new data object at once. In Smalltalk [36], for instance, this can be realised through

38 CHAPTER 2. MOTIVATION

for (int i=0 ; i<iterations ; i++) {
// i counts the number of iterations
for (int r=0 ; r<src.getRows() ; r++) {

for (int c=0 ; c<src.getCols() ; c++) {

tar.set(r,c, heat(src,r,c));
}

}
Matrix tmp = src;
src = tar;
if (i==T)

tar = new SparseMatrix(...);
else

tar = tmp;
}

for (int i=0 ; i<iterations ; i++) {
int zeros = 0;
for (int r=0 ; r<src.getRows() ; r++) {

for (int c=0 ; c<src.getCols() ; c++) {
double newHeat = heat(src,r,c);
if (newHeat==0) zeros++;
tar.set(r,c, newHeat);

}
}
Matrix tmp = src;
src = tar;
if (zeros>S)

tar = new SparseMatrix(...);
else

tar = tmp;
}

Figure 2.8: Left: After T iterations switch to sparse. Right: When zeros is large switch to
sparse.

the use of become:. Without language support, however, this approach is not feasible
because updating all references is not feasible. Alternatively, one could opt to only apply
representation changes on global variables, but this hampers flexibility. Moreover, the
use of global variables is generally considered to be bad coding practice.

Application Logic Entangled with Representation Change Logic. Introducing a local
representation change does not introduce code scattering, because the change is by def-
inition local. Code entanglement, however, is large. The code fragment in listing 2.17,
for instance, consists of two different logical parts. A first part, from line 2 to line 6, ex-
presses the logic responsible for changing the representations of the arguments mA and
mB. Lines 8–12, on the other hand, express the actual application logic.

Figure 2.8 also consists of two logical parts: application logic and representation
change logic. Both parts, however, are entangled. This is visualised in figure 2.8 where
application logic is marked in green () and the representation change logic is marked
in grey ().6 As already mentioned, aspect-oriented programming proposes solutions to
these issues [49].

2.2.5.3 Combination of Representations

A third, and final, ad-hoc solution to support data representation changes is the intro-
duction of a new representation that explicitly implements representation changes. An
example thereof is the matrix implementation in listing 2.9 which allows representation
changes by simply replacing the value of field coord2idx with a different implemen-
tation chosen from listing 2.10. Again, this ad-hoc solution posed two problems: the
approach is not scalable and in statically-typed languages this approach is too restric-
tive.

Not Scalable. This approach only works for dense matrices that store their elements
based on some linearisation scheme, e. g., row-major order and column-major order are

6The meaning of the other colours (i. e., and) is discussed in chapter 8.

2.2. ON THE EFFECT OF DATA REPRESENTATION ON PERFORMANCE 39

both translations from a two-dimensional coordinate of a matrix into a one-dimensional
coordinate of an array. In listing 2.9 (on page 27), this linearisation scheme is reified in
the function pointer f. Implementing a representation that can not be captured as a
translation between coordinate systems is thus not possible by replacing fwith another
value. In general, combining heterogeneous representations is not feasible, because it
requires significant programmer effort to incorporate each new representation.

Multi Typed. From the “type” point of view, a combined representation is a subtype
of all the representations it combines. In practice, this implies the need for a language
with support for multiple inheritance. In chapter 9 we show that, oddly enough, most
approaches related to representation changes adhere to the inverse relation. This inverse
relation implies that the different representations are subtypes of one super type. In a
statically-typed language, “changeable objects” require the super type as static type. In
chapter 4 we present examples where this is too restrictive.

2.2.6 Levels of Granularity

The two example programs discussed in this section, the multiplication and the sten-
cil computation, exemplify the need for data structures with changing representations.
Note that in both examples, the decision to change the representation is made on a con-
ceptually different level of granularity. In the matrix multiplication example, the repre-
sentation change is expressed from the view point of the computation that uses a matrix,
i. e., the mul method. In the stencil computation example, on the other hand, the rep-
resentation change is expressed from the viewpoint of the matrix itself, i. e., depending
on the sparsity. We discuss this difference in more detail in section 3.2.3 where we con-
clude that the former describes a static quantification over the code, whereas the latter
describes a dynamic quantification over the code [32].

We do not need data structures . . . we need lots of data structures.

In this section we argue that the representation of data objects should be change-
able at runtime. Dynamically changing the representation of data is not widely
adopted because contemporary programming languages do not provide suffi-
cient support to make the implementation of such “just-in-time data structures”
feasible.
A language where representation changes are an integral part of the semantics
should support:

• preservation of identity in the occurrence of a representation change;

• the possibility to disentangle application logic and representation change
logic;

• the possibility to express both static and dynamic representation change
logic.

40 CHAPTER 2. MOTIVATION

2.3 Towards A Language with Support for Representation Changes

This chapters draws two conclusions (cf. the boxes on page 25 and page 39): predict-
ing and improving performance is hard and changing the representation of data can be
beneficial for performance. Programming languages as such can not reduce the com-
plexity of performance engineering itself. They can, however, make the complexity of
performance engineering combined with software engineering manageable. We con-
clude from section 2.1 that this can be realised by separating application logic for per-
formance related logic, because this allows us to reason about the functional part of the
application separate from the performance part of the application. Section 2.2 illustrates
that there are applications where changing the representation is beneficial from a perfor-
mance point of view. However, language support for this kind of representation changes
is not yet developed.

We therefore argue in favour of a language with support for representation changes.
As suggested in section 2.1, such a language needs to support the separation of applica-
tion logic from representation change logic to allow application developers and perfor-
mance experts to work more independently. Furthermore, as identified in section 2.2,
such a language needs to support both static and dynamic representation change logic,
and should allow objects to retain their identity after a representation change. The main
technical contribution of this dissertation is the design and implementation of a lan-
guage that meets the aforementioned requirements: JITds.

This chapter identifies the need for languages with support for representation changes,
mainly with the goal of improving the performance. In the next chapter, we present and
discuss a taxonomy for the design space of languages with support for representation
changes in general. At the same time this allows us to present more formal definitions
of terms, informally introduced in this chapter, such as “‘static and dynamic represen-
tation changes” and “identity preservation”. Then, in chapters 4 and 6 we introduce the
language JITds itself.

Chapter 3

Matching Data and Computation

Algorithms + Data Structures = Programs — Niklaus Wirth [88].

Developing software is all about combining computation and representation accord-
ing to Wirth [88]. Even though much has changed in software engineering and program-
ming language design, in essence Wirth’s statement still applies. Writing programs with
good performance can be realised by improving the algorithms to better match the used
data structures, or by improving the data structures to better match the used algorithms.

The goal of this chapter is, on the one hand, to introduce terminology, and to explore
the design space of programming languages where changing the data representation is
a core feature. To this end, we first define what a representation change exactly is in
section 3.1. Then, in section 3.2, we introduce a taxonomy of language design choices
w.r.t. data representation changes. This taxonomy consists of seven dimensions and is
distilled from the literature.

3.1 Representation Selection or Representation Change.

Broadly speaking, the history of software development is the history of
ever later binding times. — Encyclopedia of Computer Science[67]

In chapter 1 we defined the data representation of a data object as the concrete re-
alisation of a data interface. At execution time, when a program interacts with a data
object, it conceptually interacts with a data interface, but it effectively interacts with the
concrete data representation of that data object. We also know that it is possible to de-
fine different representations that encode the same data interface [88, 53, 1]. Hence,
at some point in time, the choice of which representation to use for which data object
must be made. This choice, and the strategy that leads to this choice, is what we call data
representation selection. We now discuss when, in the life time of a data object, such a
representation selection can occur. Figure 3.1 shows a time line which represents the life
time of a data object.

The left part of figure 3.1 — an adaptation of the System Development Life Cycle
(SDLC) [68] — shows the life time of a data object before execution (offline). In this

41

42 CHAPTER 3. MATCHING DATA AND COMPUTATION

Figure 3.1: The “life time” of a data object: from being identified in the analysis phase
of the software development life cycle, through allocation at runtime, to deallocation in
the end.

part the data object is introduced in a software product or it is adjusted according to
the requirements identified in the development cycles of the software system. When the
choice of a data representation is made in this part, we refer to it as offline representation
selection, because the representation is fixed before execution time.

The right part of figure 3.1 shows the life time of a data object during execution (on-
line). In this part, the data object is consecutively allocated, initialised, “used”, finalised,
and deallocated. In the evolution of programming languages, ever more dynamic strate-
gies for representation selection have been proposed over the years, effectively delaying
the moment during the development cycle where the representation of a data object is
fixed. Today, representation selection can be delayed until execution time. In this case
we refer to it as online representation selection because fixing the data representation is
postponed until runtime.

Today, in most programming languages, once a data object is allocated and initialised
according to the selected representation, that representation remains fixed. However,
some programming languages exist where the representation of a data object can be
changed after the initial representation selection. We call such a renewed representation
selection a representation change.

Definition

A data representation change is a renewed data representation selection for a
data object during the execution of a program.

Thus, as shown in figure 3.1, there exist three types of representation selection: 1. of-
fline representation selection, 2. online representation selection, and 3. representation
change. Note that we do not differentiate between online and offline representation
changes. Because we define representation changes as a renewed representation se-
lection for an already existing data object, “Offline Representation Changes” would be
a contradiction by definition. Put differently, representation changes inherently happen
online. Note that during the feedback loop of a software engineering cycle (right-to-left
arrow in figure 3.1), the decision can be made to change the representation of an object.
The selection of such a new representation, however, is statically decided, and is hence
not considered to be a representation change in our work.

3.1. REPRESENTATION SELECTION OR REPRESENTATION CHANGE. 43

Listing 3.1: Choosing a Data Representation Online

1 Matrix c = MatrixFactory.create(rs, cs);

Listing 3.3: Selecting the RowMajorMatrix representation for m, which changes to
ColMajorMatrix later on.

1 m := RowMajorMatrix new. "Representation Selection"
2 ... "Some Computation"
3 m become: (ColMajorMatrix new: m). "Representation Change"

Offline Representation Selection Offline representation selection is almost as old as
programming and software engineering itself and stems from the time when separation
of interface and implementation was proposed as best practice. Examples are C/C++
header files, which can be linked and compiled with different C/C++ implementation
files. Another straightforward example of offline selection is shown in listing 3.8, where
lines 1 and 2 reveal the explicit design choice of a developer to select the representa-
tions RowMajorMatrix and TransposableMatrix for variables mA and mB, re-
spectively.

Online Representation Selection. With online representation selection, the decision of
which data representation to use is postponed until runtime. In object-oriented software
engineering this is a common practice, as exemplified by various instances of both the
factory patten and the more complex builder pattern [34]. Listing 3.1 for instance, makes
use of a factory class MatrixFactory. An implementation of MatrixFactory is
given in listing 3.2. Note that MatrixFactory decides dynamically which of the rep-
resentations to use.

Listing 3.2: MatrixFactory

1 class MatrixFactory {
2 static Matrix create(int rows, int cols) {
3 if (cols>rows)
4 return new RowMajorMatrix(rows,cols);
5 else
6 return new ColMajorMatrix(rows,cols);
7 }
8 }

Representation Changes Listing 3.3 shows a snippet of Smalltalk code. On line 1 the
RowMajorMatrix representation is selected for m. On line 2, the representation of m
is changed to ColMajorMatrix. Here, to realise the representation change we used
the becomemethod. This is a language feature available in Smalltalk which changes the
identity of the receiver to its argument[11].

44 CHAPTER 3. MATCHING DATA AND COMPUTATION

Listing 3.4: On 01/01/2015, John Doe changed the representation of myList from
ArrayList to LinkedList

1 /*
2 * Used to be ArrayList before 01/01/2015
3 * Changed to LinkedList because of performance reasons.
4 * see report of 26/12/2014 on memory access.
5 * John Doe
6 */
7 List myList = new LinkedList();

Offline Representation Change Listing 3.4 shows a piece of Java code where John Doe
has “changed” the representation of myList during software development. However,
as discussed in section 3.1, we do not consider such “offline representation changes” in
our work.

3.2 Seven Dimensions of Representation Changes

When studying the literature on programming languages with support for representa-
tion changes, we identify seven questions that allow us to classify these languages. We
argue that the design space of programming languages with support for representation
changes is characterised by the answers to the following questions:

• Q1: Who is responsible for data representation changes?

• Q2: How is a data representation change realised?

• Q3: When is a data representation change executed?

• Q4: Which data representation changes are possible?

• Q5: How long does a data representation change take?

• Q6: What is altered after a data representation change?

• Q7: Why are data representation changes introduced?

In sections 3.2.1 to 3.2.7 we refine and discuss these questions in more detail.

3.2.1 Q1: Who is responsible for data representation changes?

The representation of a data structure does not automagically change by itself. Either the
representation changing functionality is explicitly added by a developer, or data repre-
sentation changes are an inherent part of the environment (e. g., a language’s semantics
or a framework’s functionality). We say that data representation changes are the respon-
sibility of either the developer or the environment.

The question of whether the developer or the environment is responsible for repre-
sentation changes, however, does not necessarily have an “all or nothing” answer. For

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 45

instance, in section 3.2.2 we pose the question how representation changes are realised
and in section 3.2.3 we pose the question when representation changes are performed.
It is possible, as in Ureche et al. [85] for instance, that the developer is responsible for
describing how to change the representation, whereas the environment is responsible
for deciding when a representation is changed. Hence, we could pose the responsibility
question in the context of each of the remaining six dimensions of our taxonomy.

Examples. An example where the runtime is responsible for representation changes is
Storage Strategies [10]. Storage Strategies is a part of the PyPy interpreter, which changes
the representation of collections depending on the type of elements. A more thorough
discussion on Storage Strategies can be found in section 9.2.1.

Conversely, in Smalltalk representation changes can be realised through a call to
become. It is the responsibility of the developer to insert the appropriate calls. Let us
consider listing 3.3 as one concrete example. This Smalltalk fragment shows both a rep-
resentation selection (line 1) and a representation change (line 3). In this fragment it is
the decision of the developer to select and change the representation of the data object
bound to m.

3.2.2 Q2: How is a data representation change realised?

A data structure does not automagically know how to change its representation. There
has to be some part of the program responsible for the actual conversion from one rep-
resentation to another. The part of the program that expresses this transition is called
the transformation logic.

3.2.2.1 Orderly Representation Changes.

As we discuss in section 3.2.1, the burden of expressing transformation logic is either put
on the developer or it is the responsibility of the environment. Some programming lan-
guages that put the burden on the developer provide a dedicated programming construct
to express the transformation logic. In this case, we say that the language has support
for orderly representation changes.

Example in LDL and ADRT. We discuss LDL and ADRT in detail in section 9.1.1. As we
will show, in LDL and ADRT a transformation description object needs to be defined for
each pair of representations between which representation changes need to be possible.

Example in Java. In Java, when a data object needs to be displayed on a screen (e. g.,
System.out.println), then the data object is first converted into the String rep-
resentation. By default an object is then printed as the concatenation of its class name,
an at-sign, and a hash-code, cf. the default implementation oftoString inObject[60].

Because Java supports method overriding, it is possible to implement a different con-
version. Listing 3.5, for instance, shows how to convert an instance of Point2D to a
string that reveals the coordinates. The JVM does not treat toString differently from
any other method. However, we do consider toString as Java’s “special construct” to

46 CHAPTER 3. MATCHING DATA AND COMPUTATION

Listing 3.5: Converting an instance of Point2D to String.

1 public class Point2D {
2
3 int x, y;
4
5 public String toString() {
6 return "(" + this.x + "," + this.y + ")";
7 }
8 }

convert objects into strings. We can argue that Java supports orderly transitions between
any object and String by means of the toString-method.

3.2.2.2 Internal or External Transformation Logic.

The transformation logic can either be a part of the definition of a data structure or not.
Hence, we differentiate between data structures with internal transformation logic and
data structures with external transformation logic. In other words, internal transforma-
tion logic is transformation logic encapsulated in the definition of a data structure.

3.2.3 Q3: When is a data representation change executed?

A data structure does not automagically know when to change its representation. There
has to be some part of the program responsible for initiating an actual representation
change. We call the part of the program that is responsible for initiating a representation
change the representation change incentive (code).

3.2.3.1 Internal or External Transformation Incentive.

We differentiate between approaches where the representation change incentive code is
encapsulated in the data structure’s definition and those where it is not. Representation
changes with internal incentives are initiated by the data structures itself, i. e., as part of
their implementation. Conversely, we dub the representation change incentive as exter-
nal when the new representation is imposed on the data structure from the outside of
that data structure.

Representation Change Incentive and Transformation Logic: Comparing Internal and
External Implementations We use the example of a set of integers to illustrate the dif-
ference between (internal and external) transformation logic and (internal and external)
representation change incentive. Assume there are two representations for a set: as a
sorted collection or as an unsorted collection. Then, a sorting algorithm effectively de-
scribes how to transform an unsorted collection into a sorted collection, i. e., the sort al-
gorithm is the transformation logic. Invoking such a sorting algorithm effectively causes

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 47

Table 3.1: Representation Change Incentive and Transformation Logic: Comparing In-
ternal and External Implementations

Transformation Logic
internal external

C
h

an
ge

In
ce

n
ti

ve

in
te

rn
al

User Code

1 myList.add(x);

Representation Code

1 public void add(Object x) {
2 this.data.add(x);
3 this.sort();
4 }

User Code

1 myList.add(x);

Representation Code

1 public void add(Object x) {
2 this.data.add(x);
3 Collections.sort(this);
4 }

ex
te

rn
al

User Code

1 myList.add(x);
2 myList.sort();

Representation Code

1 public void add(Object x) {
2 this.data.add(x);
3 }

User Code

1 myList.add(x);
2 Collections.sort(myList);

Representation Code

1 public void add(Object x) {
2 this.data.add(x);
3 }

the transformation to take place, i. e., the call to sort is the representation change in-
centive code. The remaining question is whether the transformation logic or the repre-
sentation change incentive are part of the definition of the set (internal) or not (external).

Table 3.1 shows all four combinations. The two examples in the top row show how
the list itself is responsible for ensuring that its elements are sorted (cf. line 7). The ex-
amples on the bottom row, on the other hand, show how the user of the list invokes some
sorting algorithm and enforces the sorted representation on the set (cf. line 3). The ex-
amples in the left column exemplify a set representation with its own implementation
of a sorting algorithm (cf. sort(), used on line 7(top) and line 3 (bottom)). The exam-
ples in the right column rely on the sorting functionally implemented external to the set
representation (cf. sort of Collection, used on line 7(top) and line 3 (bottom)).

3.2.3.2 Static or Dynamic Incentive.

Orthogonal to the question of whether the representation change incentive code is in-
ternal or external, is the question about at which moment(s) during the execution of the
program a representation change has to occur. Using the terminology from AOP [32], we
can say that representation change incentive code makes quantified statements about
the circumstances in which to execute a representation change. From Filman and Fried-

48 CHAPTER 3. MATCHING DATA AND COMPUTATION

man [32] we know that there exist two kinds of program quantification: quantification
over the static structure of a program and quantification over the dynamic behaviour
and state of a program.

Hence, we differentiate between static representation change incentive code and dy-
namic representation change incentive code. The former, static representation change
incentive code, identifies lexical places in a program where representation changes have
to occur (static). The latter, dynamic representation change incentive code, identifies
moments in the execution of a program where representation changes have to occur
(dynamic).

3.2.4 Q4: Which data representation changes are possible?

The representation changes for a data object can be modelled naturally by a graph, with
representations as vertices, and the possible representation changes as edges between
these vertices. We call such a graph a transition graph. Consider OpenFile, Closed-
File, and LockedFile as three representations of the abstract data type File. An
OpenFile can be closed and aClosedFile can be opened. Both anOpenFile or an
ClosedFile can be locked, while a LockedFile remains locked for ever. Figure 3.2
visualises the intended representation changes for a File as a transition graph. We say
that File is the denominator of this transition graph.

Figure 3.2: The states of a File: Open, Closed, Locked.

In the most liberal programming language, all data objects (regardless of their repre-
sentation) can change their representation to any other representation available in the
system. In such a programming language it is not possible to restrict the representation
changes to only the intended representation changes. In the most constraining program-
ming language, no data representation changes are allowed at all. In such a program-
ming language it is not possible to express any representation change.

The design space that describes which representation changes are allowed, covers
the complete continuum between these two extremes. As a result, each programming
language gives rise to transition graphs with different characteristics. We can categorise
programming languages according to the characteristics of the transition graphs in that
programming language. We identify that the characteristics of a transition graph are
defined by: the representations that are allowed to be vertices in the transition graph,
the (type) relation between the representations in the transition graph, and the possible
edges in the transition graph. Orthogonal to which transition graphs are possible in a
given programming language, is the question wether the transition graph is explicitly

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 49

created by a developer or implicitly defined by the programming language’s semantics
(cf. the who-dimension). First, however, we focus on the characteristics of the transition
graphs themselves.

To compare the different characteristics of the transition graphs in different pro-
gramming languages, we use Smalltalk as the point-zero. Smalltalk proves to be the most
liberal programming language in this respect, as the become operation effectively can
be used on any object and change its representation to any other available representa-
tion. Hence, the transition graph in a Smalltalk system is isomorphic with the complete
graph (Kn), where the vertices are all instantiatable classes in the Smalltalk system and
where any representation change is possible (i. e., all possible edges).

Listing 3.6: When a Frog gets kissed it becomes a Prince. But Player john can
never change its representation to Sword.
The example in this listing is adapted from [27]. More on FickleI I can be found in section 9.1.4.

1 root class Player { ... }
2 root class Item { ... }
3
4 state class Prince extends Player { ... }
5
6 state class Frog extends Player {
7 void kissed(){Player} {
8 this⇓Prince; // allowed
9 }

10 }
11
12 state class Sword extends Item { ... }
13
14 Player john = new Frog();
15 john.kissed(); // allowed
16 john⇓Sword; // not allowed

3.2.4.1 Transition Graph Vertex Membership.

The vertices in a transition graph are the representations that are “available” for a given
data object. Depending on the programming language, all representations (e. g., all classes)
or only representations of a certain category are available as possible new representa-
tions.

No Restrictions on Representations. As stated before, in Smalltalk thebecomemethod
allows any object to become any other object. Since any class is a viable new represen-
tation, we say that Smalltalk puts no restrictions on transition graph membership.

Annotated Representations only. Other languages exist where representation changes
are only possible between representations of a certain kind of representation. FickleI I

[27], for instance, introduces a special kind of class called state classes. In FickleI I rep-
resentation changes are only allowed from one state class to another. Root classes, on
the other hand, are introduced to annotate a class as denominator of a representation
changeable type. Listing 3.6 shows the keywords in FickleI I to declare classes as root or

50 CHAPTER 3. MATCHING DATA AND COMPUTATION

Listing 3.7: TCPEstablished is one of the representations of the denominator
TCPConnection. TCPEstablished is a implementation-only class.

1 implementationonly class TCPEstablished
2 extends TCPConnection {
3 ...
4 }

state classes. Another example is Gilgul, where representation changes are only allowed
between implementation-only classes [15] (see listing 3.7).

3.2.4.2 Relation between Transition Graph Vertexes.

Orthogonal to the constraints on potential members of a transition graph are the con-
straints put on the (type) relation between the vertices in any given transition graph.
Depending on the programming language, all representations can occur together in a
transition graph or only representations that share a certain relation can occur together
in a transition graph.

No Restrictions on Relations. In Smalltalk the become method allows any object to
become any other object. Since any class is a viable new representation, we say that
Smalltalk puts no restrictions on the relation between vertices in a transition graph.

Only Sibling Classes. In FickleI I , on the other hand, only state classes that have the
same root class as an ancestor are allowed to form a transition graph. Thus, FickleI I puts
a constraint on the relationship between the vertices of the transition graphs. Conse-
quently, Player john, from listing 3.6, can never change its representation to Sword,
because Sword can never be a part of the transition graph of Player.

3.2.4.3 Transition Graph Edges.

Besides vertices, a transition graph also has edges. Each edge represents a representation
change that is allowed at runtime. The most liberal languages, with respect to allowed
transitions, are those with the implicit assumption that transitions between any two rep-
resentations are possible. In these languages a transition graph is a complete graph (Kn).
Alternatively, not all transitions are allowed, either because they have to be developer de-
fined or because the language semantics prohibits certain transitions. These restrictions
have an impact on the shape of the transition graph.

No Restrictions on Edges. In Smalltalk the become method allows any object to be-
come any other object. Hence, in Smalltalk’s transition graphs, there exists an edge be-
tween any two representations. We say that Smalltalk does not put any restrictions on the
available edges in a transition graph. Moreover, all possible edges are implicitly present
in Smalltalk’s transition graphs, they are thus by definition complete transition graphs.

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 51

Edges Explicitly Defined by Developer. In Ad hoc Data Representation Transformation
(ADRT) representation changes are defined by a transformation object [84]. Such a trans-
formation object encapsulates the transformation logic between a high-level representa-
tion and a low-level representation. ADRT requires the developer of such transformation
objects to provide an implementation for both the toHigh and the toRepr method,
which respectively describe how to transform from a high level to a low level represen-
tation and the other way around. Hence, by construction ADRT only supports transition
graphs with exactly two edges. More on ADRT can be found in section 9.1.1. Note that
the developer is explicitly responsible for defining the transition graph in ADRT.

Edges Implicitly Defined by Language Semantics. Cohen and Gil [13], on the other
hand, describe a system with support for representation changes where objects can change
their representation but only to a subtype of the current representation. There, the tran-
sition graph is homomorphic with the inheritance tree where the “can-transition-to”
relation is mapped onto the “is-direct-superclass-of” relation. In between approaches
exist as well: effectively all representation changes are allowed but they have to be ex-
plicitly facilitated by a developer. This is further discussed in section 9.1.3. Note that
the language semantics of Object Evolution (cf. environment) implicitly define what the
transition graph looks like.

3.2.4.4 First-Class Transition Graphs.

To the best of our knowledge there are no languages where the transition graph can be
considered as a first class citizen in the language. By consequence, we are not aware of
any programming language where the transition graph can be changed dynamically by
the program or by the programmer.

3.2.5 Q5: How long does a data representation change take?

When it is possible to unambiguously determine the representation of a data object, both
before and after a representation change, we say the representation change is instant.
Conversely, when it is possible that after a representation change a data object is found
to be in multiple representations simultaneously, we refer to the representation change
as gradual.

While instant representation changes are often more straightforward to implement,
they can suffer from performance penalties when invoked too often. Gradual represen-
tations are usually an attempt to hide the latency of premature changes as they allow for
cheap rollback or because they also maintain the old representation, e. g., for modifiers
only. Their improved performance measured in execution time is often traded off for
more space.

Instant Representation Change. Recall that to have an instant representation change
it must be possible to unambiguously determine the representation of a data object,
both before and after a representation change is invoked. In listing 3.8, the method

52 CHAPTER 3. MATCHING DATA AND COMPUTATION

Listing 3.8: Internal Transformation Logic.

1 Matrix mA = new RowMajorMatrix(rs, cs);
2 Matrix mB = new TransposableMatrix(rs, cs);
3
4 mB.enforceColMajorOrder();
5 Matrix mC = mul(mA, mB);

enforceColMajorOrder is invoked on a data object mB of class Transposable-
Matrix. In listing 3.9, a concrete implementation for the classTransposableMatrix
is presented. The boolean flag rowActive is used to decide which indexing function
to use (see section 2.2.1). The effective representation change is realised through the in-
vocation of the method transpose, followed by updating the value of rowActive.
Before and after the call to enforceColMajorOrder, the current representation of
a transposable matrix is uniquely defined by the value of the flag rowActive. Hence,
this an example of an instant representation change.

Gradual Representation Change. Listing 3.10 presents a different implementation for
TransposableMatrix where it is not possible to unambiguously determine the cur-
rent representation of a matrix because two representations are maintained simultane-
ously. The implementation is roughly equivalent to listing 3.9 except for lines 2, 7, 12, 17,
and 19.1 The main difference in implementation is that there are two arrays in listing 3.10
that both store the data. The mutator set updates both arrays, whilst the accessor get
only consults the active representation’s data. This implementation allows for improve-
ments in execution time over the implementation shown in listing 3.9 when the number
of gets greatly exceeds the number of sets. The cost of a representation change comes
at the cost of inverting a boolean flag. Of course, maintaining two arrays comes at the
cost of doubled memory consumption.

3.2.6 Q6: What is altered after a data representation change?

3.2.6.1 State, Behaviour, or Both.

In the context of object-technology, a “data object” is an object. Moreover, in object-
technology, an object encapsulates both state and behaviour. Hence, after a representa-
tion change, it is possible that either, or both, state and behaviour have changed.

3.2.6.2 Genuine Representation Change versus Local Representation Change.

It is important to note that a representation change is defined in terms of a data object
(cf. section 3.1) and not in terms of a variable or reference. We say that a genuine repre-
sentation change keeps the identity of its subject intact. This implies that after a genuine

1Technically, lines 25 and 27 differ as well, but there the difference is accidental, i. e., because of a variable
name.

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 53

Li
st

in
g

(3
.9

)
Su

p
p

o
rt

in
g

M
u

lt
ip

le
R

ep
re

se
n

ta
ti

o
n

s

1
p
u
b
l
i
c

c
l
a
s
s

T
r
a
n
s
p
o
s
a
b
l
e
M
a
t
r
i
x

{
2

i
n
t
r
o
w
s
,

c
o
l
s
;

3
i
n
t
d
a
t
a
[
]
;

4
b
o
o
l
e
a
n

r
o
w
A
c
t
i
v
e

=
t
r
u
e
;

5 6
p
u
b
l
i
c

v
o
i
d

e
n
f
o
r
c
e
R
o
w
M
a
j
o
r
O
r
d
e
r
(
)

{
7

i
f

(
!
r
o
w
A
c
t
i
v
e
)

t
h
i
s
.
t
r
a
n
s
p
o
s
e
(
)
;

8
r
o
w
A
c
t
i
v
e

=
t
r
u
e
;

9
}

10 11
p
u
b
l
i
c

v
o
i
d

e
n
f
o
r
c
e
C
o
l
M
a
j
o
r
O
r
d
e
r
(
)

{
12

i
f

(
r
o
w
A
c
t
i
v
e
)

t
h
i
s
.
t
r
a
n
s
p
o
s
e
(
)
;

13
r
o
w
A
c
t
i
v
e

=
f
a
l
s
e
;

14
}

15 16
p
u
b
l
i
c

v
o
i
d

s
e
t
(
i
n
t
r
,

i
n
t
c
,
i
n
t

v
)

{
17

i
f

(
r
o
w
A
c
t
i
v
e
)

18
d
a
t
a
[
r
*
c
o
l
s
+
c
]

=
v
;

19
e
l
s
e

20
d
a
t
a
[
r
+
c
*
r
o
w
s
]

=
v
;

21
}

22 23
p
u
b
l
i
c

i
n
t

g
e
t
(
i
n
t
r
,

i
n
t
c
)

{
24

i
f
(
r
o
w
A
c
t
i
v
e
)

25
r
e
t
u
r
n

d
a
t
a
[
r
*
c
o
l
s
+
c
]
;

26
e
l
s
e

27
r
e
t
u
r
n

d
a
t
a
[
r
+
c
*
r
o
w
s
]
;

28
}

29
}

Li
st

in
g

(3
.1

0)
M

ai
n

ta
in

in
g

M
u

lt
ip

le
R

ep
re

se
n

ta
ti

o
n

s

1
p
u
b
l
i
c

c
l
a
s
s

T
r
a
n
s
p
o
s
a
b
l
e
M
a
t
r
i
x

{
2

i
n
t
r
o
w
s
,

c
o
l
s
;

3
i
n
t
d
a
t
a
R
M
[
]
,

d
a
t
a
C
M
[
]
;

4
b
o
o
l
e
a
n

r
o
w
A
c
t
i
v
e

=
t
r
u
e
;

5 6
p
u
b
l
i
c

v
o
i
d

e
n
f
o
r
c
e
R
o
w
M
a
j
o
r
O
r
d
e
r
(
)

{
7 8

r
o
w
A
c
t
i
v
e

=
t
r
u
e
;

9
}

10 11
p
u
b
l
i
c

v
o
i
d

e
n
f
o
r
c
e
C
o
l
M
a
j
o
r
O
r
d
e
r
(
)

{
12 13

r
o
w
A
c
t
i
v
e

=
f
a
l
s
e
;

14
}

15 16
p
u
b
l
i
c

v
o
i
d

s
e
t
(
i
n
t

r
,
i
n
t

c
,
i
n
t

v
)

{
17 18

d
a
t
a
R
M
[
r
*
c
o
l
s
+
c
]

=
v
;

19 20
d
a
t
a
C
M
[
r
+
c
*
r
o
w
s
]

=
v
;

21
}

22 23
p
u
b
l
i
c

i
n
t

g
e
t
(
i
n
t
r
,
i
n
t

c
)

{
24

i
f
(
r
o
w
A
c
t
i
v
e
)

25
r
e
t
u
r
n

d
a
t
a
R
M
[
r
*
c
o
l
s
+
c
]
;

26
e
l
s
e

27
r
e
t
u
r
n

d
a
t
a
C
M
[
r
+
c
*
r
o
w
s
]
;

28
}

29
}

54 CHAPTER 3. MATCHING DATA AND COMPUTATION

Listing 3.11: When x becomes a boat, its alias y has become that same boat.

1 x := Car new.
2 y := x.
3 x become: (Boat new).
4 y sailTo: ’England’.

representation change, all aliases that refer to the original data object have also changed
since they share the same identity. In other words, a genuine representation change pre-
serves the identity of a data object.

Most programming languages, however, do not provide language constructs that are
powerful enough to express genuine representation changes without introducing an ex-
tra layer of indirection (cf. handles). In these languages, assigning a new object to a
variable can be considered a “poor man’s representation change” which we call a local
representation change in section 2.2.5.2. In other words, a local representation change
is an intentional representation change where identity preservation can not be guaran-
teed, e. g., by local assignment.

A genuine representation change alters the representation of a data object, but not
its identity. Not many languages support genuine representation changes. Smalltalk, by
means of become, does. The fragment of Smalltalk code in listing 3.11 makes use of
become to realise a representation change for the data object bound to x from Car to
Boat (line 3). y, an alias of the Car-object referenced by x, has also become a Boat
— the same exact Boat — after the call to become. Because Smalltalk’s become has
identity preserving semantics, it can be used to realise a genuine representation change.

Other examples of programming languages with support for genuine representation
changes are FickleI I [27], Gilgul [15].

Most conventional languages (e. g., Java, C/C++, C#) have no support for genuine
representation changes. Listing 3.12 show how local assignment can be used to realise
a poor man’s representation change. On line 7, for instance, the parameter mB changes
from RowMajorMatrix to ColMajorMatrix by means of a simple assignment. Af-
ter the representation change, mB no longer references the same data object, i. e., the
identity is lost. Moreover, because of Java’s call-by-value semantics, the mB on line 2 still
references a data object in the RowMajorMatrix representation after the call to mul.
In this example the representation change does not preserve identity and is only visible
locally, cf. local representation change.

3.2.7 Q7: Why are Data Representation Changes Introduced?

General Applicability versus Specific Use Cases Finally, we observe that representa-
tion changes are introduced based on different motivations. First, we differentiate based
on the applicability of the representation changes: one specific use case or generally ap-
plicable. Second, we identify a set of use cases where representation changes are the
natural solution.

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 55

Listing 3.12: Assigning a “derived” value to a local variable.

1 Matrix mA = new RowMajorMatrix(rs, cs);
2 Matrix mB = new RowMajorMatrix(rs, cs);
3 Matrix mC = mul(mA, mB);
4
5 public Matrix mul(Matrix mA, Matrix mB) {
6 mA = new RowMajorMatrix(mA);
7 mB = new ColMajorMatrix(mB);
8 ...
9 return mC;

10 }

3.2.7.1 Specific or General.

Representation changing techniques can be deployed in two possible ways. First, we see
specific techniques that are tailored towards a well defined set of scenarios, which can
be deployed as-is, off the shelf. These specific approaches include — but are not limited
to — libraries, runtimes, and self-adapting data structures. Other techniques, however,
are more general. These techniques provide a set of concepts and insights, but leave
the concrete implementation to the developer. An example of such a general concept
is “transposing” data, as is shown in the concrete example of matrix multiplication. On
the other hand, this technique is general enough to be applied in other contexts as well.
The “array-of-structs” versus “struct-of-arrays” discussion, for instance, applies the same
technique to more heterogeneous data [77].

3.2.7.2 Scenarios.

We compiled a non-exhaustive list of scenarios where changing the representation of
data can improve performance. In chapter 8 we implement an example program for each
of these five scenarios and evaluate the impact on program performance and program
structure. Here, we give an overview of these scenarios.

Changing Data Access Pattern On contemporary hardware, the data access pattern has
a significant influence on a program’s performance. Hence, a data representation
is often optimised towards a specific data access pattern. If, however, the data
access patterns changes during the execution of the program (e. g., matrix multi-
plication, see section 2.2.2), then changing the representation to match the new
data access pattern might pay off.

Changing Interface Usage Pattern Different representations can exhibit a different al-
gorithmic complexity on the same basic operations. Random access, for instance,
is O(1) in a vector-based representation whereas it has a complexity of O(n) in a
pointer-based representation. Adding an element to the front, on the other hand,
runs in O(n) in a vector-based representation whereas it has a complexity of O(1)
in a pointer-based representation. When the usage pattern of a data object changes,
e. g., no new elements and frequent reads, changing the representation to match

56 CHAPTER 3. MATCHING DATA AND COMPUTATION

the new usage pattern might pay off. As opposed to a changing data access pat-
tern, a changing interface usage pattern happens only at the algorithmic level.

Changing Functionality While a program executes, the operations that are conceptu-
ally applicable on an object may change. This is sometimes called objects with
modes, where each mode is associated with a set of available operations. These ob-
jects with modes, have led to an extension of object-oriented programming called
typestate-oriented programming [3]. A classic typestate-oriented programming
example is a file that can be either open or closed. Depending on its “current
state”, the write-operation may or may not be enabled. This pattern can be eas-
ily expressed using representation changes, i. e., “open file” and “close file” are two
representations (cf. modes or typestates) between which it is possible to transi-
tion. Hence, typestate-oriented programming relies on representation changes to
change the current functionality of data objects.

Freezing and Thawing Objects Many ADTs have different implementations. Broadly speak-
ing, we can categorise implementations into two groups: those representations
that are tailored towards updating, and those representations that are tailored to-
wards querying. “Freezing and thawing” is a well-known pattern, for instance in
Haskell[82], to model the transitions between phases of updating the data and
phases of querying the data. Both phases prefer their data objects to adhere to
a representation that is better-performing for that phase’s task, e. g., easily update-
able or easily query-able. This is realised by marking a data object as immutable
(freeze) or as mutable (thaw) at various places in the program.

Data Specialisation Having more information about the characteristics of input data
allows for more specialised representations. In Java, for instance, using int[] (a
native array of integers) to store a set of integers, performs much better than using
Integer[] or Object[] (an array of references to boxed objects). This is be-
cause of auto-boxing, which requires extra space to store the int in an object, and
which requires extra time to dereference the int held by the object. Other charac-
teristics about data (i. e., other than static type) are only known at runtime. In cases
where a specialised representation exists for data with an (dynamically) observed
characteristic, it might be interesting to change to this specialised representation.
For instance, when a matrix is observed to be sparse, using the SparseMatrix
representation can improve the performance.

From the literature, we identified that representation changes can be beneficial or
needed when the data access pattern changes, when the usage pattern changes, when the
functionality of objects changes, when the mutability of objects changes (cf. freezing and
thawing), and when the (input) data changes.

3.2. SEVEN DIMENSIONS OF REPRESENTATION CHANGES 57

3.2.8 Summary

Seven Dimensions of Representation Changes

The design space of programming languages with support for representation changes is
characterised by the answers to seven questions:

Q1: Who is responsible for data representation changes?

Developer or Environment

Q2: How is a data representation change realised?

– Orderly Representation Changes

– Internal or External Transformation Logic

Q3: When is a data representation change executed?

– Internal or External Representation Change Incentive

– Static or Dynamic Representation Change Incentive

Q4: Which data representation changes are possible?

– Vertex Membership in a Transition Graph

– Relation between Transition Graph Members in a Transition Graph

– Edges in a Transition Graph

– First-Class Transition Graphs

Q5: How long does a data representation change take?

Instant or Gradual

Q6: What is altered after a data representation change?

– Changing State, Behaviour, or both

– Preserving Identity: Genuine or Local

Q7: Why are data representation changes introduced?

– Specific or General

– Set of Scenarios

This seven-dimension taxonomy is distilled from a survey of contemporary program-
ming languages with support for representation changes. The actual survey is presented
in chapter 9. From this taxonomy, we identify a vacuum in the landscape of program-
ming languages, to allow developers to express data representations changes in order to
realise non-functional features, such as for instance improving performance.

To fill this vacuum we propose JITds, a new programming language with support for
online data representation changes. In chapter 4 we show how to define transformation
logic as we explain how to how to change the representation of object in JITds. In chap-
ter 6 we show how to express representation change incentive as we explain how to when

58 CHAPTER 3. MATCHING DATA AND COMPUTATION

the representation of an object changes in JITds. In chapter 9 we discuss the work related
to JITds, according to the taxonomy presented in this chapter.

Chapter 4

Designing Just-in-Time Data Structures:
How to Change the Representation

In software engineering, programming against a data interface as opposed to program-
ming with a particular data representation is considered best practice [53, 88]. This
approach is mainly motivated by software engineering advantages such as modularity,
maintainability, and evolvability. However, it can also be motivated by productivity and
performance. In practice, it is often more productive to start out with a trivial, but work-
ing, prototype implementation rather than to invest a lot of time in a highly specialised
implementation. Only later in the development cycle, if the initial data representation
proves to be a performance bottleneck, the software engineer can decide to implement
a more specialised data representation in order to improve performance. This is a soft-
ware engineering strategy known as “avoiding premature optimisations” (cf. Premature
optimisation is the root of all evil — Donald Knuth [51]).

The idea of separating data interface from data representation is almost as old as
computer science itself and allows delaying the binding between data interface and data
representation until compilation time. In the early days (i. e., before ±1990) only a single
data representation was available per interface which was fixed at compilation and thus
also remained fixed during the execution. The advent of object-technology facilitated
the existence of multiple data representations for a single data interface at runtime. In a
class-based object-oriented language, for instance, this is realised when multiple classes
extend the same base class. At object allocation time a concrete representation is se-
lected for each object. In chapter 3 we show that this can either be a static selection or a
dynamic selection. Either way, with object-technology it is possible to delay the binding
between interface and representation until object allocation time.

We developed JITds, a programming language in which the binding between data
interface and data representation is variable, even after allocation time. In section 2.2
we show some example programs that become more efficient if the data representations
changes during the execution of the program. We call such a dynamic transition be-
tween representations a data representation change in chapter 3. Chapter 3 identifies
two concepts when dealing with representation changes. There is transformation logic

59

60 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

to describe how to change between representations, and there is representation change
incentive to describe when to change between representations. The focus of this chapter
is how to express transformation logic in JITds. Later, in chapter 6, we focus on how to
express representation change incentive in JITds.

More concretely, in this chapter we explain how to define a just-in-time data struc-
ture in JITds. A just-in-time data structure is a combination of representations into a
single data structure. An instance of a just-in-time data structure always has a “current”
representation, but that current representation can change during execution. Although
we could realise this through patterns or conventions in a traditional programming lan-
guages (see section 7.3.2), in this dissertation we choose to introduce just-in-time Data
Structures by means of a new programming language called JITds. JITds is conceived as
an extension to a conventional statically-typed class-based object-oriented programming
language. The remainder of this chapter introduces the actual just-in-time data struc-
tures and puts them into context of existing well-studied areas such as object-oriented
programming in general, and dynamic object reclassification and multiple inheritance
in specific. To conclude this chapter, we show which of the goals presented in chapter 1
are reached by introducing swappable data structures and which goals are not. A mo-
tivation of why we chose a statically typed class-based object-oriented language as the
base for JITds is given in section 4.1.

4.1 JITds: A Statically Typed Class-based Object-Oriented Language

JITds is an extension to a conventional statically-typed class-based object-oriented lan-
guage, which supports online representation changes. We already motivated the need
for data structures with changing representations in section 2.2, the motivation to tackle
the subject by language design has been motivated in chapter 1. Here we motivate the
choice for a statically-typed class-based object-oriented language as the base language
of JITds.

Why an object-oriented language? In object-oriented languages (compound) data ob-
jects map one-on-one to “object” objects. At the same time, an object is more than
just a compound data object. Its data interface, the set of available operations, is
tightly coupled to the object itself. In short, object-oriented languages combine
the concept of data representation and data interface into one entity: the object.
Therefore, object-orientation proves to be the most natural base for JITds.

Why a class-based language? A class definition is a named template for creating objects.
Informally, a class specifies which data fields are needed in an object and it speci-
fies how the information can be accessed (read or written) from these data fields.
A class effectively maps one-on-one to the concept of data representation and has
the advantage that it has a name to which can be referred. It is a natural fit to
build JITds as a class-based language because it is important for a just-in-time
data structure to be able to refer to its representations by name.

Why a statically-typed language? In general, each class defines a new type. Above, we
stated that changing the representation of an object in a class-based language ef-

4.2. FROM ONE TO MANY REPRESENTATIONS. 61

fectively maps to changing the class of an object. Consequently, changing the rep-
resentation implies changing the type of an object at runtime. Presenting our work
in the context of a statically-typed language allows us to explicitly show that in
JITds, changing the representation does not change the type of an object. From
which it follows that executing a valid JITds program will never result in a type
error at runtime. We prove this formally in chapter 5.

For convenience, we assume JITds to be a language with automatic memory man-
agement (i. e., a language with garbage collection), because this simplifies many discus-
sions. In line with the vision of this dissertation to disseminate the idea of changing
representations, we opt to present JITds as an extension of Java. We choose Java because
it is arguably the best known statically-typed class-based object-oriented language.

4.1.1 JITds versus Java

JITds is a statically-typed class-based, object-oriented programming language with au-
tomatic memory management. In section 4.1 we discuss thoroughly why we make this
choice. For all intents and purposes, JITds is an extension of of Java. In this chapter and
the next, we focus on the extension part, i. e., how does JITds facilitates representation
changes, something that is not generally possible in statically-typed class-based, object-
oriented programming languages. To maintain the focus on the representation changes
themselves, we only consider a subset of Java to be the base language of JITds. The fol-
lowing restrictions, for instance, reveal that JITds is not a proper extension of Java, but
rather an extension of a subset of Java.

JITds does not support: 1. interfaces, abstract classes, or enums, only simple classes;
2. multi-threading; 3. generic types; 4. visibility modifiers (i. e., all fields are private, all
methods are public); 5. packages; 6. overloading (all methods in a class have distinct
names).

Syntax: Simple Class

class C {

C f fieldName;

...

Cr methodName(C0 a0, ... , Cn an) { ... }
...

}

4.2 From one to many representations.

Implementing a data structure in a class-based object-oriented language is realised by
declaring a new simple class. Such class optionally extends another class. Implementing

62 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Listin
g

(4.1)
T

h
e

class
R
o
w
M
a
j
o
r
M
a
t
r
i
x

.

1
c
l
a
s
s
R
o
w
M
a
j
o
r
M
a
t
r
i
x

{
2

d
o
u
b
l
e
[
]

d
a
t
a
;

3
i
n
t
r
o
w
s
,

c
o
l
s
;

45
R
o
w
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t
r
o
w
s
,

i
n
t
c
o
l
s
)

{
6

t
h
i
s
.
r
o
w
s

=
r
o
w
s
;

7
t
h
i
s
.
c
o
l
s

=
c
o
l
s
;

8
t
h
i
s
.
d
a
t
a

=
n
e
w

d
o
u
b
l
e
[
r
o
w
s
*
c
o
l
s
]
;

9
}

1011
R
o
w
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t
r
o
w
s
,

i
n
t
c
o
l
s
,

12
d
o
u
b
l
e
[
]

d
a
t
a
)

{
13

t
h
i
s
.
r
o
w
s

=
r
o
w
s
;

14
t
h
i
s
.
c
o
l
s

=
c
o
l
s
;

15
t
h
i
s
.
d
a
t
a

=
d
a
t
a
;

16
}

1718
i
n
t

g
e
t
R
o
w
s
(
)

{
r
e
t
u
r
n

r
o
w
s
;

}
19

i
n
t

g
e
t
C
o
l
s
(
)

{
r
e
t
u
r
n

c
o
l
s
;

}
20

i
n
t
[
]

g
e
t
A
r
r
a
y
(
)

{
r
e
t
u
r
n

d
a
t
a
;

}
2122

i
n
t
g
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
)

{
23

r
e
t
u
r
n

d
a
t
a
[
r
o
w
*
g
e
t
C
o
l
s
(
)
+
c
o
l
]
;

24
}

2526
v
o
i
d
s
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
,

i
n
t
v
a
l
)

{
27

d
a
t
a
[
r
o
w
*
g
e
t
C
o
l
s
(
)
+
c
o
l
]

=
v
a
l
;

28
}

2930
v
o
i
d
t
r
a
n
s
p
o
s
e
(
)
{

.
.
.

}
31

}

Listin
g

(4.2)
T

h
e

class
C
o
l
M
a
j
o
r
M
a
t
r
i
x

.

c
l
a
s
s

C
o
l
M
a
j
o
r
M
a
t
r
i
x

{
d
o
u
b
l
e
[
]

d
a
t
a
;

i
n
t

r
o
w
s
,

c
o
l
s
;

C
o
l
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t
r
o
w
s
,

i
n
t
c
o
l
s
)

{
t
h
i
s
.
r
o
w
s

=
r
o
w
s
;

t
h
i
s
.
c
o
l
s

=
c
o
l
s
;

t
h
i
s
.
d
a
t
a

=
n
e
w

d
o
u
b
l
e
[
r
o
w
s
*
c
o
l
s
]
;

}C
o
l
M
a
j
o
r
M
a
t
r
i
x
(
i
n
t
r
o
w
s
,

i
n
t
c
o
l
s
,

d
o
u
b
l
e
[
]

d
a
t
a
)

{
t
h
i
s
.
r
o
w
s

=
r
o
w
s
;

t
h
i
s
.
c
o
l
s

=
c
o
l
s
;

t
h
i
s
.
d
a
t
a

=
d
a
t
a
;

}i
n
t

g
e
t
R
o
w
s
(
)

{
r
e
t
u
r
n

r
o
w
s
;

}
i
n
t

g
e
t
C
o
l
s
(
)

{
r
e
t
u
r
n

c
o
l
s
;

}
i
n
t
[
]

g
e
t
A
r
r
a
y
(
)

{
r
e
t
u
r
n

d
a
t
a
;

}

i
n
t

g
e
t
(
i
n
t
r
o
w
,

i
n
t
c
o
l
)

{
r
e
t
u
r
n

d
a
t
a
[
r
o
w
+
c
o
l
*
g
e
t
R
o
w
s
(
)
]
;

}v
o
i
d

s
e
t
(
i
n
t

r
o
w
,
i
n
t

c
o
l
,
i
n
t

v
a
l
)

{
d
a
t
a
[
r
o
w
+
c
o
l
*
g
e
t
R
o
w
s
(
)
]

=
v
a
l
;

}v
o
i
d

t
r
a
n
s
p
o
s
e
(
)
{

.
.
.

}
}

4.2. FROM ONE TO MANY REPRESENTATIONS. 63

a just-in-time data structure in JITds is realised by declaring a new just-in-time class.
The main difference between a regular class and a just-in-time class is that a just-in-
time class combines multiple classes into one. We call these classes the representations
of the just-in-time class. These representation classes are simple classes.

Instances of a just-in-time class, just-in-time objects, always have one current repre-
sentation. Such objects look and behave as if they are an instance of their current repre-
sentation’s class. Further, a just-in-time object can be the target of a swap statement. This
statement instructs the object to change its current current representation to a different
representation. To ensure an orderly transition between the old representation Ri and
the new representationRj, a representation change between representationsRi andRj
is only allowed if there exists a transition function that describes such a transition, i. e.,
from Ri to Rj.

Combining multiple representations and allowing dynamic orderly transitions be-
tween them is the core idea of JITds. In the remainder of this chapter we gradually intro-
duce the language constructs needed to express the aforementioned combinations and
transitions. We describe these constructs and provide illustrating examples. Every time
a new construct is introduced, its syntax is presented in a syntax box, such as the one
that shows the syntax of a Simple Class.

4.2.1 Combining Representations

To combine multiple representations into one just-in-time class, the developer defines
a new class. Instead of specifying a super-class (cf. extends as in Java) and a list of in-
terfaces (cf. implements as in Java), the definition of a just-in-time class is augmented
with a comma-separated list of representation classes. This list is preceded by the key-
word combines. To introduce new syntactic constructs, or in abstract examples, we of-
ten use T as the name of a just-in-time class, and the names of representation classes are
usually denoted as R with an optional subscript. To instantiate a just-in-time class the
developer calls a constructor of the preferred initial representation. Syntactically, this is
realised by qualifying the name of the just-in-time class, with the name of the intended
initial representation.

Syntax: Defining a just-in-time Class and creating a just-in-time object.

class T combines R0, ... , Rn { ... }

T t = new T.Ri(a0, ... , an);

We now illustrate the definition of just-in-time classes with two examples: a just-in-
timeMatrix and a just-in-timeFile. For now, we do not consider the body of the class
definitions and the members defined within.

Matrix. Listing 4.3 shows on line 2 how Matrix combines two representation classes,
RowMajorMatrix andColMajorMatrix, into a single just-in-time class. Listings 4.1

64 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

and 4.2 present the implementation of the two classesRowMajorMatrix and theCol-
MajorMatrix. These implementations are slightly different from the implementation
shown in section 2.2.1. The methods getArray and transpose are added. Moreover,
the class hierarchy is flattened for convenience, i. e., there is no common super-class
with the shared behaviour.

Listing 4.3: The JIT-class Matrix combines two representations.

1 class Matrix
2 combines RowMajorMatrix, ColMajorMatrix {
3 ...
4 }

File. A second example, listing 4.4, combines three different representations into a sin-
gle just-in-time class File (line 1). The three representations correspond to the three
“states” a file can be in: open, closed, or locked (forever closed).

4.3 Representation Changes

Hitherto, we introduced how to combine multiple representations into a single just-in-
time class and we showed how to create a new just-in-time object that adheres to a given
initial representation. The core idea of JITds is, of course, to be able to change the rep-
resentation of such objects at runtime. In this section we introduce the constructs to
describe how a transition between two representations should be realised (cf. transition
logic, chapter 3) and how to initiate such a transition (cf. transition incentive code in
chapter 3). To this end, JITds introduces two new constructs:

• The transition function is a new kind of class member that encapsulates the tran-
sition logic. A transition function basically describes how to transition from one
representation to an other.

• The swap statement is a new kind of statement to express a representation change
(i. e., change incentive code). A swap statement basically calls a transition function
on an object.

Listing 4.4: The class File combines three representations.

1 class File combines OpenFile, ClosedFile, LockedFile {
2 ...
3 }

4.3. REPRESENTATION CHANGES 65

4.3.1 Transition Functions

JITds ensures orderly transitions between representations by requiring transition logic to
be expressed as a transition function. Such a transition function is a member of a just-in-
time class that describes the transition between two of its representations. Syntactically,
this is expressed by stating the source representation and the target representation sepa-
rated by the keywordto and followed by a sequence of statements between curly braces,
which we call the body of a transition function.

Optionally, a transition function can be named, as shown in the second syntax case. A
named transition function behaves like a parameterless method, i. e., when it is invoked,
it causes the representation change described by the transition function to occur.

Syntax: Transition Function

Rsour ce to Rt ar g et { /* body statements */ }

Rsour ce to Rt ar g et as name { /* body statements */ }

A transition function resembles a parameterless constructor as they are known from
conventional class-based languages. Within the body of a transition function two pseudo-
variables can be used: target and source. These keywords denote the object in the
new representation, and the object in the old representation, respectively. Outside the
body of a transition function these keywords have no meaning. The intentional seman-
tics of a transition function are as follows:

1. Before the execution of the body, the original object is bound to source;

2. The first statement in the body invokes a constructor of the target representation
and binds the newly created object to target;

3. During the execution of the body, both target and source exist as separate
objects of a simple class;

4. After the execution of the body, the current representation is updated, i. e., the
newly created object, denoted by target, replaces the old current representation
(denoted by source).

Chapter 7, where a formal specification is given, discusses these semantics more con-
cretely and two different prototype implementations are discussed in chapter 7.

In short, transition functions describe how a transition between two representations
of a just-in-time class is realised. In theory, the potential number of transition func-
tions grows quadratically with the number of combined representations. We argue in
section 4.6, however, that in practice the number of transition functions that need to be
implemented can be kept manageable.

We now revisit the two examples just-in-time classes: Matrix and File, which we
introduced in section 4.2.1, and focus on their transition functions.

66 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Matrix. Listing 4.5 shows a transition function (lines 4–9) that describes how to change
the representation of a just-in-time Matrix from RowMajorMatrix to ColMajor-
Matrix. The first statement in the body, target(...), (lines 5–7) creates a new ob-
ject using the constructor from ColMajorMatrix. Note that the initialisation is sup-
plied with data from the original representation (cf. source.getRows(), . . .). As ex-
plained in section 2.2.3, transposing a matrix in theRowMajorMatrix representations,
yields a matrix in theColMajorMatrix representation. Thus, in order to represent the
same matrix as before, the newly created matrix is transposed (line 8).

Listing 4.5: The JIT-class Matrix combines two representations.

1 class Matrix
2 combines RowMajorMatrix, ColMajorMatrix {
3
4 RowMajorMatrix to ColMajorMatrix {
5 target(source.getCols(),
6 source.getRows(),
7 source.getArray());
8 target.transpose();
9 }

10
11 ColMajorMatrix to RowMajorMatrix {
12 target(source.getCols(),
13 source.getRows(),
14 source.getArray());
15 target.transpose();
16 }
17 }

File. In the definition of the JIT class File (listing 4.6), there are three named transi-
tion functions defined. myFile.close() causes aFile in the open state to transition
to the closed stated. In other words, calling the parameterless method close incurs a
representation change from OpenFile to ClosedFile.

From the file example in listing 4.6 it is possible to construct a finite state graph with
the representations as vertices and the transition functions as edges between those rep-
resentations. We called such a graph the transition graph in chapter 3. The transition
graph of File (see figure 4.2) shows that it is not possible to transition from a locked file
to any other representation.

Listing 4.6: The class File combines three representations.

1 class File combines OpenFile, ClosedFile, LockedFile {
2 OpenFile to ClosedFile as close { ... }
3 ClosedFile to OpenFile as open { ... }
4 ClosedFile to LockedFile as lock { ... }
5 }

4.3. REPRESENTATION CHANGES 67

Figure 4.2: The states of a File: Open, Closed, Locked. (Image adapted from [78])

4.3.2 Swap Statement

The swap statement is JITds’s primitive for expressing an explicit representation change.
Syntactically, a swap statement consists of a subject and a target representation Rt ar g et

combined with the infix keyword to. The subject can be any expression from the base
language that evaluates to an object. The target representation is restricted to the name
of a class. Because a swap statement only makes sense for instances of a just-in-time
class, the subject has to be an instance of a just-in-time class. Moreover, it only makes
sense to swap between the representations combined by this just-in-time class. Thus,
the target representation has to be one of the representations in this just-in-time class.
Both restrictions are formally discussed in chapter 5, where we present the type system
of JITds.

If the current representation of a just-in-time object is Ri , then the swap to Ri is a
null-operation by definition, i. e., nothing happens. Otherwise, a sequence of transitions
functions, i. e., a path in the the transition graph, has to be executed, which effectively
changes the representation of the subject to the requested representation. When no such
path can be found an UnsupportedSwapException is thrown at runtime.

Syntax: Swap Statement

subject to Rt ar g et;

We now present two examples of how to use the swap statement. In the first example
we change the representation of a Matrix, and in the second example we change the
representation of a File.

Matrix. In section 2.2.3 we showed that a matrix multiplication, when implemented
using 3 nested loops, yields better performance when the first operand is stored in row-
major order and the second operand is stored in column-major order. Listing 4.7 puts
this theory into practice, as it changes the first operand a to the RowMajorMatrix
representation, and the second operandb to the theColMajorMatrix representation.
Lines 5 and 6 of listing 4.7 show how this is realised by means of a swap statement.

File. Listing 4.8 shows how create and use a just-in-time File. The code in listing 4.8
does not use any swap statements explicitly. On line 1, a new File is created in the

68 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Listing 4.7: Using Matrix.

1 int N = 1024;
2 Matrix mA= new Matrix(N,N);
3 Matrix mB = new Matrix(N,N);
4
5 mA to RowMajorMatrix;
6 mB to ColMajorMatrix;
7
8 Matrix mC = mul(mA, mB);

ClosedFile representation. The statements on lines 3 and 5 invoke a named transi-
tion. Thus, executing lines 3 and 5 has the exact same effect as if the respective state-
ments file to OpenFile and file to ClosedFile would have been used.

Listing 4.8: Using File.

1 File myFile= new File.ClosedFile("~/docs/out.txt");
2
3 myFile.open(); // myFile to OpenFile
4 myFile.write("lorem ipsum");
5 myFile.close(); // myFile to ClosedFile

4.4 Member fields

Syntax: Member field declaration

class T combines R0, ... , Rn {
Ti vni; ...
static Ts vns; ...
...

}

JITds allows the declaration of member fields in a just-in-time class, just like in reg-
ular classes. The value of a regular field, defined by a type and a name, can differ per
just-in-time instance. The value of static fields belong to the just-in-time class and is
unique for that class (cf. Java). Both instance fields and static fields that are defined in
the just-in-time class, remain unchanged when a representation changes. The need for
static fields and instance fields becomes clear in the next chapter, when we discuss the
scoping rules of swap rules.

4.5. INTENDED USAGE 69

4.5 Intended Usage

When a programmer makes use of an abstract data object, he is concerned
only with the behavior which that object exhibits but not with any details of
how that behavior is achieved by means of an implementation. —

Liskov and Zilles [53]

When Liskov and Zilles [53] proposed “programming with abstract data types”, they
had a clear notion of behavioural subtyping in mind, i. e., “Liskov substitutability”. Liskov
substitutability states that, regardless of implementation, all objects of the same abstract
data type behave identically. Note that this requirement is not enforced by the language
but rather remains the responsibility of the developer. In JITds, we make a similar as-
sumption. We assume that the set of representations of a single just-in-time class are
Liskov substitutable. Thus, under the assumption of Liskov substitutable representa-
tions, the programmer does not have to be concerned with which representation that
is actively used at any point in time. This follows directly from Liskov’s substitution
principle, because an object should behave the same, regardless of the current represen-
tation.

However, the intended usage of just-in-time data structures diverges on two fronts
from the intention of Liskov and Zilles [53]:

• we allow a specialised data representation to have a specialised data interface, and

• we allow just-in-time data structures to combine non-Liskov substitutable repre-
sentations to make state changes explicit (cf. typestates [3]).

We now discuss both use-cases in detail and present the language features that are
related. We first discuss specialised representations, then we discuss state representations.

4.5.1 Specialised Representations

Until now, we presented just-in-time objects as objects that are, when instructed, able
to transition between the representations of a just-in-time class. Our running example
combines the classesRowMajorMatrix andColMajorMatrix into one just-in-time
class Matrix. Both RowMajorMatrix and ColMajorMatrix implement the exact
same data interface and are also behaviourally identical. Hitherto, we did not pay much
attention to these properties because they align with Liskov’s and Zilles’s [53] view on
abstract data types and data interfaces.1 Moreover, in Liskov and Zilles [53] view “identi-
cal interfaces” would be a prerequisite of being combinable into a just-in-time class. We
now make the case for why JITds does not require the representations of a JIT class to
implement the exact same data interface.

A new representation for an abstract data type is often developed to better cope with
a specific situation. The matrix, for instance, can be represented by an array that stores
the elements in row-major order, or it can be represented by an array that stores the ele-
ments in col-major order. When the number of (non-zero) elements in the matrix is low,

1In [53] data interface is referred to as the set of “characterising operations for a type”.

70 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

however, a third storage scheme could outperform the two aforementioned representa-
tions in both access time as well as memory footprint. Listing 4.9 introduces such a third
representation in the form of the class SparseMatrix. A full implementation of the
compressed row storage scheme (CRS) is omitted here, but can be found in appendix C.

Listing 4.9: The class SparseMatrix.

1 class SparseMatrix {
2
3 int rows, cols;
4
5 int getRows() { return rows; }
6 int getCols() { return cols; }
7
8 int get(int row, int col) { ... }
9 void set(int row, int col, int val) { ... }

10 Iterator nonZeroIterator(){ ... }
11 int nonZeroCount(){ ... }
12 }

The interface ofSparseMatrix is roughly the same as the interface ofRowMajor-
Matrix and ColMajorMatrix (cf. listings 4.1 and 4.2). All three representations pro-
vide an implementation forgetRows(),getCols(),get(int, int), andset(int,
int, double). However, there is one method that is specific toSparseMatrix, i. e.,
nonZeroIterator(). nonZeroIterator() is expected to return an iterator over
all non-zero values, i. e., functionality that only makes sense depending on the sparsity
of the matrix. ForSparseMatrix it is interesting to provide such functionality because
it is tightly coupled with its intended properties.

While thenonZeroIterator()operation makes sense in the context ofSparse-
Matrix, it is unnecessary to provide such functionality in the context of a “dense” rep-
resentation such as RowMajorMatrix or ColMajorMatrix. The two dense repre-
sentations, on the other hand, provide an operation to access the raw data array, i. e.,
getArray(). Conversely, the getArray-operation does not make sense in the con-
text of SparseMatrix.

If we define a JIT class Matrix that combines all three representations (listing 4.10)
and we require that all representations implement the exact same data interface, then we
put a burden on the developer to “fill the holes”. This burden easily results in stub imple-
mentations as illustrated in listing 4.11. Conversely, JITds explicitly allows developers to
combine representation classes that do not necessarily implement the exact same data
interface.

Listing 4.10: The class Matrix combines three representations.

1 class Matrix combines RowMajorMatrix, ColMajorMatrix, SparseMatrix {
2 ...
3 }

4.5. INTENDED USAGE 71

Listing 4.11: The method stubs nonZeroIterator() and nonZeroCount() are in-
troduced to fill the holes in a dense matrix representation to comply with the data inter-
face of SparseMatrix.

1 Iterator nonZeroIterator(){
2 // Should not be called
3 throw new UnsupportedOperationException();
4 }
5
6 int nonZeroCount(){
7 // Should not be called
8 throw new UnsupportedOperationException();
9 }

R
o
w
M
a
j
o
r
M
a
t
r
i
x

C
o
l
M
a
j
o
r
M
a
t
r
i
x

S
p
a
r
s
e
M
a
t
r
i
x

core getRows() 3 3 3
core getCols() 3 3 3
core get(int row, int col) 3 3 3
core set(int row, int col, double val) 3 3 3

specialised getArray() 3 3 7
specialised transpose() 3 3 7

specialised nonZeroIterator() 7 7 3
specialised nonZeroCount() 7 7 3

Table 4.1: The methods of Matrix and their occurrence in the three representations
classes.

72 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Thus, in JITds it is possible to combine optimised implementations, which provide
a specialised data interface, into a single just-in-time class. As a corollary we can dif-
ferentiate between two types of operations, based on their occurrence in the different
representation classes. The core operations, or core for short, are the set of operations
implemented in all representations. Specialised operations, on the other hand, are only
implemented in a subset of the representations. Table 4.1 summarises which operations
are a member of Matrix’s core, and which are not.

Conclusion: The first intended usage of just-in-time classes is to combine be-
haviourally identical representations. This implies that representations should
implement the exact same data interface.
To support specialisation, however, specialised operations are allowed, such that
specialised representations can be implemented. The rule of thumb, however, is
to maximise the core and to minimise the number of specialised operations.

4.5.1.1 Specialised Swaps

In the previous paragraph we have defined the core as the set of operations that are im-
plemented by all representations of a just-in-time class. Thus, invoking a core operation
on a just-in-time object never poses any problems because all representation classes
have an implementation for it, regardless of the current representation. The semantics
of JITds simply states that the corresponding operation from the current representation
has to be executed. When a specialised operation is invoked, however, it is not guaran-
teed that the intended operation has an implementation in the current representation.
We identify two possibilities. Either the current representation does provide an imple-
mentation, then the same semantics apply as if it were a core operation. Alternatively, if
the current representation does not provide an implementation, JITds is free to automat-
ically change the representation of the just-in-time object to a different representation
which does provide an implementation. We refer to this implicit representation change
as a specialised swap.

Example. Consider the code fragment in listing 4.12, which relies onnonZeroIterator
to count the number of non-zero elements. Because SparseMatrix is the only repre-
sentation of Matrix that foresees the method nonZeroIterator, JITds guarantees
that right before the execution of the method (line 3), the representation of m is changed
to SparseMatrix.

The rationale behind the specialised swap is to ensure that a just-in-time object is
in the correct representation at the moment a method is invoked. To this end, JITds
1. searches a path p from the current representation to any representation in which the
invoked method has in implementation2, 2. executes the transition functions that corre-
spond to the edges in p, 3. (re-)invokes the method. Because JITds executes the transi-

2Assume, for now, that the transition graph is fully connected.

4.5. INTENDED USAGE 73

tion functions needed to transition to a representation with an implementation for the
requested method, step 3 is guaranteed to succeed.

When no such path exists, this either means the transition is not intended to hap-
pen (cf. LockedFile in File, figure 4.2), or the developer forgot to implement a spe-
cialised transition function. Chapter 5 shows how a static analysis of the code can inform
the developer of either of these cases, e. g., by means of a compiler warning or a type er-
ror.

Alternatively, it is possible that multiple paths exist. This happens when multiple
representations exist with an implementation for the specialised method. Since repre-
sentations of the same just-in-time class are intended to be behaviourally identical, it is
irrelevant, at least with respect to the behaviour of the program, which of the paths is
chosen. For performance, however, the choice might be very relevant. The current JITds
specification (see chapter 5) and implementations (see chapter 7) gives precedence to
the first representation in the list of representations.

Listing 4.12: Counting the number of non-zero elements implies an implicit representa-
tion swap.

1 int numberOfNonZeroElements(Matrix m) {
2 int count = 0;
3 Iterator it = m.nonZeroIterator();
4 while(it.hasNext()) {
5 it.next();
6 count++;
7 }
8 return count;
9 }

4.5.1.2 The Performance Pitfall of Unintended Specialised Swaps

In 2014, we conducted an empirical study of the use of the Java Fork/Join framework [22].
One of the conclusions of this work was that the majority of developers write inefficient
Fork/Join code because they either lack sufficient knowledge about the framework (cf.
section 2.1), or because it is “easier” to write inefficient code than to write efficient code
(cf. “path of least resistance”). We foresee a similar performance pitfall in JITds, where
it is easy to write a program with a lot of unintended specialised swaps, which might
hamper the performance of an application. Programmers that are not aware of the po-
tential cost of calling specialised operations can be tempted to invoke them whether
appropriate or not. This is because the user of a just-in-time class does not necessarily
know whether he is using a core method or a specialised method. Especially since IDE’s
with autocompletion are commonplace today , the developer that acts as a mere user of
a just-in-time data structure can be oblivious to the representation changes that using
specialised method potentially incurs. In section 4.5.1.3 we present a solution to avoid
unwanted specialised swaps, in the intermezzo on page 74 we briefly sketch the findings
of De Wael et al. [22].

74 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Anecdotical Intermezzo:
The majority of developers follow the “path of least resistance”.

In an empirical study of the use of the Java Fork/Join framework, we observed
that the majority of developers follow the “path of least resistance” when im-
plementing functional requirements [22]. The study considers (all) 120 GitHub
projects that make use of the Java Fork/Join framework and reveals that in 20%,
13%, and 15% of the programs that use the framework, the respective anti-
patterns heavyweight split, heavyweight merge, and inappropriate sharing are
present (see [22] for a description of these anti-patterns). These are high num-
bers if one knows that the heavyweight split and heavyweight merge anti-pattern
can only occur in certain restricted scenarios (i. e., map and fold operations on
collections).

1 public List buildRange(int n) {
2 return buildRange(0,n);
3 }
4
5 public List buildRange(int from, int to) {
6 if ((to-from) < 1) {
7 return Collections.emptyList();
8 } else if ((to-from) == 1) {
9 return Collections.singletonList(from);

10 } else {
11 int mid = (from+to)/2;
12
13 List result = new ArrayList();
14
15 result.addAll(buildRange(from, mid));
16 result.addAll(buildRange(mid , to));
17
18 return result;
19 }
20 }

The code fragment above builds a List of integers using the divide-and-
conquer approach. In the non-base case (lines 10-19), the readily available op-
eration addAll on List is used to combine two partial results. First, note
that within the execution of buildRange(n), the operation addAll is exe-
cuted O

(
log(n)

)
times. Second, note that, in Java, addAll is an expensive op-

eration on ArrayList because one invocation can trigger up to two calls to
System.arraycopy. When buildRange is called with a large n, this imple-
mentation can be considered to be an anti-pattern.
De Wael et al. [22] conclude that heavyweight merge is a common pitfall for pro-
grammers using the Java Fork/Join framework, because the current collections
framework does not inform programmers about the high cost incurred by recur-
sively executing expensive operations.

4.5. INTENDED USAGE 75

(a) A call to getNonZeroCount() causes
a specialised swap because getNonZero-
Count() is a specialised method of
SparseMatrix.

(b) A call to getNonZeroCount() does
not cause a specialised swap because get-
NonZeroCount() is bypassed.

Figure 4.3: The just-in-time class Matrix inherits methods from both RowMajor-
Matrix and SparseMatrix. getNonZeroCount() is a specialised method be-
cause it is only implemented by SparseMatrix.

4.5.1.3 Bypass Methods

In order to bypass expensive or frequent representation changes caused by unintended
specialised swaps, we introduce a new type of class member in just-in-time classes: the
bypass method. The bypass method is a construct adopted from Ureche et al. [84], who
propose a similar solution to avoid conversions from stack values to heap values. Con-
cretely, a bypass method provides a generic implementation of a specialised operation
which is executed en lieu of a potentially costly representation change.

Syntax: Bypass Methods

class T combines R0, ... , Rn {

public X Ri.methodNamea(){ ... }

public X T.methodNameb(){ ... }

}

Bypass methods are implemented as if they were regular methods. Thus, they appear
as members in the definition of a just-in-time class. The syntactic difference between by-
pass methods and overridden methods is that the name of a bypass method is qualified
with the name of the representation for which it acts as a bypass. Alternatively, when
the qualifier is the name of the just-in-time class itself, then the bypass method acts as a
bypass for all specialised swaps. Conceptually, a bypass method extends one (or more)
of the representation classes, without altering the original base class.

76 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Listing 4.13: A call togetNonZeroCount() does not cause a specialised swap because
getNonZeroCount() is bypassed.

1 class Matrix combines RowMajorMatrix, SparseMatrix {
2
3 public int RowMajorMatrix.getNonZeroCount() {
4 int count = 0;
5 for (int r=0 ; r<this.getRows() ; r++)
6 for (int c=0 ; c<this.getCols() ; c++)
7 if (this.get(r,c) == 0.0)
8 count++;
9 return count;

10 }
11
12 }

Matrix Example. The getNonZeroCount operation is one of the specialised meth-
ods of the SparseMatrix representation. This is shown in figure 4.3a. When this
method is invoked on an object that has a dense representation as current represen-
tation, that object changes its representation to SparseMatrix in order to be able to
execute the method invocation. However, this representation change can be unwanted
and expensive, for instance when the matrix has a lot of non-zero values. Listing 4.13
shows (a part of) the implementation of Matrix which provides an bypass method for
the getNonZeroCount operation. Figure 4.3a shows conceptually how this is realised
in JITds.

4.5.2 Functional Swaps

In section 4.5.1 we discussed specialisation as a first use-case where we want to com-
bine representations with different data interfaces. A second scenario where we would
want to combine representations with different data interfaces is when the different rep-
resentations model complementary behaviour. In such a scenario, it makes sense for an
object to support data interface A at one point in time and data interface B at a different
point in time. In general, this scenario where the role of an object changes during its
lifetime is explored in typestate-oriented programming [3]. The File example, which
we introduced in section 4.2.1, is one of the running examples from typestate-oriented
programming. We now discuss this file example in the context of specialisation.

Consider the three classes from listing 4.14 as the representation classes of the just-
in-time class File from listing 4.6. When we look at the three data interfaces, we ob-
serve that write is a specialised method only available for files in the “open” state.
Recall that listing 4.6 introduces three named transition functions: open, close, and
lock. Those named transition functions change the representation of a file f from
ClosedFile to OpenFile, from OpenFile to ClosedFile, and ClosedFile to
LockedFile, respectively.

The representation of a just-in-time Data object can, as introduced in section 4.5.1.1,
also change due to a specialised swap. OpenFile is the only representation of File

4.5. INTENDED USAGE 77

Listing 4.14: Three implementations for a file, that represent the closed, locked, and open
state, respectivly.

class ClosedFile {
String getPath() { ... }

}

class LockedFile {
String getPath() { ... }

}

class OpenFile {
String getPath() { ... }
void write(String str) { ... }

}

which provides an implementation forwrite(). Hence, invoking thewrite operation
on a File in the “closed” state implicitly opens the file by changing the representation
to OpenFile. Note that, because of the shape of the transition graph, an implicit state
change is not possible for files in the “locked” state, as there is no transition possible
from LockedFile to OpenFile. Further note that this approach is more dynamic
than the approach used in languages with support for typestate-oriented programming
because code that potentially changes the state of an object does not need to be explicitly
annotated as such. Plaid and FickleI I , for instance, both require explicit annotations in
the presence of a representation change [78, 27].

Conclusion: The second intended usage of just-in-time classes is to combine
behaviourally complementary representations. To support dynamic typestate-
oriented programming, the different states are implemented as different repre-
sentations. Invoking state specific operations causes a dynamic change in rep-
resentation (cf. specialised swap). Again, the rule of thumb when combining
representations is to maximise the core and to minimise the number of spe-
cialised operations.

4.5.2.1 Transient Information

This section discusses an issue that can occur when programming with behaviourally
complementary representations. When two representations A and B are behaviourally
identical, then all information present in A is also present in B, and vice versa. In a class-
based object-oriented language, this implies that the fields of A and B encode the same
information, but store the data differently. Consequently, a representation change from
A to B can change the data representation, but preserves information.

However, when two representations A and B are behaviourally complementarily, it
is still possible that A and B independently store extra information. Consequently, a
representation change from A to B, or vice versa, can lose information.

78 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Listing 4.15: A Bat is both a Mammal and a FlyingAnimal.

1 class Mammal {
2 int feedingCount;
3
4 void feedOffspring() { feedingCount++; }
5 int getFeedingCount() { return feedingCount; }
6 }
7
8 class FlyingAnimal {
9 void fly() { ... }

10 }
11
12 class Bat combines FlyingAnimal, Mammal { ... }

Listing 4.16: Using methods of both representations.

1 Bat dracula = new Bat.Mammal();
2 dracula.feedOffspring(); // Mammal
3 int before = dracula.getFeedingCount(); // Mammal
4 dracula.fly(); // FlyingAnimal
5 int after = dracula.getFeedingCount(); // Mammal
6 assert(before==after);

We now present a new just-in-time classBatwhich combinesMammal andFlying-
Animal (see listing 4.15). Consider dracula (see listing 4.16) as an instance of Bat.
The call to feedOffspring() implies that dracula adheres to the Mammal repre-
sentation, and results in the field feedingCount being incremented by one. Similarly,
to execute the call to getFeedingCount(), dracula adheres to the Mammal repre-
sentation. Just before the next feeding moment (line 5),draculaflies around, causing a
representation change to FlyingAnimal. The second call to getFeedingCount()
again causes a representation change, this time toMammal. Conceptually, one would ex-
pect the assertion on line 6 to hold. However, because the state is transient in the context
of a representation change, this is not guaranteed in JITds.

In a JITds program, the transition functions between Mammal and FlyingAnimal
are responsible for transforming the data from the source representation into the for-
mat (i. e., available fields) of the target representation. The Bat example reveals that a
transition between behaviourally complementary representations can result in the un-
intended loss of information (cf. feedingCount). To avoid the unintended loss of in-
formation, JITds foresees the possibility to annotate fields as persistent.

4.6. MANAGING THE NUMBER OF TRANSITION FUNCTIONS 79

Syntax: Persistent Fields

class T combines R0, ... , Rn {
persistent Ri.f;
...

}

To declare a field as persistent for a given just-in-time class T, it suffices to add a per-
sistent declaration to the declaration of a field f in the definition of T. The syntax of such
a declaration is the keyword persistent followed by the name of the field quantified
with the name of the representation it occurs in, for instance Ri.f. The semantics of
a representation change in the context of a persistent field are as follows: When a just-
in-time object obj abandons the Ri representation, the values of each persistent field
fi are evacuated from their original slots and temporarily stored elsewhere, i. e., memo-
rised. Whenobj transitions back to theRi representation, directly or indirectly, then the
memorised values for fi are assigned back to their original slots. Both the “evacuation”
and the “‘reinstallation” of the values of persistent fields happens before the execution of
the actual transition function. This allows the transition functions to make use of these
values or to correct unintended behaviour. Listing 4.17 shows an implementation ofBat
where the field feedingCount from the Mammal representation is made persistent.
With this implementation of Bat, the assertion on line 6 in listing 4.16 succeeds.

Listing 4.17: The field Mammal.feedingCount is made persistent in Bat.

1 class Bat combines FlyingAnimal, Mammal {
2 persistent Mammal.feedingCount;
3 }

4.6 Managing the Number of Transition Functions

When a JIT class combines N representations, then there are O
(
N 2

)
different transition

functions that can be implemented.3 Thus, when the number of representations grows,
the number of possible transition functions grows fast. Writing that many transition
functions becomes impractical. This is an obvious critique to JITds in theory. We argue,
however, that the combinatorial explosion in the number of transition functions is not
an issue in practice.

• First, when we look at existing libraries, the number of different representations
for a single interface is relatively small. In Java, for instance, there are only three
general-purpose implementations for theList interface (i. e.,ArrayList,Linked-

3N (N −1) to be exact

80 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Listing 4.18: A transition function that is generic enough to transition a Matrix from
any representation to any other representation.

1 Matrix to Matrix {
2 target(source.getRows(), source.getCols());
3 for (int r=0 ; r<source.getRows() ; r++) {
4 for (int c=0 ; c<source.getCols() ; c++) {
5 target.set(r, c, source.get(r,c));
6 }
7 }
8 }

List, and Vector).4 In such a case, the number of transition functions stays
within acceptable bounds.

• Second, we conjecture that most data interfaces can be enriched such that it is
possible to implement a transition function that is generic enough to transition
from any representation to any other representation. An example of such a generic
transition function for theMatrix example is shown in listing 4.18. Such a generic
transition function can replace all other specialised transition functions. Of course,
from a performance perspective, specialised transition functions are likely to be
preferred. An example of a specialised transition function in the matrix example
is the transpose function which expresses the transition from a RowMajor-
Matrix to a ColMajorMatrix, and vice versa. These specialised transition
functions are shown in listing 4.5 (lines 3–8 and 10–15).

• Third, the set of available specialised transition functions can be used transitively.
In the file example we can transition from an open file to a locked file by combin-
ing two transitions, i. e., myFile.close(); myFile.lock(). Again, a spe-
cialised and direct transition function is likely to be preferred in terms of perfor-
mance.

• A final argument to counter the “transition function explosion” is that some transi-
tions between two representations are unlikely to occur, or semantically even non-
sensical. Implementing a specialised transition function in such cases serves no
practical purpose. For instance, we do not want to allow transitions fromLocked-
File to any other representation, because conceptually a LockedFile is ought
to remain locked. Hence, omitting transition functions from the LockedFile
representation to any other representation, encodes this conceptual constraint.

4Other “known implementing classes” of List include AbstractList, AbstractSequential-
List, AttributeList, CopyOnWriteArrayList, RoleList, RoleUnresolvedList, Stack.
These are either abstract classes (i. e., AbstractList and AbstractSequentialList), list specialised
for certain objects (i. e., AttributeList, RoleList, RoleUnresolvedList), or are lists with compli-
mentary behaviour (i. e., Stack which provides a stack interface or CopyOnWriteArrayList which pro-
vides a thread-safe implementation that “may be more efficient when traversal operations vastly outnumber
mutations”).

4.7. JUST-IN-TIME DATA STRUCTURES PUT INTO CONTEXT 81

4.7 Just-in-Time Data Structures put into Context

From the previous sections we know that JITds is designed as a statically typed, class-
based object-oriented language. The core idea of JITds is that objects can change their
representation (i. e., class) at runtime. To realise such representation changes, JITds al-
lows a class to combine multiple other classes into one. In this section we put both
concepts in context: First, we discuss how JITds’s representations changes are a special
case of dynamic object reclassification. Second, we discuss the relation between com-
bine multiple classes into one and multiple inheritance. Finally, we discuss how JITds is
positioned in the landscape of object-oriented programming languages in general, using
the terminology introduced by Lieberman et al. [52].

4.7.1 Homomorphic Reclassification

When an object changes its representation in JITds, this effectively means that its cur-
rent class is changed. Changing the class of an object at runtime is known as dynamic
object reclassification [27]. This term, however, is very general. For instance, changing
the __class__ field in Python is a discouraged practice — from a software engineer-
ing point of view — but it is still classified as reclassification. Other, more restricted forms
of reclassification exist. Cohen and Gil [13], for instance, study a form of reclassification
where objects can gain properties but never lose properties. They refer to this restricted
form of reclassification as monotonic reclassification.

A just-in-time object always support the union of all methods of all of its representa-
tions. Thus, also in JITds an object never loses properties. Hence, JITds’s representation
changes are a form of monotonic reclassification. Moreover, we see that an object in
JITds never gains properties either. In other words, the data interface of a just-in-time
object never changes. This is because specialised swaps ensure5 that a just-in-time ob-
ject is always able to invoke any method of any representation. What is described above,
is thus an even more restricted from of reclassification than monotonic reclassification,
which we will call homomorphic reclassification.

Homomorphic reclassification is a restricted form of dynamic object reclassifica-
tion where changing the representation of an data object does not change the
data interface of the object. In other words, homomorphic reclassification does
not add nor remove properties from a data object.

4.7.1.1 Two Implementation Techniques.

From the work on monotonic reclassification we infer that there are two base approaches
to implement dynamic object reclassification: inline reclassification or reclassification
by forwarding. Other techniques are either variations of the latter two or require more

5The guarantee only holds when the appropriate transition functions exist.

82 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

advanced language features (e. g., skake-ins and mix-ins) [13]. In section 7.3 and sec-
tion 7.4 we discuss two implementations of JITds that use reclassification by forwarding
and inline reclassification, respectively.

Reclassification by forwarding uses a handle to point to an object with the current
representation. When the object is reclassified, it suffices to update the handle to point
to a freshly allocated object, with the new representation. This fresh object can reside
anywhere in memory. This technique is used in our JITds to Java compiler and is dis-
cussed in section 7.3.

Inline reclassification on the other hand does not require a handle but transparently
stores an object at a fixed memory location. To support reclassification, however, enough
memory has to be allocated to fit the largest possible representation. This technique is
used in our JITds to C compiler and is discussed in section 7.4.

4.7.2 Multiple Inheritance

A just-in-time class combines multiple representation classes into one, inheriting meth-
ods from all representations. In this paragraph we discuss the relation between this ap-
proach and multiple inheritance.

Consider a just-in-time class T, which combines two representations A and B. We
already explained how an instance of T is able to respond to the specialised methods
of both A and B (see section 4.5.1.1). In our matrix example, for instance, listing 4.19
is a sound program fragment. Thus, a just-in-time class effectively inherits members
of more than one class. This is known as multiple inheritance and is a widely studied
feature in the literature on object-oriented programming languages. However, multiple
inheritance is also a widely criticised feature.

One of the critiques of multiple inheritance is that when multiple parents want to
pass on a member with the same signature to its shared offspring, it is ambiguous which
of the parents wins the evolutionary fight. The ambiguity problem in multiple inheri-
tance, often referred to as the diamond problem, has been tackled in various ways. Ap-
pendix D identifies Ambiguity Rejection, Protocols Linearisation, Select and Rename, Ex-
plicit Inheritance, Method Combination, Most Specific Argument, Meta-object protocol,
and Virtual Inheritance as the conventional techniques to tackle the diamond problem.

Listing 4.19: Code fragment with two specialised swaps.

1 Matrix m = new Matrix.RowMajorMatrix(3,4);
2 m.getRows(); // Core Method
3 m.nonZeroIterator(); // Specialized in SparseMatrix
4 m.getRows(); // Core Method
5 m.getDataArray(); // Specialized in Row- and ColMajorMatrix
6 m.getRows(); // Core Method

In JITds it is unambiguous which method (i. e., of which representation) will be ex-
ecuted at-runtime, because a just-in-time object always has a current representation.
Consider the core of any just-in-time class. This set of operations has a different imple-
mentation in each of the representations. Generally speaking, in languages with multiple
inheritance it is unclear which of these implementations to execute. Various program-
ming languages try to resolve the ambiguity in various ways (see appendix D). In JITds,

4.7. JUST-IN-TIME DATA STRUCTURES PUT INTO CONTEXT 83

however, there is no ambiguity at runtime, because a just-in-time object simply exe-
cutes the implementation found in its current representation. For example, a Matrix m
can be in one of three representations, i. e., RowMajorMatrix, ColMajorMatrix,
or SparseMatrix. And a call to the core method getRows(), can potentially be
executed by one of these three different implementations. The specific invocation of
getRows() on line 4 in listing 4.19 is guaranteed to execute the implementation of
SparseMatrix, because we know m.nonZeroIterator() (line 3) forces m to ad-
here to the SparseMatrix representation (specialised swap).

We observe that the inheritance mechanism of the language JITds relies purely on
dynamic information to decide which branch of the static inheritance hierarchy to use.
According to the survey of ambiguity mitigating techniques, JITds is the first language
which inherently resolves ambiguity based on run-time information. Note that we by
no means claim that JITds solves the problems emerging from multiple inheritance in
general. We merely claim that JITds is a unique programming language when it comes
to the dynamic semantics of lookups in the hierarchy chain, especially since JITds is a
statically typed programming language.

The reason why JITds is the first language to do this is because the intent of inherit-
ing from multiple representations is different in JITds compared to other languages. In
general, “T extends A, B” implies that an instancet ofT is both anA and aB at any
point in time. In JITds, however, “T combines A, B” implies that an instance t of T
can be either an A or a B at any point in time6.

Furthermore, compared to other programming languages with support for repre-
sentation changes (e. g., Gilgul, FickleI I or Plaid), JITds is the only language that treats
the representations as a super type of the changeable data structure. Concretely, in the
matrix example this means that in JITds we consider a just-in-time Matrix to be a sub-
type of RowMajorMatrix, ColMajorMatrix, and SparseMatrix, i. e., multiple
inheritance. Whereas the same example in Gilgul, FickleI I or Plaid, can only be realised
where RowMajorMatrix, ColMajorMatrix, and SparseMatrix are states (i. e.,
some kind of subtype) of the general type matrix. The latter approach is fine when the
representations are never to be used as types (cf. implementation only classes in Gilgul)
or when the current representation is statically known (cf. FickleI I and Plaid). In JITds,
on the other hand, representations can be used as stand-alone types. Furthermore, the
just-in-time class introduces a new representation, i. e., a representation that can benefit
from all representations it combines. Finally, the current representation of a just-in-time
object is only known at runtime. Hence, to model that the same just-in-time matrix ob-
ject can behave both as an RowMajorMatrix as well as an SparseMatrix, the type
relation a just-in-time class and its representations is to be modelled as a sub-type rela-
tion (instead of an super-type relation as in e. g., Gilgul, FickleI I or Plaid).

We compare the types of the matrix classes for an implementation in a classic object-
oriented language without multiple inheritance (here Java) JITds. This is visualised in
figure 4.4. The interface IMatrix collects all methods shared by all representations of

6This statement seems to be false at first for the Bat example: a Bat is conceptually both a Mammal and
a FlyingAnimal. From the programming language’s point of view, however, an instance of Bat is always
either in the Mammal or in the FlyingAnimal representation.

84 CHAPTER 4. HOW TO CHANGE THE REPRESENTATION

Figure 4.4: The types of matrix considered from both sides.

a matrix (e. g., getRows or set). Note that in JITds, we called this set of methods that
are shared by all representation the core. All representations implement the IMatrix
(Java) interface. Potentially, a single representation has some specialised behaviour, e. g.,
nonZeroIterator in SparseMatrix. In JITds, as opposed to Java, it is possible to
combine all these representations into a new typeadvantage. This has to be a new type
because it supports the behaviour of the core (for which super type would suffice), but
it supports all the specialised behaviour as well, for which only the sub-type suffices. To
realise the same behaviour in Java, one would also need to define a fourth implemen-
tation of IMatrix, e. g., with the name ComboMatrix. The discussion on the types
of representations and just-in-time classes is revisited and discussed more formally in
chapter 5.

4.7.3 Treaty of Orlando

Lieberman et al. [52] concluded from a decade of work on object-technology that there
are three dimensions in which code sharing (i. e., inheritance) in object-oriented lan-
guages is realised.

. . . the following three independent dimensions along which this sharing
mechanism - which some call delegation and others inheritance . . . - can be
examined, namely: FIRST, whether STATIC or DYNAMIC: When does the
system require that the patterns of sharing be fixed?. . . SECOND, whether
IMPLICIT or EXPLICIT: Does the system have an operation that allows a pro-
grammer to explicitly direct the patterns of sharing between objects, or does
the system do this automatically and uniformly? . . . and THIRD. whether

4.8. CONCLUSION 85

PER OBJECT or PER GROUP: Is behavior specified for an entire group of ob-
jects at once, . . . , or can idiosyncratic behavior be attached to an individual
object? — Henry Lieberman, Lynn Stein, and David Ungar [52].

Using this terminology we can categorise JITds as a programming language where
sharing is dynamic, implicit, and per group. This categorisation is clear, however, we do
make some side remarks.

In JITds, sharing is dynamic because a just-in-time object can change its represen-
tation which effectively means that the implementation that is inherited, changes after
allocation time. Even though sharing is dynamic, the set of potential classes from which
code can be inherited is statically known (i. e., the representations).

In JITds, the sharing mechanism is implicit because it is uniformly defined for all
just-in-time objects that the current representation defines from which representation
class the invoked method is inherited. Also the mechanism of specialised swaps is uni-
formly defined for all just-in-time objects. A swap statement can be used to explicitly
select the representation from which to inherit the code.

Just-in-time classes define for all there instances, i. e., per group, from which rep-
resentation classes code can be inherited. A swap statement can be used to select the
representation from which to inherit the code per instance.

4.8 Conclusion

In JITds, a just-in-time class is defined by combining multiple representations. Instances
of such a class can change their representation during the execution of a program with-
out losing their identity.

Orderly transitions between the representations are realised by transition functions,
a special kind of member of a just-in-time class. The transition logic is encapsulated and
thus clearly separated from the application logic.

Invoking a swap statement causes an actual representation change. These state-
ments can be used anywhere in the code. Thus, in general, representation change in-
centive code is entangled with the application logic.

Chapter 5

JIT∆σ: A Formal Specification of JITds

In this chapter we present JIT∆σ, a formal semantics for JITds with a focus on the type
system. We also present a type system for JITds and prove that this type system is sound.
A sound type systems gives us the guarantee that when a JITds program is well-formed
(i. e., type checked) it will never encounter type errors at runtime, concretely we can
guarantee that invoking a method never results in a “method not found” exception and
that accessing a field never results in a “field does not exist” exception.

In chapter 4 we motivate why JITds is designed as an extension of Java. Hence, the
formalism we present in this chapter is designed as an extension of a formalism of Java.
Concretely, JIT∆σ is largely based on Lightweight Java [75, Chapter 3] and [76], a minimal
imperative core calculus of Java that is still a proper subset of Java.

In general, the idea of a core calculus is to reason over a complex language, by defin-
ing a subset of that language in order to ignore irrelevant details [8, 46, 76, 62]. Igarashi
et al. [46] say it is sensible to design a formal model that favours compactness over
completeness, because such a model offers maximum insight for minimum investment.
Lightweight Java, for instance, does not model type casts, local variables, field hiding,
interfaces, method overloading, explicit constructors, literals, operators, or any of the
more advanced language features of Java. Hence, these features are not modelled in
JIT∆σ either.

For the sake of compactness, we further simplify the model of Lightweight Java and
also exclude public field access (i. e., all fields are private) and single inheritance from
JIT∆σ. Excluding public field access has no significant impact on the completeness of
JIT∆σ because it can be implemented by providing simple getters and setters for (each)
field. Ignoring single inheritance in the formal specification of a Java subset, however,
is less obvious. This simplification allows us to focus on the peculiarities that stem from
JITds’s representation changes, as opposed to the peculiarities that stem from inheri-
tance. In section 5.6, we discuss the changes needed to JIT∆σ in order to support single
inheritance as well.

In the remaining sections we show the user syntax of JIT∆σ (section 5.1), the op-
erational semantics of JIT∆σ (section 5.2), the type system (section 5.4), type checking
(section 5.4.4), and a proof of type soundness (section 5.5). In section 5.6, we sketch the

87

88 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

Listing 5.1: User Syntax of JITds.

P : cd

cd : class Cn { fd md }
| class Cn j i t combines Cnr ep { td }

fd : Cn fn;

md : Cnr et mn (pd) { stmt return x; }
pd : Cn vn

td : Cnsr c to Cnt ar { stmt }

stmt : { stmt }
| vn = x ;
| vn = this . fn ;
| this . fn = y ;
| if (x==y) stmtt else stmtf
| vn = new Cn() ;
| vn = x . mn(a) ;

| vn = new Cns.Cnd() ;
| x to Cnt ar ;
| vn = source . fn ;
| target . fn = x ;

x, y, a : vn
| this

impact on JIT∆σ if single inheritance where to be included. Finally, in section 5.7 we
summarise the results presented in this chapter.

5.1 User Syntax

This section describes the user syntax of JIT∆σ, which is shown in listing 5.1. We adhere
to the following conventions: keywords are coloured, declarations end with a “d”, and
names end with an “n”. Sequences are represented with a bar over the elements. All
names (i. e., Cn, fn, mn, and vn) range over valid Java identifiers. Finally, subscripts
indicate indexes.

5.2. OPERATIONAL SEMANTICS 89

Program In JIT∆σ, a program P is a sequence of class definitions cd. A class definition
cd is either a simple class or a just-in-time class.

Simple class A simple class defines a class with a nameCn and a list of field and method
definitions, i. e., fd and md, respectively.

A field definition fd is simply a combination of a class name Cn and a field name fn.
Similarly, a parameter definition pd is a combination of a class name Cn and a variable
namevn. Here, a class name defines the static type of a field or a parameter, respectively.

A method definition md, combines the return type in the form of a class name Cn
with a method name mn, a list of parameter definitions pd, and a method body. The
method body, between curly braces, combines in turn a list of statements stmt and a
return statement.

Just-in-time class A just-in-time class defines a class with a name Cn j i t and a list of
names of representation classes Cnr ep . While it is not enforced in the specification of
the syntax, the number of representations must be at least two. Furthermore, a just-in-
time class definition contains a list of transition function definitions td. A transition
function definition td combines the class name of the source representation Cnsr c and
the class name of the target representation Cnt ar with a sequence of statements stmt
that describe the actual transition.

Statements The syntax for statements stmt forms a language on its own. Up to the
four last statements, the syntax of JITds statements are a proper subset of Java’s syn-
tax for statements. We refrain from discussing these in detail and only enumerate the
statements specific for JITds. To assign a fresh just-in-time object to the variable vn the
keyword new is followed by the name of a just-in-time class Cns and the class name of
the initial representation Cnd . Just like Lightweight Java, we do not model user defined
constructors. Hence, creating a new object does not require any arguments. The swap
statement orders a variable x to change its representation to the class Cn. The last two
statements are adaptations of field read and field write to be used in the body of a tran-
sition function. This restriction cannot syntactically be enforced, but is implied in the
type checking phase by means of well-formedness rules (see section 5.4.4).

5.2 Operational Semantics

We define the semantics of a JIT∆σ program in terms of reductions from one configu-
ration to another, for instance c −→ c ′. These reductions are described in section 5.3.
However, before we can discuss these rules, we need to describe the constructs and aux-
iliary functions used in these rules: configurations (see section 5.2.1), selection functions
(see section 5.2.2), and transition graphs (see section 5.2.3).

90 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

5.2.1 Configurations, Heaps, Stacks, Objects, and Values

In JIT∆σ a configuration c is a triplet (S, H ,P) consisting of a stack S, a heap H , and —
as discussed in section 5.1 — a program P . A heap H is a mapping between object iden-
tifiers objId and actual objects. A stack S is a, possibly empty, list of frames, where the
leftmost frame is the top frame or current frame. Each frame contains the information
needed to continue a computation: i. e., a sequence of statements stmt, a local store L,
and an invocation context I . stmt is a list of statements that remain to be executed. A
local store L is a mapping from variables x to values v (or w). An invocation context I
reveals whether the ongoing computation — top of stack — is executed in the context of
a method invocation or in the context of a transition function. In the former case, the
invocation context is a pair containing the method name mn and the defining class Cn
(I = (Cn,mn)). In the latter case, the invocation context is a triplet containing the just-
in-time class Cn j i t , the source representation Cnsr c , and the target representation Cnt ar

(I = (
Cn j i t ,Cnsr c ,Cnt ar

)
).

The top stack frame can, instead of statements, also contain an exception as the
first element. JIT∆σ inherits one type of exception from Lightweight Java, i. e., the null
pointer exception NPE; and introduces a new type of exception, i. e., the unsupported
swap exception USE.

Values There are only two kinds of values modelled in JIT∆σ: a value v is either null
or it is a an object identifier objId.

Objects In JIT∆σ an object is modelled as a triplet (Cns ,Cnd ,F). Cns and Cnd respec-
tively denote the static class and the dynamic class of the object. The static class is the
class of which the object is an instance, the dynamic class is the current representation.
The discussion on the difference between static/dynamic class and static/dynamic type,
is deferred to section 5.4. F is a mapping between field names fn and values v . In sec-
tion 5.4 we discuss in greater detail the resemblances and the differences between types
and class (names) in JIT∆σ. For just-in-time objects the static class is the name of a just-
in-time class and the dynamic class is the class name of the current representation. For a
simple object obj = (Cns ,Cnd ,F) Cns and Cnd are the same, i. e., the name of the simple
class of which obj is an instance.

Mappings H , L, and F model a heap, a local store, or a field binding, respectively. List-
ing 5.2 shows the production rules for updating and extending these functions, e. g., to
add a new variable to a local store. Furthermore, listing 5.2 gives an overview of the syn-
tax of the constructs introduced in this section.

5.2.2 Selection Functions

Selection functions are auxiliary functions used to select a specific piece of information
from a construct such as, for instance, statements or a configuration. The find-class(P,Cn)
function, which tries to find a class definition cd for a given class name Cn in the pro-
gram P . This function is a simple linear search trough the sequence of class definitions

5.2. OPERATIONAL SEMANTICS 91

Listing 5.2: Syntax of JIT∆σ to describe the state of a JITds program.

config : (S, H ,P)

H : []
| H [objId 7→ obj]

S : ε

|
〈
stmt,L, I

〉
: S

|
〈

Exception,L, I
〉
: S

I : (Cn,mn)
| (Cn j i t ,Cnsr c ,Cnt ar)

L : []
| L[x 7→ v]

obj : (Cns ,Cnd ,F)

F : []
| F [fn 7→ v]

v, w : null
| objId

Exception : NPE
| USE

found in P . Most selection functions are equally trivial, mostly because we do not con-
sider single inheritance.1 We therefore omit from this discussion, most of the auxiliary
functions that are used to inspect the program state. These omitted functions can be
found, however, in appendix B.

5.2.3 Transition Graph

In JITds, the representations of a just-in-time class form a directed graph, which we use
to model the relationships between representations of a just-in-time class, and we use
the graph’s paths to describe a sequence of transitions needed to go from one represen-
tation to another. We call such a graph a transition graph. For each just-in-time class
Cn, we can construct its transition graph Gcn = (V ,E). The vertices V of Gcn are the
representations of Cn. Further, the set of edges E can be constructed from the set of

1Finding the class inheritance path is the only source of complexity in Lightweight Java’s “lookup func-
tions” [76].

92 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

defined transition functions td. Iff Cn f r om to Cnto {...}∈ td then (Cn f r om ,Cnto) ∈ E
(cf. adjacent). These relations are given by TRANS-GRAPH in figure 5.2.

To avoid ambiguity later in this section, we first introduce an ordering on paths (see
figure 5.1) and we define an ordering on the representations of a just-in-time class. We
define the latter to be the precedence in the list of representations, i. e., Cni < Cn j iff
Cni precedes Cn j in the list of representations Cn. The former is defined in figure 5.1.
Informally, a shorter path is always “smaller than” a longer path; for equally long paths
the ordering of the representations is used as a tie breaker. This relation is a total order
(proof omitted).

length(p) < length(p ′)

p ≤G p ′
≤-LENGTH

[] ≤G []
≤-EQUAL-EMPTY

a < a′ length(r est) = length(r est ′)

[a | r est] ≤G

[
a′ | r est ′

] ≤-COMBINATION

a = a′ length(r est) = length(r est ′) r est ≤G r est ′

[a | r est] ≤G

[
a′ | r est ′

] ≤-COMBINATION-2

Figure 5.1: The ordering ≤G on paths in G

In chapter 4, we describe how transition functions can be used transitively. Hence,
all legal transition sequences can be modelled as a path p in Gcn . We call such a path
a transition path. We need these transition paths in two cases, either in the context of
a swap statement to express a representation change from one representation Cnsr c to
another Cnt ar , or alternatively, in the context of a specialised swap when the current
representation Cnd does not have an implementation for the method mn, and a transi-
tion to a representation that does have an implementation for mn needs to be found and
transitioned to.

For the first case, TRANS-PATH-CLASS finds the shortest transition path betweenCnsr c

and Cnt ar in Gcn . For the second case, TRANS-PATH-METHOD finds the shortest transi-
tion path between Cnd , the current representation, and another representation of the
just-in-time class Cns in which there exists an implementation for mn. These rules are
described in figure 5.2.

Note that, in practice, the shortest path is not necessarily the fastest path. For in-
stance, it is possible that executing the transitions from A to B to C takes longer than
executing the transitions A to X to Y to Z to C. Currently, it is not possible to express such
information in JITds. To tackle this problem, JITds could ask the developer to mark each
transition function with an estimated cost. Then JIT∆σ needs a weighted graph to model

5.3. REDUCTION SEMANTICS FOR STATEMENTS 93

the transition graph, and the shortest path then needs to take these costs into account.
This extension, however, is future work.

Gcn = (V ,E)

V =Cnr ep td= Cn f r om to Cnto {...} E = (Cn f r om ,Cnto)

transition-graph(class Cn j i t combines Cnr ep{ td }) =Gcn

TRANS-GRAPH

find-class(P,Cn) =cd transition-graph(cd) =Gcn

p = path (Gcn ,Cnsr c ,Cnt ar) p =min≤G

(
p

)
transition-path (P,Cn,Cnsr c ,Cnt ar) = p

TRANS-PATH-CLASS

find-class(P,Cns) =cd
transition-graph (cd) =G class-representation-names(cd) =Cnr ep

Cn′r = {
Cnr | Cnr ∈Cnr ep ∧find-method(P,Cnr ,mn)

}
p =

{
p|∃Cn′r ∈Cn′r : p ∈ path(G ,Cnd ,Cn′r)

}
p =min≤G

(
p

)
transition-path(P,Cns ,Cnd ,mn) = p

TRANS-PATH-METHOD

Figure 5.2: Finding a transition path in a transition graph.

5.3 Reduction Semantics for Statements

Reductions rules in JIT∆σ are of the form c −→ c ′. In section 5.2.1, we defined a con-
figuration c to be the triple (S, H ,P). For a reduction, the first statement found in the
top frame of the stack is often the most important because that statement defines which
reduction can be applied. Hence, our reduction rules make those explicit by expanding
the top stack frame, and the first statement, e. g.,

(〈
stmt1stmt,L, I

〉
, H ,P

)
.

Most reduction rules — i. e., block statements, variable assignment, and if statements
— in JIT∆σ are fairly straightforward adaptations of the reduction rules for statements
in Lightweight Java. We refrain from discussing them in detail but they are shown for the
sake of completeness in figure 5.3. The same holds for the reduction rules for field access
(i. e., read and write), which are shown in figure 5.4. Note, however, that field access can
cause a null pointer exception when the variable x dereferences to the value null. The
reductions for object creation, method invocation, and swap statements are less trivial
and are discussed separately in sections 5.3.1 to 5.3.3, respectively.

94 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

(〈{
stmtb

}
stmt,L, I

〉
: S, H ,P

)−→ (〈
stmtb stmt,L, I

〉
: S, H ,P

) R-BLOCK

L(x) = v L′ = L[vn 7→ v](〈
vn = x ;stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L′, I

〉
: S, H ,P

) R-VARIABLE-ASSIGN

L(x) = v L(y) = w v = w(〈
if (x==y) stmtt else stmtf stmt,L, I

〉
: S, H ,P

)−→ (〈
stmtt stmt,L, I

〉
: S, H ,P

) R-IF-T

L(x) = v L(y) = w v 6= w(〈
if (x==y) stmtt else stmtf stmt,L, I

〉
: S, H ,P

)−→ (〈
stmtf stmt,L, I

〉
: S, H ,P

) R-IF-F

Figure 5.3: Reduction rules for block statements, variables assignment, and if state-
ments.

L(x) = objId

H(objId) = (Cns ,Cnd ,F) F (fn) = v L′ = L[vn 7→ v](〈
vn = x.fn; stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L′, I

〉
: S, H ,P

) R-FIELD-READ

L(x) =null(〈
vn = x.fn; stmt,L, I

〉
: S, H ,P

)−→ (〈NPE,L, I 〉 : S, H ,P)
R-FIELD-READ-NPE

L(x) = objId H(objId) = (Cns ,Cnd ,F)

L(y) = v F ′ = F [fn 7→ v] H ′ = H [objId 7→ (Cns ,Cnd ,F ′)](〈
x.fn = y; stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L, I

〉
: S, H ′,P

) R-FIELD-WRITE

L(x) =null(〈
x.fn = y; stmt,L, I

〉
: S, H ,P

)−→ (〈NPE,L, I 〉 : S, H ,P)
R-FIELD-WRITE-NPE

Figure 5.4: Reduction rules for field reads and field writes.

5.3.1 Reduction Object Construction

We already introduced the triplet representation of objects in JIT∆σ. Creating an object
has as net effect that the heap is extended with a new entry, i. e., a mapping from a fresh

5.3. REDUCTION SEMANTICS FOR STATEMENTS 95

identifier objId to such a triplet (H
[
objId 7→ (Cns ,Cnd ,F)

]
). We discuss the rule R-NEW-

JIT, which creates a new just-in-time object, in detail, and show how the rule R-NEW-
SIMPLE, which creates a plain old object, is a simplification of the former. These rules
are shown in figure 5.5.

The statementvn = new Cns.Cnd();denotes that the variablevnhas to be bound
to a newly created just-in-time object. This new object is an instance of the just-in-time
class Cns and has Cnd as its initial representation. Note that only the representation
is able to change at runtime, hence the subscript d which is a shorthand notation for
“dynamic”. The just-in-time class, on the other hand, is fixed, hence the subscript s for
“static”.

The first steps in the object creation rule R-NEW-JIT are to look up the class defini-
tion of the initial representation Cnd , and to extract the field names fn from this class
definition. To create a new unambiguous entry in the heap, a fresh objId is created and a
new entry with that identifier is added to the original heap. As stated in section 5.2.1, the
object is a triplet containing static class, dynamic class, and a sequence of field-value
mappings. For a just-in-time object the static class and dynamic class are respectively
the just-in-time class Cns and the initial representation Cnd . Because we do not model
explicit constructors, all fields are initially mapped to the value null. Finally, the local
store L is extended with a binding ofvnwith the new object identifier objId. The compu-
tation can then proceed with reducing the statements that are still left, i. e., stmt. These
further reductions, however, happen in the context of the updated heap H ′ and updated
local store L′.

The creation of a new simple object (i. e., an instance of a simple class), as described
by R-NEW-SIMPLE, is analogous to R-NEW-JIT up to the classes of the new object. In
a just-in-time object the static class and the dynamic class always refer to two distinct
classes. In a simple object the static class and the dynamic class are the same, namely
the class being instantiated. This difference is thus only observable in the rules, where
the object’s triplet is created and added to the heap.

find-class(P,Cnd) =cdd class-field-names(cdd) =fn F = [fn 7→null]

objId 6∈ dom(H) H ′ = H [objId 7→ (Cns ,Cnd ,F)] L′ = L[vn 7→ objId](〈
vn = new Cns.Cnd(); stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L′, I

〉
: S, H ′,P

) R-NEW-JIT

find-class(P,Cn) =cd class-field-names(cd) =fn F = [fn 7→null]

objId 6∈ dom(H) H ′ = H [objId 7→ (Cn,Cn,F)] L′ = L[vn 7→ objId](〈
vn = new Cn(); stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L′, I

〉
: S, H ′,P

) R-NEW-SIMPLE

Figure 5.5: Reduction rules for creating new objects.

96 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

5.3.2 Reduction Method Invocation and Method Return

Method Invocation The method invocation statement yields the most interesting re-
duction rules (shown in figure 5.6) as they prove to differ the most from the rules gener-
ally found in Java like semantics. The first rule, however, is not. R-MI-NPE simply covers
the case where a method is invoked on the value null, i. e., when x is null.

The second rule R-MI-DIRECT formalises the case where a method is actually found
and thus can be directly executed. To extract the body of a method, first the correct
method definition md has to be found: 1. Look up the object identifier in the local store,
and 2. track down the identified object in the heap, 3. find the definition of the dynamic
class of the object, and 4. search for the method with the name mn . Then, when all
previous steps succeed, the rule shows how to prepare a new local store Lm in which to
execute the method’s body. This local store contains a binding from this to the object
identifier of the receiver and a binding for each parameter name with the corresponding
argument’s value. Together the method body stmtB , the local store Lm , and a new in-
vocation context I ′, form a new frame that is pushed on top of the old stack S′. Note that
S′ is the full stack as it found in the original configuration, i. e., S preceded by the stack
frame containing the method invocation. This implies that the method invocation state-
ment is still present in the top frame of S′. We keep the method invocation statement
because later, wen we return from the method invocation, we need the know the vari-
able name vn, to which the result of the invocation has to be bound (cf. R-MR-DIRECT).

The static type checker (see section 5.4) prevents the invocation of methods on sim-
ple objects whose class does not provide a method definition with the right name. For
just-in-time objects, however, it is possible that the dynamic class, i. e., the current repre-
sentation, does not provide the required method definition. In section 4.5.1.1 we discuss
how JITds then changes the representation of the just-in-time object to a representa-
tion that does have an implementation of the requested method. Section 5.2.3 discusses
how to compute a transition path, which in its simplest form is the shortest sequence
of transitions needed to reach such a representation (TRANS-PATH-METHOD). The re-
sulting transition path is a sequence of intermediate representations Cnt ar . Transitively
changing the representation of x to the representations in Cnt ar causes x to end up
in a representation with an implementation for mn. These transitions can be realised
by a sequence of swap statements in JITds, i. e., x to Cnt ar;. Hence, the reduction
in R-MI-INDIRECT replaces the original method invocation statement by a block state-
mentstmtt =

{
x to Cnt ar;vn = x.mn(a);

}
, which starts with a sequence of swap

statements and ends with the original method invocation statement. If no transition
path can be found, as is modelled by R-MI-USE, then the reduction for the method invo-
cation ends in an exception configuration because the required representation changes
are unsupported (unsupported swap exception USE).

5.3. REDUCTION SEMANTICS FOR STATEMENTS 97

L(x) =null(〈
vn = x.mn(a) ; stmt,L, I

〉
: S, H ,P

)−→ (〈NPE,L, I 〉 : S, H ,P)
R-MI-NPE

L(x) = objId H(objId) = (Cns ,Cnd ,F) find-class(P,Cnd) =cdd

find-method(cdd ,mn) =md md=Cnr et mn(pd) {stmtB return x; }

parameter-name(pd) =pn L(a) = v Lm = [this 7→ objId][pn 7→ v]

S′ = 〈
vn = x.mn(a); stmt,L, I

〉
: S I ′ = (Cnd ,mn)(〈

vn = x.mn(a); stmt,L, I
〉

: S, H ,P
)−→ (〈

stmtBreturn x;,Lm , I ′
〉

: S′, H ,P
) R-MI-DIRECT

L(x) = objId H(objId) = (Cns ,Cnd ,F) find-class(P,Cnd) =cdd

¬find-method(cdd ,mn) transition-path(P,Cns ,Cnd ,mn) =Cnt ar

stmtt =
{
x to Cnt ar;vn = x.mn(a);

}
(〈
vn = x.mn(a); stmt,L, I

〉
: S, H ,P

)−→ (〈
stmtt stmt,L, I

〉
: S, H ,P

) R-MI-INDIRECT

L(x) = objId H(objId) = (Cns ,Cnd ,F) find-class(P,Cnd) =cdd

¬find-method(cdd ,mn) ¬transition-path(P,Cns ,Cnd ,mn)(〈
vn = x.mn(a);stmt,L, I

〉
: S, H ,P

)−→ (〈USE,L, I 〉 : S, H ,P)
R-MI-USE

Figure 5.6: Reduction rules method invocation.

Method Return As discussed above, the reduction of a valid method invocation pushes
a new frame on top of the stack and continues the execution of a method’s body, with a
new local store and a method invocation context. By construction, the last statement of
a method’s body is a return statement, cf. the first statement in the reductions shown in
figure 5.7. When such a return statement is observed as first statement in the top frame,
we know we have reached the end of a method invocation. R-MR-DIRECT describes
how to reduce such a configuration. The top frame of S, thus the second frame on the
current stack, reveals that the result of the method invocation is to be bound to the vari-
able vn, and that stmt is the remaining computation after the method invocation. The
value of y is to be returned, hence, the computation should be continued in a local store
where vn is bound the value of y. This is realised in the construction of L′. Thus, the
reduction continues with the execution of stmt in the updated local store and the stack
〈stmt,L′, I ′〉 : S′.

This reduction, however, is only allowed when it can be guaranteed that the caller
in the calling context (i. e., either another method or an transition function) still has the
same dynamic class as at the time of the current method’s invocation. Consider, for in-
stance, the method f defined in the class R0 as shown in listing 5.3. On line 6, the field
a is accessed. In JITds, and any other Java-like programming language, the type system
can guarantee that this field exists and holds a value of the expected type. On line 7, a the

98 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

method foo is invoked. On line 8, the field a is accessed again. In any other Java-like
programming language, this is trivially possible as well. In JITds, however, we need to
consider the possibility that the caller of foo, here an instance of R0, has undergone a
representation change.

Listing 5.3: Method f in class R0, that accesses the field a before and after a call to foo.

1 class R0 {
2
3 A a;
4
5 void f(B b, C c) {
6 this.a = new A();
7 c = b.foo();
8 this.a = new A();
9 }

10
11 }

This is possible when the caller is not actually an instance of R0, but rather an in-
stance of T which was in the R0 representation at the moment of invoking foo. If the
caller has changed its representation to R1 during the execution of foo, it is not longer
possible to access the field a after the invocation, because R1 does not have a field a.
Accessing a non-existing field at runtime is a type error, hence to avoid this kind of er-
rors we have to ensure that a caller does not change its representation or if it does, that
it changes it representation back to the original representation.

Listing 5.4: Just-in-time class T combines R0 and R1. R1 does not have a field a of type A.

1 class R1 { }
2 class T combines R0, R1 { ... }

The auxiliary function caller-has-expected-type (shown in figure 5.8) checks whether
the original caller still has the expected dynamic class. When this is not the case, an
appropriate swap statement is inserted before the return statement as is modelled by
R-MR-INDIRECT.

5.3. REDUCTION SEMANTICS FOR STATEMENTS 99

S = 〈
vn = x.mn(a); stmt,Lc , Ic

〉
: S′ caller-has-expected-type(Lc , Ic , H)

L(y) = w L′ = Lc [vn 7→ w] I ′ = Ic

(〈return y;,L, I 〉 : S, H ,P) −→ (〈
stmt,L′, I ′

〉
: S′, H ,P

) R-MR-DIRECT

S = 〈
vn = x.mn(a); stmt,Lc , Ic

〉
: S′

¬caller-has-expected-type(Lc , Ic , H) caller(Ic) = c

expected-caller-type(Ic) =Cn xc 6∈ dom(L) L′ = L[xc 7→ objIdc]

(〈return y;,L, I 〉 : S, H ,P) −→ (〈
xc to Cn; return y;,L′, I

〉
: S, H ,P

) R-MR-INDIRECT

Figure 5.7: Reduction rules of method return.

caller ((Cn,mn)) =this
caller-method

caller
(
(Cn j i t ,Cnsr c ,Cnt ar)

)
=source

caller-tf

expected-caller-type ((Cn,mn)) =Cn
expected-caller-type-method

expected-caller-type
(
(Cn j i t ,Cnsr c ,Cnt ar)

)
=Cnsr c

expected-caller-type-tf

caller(I) = c expected-caller-type(I) =Cnd

L(c) = objId H(objId) = (Cns ,Cnd ,F)

caller-has-expected-type(L, I , H)
caller-has-expected-type

Figure 5.8: Auxiliary Functions.

5.3.3 Reduction Swap Statement and Transition Function Return

Swap Statement The final statement for which we present reduction rules is the swap
statement. x to Cn;, for instance, changes the representation of a just-in-time object
x to Cn. Whether x is actually a just-in-time object, and whether Cn is a valid represen-
tation for x is checked by the type system (see section 5.4). All other cases that can occur
at runtime are formalised in the rules found in figure 5.9.

The first swap reduction rule, R-SWAP-NPE, handles the case where the value of x
is null. In that case, the reduction yields a configuration with a null pointer exception

100 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

(NPE). The second swap reduction rule, R-SWAP-USE, models the case where the in-
tended transition, i. e., from the dynamic class of x to the new representation Cnt ar , is
not possible. This happens when there is no direct transition function defined, or no
transition path exists. In that case, the reduction yields a configuration with an unsup-
ported swap exception (USE). When no direct transition function is defined, but there
exists a transition pathCnt , the transition toCnt ar can be realised by a sequence of swap
statements x to Cnt ar;, as shown by R-SWAP-INDIRECT.

R-SWAP-IDEMPOTENT and R-SWAP-DIRECT both describe the reduction of a swap
statement that fully succeeds. R-SWAP-IDEMPOTENT, on the one hand, describes the
reduction of a swap statement where no representation change is needed because the
target representation is the current representation Cnd , i. e., the dynamic class remains
unchanged.

R-SWAP-DIRECT, on the other hand, describes the reduction of a swap statement that
does require an actual representation change and for which a transition function exists.
To extract the body of a transition function, first the correct transition function definition
td has to be found: 1. Look up the object identifier for x in the local storage, and 2. track
down the identified object in the heap, 3. find the definition of the static class of the
object, and 4. search for the transition function with from Cnsr c to Cnt ar . Then, when
all previous steps succeed, the rule stipulates to prepare a new local store L′ in which to
execute the transition function’s body. In L′, source refers to the original object and
target refers to a newly created object in H ′. The transition function body stmt′, the
local store L′, and a new invocation context I ′, form a new frame that is pushed on top
op the old stack S′.

Transition Function Return As discussed above, executing a swap statement pushes a
new frame on top of the stack and continues the execution of a transition function’s body,
with a new local store and an transition function invocation context. When the sequence
of statements in the top frame of the stack is empty (;), we know we have reached the
end of a transition function invocation.2 When such an empty sequence is observed R-
TFR-DIRECT describes how to remove the top frame of the stack and continue with the
remainder of the computation. But first, the original object referred to by Lc (x) has to be
replaced by the new object referred to by L(target). Hence, the updated heap H ′.

Returning from a transition function is, similar to returning from a method invoca-
tion (see earlier example), only allowed when it can be guaranteed that the caller in the
calling context (i. e., either another transition function or a method) still has the same dy-
namic class as at the time of the current transition function’s invocation. This is checked
by the auxiliary function caller-has-expected-type, shown in figure 5.8. The latter can not
be guaranteed when the caller of the transition function has undergone a representation
change. In that case, as modelled by R-TFR-INDIRECT, an appropriate swap statement
is inserted before the return statement.

2 The alternative, the end of a method invocation, ends by construction with a return statement.

5.3. REDUCTION SEMANTICS FOR STATEMENTS 101

L(x) =null(〈
x to Cnt ar; stmt,L, I

〉
: S, H ,P

)−→ (〈NPE,L, I 〉 : S, H ,P)
R-SWAP-NPE

L(x) = objId H(objId) = (Cn j i t ,Cnsr c ,Fsr c)

find-class(P,Cn j i t) =cd j i t ¬find-transition-function(cd j i t ,Cnsr c ,Cnt ar)

¬transition-path(cd j i t ,Cnsr c ,Cnt ar)(〈
x to Cnt ar; stmt,L, I

〉
: S, H ,P

)−→ (〈USE,L, I 〉 : S, H ,P)
R-SWAP-USE

L(x) = objId H(objId) = (Cns ,Cnt ar ,F)(〈
x to Cnt ar; stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt,L, I

〉
: S, H ,P

) R-SWAP-IDEMPOTENT

L(x) = objId H(objId) = (Cn j i t ,Cnsr c ,Fsr c)

find-class(P,Cn j i t) =cd j i t ¬find-transition-function(cd j i t ,Cnsr c ,Cnt ar)

transition-path(cd j i t ,Cnsr c ,Cnt ar) =Cn′t ar

stmtt =
{
x to Cn′t ar;

}
(〈
x to Cnt ar; stmt,L, I

〉
: S, H ,P

)−→ (〈
stmtt stmt,L, I

〉
: S, H ,P

) R-SWAP-INDIRECT

L(x) = objId H(objId) = (Cn j i t ,Cnsr c ,Fsr c) find-class(P,Cn j i t) =cd j i t

find-transition-function(cd j i t ,Cnsr c ,Cnt ar) =td
td=cnsr cto cnt ar{stmt′}

find-class(P,Cnt ar) =cdt ar class-field-names(cdt ar) =fnt ar

objIdt ar 6∈ dom(H) L′ = [source 7→ objId][target 7→ objIdt ar]

Ft ar = [fnt ar 7→null] H ′ = H [objIdt ar 7→ (Cn j i t ,Cnt ar ,Ft ar)]

I ′ = (Cn j i t ,Cnsr c ,Cnt ar) S′ = 〈
x to Cnt ar;stmt,L, I

〉
: S

(〈
x to Cnt ar;stmt,L, I

〉
: S, H ,P

)−→ (〈
stmt′,L′, I ′

〉
: S′, H ′,P

) R-SWAP-DIRECT

Figure 5.9: Reduction rules for the swap statement.

102 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

S = 〈
x to Cnt ar;stmt,Lc , Ic

〉
: S′

¬caller-has-expected-type(Lc , Ic , H) caller(Ic) = c Lc (c) = objIdc

xc 6∈ dom(L) L′ = L[xc 7→ objIdc] expected-caller-type(Ic) =Cn

(〈;,L, I 〉 : S, H ,P) −→ (〈
xc to cn;,L′, I

〉
: S, H ,P

) R-TFR-INDIRECT

S = 〈
x to Cnt ar;stmt,Lc , Ic

〉
: S′ caller-has-expected-type(Lc , Ic , H)

Lc (x) = objIdx L(target) = objIdt ar H(objIdt ar) = (Cn j i t ,Cnt ar ,Ft ar)

H ′ = H [objIdx 7→ (Cn j i t ,Cnt ar ,Ft ar)]

(〈;,L, I 〉 : S, H ,P) −→ (〈
stmt,Lc , Ic

〉
: S′, H ′,P

) R-TFR-DIRECT

Figure 5.10: Reduction rules of returning from a transition function.

5.4 A Type System for JIT∆σ

Before executing a JITds program, it ought to be checked for static type errors. Static type
errors are errors in the definition of a program that are detectable before the execution
of a program and that would cause the execution to stop, e. g., accessing a field that does
not exist. The type system of a language defines the subset of (syntactically correct) pro-
grams that will never encounter these errors. This section presents a static type system
for JITds. First, however, we informally discuss the difference between static/dynamic
types and static/dynamic classes.

5.4.1 Static Types and Dynamic Types

Listing 5.5: A method foo which returns a new JIT object.

Cnr et foo(Cnar g x)
x = new Cns.Cnd();
return x;

}

In statically-typed languages, such as JITds, a difference is made between the static
type and the dynamic type of a variable. The static type of a variable is the type which is
taken into account during the static type-checking phase. In listing 5.5, for instance, the
variable x is statically known to hold a value of type Cnar g , Cnar g is the static type of x.
At runtime, however, x can refer to any object that is a sub-type of Car g . The actual type
of x at runtime is the dynamic type. At line 2 in listing 5.5, for instance, x is assigned a
new object of type Cns , here a just-in-time class.

In JITds, once an object is created its dynamic type never changes. Now note that the
dynamic type of an object in JITds is the same as its static class. The dynamic class of an

5.4. A TYPE SYSTEM FOR JIT∆σ 103

object, however, can change. Listing 5.5 is a code fragment that allows us to explain all
terms: Cns is the static type of x, Cnd is the dynamic type of x (after line 3).

5.4.2 Types (Cn), Subtypes (Cn<:Cn′), and Valid Types (P `Cn)

In JITds each class definition uniquely defines a type. Therefore, a type is either the class
name of a simple class definition, or the class name of a JIT class definition. In the re-
mainder of this text, because type and class name can be used interchangeably, we re-
frain from introducing a new symbol to denote types. Furthermore, we define a valid
type as a type Cn for which there exists a class definition in P. The rule to determine type
validity in P, P `Cn is given in figure 5.11.

find-class(P,Cn) =cd

P `Cn
valid-type

P `Cn

P `Cn<:Cn
ST-REFLECTIVE

find-class(P,Cn j i t) =cd Cnr ep ∈ class-representation-names(cd) P `Cnr ep

P `Cn j i t <:Cnr ep

ST-JIT

Figure 5.11: Subtyping rules in JIT∆σ.

In a type system for an object-oriented programming language, the subtyping rela-
tion defines whether a value of type Cn can be used when a value of type Cn′ is expected.
Concretely, this is allowed when Cn is a subtype of Cn ′. Cn <: Cn′ denotes the subtype
relation between Cn and Cn′. As in most type systems, the subtype relation in JITds is
both reflective as well as transitive. Thus Cn <: Cn always holds; and if Cn <: Cn′ and
Cn′ <: Cn′′ hold then Cn <: Cn′′ also holds. The actual subtyping rules are given in fig-
ure 5.11, which state that, in a given program P, the type of a class is a subtype of itself if
it has a definition in P (reflective). Alternatively, the type associated with a JIT class is a
subtype of all its representations.

Besides defining the subtyping relation between types, we also define the subtyping
relation between values and types (see figure 5.12). v <: Cn hold when the value v is a
member of the type Cn. We need this relation in section 5.4.4 when we verify whether
a runtime value is a member value of the type of the variable it is bound to. The type
member relation for variables states that null is a member of any valid type in P . A
non-null value objId is a member of Cn iff the static class of the object associated with
objId is a subtype of Cn.

104 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

P `Cn

P, H `null<:Cn
ST-NULL

P `Cn H(objId) = (Cns ,Cnd ,F) P `Cns <:Cn

P, H ` objId <:Cn
ST-DYNAMIC-CLASS

P `Cn H(objId) = (Cns ,Cn,F)

P, H ` objId =:Cn
ST-DYNAMIC-CLASS-EQUAL

Figure 5.12: Subtyping rules for values in JIT∆σ.

5.4.3 Local Type Environment (Γ)

In the soundness proof, we rely on a global type environment Γ, which is a mapping from
methods and transition functions to local type environments. We come back to global
type environments in more detail in section 5.5. A local type environment Γ is a mapping
between variables x and their static type Cn. In JIT∆σ, such a type environment is used
to type check the body of a method or a transition function in a JITds program.

Listing 5.6: Syntax of JIT∆σ to encode a type environment.

Γ : []
| Γ[x 7→Cn]

5.4.4 Type Checking

Type checking a JITds program before its execution prevents type errors during the ex-
ecution. The type checking is defined in terms of well-formedness rules. Most of these
rules are similar to those found in [76, Chapter 3] and are presented here only for com-
pleteness’ sake. The rules that are JIT∆σ specific are discussed in more detail. The aux-
iliary functions used in these rules can be found in appendix B. Note that a prerequisite
of well-formedness of a program is that the program adheres to the syntax defined in
listing 5.1, even though it is not mentioned explicitly in what follows.

5.4.4.1 Programs

A JITds program P is well-formed if all its classes have different names (distinct(Cn)) and
if all its classes are themselves well-formed with respect to P (P `cd).

5.4. A TYPE SYSTEM FOR JIT∆σ 105

P =cd class-name(cd) =Cn distinct(Cn) P `cd

` P
WF-PROGRAM

Figure 5.13: Well-formedness rule for programs.

5.4.4.2 Simple Classes

field-name(fd) =fn distinct(fn) field-type(fd) =Cnf

P `Cnf method-name(md) =mn distinct(mn) P,Cn`md

P `class Cn {fd md}
WF-SIMPLE-CLASS

parameter-name(pd) =pn
distinct(pn) parameter-type(pd) =Cnp P `Cnp

Γ= [this 7→Cn][pn 7→Cnp] P,Γ`stmt P ` Γ(x) <:Cnr

P,Cn`Cnr mn (pd){stmt return x; }
WF-METHOD

Figure 5.14: Well-formedness rules for simple classes and their methods.

A simple class Cn is well-formed with respect to P , if all its fields have distinct names
and well-formed types, and if all methods have distinct names and are well-formed with
respect to the program and the simple class (P,Cn`md).

A method md is well-formed if all its parameters have distinct names and have well-
formed types. Further, the body stmt must be well-formed with respect to the program
P and a local type environment Γ. Finally, we must ensure that x, the value returned by
the methods, is a member of the return type Cnr et .

5.4.4.3 Just-in-Time Classes

A just-in-time class combines a set of representations and inherits the methods defined
in these representations. We explain in chapter 4 that this does not lead to ambiguity
because there is always one active representation which is the prime supplier of method
definitions. For well-formedness, however, it is important that combining the methods
of multiple representations does not introduce ambiguity in the type (signature) of these
methods.

Consider the three classes in listing 5.7. The simple classes R1 and R2 both imple-
ment a method foo and a method bar. The just-in-time class T combines both R1 and

106 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

Listing 5.7: The classes R1, R2, and T

1 class R1 {
2 A1 foo(B1 b) { return null; }
3 A1 bar(B1 b) { return null; }
4 }
5
6 class R2 {
7 A1 foo(B1 b) { return null; }
8 A2 bar(B2 b) { return null; }
9 }

10
11 class T combines R1, R2 { }

R2. As a result, T inherits a foo from both R1 and R2, and T inherits a bar from both
R1 and R2.

Chapter 4 explains that, depending on the current representation, the implementa-
tion of R1 or the implementation of R2 is executed, i. e., without any ambiguity. Here,
we focus on the type of the methods foo and bar of T. Because the type of foo is
B1→ A1 in both R1 and R2, it is fair to say that the type in T is B1→ A1 as well. The
types B1→ A1 and B2→ A2, from bar in R1 and R2, respectively, are not unifiable.
Hence, we do not allow these two simple classes to be combined into one just-in-time
class. Alternatively, it is possible to extend JITds such that methods with the same name
but different types denote different methods (overloading). However, taking overloading
into account, needlessly overcomplicates (method) look-up functions, reduction rules,
well-formedness rules, and the proofs that rely on these rules. LightweightJava, for in-
stance, does not allow method overloading either. Hence, we define that two methods
are combinable (]) into a just-in-time class if either their names differ, or if their types
are identical. These two auxiliary rules are shown in figure 5.15.

method-name(md1) 6=method-name(md2)

md1]md2

WF-AUX-COMB-METHOD1

method-name(md1) =method-name(md2)

method-type(md1) =method-type(md2)

md1]md2

WF-AUX-COMB-METHOD2

Figure 5.15: Auxiliary rules to check if two methods are “combinable”.

Now that we have established which methods are combinable, it is possible to define
what a well-formed just-in-time class looks like. Foremost, all representations Cnr ep

must be distinct and should denote well-formed types in P . Furthermore, all methods

5.4. A TYPE SYSTEM FOR JIT∆σ 107

inherited from any representation have to be pairwise combinable (cf. md1]md2). The
transition functions td have to define distinct transitions and have to be well-formed
themselves.

Finally, a transition function is well-formed if it defines a transition between two dis-
tinct representations of Cn and if the body is well-formed with respect to a local typing
environment Γ (WF-TRANSITION-FUNCTION).

distinct(Cnr ep)

P `Cnr ep find-class(P,Cnr ep) =cdr ep simple-class(cdr ep)

class-methods(cdr ep) =md1 class-methods(cdr ep) =md2 md1]md2

td=Cn f r om to Cnto {...} distinct
(
(Cn f r om ,Cnto)

)
P,Cn j i t `td

P `class Cn j i t combines Cnr ep{ td }
WF-JIT-CLASS

Cn f r om ,Cnto ∈ class-representation-names(Cn)

Γ= [source 7→Cn f r om][target 7→Cnto] P,Γ`stmt

P,Cn`Cn f r om to Cnto {...}
WF-TRANSITION-FUNCTION

Figure 5.16: Well-formedness rules for Just-in-Time classes and their transition func-
tions.

5.4.4.4 Statements

Statements in JITds have to be well-formed with respect to a program P and a local typ-
ing environment Γ. Γ is used to look up and verify expected types of variables, P is used
to consult the program’s structures (e. g., classes and their members).

Most well-formedness rules are fairly straightforward. A block statement, for in-
stance, is well-formed if all the statements in the block are well-formed (cf. WF-BLOCK).
An assignment statement is well-formed if the value of x is a member of the type of vn
in Γ (cf. WF-VAR-ASSIGN). An if statement is well-formed if both the consequent and the
alternative are well-formed in Γ, and if x and y are type-wise related in Γ (cf. WF-IF).
WF-BLOCK, WF-VAR-ASSIGN, and WF-IF are shown in figure 5.17.

108 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

P,Γ`stmt

P,Γ`stmt
WF-BLOCK

P ` Γ(x) <: Γ(vn)

P,Γ`vn = x;
WF-VAR-ASSIGN

(P ` Γ(x) <: Γ(y)∨P ` Γ(y) <: Γ(x)) P,Γ`stmtt P,Γ`stmtf

P,Γ`if (x==y) stmtt else stmtf

WF-IF

Figure 5.17: Well-formedness rules for block statements, variables assignment, and if
statements.

The field read statement vn = x.fn is well-formed if it can be verified in Γ that
the type of fn in the expected type of x is a subtype of the type of vn. Conversely, the
field write x.fn = vn is well-formed if it can be verified in Γ that the type of vn is a
subtype of the type of fn in the expected type of x. Both rules, WF-FIELD-READ and
WF-FIELD-WRITE, are shown in figure 5.18.

Γ(x) =Cn find-class(P,Cn) =cd
find-field(cd,fn) =fd field-type(fd) =Cn′ P `Cn′ <: Γ(vn)

P,Γ`vn = x.fn;
WF-FIELD-READ

Γ(x) =Cn find-class(P,Cn) =cd
find-field(cd,fn) =fd field-type(fd) =Cn′ P ` Γ(y) <:Cn′

P,Γ`x.fn = y;
WF-FIELD-WRITE

Figure 5.18: Well-formedness rules for rules for field read and field write statements.

The creation of an object is well-formed if the static class of the created object is a
subtype of the variable it is being assigned to. To create a simple object the static class
Cnmust denote a simple class from P . To create a just-in-time object, the static classCns

must be a just-in-time class and the dynamic class Cnd must be a representation thereof
(Cnd ∈ class-representation-names(cd)). This is formalised in the rules WF-NEW-SIMPLE

and WF-NEW-JIT, respectively. Both rules are shown in figure 5.19.

5.5. PROOF OF SOUNDNESS 109

P `Cn<: Γ(vn) find-class(P,Cn) =cd simple-class(cd)

P,Γ`vn = new Cn();
WF-NEW-SIMPLE

P `Cns <: Γ(vn)

find-class(P,Cns) =cd Cnd ∈ class-representation-names(cd)

P,Γ`vn = new Cns.Cnd();
WF-NEW-JIT

Figure 5.19: Well-formedness rules for rules for object creation statements.

A method invocation is well-formed if it can be verified in Γ that the expected types
of all arguments a are subtypes of the parameter types of mn and that the return type of
mn is a subtype of the type of the variable vn (see figure 5.20).

Γ(x) =Cn method-type(P,Cn,mn) =Cnar g →Cnr et

P ` Γ(a) <:Cnar g P `Cnr <: Γ(vn)

P,Γ`vn = x.mn(a);
WF-METHOD-INVOCATION

Figure 5.20: Well-formedness rules for rule for method invocations.

WF-SWAP states that a swap statement is well-formed if it can be verified in Γ and
P that the type of x is a just-in-time class 3 and that Cnt ar is a representation of that
just-in-time class.4

P ` Γ(x) <:Cn j i t

find-class(P,Cn j i t) =cd Cnt ar ∈ class-representation-names(cd)

P,Γ`x to Cnt ar;
WF-SWAP

Figure 5.21: Well-formedness rule for rules for swap statements.

5.5 Proof of Soundness

The type system described in section 5.4 is a traditional object-oriented type system
in the sense that it is designed to help programmers to avoid the runtime type errors

3Implicit from Cnt ar ∈ class-representation-names(cd)
4Explicit from Cnt ar ∈ class-representation-names(cd)

110 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

“method not found” (cf. “message not understood” in SmallTalk) and “field not found”.
To show that our type system actually does what it claims to do, it must be proven sound.
In general, a type system is said to be sound if well-formed programs do not generate
runtime type errors [89]. One can prove that a type system is sound, if one can show
that any well-formed program state (cf. configuration) never gets stuck by performing
a legal reduction defined in the operation semantics (i. e., to prove progress) and and if
one can also show that performing a legal reduction defined in the operational seman-
tics keeps the program state well-formed (i. e., to prove preservation). Before we prove
both progress and preservation, we define what it means for configurations, heaps, local
stores, and objects to be well-formed.

5.5.1 Well-formed Configurations, Heaps, Local Stores, and Objects

Well-formedness of a configuration is checked in terms of a global type environment Γ.
A global type environment is a mapping from invocation contexts to local type environ-
ments. Because an invocation context uniquely defines a method or a transition func-
tion, Γ(I) can be used to find the local type environment as found in the well-formedness
rules WF-METHOD and WF-TRANSITION-FUNCTION, for methods and transition func-
tions, respectively.

Configurations are well-formed in a global type environment Γ when the program
P is well-formed, when the heap H is well-formed, and when the stack’s top frame is
well-formed. A frame with invocation context I is well-formed if the local store is well-
formed in the local type environment Γ(I) and if, when applicable, the statements are
well-formed in the local type environment Γ(I) (see figure 5.22).

Note that we use Γ to denote both global type environment and local type environ-
ments. This generally does not introduce ambiguity, because we usually do not consider
both at the same time. When we do, however, we explicitly take the effort to avoid the
ambiguity.

` P P ` H P,Γ(I), H ` L P,Γ(I) `stmt

Γ` (〈
stmt,L, I

〉
: S, H ,P

) WF-CONFIG

` P P ` H P,Γ(I), H ` L

Γ` (〈
E xcepti on,L, I

〉
: S, H ,P

) WF-CONFIG-EX

Figure 5.22: Well-formedness rule for rules for configurations.

To show that a heap H is well-formed it is sufficient to show that its domain is finite
and that all objects in the heap are well-formed. A local store L is well-formed when it
has a finite domain and when it can be shown that all variables in Γ have types that are
supertypes of the types of values associated with them in L. Finally, an object is well-
formed when it has values for all the fields fn defined by the dynamic class of the object

5.5. PROOF OF SOUNDNESS 111

and if these values are members of the field types defined by the dynamic class of the
object, i. e., subtypes of Cnf.

finite(dom(H)) ∀objId ∈ dom(H) : P, H ` H(objId)

P ` H
WF-HEAP

I = (Cn,mn) finite(dom(L))

∀x ∈ dom(Γ) : P, H ` L(x) <: Γ(x) P, H ` L(this) =: Γ(this)

P,Γ, H , I ` L
WF-LOCAL-STORE-M

I = (Cn j i t ,Cnsr c ,Cnt ar ,) finite(dom(L))

∀x ∈ dom(Γ) : P, H ` L(x) <: Γ(x) P, H ` L(source) =: Γ(source)

P, H ` L(target) =: Γ(target)

P,Γ, H , I ` L
WF-LOCAL-STORE-TF

find-class(P,Cnd) =cd
class-field-names(cd) =fn dom(F) =fn class-field-types(cd) =Cnf

P, H ` F (fn) <:Cnf valid-classes(P,Cns ,Cnd)

P, H ` (
Cns ,Cnd ,F

) WF-OBJECT

find-class(P,Cns) =cds

simple-class(cds) Cns =Cnd

valid-classes(P,Cns ,Cnd)
WF-AUX-VALID-CLASSES-SIMPLE

find-class(P,Cns) =cds

jit-class(cds) Cnd ∈ class-representation-names(cds)

valid-classes(P,Cns ,Cnd)
WF-AUX-VALID-CLASSES-JIT

Figure 5.23: Well-formedness rules for heaps, local stores, and objects.

5.5.2 Progress

A first property that must hold for a type system to be sound is that it should guarantee
that a well-formed program does not get stuck if there are still statements to be exe-
cuted. In other words, this property, called progress, states that a well-formed config-
uration can always be reduced (eq. (5.1)). There are two kinds of configurations that
cannot be reduced: a final configuration (〈;,L, I 〉 : ε, H ,P) or an exception configuration

112 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

(〈
E xcepti on,L, I

〉
: S, H ,P

)
.

Γ` c ⇒ ∃c ′ : c −→ c ′ (5.1)

During the proof we know that the initial configuration c is well-formed in some Γ, cf.
the left hand side of eq. (5.1). Consequently, because we can rely on c to be well-formed,
we can also assume the program, the local store, the heap, and all statements (includ-
ing the first) to be well-formed. Then, we use structural induction on the sequence of
statements stmt found in the top frame of the stack S, to prove that for any non-final,
non-exception configuration it is possible to find a next configuration c ′ using the reduc-
tion rules from section 5.2 (cf. the right hand side of eq. (5.1)). The structural induction
consist of eleven cases, depending on the first statement found in stmt:

{stmt}

The application of R-BLOCK is always possible.

if (x==y) stmtt else stmtf

From WF-IF we know x,y ∈ dom(Γ). Because the local store is well-formed as well (cf.
WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF) we are assured that x,y ∈ dom(L). The
latter guarantees the existence of two values v and w such that L(x) = v and L(y) = w . If
v = w then R-IF-T is applicable, otherwise when v 6= w R-IF-F is applicable.

vn = x;

From WF-VAR-ASSIGN we know that x ∈ dom(Γ); from WF-LOCAL-STORE-M or WF-
LOCAL-STORE-TF we then know that x ∈ dom(L); thus, we know there must be a v such
that L(x) = v . L(x) = v is a sufficient condition to apply R-VARIABLE-ASSIGN.

x.fn = y;

From WF-FIELD-WRITE we know that x,y ∈ dom(Γ) and from WF-LOCAL-STORE-M or
WF-LOCAL-STORE-TF we know that x,y ∈ dom(L). Either L(x) = null or L(x) = objId.
In the former case R-FIELD-WRITE-NPE is applicable. In the latter case, R-FIELD-WRITE

is applicable.

vn = x.fn;

From WF-FIELD-READ we know that x has a known type Cn in Γ, further from WF-
LOCAL-STORE-M or WF-LOCAL-STORE-TF it follows that x has a value in L because
x ∈ dom(L). Either L(x) =null or L(x) = objId. In the former case R-FIELD-READ-NPE
is applicable. In the later case, R-FIELD-READ is applicable because from WF-LOCAL-
STORE-M (or WF-LOCAL-STORE-TF), WF-OBJECT and ST-DYNAMIC-CLASS it follows that:
1. an object exists in the heap (objId ∈ dom(H)), 2. the object is well-formed (P, H `
H(objId)), and 3. thus must have a value v bound to the field fn.

5.5. PROOF OF SOUNDNESS 113

vn = new Cn();

From WF-NEW-SIMPLE we know that Cn is a valid type (find-class(P,Cn=cd)), and that
cd is a simple class (simple-class(cd)). From which it trivially follows that we can retrieve
the field names associated with that simple class. WF-HEAP requires the heap to be
finite which means that there must exist a fresh object identifier objId such that objId 6∈
dom(H). As a result, all preconditions are met to legally apply R-NEW-SIMPLE.

vn = new Cns.Cnd();

From WF-NEW-JIT we know that Cns is a valid type (find-class(P,Cns = cd) and that
cd is a JIT class (Cnd ∈ class-representation-names(cd)). From the latter follows, indi-
rectly, thatCnd is a valid type that refers to a simple class (representations of just-in-time
classes are simple classes). As a result it must be possible to retrieve the field names asso-
ciated with that simple class Cnd . WF-HEAP requires the heap to be finite which means
that there must exist a fresh object identifier objId such that objId 6∈ dom(H). Now, all
preconditions are met to legally apply R-NEW-JIT.

vn = x.mn(a);

From WF-METHOD-INVOCATION we know that x has a known type Cn in Γ (Γ(x) = Cn),
then from WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF it follows that x has a value in
L (x ∈ dom(L)). Either L(x) =null, in which case R-FIELD-READ-NPE is applicable, or
L(x) = objId. If the latter is true, then from WF-LOCAL-STORE-M or WF-LOCAL-STORE-
TF and WF-OBJECT it follows that an object obj exists in the heap (objId ∈ dom(H)).
Moreover, the object obj is guaranteed to be well-formed. Thus obj has a dynamic class
Cnd which refers to a simple class definition cd. By mutual exclusion we differentiate
between three cases: either there is a method md in cd, or there is no such method but
we can find a transition path, or there is no such method and we cannot find a transition
path. We now discuss each of these cases separately:

• find-method(cd,mn) =md
From WF-METHOD-INVOCATION and WF-LOCAL-STORE-M (or WF-LOCAL-STORE-
TF) we know that all arguments a have a corresponding value in L. This is suffi-
cient to construct a new stack frame and apply the rule R-MI-DIRECT.

• ¬find-method(cd,mn), but transition-path(P,Cns ,Cnd ,mn) =Cnt

Then R-MI-INDIRECT is directly applicable.

• ¬find-method(cd,mn) and ¬transition-path(P,Cns ,Cnd ,mn)
Then R-MI-USE is directly applicable.

return y;

114 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

By construction, it is guaranteed that when a return statement is encountered, the first
expression of the second stack frame is a method invocation expressionvn = x.mn(a);.
Then, by mutual exclusion, caller-has-expected-type(Lc , Ic , H) either succeeds or fails. If
it succeeds, R-MR-DIRECT is applicable. R-MR-DIRECT only requires y ∈ dom(L) which
is possible because of WF-METHOD, which requires exactly thaty ∈ dom(Γ) and because
of WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF it is thus known that y ∈ dom(L). If
caller-has-expected-type(Lc , Ic , H) fails, R-MR-INDIRECT is applicable. Because L is fi-
nite, an xc such that xc 6∈ dom(L), can be found.

x to Cnt ar;

From WF-SWAP we know that x has a known type Cn j i t in Γ (Γ(x) = Cn j i t), then from
WF-LOCAL-STORE-M follows that x has a value in L x ∈ dom(L). Either L(x) = null,
in which case R-SWAP-NPE is applicable, or L(x) = objId. If the latter is true, then from
WF-LOCAL-STORE-M and WF-OBJECT it follows that one such object exists in the heap
(objId ∈ dom(H)), that is well-formed (P, H ` (Cns ,Cnsr c ,fn 7→ v)). If Cnsr c =Cnt ar then
R-SWAP-IDEMPOTENT trivially applies. Otherwise, we try to find a transition function
td from Cnsr c to Cnt ar in cd j i t , where cd j i t is the class definition of Cn j i t . Then, by
mutual exclusion, we differentiate between three cases: either td does not exist and no
transition path exists betweenCnsr c andCnt ar , ortddoes not exist and a transition path
between Cnsr c and Cnt ar can be found, or td does exist. In the first case, R-SWAP-USE
is directly applicable. In the second case, R-SWAP-INDIRECT is directly applicable. In the
last case, R-SWAP-DIRECT is applicable.

;

By construction, it is guaranteed that when the empty statement sequence is encoun-
tered, the first expression of the second stack frame is a swap statement x to Cnt ar;.
Then, by mutual exclusion, caller-has-expected-type(Lc , Ic , H) either succeeds or fails.
If it succeeds, R-TFR-DIRECT is applicable. R-TFR-DIRECT only requires y ∈ dom(L)
which is possible because of WF-METHOD, which requires exactly that y ∈ dom(Γ) and
because of WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF it is thus known thaty ∈ dom(L).
If caller-has-expected-type(Lc , Ic , H) fails, R-TFR-INDIRECT is applicable. Because L is fi-
nite, an xc such that xc 6∈ dom(L), can be found.

We showed for each of the eleven possible occurrences of a well-formed configura-
tion c we can find a configuration c ′ by applying reduction of the operation semantics
only. Hence, we have proven progress.

5.5.3 Preservation

The second property for a type system to be sound is that it should guarantee that the
execution of a well-formed program maintains the well-formedness of configurations
during the execution. In other words, this property called preservation, states that each
legal reduction of a well-formed configuration again produces a well-formed configu-
ration. This is expressed in eq. (5.2), which literally states that when a configuration c

5.5. PROOF OF SOUNDNESS 115

is well-formed in some global type environment Γ and when that configuration can be
reduced to c ′, then there must exists a global type environment Γ′ that encodes the same
information as Γ (or more), in which c ′ is well-formed. Using structural induction on the
23 reduction rules, we can show that eq. (5.2) always holds in JIT∆σ.

Γ` c ∧ c −→ c ′ ⇒∃Γ′ : Γ⊆ Γ′∧Γ′ ` c ′ (5.2)

R-BLOCK, R-IF-T, R-IF-F, and R-SWAP-IDEMPOTENT (simple rewrite reductions)

c ′ is trivially well-formed because of WF-CONFIG and the respective statement well-
formedness rules, i. e., WF-BLOCK for R-BLOCK, and WF-IF for R-IF-T and R-IF-F. RSWAPI-
DEM does not rely on another rule.

R-FIELD-READ-NPE, R-FIELD-WRITE-NPE, R-MI-NPE, R-SWAP-NPE

R-MI-USE, and R-SWAP-USE

All reductions that lead to an exception configuration, result in a well-formed ex-
ception configuration. This follows from WF-CONFIG-EX because P , H , and L remain
unchanged.

R-VARIABLE-ASSIGN

This reduction removes the first statement and leaves all other statements untouched.
The only other difference between c and c ′ is the local store. Hence, for Γ` c ′ to hold we
must show that P,Γ, H ` L[vn 7→ v] with L(x) = v . R-VARIABLE-ASSIGN does not change
the domain of L and thus dom(L) remains finite. Moreover, R-VARIABLE-ASSIGN does
not change anything in L except the value of vn. Hence, what is left to show is that
P, H ` v <: Γ(vn). This is trivially true when v is null, because of ST-NULL. Otherwise,
v must be some objId ∈ dom(H) for which we know that H(objId) = (Cns ,Cnd ,fn 7→ u)
(WF-HEAP, WF-OBJECT), which simplifies our goal to show that P, H ` Cns <: Γ(vn).
From WF-VAR-ASSIGN we know that P, H ` Γ(x) <: Γ(vn). From the transitivity of <: it
follows that P, H `Cns <: Γ(vn).

R-FIELD-READ

This reduction removes the first statement and leaves all other statements untouched.
The only other difference between c and c ′ is the local store. Hence, for Γ ` c ′ to hold
we must show that P,Γ, H ` L[vn 7→ v] with L(x) = objIdx and with H(objIdx ,fn) = v .
R-FIELD-READ does not change the domain of L and thus dom(L) remains finite. More-
over, R-FIELD-READ does not change anything in L except the value of vn. Hence, what
is left to show is that P, H ` v <: Γ(vn). This is trivially true when v is null, because of
ST-NULL.

116 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

Otherwise, v must be some objId f ∈ dom(H) for which we know that H(objId f) =
(Cns f ,Cnd f ,F f) (WF-HEAP, WF-OBJECT), which simplifies our goal to show that P, H `
Cns f <: Γ(vn). From WF-FIELD-READ, on the one hand, it follows that Γ(x) = Cnx , that
find-class(P,Cnx) = cdx , that find-field(cdx ,fn) = fdx f , that field-type(fdx f) = Cnx f ,
and that P ` Cnx f <: Γ(vn). From WF-HEAP and WF-OBJECT, on the other hand, we
know that objIdx ∈ dom(H), that H(objIdx) = (Cnsx ,Cnd x ,Fx), that find-class(P,Cnd x) =
cdd x , that find-field(cdd x ,fn) = fdd x f , and that field-type(fdd x f) = Cnd x f and P `
Cns f <: Cnd x f . In the context of a field read, the syntax of JITds only allows x to be
either this or source. Hence, we know from WF-LOCAL-STORE-M or WF-LOCAL-
STORE-TF that P, H ` L(x) =: Γ(x). In other words, we can show that Cnx = Cnd x and
thus Cnx f and Cnd x f are equal as well. From the transitivity of <: it then follows that
P, H `Cns f <: Γ(vn), which was left to prove.

R-FIELD-WRITE

This reduction removes the first statement and leaves all other statements untouched.
The only other difference between c and c ′ is the heap. To be more precise it is one
object in that heap, i. e., H(objIdx) = (Cnsx ,Cnd x ,Fx), with L(x) = objIdx , where the
value of a field has changed. Hence, to show that P ` H , it suffices to show that P, H `
(Cns ,Cnd ,F) with F (fn) = v and L(y) = v after the application of R-FIELD-WRITE. Be-
cause find-class(P,Cnd x) = cdd x , find-field(cdd x ,fn) = fdd x f , and field-type(fdd x f) =
Cnd x f it suffices to show that P, H ` v <: Cnd x f . This is trivially true when v is null,
because of ST-NULL.

Otherwise, v must be some objIdy ∈ dom(H) for which we know that H(objIdy) =
(Cns y ,Cnd y ,Fy) (WF-HEAP, WF-OBJECT), which simplifies our goal to show that P, H `
Cns y <: Cnd x f . From WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF we know that P `
Cns y <: Γ(y). From WF-FIELD-WRITE it follows that Γ(x) =Cnx , that find-class(P,Cnx) =
cdx , that find-field(cdx ,fn) =fdx f , field-type(fdx f) =Cnx f , and that P ` Γ(y) <:Cnx f .
In the context of a field write, the syntax of JITds only allows x to be either this or
target. Hence, we know from WF-LOCAL-STORE-M or WF-LOCAL-STORE-TF that
P, H ` L(x) =: Γ(x). Hence, Cnx is equal to Cnd x and thus is Cnx f = Cnd x f . Then P, H `
Cns y <:Cnd x f follows from the transitivity of <:.

R-NEW-SIMPLE

We need to show two things: first, we need to show that P, H ` (Cn,Cn,F) (well-formed
object); and second, we need to show that P, H [objId 7→ (Cn,Cn,F)] ` objId <: Γ(vn);
both with F = [fn 7→null]. To show that (Cn,Cn,F) is a well-formed object we need to
show that P `null<:Cn f holds for each field fn of Cn. This is trivially true because of
ST-NULL. Because of ST-DYNAMIC-CLASS, proving P, H [objId 7→ (Cn,Cn,F)] ` objId <:
Γ(vn) reduces to showing that P, H [objId 7→ (Cn,Cn,F)] ` Cn <: Γ(vn), which is trivially
true from WF-NEW-SIMPLE.

R-NEW-JIT

5.5. PROOF OF SOUNDNESS 117

We need to show two things: first, we need to show that P, H ` (Cns ,Cnd ,F) (well-formed
object); and second, we need to show that P, H [objId 7→ (Cns ,Cnd ,F)] ` objId <: Γ(vn);
both with F = [fn 7→null]. To show that (Cns ,Cnd ,F) is a well-formed object we need
to show that P `null<:Cn f holds for each fieldfn ofCnd . This is trivially true because
of ST-NULL. Because of ST-DYNAMIC-CLASS, proving P, H [objId 7→ (Cns ,Cnd ,F)] ` objId <:
Γ(vn) reduces to showing that P, H [objId 7→ (Cns ,Cnd ,F)] ` Cns <: Γ(vn), which is triv-
ially true from WF-NEW-JIT.

R-MI-INDIRECT

The only difference between c and c ′ is the set of statements. In c ′, a block statement
stmtt is added. Hence, to show that c ′ is well-formed, we need to show that stmtt is
well-formed under Γ, which reduces to showing P,Γ`stmt for all statements in stmtt .
First, note that this is trivially true for the last statement of stmtt , i. e., the method invo-
cation which is well-formed because of WF-METHOD-INVOCATION. All other statements
in stmtt are of the form x to Cnt ar;, for which it is left to show that x ∈ dom(Γ),
and that Cn is one of the representations of Cn j i t , with P ` Γ(x) <: Cn j i t . From WF-
METHOD-INVOCATION of the initial statement we know x ∈ dom(Γ). From the existence
of the transition path Cnt , it follows that all Cnt are representations of Cn j i t .

R-MI-DIRECT

We must show that the new stack frame is well-formed. Because the method is well
formed, the statements in its bodystmtB are also well-formed. From WF-LOCAL-STORE-
M or WF-LOCAL-STORE-TF we know that v <: Γ(a) with L(a) = v , and from WF-METHOD-
INVOCATION we know that Γ(a) <:Cna with Cna the type of the respective arguments.
Hence, by transitivity of <:, we know v <: Cna for each argument. Because the method
mn of cdd is well-formed in P , its body statements stmtB are well-formed in some typ-
ing environment Γ′ = [this 7→ Cnd][vn 7→Cna]. Then, P,Γ′, H ` Lm is true because:
First, dom(Lm) is finite by construction; Second, it is trivial to see that L(x) <: Γ(x) in Γ′;
and Third, L(this) =:Cnd is trivially true as well.

R-MR-DIRECT

In this reduction we need to show that new top stack frame is well-formed. Because,
the statement stmt and the invocation context I ′ have not been changed since they
have become the second frame, they are still well-formed. What is left to show is that
L′ is well-formed, i. e., we must show that P,Γ, H ` Lc [vn 7→ w] with L(y) = w . Be-
cause Lc is well-formed and because R-MR-DIRECT does not change the domain of
Lc , caller-has-expected-type guarantees that the calling context has the required types.
Hence, the only thing to show is that P, H ` v <: Γ(vn). This is trivially true when v is
null, because of ST-NULL. Otherwise, v must be some objId ∈ dom(H) for which we
know that H(objId) = (Cns ,Cnd ,fn 7→ u) (WF-HEAP, WF-OBJECT), which simplifies our
goal to show that P, H ` Cns <: Γ(vn). From WF-METHOD we know that P, H ` Γ(y) <:
Γ(vn). Then, from the transitivity of <: it follows that P, H ` Γ(Cns) <: Γ(vn).

118 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

R-MR-INDIRECT

The difference between c and c ′ is the set of statements and the local store. In c ′, a state-
ment of the form xc to Cnt ar; is added and the local store is extended with a new
binding. Hence, to show that c ′ is well-formed, we need to show that the statement is
well-formed under some Γ′ and that the new local store is well-formed under that same
Γ′. Hence, what is left to show is that xc ∈ dom(Γ′), that Cnt ar is one of the representa-
tions of Cn j i t , with P ` Γ′(xc) <: Cn j i t , and that P,Γ′, H ` L(xc) <: Γ′(xc). From the exis-
tence of the transition path Cnt ar , it follows that all Cnt ar are representations of Cn j i t ,
and the rest is trivially true by construction.

R-SWAP-INDIRECT

The only difference between c and c ′ is the set of statements. In c ′, a block statement
stmtt is added. Hence, to show that c ′ is well-formed, we need to show that stmtt is
well-formed under Γ, which reduces to showing P,Γ`stmt for all statements in stmtt .
All statements in stmtt are of the form x to Cnt ar;, for which its is left to show that
x ∈ dom(Γ), and that Cn is one of the representations of Cn j i t , with P ` Γ(x) <: Cn j i t .
From WF-SWAP of the initial statement we know x ∈ dom(Γ). From the existence of the
transition path Cnt , it follows that all Cnt are representations of Cn j i t .

R-SWAP-DIRECT

We must only show that the new stack frame 〈stmt′,L′, I ′〉 is well-formed. Because
the transition function td is well formed, the statements in its body stmt′ are also
well-formed. Further, L′ is well-formed because: First, dom(L′) is finite by construc-
tion; Second, it is trivial to see that L(x) <: Γ(x); ; and Third, L(source) =: Cnsr c and
L(target) =:Cnt ar are trivially true as well.

R-TFR-INDIRECT

The difference between c and c ′ is the set of statements and the local store. In c ′, a state-
ment of the form xc to Cn; is added and the local store is extended with a new bind-
ing. Hence, to show that c ′ is well-formed, we need to show that statement is well-formed
under some Γ′ and that the new local store is well-formed under that same Γ′. Hence,
what is left to show is that xc ∈ dom(Γ′), that Cn is one of the representations of Cn j i t ,
with P ` Γ′(xc) <: Cn j i t , and that P,Γ′, H ` L(xc) <: Γ′(xc). From the existence of the
transition path Cnt , it follows that all Cnt are representations of Cn j i t . The rest is trivial
because we construct xc ourselves.

R-TFR-DIRECT

5.6. JIT∆σ WITH SINGLE INHERITANCE 119

For this reduction we need to show That the new top stack frame is well-formed and that
the updated heap H ′ is well-formed. Because, the statements stmt, the local store Lc ,
and the invocation context Ic have not been changed since they were the top frame, they
are still well-formed when they become the top frame again. That the calling context
adheres to the required types is guaranteed by caller-has-expected-type. What is left to
show is that H ′ is well-formed. This is trivial because the updated binding points to a
well-formed object with the same static type as the original Cn j i t .

We showed for each of the 23 reduction rules that applying that rule to a well-formed
configuration always yields a new well-formed configuration. Hence, we have proved
preservation.

We have proved both progress and preservation for our type system, hence, we have
proved soundness.

5.6 JIT∆σwith Single Inheritance

In this chapter we presented JIT∆σ, a formal specification of JITds, based on Lightweight
Java. JIT∆σ extends Lightweight Java with support for representation changes and we
show how we can guarantee that a well-formed program never results in a “method not
found” exception and accessing a field never results in a “field does not exist” exception.
However, in order to be able to focus on the peculiarities that that stem from JITds’s rep-
resentation changes, we do not model single inheritance, a key feature of object-oriented
programming languages in general, and Java (derivates) specifically.

In this section we sketch the impact on JIT∆σ if single inheritance were to be in-
cluded. All subclass relations that are possible in JIT∆σ are shown in black in figure 5.24,
i. e., either class is a simple class in isolation (e. g., C), or a class is simple class that is
used as an representation of a just-in-time class (e. g., R1, R2, and R3), or a class is a
just-in-time class (e. g., T).

Now, if we want to model single inheritance, we first introduce the keywordextends
as it is known from Java. Then in combination with combines, a class definition can ei-
ther extend one other class, combine multiple simple classes, or neither. For complete-
ness, we then have to redefine what simple classes are. First, simple classes as introduced
earlier in this chapter (i. e., classes that neither combine nor extend another class) are
still simple classes. Furthermore, we consider a class that extends another simple class to
be a simple class as well (recursive). With this new definition in mind, figure 5.24 shows
all possible variations of the subclass relation in an extension of JIT∆σ where single in-
heritance is allowed, i. e., these new relations are coloured (). There is one variation of
the subclass relation that seems to be missing in figure 5.24, that is where a represen-
tation (directly or indirectly) combines multiple classes. This relation, however, is not
allowed because only simple classes can be combined, and the new definition of simple
class forbids this construction.

With these new subclass relations, we need to redefine the auxiliary functions for
method look-up and field look-up. Concretely, the class hierarchy needs to be taken into
account as well. Strniša et al. [76] show how this can be done. We now sketch for each

120 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

R2 R3

T

R1

T1

C

C0 R0

R4C1

Figure 5.24: A class hierarchy with single inheritance.

of the new variants of the subclass relation how this influences the properties shown for
JIT∆σ without inheritance.

C extends C0 and C1 extends C The three classes C0, C, and C1 form a classic
single inheritance class hierarchy as it is known in vanilla Java. Strniša et al. [76]
have already shown that such hierarchies are type safe.

R1 extends R0 When we considerR0 andR1 in isolation, we can rely on the work of
Strniša et al. [76] to assume that this hierarchies is type safe. If we also consider T
in the hierarchy, then we have a just-in-time classT that combines representations
of which (at least one) has a parent class. The methods (and fields) in R1 are then
not only those actually defined in R1, but also those defined in R0, i. e., classic
single inheritance. The target of a swap statement can only be R1, R2, or R3, as
defined in this chapter and in chapter 4. Hence, as far as the behaviour of the just-
in-time class T is concerned, the class R1 could as well have been a class without
the parent R0, but with all its functionality. For a type point of view, however, T is
a subtype of R0. This is fine since R1 is a subtype of R0 as well (transitivity).

5.7. CONCLUSION 121

R4 extends R3 When we consider R0 and R1 in isolation, we can rely on the work
of Strniša et al. [76] to assume that this hierarchies is type safe. If we also consider
T in the hierarchy, then we have to conclude that whether R4 is a subclass of R3
does not influence the behaviour or type of the just-in-time class T.

T1 extends T When we consider the hierarchy of T1 and T, we rely on the work of
Strniša et al. [76] to conjecture that this hierarchy is type-safe as well. First, as long
as only behaviour implemented in T1 is used, all is as if T1 was a simple class.
When behaviour that is not implemented in T1 is used, then the behaviour of T
is used. The behaviour of an instance of T is studied in depth in this chapter and
is proved to be type-safe. In the absence of any counter argument, we conjecture
that in general this hierarchy is type-safe.

Neither of the four cases of single inheritance reveals an argument that contradicts
our conjecture that adding single inheritance to JIT∆σ would entail a major improve-
ment in completes or would entail a significant risk of rendering the insight gathered in
this chapter invalid. Hence, we remain convinced of our choice to omit single inheri-
tance in JIT∆σ, in favour of compactness.

5.7 Conclusion

This chapter adds two new insights. First, the formal specification of JITds reveals, be-
sides specialised swaps, a second kind of implicit representation change in JITds’s se-
mantics, i. e., upon returning from a method invocation or a transition function. Second,
we can guarantee that in a well-formed JITds program invoking a method never results
in a “method not found” exception (cf. “message not understood” in SmallTalk) and ac-
cessing a field never results in a “field does not exist” exception. The only exceptions that
can occur are NPE and USE. We briefly revisit these two key observations.

5.7.1 Implicitly Changing the Representation of the Caller

When introducing JITds in chapter 4, we explain how specialised swaps are implicit rep-
resentation changes that occur when a method is invoked for which the current repre-
sentation does not provide an implementation. The reduction rules R-MR-INDIRECT

and R-TFR-INDIRECT reveal that there is a second kind of implicit representation change
present in JITds.

A sequence of statements in JITds is known to be statically-typed in the context of
a method body (i. e., well-formed).5 To guarantee that the remainder of the statements
are still well-formed after executing the first statement, we have to make sure that the
pseudo-variable this still has the same representation (i. e., dynamic class). This can-
not be guaranteed in the case that this refers to a just-in-time object whose represen-
tation has changed during the execution of a method invocation. Hence, we added the
reduction R-MR-INDIRECT to detect and resolve this case.

5For simplicity, we ignore transition function bodies here, but the argumentation holds for those as well.

122 CHAPTER 5. JIT∆σ: A FORMAL SPECIFICATION OF JITDS

5.7.2 A Case in favour of Unsupported Swap Exceptions

By proving the soundness of the type system we defined for JIT∆σ, we can guarantee
that no well-formed JIT∆σ program will ever get stuck during the execution. However,
it is possible that a well-formed program reduces to an exception configuration. The
configuration with a NPE is known from Java and its derivatives. The configuration with
an USE is unique to JIT∆σ.

Reaching a configuration with anUSEmeans that the program has requested a repre-
sentation change, but the needed transition functions are absent. If the well-formedness
rule of a just-in-time class would require all possible transition functions to be defined
(i. e., from all representations to all other representations) no USE could ever occur. This
is true because all requested representation changes are statically guaranteed to occur
between representations of the expected just-in-time class.

Section 4.6 explains that it is a well-considered design choice in JITds to not require
all possible transition functions to be defined. One of the arguments is that some repre-
sentation changes are unwanted (e. g., opening a locked file). Thus when an USE is en-
countered, this can mean one of two things: either the developer forgot to implement a
transition function (developer’s error) or the program requested a representation change
that was deliberately unsupported. In the latter case, the developer can build exception
mitigating code to resolve the issue.

Chapter 6

Designing Just-in-Time Data Structures:
When to Change the Representation

In chapter 4 we introduced JITds, a language that allows developers to define data struc-
tures that can change their representation during the execution of a program. To initiate
a representation change, JITds introduces the swap statement. However, in the resulting
code, application logic and representation change logic are entangled. Both sections 2.1
and 2.2 argue in favour of separation of application logic and representation change in-
centive code. This implies the need for language features that allow a developer to dis-
entangle representation change incentive code and application logic.

In this chapter we introduce and discuss swap rules. Swap rules are the constructs in
JITds that allow the developer of a just-in-time data structure to express when a rep-
resentation change is needed. In general, a swap rule is a member of a just-in-time
data structure that encapsulates representation change incentive code. Such a swap rule
makes quantified statements about which representation change is to be executed in
which circumstances. Less formally, swap rules express, based on the observed usage of
a just-in-time data structure, a reaction in the form of a transition from one representa-
tion to another.

Concretely, this chapter is organised as follows. First, we identify the need for three
kinds of swap rules, which we introduce sections 6.1.1 to 6.1.3, respectively. Further,
we show how to broaden the applicability of swap rules. In section 6.2, we show how
to define history based swap rules, and in section 6.3, we show how to define (machine)
learned swap rules. Finally, in section 6.4 we revisit the idea of swap rules as a kind of
domain specific aspects.

6.1 Swap Rules

Swap rules are the constructs in JITds that allow developers to express representation
change incentives without entangling them with the application’s base logic. From chap-
ter 3 we know that there are two kinds of representation change incentive. Either a rep-
resentation change is imposed on a data object from the outside, or it is initiated by

123

124 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

the data object itself. Below, we revisit two examples from section 2.2 that illustrate the
difference between those two variants – internal and external (see chapter 3) – of repre-
sentation change incentive. We also discuss a third example that reveals the need for a
hybrid from of representation change incentive.

A first matrix example. In section 2.2 we showed that a performance-aware program-
mer prefers to invoke the matrix multiplication method mul(Matrix a, Matrix
b) with arguments of the RowMajorMatrix and ColMajorMatrix representation,
respectively. Moreover, the experiments in section 2.2.3 reveal that paying the cost of
changing the representation at runtime to match the expected representations can be
beneficial for performance as well. Listing 2.17 on page 37, for instance, shows how this
preference of mul can be expressed. Here, mul is the “user” of two matrix data objects,
and thus the code in mul to express that some representation changes are needed is ex-
ternal representation change incentive code. In JITds, it is possible to express this kind
of external representation representation change incentive by means of an external swap
rule. These external swap rules are introduced in section 6.1.1.

A second matrix example. In section 2.2 we write that a performance-aware program-
mer prefers a SparseMatrix representation when the number of non-zero values is
low. Further in section 2.2, we provide the example of a stencil computation where the
developer is not necessarily aware that a matrix has become sparse. A representation
change from a dense representation to SparseMatrix should thus be initiated by the
matrix itself, i. e., by means of internal representation change incentive code. In JITds,
it is possible to express this kind of internal representation representation change in-
centive by means of an internal swap rule. These internal swap rules are introduced in
section 6.1.2.

A third matrix example. A diagonal matrix has only elements on its main diagonal.
There exist representations for the matrix ADT that rely on this property to store the
elements of such a matrix more efficiently. Appendix C, for instance, provides an imple-
mentation of DiagonalMatrix, which stores all elements in an array with the length
of the main diagonal. This is sufficient since non-zero values only occur on the main
diagonal in a diagonal matrix. Hence, when a user of such a matrix tries to set a non-
zero value outside of the diagonal, such a representation usually throws an exception.
Alternatively, the matrix could decide that it is more appropriate to transition to a repre-
sentation that does support non-zero values outside the diagonal. In JITds, it is possible
to express this kind of internal representation change incentive by means of an interface
swap rule. This third kind of swap rule is introduced in section 6.1.3.

6.1.1 External Swap Rules

External Swap Rules are swap rules that express the need for a representation change
that is initiated by the user of a just-in-time data structure. It is thus a piece of code
that augments a computation with the preferred representations of the data objects this

6.1. SWAP RULES 125

computation uses. In object-oriented languages, methods form the most straightfor-
ward unit of computation. Therefore we restrict ourselves to method invocations as join
points at which to introduce representation changes. The matrix multiplication method
mul, for instance, is a computation for which we know the preferred representations of
its arguments (see section 2.2).

Thus, an external swap rule needs to do two things. First, it has to define to which
method the swap rule applies; and second, it has to express what representation changes
have to take place when that method is invoked. The implied relation with aspect-
oriented programming and static quantification is discussed in section 6.4.

Syntax: External Swap Rule

class T combines R0, ... , Rn {
swaprule Cr C.mn(C0 a0, ... , Cn an) {

...
proceed;
...

}

swaprule Cr C.mn(C0 a0, ... , Cn an) {
...
Cr result = proceed;
...

}
}

With C different from the defining just-in-time class T class or any of its repre-
sentations Ri .

First, an external swap rule is a member of a just-in-time class (i. e., T in the syntax
description). Apart from the keyword swaprule, an external swap rule looks a lot like
a method definition. Hence, we use the same terminology and say that an external swap
rules has a signature and a body.

The header of an external swap rule defines to which method the swap rule applies.
Recall that a method is uniquely defined by its name, the types of its formal parameters,
its modifiers, and its defining class. The header of an external swap rule is therefore an
exact copy of the header of that method md1, qualified with the class C, in which it was
defined. Heremn fromCwhich has the type (C0, . . . ,Cn) →Cr . Note that in order to define
an external swap rule, the method can not be defined in the just-in-time class or any of
any of its representations. In this case this means that C can not be T or any of Ri . Swap
rules where C is T, or any of Ri , are discussed in section 6.1.3.

The body of an external swap rule consists of three parts: a set of statements, a
proceed statement, and another set of statements. All statements in the body have ac-
cess to the arguments of the method invocation and can perform any necessary compu-
tation to decide whether or not to invoke a representation swap. The proceed statement
represents the actual invocation of the captured method. It is also possible to access the

1The return type is not strictly necessary.

126 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

Listing 6.1: An external swap rule that matches the mul method of the class
MatrixUtils, and which ensures that the arguments adhere to the optimal represen-
tations

1 swaprule static Matrix MatrixUtils.mul(Matrix a, Matrix b) {
2 if ((a.getRows()*a.getCols()) > LARGE)
3 a to RowMajorMatrix;
4 if ((b.getRows()*b.getCols()) > LARGE)
5 b to ColMajorMatrix;
6 proceed;
7 /* do nothing */
8 }

Listing 6.2: Swapping a swappable Data Structure

1 public static boolean checkCommutativity(Matrix a, Matrix b) {
2 return mul(a, b).equals(mul(b, a));
3 }

result value of the actual method invocation (cf. second case in the syntax box above),
e. g., to perform a swap statement. However, it is not possible to change the actual re-
turn value.

Example. Listing 6.1 shows an external swap rule for the just-in-time class Matrix
as presented in listing 4.5. This swap rule captures all the invocations of the static mul
(matrix multiplication) method defined in MatrixUtils. Further, the swap rule spec-
ifies that, when the matrices are “large enough” (cf. the constant LARGE), their repre-
sentations should be RowMajorMatrix and ColMajorMatrix, respectively. Con-
sequently, an invocation of checkCommutativity (also in MatrixUtils, see list-
ing 6.2), which calls the mul method twice, could potentially introduce four representa-
tion changes.

6.1.1.1 Receiver and this

An external swap rule is a static member of a just-in-time class. This means that it
is associated with the just-in-time class itself rather than with a concrete just-in-time
object. Hence, this in the body of an external swap rule does not refer to a just-in-
time object. The alternative, this as keyword to denote the receiver of the instru-
mented method invocation, introduces ambiguity. We defer the detailed discussion to
section 6.1.4. Here, we introduce the keyword receiver to denote the receiver of the
method instrumented by an external swap rule.

6.1. SWAP RULES 127

Syntax: Accessing the receiver in an External Swap Rule

swaprule Cr T.methodName(C0 a0, ... , Cn an) {
receiver to Ri;
proceed;

}

With T a just-in-time class, and Ri one of its representations.

6.1.2 Internal Swap Rules

Internal Swap Rules are swap rules that express the need for a representation change
initiated by a just-in-time data structure itself, based on its current state. For an instance
of RowMajorMatrix, for instance, the size is an example of state, i. e., is the product
of rows and cols. Note that state, in this context, is not limited to member fields. The
number of active threads, for instance, is another example of state.

An internal swap rule is a piece of code that augments the state of a data object (in
the broadest sense of the word, as described above) with the preferred representation
for that state. For a SparseMatrix, for instance, it is better to swap to one of the
dense representations when the ratio of non-zero values to the size of the matrix exceeds
some constant T. The implied relation with aspect-oriented programming and dynamic
quantification is discussed in section 6.4.

Syntax: Internal Swap Rule

class T combines R0, ... , Rn {

swaprule Rfrom {
...
if (...) {

this to Rto;
}

}

}

Where both Rfrom and Rto are representations of the defining just-in-time class.

An internal swap rule starts with the keyword swaprule, just like an external swap
rule. In an internal swap rule, however, the swaprule keyword is followed by the rep-
resentation Rfrom to which this internal swap rule applies. We call this representation
Rfrom the source representation. The body of an internal swap rule is a set of statements
between curly braces. All statements in the body have access to the just-in-time object
through the use of this as if the swap rule were an ordinary method of that object.
Consequently, the statements (e. g., an if-statement) can be used to check for any con-
dition. The intent of an internal swap rule is to invoke a representation change when a

128 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

certain condition is met. Hence, a typical internal swap rule has a body, similar to list-
ing 6.3, with a condition (line 3) and a swap statement (line 4), which performs the actual
representation change.

Listing 6.3: Internal swap rule to SparseMatrix based on estimated sparsity.

1 swaprule SparseMatrix {
2 int size = this.getRows() * this.getCols();
3 if (this.getNonZeroCount() > size*SPARSITY_FACTOR) {
4 this to RowMajorMatrix;
5 }
6 }

Example. Listing 6.3 shows an internal swap rule from the just-in-time class Matrix
as presented in listing 4.10. This swap rule can only trigger when the matrix is in the
SparseMatrix representation. The rule in listing 6.3 states that the data structure
should swap to theRowMajorMatrix representation when the number of zeroes drops
below a threshold SPARSITY_FACTOR.

6.1.2.1 Type Safety

The header of an internal swap rule denotes the representation to which that swap rule
applies. Hence, in the body of an internal swap rule that applies to the representation
Cn, one is guaranteed thatthis refers to a just-in-time object withCn as its current rep-
resentation. Moreover, in the body of an internal swap rule, this is treated as a simple
object, of the current representation’s type, instead of a just-in-time object. This has two
advantages. Firstly, it provides access to the members (i. e., both fields and methods)
of the current representation without ambiguity because the current representation is
known. Secondly, it prohibits the use of methods that are a specialisation of another
representation. The latter avoids specialised swaps during the execution of an internal
swap rule, which would be unwanted behaviour.

Example. Recall from section 4.5.1, that the methods available in a just-in-time object
can be partitioned into core methods and specialised methods, depending on whether
they are provided by all representations (core) or by a subset of the representations (spe-
cialised). On line 2 of listing 6.3, the size of the matrix is computed by multiplying the
number of rows and columns in the matrix. This value is assigned to the variable size.
The number of rows and columns are retrieved though calls to getRow and getCols,
respectively. Both operations are part of Matrix’s core. getNonZeroCount(), on
the other hand, is not part of the core of Matrix. However, since it is a member of the
set of specialised methods of SparseMatrix it is type safe to invoke this method. This
is true because we know that the matrix is in the SparseMatrix representation at the
moment the body of the swap rule is executed. A call to getArray (i. e., a specialised
method of ColMajorMatrix and RowMajorMatrix) would not be allowed.

6.1. SWAP RULES 129

6.1.2.2 Performance Issues

An internal swap rule defines a set of conditions for which a developer identified that
when these conditions hold, it is opportune to initiate a representation change. Con-
ceptually, we expect the language runtime of JITds to continuously check whether the
conditions hold. This approach, however, might not be optimal in practise[18]. For in-
stance, our current implementation — as we discuss in chapter 7 — executes the bodies
of all internal swap rules after each method invocation. Finding the optimal balance be-
tween responsiveness and performance, however, has not yet been investigated but is
discussed as future work in chapter 10. Until then, the rule of thumb when designing in-
ternal swap rules is thus to keep them as efficient as possible, e. g., by relying on readily
observable state only.

6.1.3 Interface Swap Rules

Interface Swap Rules are swap rules that initiate a representation change when a certain
method of the just-in-time object is invoked — external incentive — but only when the
just-in-time data structure has a certain state — internal incentive. Interface swap rules
are thus a hybrid between internal and external swap rules. Again, the relation to aspect-
oriented programming and static quantification is discussed in section 6.4.

Syntax: Interface Swap Rule

class T combines R0, ... , Rn {

swaprule Cr R.methodName(C0 a0, ... , Cn an) {
...
Cr result = proceed;
...

}

swaprule Cr methodName(C0 a0, ... , Cn an) {
...
proceed;
...

}

}

With R as one of the representations of the defining just-in-time class.

The syntax of an interface swap rule is roughly equivalent to that of an external swap
rule, as it matches the signature of a method. The method name in an interface swap
rule is either fully quantified with the name of a specific representation, or is not quanti-
fied at all. The semantics of an interface swap rule correspond to that of an external swap
rule. The statements beforeproceed are executed before the actual method invocation
and the statement after proceed are executed after the actual method invocation. In
the body of an interface swap rule — as opposed to external swap rules and similar to
internal swap rules — one can refer to this, which denotes the receiver of the method

130 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

Listing 6.4: The class Matrix combines four representations.

1 class Matrix
2 combines RowMajorMatrix, ColMajorMatrix, CRSMatrix , DiagonalMatrix {
3
4 DiagonalMatrix to Matrix {
5 target(source.getRows(), source.getCols());
6 for (int i=0 ; i<source.getRows() ; i++) {
7 target.set(i, i, source.get(i, i));
8 }
9 }

10
11 Matrix to Matrix {
12 target(source.getRows(), source.getCols());
13 for (int r=0 ; r<source.getRows() ; r++) {
14 for (int c=0 ; c<source.getCols() ; c++) {
15 target.set(r, c, source.get(r, c));
16 }
17 }
18 }
19
20 swaprule void DiagonalMatrix.set(int row, int col, double val) {
21 if ((row!=col) && (val!=0)) {
22 this to CRSMatrix;
23 }
24 proceed;
25 /* do nothing */
26 }
27
28 }

invocation which is a just-in-time object, to invoke methods on. Note that this can be
only be used to access fields when the interface swap rule is quantified with a represen-
tation.

Example. Listing 6.4 shows an implementation of a just-in-time class Matrix, which
combines four different matrix representations. The first two representations have been
introduced in previous examples. The third and fourth representation, i. e., CRSMatrix
(cf. compressed row storage (CRS)) and DiagonalMatrix, are discussed in detail in
appendix C. For this example, it is sufficient to know that bothCRSMatrix andDiagonal-
Matrix are sparse matrix implementations and that CRSMatrix can be used to store
any matrix, whereas Diagonal-Matrix is only suitable for matrices where the non-
zero values occur only on the main diagonal.

Now consider the usage of such a just-in-time Matrix that has DiagonalMatrix
as its initial representation. To simplify the example shown in listing 6.5, we assume
our matrices to be square. The first three write operations (lines 3-5) are executed as
expected, since they represent updates of the diagonal of m. The write operation on
line 7, however, tries to set a non-zero value at position (0,1) which is not part of the
main diagonal. When executed by a DiagonalMatrix (see line 22 in listing C.2 in ap-

6.1. SWAP RULES 131

Listing 6.5: Setting values of a Matrix in the DiagonalMatrix representation.

1 Matrix m = new Matrix.DiagonalMatrix(3,3);
2
3 m.set(0, 0, 1);
4 m.set(1, 1, 2);
5 m.set(2, 2, 3);
6
7 m.set(0,1,6);

pendix C) this invocation of set throws an exception because it is not supported by the
DiagonalMatrix representation.

A user of a general purpose Matrix, however, does not expect a valid call to set
(i. e., row and col within bounds) to throw an exception. The interface swap rule on lines
20-27 in listing 6.4 prevents the unwanted behaviour described above. Concretely, this
swap rule triggers when a Matrix that is in the DiagonalMatrix representation has
to execute a non-zero set outside its main diagonal (line 21). This interface swap rule
effectively avoids the runtime exception from being thrown, by changing the represen-
tation to CRSMatrix, which does allow non-zero values outside the main diagonal.

6.1.4 Scoping Rules for Swap Rules

In this chapter we introduce three kinds of swap rules, i. e., external swap rules in sec-
tion 6.1.1, internal swap rules in section 6.1.2, and interface swap rules in section 6.1.3.
We show how internal swap rules and interface swap rules have access to this, which
denotes a just-in-time object, to access and modify instance fields. Here, we discuss
what this denotes in the context of an external swap rule.

We can think of two sensible meanings for this in the context of an external swap
rule, and both have their pros and cons. On the one hand this can denote the just-in-
time class of which it is a member. On the other hand, this can denote the receiver of
the method matched by the external swap rule.

Lexical uniformity is one argument in favour ofthis to refer to the just-in-time class
in which it resides. An external swap rule is a member of a just-in-time class and hence
denoting that just-in-time class by this conforms to the other usages of this in a just-
in-time class, e. g., internal swap rules, interface swap rules, and bypass methods. On
the other hand, an external swap rule is a static member of a just-in-time class, and thus
does not have a just-in-time object associated with it at runtime. Thus, this would
refer to the just-in-time class instead of a just-in-time object as in internal swap rules
for instance. Hence, the lexical uniformity argument does not really apply. A second
downside of referring to the just-in-time class by this, is that, to access the receiver of
the invoked method, a new keyword has to be introduced (cf. target in AspectJ[81]).

For clarity and complete lexical uniformity, we do not allow this in the body of
an external swap rules, i. e., not to access the receiver of the invoked method and not
to access the class . As introduced in section 6.1.1.1, we opt to introduce the keyword
receiver as the pseudo-variable which can be used to refer to the receiver of the in-

132 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

voked method. The just-in-time class can be accessed by name (cf. as in Java). All scop-
ing rules to access values in swap rules are summarised in table 6.1.

Method invocation Fields and Methods
Swap Rule Receiver Arguments Just-in-time class/object
External Swap Rule receiver by name by name class
Internal Swap Rule n.a. n.a. this instance
Interface Swap Rule this by name this instance

Table 6.1: Scoping Rules for Swap Rules.

6.2 History Based Representation Changes

In JITds, representation change incentives can be separated from application logic by
implementing external swap rules, internal swap rules, or interface swap rules. The ex-
ample swap rules all show representation change incentives based on readily observ-
able state: the invocation of the mulmethod with “large” arguments in section 6.1.1, the
number of non-zero values in section 6.1.2, and the invocation of set in section 6.1.3.
Orthogonal to the choice of implementing external, internal, or interface swap rules, it
can be interesting to base the decision of a representation change not only on readily
observable state, but also to take the history — of execution or state — into account.

In this section we show how swap rules become more expressive when they take the
past into account. We revisit the example of the matrix that can be either sparse or dense,
which relates to using the SparseMatrix or the RowMajorMatrix representation,
respectively. We show, by example, that for a matrix in a dense representation it is hard
(i. e., expensive or inaccurate) to determine whether it has become a sparse matrix and
thus should change its representation, when only readily observable state is taken into
account. Conversely, when the past is taken into account, swap rules can become more
expressive.

Too Expensive. The internal swap rule in listing 6.6 converts a RowMajorMatrix
into a SparseMatrix when the number of non-zero values drops below a certain
threshold (nonZeroCounter < (size/T)). Computing the actual sparsity for a densely
stored matrix, however, is probably too expensive to check regularly.

Too Inaccurate. The alternative is a representation change based on a heuristic to com-
pute sparsity. A straightforward heuristic is verifying ifset is invoked with the argument
value equal to 0. This can be implemented in JITds using an interface swap rule such
as in listing 6.7. A representation change comes at a certain cost. Therefore, it is not al-
ways economical to change the representation eagerly. The heuristic used in listing 6.7
is not a very good heuristic. Swapping from RowMajorMatrix to SparseMatrix on
the first call to setwith a zero value is counterproductive if that “zero set” is a lone wolf.

6.2. HISTORY BASED REPRESENTATION CHANGES 133

Listing 6.6: Internal Swap Rule to convert a dense matrix into a SparseMatrix.

1 class Matrix combines RowMajorMatrix, SparseMatrix {
2
3 swaprule RowMajorMatrix {
4 int size = this.getRows() * this.getCols();
5 int nonZeroCounter = 0;
6 for (int r=0 ; r<this.getRows() ; r++) {
7 for (int c=0 ; c<this.getCols() ; c++) {
8 if (this.get(r,c) != 0) nonZeroCounter++;
9 }

10 }
11
12 if (nonZeroCounter < (size/T)) {
13 this to SparseMatrix;
14 }
15 proceed;
16 }
17
18 }

Listing 6.7: Interface Swap Rule to convert a dense matrix into a SparseMatrix.

1 class Matrix combines RowMajorMatrix, SparseMatrix {
2
3 swaprule RowMajorMatrix.set(int row, int col, double value) {
4 if (value == 0) {
5 this to SparseMatrix;
6 }
7 }
8
9 }

The use case presented above would benefit more from a swap rule that does not
only take the readily observable state into account, but also the state observed in the
past. Here, the past denotes “in previous executions” and “earlier in the execution”. To
facilitate the bookkeeping of historical information, as introduced in section 4.4, swap
rules have access to fields of a just-in-time class. Concretely, external swap rules have ac-
cess to statically defined member fields in the just-in-time class and internal swap rules
and interface swap rules have access to instance member fields of a just-in-time class. It
is possible to use these fields to store information of previous swap rule invocations.

Example. Listing 6.8 shows a new version of the earlier interface swap rule, which now
also takes the history of previous calls to set into account. Every invocation of the set
method, either increments thezeroSet counter of thenonZeroSet counter. The new
interface swap rule does not cause a representation change upon the first occurrence of
a set of a zero value. Conversely, only when the number of sets of zero values greatly
exceeds the number of sets of non-zero values (cf. quadratic, line 11), a representation

134 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

Listing 6.8: Interface Swap Rule to convert a dense matrix into a SparseMatrix (v2.0).

1 class Matrix combines RowMajorMatrix, SparseMatrix {
2
3 int zeroSet = 0;
4 int nonZeroSet = 0;
5
6 swaprule RowMajorMatrix.set(int row, int col, double val) {
7 if (val == 0) zeroSet++;
8 else nonZeroSet++;
9

10 if (((zeroSet+nonZeroSet) > FREQUENT_SET) &&
11 (zeroSet > nonZeroSet*nonZeroSet))
12 this to SparseMatrix;
13 }
14
15 }

change is issued. The swap rule defined in listing 6.8 is still an estimate and hence not
perfect. Compared to the swap rule defined in listing 6.7, however, it is more accurate in
predicting whether a matrix has become sparse enough to change the representation to
SparseMatrix.

6.2.1 Invocation Counters

This last example (listing 6.8) shows how to make use of instance member fields to store
the history of interface invocations, i. e., both quantitative (counting) and qualitative
(with constraints). The need for similar information to decide whether or not to issue
a representation change is also identified by Shacham et al. [69], i. e., opCounts, and by
Xu [90], i. e., swap conditions. Moreover, in all our example programs (see chapter 8) in-
terface swap rules are only used to perform such counts. To make counting the number
of invocations of member methods easier, we introduce invocation count expressions.

Syntax: Invocation Counters

#methodName(T0 a0, ... , Tn an);

#R.methodName(T0 a0, ... , Tn an);

#methodName(T0 a0, ... , Tn an) {
...
count-if (...);

}

#counterName as methodName(T0 a0, ... , Tn an);

In its simplest form, an invocation counter is a hash-symbol (cf. “number of”) fol-

6.2. HISTORY BASED REPRESENTATION CHANGES 135

Listing 6.9: Internal swap rule to SparseMatrix based in estimated sparsity.

1 class Matrix combines RowMajorMatrix, SparseMatrix {
2
3 #set(int row, int col, int val);
4
5 #zeroSet as set(int row, int col, int val) { count-if (val == 0); }
6
7 #nonZeroSet as set(int row, int col, int val) { count-if (val != 0); }
8
9 swaprule RowMajorMatrix {

10 if ((#set > FREQUENT_SET) &&
11 (#zeroSet > #nonZeroSet*#nonZeroSet)) {
12 this to SparseMatrix;
13 }
14 }
15
16 }

lowed by a method name and a list of formal parameters between braces. Optionally, the
method name is quantified with a specific representation. Such an invocation counter
captures exactly one method from the just-in-time data structure’s interface. The value
of an invocation counter is equal to the number of invocations of the captured method
since the last representation change. The counters can be refined by adding a body. In
this body the count-if statement determines whether or not the invocation counter
is incremented, e. g., depending on the actual arguments. Just like a regular if state-
ment, the count-if statement has a condition, i. e., the expression between parenthe-
ses. However, a count-if statement does not have a consequent, or an alternative.
Only when the count-if statement is reached and its condition evaluates to true,
is the counter incremented. Otherwise, when the condition evaluates to false, the
counter is left unchanged. Optionally, using the as keyword, an invocation counter can
be given a more revealing name.

Example. In listing 6.9, we reimplement the dense-to-sparse example. This time we
define three invocation counters and an internal swap rule. The first invocation counter
(line 3) #set counts all invocations of the setmethod. The other two invocation coun-
ters (lines 5 and 7) also count the number of invocations of set, but, as their bodies
reveal, they only get incremented when val is zero or non-zero, respectively. Finally,
the internal swap rule expresses the heuristic used in section 6.2: when the number of
set of zero values greatly exceeds the number of set of non-zero values, it is beneficial to
swap to the SparseMatrix representation.

136 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

Intermezzo: Sample-average Method with the Decreasing Epsilon Greedy
Strategy

Q-learning is a reinforcement learning technique which tries to learn the best ac-
tion for a given state [80]. A simpler version of this problem is the multi-armed
bandit problem where only one state exists. In general, Q-learning constructs an
action-value function that predicts the expected cost of taking a given action in
a given state. One of the simplest methods for estimating the action-value func-
tion is to compute the average cost of each action. When this function is stable,
the optimal behaviour is to perform the action with the lowest expected cost. To
balance the trade-off between exploring all possible actions and exploiting the
actions that are known to have low costs, a strategy such as the Decreasing Ep-
silon Greedy Strategy can be used. This strategy states that every time a decision
has to be made, the best, and thus the cheapest, action is chosen with high prob-
ability (cf. greedy). To cope with variability in observed costs, a factor of random-
ness is introduced to ensure exploration of estimated suboptimal actions. With a
probability of |ε|, a random action is chosen (cf. epsilon). To stabilise the system
the value of ε is decreased over time (cf. decreasing). The result is a selection
strategy that exhibits a lot of explorative behaviour at first and high exploitative
behaviour later.

Listing 6.10: A straightforward implementation of the Decreasing Epsilon Greedy
Strategy in Java.

1 public class DecreasingEpsilonGreedyStrategy {
2
3 int actions ;
4 double epsilon = 1 . 0 ;
5
6 int [] cost , frequency ;
7
8 public DecreasingEpsilonGreedyStrategy (int actions) {
9 t h i s . actions = actions ;

10
11 costs = new int [actions] ;
12 frequency = new int [actions] ;
13 }
14
15 public long r e l a t i v e C o s t (int action) {
16 return costs [action] / frequency [action] ;
17 }
18
19 public int greedy () {
20 int bestAction = 0 ;
21
22 for (int action=1 ; action <actions ; action ++) {
23 i f (r e l a t i v e C o s t (action) < r e l a t i v e C o s t (bestAction))
24 bestAction = action ;
25 }
26
27 return bestAction ;
28 }
29
30 public int next () {
31 i f (rand () < epsilon) {
32 epsilon = epsilon * COOL_DOWN;
33 return r . nextInt (actions) ;
34 } else {
35 return greedy () ;
36 }
37 }
38
39 public void update (int action , int cost) {
40 costs [action]+= cost ;
41 frequency [action] ++;
42 }
43
44 }

6.3. LEARNING REPRESENTATION CHANGES. 137

Listing 6.11: The representations of a just-in-time class can be seen as an enumeration
type.

1 class T combines R0, ..., Rn {
2 public static enum Representation { R0, ..., Rn }
3 }

6.3 Learning Representation Changes.

Those that fail to learn from history, are doomed to repeat it. — Winston
Churchill

History-based decisions for representation changes naturally lead to learning rep-
resentations changes. Since actual machine learning techniques fall outside the scope
of this text, we only give a gentle introduction of how computing the average cost and
the Decreasing Epsilon Greedy Strategy work in the intermezzo on page 136. For now,
we assume the existence of DecreasingEpsilonGreedyStrategy, a class which
provides a method next that is able to learn the best “action” to perform next. In the
context of just-in-time data structures this translates to “learning which representation
change(s) improve(s) performance given that the initial representation(s) is/are known”.

6.3.1 First Class Representations

JITds introduces the built-in function representation, which retrieves the current
representation of a just-in-time object. For a simple object this function is not spec-
ified. The number of representations is finite and statically known and can thus be
seen as the value of the enumeration type T.Representation which implicitly ex-
ists for each just-in-time class (see listing 6.11). The type of this enumeration is written
as T.Representation, i. e., T qualified with Representation. Hence, defining a
new just-in-time class T results in the definition of two new types: the just-in-time class
T itself and the representation type T.Representation.

Syntax: Representation (built-in function)

T.Representation r = representation(o);

In the next section, when introducing listing 6.13, it becomes clear that represen-
tations are first class in JITds. Firstly, we show that representations can be assigned to
variables (lines 6-7 and 10-11). Secondly, we show that representations can be the argu-
ments of a method invocation (lines 9 and 22). And thirdly, we show that they can be the
result of a method invocation (line 10-11). Hence the representations of a just-in-time
class are first class values in JITds. Moreover, these representation-values can be used in
swap statements as well, e. g., lines 15 and 16.

138 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

Listing 6.12: MatrixMultiplicationLearner

1 public class MatrixMultiplicationLearner extends DecreasingEpsilonGreedyStrategy {
2
3 int f(Matrix.Representation left, Matrix.Representation right) {
4 int leftI = (left==RowMajorMatrix)?0:1;
5 int rightI = (left==RowMajorMatrix)?0:1;
6 return (2*leftI) + rightI;
7 }
8
9 final static Pair<Matrix.Representation>[] pairs = new Pair(){

10 new Pair(RowMajorMatrix,RowMajorMatrix), /* 0 */
11 new Pair(RowMajorMatrix,ColMajorMatrix), /* 1 */
12 new Pair(ColMajorMatrix,RowMajorMatrix), /* 2 */
13 new Pair(ColMajorMatrix,ColMajorMatrix) /* 3 */
14 };
15
16 Pair<Matrix.Representation> f(int i) {
17 return pairs[i];
18 }
19
20 public Pair<Matrix.Representation> next() {
21 return f(super.next());
22 }
23
24 public void update(Matrix.Representation left,
25 Matrix.Representation right,
26 long executionTime) {
27 super.update(f(left,right), executionTime)
28 }
29
30 public MatrixMultiplicationLearner(){
31 super(4);
32 }
33
34
35 }

6.3.2 An External Swap Rule with Reinforcement Learning

Example. Recall the external swap rule shown in listing 6.1 which forces matrices used
in the mul computation to adhere to the RowMajorMatrix and ColMajorMatrix
representation for the left operand and the right operand of the multiplication, respec-
tively. Note that the swap rule is based on expert knowledge acquired by rigorously
studying the performance characteristics of the matrix multiplication algorithm (cf. chap-
ter 2). If we did not have this knowledge, we could use machine learning to acquire such
knowledge.

First, note that there are four possible representation states when mul gets called,
i. e., all combinations of RowMajorMatrix and ColMajorMatrix. Consequently,
there are also four possible representation states after any representation change, i. e.,
again the same combinations. Listing 6.12 shows an extension ofDecreasingEpsilon-

6.3. LEARNING REPRESENTATION CHANGES. 139

Listing 6.13: Learned Reaction to the Occurrence of a call to mul

1 // Static field:
2 static MatrixMultiplicationLearner l = new MatrixMultiplicationLearner();
3
4 // Learning external swaprule:
5 swaprule Matrix MatrixUtils.mul(Matrix mA, Matrix mB) {
6 Pair<Matrix.Representations> action = l.next();
7 Matrix.Representations newA = action.left();
8 Matrix.Representations newB = action.right();
9

10 long begin = System.currentTime();
11
12 mA to newA;
13 mB to newB;
14
15 proceed;
16
17 long end = System.currentTime();
18
19 l.learn(newA , newB , (end-begin));
20 }

GreedyStrategy that — instead of integers — uses the actual representations as states
and actions. The conversion from int to a pair of matrix representations is imple-
mented by f on lines 16, 17 and 18, the conversion of two matrix representation into
an integer is implemented by f on lines 3–7.

Then, MatrixMultiplicationLearner can be used as follows: When next is
called, it responds with a pair of representations, namely those it has learned that are
the best choice for proceeding the multiplication with. For learning purposes, update
should be called with the chosen representations (the action) and the measured exe-
cution time (a measurement of cost). The responsibility of DecreasingEpsilon-
GreedyStrategy is then to learn — and thus improve — the cost functions to give
better suggestions later.

Listing 6.13 uses the MatrixMultiplicationLearner, as discussed above, in
an external swap rule to learn the best representations when computing the product of
two matrices. First, the best representations for the matrices mA and mB are obtained
(lines 6–8, cf. actions). Then, the suggested representations are enforced on mA and mB
(lines 12–13) and the multiplication is executed (line 15). Simultaneously, the time to
perform the representation changes and the actual computation is measured using the
system’s clock (lines 13 and 20). Finally, the measured time is used to update the cost
functions (line 19). Experiments show that this algorithm learns that changing to the
combination RowMajorMatrix × ColMajorMatrix is the optimal choice, just like
we established in section 2.2. Details on the performance benefits of using the reen-
forcement learning algorithm to determine the optimal combination of representations
in for example are discussed in chapter 8.

140 CHAPTER 6. WHEN TO CHANGE THE REPRESENTATION

6.4 Domain Specific Aspects

In JITds, swap rules allow us to disentangle application logic from representation change
incentive code. Our two implementations of JITds, as we discuss in chapter 7, are re-
sponsible for weaving these swap rules into the application logic. This can effectively
be realised through aspect-oriented programming as well [49]. AOP is a programming
paradigm focussed on separating crosscutting concerns. In JITds, these crosscutting
concerns are, on the one hand, the core application logic, and on the other hand, all
code that is involved in changing the representation of data objects.

AOP is the desire to make programming statements of the form: In programs P,
whenever condition C arises, perform action A.
. . .
In an AOP system, we make quantified statements about which code is to execute
in which circumstances. Over what can we quantify? Broadly, we can quantify
over the static structure of the system and over its dynamic behavior. — Filman
and Friedman [32]

While our work does not focus on AOP as such, it is interesting to position our work
in the context of AOP, for instance, by comparing it to the work of Filman and Friedman
[32]. A short fragment of their paper is given above. Note that our swap rules match with
what they call “quantified statements about which code is to execute in which circum-
stances”. Further note that they identify two kinds of quantifications: quantifications
over the static structure of a program, and over its dynamic behaviour. In retrospect, ex-
ternal swap rules and interface swap rules are static quantifications, i. e., the invocation
of a method can be lexically determined. Internal swap rules, on the other hand, are dy-
namic quantifications, i. e., they trigger when a certain condition is met. Note that the
invocation of an internal swap rule does not correspond to a lexical place in the code but
rather to the dynamic behaviour of the system.

The chapter on related work, chapter 9, does not explicitly cover domain-specific
AOP approaches in the context of performance, because these efforts tend to focus on
the aspects related to AOP itself instead of on the aspect related to reducing performance.
LoopsAj, for instance, introduces expressiveness dedicated to join points for loops [39],
which in turn allows parallelisation of the code and improves performance. The focus of
Harbulot and Gurd [39] is the study of language constructs to express finer grained join
points [49] and not the parallelism.

6.5. CONCLUSION 141

6.5 Conclusion

JITds is a statically-typed, class-based, object-oriented language which allows
objects to change their representation at runtime. We introduce the concept of
a just-in-time class which combines multiple representations into one new class.
Instances of such a class, just-in-time objects, can be instructed to change rep-
resentations by invoking a swap statement, while transition functions ensure an
orderly transitions between the representations.
To separate application logic from representation changing incentive code, JITds
supports swap rules. The swap rules are members of a just-in-time class that
express for which observed state a representation change is recommended. We
identify and introduce three types of swap rules: external swap rules, internal
swap rules, and interface swap rules. To facilitate the development of history-
based representation change incentive code, we also introduce invocation coun-
ters.
Section 2.2 identifies the need for data structures that can change their repre-
sentation at runtime. Chapters 4 and 6 introduce the language JITds in suffi-
cient detail to support the claim that JITds facilitates the construction of such
data structures. Moreover, chapter 6 shows how JITds facilitates the separation
of application logic and representation related logic, which was put forth as a
requirement in chapter 2.

Chapter 7

JITds: The Language Implementation

In chapters 4 and 6 we introduced JITds as a language. In this chapter we approach JITds
from the language implementation angle and answer the question of how to execute a
JITds program.

We describe two implementations of JITds: JITds-Java and JITds-C. The choice for
two implementations is a pragmatic one. Both JITds-Java and JITds-C are prototype im-
plementations. JITds-Java focusses on usability and JITds-C, on the other hand, focusses
on completeness. In chapter 8, for instance, we make use of the JITds-Java compiler to
generate executable Java programs out of JITds programs. This is interesting because we
can make use of all language features and standard libraries of Java from within JITds,
and because we can use plain Java programs as the base-line to compare against in
terms of performance and code structure. Some legal JITds programs, however, can-
not be compiled (correctly) by JITds-Java. To resolve this limitation of JITds-Java, we
implemented JITds-C. The limitation of JITds-C is that we did not make the effort to im-
plement the full base language which we got for free in JITds-Java. Table 7.1 summarises
the implemented features and properties of each of the two implementations of JITds.

JITds-Java and JITds-C are implemented using the two most popular techniques to
implement dynamic reclassification, i. e., forwarding and inlining, respectively. Before
we discuss the two implementations in detail, we first give a high-level description of
forwarding and inlining as they are known in the literature. Second, we also introduce
an abstract JITds program that we use to explain how both compilers translate a given
construct.

7.1 Dynamic Object Reclassification

The key language feature of JITds that has to be implemented is dynamic object reclas-
sification. We know, e. g., from the work of Cohen and Gil [13], that there are two classic
approaches to implement dynamic object reclassification: inline reclassification or re-
classification by forwarding.

Reclassification by forwarding relies on a handle to point to the object with the cur-
rent representation. When the object is reclassified, it suffices to update the handle to

143

144 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

JIT ds JIT ds JIT ds
C

Combining representations 3 3 3
Transition functions 3 3 3
Swap statements 3 3 3

External swap rules 3 3 3
Internal swap rules 3 3 3
Interface swap rules 3 3 3
Invocation counters 3 3 3

By-pass methods 3 7 7
Transient state 3 7 7

Identity preservation 3 3 3
Liskov substitutable 3 7 3

Full fletched base-language 3 3 7
Escaping pointers avoided 3 7 3
First class representations 3 3 7

Table 7.1: A comparison of the different implementations of JITds in function of the
available features.

point to a another object, i. e., the new representation (see figure 7.1a). This fresh object
can reside anywhere in memory. This technique is used in our JITds to Java compiler
and is discussed in section 7.3. An alternative implementation omits the explicit handle-
object, but requires a full heap traversal upon reclassification to update all references to
the old object to point to the new object. This avenue has not been pursued by our re-
search because we expect it to be too costly because of the full heap traversal. Miranda
and Béra [58] propose an implementation where the heap traversal is not longer neces-
sary (cf. an efficient become). This technique could be investigated in future research
when engineering more mature implementations of JITds.

Inline reclassification, on the other hand, does not require a handle but transpar-
ently stores an object at a fixed memory location. To support reclassification, however,
enough memory has to be allocated to fit the largest possible representation. Figure 7.1b
shows how an object of type T, or type R1, occupies four memory slots, while represen-
tation R0 only requires three (i. e., the empty slot denotes that a slot is not used). Upon
reclassification from R0 to R1, the unused, but already allocated, memory location can
be overwritten. Thus, when an object is reclassified its address is left unchanged. This
technique is used in our JITds to C compiler and is discussed in section 7.4.

7.2. THE JIT CLASS T: AN ABSTRACT EXAMPLE PROGRAM 145

(a) Reclassification with handles updates a
reference to a newly allocated memory lo-
cation.

(b) Inline reclassification overwrites existing
memory locations.

class T combines R0, R1 { ... }
class R0 { int foo;
... }
class R1 { int bar, baz;
... }
class R2 {
... }

(c) Definitions of a swappable type T and
two representations R0 and R1.

T o = new T.R0();
// address of o = 0x0
o to R1;

(d) Reclassification of an object in represen-
tation R0 to representation R1.

Figure 7.1: Reclassification of an object of swappable type T from representation R0 to
R1 and its effect on memory layout.

7.2 The JIT class T: an Abstract Example Program

We explain our two compilers with an illustrative abstract program, i. e., a JITds program
that does not serve an actual purpose. The program was conceived such that it uses all
of the JITds features simultaneously.

The program consists of five new classes: the just-in-time class T (see listing 7.3), its
three representation classes R0, R1, and R2 (see listing 7.1), and the simple class C (see
listing 7.2), which operates on just-in-time objects.

The three representation classes are classes with one, two, and zero integer fields,
respectively. They each implement the method f, and both R0 and R1 implement one
specialised method (cf. section 4.5.1). Hence, these three classes are combinable into
one just-in-time class: T. First, T describes several transitions between the three repre-
sentations. The transition graph of this example is not complete, i. e., transitions from
R2 to the other two representations are not provided. Second, T introduces an invoca-
tion counter #highG that count all invocations of g0where the argument is larger than

146 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Listing 7.1: Three simple classes: R0, R1, and R2.

class R0 {
int foo;
int f() { return 0; }
int g0(int i) { return 0; }

}

class R1 {
int bar, baz;
int f() { return 1; }
int g1(int i) { return 1; }

}

class R2 {
int f() { return 2; }

}

Listing 7.2: Another simple class.

class C {
int start(T a, T b) {
int x = a.f();
int y = b.f();
return x+y;

}

int main(R1 t){
return t.g1(1);

}
}

10000. Third, T introduces an internal swap rule from R0 to R1 when foo happens
to be even; and finally T introduces an external swap rule that triggers when C’s start
method is invoked. This example is sufficiently complex to explain all of the features im-
plemented in the two compilers. Figure 7.2 shows a UML class diagram of the example
just-in-time class T.

7.3 JITds-Java

JITds-Java is an implementation of JITds that translates JITds code to plain Java and As-
pectJ code [48]. The result of the translation is code that can be run on any JVM. In this
section we describe the translation from JITds to Java. As explained before, the transla-
tion introduces an extra level of indirection to cope with the varying implementations: a
just-in-time object that receives a call to a method, forwards it along to the current rep-
resentation. In general, this technique is called forwarding. In section 7.3.2 we discuss
the relation between this implementation and some of the well-known design patterns

7.3. JITDS-JAVA 147

Listing 7.3: The class T combines three representations.

class T combines R0, R1, R2 {
R0 to R1 {

target.bar = source.foo/2;
target.baz = source.foo/2;

}

R1 to R0 {
target.foo = source.bar;
target.foo += source.baz;

}

R0 to R2 { }
R1 to R2 { }

#highG as g0(int i) {
count-if (i>10000);

}

swaprule R0 {
if (this.foo%2 == 0 && #highG>5)

this to R1;
}

swaprule int C.start(T a, T b) {
a to R1;
proceed;
b to R0;

}
}

[34], and in section 7.3.3 we describe how forwarding can be implemented in dynamic
languages.

A JITds program is a set of class definitions. It is possible to partition these definitions
into the set of simple class definitions and the set of just-in-time class definitions. In
general, simple class definitions are plain Java class definitions and thus do not require
translation.1 The just-in-time class definitions, on the other hand, do require transla-
tion. We now describe how to translate a just-in-time class into a plain Java class.

The core idea is to generate a new class with the same name as the just-in-time class,
which has a single field instance to which all calls can be forwarded, hence “imple-
mentation by forwarding”. This is shown in listing 7.4. Concretely, instance will al-
ways be a reference to an instance of one of the representation classes of T.

As explained in chapter 4, the data interface of T is the union of all of its representa-
tions’ methods. We reify this union of methods by means of a Java interface. Additionally,
this interface introduces two auxiliary methods: one to initiate a representation change

1Swap statements that occur in simple classes are the exception, but these statement can be trivially com-
piled into a call to the swap method as introduced later.

148 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Figure 7.2: UML class diagram of T and its three representations.

(i. e., swap), and one to retrieve the representation (i. e., getRepresentation). The
resulting interface I is shown in listing 7.5.

Because the original representation classes do not implement this interface, a new
version of each representation is created that: First, extends the original representation
and, second, implements the newly created interface. The definition of such a class is
given in listing 7.6 and is defined as an inner class of T (this, however, is not shown in
the listing). Further, all transition functions defined in T are added to the appropriate
representation classes as constructors. For instance, the transition function from R1 to
R0 is added as a constructor to R0. This constructor takes one argument: an object
source of type R1, which corresponds to the keyword from JITds. In the body of the
constructor, target is replaced by this. This straightforward translation results in
valid Java code (see listing 7.6, lines 3–6).

The inverse operation, changing from R0 to another representation, is enabled by
the implementation of the swap method (lines 16–23). This method creates a new in-
stance by passing this (an object with the current representation) to one of the transi-
tion constructors as introduced above, and assigns it to T’s instance field. The switch
statement only enumerates existing transitions. The default case thus triggers when the
intended representation change is not backed up by a transition function/constructor,
and throws an UnsupportedSwapException.

We can now explain the implementation of g1 in __R0. Although only R1 imple-
ments the g1 method, it is defined in __R0 as well. The behaviour of the g1 method in
__R0 is to change the representation of the just-in-time object from R0 to R1. After the
representation change, the g1 method is invoked again. This time R1’s g1 method can
actually be executed.

Finally, the names of the representations are reified as an enum definition in the just-
in-time class (see line 2 in listing 7.4), i. e., T.Representation.

The result of the translation steps just described to go from JITds to plain Java is
shown in the class diagram in figure 7.3. These translation steps are sufficient to im-
plement the features described in chapter 4. Invocation counters and swap rules (cf.
chapter 6), however, require additional translation steps.

7.3. JITDS-JAVA 149

Listing 7.4: The new class T has an instance of type I. This allows for the encoding of the
combines relation as a forwarding pattern.

1 class T {
2 enum Representation { R0, R1, R2 }
3
4 I instance = null;
5
6 int f() { return instance.f(); }
7 int g0(int i) { return instance.g0(i); }
8 int g1(int i) { return instance.g1(i); }
9 }

Listing 7.5: The interface I contains the union of methods found in all representations
of T. Further, I introduces two auxillary methods.

1 interface I {
2 int f();
3 int g0(int i);
4 int g1(int i);
5
6 void swap(Representation to);
7 Representation getRepresentation();
8 }

Invocation Counters are reified in the representation class (e. g., __R0) as an integer
field.2 That field is incremented in the body of the method to which the counter applies,
possibly guarded by an if-statement. The invocation counter highG from T in listing 7.3
is thus translated into the code shown on line 4 of listing 7.10.

Internal Swap Rules An internal swap rule is straightforwardly translated to a new
method in a representation class. The internal swap rule shown in listing 7.3, for in-
stance, is added to the class __R0 as the new method swaprule, shown in listing 7.7.
The swap statementthis to R1 is translated to a call to swap, with the intended rep-
resentation as argument (listing 7.7, line 3). Directly after the swap, true is returned. If
the end of the body is reached without performing a representation change, thenfalse
is returned. In the current implementation of JITds-Java, internal swap rules are checked
before the execution of every method. To this end, we introduce a call to swaprule
at the start of every method and either re-invoke the intended method, or forward the
method call to the super implementation (one example is shown in listing 7.8). Note that
this is a naive implementation strategy because checking whether to swap representa-
tion classes on every method invocation can introduce a lot of overhead. In future work
we want to investigate how techniques from the field of declarative programming, static
analysis, and dynamic analysis can help to reduce the overhead of this approach [18].

2To avoid naming conflicts the counter’s name is prefixed with two underscores (listing 7.10, line 1).

150 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Listing 7.6: The class __R0 extends the origninal R0 but also implements the new inter-
face I.

1 class __R0 extends R0 implements I {
2
3 public __R0(R1 source) {
4 this.foo = source.bar;
5 this.foo += source.baz;
6 }
7
8 int f() { return super.f(); }
9 int g0(int i) { return super.g0(i); }

10
11 int g1(int i) {
12 swap(Representation.R1);
13 return instance.g1(i);
14 }
15
16 void swap(Representation to) {
17 if (to == Representation.R0) return; /* no swap */
18 switch (to) {
19 case R1: T.this.instance = new __R1(this); break;
20 case R2: T.this.instance = new __R2(this); break;
21 default: throw new UnsupportedSwapException();
22 }
23 }
24
25 Representation getRepresentation() { return Representation.R0; }
26
27 }

Listing 7.7: An internal swap rule is translated into a regular method.

1 boolean swaprule() {
2 if (this.foo%2 == 0 && __highG>10000) {
3 this.swap(Representation.R1);
4 return true;
5 }
6 return false;
7 }

Listing 7.8: To invoke a translated internal swap rule, the method swaprule is invoked
before the actual forwarding.

1 int f() {
2 if (swaprule()) return T.this.instance.f();
3 else return super.f();
4 }

7.3. JITDS-JAVA 151

Figure 7.3: UML class diagram of T and its three representations after the translation to
plain Java.

Listing 7.9: An external swap rule is translated into AspectJ: an around advice on a
method execution pointcut.

1 static aspect ExternalSwaprules {
2 int around(T a, T b): execution(public int C.start(T, T)) && args(a, b) {
3 a.swap(Representation.R1);
4 int res = proceed(a, b);
5 b.swap(Representation.R0);
6 return res;
7 }
8 }

External Swap Rules and Interface Swap Rules Translating an external swap rule, such
as C.start in T from listing 7.3, requires extensive code weaving in the otherwise plain
Java files. Potentially, this weaving has to be done in classes of existing libraries. Code
weaving, however, is the main feature of aspect-oriented programming. Hence, our
JITds-Java compiler translates external swap rules into AspectJ: an around advice on a
method execution pointcut (see listing 7.9). Similarly, interface swap rules are translated
to around advice on method execution pointcut of AspectJ.

152 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Listing 7.10: An invocation counter is reified as an integer field that gets updated in the
body of the correct method.

1 int __highG = 0;
2
3 int g0(int i) {
4 if (i>10000) __highG++;
5
6 if (swaprule()) return T.this.instance.g0(i);
7 else return super.g0(i);
8 }

Swap Statements are straightforwardly transformed into a call to the swap method.
Swap statements can also occur in simple classes that use just-in-time objects. Hence,
simple class definitions that contain swap statements have to be processed as well. The
JITds-Java compiler, however, currently does not perform this pass but it could be added
as a trivial compilation step.

7.3.1 Technology used in the Implementation of JITds-Java

Concretely, the above translation is implemented using Xtext [28]. Xtext is a framework
to prototype new programming languages. In Xtext ones defines a language by defining
the grammar and a set of transformations in the form of a recursive AST pretty printer.
Then Xtext generates a full infrastructure, including parser, linker, and compiler as well
as editing support for Eclipse3

Above we discussed how each of the features of JITds are transpiled into plain Java.
Here, we discuss one concrete Xtext grammar rule and transformation function, i. e., the
grammar rule for an external swap rule and the function generate that transforms an
AST-node representing an external swap rule into Java (and AspectJ). Listing 7.11 shows
the syntax rules for an external swap rule in Xtext. In these syntax rules everything be-
tween quotes has to match literally, * refers to “any number of occurrences” of a term
and ? refers to “an optional occurrence” of a term (cf. regular expressions). In Xtext
the terms of a syntax rule can be given an explicit name. For instance, the second rule
ExternalSwapruleBody matches the occurrence of a left curly bracket, a number
of BlockStatements, the word “proceed”; a number of BlockStatements, and a
right curly bracket. When matched, the rule generates an ExternalSwapruleBody
AST node with the aforementioned elements. The first set of statements and the second
set of statements, however, can be accessed by name, using pre and post, respectively.

Listing 7.12 shows the function that generates Java/ApsectJ code for an External-
Swaprule AST node. The result of this function is the output generated between the

3Alternatively, we could have used MorphJ [45], a programming language for meta programming. MorphJ
allows the developer to specify a classes by iterating over members of other classes, i. e., as we do with our JITds-
Java transpiler written in Xtext. MorphJ, however, does not provide parser, linker, nor IDE support. MorphJ is
also not discussed as proper related work in chapter 9 because the focus of MorphJ lays on meta-programming
and not on just-in-time representation changes.

7.3. JITDS-JAVA 153

Li
st

in
g

7.
11

:T
h

e
sy

n
ta

x
ru

le
s

fo
r

an
ex

te
rn

al
sw

ap
ru

le
in

X
te

xt
.

1
E

xt
e

rn
a

lS
w

a
p

ru
le

:
’s

w
ap

ru
le

’
m

od
?=

’s
ta

ti
c

’?
re

tu
rn

T
yp

e
=

Jv
m

T
yp

eR
ef

er
en

ce
na

m
e=

Q
u

al
if

ie
d

N
am

e
fo

rm
a

lP
a

ra
m

e
te

rs
=

F
o

rm
al

P
ar

am
et

er
s

b
o

d
y=

E
xt

er
n

a
lS

w
a

p
ru

le
B

o
d

y
;

2
E

xt
er

n
a

lS
w

a
p

ru
le

B
o

d
y

:
’{

’
p

re
+

=
B

lo
ck

S
ta

te
m

e
n

t *
’p

ro
ce

ed
’

’;
’

p
o

st
+

=
B

lo
ck

S
ta

te
m

e
n

t *
’}

’;

Li
st

in
g

7.
12

:T
h

e
tr

an
sf

o
rm

at
io

n
fu

n
ct

io
n

fo
r

an
ex

te
rn

al
sw

ap
ru

le
in

X
te

xt
.

1
d

ef
g

e
n

e
ra

te
(E

xt
e

rn
a

lS
w

a
p

ru
le

sr
)

{
2

v
a

l
re

tu
rn

T
yp

e
=

p
p

(s
r

.r
e

tu
rn

T
yp

e
)

3
v

a
l

ty
p

es
A

n
d

N
am

es
=

p
p

_
p

a
ra

m
te

rl
is

t2
p

a
ra

m
te

rl
is

t(
sr

.f
o

rm
a

lP
a

ra
m

e
te

rs
.p

ar
am

s)
4

v
a

l
ty

p
e

s
=

p
p

_
p

a
ra

m
te

rl
is

t2
p

a
ra

m
te

rt
y

p
e

li
st

(s
r

.f
o

rm
a

lP
a

ra
m

e
te

rs
.p

ar
am

s)
5

v
a

l
n

am
es

=
p

p
_p

a
ra

m
te

rl
is

t2
a

rg
u

m
e

n
ts

(
sr

.f
o

rm
a

lP
a

ra
m

e
te

rs
.p

ar
am

s)
6

v
a

l
is

V
o

id
=

sr
.r

e
tu

rn
T

yp
e

.e
q

u
a

ls
("

vo
id

"
)

7
’’

’
8

«p
p

(s
r

.r
e

tu
rn

T
yp

e
)»

ar
o

u
n

d
(«

ty
p

es
A

n
d

N
am

es
»

):
e

xe
cu

ti
o

n
(

p
u

b
li

c
«I

F
sr

.m
od

»
s

ta
ti

c
«E

N
D

IF
»

«r
e

tu
rn

T
yp

e
»

«
sr

.n
am

e»
(«

ty
p

e
s

»
)

)
&

&
a

rg
s

(«
n

am
es

»
)

{
9

«F
O

R
s

:
sr

.b
o

d
y

.p
re

»
10

«p
p

(s
)»

11
«E

N
D

FO
R

»
12

«I
F

!i
sV

o
id

»
«r

e
tu

rn
T

yp
e

»
re

s=
«E

N
D

IF
»

p
ro

ce
ed

(
«n

am
es

»
);

13
«F

O
R

s
:

sr
.b

o
d

y
.p

o
st

»
14

«p
p

(s
)»

15
«E

N
D

FO
R

»
16

«I
F

!i
sV

o
id

»
re

tu
rn

re
s

;«
E

N
D

IF
»

17
}

18
’’

’
19

}

154 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

triple quotes (lines 7–18). Triple quotes are Xtext’s variant of Lisp’s quasiquote, and
everything between them is interpreted literally. Fragments between « and » are actu-
ally evaluated and the result is interpreted literally, much like Lisp’s unquote. Thus,
'''int i = «(2+3)»;''', for instance, creates a variable declaration statement
int i = 5;. Further, Xtext provides built-in constructs such as FORALL (iteration)
andIF (conditional) to be used within triple-quoted fragments. Lines 9–11, for instance,
use the FORALL construct to iterate over all the statements in the pre-part of the swap
rule’s body. Each of these statements is pretty-printed (cf. call to pp). The function
generate transforms an external swap rule into an around advice on method execu-
tion pointcut (line 8), a set of statements before the proceed statement (lines 9–11), the
proceed statement itself (line 12), a set of statements after the proceed statement (lines
13-15), and a potential return statement (line 16).

All other constructs are transformed using similar transformation functions defined
in Xtext. The complete implementation is available on our website (http://soft.
vub.ac.be/~madewael).

7.3.2 Design Patterns

Multiple design patterns have been proposed by Gamma et al. [34] to decouple abstrac-
tion from implementation, so that they can vary independently: 1. The strategy pattern
is used when behaviour needs to be decoupled; 2. The state pattern is used when state
needs to be decoupled; and 3. The bridge pattern is used when both state and behaviour
are expected to vary and thus need to be decoupled. A reader familiar with these pat-
terns will recognise our implementation by forwarding as a special case of all three of
these patterns.

7.3.3 Forwarding and Delegation in Dynamic Languages

Another technique to implement JITds is to translate representation changes as a dy-
namic reparenting operation, e. g., as is possible in Self [12]. Dynamic reparenting can
be seen as a variation of our “implementation by forwarding”. The parent is used to for-
ward all method invocations to, that are not readily supported by the child to its “current
parent”. An implementation in a dynamic language, however, would also mean that the
properties of type-safety, as discussed in chapter 5, can no longer be guaranteed. The
discussion on which approach is better, statically or dynamically typed languages, be-
long to the folklore of programming language design and falls outside the scope of this
work.

7.3.4 Limitation of Implementation by Forwarding

The current implementation of JITds-Java has two key limitations. First, we cannot sup-
port Liskov substitutability between a just-in-time class and its representations (cf. chap-
ter 4). Concretely this means that it is not possible in the current implementation of
JITds-Java to write R0 r = new T.R1(); even though T is a subtype of R0. Second,
as a result of the implementation by forwarding, the JITds-Java implementation suffers

http://soft.vub.ac.be/~madewael
http://soft.vub.ac.be/~madewael

7.4. JITDS-C 155

from what we call the problem of escaping pointers. This problem occurs when the cur-
rent representation (directly or indirectly) leaks a reference to itself. Then, it is possible
to access an instance of a representation that conceptually might no longer exist, e. g.,
because the just-in-time object has changed its representation and the old representa-
tion is outdated. In section 7.4 we present our second implementation JITds-C, which is
developed to overcome these limitations.

Example. A well-known example of the problem of escaping pointers is the iterator pat-
tern used in many Java collections. Assume we have a just-in-time list (which we discuss
more thoroughly in section 8.3.2). When an iterator is requested from the just-in-time
list, that request is forwarded to the current representation, e. g., ArrayList. Hence,
the resulting iterator, it, is an ArrayListIterator. When, during the use of the it-
erator, the just-in-time list changes its representation to LinkedList, it is no longer
a legal entry point to the list because it still references the old representation. In sec-
tion 8.3.2 we discuss how we build such a just-in-time list using JITds-Java and how we
cope with this limitation.

7.4 JITds-C

JITds-C is our second implementation of JITds, which is developed with the sole purpose
of showing that it is possible to overcome the limitations of the JITds-Java implementa-
tion. Thus, we want an implementation of JITds that supports Liskov substitutability and
that solves the problem of the escaping pointer. Concretely, we want to be able to assign
a just-in-time object of dynamic type T to a variable whose static type is a representation
of T (cf. Liskov substitutability) and this should refers to a just-in-time object, as op-
posed to in JITds-Java where this points to the instance for which the just-in-time
object acts as a proxy (cf. escaping pointer). As a result, we did not put in the engineering
effort to support a full-fletched base-language as JITds-Java does. Concretely this means,
for instance, that the only primitive type supported by JITds-C is integers (int) and ar-
rays; and that simple classes can only define one constructor. This is a non-exhaustive
list of limitations, however, we claim that these limitations only decreased the imple-
mentation complexity of JITds-C and the ease of programming in JITds, but that JITds-C
is still able to support all of the JITds specific features. To this end, JITds-C is a straight-
forward translation of the formal semantics presented in chapter 5.

The base implementation strategy used in JITds-C to implement dynamic object
reclassification is inlining (cf. figure 7.1b). This means that the new representation is
stored at the same memory location as the old representation. We first discuss how ob-
jects are stored in general. An object combines both state and behaviour. The state of the
object is unique per object. Because JITds is a class-based programming language, be-
haviour is shared for a class of objects. In JITds-C, an object can thus be represented by a
collection of its state and a reference to its class’s behaviour. The class’s behaviour is then
defined by implementations of all methods, which are referenced to through method ta-
bles (see section 7.4.1).

156 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Figure 7.4: A just-in-time object with static class T and dynamic class R0 as it is repre-
sented in our custom runtime engine.

Listing 7.13: The object head is a pre-allocated chunk of memory.

1 typedef void** REF;
2 REF MEM = malloc(MEMORY_SIZE*sizeof(REF));
3
4 REF MEMREF(REF base, int idx) { return base[idx]; }
5 void MEMSET(REF base, int idx, REF val) { base[idx] = val; }

Listing 7.14: The method R0.f is compiled into the C-fucntion R0_f.

1 typedef REF (*method_t)(REF,REF*);
2
3 REF R0_f(REF this, REF* args){
4 return i2r(0); // comes from return 0;
5 }

In chapter 5, we explain that in JITds the behaviour is defined by two classes: the static
class and the dynamic class. Figure 7.4 shows an object with the just-in-time class T as
the static class and the simple class R0 as the dynamic class. R1 is the representation
that needs the most space (i. e., it has three fields). Furthermore, a just-in-time object
needs enough space to store all the fields, here three, because the largest representation
requires space to store three fields. The object heap is a pre-allocated chunk of plain
memory (listing 7.13), where all objects are stored.

JITds methods are compiled into C-functions with two arguments: the REF to the
receiver object, and an arrayREF*which leads to the arguments supplied to the method
invocation. These functions have the typemethod_t. This is exemplified by listing 7.14.

In a class-based object-oriented programming language the behaviour of an object
is defined by its class. As is common in implementations of these languages, the correct
method is looked up at invocation time in method tables. This is also the case in JITds-
C, however, because of representation changes things become trickier (chapter 5). We
now go into the details of method tables, starting with the basic implementations used
in many traditional language implementations, including JITds. We then build on this to
explain the more complex cases in JITds.

7.4. JITDS-C 157

Listing 7.15: Simple method table and invokeD.

1 method_t** simple_method_table = init_smt();
2
3 REF invokeD(int method_id, REF obj, REF* args){
4 int class_id = obj_dynamic_class(obj);
5 method_t method = simple_method_table[class_id][method_id];
6 return method(obj, args);
7 }

7.4.1 Method Tables

Just like in any other class-based object-oriented programming language, object be-
haviour is shared among a class of objects in JITds (cf. per group [52]). Therefore, be-
haviour is not stored per object but per class. In JITds-C, the methods that define the
behaviour of a class of objects are stored in method tables. JITds-C relies on three dif-
ferent kinds of method tables: simple method tables, just-in-time method tables, and
just-in-time method conversion tables.

Simple Method Tables. A simple class has a set of methods, some of them are inher-
ited from ancestors, others are introduced by this class, and others override methods
from ancestors. It is possible to assign to each method a unique index number (from 0
to x), such that methods with the same name as that of an ancestor class have the same
number as that ancestor’s method. The simple method table, shown in listing 7.15, maps
from a (simple) class and a method identifier to a method reified as a C-function pointer
(method_t) (line 5). The simplest invocation construct, invokeD, looks up the func-
tion pointer (lines 4 and 5) and calls it with the receiver and the provided arguments (line
6). The simple method table is a method table as it is traditionally found in implementa-
tions of class-based object-oriented programming languages.

Just-in-Time Method Tables. A simple method table, however, is not sufficient for a
just-in-time class. Because the simple method tables of the various representations are
created independently from each other, it is possible that the same method has a differ-
ent numeric identifier in the method tables of the various representations (e. g., f in R0
andR1); or different methods can have the same identifier in the various representations
(e. g., g0 in R0 and g1 R1). The solution is to have a unique numbering for all the meth-
ods of the just-in-time class, regardless of their numbering in the simple classes; and to
build a second kind of method table that converts from the just-in-time class numbers
to the numbers used by the original representation classes. The just-in-time method
table, shown in listing 7.16, maps from a just-in-time class, a representation class, and
a method identifier to a method reified as a C-function pointer (method_t). The in-
vocation construct invokeI is used when it is statically known that the receiver is a
just-in-time object. invokeI looks up the requested method and, when found, calls
that function with the receiver and the provided arguments (line 10). The just-in-time
method table is a method table as it is traditionally found in implementations of object-

158 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Listing 7.16: JIT method table and invokeI.

1 method_t*** jit_method_table = init_jmt();
2
3 REF invokeI(int method_id, REF obj, REF* args){
4 int jit_id = obj_static_class(obj);
5 int rep_id = obj_dynamic_class(obj);
6 method_t method = jit_method_table[jit_id][rep_id][method_id];
7 if (method==NULL) {
8 return invokeT(method_id, obj, args);
9 } else {

10 return method(obj, args);
11 }
12 }

oriented programming languages with interfaces such as Java. For a discussion on how
to efficiently implement such constructs we refer to [4].

Up until now, JITds-C proves to be a (naive) implementation that uses the classic
implementation techniques of other object-oriented programming languages with in-
terfaces (e. g., Java), i. e., our simple method tables are known as static method tables in
Java and our just-in-time method tables are known as virtual method tables in Java. In
JITds, however, it is possible that the requested method does not exist for the current rep-
resentation. In this case, invokeT is called (line 8) which takes care of representation
changes. We return to invokeT and representation changes later.

Simple invocation: revisited In the general case, invokeD is sufficient to look up and
execute a method of a simple class. Because a just-in-time class is a subtype of all of its
representations (e. g., T <: R0), and because of Liskov’s substitution principle, it is pos-
sible that a just-in-time object is used where the expected static type is a simple class of
one of the representations. For instance, this is the case in C.main in listing 7.2. In this
case, invokeD only works if the current representation is a subtype of the statically ex-
pected type. To guard these cases, regular method invocations are not compiled into an
invokeD, but into a different method, called invokeS, which also takes the expected
static type as a parameter and performs some tests.

invokeS , shown in listing 7.17, is similar to invokeD but has an extra parameter,
expected_id, which holds the expected dynamic class of the receiver. invokeS calls
invokeD in either of two cases: if the receiver is a simple object (cf. the static class is the
same as the dynamic class), or if the current representation of the receiver is a subtype
of the expected class. When neither condition is met, invokeI is called to handle the
method invocation. To use invokeI, however, method_id first has to be translated
from the simple class numbering to the just-in-time class numbering of the method.
These translations are reified in the final method table: jit_convert_table. The
just-in-time method conversion table, also shown in listing 7.17, is a mapping from a just-
in-time class, a representation class, and a method identifier to a new method identifier.

7.4. JITDS-C 159

Listing 7.17: invokeS guards invokeD from calling the wrong method on a just-in-
time obejct.

1 int*** jit_convert_table = init_jct();
2
3 REF invokeS(int method_id, int expected_id, REF obj, REF* args){
4 int jit_id = obj_static_class(obj);
5 int rep_id = obj_dynamic_class(obj);
6 if (jit_id == rep_id) {
7 return invokeD(method_id,obj, args);
8 } else if (is_subtype(rep_id,expected_id)) {
9 return invokeD(method_id,obj, args);

10 } else {
11 method_id = jit_convert_table[jit_id][rep_id][method_id];
12 return invokeI(method_id, obj, args);
13 }
14 }

Listing 7.18: transition functions

1 typedef void(*tf_t)(REF);
2 tf_t*** tf_table;
3
4 REF invokeT(int method_id, REF obj, REF* args){
5 int jit_id = obj_static_class(obj);
6 int rep_id = obj_dynamic_class(obj);
7 for(int to=0 ; to<number_of_classes_and_jit_class ; to++){
8 method_t method = jit_method_table[jit_id][to][method_id];
9 tf_t tf = tf_table[jit_id][rep_id][to];

10 if ((method!=NULL) && (tf!=NULL)) {
11 tf(obj);
12 return method(obj, args);
13 }
14 }
15 exit(-1);
16 }

Change the representation and re-invoke. When invokeI fails to find a method for
the current representation, it calls invokeT. invokeT (see listing 7.18) iterates over
the just-in-time method table and tries to find a representation for which the method
does exist. If there exists a transition function from the current representation to the
representation with the requested method, then the transition function and method are
executed. Transition functions are also looked up in a table, the transition function table
tf_table. A transition function table holds a mapping from a just-in-time class, a
source representation, and a target representation to a transition function reified as a
three-dimensional C-function pointer (tf_t).

160 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

Listing 7.19: The functions provided by the runtime.

1 REF alloc_instance(int field_count);
2
3 REF obj_read(REF obj, int field);
4 void obj_write(REF obj, int field, REF v);
5
6 int obj_static_class(REF obj);
7 int obj_dynamic_class(REF obj);
8
9 REF invokeD(int method_id, REF obj, REF* args);

10 REF invokeS(int method_id, int expected_id, REF obj, REF* args);
11 REF invokeT(int method_id, REF obj, REF* args);
12 REF invokeI(int method_id, REF obj, REF* args);

7.4.2 Technology used in the Implementation of JITds-C

As has become clear in the previous section, a significant part of the compiler’s job is
to generate the method tables and other tables. Besides the existence of three different
kinds of method tables and the corresponding invocation constructs, the implementa-
tion of the JITds-C compiler is a fairly straightforward translation of the formal semantics
described in chapter 5. In what follows, we briefly sketch its implementation.

A JITds program is compiled into a single C file that imports the JITds runtime. The
JITds runtime is a custom-built set of functions that form the execution engine of the on-
line execution of the program: creating objects, reading and writing fields, and invoking
methods. An important part of the interface of the runtime is given in listing 7.19. Be-
sides generating the various method tables, a second job of the compiler is to generate
functions that call these runtime functions, e. g., the JITds statement this.x = 5 has
to be translated into something like obj_write(this, f__T_x, (REF)5) (with
f__T_x the index of the field x in type T).

The compiler generates its code in four phases. The first phase of the compilation
process starts with a single JITds file that is parsed and converted to AST nodes. That
first file contains exactly one class definition, which is subsequently parsed into a class
definition node. During this AST building process, each created class definition node is
added to the class table. When an unknown class is referenced (i. e., it is not yet present
in the class table), the file containing the definition of the new class is also scheduled for
parsing and AST building. The first phase continues until no more classes are scheduled,
i. e., when all classes used in the program have been parsed and converted into AST-
nodes. The result is a class table, CT, that contains mappings between all class names
and the corresponding class definitions as AST nodes.

In the second phase, the compose phase, the AST nodes from the first phase are up-
dated such that all contextual information is directly accessible from each AST node. For
instance, after the first phase, a class definition node knows its parent only by name.
During the compose phase, this name is replaced by the corresponding class definition
AST node as it can be found int the class table CT. Similarly, for field definitions, method
definitions, . . . the names of a type are replaced by an actual AST node from CT.

7.5. SUMMARY 161

Listing 7.20: The method R1.f translated into C.

1 REF R1_f(REF this, REF* args){
2 return invokeS(m__C_sum,c__C,
3 obj_read(this,f__R1_c),
4 (REF[]){obj_read(this,f__R1_bar), obj_read(this,f__R1_baz)});
5 }

The third phase is the type-check phase, in which the AST nodes found in the class
table are checked against the well-formedness rules from section 5.4.4. The program
is either rejected, because there exist static type errors, or the program is accepted, in
which case the AST nodes are typed (when applicable) . This means, for instance, that a
method invocation node is tagged with of the receiver’s type.

The fourth phase computes all indices are constructs all tables, i. e., each class is as-
signed a unique index number, all methods within a class are assigned a unique number,
and methods are given a unique name, etc. Then our implementation pretty-prints the
AST nodes of methods and transformation functions as C code. R1.f, for instance, is
translated into the code shown in listing 7.20.

After these four phases, the resulting C file can be compiled into a binary file (i. e.,
using a standard C compiler) and run. To build the JITds-C compiler, we used ANTLR as
the parser generator and Racket to convert AST nodes into C code.

7.4.3 Conclusion

JITds-C is a naive and straightforward implementation of a conventional statically-typed,
class-based object-oriented programming language, based on two method tables, aug-
mented with a transition function table and a just-in-time method conversion table. The
JITds-C compiler is developed with the sole purpose of showing that is feasible to imple-
ment JITds, without the limitations of JITds-Java. Concretely, in JITds-C a just-in-time
object can be used when statically one of its representation is expected (cf. Liskov sub-
stitutability) and JITds-C does not suffer from the problem of escaping pointers. We can
guarantee this because JITds-C is a straightforward translation of the operational seman-
tics presented in chapter 5, for which we proved that is works.

7.5 Summary

Introducing JITds-Java and JITds-C shows that it is possible to implement JITds. JITds-
Java is a compiler that translates JITds code into plain Java and AspectJ code. The im-
plementation technique that is used to implement the representation changes is for-
warding. The JITds-Java compiler, however, suffers from two limitations: Liskov sub-
stitutability is not guaranteed and we have the problem of escaping pointers. We show
that these issues can be resolved by implementing JITds-C, which compiles JITds code
into C code. The limitations of JITds-Java are not present because JITds-C uses the in-
lining implementation technique. The custom-built runtime engine relies on method

162 CHAPTER 7. JITDS: THE LANGUAGE IMPLEMENTATION

tables to look-up the behaviour of object. Variations of the simple method tables and
the just-in-time method tables can be found in implementations of traditional class-
based programming languages as well. The JITds-C compiler has a just-in-time method
conversion table that enables the dynamic look-up of a method in a just-in-time object
when statically a simple object was expected. This method table is unique to the JITds-C
implementation. A limitation of the JITds-C compiler is that it supports only a subset
of JITds’s base language, for instance, only integers are supported as a native type. The
efficiency and usability of JITds, however, would benefit from a more mature implemen-
tation.

Chapter 8

Evaluation

The goal of this chapter is to evaluate the language design of the programming language
JITds, against the requirements set forth in chapter 1: The language must allow to change
the data representation of data objects at runtime (R1); the language must provide guar-
antees w.r.t. the type safety in the context of representation changes (R2); and the lan-
guage must allow programmers to developers to disentangle general application logic
from the crosscutting concern of representation changes. (R3).

Chapters 4, 5 and 7 sufficiently show that R1 and R2 are met. Swap rules, as described
in chapter 6, are introduced to meet R3, as they allow programmers to disentangle ap-
plication logic from representation change logic. While chapter 6 introduces these fea-
tures conceptually, we did not yet show whether these features actually work towards R3.
Thus, the focus of this chapter is to show that in a JITds program, application logic and
representation logic are cleanly separated, and that application logic and representation
logic only need to be intertwined if changing the representation is an actual part of the
application logic, e. g., opening a file. At the same time we evaluate the performance
gains of changing the representation of a data structure at runtime.

8.1 A set of synthetic benchmarks

We evaluate JITds using a set of five synthetic benchmark programs. The programs were
designed to illustrate the different scenarios of applicability (see chapter 3) and to use
the main features of JITds (see chapters 4 and 6). These example programs are discussed
in section 8.3, where they are compared to plain Java programs in terms of efficiency and
code structure.

8.1.1 Caveat

Showing a significant performance increase in real-world applications when using JITds
would count as a strong evaluation. However, we choose to evaluate JITds in the context
of a set of synthetic benchmarks. Here, we explain the pragmatic choice of evaluating

163

164 CHAPTER 8. EVALUATION

JITds in the context of a synthetic benchmark suite instead of in the context of real-world
applications.

JITds is a programming language that is designed to enable programmers and perfor-
mance experts to develop programs that rely on representation changes to improve the
overall performance. A large part of the performance gain has to be attributed to well-
developed representation change incentive code, i. e., the job of the performance expert.
To evaluate JITds, however, we need to verify whether JITds is sufficiently expressive to
develop programs in a variety of scenarios (see chapter 3) and whether application logic
and representation change incentive code can be disentangled. Much of the related work
(see chapter 9) focusses on designing representation change incentive code itself, and
for building the solid models that lay at the base of good representation change incen-
tive code, we refer to our related work chapter (i. e., chapter 9). Deciding when and why
to change the representation (i. e., representation change incentive code), however, is
not the focus of this chapter.

We choose to evaluate JITds using a set of five synthetic benchmark programs be-
cause it enables us to focus on how to express representation change incentive code in
JITds, as opposed to focussing on the development of the actual representation change
incentive code. More structured approaches to develop representation change incentive
code are presented in [47, 61, 69]. As we will show in section 8.4, all main features of
JITds were used in these five programs. Moreover, these same five programs cover all
five scenarios, as sketched in chapter 3.

8.2 Experimental Setup

First, the code presented in this chapter is tweaked for illustrative purposes. To simplify
the discussion or to convey a message more clearly, the code may have been simpli-
fied or adapted. For example, when comparing two similar code fragments, variables
of one of the fragments may have been renamed to match those of the other fragment;
edge cases which are handled by condition blocks may have been omitted; methods have
been manually inlined to show multiple computations in one block. These adaptations
should not have a significant impact on the presented results. Nevertheless, for repro-
ducibility purposes, the actual code that was used is available on our website, as well
as the source code of the JITds-java compiler used to generate the just-in-time classes
presented in this chapter (http://soft.vub.ac.be/~madewael).

Second, all the just-in-time classes presented in this chapter are compiled with the
JITds-Java compiler. As discussed in chapter 7, this compiler implementation suffers
from the problem of escaping pointers. In the the List Program (section 8.3.2), we took
this limitation into account while designing the application (see discussion section 8.3.2.2).
In the String Program (section 8.3.5), this was not possible, hence we needed to manually
add one line of code to the code generated by our JITds-Java compiler (see discussion
section 8.3.5.2).

Third, since we use the JITds-Java compiler for this chapter, which compiles JITds
code into plain Java, we need to take the peculiarities of performance benchmarking on
the JVM into account [35, 9]. It is important to be aware of JVM warm-up time, the dif-

http://soft.vub.ac.be/~ madewael

8.3. EXAMPLE PROGRAMS 165

ference between interpreted mode and mixed mode, dead code elimination and other
aggressive compiler optimisations, garbage collection effects, etc. Hence, to take these
peculiarities into account, we repeat all benchmark programs 30 times and discard the
first three runs, i. e., common practice to approximate a steady state execution. Con-
cretely, we report on the arithmetic mean and standard deviation of the remaining 27
runs. The data files from which our graphs are generated are available on our website as
well.

Finally, the benchmarks are executed on a HP Proliant HPDL585G7 with four AMD
Opteron 6376 processors, forming an eight-node NUMA setup supporting 64 hardware
threads, running the Ubuntu 15.04 (GNU/Linux 3.19.0-33-generic x86_64) operating sys-
tem. The device has 128 GB of working memory (RAM) with 16MB of L3 cache per pro-
cessor and a 1 TB hard disk. We used Java version 1.8 (update 66) on the Java HotSpot
64-Bit Server VM (build 25.66-b17, mixed mode). We ran the java command with the
standard settings for this VM, i. e., standard garbage collector and standard heap sizes.

8.3 Example Programs

In this section we evaluate JITds using five different example programs. The Matrix Pro-
gram (section 8.3.1), the List Program (section 8.3.2), the File Program (section 8.3.3), the
Sorting Program (section 8.3.4), and the String Program (section 8.3.5). Each of these
micro-benchmark programs are created based on the five scenarios sketched in sec-
tion 3.2.7.2: Changing Data Access Pattern, Changing Interface Usage Pattern, Chang-
ing Functionality, Freezing and Thawing Objects, and Data Specialisation, respectively.
Furthermore, in these five examples we are able to demonstrate practical use of the fol-
lowing language features of JITds: combining representations, transition functions and
named transition functions, swap statements, specialised swap, external swap rules, in-
ternal swap rules, interface swap rules, invocation counters, and first class representa-
tions1.

The following five sections present different example programs. In each section we
following the same pattern: 1. We sketch the context; 2. We sketch the implementation
of the representations and the just-in-time class; 3. We present the experimental setup;
4. We discuss the measured results2; 5. We discuss the difference in code between using
JITds and not using JITds .

When comparing the code of a JITds program with a regular (Java) program, we
colour the fragments that serve a different purpose with different colours, i. e., all choices
of which representation to use is coloured , all transformation logic is coloured , all
representation change incentive code is coloured , and all application logic is coloured

(see figure 8.1).

1These are all the features presented in chapters 4 and 6, except for transient state and by-pass methods.
2This section is omitted in the file example (section 8.3.3, because the file program does not aim to improve

performance.)

166 CHAPTER 8. EVALUATION

oÉéêÉëÉåí~íáçå=`ÜçáÅÉL=qóéÉ

^ééäáÅ~íáçå=içÖáÅ

qê~åëÑçêã~íáçå=içÖáÅ

oÉéêÉëÉåí~íáçå=`Ü~åÖÉ=fåÅÉåíáîÉ=`çÇÉ

Figure 8.1: The colour scheme to differentiate between the purposes of code fragments.

8.3.1 The Matrix Program

We call the first example program “The Matrix Program”. The Matrix Program raises a
512 by 512 matrix to the 16th power. This program relies on an external swap rule to
react to change in data access pattern with a representation change.

8.3.1.1 Context: Changing Data Access Pattern

For the same amount of work, different data access patterns can result in different exe-
cution times. In the presence of caches, for instance, a program that exhibits good data
locality is expected to be more efficient than a program that exhibits bad data locality.
Changing the layout of the data can, for the same computation, increase or reduce data
locality. As already shown in section 2.2, the data access pattern for the matrix multipli-
cation mul(mA, mB) prefers mA to be stored in row-major order and mB to be stored
in col-major order for better performance. This first example program is based on these
insights.

8.3.1.2 Implementation

In this first example program, we evaluate a just-in-time class Matrix that changes its
representation between RowMajorMatrix and ColMajorMatrix. We refrain from
presenting the details of the implementation of both representations here, as they are
discussed extensively in earlier chapters (see section 2.2). We do present the auxiliary
class Utils (see listing 8.1), which implements a multiplication method (mul, lines
3–15) and a power method (pow, lines 17–23). Other static auxiliary methods (e. g.,
makeIdentityMatrix, used on line 18) are omitted from this code snippet.

For this experiment we define a just-in-time class Matrix (see listing 8.2) that com-
bines RowMajorMatrix and ColMajorMatrix, together with a definition for the
two possible transition functions (lines 4–11 and lines 14–22, respectively). Furthermore,
listing 8.2 shows two external swap rules for themulmethod with the subscripts1 and2,
respectively. The subscripts are introduced to differentiate between the two alternative
swap rules: in the actual experiment only one of the swap rules is used.

From section 2.2, we know that the matrix multiplication (as defined in listing 8.1) is
best executed with the matrix mA in RowMajorMatrix representation and the matrix
mB in ColMajorMatrix representation. The external swap rule on lines 24–28 (i. e.,
the one with subscript 1) hardcodes these insights. The external swap rule on lines 33–

8.3. EXAMPLE PROGRAMS 167

Listing 8.1: Raising a matrix mA to the nth power.

1 class Utils {
2
3 public static Matrix mul(Matrix mA, Matrix mB) {
4 Matrix mC = new Matrix(mA.getRows(), mB.getCols());
5 for(int r = 0 ; r<mC.getRows() ; r++){
6 for(int c = 0 ; c<mC.getCols(); c++){
7 double d = 0;
8 for(int k = 0 ; k<mA.getCols(); k++){
9 d += (mA.get(r,k) * mB.get(k,c));

10 }
11 mC.set(r,c,d);
12 }
13 }
14 return mC;
15 }
16
17 public static Matrix pow(Matrix mA, int n) {
18 Matrix mC = makeIdentityMatrix(mA.getCols());
19 for (int i=0 ; i<n ; i++) {
20 mC = mul(mA, mC);
21 }
22 return mC;
23 }
24
25 ...
26
27 }

41 (i. e., the one with subscript 2) uses machine learning to learn the best representation
for both matrix mA and mB: measuring the execution time of each multiplication and
learn which combination of representations can be multiplied the fastest.

To learn the best combination of matrix representations we use the Decreasing Ep-
silon Greedy Strategy as it was introduced on page 136. We use the measured the execu-
tion time — i. e., of performing a multiplication (lines 36–38) — as cost function and use
l, an instance of DecreasingEpsilonGreedyStrategy, to learn how to minimise
that cost. This boils down to learning which of four combinations of matrix representa-
tions takes the shortest time. The four combinations of matrix representations can be
encoded by the integers 0,1,2, and 3; and we can use modulo (line 34) and integer divi-
sion (line 35) to decode such an integer. This integer is called action in listing 8.2. l is
an instance of DecreasingEpsilonGreedyStrategy that is able to learn the best
our of four choices (see line 30 and 31). On line 34, the current best choice is retrieved
from l and stored into action (action ∈ {0,1,2,3}). Furthermore, action is used on
lines 34 and 35 to change the representations of mA and mB, respectively. Then, on line
39, we show how l is updated with the information about the cost of multiplying the two
matrices (cf. (end-begin) with the respective representations (cf. action).

168 CHAPTER 8. EVALUATION

Listing 8.2: The just-in-time class Matrix.

1 class Matrix
2 combines RowMajorMatrix, ColMajorMatrix {
3
4 RowMajorMatrix to ColMajorMatrix {
5 target(source.getRows(), source.getCols() , source.data);
6 target.data = new double[source.getRows()* source.getCols()];
7 for(int r = 0 ; r<source.getRows() ; r++) {
8 for(int c = 0 ; c<source.getCols() ; c++) {
9 target.set(r,c,source.get(r,c));

10 }
11 }
12 }
13
14 ColMajorMatrix to RowMajorMatrix {
15 target(source.getRows(), source.getCols() , source.data);
16 target.data = new double[source.getRows()* source.getCols()];
17 for(int r = 0 ; r<source.getRows() ; r++) {
18 for(int c = 0 ; c<source.getCols() ; c++) {
19 target.set(r,c,source.get(r,c));
20 }
21 }
22 }
23
24 swaprule static Matrix Utils.mul1(Matrix a, Matrix b) {
25 a to RowMajor;
26 b to ColMajor;
27 proceed;
28 }
29
30 static DecreasingEpsilonGreedyStrategy l
31 = new DecreasingEpsilonGreedyStrategy(4);
32
33 swaprule static Matrix Utils.mul2(Matrix a, Matrix b) {
34 int action = l.next();
35 a to (Matrix.Representation.get(action%2));
36 b to (Matrix.Representation.get(action/2));
37 long begin = System.currentTimeMillis();
38 proceed;
39 long end = System.currentTimeMillis();
40 l.update(action, (end-begin));
41 }
42
43 }

8.3. EXAMPLE PROGRAMS 169

8.3.1.3 Experiment

The matrix micro-benchmark program implements a power functionpow(Matrix m,
int n), which raises the matrix m to the nth power (see listing 8.1). To do so, pow
iteratively calls mul. We measure the execution time of raising a 512×512 matrix to the
16th power. The size of the matrix is chosen such that it does not fit in the cache, and the
exponent has been chosen to obtain a longer running computation.

In our experiment we compare five variations of calling pow:

JIT Matrix (no swap rules) An implementation that uses the just-in-time class Matrix
and the method mul as described above, without any of the discussed external
swap rules.

JIT Matrix (fixed swap rule) An implementation that uses the just-in-time classMatrix
and the method mul as described above, with the external swap rule that always
uses the representations RowMajorMatrix and ColMajorMatrix for its first
and second argument, respectively (cf. mul1 in listing 8.2).

JIT Matrix (learning swap rule) An implementation that uses the just-in-time classMatrix
and the method mul as described above, with the external swap rule that uses the
decreasing epsilon greedy strategy (cf. mul2 in listing 8.2).

Row × Row A plain Java implementation, that uses a variation of the method mul from
listing 8.1, adapted to statically accept two matrices of type RowMajorMatrix.
This version is effectively the same as “JIT Matrix (no swap rules)” but without the
overhead introduced by JITds-Java, i. e., a base line to compare against.

Row × Col A plain Java implementation, that uses a variation of the method mul from
listing 8.1, adapted to statically accept a matrix of type RowMajorMatrix and a
matrix of type ColMajorMatrix for its first and second argument, respectively.
In this variation, the implementation of pow is adapted such that the type require-
ments are met, i. e., by means of manually introduced local representation changes
(see rightmost version in figure 8.7a op page 192). This version is effectively the
same as “JIT Matrix (fixed swap rule)” but without the overhead introduced by
JITds-Java.

8.3.1.4 Results

The results of the multiplication experiment, repeated 30 times, are shown in figure 8.2.
We first consider the summary of these results in the form of the box and whiskers plot in
figure 8.2a (i. e., the lower to upper quartile of the measurements, the median, the range
of the data, and the outliers).

A first observation is that for all our measurements, the boxes are tight and the whiskers
are close to the boxes. This means that our experiments are relatively stable. This prop-
erty seems to hold for all our micro-benchmarks; hence, for the remainder of this chapter
we will no longer use box and whiskers plots, but rather report on the mean of the mea-
sured data points and plot the standard deviation as error bars. The other observations
concern the matrix example itself.

170 CHAPTER 8. EVALUATION

JIT
M

atrix
(no

sw
ap

rule)

JIT
M

atrix
(fixed

sw
ap

rule)

JIT
M

atrix
(learning

sw
ap

rule)

R
ow

x
R

ow

R
ow

x
C

ol

0

2

4

6

8

10

12

14

R
un

ti
m

e
(s

)

(a) The execution times of 30 runs represented as a box and whiskers plot.

Iterations
0

2

4

6

8

10

12

14

E
xe

cu
ti

on
T

im
e

(s
)

JIT Matrix (no swap rule)

JIT Matrix (fixed swap rule)

JIT Matrix (learning swap rule)

Row x Row

Row x Col

(b) The evolution of execution times over 30 consecutive runs.

Figure 8.2: Raising a 512x512 matrix to the 16th power.

8.3. EXAMPLE PROGRAMS 171

First, the assumption that the data access pattern is best when the left matrix is in the
RowMajorMatrix representation and the right matrix is in the ColMajorMatrix
representation, and that paying the cost of a representation change is beneficial for per-
formance, is confirmed again: “JIT Matrix (fixed swap rule)” is faster than “JIT Matrix (no
swap rules)”; and “Row × Col” is faster than “Row × Row”.

Second, both “JIT Matrix (no swap rules)” and “Row × Row” perform the exact same
computation and have the exact same data access pattern. Hence, the difference in the
measured execution time is the result of the extra layer of indirection introduced by the
JITds-Java compiler (cf. implementation by forwarding, chapter 7). Similarly, we can
explain the difference in execution time between “JIT Matrix (fixed swap rule)” and “Row
× Col” by attributing the delta to the extra level of indirection.

Third,the difference in execution time between “JIT Matrix (fixed swap rule)” and “JIT
Matrix (learning swap rule)” is almost negligible. The biggest difference between these
two variants is that the “JIT Matrix (learning swap rule)” variant has more and larger out-
liers. Figure 8.2b plots the same data as figure 8.2a but reveals the variation in execution
time over the different runs, i. e., the data points on the left represent the first run, the
data points on the right represent the last run. We expect that all lines are more or less
horizontal. Small variations can be explained by fluctuations in the virtual machine (e. g.,
garbage collection, JIT compilation). However, the fluctuations as seen in data gathered
from “JIT Matrix (learned swap rule)”, however, can not be explained as such. “JIT Ma-
trix (learning swap rule)” sees higher execution times in the first few iterations because
it takes time to learn the most efficient data representations. After a few repetitions, the
execution time of “JIT Matrix (learning swap rule)” is comparable to that of “JIT Matrix
(fixed swap rule)”, as discussed above.

8.3.1.5 Code Comparison

Figure 8.7a shows three versions of a program that implement the same functionality: a
type Matrix, for which there exist two representations RowMajorMatrix and Col-
MajorMatrix, and for which the multiplication and the power methods are defined.
Moreover, the programs are written such that the multiplication always uses the best
combination of representations, i. e., RowMajorMatrix times ColMajorMatrix.

The leftmost version uses JITds and implements “JIT Matrix (fixed swap rule)”. The
middle version is a plain Java version where the method mul is responsible for check-
ing and (potentially) changing the representation of its arguments (local representation
change). The rightmost version is again a plain Java version, where mul is statically
defined to operate on the combination RowMajorMatrix times ColMajorMatrix
only , and leaves the responsibility for changing the representation to the client code,
which is pow (cf. the “Row × Col” variant) here.

Figure 8.7a reveals that using JITds allows the developer to define the application
logic (), while being oblivious of the data representation (). Furthermore, when using
JITds, all transformation logic () and all representation change incentive code () can
be grouped together.

Conversely, in the version in the middle, the representation change incentive code
() is entangled with the application logic and the transformation logic () is decoupled

172 CHAPTER 8. EVALUATION

get/set add/remove
(random position) (current position)

ArrayList O(1) O(n)
LinkedList O(n) O(1)

Table 8.1: Intuitive performance characteristics of List-representations in Java.

from the representations. This is also true in the rightmost version, where information
about the data representation () is scattered across the application code ().

8.3.1.6 Conclusion

The conclusion of this experiment is that external swap rules can be used to improve
the performance of a program by reacting to a change in the data access pattern of the
computation. Moreover, the use of external swap rules allows developers to disentan-
gle application logic (multiplication) from representation change incentive code (data
access patterns) and transformation logic.

8.3.2 The List Program

We call the second example program “The List Program”. The List Program populates
a list by inserting elements close to the front and then estimates the average element
based on a random sample. This program uses invocation counters and internal swap
rules to react to changes in the interface usage pattern with a representation change.

8.3.2.1 Context: Changing Interface Usage Pattern

Consider a list abstraction and its two traditional implementations: the pointer-based
list implementation (e. g., LinkedList in Java) and the array-based list implementa-
tion (e. g., ArrayList in Java). Table 8.1 summarises the intuitive performance char-
acterisation of both. From this table we can conclude that for an algorithm where the
number of random accesses dominates the computation, ArrayList is the optimal
choice and in an algorithm where the number of updates dominates the computation,
LinkedList is the optimal choice. When the (data interface) usage pattern of the data
structure changes during the execution of a program,e. g., from an access-dominated
computation to an update-dominated computation, then a representation change could
improve the performance of that program. This second example program is based on
this assumption.

8.3.2.2 Implementation

In this second example program we evaluate a just-in-time class JL (cf. Jit List) that
toggles between a representation based on ArrayList and a representation based on
LinkedList.

8.3. EXAMPLE PROGRAMS 173

Listing 8.3: A reduced data interface
for lists.

1 public interface IL {
2
3 public int size();
4
5 public Event get(int index);
6 public void insert(Event e);
7
8 public void initIterator();
9 public boolean hasNext();

10 public Event next();
11
12 }

Listing 8.4: The class Event represents a
mouse event: a timestamp and coordinates.

public class Event {

public final long t;
public final int x, y;

public Event(long t, int x , int y){
this.t = t;
this.x = x;
this.y = y;

}

}

Listing 8.5: The representation AL.

1 public class AL implements IL {
2
3 List<Event> lst;
4 ListIterator<Event> it;
5
6 public AL(){
7 lst = new ArrayList<Event>();
8 it = lst.listIterator();
9 }

10
11 ...
12
13 }

Listing 8.6: The representation LL.

public class LL implements IL {

List<Event> lst;
ListIterator<Event> it;

public LL(){
lst = new LinkedList<Event>();
it = lst.listIterator();

}

...

}

Concretely we define two new classes AL (based on ArrayList) and LL (based on
LinkedList). The implementations of both AL and LL are straightforward and are
omitted from listings 8.5 and 8.6. Both AL and LL implement the same interface IL. IL
provides, for illustrative reasons, a smaller interface than provided by Java’s List (see
listing 8.3). IL is specialised to accept elements of the type Event (see listing 8.4) and
incorporates (only) one dedicated iterator per list instance (cf. it in listings 8.5 and 8.6
and the operations on lines 8–10 in listing 8.3). We explain this design decision in sec-
tion 8.3.2.2. Finally, the operation insert is used to add a new element to the list, just
before the current position of the iterator. All this is implemented in listings 8.5 and 8.6,
by delegating the operations to either lst (line 3) or it (line 4).

Secondly, we define the just-in-time classJL (see listing 8.7) which combines the two
representations, AL and LL. JL defines both possible transition functions (lines 4–7 and
9–12), which are straightforward: all elements from the source list are copied to a new
list in target and the iterator is (re)initialised.3

3To be more precise, the implementation should change the position of the iterator also.

174 CHAPTER 8. EVALUATION

Listing 8.7: The just-in-time class JL.

1 class JL implements IL
2 combines AL, LL {
3
4 AL to LL {
5 target.lst = new LinkedList<Event>(source.lst);
6 target.initIterator();
7 }
8
9 LL to AL {

10 target.lst = new ArrayList<Event>(source.lst);
11 target.initIterator();
12 }
13
14 #write as insert(Entry e);
15 #read as get(int i);
16
17 swaprule AL {
18 int count = #write + #read;
19 if((count>100) && ((#write / (double)(#read)) > 0.75)) {
20 this to LL;
21 }
22 }
23
24 swaprule LL {
25 int count = #write + #read;
26 if((count>100) && ((#read / (double)(#write)) > 0.50)) {
27 this to AL;
28 }
29 }
30
31 }

Further, JL introduces two invocation counters. On line 14 #write is introduced to
count the number of inserts. On line 15 #read is introduced to count the number of
get operations. The counters are used by the two internal swap rules. The first internal
swap rule (lines 17–22) states that LL is the preferred representation whenever the ratio
of writes to reads exceeds 75%. The second internal swap rule (lines 24–29) states that
AL is the preferred representation whenever the ratio the ratio of reads to writes exceeds
50%.

Avoiding the Problem of Escaping Pointers In this chapter, we use the compiler that
translates JITds code into plain Java. We use this implementation of JITds because it
gives us the full power of Java, i. e., we can reuse all built-in types and standard libraries.
Recall from chapter 7 that the Java implementation suffers from the problem of escaping
pointers (which was solved in the JITds-C implementation). In short, this problem arises
when a representation (directly or indirectly) returns a reference to itself. When the rep-
resentation of the just-in-time object changes, then conceptually, the reference to the

8.3. EXAMPLE PROGRAMS 175

old representation has become stale, while it is still reachable. One concrete example
in which the problem of escaping pointers occurs is in the iterator pattern, because an
iterator is tightly coupled with the representation of the data it is iterating over, i. e., it
contains a pointer to the actual list implementation. In this example, we avoid the prob-
lem of escaping pointers by making the iterator an integral part of the representation,
and thus it can not escape. When the representation changes, then the transition func-
tion updates the iterator as well.

8.3.2.3 Experiment

Listing 8.8 shows a micro-benchmark program that detects and processes mouse events.
Mouse events are represented by the class Event, which is a simple data class contain-
ing an x-coordinate, a y-coordinate, and a timestamp. The detection of mouse events
is simulated by the method generateEvent, which creates an Event with a random
x-coordinate and a random y-coordinate. Macroscopically, the timestamps of the gen-
erated Events seem to be increasing. To simulate that events can be detected out of
order, we introduce a random factor (see line 13) that results in small local variations.

The actual program consists of two phases. In the first phase, implemented bybuild,
the program “detects events” and inserts them in a list, such that the events are stored
in order of decreasing timestamps, i. e., the iterator is advanced until it points to an ele-
ment whose timestamp is larger than the timestamp of the received event (cf. insertion
sort). In the second phase, implemented by sample, an estimate of the average mouse
position is computed based on a random sample set of 15% of the list. The first phase is
designed to be update-dominated, and the second phase is access-dominated.

In our experiment we compare three variations:

AL A plain Java version of the program that uses an instance of AL to store the events.

LL A plain Java version of the program that uses an instance of LL to store the events.

JL A JITds version of the program that uses an instance of JL to store the events, and
which dynamically switches between its representations.

8.3.2.4 Results

For each of the variations we let the number of events in the list vary from 1000 to 25000
(in steps of 1000). The results of running all variations 30 times are presented in fig-
ures 8.3 and 8.4. All data points are the median of these 30 runs. The first two graphs,
figures 8.3a and 8.3b, show the execution time of the first and the second phase, respec-
tively. These results confirm our assumptions, listed in table 8.1, about the performance
characteristics of AL and LL: LL is the most efficient representation in the first phase,
whereas AL excels in the second phase. The JITds variant’s execution time for either
phase is comparable to the fastest variant in plain Java for that phase. The difference
in execution time between the fastest Java implementation and the JITds variant can be
attributed to the overhead of counting operations and the level of indirection from the
implementation by forwarding.

176 CHAPTER 8. EVALUATION

Listing 8.8: The micro-benchmark program to test JL.

1 public class ListExperiment {
2
3 static long timestamp = 10050;
4 static final Random r = new Random();
5
6 public static void run(IL lst, int n){
7 lst = build(lst, n);
8 System.out.println(sample(lst));
9 }

10
11 public static Event generateEvent(){
12 timestamp++;
13 return new Event(timestamp+(r.nextInt(100)-50),
14 R.nextInt(10),
15 R.nextInt(10)
16);
17 }
18
19 public static IL build(IL lst, int size){
20 for (int i=0; i<size ; i++){
21 Event next = generateEvent();
22 lst.initIterator();
23 while (lst.hasNext() && lst.next().timestamp>next.timestamp);
24 lst.insert(next);
25 }
26 return lst;
27 }
28
29 public static double[] sample(IL lst){
30 int samples = lst.size()/15;
31 long sumX = 0, sumY = 0;
32 for (int i = 0; i<samples ; i++){
33 Event e = lst.get(r.nextInt(lst.size()));
34 sumX+= e.x;
35 sumY+= e.y;
36 }
37 return new double[]{sumX/(double)samples,sumY/(double)samples};
38 }
39
40 }

8.3. EXAMPLE PROGRAMS 177

Figure 8.4 shows the execution times of the complete program, i. e., the aggregate of
both phases. As expected, JL has the lowest execution time because JL combines the
best qualities of both representations by changing its representation when the equations
in the swap rules hold. Note that the boundary of the phases is not expressed as a part
of the application logic, but rather as a property of the data structure.

8.3.2.5 Code Comparison

Figure 8.7c shows three versions of a program that first populates a list with events (in-
serts) and then randomly samples that list (random access).

The first (from left to right) version uses JITds, which automatically changes the rep-
resentation from AL to LL (or vice versa), depending on the detected usage pattern (cf.
internal swap rules). The second version basically implements the same as the first ver-
sion in plain Java and dynamically changes the representation, but without the expres-
sive benefit of a just-in-time class to hold all the logic related to transforming and swap-
ping. Concretely, the second version manually maintains two counters (i. e., cR for reads
and cW for writes), and changes the representation based on them. In the thirds version
the preferred representations are hardcoded, by means of a local representation change,
before each phase (see in the runmethod in figure 8.7c). Concretely, version three uses
LL in build and AL in sample.

The first and second versions implement the exact same functionality, and we com-
pare them first. In the version that uses JITds, application logic () is completely sepa-
rated from any choice of representation, i. e., transformation logic () and representation
change incentive code () are combined into one just-in-time class definition (). This
is not possible in plain Java, hence we need to clutter the code with guards that checks
whether or not to change the representation.

The last version is arguably cleaner than the second version and clearly shorter than
the first two versions. There is, however, a fundamental difference between the first two
versions and the last version in terms of the computation they perform. The first two
versions detect the phase shift automatically based on the ratio of counters (invocation
counters in the first version and simple integers in the second version). In the last ver-
sion, the phase shift is considered to be known a-priori and the (local) representation
changes are hardcoded before the invocations of the methodsbuild andsample. This
is only possible when the boundary of the phases is known a-priori and lexically deter-
minable (e. g., before the calls to build and sample). Thus, the first two versions need
bookkeeping (cf. the counter) which is not needed in the last version, hence the differ-
ence in length.

8.3.2.6 Conclusion

JITds facilitates the implementation of JL, a just-in-time class that exploits the strong
points of both ArrayList and LinkedList, while it avoids the weak points of both
representations. We observe that the iterator pattern is not well suited to be used in
JITds. Finally, this example program shows how invocation counters and internal swap
rules combined can detect a change in a data interface usage pattern without knowing

178 CHAPTER 8. EVALUATION

0 5000 10000 15000 20000 25000
Number of elements in the list.

0

50

100

150

200

250

300
E

xe
cu

ti
on

T
im

e
(m

s)
LL

AL

JL

(a) Execution time for building a list of events.

0 5000 10000 15000 20000 25000
Number of elements in the list.

0

50

100

150

200

250

300

E
xe

cu
ti

on
T

im
e

(m
s)

LL

AL

JL

(b) Execution time for randomly sampling 15% of the events.

Figure 8.3: Building or sampling a list of events.

8.3. EXAMPLE PROGRAMS 179

0 5000 10000 15000 20000 25000
Number of elements in the list.

0

50

100

150

200

250

300

E
xe

cu
ti

on
T

im
e

(m
s)

LL

AL

JL

Figure 8.4: Execution time for building and sampling a list of events.

lexically where the phase shift occurs (cf. dynamic quantification in AOP). The imple-
mentation in JITds allows the developer to clearly separate the application logic from
the choice and change of representations.

8.3.3 The File Program

We call the third example program “The File Program”. The File Program models the
abstract data type file, that can be in one of three states. Depending on the current state,
a file can perform different tasks, e. g., a file can only be written to when it is open. This
program uses specialised swaps and named transition functions to realise this behaviour
without the need for encoding and checking the state explicitly.

8.3.3.1 Context: Changing Functionality

The main motivation for developing JITds is to support non-functional representation
changes. However, it is also possible to implement functional representation changes in
JITds. The most common scenario for functional representation changes is to model
objects with modes, object evolution [13], or objects with protocols [78]. In these sce-
narios the developer wants to change the behaviour of an object depending on what
state that object is in. This has led to the extension of the object-oriented program-
ming paradigm called typestate-oriented programming [3]. The motivating example for
typestate-oriented programming is a file that may be open, closed, or locked. An open

180 CHAPTER 8. EVALUATION

Listing 8.9: A closed file.

class ClosedFile {

String path;

void setPath(String path) {
this.path = path;

}

}

Listing 8.10: An open file.

class OpenFile {

String path;
FilePointer filePtr;

void write(String str){
filePtr.write(str);

}

}

Listing 8.11: A locked file.

class LockedFile {

String path;

}

file may be written to, a closed file can change its path, and a locked file has a fixed path
and can not be written to.

8.3.3.2 Implementation

In this program we conceptually model a File with three states (i. e., open, closed and
locked as in [78]) and leave the actual I/O handling to the underlying Java libraries. To
clearly separate the actual I/O functionality from the conceptual part, we implemented
the classFilePointerwhich wraps the functionality ofFileWriter (a basic file I/O
class from Java). A FilePointer opens a connection with an actual file when created
(constructor) and closes this connection when the method close is called. Text can be
written to the file between construction and closing by invoking the method write.

The just-in-time classFile combines three representations, i. e., one representation
per state: ClosedFile (see listing 8.9), OpenFile (see listing 8.10), and Locked-
File (see listing 8.11). In the JITds program, however, these three classes are not sup-
posed to be used as applicationlevel types (cf. implementation-only classes [15]). One
should always use an instance of the just-in-time class File (see listing 8.12). A just-
in-time File is initially in the closed state, because ClosedFile is the first in the list
of representations. Only certain transition functions are defined in File. File defines
the transitions from closed to open (copy the path and create an open connection to a
file), from closed to locked, and from open to closed (which copies the path and closes
the open connection). This design implies that locked files can never be opened again.

All the methods inherited by File from ClosedFile, OpenFile, and Locked-
File, are specialised methods. Thus any method invocation potentially causes a spe-
cialised swap.

8.3.3.3 Experiment and Results

For this example we do not present a performance evaluation. Instead, our goal is to
show how a typical typestate-oriented program can be expressed in JITds. The code frag-
ment in listing 8.13 shows how to create a File f (line 1) at location tmp/data.txt
(line 2), to which the word “test” is written (line 3), and which is finally closed (line 4) and
locked (line 5). A file does not need to be opened explicitly in order to be able to write
to it, because write is a specialised method of the OpenFile class. Therefore, a call to
write initiates a representation change (cf. specialised swap). Once the file is locked,

8.3. EXAMPLE PROGRAMS 181

Listing 8.12: The just-in-time class File.

1 class File
2 combines ClosedFile, OpenFile, LockedFile {
3
4 ClosedFile to OpenFile as open {
5 target.path = source.path;
6 target.filePtr = new FilePointer(source.path);
7 }
8
9 ClosedFile to LockedFile as lock {

10 target.path = source.path;
11 }
12
13 OpenFile to ClosedFile as close {
14 target.path = source.path;
15 source.filePtr.close();
16 }
17
18 }

Listing 8.13: A fragment of Java code to
write to a File.

1 File f = new File();
2 f.setPath("tmp/data.txt");
3 f.write("test");
4 f.close();
5 f.lock();

Listing 8.14: An alternative fragment of
Java code to write to a File.

1 File f = new File();
2 f.setPath("tmp/data.txt");
3 f.open();
4 f.write("test");
5 f.close();

this transition is no longer possible and writing to it results in an UnsupportedSwap-
Exception. In the alternative implementation (see listing 8.14), the file is explicitly
opened (line 3).

8.3.3.4 Code Comparison

In figure 8.8b, we compare the JITds code (left) and a plain Java implementation (right).
A qualitative comparison between the JITds program and other typestate-oriented pro-
grams (i. e., in the language Plaid [78]), is given in section 9.1.5.

The biggest difference between between the two versions of the code in figure 8.8b
is that in the plain Java version, all invariants that have to do with the current state, and
thus the current representation, have to be manually encoded (and), checked (), and
maintained (and). Conversely, in the JITds version these invariants are automatically
maintained by the just-in-time class () and all transformation logic () is grouped.

For instance, the invariants in the plain Java version are thatfilePtr in a closed file
is null, that filePtr in an open file is not null, and that only locked files have true
assigned to the field locked (cf. flag field). Behaviourally, only closed files can change

182 CHAPTER 8. EVALUATION

their path, only open files can be written to, and locked files are locked forever. The first
set of invariants have to be manually maintained in the Java version, and the second set
of invariants have to be manually checked in the Java version.

In JITds, on the other hand, the current state is reified by the current representation,
hence there is no need to check any of the invariants. A closed file in the JITds program,
for instance, does not even have a file pointer and a file that is able to execute the write
method is known to be in the open state. These invariants are maintained automatically
by JITds. Finally, the LockedFile representation does not need to explicitly encode
that it is locked (cf. the flag field in the Java version), because the state is reified by the
current representation.

8.3.3.5 Conclusion

Without much effort it is possible to use JITds as a typestate-oriented programming
language. In other words, JITds does not only support non-functional representation
changes, but also functional representation changes. How JITds relates to other typestate-
oriented programming languages is discussed in chapter 9. Compared to plain object-
oriented languages, the advantage of using typestate-oriented programming is that the
behavioural aspects of the current state do not need to be encoded via design patterns
(e. g., state [34]), if-tests on flags (e. g., locked), or any other indirect implementation
strategy [3].

8.3.4 The Sorting Program

We call the fourth example program “The Sorting Program”. The Sorting Program fills an
array with random data, sorts the array, shuffles some elements, and re-sorts the array.
This program uses an interface swap rule to decide which algorithm to use for sorting.
The decision is made based on a characteristic of the data, here the sortedness of the
array.

8.3.4.1 Context: Data Specialisation

Often, multiple algorithms exist to accomplish the same task. Their performance changes
based on the characteristics of the input data. Similarly, different storage strategies for
the same data type may exist, e. g., recall the SparseMatrix representation from sec-
tion 2.2, which only pays off when the matrix is actually sparse, where “being sparse” is
a characteristic of the input data. Data specialisation is the scenario where a dedicated
implementation exists for data with a specific property.

It is known that the time complexity of insertion sort is O(n2) and that the time com-
plexity of quick-sort is O(n logn). Hence, the best algorithm is quick-sort. However, this
is the asymptotic and average case performance. In the context of sorting, character-
istics of the data are, for instance, input size, sortedness, distribution, and value range.
Depending on the characteristics of the data, asymptotic average case performance es-
timates can be completely wrong, and relying on the average case can be a significant

8.3. EXAMPLE PROGRAMS 183

Listing 8.15: The just-in-time class Sorter combines three sorting algorithms.

1 class Sorter
2 combines InsertionSorter, MergeSorter, QuickSorter {
3
4 QuickSorter to InsertionSorter { target.data = source.data; }
5 QuickSorter to MergeSorter { target.data = source.data; }
6
7 InsertionSorter to QuickSorter { target.data = source.data; }
8 InsertionSorter to MergeSorter { target.data = source.data; }
9

10 MergeSorter to QuickSorter { target.data = source.data; }
11 MergeSorter to InsertionSorter { target.data = source.data; }
12
13 swaprule boolean Sorter.sort(int lo, int hi) {
14 boolean large = (hi-lo) > 5000;
15 double[] data = receiver.getData();
16
17 if (large && Utils.sortedness(data, lo, hi)>0.90) {
18 receiver to InsertionSorter;
19 } else {
20 receiver to QuickSorter;
21 }
22 proceed;
23 }
24 }

overestimate or underestimate. This example is based on these insights and is adapted
from the motivating example from [6].

8.3.4.2 Implementation

In this example program we evaluate a data structure that maintains an array of numbers
(double) that can be sorted by calling the methodsort(int lo, int hi). We im-
plement three different representations of this data structure, i. e.,InsertionSorter,
MergeSorter, and QuickSorter, that use insertion sort, merge sort, and quick-sort
to sort the array. We refrain from providing the concrete implementations because these
are well-known algorithms.

The just-in-time class Sorter (see listing 8.15) combines the three sorting classes.
This implies that changing the representation of a Sorter object effectively changes
the algorithm that is used to sort the data. Sorter defines all six transition functions.4

Sorter also defines one interface swap rule, which intercepts all calls to sort and
makes the choice of which representation to use. The choice shown in listing 8.15 is to
use insertion sort for small and nearly-sorted data sets, and to use quick-sort otherwise.

4These six transition functions are very similar and could be replaced by one generic transition function:
Sorter to Sorter target.data = source.data;. The current version of the JITds-Java compiler,
however, does not implement the syntactic sugar construct of generic transition functions, as described in
chapter 4

184 CHAPTER 8. EVALUATION

Listing 8.16: Filling an array with ran-
dom numbers.

1 void fill(double[] data) {
2 Random rnd = new Random();
3 int size = data.length;
4 for (int i=0; i<size ; i++){
5 double d = rnd.nextDouble();
6 data[i] = d*100;
7 }
8
9 }

Listing 8.17: Swapping three elements
in a (sorted) array.

void shuffle(double[] data) {
Random rnd = new Random();
int size = data.length;
for (int i=0; i<3 ; i++) {

int a = rnd.nextInt(size);
int b = rnd.nextInt(size);
swap(data, a, b);

}
}

8.3.4.3 Experiment

In this experiment we compare the time it takes to sort using the different classes (i. e.,
InsertionSorter, MergeSorter, QuickSorter, and Sorter(jit)). We do this
once for a random sequence and once for a nearly-sorted sequence. To obtain a measur-
able effect we need sufficiently large sequences. Hence, we let the size of the sequences
vary from 1000 to 20000 elements in steps of 1000. As shown in listing 8.16, the ran-
dom sequence is built using Java’s random number generator and creates elements in
the range of 0 to 100 in double float precision. Listing 8.17 shows how we swap a few
elements in a sorted sequence to obtain a nearly-sorted sequence.

8.3.4.4 Results

The results of this experiment are shown in figure 8.5: figure 8.5a shows the time needed
to sort a random sequence and figure 8.5b shows the time needed to sort a nearly-sorted
sequence. All data points are the arrhythmic mean of execution times, gathered over 30
runs. We first focus on the two plain Java implementations that useInsertionSorter
and QuickSorter. We see that, for the random sequence, QuickSorter performs
better than InsertionSorter, however, when the sequence is nearly-sorted, the in-
verse is true. This aligns with the known performance characteristics of both sorting al-
gorithms. If we look at the just-in-time class Sorter, we see that it behaves similarly to
the best strategy for either case, i. e.,QuickSorter for random andInsertionSorter
for nearly-sorted sequences, as excepted5.

8.3.4.5 Code Comparison

Figure 8.7b shows three versions of the program that populates, sorts, shuffles, and re-
sorts an array of doubles. The leftmost version relies on JITds to automatically change
the sorting strategy based on an interface swap rule. The middle version implements the
exact same functionality in Java. This version changes the sorting algorithm by imple-
menting the strategy pattern [34]. The rightmost version hardcodes what sorting algo-

5The data points gathered for MergeSorter are of no specific interest to our conclusions and are thus
omitted from the graphs.

8.3. EXAMPLE PROGRAMS 185

0 5000 10000 15000 20000
List size (# elements)

0.0

20.0

40.0

60.0

80.0

100.0
E

xe
cu

ti
on

T
im

e
(m

s)
InsertionSorter

QuickSorter

Sorter (JIT)

(a) Time needed to sort a random sequence.

0 5000 10000 15000 20000
List size (# elements)

0.0

0.2

0.4

0.6

0.8

E
xe

cu
ti

on
T

im
e

(m
s)

InsertionSorter

QuickSorter

Sorter (JIT)

(b) Time needed to sort a nearly-sorted sequence.

Figure 8.5: Sorting a sequence using different algorithms.

186 CHAPTER 8. EVALUATION

rithm to use (), first sorting a random sequence with quick-sort and then using insertion
sort to sort a nearly-sorted sequence. The difference with the first two versions is that the
choice of algorithm is made without checking the characteristics of the data to be sorted.

We conclude that JITds allows a clean separation of concerns when implementing
a scenario where the representation is changed based on data characteristics. Further-
more, in this example where only computation is changed, JITds and the strategy pattern
yield comparable code (w.r.t. code cluttering). The last version yields shorter code, but
is less generic (hardcoded choice) and more cluttered.

8.3.4.6 Conclusion

JITds allows developers to clearly separate application logic from representation change
logic when implementing a scenario where the representation change is based on the
characteristics of the input data (i. e., data specialisation). This way, an ad-hoc imple-
mentation of the strategy pattern can be avoided while improved performance can be
obtained at the same time. Both JITds and the strategy pattern result in code that has a
similar structure, and is not entangled.

8.3.5 The String Program

We call the fifth example program “The String Program”. The String Program creates
a long piece of text and then computes the set of prefixes. This program combines a
mutable and an immutable representation for text into a single just-in-time class and
uses named transition functions to freeze or thaw the data structure.

8.3.5.1 Context: Freezing and Thawing

A common pattern in data structure design is that some data structure implementations
perform best when building the data structure (mutable) and that some data structure
implementations perform best when the data structure is being queried (immutable).
Examples of these different designs in Java are StringBuilder and String, which
are both implementations of CharSequence, or text.

String is an immutable data structure and all updates to its content result in an up-
date to a copy of the data. StringBuilder is a mutable data structure and all updates
are made directly on the data.

Hence, it is best practice in Java to useStringBuilderwhen creating a new, evolv-
ing piece of text; and to switch to String once the content is complete. This pattern is
known as freezing and thawing data structures.

8.3.5.2 Implementation

In this example program we implement a just-in-time classJitString (see listing 8.18)
that incorporates both representations: the immutable String (frozen) and the muta-
ble StringBuilder (thawed). The data interfaces of String and StringBuilder
are not perfectly aligned. In Java, a programmer can concatenate String instances us-
ing the dedicated string concatenation operator + (or with the method concat). To

8.3. EXAMPLE PROGRAMS 187

Listing 8.18: The just-in-time class JitString.

1 class JitString implements StringInterface
2 combines ThawedString, FrozenString {
3
4 ThawedString to FrozenString as freeze {
5 target(source.value, 0, source.count);
6 }
7
8 FrozenString to ThawedString as thaw {
9 target();

10 target.append(source);
11 }
12
13 }

concatenate instances of StringBuilder the method append has to be used. Be-
cause we need uniformity between the data interfaces in our example, we reimplement
String andStringBuilder to both implement aconcatmethod and asubSequence
method with the same signatures. To this end, we introduce two representations,Frozen-
String and ThawedString. FrozenString, on the one hand, is a String deriva-
tive that copies itself upon concatenation and that provides an immutable view of its
content whensubSequence is called. ThawedString, on the other hand, is aString-
Builder derivative that updates its own content upon concatenation and that returns
an immutable copy of a part of its data when subSequence is called.

Listing 8.18 shows the implementation of JitString that provides both the tran-
sition function to freeze and to thaw the text. Note that both transition functions are
named transition functions, i. e., freeze and thaw, respectively. Even though it would
be possible, JitString does not implement any swap rules to detect a change in in-
terface usage pattern and leaves the responsibility for changing the representation to
the user of the JitString. The List Program (see section 8.3.5) describes the scenario
where such a pattern is detected an reacted upon.

Avoiding the Problem of Escaping Pointers The current implementation of the JITds-
Java compiler suffers from the problem of escaping pointers. Besides the list iterator
example, this string program is a second example where the problem needs to be ad-
dressed. Here, the problem of escaping pointers occurs when a representation returns
this, which is the case for concat of ThawedString.

Listing 8.19: Code generated by the JITds-Java compiler for the concat-method for in-
stances of JitList in the ThawedString representation.

1 public StringInterface concat(StringInterface s) {
2 if (invokeInnerSwaprules()) {
3 return instance.concat(s);
4 } else {
5
6 return super.concat(s);

188 CHAPTER 8. EVALUATION

7 }
8 }

Listing 8.20: Manual intervention in the code generated by the JITds-Java compiler.

1 public StringInterface concat(StringInterface s) {
2 if (invokeInnerSwaprules()) {
3 return instance.concat(s);
4 } else {
5 super.concat(s);
6 return JitString.this; //manual
7 }
8 }

In this example, we resolve the problem of escaping pointers by making a small man-
ual intervention to the code generated by the JITds-java compiler. Listing 8.19 shows the
original code generated by the JITds-Java compiler for theconcatmethod for instances
of JitList in the ThawedString representation. The problem originates at line 6,
where super.concat(s) returns this. Because of the implementation by forward-
ing, this actually denotes the instance currently being forwarded to, whereas semanti-
cally a JITds program is expected to return the complete just-in-time object. Listing 8.20
shows that, with one extra line of manually added code, the problem (in this case) is
resolved. Thus, line 5 takes care of forwarding the call to the current implementation,
which is known to return this. We then manually return JitString.this on line
6. When using the JITds-C compiler the problem of escaping pointers does not occur,
but then we would introduce a complete new evaluation set-up for a single example. We
choose to stick to the manual intervention for the sake of uniformity.

8.3.5.3 Experiment

In this example, the program has two phases. In the first phase, i. e., the method build
(see listing 8.24), a text is created by concatenating characters. In the second phase, i. e.,
the method prefixes (see listing 8.25), an array is created that contains all prefixes of
that text. This program is constructed such that the first phase is a building phase, and
the second phase is a querying phase.

In our experiment we compare three variations:

FrozenString A plain Java implementation that uses a FrozenString instance in
both phases (listing 8.21).

ThawedString A plain Java implementation that uses a ThawedString instance in
both phases (listing 8.22).

JitString A JITds implementation that uses a JitString instance in both phases,
with a swap statement between the two phases (cf. line 3 in listing 8.23).

To obtain a measurable effect we need sufficiently large sequences. Hence, for each
of the three versions we build a string with a size that varies between 1,000 and 50,000
(in steps of 1,000). All data points are the median of 30 runs.

8.3. EXAMPLE PROGRAMS 189

Listing 8.21: Example:
FrozenString

1 run(FrozenString str, int n)
2 str = build(str , n);
3
4 return prefixes(str);
5 }

Listing 8.22: Example:
ThawedString

run(ThawedString str, int n)
str = build(str , n);

return prefixes(str);
}

Listing 8.23: Example:
JitString

run(JitString str, int n)
str = build(str , n);
str.freeze();
return prefixes(str);

}

Listing 8.24: Building a string.

1 public static StringInterface build(StringInterface str, int n){
2 for (int i=0 ; i<n ; i++){
3 str = str.concat(Integer.toString(i%10));
4 }
5 return str;
6 }

Listing 8.25: Gathering all prefixes of str in data.

1 public static StringInterface[] prefixes(StringInterface str){
2 int count = str.length();
3 StringInterface[] data = new StringInterface[count];
4
5 for (int size = 1 ; size<count ; size++){
6 data[size-1] = str.subSequence(0, size);
7 }
8
9 return data;

10 }

8.3.5.4 Results

As expected, ThawedString is the ideal representation for constructing new strings
(figure 8.6a) and FrozenString is the ideal representation for querying the string (fig-
ure 8.6b). Initially, a JitString is in the thawed representation. Because we instruct
the JitString to freeze between the two phases, it can be seen in figure 8.6c that
JitString outperforms both FrozenString and ThawedString in the complete
program, since it relies on the “best” representation for each phase.

8.3.5.5 Code Comparison

A shown in figure 8.8a, both in the classic (Java) version as well as in the JITds version,
the instruction to freeze the data structure is part of the application code. This is to be
expected as this is what the freeze-and-thaw pattern looks like: an update phase, a freeze
statement, and then a query phase; or vice versa.

190 CHAPTER 8. EVALUATION

0 10 20 30 40 50
String Size (×1000 chars)

0

200

400

600

800

1000

E
xe

cu
ti

on
T

im
e

(m
s)

FrozenString

ThawedString

(a) Building a string.

0 10 20 30 40 50
String Size (×1000 chars)

0

200

400

600

800

1000

E
xe

cu
ti

on
T

im
e

(m
s)

FrozenString

ThawedString

(b) Computing the prefixes of a string.

0 10 20 30 40 50
String Size (×1000 chars)

0

200

400

600

800

1000

E
xe

cu
ti

on
T

im
e

(m
s)

FrozenString

ThawedString

JitString (with swap statement)

(c) Building and computing the prefixes of a string.

Figure 8.6: Building or computing the prefixes of a string.

8.4. CONCLUSIONS 191

JITds features Matrix List File String Sorting
Combining representations 3 3 3 3 3
Transition functions 3 3 3 3 3
Named transition functions 7 7 3 3 7
Swap statements 3 7 7 3 3
Specialised swap 7 7 3 7 7

External swap rules 3 7 7 7 7
Internal swap rules 7 3 7 7 7
Interface swap rules 7 7 7 7 3
Invocation counters 7 3 7 7 7

First class representations 3 7 7 7 7

Compiler limitations
Escaping pointers B B

Table 8.2: A comparison of the different implementations of JITds in function of the
available features.

8.3.5.6 Conclusion

Using JITds to implement the unification of a frozen and thawed version of a data type
yields the expected performance gains. The code of the JITds version and the classic
(manual) version are similar (up to the definition of the just-in-time class).

8.4 Conclusions

Table 8.2 gives an overview of the JITds features used in each of the five example pro-
grams. For instance, the file example (see section 8.3.3) is the only example program
that relies on specialised swaps. In a set of five programs, we were able to use most of the
JITds features. Only transient state and by-pass methods are not used in this chapter, be-
cause these two features have not been implemented in either of our two compilers (see
chapter 7). Furthermore, in two of the five programs we needed to manually address
the problem of escaping pointers, a limitation of the current version of the JITds-Java
compiler.

In four of the five examples (i. e., all except the file program which is not about gain-
ing performance) just-in-time data structures improved performance as expected. The
focus of this evaluation is not to evaluate the actual performance gains, but rather that
JITds is sufficiently expressible to be applied in the scenarios described in chapter 3.

We also evaluated how, in JITds code, application logic and representation change
logic are intertwined. When the user explicitly transitions between representations, then
the application and representation logic are intertwined, e. g., in the the freeze-and-thaw
pattern. This is to be expected, because there the representation change incentive code
is arguably an inherent part of the application logic. When evaluating the entanglement
of application logic with data representation logic in all other JITds programs, we see
an apparent pattern emerging: the just-in-time class combines multiple representations

192 CHAPTER 8. EVALUATION

class Matrix
combines RowMajorMatrix, ColMajorMatrix {

RowMajorMatrix to ColMajorMatrix { ... }

ColMajorMatrix to RowMajorMatrix { ... }

swaprule static Matrix Utils.mul(Matrix a, Matrix b) {
a to RowMajorMatrix;
b to ColMajorMatrix;
proceed;

}

}

class Utils {

static Matrix makeUnit(int n) {
Matrix m = new Matrix(n,n);
for(int i=0;i<n;i++) m.set(i,i,1);
return m;

}

static Matrix pow(Matrix a, int n){
Matrix res = makeUnit(a.getCols());
for(int i=0; i<n; i++) res = mul(a, res);
return res;

}

static Matrix mul(Matrix a, Matrix b) {
Matrix m = new Matrix(a.getRows(),b.getCols());
for(int r=0; r<m.getRows(); r++){

for(int c = 0; c<m.getCols(); c++){
double d = 0;
for(int k=0; k<a.getCols(); k++){

d += (a.get(r,k) * b.get(k,c));
}
m.set(r,c,d);

}
}
return m;

}

}

interface Matrix { ... }

class Utils {

static RowMajorMatrix makeUnit(int n) {
RowMajorMatrix m = new RowMajorMatrix(n,n);
for(int i=0;i<n;i++) m.set(i,i,1);
return m;

}

static RowMajorMatrix col2row(ColMajorMatrix cm){ ... }

static ColMajorMatrix row2col(RowMajorMatrix rm){ ... }

static RowMajorMatrix pow(RowMajorMatrix a, int n){
RowMajorMatrix res = makeUnit(a.getCols());
for(int i=0; i<n; i++) res = mul(a, row2col(res));
return res;

}

static RowMajorMatrix mul(RowMajorMatrix a, ColMajorMatrix b) {
RowMajorMatrix m = new RowMajorMatrix(a.getRows(),b.getCols());
for(int r=0; r<m.getRows(); r++){

for(int c=0; c<m.getCols(); c++){
double d = 0;
for(int k=0; k<a.getCols(); k++){

d += (a.get(r,k) * b.get(k,c));
}
m.set(r,c,d);

}
}
return m;

}

}

interface Matrix { ... }

class Utils {

static Matrix makeUnit(int n) {
Matrix m = new RowMajorMatrix(n,n);
for(int i=0; i<n; i++) m.set(i,i,1);
return m;

}

static Matrix pow(Matrix a, int n){
Matrix res = makeUnit(a.getCols());
for(int i=0; i<n; i++) res = mul(a, res);
return res;

}

static RowMajorMatrix col2row(ColMajorMatrix cm){ ... }

static ColMajorMatrix row2col(RowMajorMatrix rm){ ... }

static Matrix mul(Matrix a, Matrix b) {
if (a instanceof ColMajorMatrix)

a = col2row((ColMajorMatrix) a);
if (b instanceof RowMajorMatrix)

b = row2col((RowMajorMatrix) b);

Matrix m = new RowMajorMatrix(a.getRows(),b.getCols());
for(int r=0; r<m.getRows(); r++){

for(int c=0; c<m.getCols(); c++){
double d = 0;
for(int k=0; k<a.getCols(); k++){

d += (a.get(r,k) * b.get(k,c));
}
m.set(r,c,d);

}
}
return m;

}

}

(a) Three versions of matrix-multiply-power.
class Sorter
combines InsertionSorter, QuickSorter {

QuickSorter to InsertionSorter { target(source.data); }
InsertionSorter to QuickSorter { target(source.data); }

swaprule boolean Sorter.sort(int lo, int hi) {
boolean large = (hi-lo)>5000;
double[] data = receiver.getData();

if (large && Utils.sortedness(data,lo, hi) > 0.90) {
receiver to InsertionSorter;

} else {
receiver to QuickSorter;

}
proceed;

}
}

class Utils {

static double sortedness(double[] data, int lo, int hi) { ... }

static void fill(double[] data) { ... }

static void shuffle(double[] data) { ... }

static void run() {
int size = 10000;
Sorter s = new Sorter();
s.data = new double[size];
fill(s.data); // Random
s.sort(0, size);
shuffle(s.data); // Almost sorted
s.sort(0, size);

}
}

class Sorter {

double[] data;
InsertionSorter i = new InsertionSorter();
QuickSorter q = new QuickSorter();

boolean sort(int lo, int hi) {
boolean large = (hi-lo)>5000;

if (large && Utils.sortedness(data,lo, hi) > 0.90) {
i.data = data;
return i.sort(data, lo, hi);

} else {
q.data = data;
return q.sort(data, lo, hi);

}
}

}

class Utils {

static double sortedness(double[] data, int lo, int hi) { ... }

static void fill(double[] data) { ... }

static void shuffle(double[] data) { ... }

static void run() {
int size = 10000;
Sorter s = new Sorter();
s.data = new double[size];
fill(s.data); // Random
s.sort(0, size);
shuffle(s.data); // Almost sorted
s.sort(0, size);

}
}

class Utils {

static double sortedness(double[] data, int lo, int hi) { ... }

static void fill(double[] data) { ... }

static void shuffle(double[] data) { ... }

static void run() {
int size = 10000;
QuickSorter q = new QuickSorter();
q.data = new double[size];
fill(q.data); // Random
q.sort(0, size);
shuffle(q.data); // Almost sorted
InsertionSorter i = new InsertionSorter();
i.data = q.data;
i.sort(0, size);

}
}

(b) Three versions of the sorting program.
class JL implements IL
combines AL, LL {

AL to LL { ... }
LL to AL { ... }

#insert(Entry e) as write;
#get(int i) as read;

swaprule AL {
if ((#write/#read) > 0.75) {

this to LL;
}

}

swaprule LL {
if ((#read/#write) > 0.50) {

this to AL;
}

}
}

class ListExperiment {

static void run(IL lst, int n){
lst = build(lst, n);
System.out.println(sample(lst));

}

static IL build(IL lst, int size){
for(int i=0; i<size ; i++){

Event next = generateEvent();
lst.initIterator();
while (lst.hasNext() && lst.next().timestamp>next.timestamp);
lst.insert(next);

}
return lst;

}

static double[] sample(IL lst){
int samples = lst.size()/15;
long sumX = 0, sumY = 0;
for(int i=0; i<samples ; i++){

Event e = lst.get(r.nextInt(lst.size()));
sumX+= e.x;
sumY+= e.y;

}
return new double[]{sumX/(double)samples,
 sumY/(double)samples};

}

}

class ListExperiment {

static int cR = 0;
static int cW = 0;

static void run(IL lst, int n){
lst = build(lst, n);
System.out.println(sample(lst));

}

static AL IL2AL(IL lst) { ... }
static LL IL2LL(IL lst) { ... }

static IL build(IL lst, int size){
for(int i=0; i<size; i++){

Event next = generateEvent();
lst.initIterator();
while (lst.hasNext() && lst.next().timestamp>next.timestamp);
lst.insert(next); cW++;
if ((cR+cW)<100){

/* do nothing */
} else if ((cR/cW) > 0.50) {

lst = IL2AL(lst);
} else if ((cW/cR) > 0.75) {

lst = IL2LL(lst);
} else if ((cW+cR) > 1000) {

cW = 0;
cR = 0;

}
}
return lst;

}

static double[] sample(IL lst){
int samples = lst.size()/15;
long sumX = 0, sumY = 0;
for(int i=0; i<samples; i++){

Event e = lst.get(r.nextInt(lst.size())); cR++;
sumX+= e.x;
sumY+= e.y;
if ((cR+cW)<100){

/* do nothing */
} else if ((cR/cW) > 0.50) {

lst = new AL(...);
} else if ((cW/cR) > 0.75) {

lst = new LL(...);
} else if ((cW+cR) > 1000) {

cW = 0;
cR = 0;

}
}
return new double[]{sumX/(double)samples,
 sumY/(double)samples};

}

}

class ListExperiment {

static AL IL2AL(IL lst) { ... }
static LL IL2LL(IL lst) { ... }

static void run(IL lst, int n){
LL ll = IL2LL(lst);
lst = build(ll, n);
Al al = IL2AL(lst);
System.out.println(sample(al));

}

static IL build(LL lst, int size){
for(int i=0; i<size; i++){

Event next = generateEvent();
lst.initIterator();
while (lst.hasNext() && lst.next().timestamp>next.timestamp);
lst.insert(next);

}
return lst;

}

static double[] sample(AL lst){
int samples = lst.size()/15;
long sumX = 0, sumY = 0;
for(int i=0; i<samples; i++){

Event e = lst.get(r.nextInt(lst.size()));
cR++;
sumX+= e.x;
sumY+= e.y;

}
return new double[]{sumX/(double)samples,
 sumY/(double)samples};

}

}

(c) Three versions of list-build-query program.

8.4. CONCLUSIONS 193

class JitString implements StringInterface
combines ThawedString, FrozenString {

ThawedString to FrozenString as freeze {
target(source.value, 0, source.count);

}

FrozenString to ThawedString as thaw {
target();
target.append(source);

}

}

class Utils {
static StringInterface[] run(JitString str, int n)

str.thaw();
 str = build(str , n);

str.freeze();
return prefixes(str);

}

static StringInterface build(StringInterface str, int n){
for(int i=0 ; i<n ; i++){

str = str.concat(Integer.toString(i%10));
}
return str;

}

static StringInterface[] prefixes(StringInterface str){
int count = str.length();
StringInterface[] data = new StringInterface[count];

for(int size=1; size<count; size++){
data[size-1] = str.subSequence(0, size);

}

return data;
}

}

class Utils {
static StringInterface[] run(StringInterface str, int n)

str = new ThawedString(str);
 str = build(str , n);

str = new FrozenString(str);
return prefixes(str);

}

static StringInterface build(StringInterface str, int n){
for(int i=0; i<n; i++){

str = str.concat(Integer.toString(i%10));
}
return str;

}

static StringInterface[] prefixes(StringInterface str){
int count = str.length();
StringInterface[] data = new StringInterface[count];

for(int size=1; size<count; size++){
data[size-1] = str.subSequence(0, size);

}

return data;
}

}

(a) Two versions of the string building/querying program.
class ClosedFile {

String path;

void setPath(String path) {
this.path = path;

}
}

class OpenFile {
String path;
FilePointer filePtr;

void write(String str){
this.filePtr.write(str);

}
}

class LockedFile {
String path;

}

class File
combines ClosedFile, OpenFile, LockedFile {

ClosedFile to OpenFile as open {
target.path = source.path;
target.filePtr = new FilePointer(source.path);

}

ClosedFile to LockedFile as lock {
target.path = source.path;

}

OpenFile to ClosedFile as close {
target.path = source.path;
source.filePtr.close();

}

}

void run(){
File f = new File();
f.setPath("tmp/data.txt");
f.open();
f.write("test");
f.close();

}

class File {

String path = null;
FilePointer filePtr = null;
boolean locked = false;

void setPath(String path) {
if (filePtr == null) {

this.path = path;
}

}

void write(String str){
if (filePtr != null) {

this.filePtr.write(str);
}

}

void close(){
if (filePtr != null) {

this.filePtr.close();
this.filePtr = null;

}
}

void open() {
if (!locked && path != null) {

this.filePtr = new FilePointer(path);
}

}

void lock() {
if (filePtr != null) close();
this.locked = true;

}

}

void run(){
File f = new File();
f.setPath("tmp/data.txt");
f.open();
f.write("test");
f.close();

}

(b) Two versions of a program that creates a file and writes to it.

194 CHAPTER 8. EVALUATION

() and contains a block of transformation logic () and a block of representation change
incentive code (). Furthermore, the application code () is not entangled with anything
else.

Chapter 9

Related Work

In chapter 3 we explore the design space for languages with support for representation
changes. In chapters 4 and 6 we introduce JITds and show how JITds relates to the tax-
onomy of chapter 3. In this chapter we discuss the work related to JITds in considerable
detail, i. e., we discuss each effort in relation to JITds, and we discuss each effort in rela-
tion to the taxonomy of chapter 3, when applicable.

The efforts discussed in this chapter can be categorised in roughly three partitions.
First, in section 9.1, we discuss a set of programming languages and programming para-
digms which provide developers with programming features to express representation
changes of data objects at runtime. Second, in section 9.2, we discuss a set execution
environments, and frameworks that help the developer to choose the right data repre-
sentation for “collections” (e. g., list, set, array, . . .). Finally, in section 9.3, we discuss
work related to implicit changes of the computation, as opposed to changing the data
representation, at runtime.

9.1 Languages and Paradigms

We now discuss a set of programming languages and programming paradigms where
changing the representation of an object is a core feature. This set of programming
languages was compiled during the literature study we performed when distilling the
taxonomy from chapter 3. We first discuss Late Data Layout because it is the most re-
lated to JITds in the sense that Late Data Layout also focusses on improving the perfor-
mance. The other languages are presented in order of genericness, i. e., SmallTalk, the
most generic language, is presented first.

9.1.1 Late Data Layout

Late Data Layout (LDL) and Automated Ad hoc Data Representation Transformations
(ADRT) are two techniques developed by Ureche et al. [85, 84]. LDL and ADRT focus on
statically reducing the number of “expensive” heap allocated objects in favour of “cheap”
stack values, in order to minimise execution time. The running example for explaining

195

196 CHAPTER 9. RELATED WORK

ADRT is the Gaussian integer, i. e., a complex number a +bi with a,b ∈N. From a soft-
ware engineering perspective the ideal representation of a Gaussian integer is a pair of
integers which allows easy access to both the real and the imaginary parts. From a perfor-
mance point of view, however, the use of heap-allocated structures, such as pairs, intro-
duces unnecessary overhead. Therefore, a performance-conscious programmer might
want to encode the high-level integer pair into a single long value, and thus avoid al-
locating objects in the heap. Ureche et al. [85, 84] argue that manually minimising the
execution time by translating the code from a high-level representation to a low-level
representation is a tedious and error-prone activity. Their technique LDL combines type
propagation with type inference to find those lexical places in a program where coercion
between high-level and low-level data representations are needed [85]. Their technique
ADRT makes such representation transformations expressible by the developer [84]. In
short, LDL and ADRT leverage the type system in order to infer where coercions between
levels of representations need to be inserted.

Both the work of Ureche et al. [85, 84] and our work on JITds incorporate the idea
of changing the representation of data objects at runtime, with the key goal to improve
performance. In general, the behaviour of LDL is to encode high-level representations
(heap-allocated) as low-level representations (stack-based), and let this stack-based value
be propagated thought the system. When a method is invoked on a stack-based value,
however, it is converted back to its high-level representations, i. e., as a heap allocated
object. This is much like the specialised swap from JITds, where a data object is coerced
into a representation that does support the requested operation.

However, constantly changing back and forth between different representations can
ruin potential performance gains. To avoid the overhead of constantly converting back
and forth, Ureche et al. [84] propose the use of bypass methods. Bypass methods take
the receiver object in its encoded format , i. e., stack-based value, as first parameter and
provide a behaviourally-equivalent implementation for the original method. A simple
example could be a toString method: bypass_toString(x) instead of
convert(x).toString(). The bypass methods in JITds (section 4.5.1.3) are in-
spired by and directly based on the bypass methods in [84].

The techniques presented by Ureche et al. [85, 84] also differ from JITds in some as-
pects. A first difference is the focus of LDL on the impact on performance of stack-base
values versus heap-allocated objects. A just-in-time object, however, is always heap-
allocated. Hence, the source of performance improvement when using LDL is the re-
duction of overhead (allocation, dereferencing) which also translates to faster execution.
The performance gains when using JITds, on the other hand, are expected to primarily
originate from improvements on the algorithmic level.

A second difference between LDL and JITds is the relation between representations
and their associated operations (cf. behaviour and data interface). In LDL, one of the
representations, i. e., the heap-allocated value, is associated with a set of operations,
whereas the other representation, i. e., the encoded stack value, is not. This implies a
fundamental difference in treatment of both representations. In JITds, all representa-
tions are equivalent and all representations have a proper set of operations (cf. data in-
terface).

As stated before, in ADRT a value can be stored in one of two representations: as a

9.1. LANGUAGES AND PARADIGMS 197

stack value or as a heap-allocated value. The transformation logic which describes how
to transition between the two representations has to be expressed inside of a transfor-
mation description object (see listing 9.2). This makes ADRT a nice example of an ap-
proach that ensures an orderly transformation with external transformation logic. The
obligatory components of a transformation description object are the toRepr and the
toHigh methods, which respectively describe how to transform from a high-level to
a low-level representation and the other way around. Hence, the transition graph that
can be derived from a transformation description object is always a complete (directed)
graph with exactly two vertices. This is the third difference with JITds where transition
graphs can be more general. JITds allows for arbitrary complex transitions between an
arbitrary number of representations.

ADRT offers programmers a construct to express where representation changes are
wanted in the program. This construct, which is called a transformation scope, can con-
tain anything ranging from a single expression to an entire class definition. As a result,
the transitions introduced by ADRT are limited to statically inferable, i. e., lexical, places
only. Thus, the fourth difference between ADRT and JITds is that ADRT allows the devel-
oper to express external representation change incentive logic only. JITds, on the other
hand, provides constructs to express both internal and external representation change
incentives. It might seem like a limitation of ADRT to only support external represen-
tation change incentive logic. However, the absence of internal representation logic al-
lows for the automation of inserting the statically inferred coercions. Moreover, because
ADRT relies on the techniques from LDL, these statically introduced coercions can be
shown to be optimal. JITds does not give such guarantees.

9.1.1.1 Example.

A Gaussian integer is a complex number a +bi with a,b ∈N. In Scala, the base language
of ADRT, such a Gaussian integer (cf. GaussianInt) can be represented by a pair of
Ints. This is shown on line 2 of listing 9.1. Further, the class GaussianInt provides
two methods, i. e., % and norm (lines 3 and 4, respectively). The method gcd of the
object GCD can be used to compute the greatest common devisor of two such Gaussian
integers using a variation of Euclid’s algorithm (see lines 8–11).

In Scala, two Ints consume as much space as one Long. Hence, a GaussianInt
could also be represented as a Long. Conceptually,however, the pair representation is
preferred. From a performance point of view, however, the Long representation is pre-
ferred because a long can be stack allocated as opposed to pairs that are always heap
allocated. A programmer who is optimising for performance, might identify the need to
alternate between these two representations.

To describe the relation between the high-level representation and the low-level rep-
resentation, the LDL developer can define a transformation description object. Listing 9.2
shows the signatures of such a transformation description object, with the compulsory
coercion methodstoRepr andtoHigh. Further, the transformation description object
contains a bypass constructor (line 7) and two bypass methods (lines 10 and 11).

Further, a programmer who is optimising for performance might identify the need to
use the Long representation in the context of the gcd method because there, using the

198 CHAPTER 9. RELATED WORK

Listing 9.1: GCD describes how to compute the greatest common devisor of two Gaussian
integers.(code adapted from [84])

1 object GCD {
2 implicit class GaussianInt(pair: (Int, Int)) {
3 def %(that: (Int, Int)): (Int, Int) = ...
4 def norm = ...
5 }
6
7 adrt(IntPairAsGaussianInt) {
8 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int) = {
9 val remainder = n1 % n2

10 if (remainder.norm == 0) n2 else gcd(n2, remainder)
11 }
12 }
13 }

Listing 9.2: Definition of a transformation description object between a pair of Ints and
single Long. (code adapted from [84])

1 object IntPairAsGaussianInt extends Transformation {
2 // coercions:
3 def toRepr(pair: (Int, Int)): @high Long = ...
4 def toHigh(l: @high Long): (Int, Int) = ...
5
6 // constructor:
7 def ctor_Tuple2(_1: Int, _2: Int): @high Long = ...
8
9 // interface:

10 def implicit_GaussianInt_%(n1: @high Long, n2: @high Long): @high Long = ...
11 def implicit_GaussianInt_norm(n: @high Long): Int = ...
12 }

heap-allocated pair representation implies too much overhead. Using ADRT’s scopes,
the developer can statically mark the gcd method as a method that prefers the Long
representation. This is shown on lines 7–12 in listing 9.1. A scope takes a transforma-
tion description object as an argument (line 7) and defines the scope, here lines 8–11, in
which the transformation is to be applied.

The following box summarises LDL and ADRT in terms the taxonomy presented chap-
ter 3.

LDL and ADRT in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In LDL and ADRT it is the developer who is responsible for defining the representa-
tions between which a change is possible and how the representation change is to be
carried out. The environment, on the other hand, is responsible for initiating the rep-
resentation changes when needed and/or possible.

9.1. LANGUAGES AND PARADIGMS 199

Q2: How is a data representation change realised?
The developer has to define a transformation object which specifies the back and forth
transitions between two representations. The transformation object ensures an orderly
representation change, external to both representations.

Q3: When is a data representation change executed?
The environment is responsible for initiating the representation changes when needed
and/or possible. The lexical places where an actual representation change has to occur
are determined by the compiler, i. e., statically and external to the data structure.

Q4: Which data representation changes are possible?
A transformation object specifies the back and forth transitions between two represen-
tations, i. e., transition graphs in LDL and ADRT are always isomorphic with K2.

Q5: How long does a data representation change take?
Representation changes in LDL and ADRT are always instant.

Q6: What is changed after a data representation change?
Representation changes in LDL and ADRT preserve identity, but change state. Arguably
also behaviour is changed, because a representation change, changes the way in which
the object is accessed. The observable behaviour, however, is supposed to remain
fixed.

Q7: Why are data representation changes introduced?
In LDL and ADRT, representation changes are introduced to reduce the overhead of
heap-allocated objects. The reason is clearly to improve performance.

9.1.2 Object Replacement (in Smalltalk)

Smalltalk is a dynamically-typed class-based object-oriented language. While Smalltalk
was not designed to support representation changes as such, it does provide a powerful
primitive method, become, that can be used to implement representation changes. In
Smalltalk, become: is a message that is understood by any object a which expects a
single argument, b and which effectively replaces the object denoted by a by the object
b.

Of course, you shouldn’t use become: casually. It comes at a cost, which
may be prohibitive in many implementations. In early Smalltalks, become:
was cheap, because all objects were referenced indirectly by means of an object
table. In the absence of an object table, become: traverses the heap in a
manner similar to a garbage collector. The more memory you have, the more
expensive become: becomes.

. . .

You can even conceive of type-safe become: . Two way become: is only
type safe if the type of A is identical to that of B, but one way become: only
requires that the new object be a subtype of the old one.

200 CHAPTER 9. RELATED WORK

Listing 9.3: The representation of m changes from RowMajorMatrix to
ColMajorMatrix by a call to become: in Smalltalk.

1 m := RowMajorMatrix new.
2 m become: (ColMajorMatrix new: m).

— Gilad Bracha
http://gbracha.blogspot.be/2009/07/miracle-of-become.
html

We can look at become as a primitive to implement genuine data representation
changes. But, as illustrated by the quote of Gilad Bracha, become: in contemporary
Smalltalk implementations is both expensive and not guaranteed to be type safe. More
recently, 2015, Miranda and Béra [58] propose the use of a read barrier to support a more
efficient become. To implement type safe representation changes in Smalltalk, the de-
veloper must guarantee that the old object and the new object have the exact same type.

Listing 9.3 shows a small Smalltalk program where the representation of m changes
from RowMajorMatrix to ColMajorMatrix by a call to become:. If both Row-
MajorMatrix andColMajorMatrix implement the exact same set of messages and
instance variables, thenRowMajorMatrix andColMajorMatrix can be considered
the yield instance of the same type and then the representation change on line 2 is type
safe.

The following box summarises Smalltalk in terms the taxonomy presented chapter 3.

Smalltalk in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In Smalltalk the developer is responsible for all potential representation changes.

Q2: How is a data representation change realised?
Smalltalk’s become allows one object to replace another, which effectively imple-
ments a representation change. Such a representation change, however, is not orderly.

Q3: When is a data representation change executed?
Everywhere a developer introduces a become, a representation change is executed.
Since become can only be inserted in lexical places, Smalltalk supports only static
representation change incentive code.

Q4: Which data representation changes are possible?
In Smalltalk any object can become any object. Hence, the transition graph in
Smalltalk is isomorphic with Kn (with n the number of classes in the system).

Q5: How long does a data representation change take?
become changes the representation of an object instantaneously.

Q6: What is changed after a data representation change?
become replaces one object by another: the identity is preserved, anything else can
have changed, i. e., both state and behaviour.

http://gbracha.blogspot.be/2009/07/miracle-of-become.html
http://gbracha.blogspot.be/2009/07/miracle-of-become.html

9.1. LANGUAGES AND PARADIGMS 201

Q7: Why are data representation changes introduced?
In Smalltalk the developer is responsible for everything. Hence, the developer can use
become, which is general, for any reason.

9.1.3 Object Evolution

Changing the type of an object at runtime is called dynamic object reclassification (cf.
chapter 4). Cohen and Gil [13] make the case for a restricted form of dynamic object
reclassification called Object Evolution. Whereas dynamic object reclassification allows
an object of any type to change to any other type, Object Evolution only allows an ob-
ject to gain properties. (i. e., methods and/or fields) but never to lose any property. This
restricted form of reclassification is called monotonic reclassification and Cohen and Gil
[13] proposed three concrete implementation techniques to realise monotonic reclassi-
fication, i. e., M-Evolution, S-Evolution, and I-Evolution.

Explicit support for orderly representation changes is the key resemblance between
Object Evolution and JITds. Object Evolution introduces evolvers, which describe how
new fields and new method have to be initialised upon a representation change. Just
like to JITds’s transition functions, evolvers look a lot like parameterless constructors,
responsible not for the orderly construction of an object but responsible for an orderly
representation change of an object. A difference between evolvers and transition func-
tions is that evolvers describe how to initialise new fields, whereas transition functions
describe the full transition between two sets of fields, cf. the pseudo variables source
and target.

The key difference between Object Evolution and JITds is the kind of dynamic object
reclassification that is allowed. Object Evolution is restricted to monotonic reclassifica-
tion. Not considering fields, this means an object can only acquire new methods and
never lose the ability to invoke a method. In a strict perspective, JITds provides an even
more restricted kind of reclassification, called homomorphic reclassification, where the
set of messages understood is invariant.

The following box summarises Object Evolution in terms the taxonomy presented
chapter 3.

Object Evolution in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In Object Evolution the developer is responsible for all potential representation
changes.

Q2: How is a data representation change realised?
A transformation between two representations is defined by an evolver. The evolver is
a member of a class, hence, transformation logic in Object Evolution is internal and
orderly.

Q3: When is a data representation change executed?
Everywhere a developer introduces the →-operator, a representation change is exe-

202 CHAPTER 9. RELATED WORK

(a) In FickleI I state classes are subclasses of
a root class.

(b) In JITds any set of classes can be com-
bined using a form of multiple-inheritance.

Figure 9.1: FickleI I and JITds differ in how reclassifiable classes are combined.

cuted. Since, → can only be inserted in lexical places, Object Evolution supports only
static representation change incentive code.

Q4: Which data representation changes are possible?
Representation changes in Object Evolution are unidirectional (i. e., one can not tran-
sition back), and only down the ladder of class hierarchy (i. e., an object can evolve into
a subtype but not into a supertype).

Q5: How long does a data representation change take?
The →-operator changes the representation of an object instantaneously.

Q6: What is changed after a data representation change?
The →-operator changes both state and behaviour, while the identity is preserved.

Q7: Why are data representation changes introduced?
Object Evolution is intended to be used in applications where dynamic object reclas-
sification is wanted. Hence, Object Evolution is generally applicable.

9.1.4 Dynamic Reclassification (in FickleI I)

FickleI I is, just like JITds, an imperative, class-based, statically-typed object-oriented
language [27]. FickleI I introduces two new kinds of classes, i. e., root classes and state
classes. All subclasses of root classes are state classes, and conversely, state classes have
a root class up their hierarchy chain (see figure 9.1a). FickleI I allows dynamic reclassi-
fication of objects with the root class as type to any state class with the same root class.
Reclassification is obtained though a new language construct, the reclassification prim-
itive (⇓). FickleI I is proven to be type safe and sound with respect to the operational
semantics.

The dynamic reclassification proposed by FickleI I is very related to our approach:
objects of certain types can transition between different classes. Both approaches in-

9.1. LANGUAGES AND PARADIGMS 203

troduce a reclassification primitive, i. e., mate ⇓ F r og and mate to Frog reclassify an
object mate to the representation F r og in Fickle and JITds, respectively. We identify
the following differences between FickleI I and JITds: 1. FickleI I ’s state classes (cf. our
representation classes) have to be explicitly annotated as such and they have to be —
direct or indirect — subclasses of a root class.1 A just-in-time class, on the other hand,
is a subtype of a set of representation classes. 2. To ensure soundness, FickleI I ’s type
system does not allow field members to have the type of a state class. Because represen-
tation classes are regular classes in our approach, this limitation does not apply to our
language (figure 9.1). 3. In FickleI I , when an object reclassifies from class A to class B, all
fields present in both classes are kept as is, fields not present in B are dropped, and fields
only present in B are added and initialised with their default value. There is no support
for transition functions (or a similar construct) to express orderly transitions between
two states. 4. All reclassifications in a FickleI I program are (syntactically) explicit, i. e., by
use of the ⇓ primitive. A just-in-time object can change its representation both explic-
itly (using the to statement), but also implicitly either because of a specialised swap, or
because an internal or external swap rule triggered a representation change.

The following box summarises Fickle in terms the taxonomy presented chapter 3.

Fickle in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In Fickle the developer is responsible for all potential representation changes.

Q2: How is a data representation change realised?
Drossopoulou et al. [27] do not specify how to express transformation logic.

Q3: When is a data representation change executed?
Everywhere a developer introduces the ⇓-operator, a representation change is exe-
cuted. Since, ⇓ can only be inserted in lexical places, Fickle supports only static repre-
sentation change incentive code.

Q4: Which data representation changes are possible?
Representation changes in Fickle are possible between all state classes that share a
common root class.

Q5: How long does a data representation change take?
The ⇓-operator changes the representation of an object instantaneously.

Q6: What is changed after a data representation change?
The ⇓-operator changes both state and behaviour, while the identity is preserved.

Q7: Why are data representation changes introduced?
Fickle is a language that natively supports dynamic object reclassification. Hence,
Fickle is generally applicable if one wants to introduce representation changes.

1In Fickle3 [17], the successor of FickleI I , the explicit annotation of state and root classes is not longer
needed, because Fickle3 has a more refined type and effect system than FickleI I . However, the language design
aspects are better described for FickleI I than for Fickle3. Hence, we base our comparison on [27] instead of
[17].

204 CHAPTER 9. RELATED WORK

9.1.5 Typestate-Oriented Programming (in Plaid)

Typestate-oriented programming is an extension of the object-oriented programming
paradigm where objects can be modelled in terms of changing state [3]. Plaid is a typestate-
oriented programming language providing native support for encoding state machines
directly in their programs [78]. Such state machines are reifications of assumed protocols
that can often be found in software libraries or frameworks.

A simple example is an object representing a file which can be opened or closed (cf.
section 8.3.3). Here, the protocol is that only open files can be read from, and only closed
files can be opened. This example is implemented in listings 9.4 to 9.6 in Java, Plaid, and
JITds respectively.

Java The protocol of how a File is to be used is cryptically added as a comment on line
3 in listing 9.4 but can not be enforced. For instance, when the file is still closed,
reading from it will result in aNullPointerException (cf. unitisedfilePtr,
on line 5 in listing 9.4) unless the programmer explicitly adds checks.

Plaid The protocol, and the corresponding state machine, of how a File is to be used
that can be expressed using states in Plaid (see listing 9.5).2 Changing the state
of an object has to be programmed explicitly using the state change operator <-,
for which only this can be the receiver. As a result, explicit checks to ensure
correct the usage of the file protocol are not needed in Plaid. Hence, callingread-
ClosedFile (see listing 9.7) with an open file causes a runtime exception.

JITds Finally, in JITds a File is a combination of ClosedFile and OpenFile. The
methods open and close can be expressed as named transition functions: the
logic to control representation changes is centralised in the just-in-time classFile.
WhenreadClosedFile andreadFileAndClose (listings 9.7 and 9.8, respec-
tively) are executed in JITds, no runtime exception occurs. Callingopen (cf.read-
ClosedFile) is idempotent for open files; and a closed file will automagically be
opened in readFileAndClose, because a call to read implicitly invokes a spe-
cialised transition from ClosedFile to OpenFile.

Both Plaid and JITds are class-based object-oriented languages with native support
for representation changes, including an operator to instruct such a representation change.

A first difference is that Plaid, as opposed to JITds, is dynamically (or gradually)
typed. A more important difference is Plaid’s focus on functional and behavioural repre-
sentation changes, i. e., object protocols. A representation change has its semantic origin
in the application’s state-based model, i. e., a file transitioning from open to closed im-
plies a different state and therefore different behaviour is expected. This explains certain
design choices such as the flow-sensitive, permission-based type system to track the cur-
rent representation of the objects in the flow of a program. Such a type system makes less
sense in the context of JITds, whose focus is on non-functional representation changes.

2Plaid, as described by Sunshine et al. [78], is a dynamically-typed language. For the purpose of compari-
son with Java and JITds we adapted the example code to match Java, i. e., we added static types.

9.1. LANGUAGES AND PARADIGMS 205
Li

st
in

g
9.

4:
A

fi
le

in
Ja

va
.

1
c
l
a
s
s

F
i
l
e

{
2

S
t
r
i
n
g

p
a
t
h
;

3 4
/
/

n
u
l
l

w
h
e
n

c
l
o
s
e
d
.

5
O
S
F
i
l
e

f
i
l
e
P
t
r

=
n
u
l
l
;

6 7
S
t
r
i
n
g

r
e
a
d
(
)

{
.
.
.

}
8

v
o
i
d

c
l
o
s
e
(
)

{
9

f
i
l
e
P
t
r

=
n
u
l
l
;

10
}

11
v
o
i
d

o
p
e
n
(
)

{
12

f
i
l
e
P
t
r

=
f
o
p
e
n
(

p
a
t
h

)
;

13
}

14
}

Li
st

in
g

9.
5:

A
fi

le
in

P
la

id
.

1
s
t
a
t
e
F
i
l
e

{
2

S
t
r
i
n
g

p
a
t
h
;

3
}

4 5
s
t
a
t
e
O
p
e
n
F
i
l
e

c
a
s
e

o
f
F
i
l
e

{
6

O
S
F
i
l
e

f
i
l
e
P
t
r
;

7 8
S
t
r
i
n
g

r
e
a
d
(
)

{
.
.
.

}
9 10

v
o
i
d

c
l
o
s
e
(
)

{
11

t
h
i
s

<
-

C
l
o
s
e
d
F
i
l
e
;

12
}

13
}

14 15
s
t
a
t
e
C
l
o
s
e
d
F
i
l
e

c
a
s
e

o
f

F
i
l
e

{
16

v
o
i
d

o
p
e
n
(
)

{
17

t
h
i
s

<
-

O
p
e
n
F
i
l
e
;

18
}

19
}

Li
st

in
g

9.
6:

A
fi

le
in

JI
T

d
s.

1
c
l
a
s
s
S
i
m
p
l
e
F
i
l
e

{
S
t
r
i
n
g

p
a
t
h
;

}
2 3

c
l
a
s
s
O
p
e
n
F
i
l
e

e
x
t
e
n
d
s
S
i
m
p
l
e
F
i
l
e

{
4

O
S
F
i
l
e

f
i
l
e
P
t
r
;

5
S
t
r
i
n
g

r
e
a
d
(
)

{
.
.
.

}
6

}
7 8

c
l
a
s
s

C
l
o
s
e
d
F
i
l
e

e
x
t
e
n
d
s

S
i
m
p
l
e
F
i
l
e

{
}

9 10
c
l
a
s
s

F
i
l
e
c
o
m
b
i
n
e
s

C
l
o
s
e
d
F
i
l
e
,

O
p
e
n
F
i
l
e

{
11

C
l
o
s
e
d
F
i
l
e

t
o

O
p
e
n
F
i
l
e

a
s
o
p
e
n

{
12

t
a
r
g
e
t
.
p
a
t
h

=
s
o
u
r
c
e
.
p
a
t
h
;

13
t
a
r
g
e
t
.
f
i
l
e
P
t
r

=
f
o
p
e
n
(

s
o
u
r
c
e
.
p
a
t
h

)
;

14
}

15 16
O
p
e
n
F
i
l
e

t
o
C
l
o
s
e
d
F
i
l
e

a
s
c
l
o
s
e

{
17

t
a
r
g
e
t
.
p
a
t
h

=
s
o
u
r
c
e
.
p
a
t
h
;

18
}

19
}

F
ig

u
re

9.
2:

Im
p

le
m

en
ti

n
g

a
fi

le
an

d
it

s
u

sa
ge

p
ro

to
co

li
n

Ja
va

,P
la

id
,a

n
d

JI
T

d
s.

206 CHAPTER 9. RELATED WORK

Listing 9.7: Procedure that opens,
reads, and closes a file.

1 String readClosedFile(File f) {
2 f.open();
3 String str = f.read();
4 f.close();
5 return str;
6 }

Listing 9.8: Procedure that tries to read
the contents of a file and then closes it.

1 String readFileAndClose(File f) {
2
3 String str = f.read();
4 f.close();
5 return str;
6 }

A final difference is that Plaid does not provide dedicated language construct to initiate
representation changes (cf. swap rules).

The following box summarises Plaid in terms the taxonomy presented chapter 3.

Plaid in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In Plaid the developer is responsible for all potential representation changes.

Q2: How is a data representation change realised?
In plaid it is possible to provide a specialised implementation of the <--operator,
which is the operator to introduce a representation change. Hence, it is possible to
define orderly representation changes in Plaid.

Q3: When is a data representation change executed?
Everywhere a developer introduces the <--operator, a representation change is exe-
cuted. Since, <- can only be inserted in lexical places, Plaid supports only static rep-
resentation change incentive code.

Q4: Which data representation changes are possible?
Representation changes in Plaid are possible between all state classes that are cases of
the same state class.

Q5: How long does a data representation change take?
The <--operator changes the representation of an object instantaneously.

Q6: What is changed after a data representation change?
The <--operator changes both state and behaviour, while the identity is preserved.

Q7: Why are data representation changes introduced?
Plaid is a language that natively supports dynamic object reclassification. Hence, Plaid
is generally applicable if one wants to introduce representation changes.

9.1.6 Gilgul

Costanza [15] developed the programming language Gilgul to tackle the consistency
problems that can arise when a programmer manually deals with dynamic object re-
placement: 1. all references to the object must be known in order to perform the re-

9.1. LANGUAGES AND PARADIGMS 207

placement and 2. even if all references are known, updating them one by one leaves the
heap in an inconsistent state during the updates.

Identity through indirection solves these issues: a reference points to an entry which
holds a referent which points to an object. This extra level of indirection allows Gilgul
to introduce the referent assignment operator #=. At the same time, this extra level of
indirection adds a new dimension to the type of objects and these so called referents.
For instance, referents can be fixed, which means that they may be copied and used but
not replaced; alternatively, referents may be bound, which means that they cannot be
replaced or copied.3

Just like JITds, Gilgul is based on Java. In the development of Gilgul, special care is
taken to be backwards compatible with the type system of the base language. This im-
plies that an object can only be replaced by another object, if that object implements at
least the same set of methods and holds at least the same set of fields (cf. additive re-
placement). In class-based programming languages, additive replacement is only possi-
ble between instances of the same class or subclasses. Ensuring type safety in the context
of subtractive replacement, i. e., replacement of an objects by an object that is not not an
instance of a subclass, is more complex. To this end Gilgul extends Java, and its type sys-
tem, with the concept of implementation-only classes: classes which provide a concrete
implementation, but that can not be used as a type. Consequently, instances of these
classes can always be replaced by instances of any class of the given hierarchy. Hence,
just like Plaid and FickleI I (and to a lesser extend Object Evolution) the type of the repre-
sentation changeable object is a super-type of all the possible representations. In JITds,
this is the other way around: the type of a just-in-type object is a subtype of any of its
representations.

The following box summarises Gilgul in terms the taxonomy presented chapter 3.

Gilgul in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
In Gilgul the developer is responsible for all potential representation changes.

Q2: How is a data representation change realised?
Gilgul’s #=-operator allows one object to replace another, which effectively imple-
ments a representation change. Such a representation change, however, is not orderly.

Q3: When is a data representation change executed?
Everywhere a developer introduces the #=-operator, a representation change is ex-
ecuted. Since, #= can only be inserted in lexical places, Gilgul supports only static
representation change incentive code.

Q4: Which data representation changes are possible?
Representation changes from supertype to subtype are always possible in Gilgul. Other
representation changes are only possible between all implementation-only classes that
share a common ancestor.

Q5: How long does a data representation change take?
The #=-operator changes the representation of an object instantaneously.

3 Bound referents is the classic approach of dealing with objects.

208 CHAPTER 9. RELATED WORK

(a) Heterogeneously-typed list. (b) Homogeneously-typed list.

(c) Homogeneously-typed list with inlining storage strat-
egy.

Figure 9.3: A three element list stored in three different ways.

Q6: What is changed after a data representation change?
The #=-operator changes both state and behaviour, while the identity is preserved.

Q7: Why are data representation changes introduced?
Gilgul is a language that natively supports dynamic object reclassification. Hence,
Gilgul is generally applicable if one wants to introduce representation changes.

9.1.7 Summary

Besides JITds, LDL and ADRT, there exist a fair amount of other programming languages
with support for online data representation changes, i. e., SmallTalk, FickleI I , Plaid, and
Gilgul. JITds, LDL, and ADRT, focus on improving the performance of a program (i. e.,
a non-functional feature). These other languages, however, introduce representation
changes to implement functional features (cf. typestate-oriented programming).

9.2 Frameworks and Environments for Changing Collections

Collections are arguably the most commonly used category of data structures. Virtually
all applications use some sort of collection to manipulate data. Replacing the implemen-
tation of a collection by a more efficient implementation can increase the performance
of an application significantly [10, 47, 69, 90]. It is thus not surprising that a lot of re-
search projects aim to ease, or completely take over, the job of the software developer
in choosing the best representation for his collections. In this section we discuss those
efforts that we consider to be the closed related to JITds. Some of these efforts, however,
only focus on representation selection as opposed to representation changes. These ef-
forts are not discussed in function of the taxonomy of representation changes.

9.2.1 Storage Strategies

Collections in dynamically-typed languages can hold elements of effectively any type,
i. e., collections are heterogeneously-typed (see figure 9.3a). However, in practice many

9.2. FRAMEWORKS AND ENVIRONMENTS FOR CHANGING COLLECTIONS 209

Figure 9.4: Finite state machine where the states reveal which storage strategy is used
upon insertion or deletion of en element. (Image based on [10])

collections contain elements of only one type (e. g., a list whose elements are all num-
bers, see figure 9.3b). Such collections are homogeneously typed. Storage Strategies [10]
is a technique for optimising the representation of homogeneously typed collections in
VMs for dynamically-typed languages. The optimisation relies on avoiding unnecessary
boxing of native values (e. g., as in figure 9.3c). Concretely, Storage Strategies have been
implemented as an optimisation for the PyPy interpreter.

Storage Strategies are best explained using a finite state machine (see figure 9.4).
Depending on the state, a different storage strategy is used. Any collection is initially
empty, and therefore start by using the empty strategy. Upon the insertion of the first el-
ement, the collection transitions to a new state and starts using a different storage strat-
egy, which depends on the dynamic type of the new element. When the element is an
integer, the integer strategy is chosen. While a collection is using the integer strategy,
elements are added to the collection without being boxed. The collection keeps using
this strategy as long as all elements added to the collection are integers. As soon as a
non-integer is added to the collection (see figure 9.4, long arrow from right to left), the
collection starts using the object strategy which stores all elements as references. In the
object strategy, native values have to boxed Hence, when transitioning from the inte-
ger to the object strategy, it is necessary to first box all integers already present in the
collection. When the last element of a collection is removed, regardless of the current
strategy, it transitions back to using the empty strategy. The integer strategy is an ex-
ample of an data specialisation (cf. section 3.2.7.2). In the implementation of [10] there
is an optimised strategy for each native data type (and each collection type, e. g., string
dict strategy for a di ct containing only str i ng s). The actual finite state machine is thus
larger than the one shown in figure 9.4.

Storage Strategies has many similarities with our work on JITds. First, changing
the storage strategy of a collection changes the behaviour of that collection, much like
changing the representation of a just-in-time object causes different method implemen-
tations to be invoked. Second, changing the storage strategy of a collection changes the
(type of) data structure that is used to back the collection (i. e., list of integers versus
list of references). Similarly, changing the representation of a just-in-time object can
change the type (and number) of fields. In JITds, it is the responsibility of the developer
to keep the object consistent, this is realised by implementing a transition function. In
the implementation of [10], a similar piece of code is found to ensure the transition of
a collection with a specialised strategy (unboxed) to a collection with the object strategy

210 CHAPTER 9. RELATED WORK

(i. e., swi tch_to_ob j ect_str ateg i es).
Unlike JITds, Storage Strategies was developed with a single environment and sce-

nario in mind. Storage Strategies has to be discussed in the context of dynamically
typed languages where a collection can store values of any type. The concrete scenario
in which Storage Strategies prove their worth, is to optimise the storage scheme of ho-
mogeneously typed collections. This scenario translates to a rather regular (and fixed)
transition graph: the empty strategy is the start state — because all collections are ini-
tially empty — with transitions defined from the empty strategy to any other strategy
(bi-directional) and from any strategy to the object strategy (uni-directional). In a sense,
with JITds we generalise the techniques introduced by Bolz et al. [10]. One of our im-
plementations (i. e., JITds-Java) also uses a variant of the strategy pattern (i. e., bridge
pattern) to implement dynamic reclassification.

The following box summarises Storage Strategies in terms the taxonomy presented
chapter 3.

Storage Strategies in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
Storage Strategies is an implementation optimisation of the PyPy interpreter. All rep-
resentation changes are defined and initiated by the environment. This implies that
the developer is not necessarily aware of representation changes.

Q2: How is a data representation change realised?
The implementation of the PyPy interpreter realises the representation changes, i. e.,
storage strategies.

Q3: When is a data representation change executed?
The implementation of the PyPy interpreter decides when the representation changes,
i. e., storage strategies.

Q4: Which data representation changes are possible?
The implementation of the PyPy interpreter foresees a set of possible representation
changes.

Q5: How long does a data representation change take?
A representation change in Storage Strategies is instantaneous.

Q6: What is changed after a data representation change?
Both identity and behaviour are preserved in Storage Strategies, only the state is
changed.

Q7: Why are data representation changes introduced?
Storage Strategies focusses on reducing the memory overhead of homogeneous col-
lections in dynamic languages.

9.2.2 Brainy

Brainy is a program analysis tool that determines the best data structure for a given pro-
gram, a given input, and a given architecture [47]. Brainy makes its decision about which
data representation is the best for a given data interface based on a machine-learned

9.2. FRAMEWORKS AND ENVIRONMENTS FOR CHANGING COLLECTIONS 211

model. Hence, the biggest contribution of Jung et al. [47] is the techniques presented
to construct such models. In Brainy, this is realised in two phases. In a first phase,
Brainy randomly generates programs and measures the execution times for each viable
alternative data representation. Phase one produces for each data representation a set
of programs for which that data representation is the best option. Then, in phase two, a
training set is created for each data representation. This training set contains all the soft-
ware and hardware features that can be collected during the executions of the programs
selected in phase one. Then, techniques from machine learning are applied to these
training sets, which result in a model that explains which data representation works best
with a given program, input, and hardware.

While Brainy is a fully automated tool, the models on which the decision making is
based, are created a-priori. Jung et al. [47] focus their evaluation of Brainy on C/C++ and
STL in the context of vector, list, set, and map. However, the techniques presented
in [47] are said to be flexible enough to be generally applicable. In order to construct the
models for e. g., vector, Jung et al. [47] had to explicitly identify list, deque, set
(map), avl_set (avl_map), and hash_set (hash_map) as viable data representations
for the vector data structure. Thus, the developer that wishes to use Brainy in the
context of his own data structures has to create his own models that reason about the
intended data structures and has to identify the set of data representations that are viable
substitutes. This resembles JITds in the sense that the developer needs to explicitly list
the set of representations of a just-in-time class.

The motivation for the work on the Brainy project is similar to what we present in the
first part of our motivation chapter (see section 2.1). Jung et al. [47] present a convinc-
ing argument that data representation selection is important and that data representa-
tion selection is hard to get right. For instance, they refer to the work on Perflint [54],
which shows that even expert developers make suboptimal decisions when it comes to
data representation selection. Jung et al. [47] partially attribute this bad practice to the
limitations of asymptotic complexity measures. We support this claim in section 2.1.
Further, Jung et al. [47] identify branch misprediction as one of the hardware features
that plays an important role in the performance of programs. Thus, it is important to
consider the effects of branch prediction when deciding upon which data structure (and
algorithm) to use in a program. Compared to two very related projects (Chameleon[69]
and CoCo[90] which we discuss next), Brainy is the only project that explicitly takes the
underlying hardware into account.

Brainy in Seven Questions and Answers:
Brainy is a tool (environment) that performs data structure selection. Brainy decides

which representation is the best based on a machine-learned model. Because Brainy only
supports data structure selection (as opposed to changes), it is not classifiable according to
the seven dimensions of representation changes.

212 CHAPTER 9. RELATED WORK

Listing 9.9: Rule language to guide collection selection (adapted from [69]).

rule : from cond to
from : Collection | ArrayList | LinkedList | ...
to : ArrayList | LinkedList | ...
cond : comparison | cond && cond | ...
comparison : expr < const | expr == const | ...
expr : opCount | heapdata | expr + expr | expr / expr | ...
opCount : #get(int) | #set(int,int) | ...

9.2.3 Chameleon

Many programs written in high-level languages make extensive use of collections. Chameleon
is a tool that helps developers to pick the best implementation from a set of available
collections [69]. First, Chameleon collects detailed information on the run-time usage
of collections and report these back to the developer. Then, this information is fed into
a rule engine which suggests the most appropriate choice of data structure. All this is
done on a per-allocation context basis, i. e., the combination of the lexical place in the
source code where a collection is allocated (new Object()) as well as the call stack at
the moment of allocation.

Chameleon uses a rule engine to make its decisions. A subset of the language to
express these rules is shown in listing 9.9. First, note the resemblance between internal
swap rules and these rules: there is a “from” representation and a “to” representation,
as well as a “condition that must hold” (cfr. the body of an internal swap rule). Second,
note the resemblance between invocation counters and opCount: it is a counter based
on the name and usage of the operation.

Further comparison of Chameleon with JITds shows fewer resemblances. The ma-
jor difference is that Chameleon targets data structure selection and does not consider
online representation changes. Shacham et al. [69] did some preliminary effort to fully
automate their approach, i. e., to run Chameleon during the execution of a program.
However, even with this online approach the selected implementation remains fixed for
an already allocated object for the duration of its lifetime, i. e., representation selection
instead of representation change. While the techniques explored by Shacham et al. [69]
are not necessarily limited to collections, the whole approach of Chameleon is highly
biased towards this frequently-used class of data structures. In Chameleon, rules have
access to more information than swap rules in JITds, e. g., heapdata (see expr in list-
ing 9.9) determines the amount of used memory versus the amount of needed memory
of a collection object. This is information collected at run-time (during each garbage col-
lection) and shows that Chameleon is tightly coupled with its host-language’s execution
environment, here an adapted version of IBM’s J9 production JVM. Both of our imple-
mentations of JITds show much less coupled to a specific execution environment (i. e.,
we can target the Java runtime or our custom-built C runtime).

9.2. FRAMEWORKS AND ENVIRONMENTS FOR CHANGING COLLECTIONS 213

Figure 9.5: Finite state machine where the states encode the sequence of operations.
(Image based on [61])

Chameleon in Seven Questions and Answers:
Chameleon is a tool (environment) that helps developers with data structure selection.

Chameleon suggests a representation based on a rule engine and detailed information col-
lected during an execution of the program. Because Chameleon only supports data structure
selection (as opposed to changes), it is not classifiable according to the seven dimensions of
representation changes.

9.2.4 Dynamically Transforming Data Structures

Österlund and Löwe [61] introduce transformation data structures. A transformation
data structure is similar to a just-in-time data structure in the sense that both constructs
aim to combine multiple representations into monolithic entity of which the representa-
tion can change during the execution of a program. Moreover, also the reason for chang-
ing the representation is the same, i. e., to adapt to a changing context in which the data
structure is used in order to improve the efficiency of a program.

The implementation of transformation data structures is based on forwarding (cf.
JITds-Java) and relies on the implementation of a changeTo and a constructThis
method for each representation. These methods are to be provided by the developer
of the transformation data structure, who is expected to be a library designer. This ap-
proach of defining transformation logic is an extreme case of general transition functions
in JITds. On the one hand, this avoids the problem of an explosion in the number of tran-
sition functions, i. e., n instead of n2(−n), on the other hand, this approach requires that
all representations can be defined in terms of read and update operations on the old
representation (cf. section 4.6).

Österlund and Löwe [61] identify that a finite state machine can be used to encode
sequences of invoked operations (i. e., data interface usage pattern, section 3.2.7.2), and

214 CHAPTER 9. RELATED WORK

that depending on the data interface usage pattern using a different representation can
yield a more efficient execution. Figure 9.5 show such a finite state machine that de-
scribes when to change the representation of a list between an array-based implemen-
tation and a hash-based implementation. The labels on the edges represent operations:
H is an operation where the hash-based implementation is an order of magnitude more
efficient than the array-based implementation; A is an operation where the array-based
implementation is an order of magnitude more efficient than the hash-based implemen-
tation; anda is an operation where the array-based implementation is significantly more
efficient than the hash-based implementation (but not an order of magnitude). When an
operation is performed, the appropriate edge is taken, when a state is reached with dou-
ble contours, then a representation change is performed. The core contribution in [61],
is the process of creating such a finite state machine. This process uses offline learning
based on profiled sample executions of example programs.

Österlund and Löwe [61] identify a set of pitfalls when using transformation data
structures: e. g., issues that arise from multi-threading, issues that arise when using the
iterator pattern, and issues that arise when the internal representation is used as moni-
tor object. These issues are all instances of what we called the “the problem of escaping
pointers” in chapter 7, which we identified to be a direct result of using the strategy pat-
tern.

The following box summarises Dynamically Transforming Data Structures in terms
the taxonomy presented chapter 3.

Dynamically Transforming Data Structures in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
To develop a transformation data structure, the developer needs to supply both trans-
formation logic. The core contribution of Österlund and Löwe [61] is the model to
train representation change incentive. The targeted audience for building transforma-
tion data structures are library designers.

Q2: How is a data representation change realised?
The methods changeTo and constructThis have to implemented for all possible
representation of the transformation data structure.

Q3: When is a data representation change executed?
Österlund and Löwe [61] describe a process of how to build a finite state machine that
records operation sequences. The resulting finite state machine then suggests when a
representation change is advisable.

Q4: Which data representation changes are possible?
In a transformation data structure all alternative representations are equivalent, i. e.,
they share a set of operations (i. e., data interface) and a set of algorithms (i. e., a sort of
abstract computation). The developer also defines all possible representation changes
by implementing a lot of changeTo and constructThis methods. Hence, the
transition graph of a transformation data structure is complete.

Q5: How long does a data representation change take?
To change the representation of a transformation data structure changes the appro-
priate changeTo and constructThis are invoked. When constructThis fin-

9.2. FRAMEWORKS AND ENVIRONMENTS FOR CHANGING COLLECTIONS 215

ished, the representation is complete. The user of a transformation data structure can
not take control changeTo and constructThis are being executed, hence, trans-
formation data structure have instant representation changes.

Q6: What is changed after a data representation change?
The identity of a transformation data structure is preserved when its representation
changes, The state is changed and the and behaviour can change as well, i. e., when
the new representation relies on different algorithms.

Q7: Why are data representation changes introduced?
[61] introduce transformation data structure to exploit the possibly changing context
in which a data structure is used. They bring up number of available cores, size and
type of input, contention, and memory usage as examples of context attributes.

9.2.5 CoCo

CoCo, container combinations, is similar to Chameleon, a technique to improve the per-
formance of Java programs by selecting the best collection for a given application [90].
The biggest difference with Chameleon, however, is that CoCo intervenes at run-time,
i. e., CoCo dynamically replaces an old collection implementation with a better one. In
this context, CoCo focusses on two concerns: how to ensure a safe replacement and how
the ensure low overhead.

The implementation of a container combination requires both manual and auto-
mated efforts. Consider, for instance, ListCombo with two possible representations
ArrayList and LinkedList. The classes and interfaces that are needed to imple-
ment ListCombo are shown in figure 9.6. On the one hand, the CoCo static compiler
generates the data interface for that container, called OptimizableList in figure 9.6,
and a skeleton for the class ListCombo, which can change the current active list im-
plementation. The developer,on the other hand, has to create an extension of each of
the existing collections’s implementations, here ArrayList and LinkedList, has
to provide abstraction-concretisation functionality, and the expert domain knowledge
about when to swap the active representation. The latter entails implementing theswap
method in the generated skeleton class ListCombo.

Just like in JITds, a combo container in CoCo has an active representation. How-
ever, CoCo maintains all inactive containers as well (cf. gradual representation change).
The rationale behind this approach is that “the natural idea of moving all elements from
one container to another may result in significant overhead” (paraphrased from Xu [90]).
In order to avoid moving elements back and forth, CoCo introduces abstract elements, as
opposed to the concrete elements commonly present in a container. An abstract element
in CoCo is a reference to another container combined with a range in that container.
In figure 9.7 two lists L0 and L1 are shown that together hold the concrete elements
O0,O1,O2,O3,O4. L0 holds the concrete objects O2 and O3, while L1 holds the other
concrete objects. Because both lists represent the same data, L0 holds an abstract ver-
sion of O2 and O3, i. e., those elements ofL0, from position 2 until 3 (< L0,2,3 >). Similarly,
L1 holds abstract versions of the other elements, which refer to the concrete elements in

216 CHAPTER 9. RELATED WORK

Figure 9.6: Overview of the classes and interfaces needed to create a container combina-
tion, here a ListCombo.

L0. The abstract elements in the active container are lazily concretised, whenever they
are accessed. For instance, calling L0.get(2), which should return O2, replaces the
abstract version of O2 in L0 by the concrete O2 from L1.

Further, CoCo proves that this technique of maintaining abstract and concrete values
in multiple containers is sound in the context of a change in container representation. Xu
[90] say that a container replacement is sound if any element added to a combo container
can always be successfully retrieved from that container, even after a container replace-
ment. How this influences operations other then adding and retrieving, e. g., obtaining
the size of the container, remains unclear. Hence, the sound replacement of collections
only applies to adding and retrieving elements.

The biggest differences between JITds and CoCo are that JITds proves soundness of
any representation change expressible in JITds and that representation changes in JITds
are not limited to containers only. As described in [90], Brainy only supports representa-
tion changes between containers that adhere to the same interface. While Xu [90] fore-
saw the ability to support representation changes between multiple (specialised) data
interfaces as future work in 2013, this has not been investigated as such. JITds, on the

9.2. FRAMEWORKS AND ENVIRONMENTS FOR CHANGING COLLECTIONS 217

Figure 9.7: Two lists, L0 and L1, that contain both abstract elements (italic) and concrete
elements (bold). Moreover, the abstract element in the one list are concrete in the other
and vice versa.

other hand, supports representation changes between multiple (specialised) data inter-
faces by means of specialised swaps. A final difference is that JITds does not keep abstract
objects around, and does not maintain multiple concurrent representations of the same
data structure.

The following box summarises CoCo in terms the taxonomy presented chapter 3.

CoCo in Seven Questions and Answers:

Q1: Who is responsible for data representation changes?
To develop a Combo Container, the developer needs to supply both transformation
logic as well as representation change incentive. The CoCo compiler (environment)
compiles these into plain Java.

Q2: How is a data representation change realised?
A container is a collection of elements. Instead of moving all elements from one con-
tainer to another upon a a representation change, CoCo only moves elements to the
current container on-demand, i. e., lazily. This is possible because the inactive con-
tainers hold abstract elements which can be concretised on-demand. The developer is
responsible for defining transformation logic in the form of abstraction/concretisation-
procedures per collection and per interface method.

Q3: When is a data representation change executed?
The developer of a combo container is responsible for defining swap conditions. When
a swap condition holds, a representation change is executed. The swap conditions can
trigger at virtually any point during the execution of a program. Hence, swap condi-
tions are internal and dynamic representation change incentives.

Q4: Which data representation changes are possible?
A developer combines a set of collection implementations into one combo container,
cf. the vertices in the transition graph. These collections have to share an interface,
cf. the relation between vertices in the transition graph. The developer also defines
the possible representation changes by means of swap conditions, cf. the edges in the
transition graph. Hence, the transition graph in CoCo is unique per combo collection
and is fully defined by the developer.

Q5: How long does a data representation change take?
When a combo collection changes its representation, the currently active container
becomes inactive and a previously inactive container becomes the active one. The in-
active containers, however, are also maintained. Abstract elements are only gradually
moved into the active container, i. e., on-demand.

218 CHAPTER 9. RELATED WORK

Q6: What is changed after a data representation change?
Both identity and behaviour are preserved when a combo container changes its repre-
sentation, and only the state is changed.

Q7: Why are data representation changes introduced?
CoCo focusses on reducing memory bloat and exploiting algorithmic advantages in
collections in general, and Java collections in specific. The techniques presented in
[90] are only applicable in the context of collections of elements.

9.2.6 Summary

Storage Strategies, Brainy, Chameleon, Transforming Data Structures, and CoCo intro-
duce representation selection or representation changes with the goal to reduce memory
overhead in collections. The focus in these efforts is on building and developing models
that describe when certain representation is to be preferred, e. g., by offline training. In
chapter 10, we speculate on how the techniques to build these models can be incorpo-
rated with our language design efforts.

9.3 Changing Computations

The focus of this dissertation is on online representation changes in the context of object-
oriented programming languages. In this section of the related work chapter we discuss
two programming language efforts where the focus is on implicit changes of the compu-
tation of a program during its execution.

9.3.1 PetaBricks

PetaBricks is an implicitly parallel programming language whose compiler is allowed to
decide which algorithm, out of a set of equivalent implementations of an algorithm, is to
be used at runtime [6]. An example of sorting in PetaBricks is shown in listing 9.10. Each
implementation, called a rule, describes how to compute a recursive step for a certain
region of the input data (from argument), optionally with a where-clause to denote in
which (corner) cases the rule can be applied. In listing 9.10 there are three rules: one
for the base case of singleton, one that implements merge sort, and one that implements
selection sort. The combination of rules is called a transform, which is PetaBrick’s equiv-
alent of a function, but with algorithmic choice encoded. It is up to the compiler to find
an optimal sequence of applicable rules to compute the final result. Such an optimal se-
quence is dependent on the target architecture and therefore the compilation process of
a PetaBrick program includes auto-tuning.

PetaBricks can be seen as the algorithmic counterpart of JITds, i. e., rules are the com-
putational equivalent of representation classes and a transform is roughly equivalent to
our just-in-time classes. Besides the trivial differences, e. g., PetaBricks does not sup-
port an equivalent of transition functions as there is no data to be converted. PetaBricks

9.3. CHANGING COMPUTATIONS 219

Listing 9.10: Three implementations of a recursive sort algorithm in PetaBricks .

1 transform Sort // Transform
2 from A[n]
3 to A[n]
4 {
5 to (A[i] a) // Rule 1:
6 from (A[i] a) // Already Sorted
7 {
8 }
9

10 to (A.region(i,j) a) // Rule 2:
11 from (A.region(i,j-i/2) a1, // Merge Sort
12 A.region(j-i/2,j) a2)
13 {
14 Sort(a1);
15 Sort(a2);
16 Merge(a,a1,a2);
17 }
18
19 to (A.region(i,j) a) // Rule 3:
20 from (A.cell(i) a, // Selection Sort
21 A.region(i+1,j) a1)
22 {
23 swap(a[i], a[findMaxIndex(a)])
24 Sort(a1);
25 }
26 }

differs from our approach mainly in its pure implicit nature of providing choice: all re-
sponsibility lays with the compiler, potentially guided by hints to the auto-tuner in the
form of user-defined tuneable parameters. This is possible because the number of rules
per transform are finite and , more importantly, because a new algorithmic choice can
only be made at computation boundary steps, e. g., (recursive) calls to a transform. This
is different than in JITds, where any statement can potentially cause a representation
change. Second, even though Ansel [5] also discusses online auto-tuning in his PhD dis-
sertation, the original PetaBricks [6] focusses on offline choices, i. e., at compile or install
time.

PetaBricks in Seven Questions and Answers: PetaBricks is a compiler (environment)
that performs online computation selection. PetaBricks decides which algorithm is the best,
based on auto-tuning. Because PetaBricks only supports computation selection, and not rep-
resentation changes, it is not classifiable according to the seven dimensions of representation
changes.

220 CHAPTER 9. RELATED WORK

9.3.2 Dimensions of Method Dispatch

In JITds, just as in any other object-oriented language, method dispatch is based on
the method name and the type of the receiver. Under the influence of representation
changes, calling x.foo() is not guaranteed to always invoke the same method (over
the lifetime of x). This adds another dimension to method lookup.

Other approaches exist where method resolution is dynamically decided. Context-
oriented programming (COP), for instance, takes the “current context” (i. e., any com-
putable property) into account when performing a method look-up. Hirschfeld et al.
[43] identify in [43] that contemporary method lookup mechanisms can be as complex
as four dimensional: 1. the method name (procedural languages), 2. the receiver’s type
(polymorphism), 3. the sender’s type (subjective programming, e. g., Us, the subjective
version of Self [73]), and 4. the “current context”. Looking at JITds from the COP per-
spective, it is fair to say that the representation of a just-in-time object is the current
context.

Context-oriented programming in Seven Questions and Answers: Context-oriented
programming is a programming paradigm where method resolution is dynamically decided
depending on the current context. Context-oriented programming does not support repre-
sentation changes as such, and hence it is not classifiable according to the seven dimensions
of representation changes.

9.4 Summary

In Peta-Pricks and context-oriented programming, a developer can express when to use
which algorithm. This is similar to JITds, where the developer can express when to use
which data representation. Both rely on dedicated language construct to express this
kind of variability.

9.5 Conclusion

There exist a fair amount of programming languages with support for online data rep-
resentation changes (e. g., LDL (and ADRT), SmallTalk, Object Evolution, FickleI I , Plaid,
and Gilgul). Most of these languages introduce representation changes to be able to ex-
press object evolution which leads to the programming paradigm called typestate-oriented
programming (i. e., Object Evolution, FickleI I , Plaid, and Gilgul). In these programming
languages it is the pure responsibility of the developer to define which representation
changes are allowed and when they should occur. Moreover, the representation change
incentive code in the language is expressed using an operator, and is thus static in all
these languages. What these languages provide is the machinery to effectively change
the representation while preserving identity. This is true for all languages discussed in
section 9.1, except for LDL and ADRT where the environment is responsible for deciding
when to change the representation.

9.5. CONCLUSION 221

Most frameworks, libraries, and environments that introduce representation changes
aim at reducing memory overhead in collections (Storage Strategies, Brainy, Chameleon,
CoCo). This can be explained because collections (in the broad sense) are arguably the
most commonly-used type of data structure and have hence received a lot of attention
by the performance analysis community.

Implicitly changing the computation at runtime is more commonly supported than
changing the data representation of objects. Just-in-time compilers, for instance, im-
prove the efficiency of code fragments during the execution of the program. These JIT
compilers can be found in many contemporary language implementations or runtimes,
e. g., the JVM, CLR. From a programming language design point of view, there are no ap-
parent similarities between these environments that change the computation at runtime
and JITds. PetaBricks, however, does have a lot of language design similarities with JITds.
In both programming languages, the developer specifies a set of equivalent alternatives
which are combined into a monolithic entity, a transform in PetaBricks and a just-in-
time class in JITds. Context-oriented programming, on the other hand, can be seen as
an overarching paradigm for JITds. The current representation of a just-in-time object is
the context on which method look-up depends.

From the surveyed work, we can conclude that JITds is the first programming lan-
guage with support for non-functional representation changes and where transforma-
tion incentive code can be disentangled from the application logic.

Chapter 10

Conclusions and Future Work

After 40 years, a main focus in software engineering still lies in finding the “best” data
structure implementation for a data abstraction in a program. A program often consists
of multiple algorithms that operate on the same data. In such a program, the “best”
data structure is regarded as the data structure that yields the best overall performance,
where performance can be interpreted as shorter execution time, lower memory con-
sumption, higher throughput, or any other desirable non-functional feature. However,
in section 2.2 we showed programs in which relying on a single fixed data representation
is less efficient than what can be achieved when the representation of the data is changed
at runtime. Hence, in this dissertation we argue in favour of a programming language
that enables developers to design data structures that can change their representation
during the execution of a program: just-in-time data structures. We developed the JITds
programming language to fulfil this purpose.

We described our initial idea to investigate just-in-time representation changes from
a language perspective in [21]. We presented the core contributions described in this
text, i. e., the taxonomy of programming features that are needed to express just-in-time
representation changes and the design of the programming language JITds, in [20]. Fi-
nally, in [18] we discuss how we think that the current implementation of JITds can be
improved, e. g., with techniques from declarative programming and static and dynamic
analysis.

In this last chapter of the dissertation we take a step back and verify whether JITds
lives up to the expectations formulated in the introduction chapter (sections 10.1 and 10.2),
and we formulate some directions for future work (section 10.3).

10.1 JITds in a Nutshell

JITds is a statically-typed class-based object-oriented programming language with sup-
port for functional as well as non-functional data representation changes. The support
for non-functional representation changes is a novel contribution of JITds (in compari-
son with other programming languages).

223

224 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

In JITds there are two kinds of classes. There are simple classes, as they are known
from other class-based object-oriented programming languages. Just-in-time classes, on
the other hand, combine multiple simple classes, which we call representations. JITds al-
lows just-in-time objects (i. e., instances of these just-in-time classes) to change between
their representations at runtime. Transition functions, one of JITds’ new programming
constructs that can be seen as a generalisation of constructors, ensure an orderly transi-
tion between two representations.

Moreover, JITds introduces swap rules, which enable developers to separate tradi-
tional application logic from representation change incentive code. Swap rules come in
three flavours:

• External swap rules augment a unit of computation (i. e., at method boundary in
JITds) with representation change incentive code that can change the representa-
tion of objects used in that computation.

• Interface swap rules augment the data interface of a just-in-time object (meth-
ods of the object) with representation change incentive code that can change the
representation of a just-in-time object.

• Internal swap rules augment the state (i. e., any computable property) of a just-
in-time object with representation change incentive code that can change the rep-
resentation of that just-in-time object.

A core subset of JITds was given a formal specification (cf. JIT∆σ) for which we proved
type soundness. Because the type system of JITds is proven to be sound, we can guar-
antee that a well-formed JITds program can never encounter “method not found” or
“field not found” exceptions at runtime. We subsequently evaluated how representations
changes can reduce execution time (i. e., improve performance) of several programs, and
evaluated how swap rules can be used to disentangle general application logic from the
crosscutting concern of what representation to use.

10.2 Contributions

1. Our first contribution, as presented in chapter 3, is a taxonomy of programming
language features that enable just-in-time representation changes. We categorise these
programming language features into seven dimensions. Each of these dimensions an-
swers a specific question w.r.t. representation changes:

• Q1: Who is responsible for data representation changes?

• Q2: How is a data representation change realised?

• Q3: When is a data representation change executed?

• Q4: Which data representation changes are possible?

• Q5: How long does a data representation change take?

10.2. CONTRIBUTIONS 225

• Q6: What is altered after a data representation change?

• Q7: Why are data representation changes introduced?

2. Our second contribution is the design of the experimental programming lan-
guage, JITds, which supports non-functional representation changes. In chapter 1 we
argued that such a language must meet the following three requirements:

• R1 The language must enable data objects to change their data representation at
runtime.

• R2 The language must provide type safety guarantees in the face of representation
changes.

• R3 The language must allow programmers to develop application logic while being
agnostic of representation changes.

Designing a novel programming language that meets these three requirements re-
sulted in the following four sub-contributions:

• In chapter 4, we present the design of the programming language JITds. In JITds
it is possible to combine multiple classes into one just-in-time class to enable a
data structure to change its representation at runtime (R1). Concretely, we intro-
duce transition functions and swap statements as the core language features to
support representation changes.

• These features are formalised in an operational semantics for JITds in chapter 5
(R1).

• Also in chapter 5, we show that a well-formed JITds program never gets stuck, not
even in the context of representation changes. Concretely, we proved progress and
preservation, and thus soundness, of JITds’s type system. With a sound type sys-
tem, we can guarantee that a well-formed JITds program will never encounter a
“method not found” or a “field not found” exception at runtime (R2).

• In chapter 6 we present the second part of the design of the JITds programming
language. We show how to decouple representation change logic from applica-
tion logic by using swap rules (R3). Concretely, we introduce three flavours of
swap rules as the core language features to express representation change incen-
tive code.

3. The technical contributions of this work are the two prototype implementations
of the programming language JITds. These implementations were discussed in chap-
ter 7. Concretely, we implemented JITds-Java and JITds-C. JITds-Java is a JITds-to-Java
compiler that effectively encodes just-in-time classes as an variation on the bridge and
strategy pattern [34]. The implementation technique used in this compiler is called “im-
plementation by forwarding”. While the advantage of JITds-Java is that it has full access
to Java as a base language (i. e., all standard Java libraries can be used directly), it does

226 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

suffer from two key limitations as well. First, because of Java’s type system, it is impos-
sible to provide Liskov’s substitution without altering existing code (e. g., classes from
Java’s standard libraries). Second, JITds-Java suffers from the problem of escaping point-
ers. This problem can be resolved by investing a lot of engineering effort in the compiler,
e. g., in the form of a solid static data-flow and points-to analysis. JITds-C is our sec-
ond prototype implementation of JITds. JITds-C is based on the formal semantics of
JITds (see chapter 5) and thus does not suffer from the two limitations of JITds-Java. The
downside of JITds-C is that, as opposed to JITds-Java, JITds-C can not piggyback on an
existing base language. Hence, the applicability of JITds-C is limited to demonstrating
the features of JITds. Again, this limitation can be resolved by investing sufficient engi-
neering effort into the compiler implementation.

Finally, we implemented a set of five synthetic benchmark programs and used those
to evaluate JITds (see chapter 8). Concretely, we compare the execution times and the
code structure of these programs — written in JITds and compiled with JITds-Java —
against the same programs written in plain Java.

10.3 Future Work

From the current state of our research we partition our future work into two categories.
We have software engineering efforts on the one hand, and language design and imple-
mentation efforts on the other hand. For both categories we enumerate a non-exhaustive
list of ideas for future research.

10.3.1 Software Engineering

JITds is a first attempt to promote the shift from choosing a single data structure to
choosing a set of data representations. The focus of this work lies on the language design
aspects of this idea, e. g., language constructs and a type system. The software engineer-
ing aspects of the idea of just-in-time data structures, however, were only touched upon
(e. g., in section 4.5 and section 4.6) in this dissertation.

It took three decades after the introduction of object-oriented programming (cf. the
programming language Simula in the 1960s [16]) to distill a set design patterns observed
from real-world OO programs Gamma et al. [34]. Similarly, we foresee that research on
software engineering techniques in the context of just-in-time data structures will re-
quire some incubation period until a sufficiently large corpus of real-world JITds pro-
grams exists. Such a corpus does currently not exist.

10.3.1.1 Popularising the Idea of Just-in-Time Representation Changes

The absence of a sufficiently large corpus of real-world JITds programs prevents research
in software engineering techniques to help JITds programmers. This is mainly because
JITds is the first language to promote non-functional just-in-time data representation
changes, which is an uncommon and unknown technique. Foremost, just-in-time data
representation changes need to be supported by many more programming languages.
As a result more programs would use it, and more efficient implementations of these

10.3. FUTURE WORK 227

languages would be developed. Then, the technique would get more traction and could
advance the way we think about programming data structures and algorithms to an-
other level. Hence, the technique should be made more commonly known, i. e., both in
academia and in industry.

10.3.1.2 Tool to Find Programs that can Benefit from Representation Changes

Besides being used in new programs, existing programs may also benefit from using just-
in-time representation changes. The ideal candidate is a program where phases of good
resource usage (e. g., efficient CPU usage or low memory footprint) and phases of bad re-
source usage (e. g., inefficient CPU usage or high memory footprint) occur intermittently.
Mitchell and Sevitsky [59] describe a way to detect data structures in a program that con-
sume excessive amounts of memory (memory bloat). Sherwood et al. [70] describe a way
to detect phases in a program’s execution. A combination of these techniques could be
used to improve performance in (real world) programs by identifying the potential need
for just-in-time representation changes.

10.3.1.3 Identifying Patterns in Swap Rules

We foresee that when more and more programs will be written that rely on just-in-time
data representation changes, patterns in code will start to emerge. We have seen this
in the 1960s when Dijkstra promoted the use of high-level control constructs [25] and
in the 1990s when the gang of four published their design patterns for object-oriented
programming [34].

A first kind of pattern detected in JITds programs is that we often want to count the
number of method invocations and change the representation of a just-in-time object
when a certain threshold or ratio is reached. This can be implemented by using a com-
bination of interface swap rules and counters. In section 6.2.1, we describe invocation
counters, a language construct introduced to facilitate the expression of these pattern
more easily. Other patterns might lead to more sophisticated swap rules or other lan-
guage constructs.

10.3.1.4 Measuring the Cost of Transitions

Throughout the dissertation we state that performance engineering is hard and that the
average programmer is no longer capable of managing the full extent of the layers of ab-
stractions he relies on. We propose JITds as a solution to separate the application logic
from all logic concerning changing and selecting the representation of the data. How-
ever, using JITds can also be more complex (cf. The Performance Pitfall of Unintended
Specialised Swaps, see section 4.5.1.2). Tool support that helps programmers in under-
standing the (potential) cost of specialised swaps and explicit representation changes
would be a welcome asset in the toolbox of the software engineer.

228 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.3.1.5 Resolving the Tension Between Application Developer and the
Performance Expert

In this text we deliberately create a tension between what we call the application devel-
oper and the performance expert. The individual application developer is solely respon-
sible for implementing the functional requirements of the software product, whereas the
performance expert is solely responsible for designing just-in-time data structures, i. e.,
providing the required transition functions and swap rules.

In practice we foresee two possible scenarios: Either the application developer and
the performance expert are two distinct individuals, each operating on their domain
(separation of expertise), or alternatively, they are one and the same and he or she works
on the distinct concerns (i. e., functional requirements and performance) separately (sep-
aration of concern). In either case, programming in this setting is new and unexplored,
and we foresee collaboration problems due to lack of experience. Hence, over time, best
software engineering practices will have to be developed to smoothen the collaboration
between the application developer and the performance expert, being it one, two, or
more persons.

10.3.1.6 Incorporating Offline Training in JITds

A significant part of the related work in chapter 9 focusses on changing the data rep-
resentation of collections. A recurring facet in this related work is the construction of
models that describe in which cases a representation change could result in improved
performance. These models are created during an offline training phase. The creation
of the models, and the (data) characteristics they take into account, are a significant part
of the aforementioned research efforts. The limitations of these models is that they are
specifically designed in the context of collections. We think that generalising the process
of designing and creating these models and incorporating them in the design of JITds,
could greatly benefit JITds’s efficiency and adoption.

10.3.2 Language Design and Language Implementation

Currently, the language has two prototype implementations. Hence, there is a lot of work
that can be done to improve upon these implementations. For instance, by incorporat-
ing the work of Miranda and Béra [58] who rely on read barriers to improve the efficiently
of become-like constructs. Depending on how JITds will be used in the future, the lan-
guage design will need to evolve along as well.

10.3.2.1 Dynamic Transition Graph

In the current design (and implementation) of JITds, when changing an object’s repre-
sentation, we use the shortest path of subsequent transition functions. In chapter 5, we
formally specify that the shortest path is the path with the fewest intermediate represen-
tations, and the order in which the representations occur in the definition of a just-in-
time class is used as a tiebreaker.

10.4. EPILOGUE 229

The shortest path, however, is not necessarily the most efficient path. A generic tran-
sition function might transform an object fromRi toRj in one step, but could take twice
the time needed to first transition Ri to Rx and then from Rx to Rj. A straightforward
extension of JITds’s current design is to assign a cost to each transition function. This
change would cause the transition graph to become a weighted directed graph, and the
transition path could then be defined as the cheapest path.

A possible avenue to extend the design of JITds to support dynamic transition graphs,
are the introduction of a programmer defined construct to express the expected cost of
each transition function, potentially parameterised by the current state of the data struc-
ture. Alternatively, the runtime of a future JITds implementation can be made respon-
sible for measuring the cost of a transition function, in order to dynamically update the
costs in the transition graph.

10.3.2.2 Declarative Swap Rules

Conceptually, the idea of an internal swap rule is to give the developer the power to pro-
vide declarative input to the environment about when a representation change is ap-
propriate. Classically, such an internal swap rule describes which representation corre-
sponds best with an observed state of the data structure. The intent is clearly declarative,
for instance: “if the matrix is sparse, change to a sparse representation.”.

Although internal swap rules are supposed to react to a change of the state of the data
structure, the current implementations simply execute the body of the swap rule before
the invocation of each operation, regardless of the actual occurrence of a state change.
All of our examples show swap rules which exhibit an inherent declarative nature. There-
fore, we conjecture that a more mature implementation should take advantage of the
intended declarative nature of swap rules to avoid the overhead of excessive checks at
runtime. In future implementations of JITds we want to incorporate established tech-
niques from the area of dynamic analysis. The first steps towards the dynamic analysis
community have already been taken in the form of a discussion paper [18]. For instance,
we could use the RETE algorithm to react with a representation change when a certain
predicate holds, instead of continuously computing the result of the predicate.

10.4 Epilogue

JITds is the first programming language that enables a shift from choosing a single data
structure for a program to choosing a set of data representations. Concretely, the design
of JITds enables developers to define data structures that can change their representa-
tion at runtime in order to implement both functional and non-functional features (e. g.,
performance). Improving the performance in practice remains difficult for the average
programmer and should be delegated to an expert performance engineer. The design of
JITds enables application developers and performance engineers to co-design their ap-
plications. Developers that are responsible for the general application logic can use just-
in-time data structures while being agnostic about the current data representation and
just-in-time data representation changes. A performance expert, on the other hand, can
develop a just-in-time data structure without cluttering the general application logic.

Appendix A

The Case of the Missing Cache Hits

In section 2.1 we report on three examples of performance estimations that allows us
to conclude that on contemporary hardware, the ladder of abstraction has become so
high, that it is not longer feasible for an average programmer to fully understand the be-
haviour, and thus the performance characteristics, of computer programs. The first two
examples were tailored toward showing the effects of caches and branch prediction, re-
spectively. The third example, is a summary of a multi-month, multi-person endeavour
of understanding and explaining the performance of a contemporary piece of hardware.
In this appendix we report in detail on this endeavour, which is work in collaboration
with Tom Van Cutsem and David Ungar, and which was integrally published at the Inter-
national Conference on Performance Engineering 2013 [23].

This appendix shows that even the simplest hardware, running the simplest pro-
grams, can behave in the strangest of ways. Tracking down the cause of a performance
anomaly without the complete hardware reference of a processor is a prime example of
black-box architectural exploration. When doubling the work of a simple benchmark
program (i. e., less than 20 lines of C code), that was run on a single core of Tilera’s
TILEPro64 processor, did not double the number of consumed cycles, a mystery was
unveiled. After ruling out different levels of optimisation for the two programs, a cycle-
accurate simulation attributed the sub-optimal performance to an abnormally high num-
ber of L1 data cache misses. Further investigation showed that the processor stalled on
every Read-After-Write instruction sequence when the following two conditions were
met: 1) there are 0 or 1 instructions between the write and the read instruction and 2)
the read and the write instructions target distinct memory locations that share an L1
cache line. We call this performance pitfall a RAW hiccup. We describe two countermea-
sures, memory padding and the explicit introduction of pipeline bubbles, that sidestep
the RAW hiccup.

A.1 Introduction

In the context of our research in parallel algorithms for many-core architectures [24, 55],
we chose to explore the TilePro64 processor by writing a simple program and measuring

231

232 APPENDIX A. THE CASE OF THE MISSING CACHE HITS

its absolute and relative performance on a single core. To verify the measured results, we
doubled the work of our program expecting the running time to double as well.

The experiment, however, revealed that duplicating the work did not double the ex-
ecution time. What could possibly be causing this anomalous performance? And how
does one track down such changes in performance efficiency? We conducted a series of
experiments, timing and simulating different code sequences. Each step answered one
question only to ask another. Finally, we were able to pinpoint the instruction and mem-
ory reference sequence that was responsible. Our hunt for the performance anomaly is
a nice example of black-box architectural exploration, as we did not have a access to a
complete hardware design reference, and provides evidence for our claim that estimating
performance is hard.

The rest of this appendix is organised as follows: First the hardware used is discussed
(appendix A.2), followed by a presentation of the two benchmark programs that are used
throughout the example (appendix A.3). Appendix A.4 elaborates on the expected and
measured performance of both programs, revealing a significant discrepancy between
the two. In appendix A.5 the compiler generated instruction sequences of the bench-
mark programs are discussed. Appendix A.6 focusses on processors stalls and how they
map to the source code. Appendices A.7 and A.8 each describe a countermeasure that
sidesteps the RAW hiccup in the benchmark programs. Finally, in appendix A.9 we com-
pare the RAW hiccup to similar performance pitfalls.

A.2 The platform: TILEPro64 processor

At first sight, Tilera’s TILEPro64 [83] might look like a complex many-core processor chip.
Its 8x8 mesh network connects 64 processing cores, keeps two levels of distributed cache
coherent, and supports inter-core communication. Each core utilises a three-way Very
Long Instruction Word (VLIW) architecture to support explicit instruction level paral-
lelism (ILP) by executing up to three bundled instructions simultaneously by one of the
three pipelines of a single core.

But, when looked at in isolation, a single pipeline of a single core of the TILEPro64
processor has a relatively simple architecture. The in-order pipelines execute an in-

(a) 5 Stage Pipeline of the TILEPro64

(b) 20 Stage pipeline of the Intel Pentium IV.

Figure A.1: The Tilera TilePro64 processor has a much more shallow pipeline than for in-
stance Intel’s Pentium IV. Therefore, understanding programs and predicting instruction
timings on the TilePro64 processor should be relatively easy

A.3. THE PROGRAM: TETRAHEDRAL NUMBERS 233

Listing A.1: Program 1

1 for (long i = 0 ; i < N ; i ++) {
2 long sum0 = 0 ;
3
4 for (long j 0 = 0 ; / / i n i t
5 j 0 < i ; / / t e s t
6 ++ j0) { / / incr
7
8 sum0 += j0 ; / / body
9

10 }
11
12
13
14 }

Listing A.2: Program 2

1 for (long i = 0 ; i < N ; i ++) {
2 long sum0 = 0 ;
3
4 for (long j 0 = 0 ; / / i n i t
5 j 0 < i ; / / t e s t
6 ++ j0) { / / incr
7
8 sum0 += j0 ; / / body
9

10 }
11 t o t a l += sum0 ;
12
13 long sum1 = 0 ;
14
15 for (long j 1 = 0 ; / / i n i t
16 j 1 < i ; / / t e s t
17 ++ j 1) { / / incr
18
19 sum1 += j 1 ; / / body
20
21 }
22 t o t a l += sum01 ;
23 }

Figure A.2: Two simple benchmark programs where the second program has exactly
twice the work to do compared to the first program. Program 2 is expected to consume
twice as many cycles as Program 1.

struction in 5 stages (figure A.1a): a rather shallow pipeline compared to contemporary
hardware that have pipelines as deep as 20 stages (figure A.1b) [42]. With this short, in-
order pipeline the TILEPro64 aims at low branch and low load-to-use latencies. Thus
when considering a single pipeline on a single core, the TILEPro64 can arguably be de-
scribed as simple hardware and performance prediction of any sequential programs it
runs should be fairly easy. But even the simplest hardware running the simplest pro-
grams, can behave in the strangest of ways. How simple could those programs be?

A.3 The program: Tetrahedral Numbers

We chose a very simple algorithm for our benchmark: the computation of the nth tetra-
hedral number. To compute the nth tetrahedral number it suffices to accumulate the n
first triangular numbers [71]. And to compute the nth triangular number it suffices to
accumulate the n first non-zero integers [72]. Mathematically this could be written as∑N

i=0

∑i
j=0 j and Program 1 (figure A.2) is the straightforward translation of this formula

into C-code. Thus, Program 1 consists of one outer loop (lines 1-14 in figure A.2) with one
inner loop (lines 4-10 in figure A.2), of which the body consists of a single statement ac-
cumulating a counter (line 8 in figure A.2). Program 2 (figure A.2) just about doubles the
work of Program 1 by repeating the inner loop (lines 4-10 and lines 15-21 in figure A.2).
When measurements revealed that doubling the work did not double the execution time,
we were mystified.

234 APPENDIX A. THE CASE OF THE MISSING CACHE HITS

A.4 Measured Performance

“To measure is to know”, but in this case measuring the performance of both bench-
mark programs raised more questions than it resolved. We measured the absolute per-
formance of both programs in cycles needed to complete the outer loop. Computing the
1000th tetrahedral number by running Program 1 requires 14×106 cycles. Doubling the
work by running Program 1 twice, requires 28×106 cycles. Surprisingly, when running
Program 2 which also does twice the work as Program 1, only 25×106 cycles were con-
sumed. The difference of 3×106 cycles between expected and measured performance,
depicted as the lighter coloured box in figure A.3a, is too large to be attributed to the
overhead of running two outer loops when running Program 1 twice.

Cycles Missing Cycles

Program 1 Program 2

Program 1 Program 2
Cycles needed to execute a single inner loop

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Two Times

Program 1

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

(a) Cycles consumed by Program 1 and Pro-
gram 2, compared to the number of ex-
pected cycles for Program 2.

Cycles Missing Cycles

Program 1 Program 2

Program 1 Program 2
Cycles needed to execute a single inner loop

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Two Times

Program 1

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps
Cycles needed per Inner Loop

to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

(b) Average number of cycles needed by Pro-
gram 1 and Program 2 to compute a single
inner loop. Surprisingly, Program 2 needs
fewer cycles than Program 1.

Put differently, as depicted in figure A.3b, when looking at the average number of cy-
cles needed to complete a single inner loop, we see that Program 1 needs 14×106 cycles,
as opposed to the 12.5× 106 cycles needed by Program 2. These data suggest that the
loops in Program 2 run more efficiently. But why would the same source code run faster?

A.5 Comparing Instruction Sequences

The execution of the inner loops require quadratic time, actually the number of additions
needed to compute the nth tetrahedral number is equal to the nth triangular number,
and thus indeed quadratic in function of N. Since the inner loops dominate the overall
performance of the benchmark programs, and the outer loops induce only linear over-
head, and we focused on the inner loops.

Could it be that the compiler was generating different instruction sequences for syn-
tactically equal inner loops? If this were true, the assumption that Program 2 did exactly
twice the work of Program 1 would be false, and the unexpected execution times could

A.5. COMPARING INSTRUCTION SEQUENCES 235

be explained. So the first step in unraveling the mystery was to guarantee that the gen-
erated machine instruction sequences for the two programs were similar for all inner
loops.

Listing A.3: The inner loop of Program 1 compiled into assembler code (-O0). The last 19
instructions dominate the performance of Program 1, and are executed N×(N−1)

2 times.

1 . L _ i n i t : #
2 addi r1 , sp , 16 # j0
3 sw r1 , zero #
4 . L_test : #
5 addi r2 , sp , 12 # i
6 lw r2 , r2 #
7 addi r3 , sp , 16 # j0
8 lw r3 , r3 #
9 s l t e r2 , r2 , r3 #

10 bnz r2 , . L_end #
11 . L_body : #
12 addi r5 , sp , 16 # j 0
13 lw r5 , r5 #
14 addi r6 , sp , 20 # sum0
15 lw r6 , r6 #
16 add r5 , r5 , r6 #
17 addi r4 , sp , 20 # sum0
18 sw r4 , r5 #
19 . L_increment : #
20 addi r7 , sp , 16 # j 0
21 lw r7 , r7 #
22 addi r7 , r7 , 1 #
23 addi r3 , sp , 16 # j 0
24 sw r3 , r7 #
25 j . L_test #
26 . L_end : #

We used Tilera’s gcc compiler 2.0.2 with optimisation flag -O0 which compiled the
inner loop of Program 1 into the 21 instructions (and 5 labels) shown in listing A.3. The
first two instructions (lines 2–3) initialise the inner loop and are only executed a linear
number of times. More interesting were the remaining 19 instructions, which formed
the heart of the computation and were executed N×(N−1)

2 times each. Ignoring the small

constant and linear overhead induced by the inner and outer loops, 19× N×(N−1)
2 was a

fair approximation of the total number of executed instructions for Program 1 when N
was sufficiently large.

This instruction sequence can be further optimised. The most invasive and effective
optimisation would be to reduce the program to compute the formula N×(N+1)×(N+2)

N
which would be semantically equivalent to Program 1 but would require only constant
time for any input. But even if we wanted to keep the structure of the computation,
many optimisations were possible. For example, the computation in Program 1 used
only 4 variables and the value of the stack pointer (register) is not changed during the
execution. Therefore it would be possible to compute the absolute addresses of the four
variables once and store them in a dedicated register. This optimisation could save seven
addi instructions in each iteration. The difference in relative performance would be
accounted for if the compiler had applied this or any other optimisation to the inner
loops of Program 2, but not to the inner loop of Program 1. But a comparison of the
generated assembler instruction sequences for both Program 1 and Program 2 revealed
that all three inner loops were compiled into the same 21 instructions. The instruction
sequences for each loop differed only in the relative addresses of the variables. At this
point, it was clear that twice as many assembler instructions were executed for Program

236 APPENDIX A. THE CASE OF THE MISSING CACHE HITS

Cycles Missing Cycles

Program 1 Program 2

Program 1 Program 2
Cycles needed to execute a single inner loop

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Two Times

Program 1

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

Figure A.4: Relative to the amount of work, Program 1 suffered from many more L1 data
cache misses than Program 2. This discrepancy explained the difference in performance,
but left us wondering about the cause of the discrepancy.

2, than for Program 1. Yet, Program 2 was executing those instructions more efficiently.
What could explain this behaviour?

If an instruction sequence gets more densely packed into instruction bundles such
that the instruction level parallelism supported by the VLIW architecture gets exploited,
it will run faster. Could it be possible that the instructions of Program 2 got bundled
more efficiently than those for Program 1? The assembly-level instruction sequence,
as shown in listing A.3, did not make these bundles explicit. And since the processor
cores operate in-order they are not responsible for any implicit instruction level paral-
lelism themselves. When we decompiled the machine instructions back into assembler
code we saw that all instructions were wrapped in a single bundle and thus issued to
be executed sequentially without any instruction level parallelism. Bundles were not the
answer.

Because all executed bundles were single-instructions, the processor executed the
exact same instruction sequence once for Program 1 and twice for Program 2. Why did
the processor work at different speeds in each program?

A.6 Cache misses caused the processor to stall

If a processor consumes a different amount of cycles for equal instruction sequences, it
must be stalling somewhere. A cycle-accurate simulated execution of the applications
reported that the processor was indeed stalling, and attributed these stalls to L1 and L2
instruction- and data-cache misses, to pipeline hazards, and to mispredicted branches.
Of these categories, only the L1 data cache misses and the pipeline hazards were numer-
ous enough to observably impact the performance. If these stalls were the true culprits,
then the anomalous increase in efficiency of Program 2 over Program 1 should also have

A.6. CACHE MISSES CAUSED THE PROCESSOR TO STALL 237

been reflected in the number of corresponding stalls. For stalls attributed to pipeline
hazards, doubling the work also doubled the number of stalls. A regular evolution, so
that category was exonerated. Remarkably, the number of stalls caused by L1 data cache
misses was not affected by doubling the work.

Even considering each program in isolation, the number of L1 data cache misses was
unexpectedly high. Because both benchmark programs used only 4 and 6 variables re-
spectively, we expected no misses at all. But the clue to the mystery was in the observation
that the number of L1 data cache misses did not increase when the amount of work was
doubled. Figure A.4 shows these data relative to the number of inner loops: on average a
single inner loop of Program 2 suffered from half as many L1 data cache stalls as the loop
of Program 1. Why was Program 2 more efficient?

Listing A.4: Program 1: The bulk of L1
data cache misses occur on the incre-
ment of the only inner loop.

1 for (long i = 0 ; i < N ; i ++) { / / 1
2 long sum0 = 0 ;
3
4 for (long j 0 = 0 ; / / i n i t 199
5 j 0 < i ; / / t e s t
6 ++ j0) { / / incr 4950
7
8 sum0 += j0 ; / / body
9

10 }
11
12
13
14 }

Listing A.5: Program 2: The bulk of L1
data cache misses occur on the incre-
ment of the second inner loop.

1 for (long i = 0 ; i < N ; i ++) { / / 1
2 long sum0 = 0 ;
3
4 for (long j 0 = 0 ; / / i n i t
5 j 0 < i ; / / t e s t
6 ++ j0) { / / incr
7
8 sum0 += j0 ; / / body
9

10 }
11 t o t a l += sum0 ;
12
13 long sum1 = 0 ;
14
15 for (long j 1 = 0 ; / / i n i t
16 j 1 < i ; / / t e s t
17 ++ j 1) { / / incr 4950
18
19 sum1 += j 1 ; / / body
20
21 }
22 t o t a l += sum01 ;
23 }

Figure A.5: To understand the reason for all these cache misses, a better view is needed
on where they actually occur. Program 2 has one normal and one affected loop. Since
these are syntactically equivalent, memory layout of variables is a probable culprit of the
discrepancy.

More rigorous simulation revealed that all the L1 data cache misses were read misses.
This commonality limited the instructions where the misses could occur to the lw (load
word) instructions of the program (lines 6, 8, 13, 15, and 21 in listing A.3). On the C-
code level, the cycle-accurate simulator indicated that the loop-increment operations
on j 0 (line 6 in listing A.4) in Program 1, and on j 1 (line 17 in listing A.5) in Program 2
were responsible for almost all stalls, as is shown in figure A.5 where the source lines of
Program 1 and Program 2 are annotated with the number of observed cache misses. The
synthesis of these two pieces of evidence allowed us to identify the slow instruction in
each program. In Program 1 this would be the load instruction lw r7 r7 shown on

238 APPENDIX A. THE CASE OF THE MISSING CACHE HITS

Cycles Missing Cycles

Program 1 Program 2

Program 1 Program 2
Cycles needed to execute a single inner loop

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Two Times

Program 1

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

Figure A.6: Adaptations of Program 1 and Program 2 that add padding around the inner
loop counters make all L1 data cache misses disappear. Consequently, also the change
in efficiency is gone and both programs behave as expected.

line 21 of listing A.3. When N is 1000, the number of inner loop iterations is 4950 which
was exactly the number of observed L1 data cache misses on line 6 and 17 of Program 1
and Program 2 respectively.

What we know now is that the inner loop of Program 1 ran slowly because every iter-
ation induced a cache miss. One of the inner loops of Program 2 ran equally slowly for
the same reason, but on average Program 2 was more efficient because the other inner
loop never suffered from a cache miss. But why did the processor have to wait for data
that should have been in its L1 cache in the first place?

A.7 Padding Resolves the Cache Misses

Recall that the difference in performance of our two benchmark programs was caused by
an abnormally large number of L1 data cache misses that were not expected and more-
over did not increase with the amount of work. A cache miss occurs when a processing
unit fails to access a piece of data in the cache which results in a much more expensive
operation that reroutes the memory instruction to the next level of memory. In this case
reading from the L1 data cache fails, causing a load from the L2 cache which is 7 cycles
away on the TILEPro64.

Consider Program 1, which used only 4 variables for its entire computation. By the
time the instruction on line 15 in listing A.3 had been executed for the first time, we
expected all the variables to reside in the L1 cache and to stay there for the remainder of
the computation. This expectation arose because 8KB of L1 data cache is plenty of room
for storing 4 values of 4 bytes each: they even fit on a single cache line as the TILEPro64’s
L1 cache lines are 16 bytes wide [83]. Even for the 6 variables of Program 2 the 8KB

A.7. PADDING RESOLVES THE CACHE MISSES 239

Figure A.7: With as few as 4 variables there is no reason to suffer from cache eviction. In
parallel computing padding is a tried and true approach to tackle false sharing, a phe-
nomenon where cache eviction is also unanticipated. Adding padding between sum0
and j 0, such that they reside on different cache lines, causes a significant drop in L1
data cache misses.

should have more than sufficed. Thus any L1 data cache line that was invalidated in the
execution of either program qualified as unanticipated behaviour.

In parallel computing, a case of unanticipated cache invalidation, called false shar-
ing occurs when a computation writes to a memory location that resides on the same
cache line of a distinct memory location used by a concurrent computation [65]. False
sharing can be reduced by padding the memory layout of variables so that the mem-
ory locations used by concurrent computations do not share cache lines [29]. Padding
is a low-level programming technique in which, usually unused, memory is allocated
around variables to obtain a more suitable layout of variables in the caches and/or mem-
ory. Although this line of inquiry seems far-fetched in the case of a sequential program
using only 4 variables, we experimented with memory layout anyway because the distri-
butions of variables over cache lines can affect the number of misses.

Figure A.7 shows four possible layouts of the variables over different cache lines when
padding is introduced. Each line shows three cache lines (alternating colours) of four
times 4 bytes each. The first line in figure A.7 shows the memory layout as observed
for Program 1 without any padding: the first cache line (white) contains the variables
tot al and i , the consecutive cache line (grey) contains the variables sum0 and j 0, finally
the third cache line (white) contains no variables relevant to our case. The others three
layouts in figure A.7 show how introducing padding before j 0 moved j 0 into a different
cache line than the other three variables.

Program 1, when adapted such that j 0 resided in its own cache line, consumed only
11×106 cycles, as opposed to the 14×106 cycles it had consumed before. The cycle-
accurate simulation showed that the padding eliminated all the L1 data cache misses.
Further, when we moved the variable j 1 of Program 2 to a separate cache line, the num-
ber of cycles consumed by Program 2 dropped from 25×106 to 22×106 . The import of
this performance improvement is that neither benchmark program suffered from unan-
ticipated L1 data cache misses when a change in the memory layout places the inner
loop counter and the inner loop accumulator on different L1 data cache lines.

Summarised, the lw instruction (line 21 in listing A.3) causes the processor to stall if

240 APPENDIX A. THE CASE OF THE MISSING CACHE HITS
Cycles Missing Cycles

Program 1 Program 2

Program 1 Program 2
Cycles needed to execute a single inner loop

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Two Times

Program 1

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

Figure A.8: Adding NOPs to the bodies of the slow inner loops of Program 1 and Program
2 make all L1 data cache misses disappear. Consequently, also the change in efficiency
is gone and both programs behave as expected.

the preceding sw instruction (line 18 in listing A.3) targets the same L1 data cache line.
For this reason we call this behaviour a read-after-write hiccup, or RAW hiccup for short.
In our example, the sw and lw instructions are separated by an addi instruction (line
20 in listing A.3) which raised the question if, besides the memory layout, also the addi
instruction plays a role in the RAW hiccup?

A.8 Injecting Pipeline Bubbles

Isolating the missed variable in a different cache line sidestepped the RAW hiccup, but
could instruction reordering accomplish the same?

Data hazards occur when subsequent instructions have data dependencies and are
executed at the same time in a pipeline. Many contemporary processors use out-of-
order execution to avoid these dependencies [41]. The TILEPro64 processor, however,
supports only in-order execution. In that case the only way to avoid the data hazard is
by introducing a pipeline bubble. Pipeline bubbling is an instruction scheduling tech-
nique that prevents data hazards from occurring by delaying the execution of dependent
instructions in the pipeline. Typically this is done by the processor’s logic by stalling the
execution of the depending instruction. A compiler could simulate this behaviour by in-
serting a no-operation instruction (NOP), but what if we hardcoded such a NOP in the
slow running inner loops of Program 1 and Program 2?

In our benchmark programs there was no actual data dependency between the mem-
ory instructions on lines 18 and 21 (see listing A.3), the targeted memory locations only
shared a cache line. Thus, adding a NOP in the body of the slow running inner loop
should have made the program run even slower because the inner loop now consisted
out of 20 instead of 19 instructions. Perversely, the measured performance was closer to

A.9. SIMILAR PERFORMANCE PITFALLS 241

(a) Pipelined execution of 3 instructions
where the processor stalls on the Ex1 stage
of the second instruction.

(b) Pipelined execution of 2 instructions,
a NOP, and another instruction where the
processor does not stall.

Figure A.9: The overall performance of a processor stalling for one cycle in a sequence
of three instructions, is equivalent to the performance of executing that same sequence
with an additional NOP instruction if the processor does not stall.

that of the fast programs with padding, than to the execution time of the original bench-
mark programs with all the cache misses. The cycle-accurate simulator indicated that
adding a NOP to the body of the slow inner loops removed all L1 data cache misses.

Synthesising the effects observed when either padding or pipeline bubbles were in-
troduced, allowed us to conclude that on the TILEPro64 a RAW hiccup occurs in a read-
after-write instruction sequence if two conditions are met. First, if both the store and the
load instruction target distinct memory locations that share an L1 data cache line, and
second if at most one instruction separates the store and the load. If either condition is
eliminated, the RAW hiccup is gone.

A.9 Similar Performance Pitfalls

From the software perspective, pinpointing the origin of anomalous performance to a
specific instruction and memory reference sequence suffices to render a program more
performant simply by avoiding that sequence. From a hardware perspective, the ques-
tion remains what architectural design choices caused the anomalous performance. To
the best of our knowledge the details of hardware implementations we are hitting in this
concrete example are not documented by the chip producer. Without these details we
can only make an educated guess about the concrete origin of the stalls.

However, three well know performance pitfalls exist that look similar to the RAW hic-
cup: false sharing, load-hit-store, and write misses.

False sharing False sharing only occurs in the case of concurrent processes, and thus
does not apply in the case of a RAW hiccup which occurs in a single thread of
control [29]. But, besides the number of processes the commonalities are om-
nipresent: both performance pitfalls occur when a sequence of memory instruc-
tions, with at least one write, target unrelated variables that share a cache line.

242 APPENDIX A. THE CASE OF THE MISSING CACHE HITS

Load-hit-Store A single process can suffer from the performance pitfall load-hit-store
(LHS) when a read is issued too soon after a write to read the new value [40]. The
RAW hiccup also issues a read too soon after a write, but as opposed to a LHS, the
memory instructions target distinct memory locations.

Write Stall Finally, when a processor must wait for writes to complete during write through,
the processor is said to write stall [41]. The L1 data cache of the TILEPro64 uses the
write-through policy, thus what we called a RAW hiccup could actually be a write
stall. Other literature, however, refines the definition of write stalls in the context
of write-through caches as the delay caused when a write encounters another write
in progress [31]. Thus excluding read instructions as the origin of a write stall. This
makes the instruction sequence causing a RAW hiccup different from the instruc-
tion sequence causing a write stall.

Identifying the actual implementation details that caused the RAW hiccup is noto-
riously difficult without a complete hardware reference. We recognised false sharing,
load-hit-stores, and write misses as performance pitfalls similar to the RAW hiccup. They
differ, however, from the RAW hiccup in either number of processes, targeted memory
locations, or instruction sequence.

A.10 Conclusions

A simple C program exhibited a significant discrepancy between its expected and mea-
sured performance. The origin of the anomaly was found to be a counter-intuitive multi-
cycle processor stall that occurred whenever a store instruction was followed within two
instructions by a load instruction targeting the same L1 data cache line. We called this
performance pitfall a RAW hiccup. Eliminating either of the two conditions caused the
RAW hiccup to disappear: The introduction of sufficient padding on the one hand and
the introduction of a manual pipeline bubble on the other hand removed all anomalous
L1 data cache misses.

This appendix reports on the hunt for a performance anomaly observed when study-
ing the behaviour of a trivially simple sequential program. The exact instruction and
memory reference sequence that was responsible was found only after performing var-
ious experiments and simulations each one a step down the ladder of abstraction. This
experience raises the question that if we can not predict the performance of trivially sim-
ple sequential code on a simple processing unit, how can we hope to understand the
performance of parallel applications running on an 8x8 mesh network-on-chip?

Appendix B

Auxiliary Functions for JIT∆σ

• find-class(P,Cn) =cd — find a class definition in a program

cd ∈ P class-name(cd) =Cn

find-class(P,Cn) =cd
FIND_CLASS

• class-name(cd) =Cn — extracts the name from a class definition

class-name(class Cn {fd md}) =Cn
SIMPLE_CLASS_NAME

class-name(class Cn j i t combines Cnr ep{ td }) =Cn j i t

JIT_CLASS_NAME

• simple-class(cd) — verifies if a class definition defines a simple class

simple-class(class Cn {fd md})
SIMPLE_CLASS

• jit-class(cd) — verifies if a class definition defines a just-in-time class

jit-class(class Cn j i t combines Cnr ep{ td })
JIT_CLASS

• class-fields(cd) =fd — extracts the field declarations from a class

class-fields(class Cn {fd md}) =fd
CLASS_FIELDS

• class-field-names(cd) =fn — extracts the field names from a class

class-fields(cd) =fd field-name(fd) =fn

class-field-names(cd) =fn
CLASS_FIELD_NAMES

• class-field-types(cd) =Cnf — extracts the field types from a class

class-fields(cd) =fd field-type(fd) =Cnf

class-field-types(cd) =Cnf

CLASS_FIELD_TYPES

243

244 APPENDIX B. AUXILIARY FUNCTIONS FOR JIT∆σ

• class-methods(cd) =md — extracts the method declarations from a class

class-methods(class Cn {fd md}) =md
class-methods

• parameter-name(pd) =pn — extracts the name from a parameter definition

parameter-name(cn pn) =pn

• parameter-type(pd) =Cn — extracts the name from a parameter definition

parameter-type(cn pn) =Cn

• field-name(fd) =pn — extracts the name from a field definition

field-name(cn fn) =fn

• field-type(pd) =Cn — extracts the name from a field definition

field-type(cn fn) =Cn

• method-name(md) =mn — extracts the method name from a method definition

method-name(Cnr et mn(pd) {stmtB return x; }) =mn

• method-type(md) = (Cnr →Cna) — extracts the method type from a method definition

parameter-type(pd) =Cnar g

method-type(Cnr et mn(pd) {stmtB return x; }) =Cnar g →Cnr et

• class-representation-names(cd) =Cnr ep — extracts the names of the representations from a class

class-representation-names(class Cn j i t combines Cnr ep{ td }) =Cnr ep

CLASS_REPRESENTATIONS

• class-transition-functions(cd) =td — extracts the names of the representations from a class

class-transition-functions(class Cn j i t combines Cnr ep{ td }) =td
CLASS_TRANSITION_FUNCTIONS

• find-method(cd,mn) =md — find the method with a given name in a class definition

md ∈ class-methods(cd) method-name(md) =mn

find-method(cd,mn) =md
FIND_METHOD

• find-field(cd,fn) =fd — find the field with a given name in a class definition

md ∈ class-fields(cd) field-name(md) =fn

find-field(cd,fn) =fd
FIND_FIELD

• find-transition-function(cd j i t ,cnsr c ,cnt ar) =td — find the transition function between two representations in a class definition

td ∈ class-transition-functions(cd j i t)

transition_function_source(td) =Cn f r om transition_function_target(td) =Cnto

find-transition-function(cd j i t ,Cn f r om ,Cnto) =td
FIND_TRANSITION_FUNCTIONS

Appendix C

SparseMatrix implementations

A sparse matrix is matrix where the number of non-zero values are greatly outnumbered
by the zero’s in that matrix. In scientific or engineering applications matrices are often
sparse. In software, it is possible to take advantage of this property to store such matri-
ces more efficiently, i. e., it is possible to store the the non-zero elements only. Besides
the reduction in space complexity (denoted as S(x)), also a reduction in time complexity
(denoted as T (x)) can be achieved, e. g., by using dedicated algorithms tailored towards
sparse matrices.

In the main text (e. g., section 2.2) we extensively presented two implementations for
dense matrices, i. e., RowMajorMatrix and ColMajorMatrix. SparseMatrix on
the other hand is only introduced conceptually as a representation for matrices where
the required space is proportional to the number of non-zero values in the matrix. Con-
crete implementations of SparseMatrix are omitted in section 2.2. Here, we present
two: an implementation of the Compressed Row Storage (CRS) scheme and a diagonal
matrix. With CRS it is possible to store any matrix, whereas the diagonal matrix repre-
sentation can only store matrices that are actually diagonal matrices.

C.1 Compressed Row Storage (CRS)

The Compressed Row Storage (CRS) scheme stores for each row of a matrix only the non-
zero values. The row (0 1 0 2), for instance, is stored as (1 2), which we refer to as the
data. This compression, however, looses the information of to which columns these
data elements belong. This information — that 1 is stored in column 1 and 2 is stored
in column 3 (if we number the columns starting from 0) — can be represented as (1 3).
Combined with the index of the row, 1, this is all the information there is to store. An
implementation of a CRS matrix is given in listing C.1 and more information about CRS
can be found in [26].

245

246 APPENDIX C. SPARSEMATRIX IMPLEMENTATIONS

Listing C.1: Compressed rows storage matrix implementation in Java.

1 public class CRSMatrix {
2
3 int cols ;
4 int [] rowIdxs , colIdxs ;
5 double [] data ;
6
7 public int getRows () { return rowIdxs . length −1; }
8 public int getCols () { return cols ; }
9

10 public CRSMatrix (int rows , int cols) {
11 t h i s . cols = cols ;
12 t h i s . rowIdxs = new int [rows + 1] ;
13 t h i s . colIdxs = new int [0] ;
14 t h i s . data = new double [0] ;
15 }
16
17 private ColIdx getColIdx (int row , int col) {
18 int lo = rowIdxs [row] ;
19 int hi = rowIdxs [row + 1] ;
20 for (int i =lo ; i <hi ; i ++) {
21 i f (colIdxs [i] == col) return new ColIdx (true , i) ;
22 i f (colIdxs [i] > col) return new ColIdx (false , i) ;
23 }
24 return new ColIdx (false , hi) ;
25 }
26
27 public double get (int row , int col) {
28 ColIdx idx = getColIdx (row , col) ;
29 i f (idx . found) return data [idx . idx] ;
30 else return 0 . 0 ;
31 }
32
33 public void set (int row , int col , double val) {
34 double currentVal = get (row , col) ;
35 i f (currentVal == val) / * do nothing * / ;
36 else i f (currentVal == 0) i n s e r t (row , col , val) ;
37 else i f (val == 0) delete (row , col) ;
38 else update (row , col , val) ;
39 }
40
41 private void i n s e r t (int row , int col , double val) {
42 int colIdx = getColIdx (row , col) . idx ;
43 data = ArrayUti ls . add (data , colIdx , val) ;
44 colIdxs = ArrayUti ls . add (colIdxs , colIdx , col) ;
45 for (int r=row+1 ; r <= getRows () ; r ++) rowIdxs [r]++;
46 }
47
48 private void delete (int row , int col) {
49 int colIdx = getColIdx (row , col) . idx ;
50 data = ArrayUti ls . remove (data , colIdx) ;
51 colIdxs = ArrayUti ls . remove (colIdxs , colIdx) ;
52 for (int r=row+1 ; r <= getRows () ; r ++) rowIdxs [r]−−;
53 }
54
55 private void update (int row , int col , double val) {
56 int colIdx = getColIdx (row , col) . idx ;
57 data [colIdx] = val ;
58 }
59
60 }

C.2. DIAGONAL MATRIX 247

C.2 Diagonal Matrix

In mathematics, a diagonal matrix is a matrix with only non-zero values in the first diag-
onal. M is an example thereof.

M =
λ0 0 0 0

0 λ1 0 0
0 0 λ2 0


Actually a diagonal matrix is a special kind of sparse matrix which can benefit from

a specialised implementation. First, a diagonal matrix takes at most mi n(r ow s,col s)
space, and second — due to the regularity of diagonal matrix — the storage scheme fa-
cilitates a lookup where virtually no computation is required. M can effectively be stored
as (3,4, [λ0,λ1,λ2]), a three-tuple containing the rows, the columns and the diagonal re-
spectively. Below we present an implementation in Java, which adheres to the data in-
terface as presented in section 2.2.

Listing C.2: DiagonalMatrix

1 class DiagonalMatrix {
2 int rows ;
3 int cols ;
4 double [] data ;
5
6 public DiagonalMatrix (int rows , int cols) {
7 t h i s . rows = rows ;
8 t h i s . cols = cols ;
9 data = new double [Math . min(rows , cols)] ;

10 }
11
12 int getRows () { return rows ; }
13 int getCols () { return cols ; }
14
15 double get (int row , int col) {
16 i f (row==col) return data [row] ;
17 else return 0 . 0 ;
18 }
19
20 void set (int row , int col , double val) {
21 i f ((row! = col) && (val ! = 0)) {
22 throw new RuntimeException ("Can not store data . ") ;
23 } else {
24 data [row] = val ;
25 }
26 }
27 }

The key idea here is that when get or set are called with row==col the diagonal
represented by data is consulted (read or write). When row==col does not hold, how-
ever, we need dedicated behaviour. For get we simply return 0. For set we require the
new value either to be 0 — no harm done — or we have to throw an exception because
a DiagonalMatrix can only represent diagonal matrices. Note that the inverse is not
true: a diagonal matrix is not necessarily represented by a DiagonalMatrix (cf. data
characteristics versus representation characteristics, see section 2.2).

Appendix D

Multiple Inheritance and Mitigating
Ambiguity: How Do They Do It

When a class inherits from more than one super class — and if we ignore types — there
are two questions that directly pop into mind: “What about methods with the same
name (behaviour)?” and “What about fields with the same name (state)?”

Figure D.1: Example of a typical diamond-hierarchy.

These questions identify the ambiguity that arises when dealing with multiple inher-
itance, which language designers tried to mitigate in various ways. We provide a concise
overview:1

Ambiguity Rejection A trivial solution to resolve ambiguity is to not allow it. A com-
piler that detects ambiguity usually generates an error or warning, which puts the
burden on the developer to work around the problem.

1Traits and Mixins are not discussed in this text: they are arguably different features than multiple inheri-
tance and they run into the same problems.

249

250
APPENDIX D. MULTIPLE INHERITANCE AND MITIGATING AMBIGUITY: HOW DO

THEY DO IT

Protocols allow classes to inherit only the protocol they have to adhere to: only method
signatures are inherited, without an implementation. Since, this implies there is
only a single implementation, namely that of the implementing subclass, no am-
biguity on which code to execute is present. In Java for instance a class can inherit
from only one super-class, but it can implement as many interfaces— this is what
protocols are called in Java —as needed [37].

Linearisation Another approach is to statically define, e. g., as part of the language spec-
ification, how method and field lookup is going to be performed. To this end all
features in the inheritance hierarchy, a graph, are linearised accordingly. The pro-
gramming language Dylan, for instance uses the C3 algorithm to turn the hierar-
chy graph into a linear structure [7]. The simplest, and often used, linearisation
algorithm is “last man standing”, where after textual inclusion of the super classes,
the last definition “wins”. This is for instance the case in OCAML [57]. Lookups in
a linearised hierarchy is similar to lookups in the context of single inheritance.

Select and Rename is a technique to resolve ambiguity by explicitly renaming features
with colliding names in the subclass. In Eiffel [44], to remove the ambiguity from
figure D.1, the version from A could be renamed to bar and the version from B
could be renamed to baz.

1 class T inherit A rename foo as bar
2 B rename foo as baz

Explicit Inheritance can be seen as a variant of “Select and Rename”, where features
with colliding names can only be used when they are explicitly qualified with the
intended super-class’ name. This is for instance allowed in C++, where the call
ptr->A::foo() explicitly uses the method foo of A [30].

Method Combination is a technique where ambiguity in the body of an overriding method
that needs access to, for instance, a super-method can be resolved programmati-
cally. In Common Lisp (CLOS), for instance, a method can return the sum of the
results of all its super methods [74]. Besides +, eight other primitive method-
combinators are available, but defining one’s own method-combinators is also
possible.

1 (defgeneric leaf−count (tree)
2 (: documentation "Return the number of l e a f s . ")
3 (: method−combination +))

Most Specific Argument When a subclass overrides a method of one of its ancestors, it
is allowed in some languages to refine the signature, i. e., methods are co-variant
in the return type and contra-variant in their argument types. In CLOS, for in-
stance, the method that matches the argument types the most is invoked, i. e., in-
cluding dispatch on the argument type. Note that this technique only reduces the
“chances” of ambiguity, and when there is still ambiguity present CLOS resorts to
other techniques to resolve the ambiguity.

251

Meta-object protocol Some languages make the behaviour of objects (and classes) first
class. A Meta-object protocol (MOP) [50], for instance, allows redefining per object
how it should behave. This meta-object protocol includes a definition of how an
object should invoke a method. Thus, altering the meta-object of an object gives a
programmer full control to implement his own feature resolution algorithm.

Virtual Inheritance All techniques presented above focus on behaviour. When state is
also considered, there is another dimension that comes into play, one that does
not make sense in the context of behaviour, i. e., replication versus unification.
Consider the hierarchy from figure D.1: is an instance of T supposed to have two
different s’s (replication) or is it supposed to have single, unified, field s? This am-
biguity can be resolved with virtual inheritance, which ensures that the state of
a shared ancestor is only present once [56]. C++ [30], for instance, takes this ap-
proach. Note that this approach only resolves the problems with replicated mem-
bers of shared ancestors. The other issues, are mitigated by other techniques (see
above).

All these solutions tackle the problem from a “spatial” point of view, i. e., how can we
structure the lookup hierarchy in order to remove the ambiguity. Moreover, most of these
approaches are static and fix the lookup strategy before execution. Only a few languages
allow programmed modifications to the lookup hierarchy at run-time. To the best of our
knowledge there is no language, with a static MOP, that dynamically changes the method
lookup.

Bibliography

[1] Abelson, H. and Sussman, G. J. (1996). Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, MA, USA, 2nd edition. 3, 25, 41

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula (2013). Computer science
curricula 2013. Technical report, ACM Press and IEEE Computer Society Press. 11, 12,
25

[3] Aldrich, J., Sunshine, J., Saini, D., and Sparks, Z. (2009). Typestate-oriented Program-
ming. In Proceedings of the Conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA) ’09, pages 1015–1022. 56, 69, 76, 179, 182, 204

[4] Alpern, B., Cocchi, A., Fink, S., and Grove, D. (2001). Efficient Implementation of Java
Interfaces: Invokeinterface Considered Harmless. In Proceedings of the Conference
on Object-oriented programming, systems, languages, and applications (OOPSLA) ’01,
pages 108–124. 158

[5] Ansel, J. (2014). Autotuning Programs with Algorithmic Choice. Ph.d. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA. 219

[6] Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and Amaras-
inghe, S. (2009). PetaBricks: A Language and Compiler for Algorithmic Choice. In
Proceedings of the Conference on Programming Language Design and Implementation
(PLDI) ’09, pages 38–49. 29, 183, 218, 219

[7] Barrett, K., Cassels, B., Haahr, P., Moon, D. A., Playford, K., and Withington, P. T.
(1996). A Monotonic Superclass Linearization for Dylan. SIGPLAN Notices, 31(10):69–
82. 250

[8] Bierman, G. M., Parkinson, M. J., and Pitts, A. M. (2003). MJ: An imperative core
calculus for Java and Java with effects. Technical report, University of Cambridge. 87

[9] Blackburn, S. M., McKinley, K. S., Garner, R., Hoffmann, C., Khan, A. M., Bentzur, R.,
Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M.,
Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovik, D., VanDrunen, T., von Dincklage, D.,
and Wiedermann, B. (2008). Wake Up and Smell the Coffee: Evaluation Methodology
for the 21st Century. Commun. ACM, 51(8):83–89. 164

253

254 BIBLIOGRAPHY

[10] Bolz, C. F., Diekmann, L., and Tratt, L. (2013). Storage Strategies for Collections in
Dynamically Typed Languages. In Proceedings of the Conference on Object-oriented
programming, systems, languages, and applications (OOPSLA) ’13, pages 167–182. 45,
208, 209, 210

[11] Bracha, G. (website). The Miracle of become. http://gbracha.blogspot.
be/2009/07/miracle-of-become.html. Accessed: August 3, 2015. 43

[12] Chambers, C., Ungar, D., and Lee, E. (1989). An Efficient Implementation of SELF: a
Dynamically-typed Object-oriented Language Based on Prototypes. In Proceedings of
the Conference on Object-oriented programming, systems, languages, and applications
(OOPSLA) ’89, pages 49–70. 2, 154

[13] Cohen, T. and Gil, J. Y. (2009). Three Approaches to Object Evolution. In Proceedings
of International Conference on Principles and Practices of Programming on the Java
Platform (PPPJ) ’09, pages 57–66. 51, 81, 82, 143, 179, 201

[14] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition. 12, 14

[15] Costanza, P. (2002). Dynamic Replacement of Active Objects in the Gilgul Program-
ming Language. In Proceedings of the Working Conference on Component Deployment
(CD) ’02, pages 125–140. 2, 50, 54, 180, 206

[16] Dahl, O.-J. and Nygaard, K. (1966). SIMULA: An ALGOL-based Simulation Lan-
guage. Communications of the ACM, 9(9):671–678. 226

[17] Damiani, F., Drossopoulou, S., and Giannini, P. (2003). Theoretical Computer Sci-
ence: 8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003. Pro-
ceedings, chapter Refined Effects for Unanticipated Object Re-classification:Fickle3,
pages 97–110. Springer Berlin Heidelberg, Berlin, Heidelberg. 203

[18] De Wael, M. (2015). Just-in-time Data Structures: Towards Declarative Swap Rules.
In Proceedings of International Workshop on Dynamic Analysis (WODA) ’15, pages 33–
34. 6, 129, 149, 223, 229

[19] De Wael, M., Marr, S., De Fraine, B., Van Cutsem, T., and De Meuter, W. (2015a). Par-
titioned global address space languages. ACM Computing Surveys, 47(4):62:1–62:27.
2, 6, 18

[20] De Wael, M., Marr, S., De Koster, J., Sartor, J. B., and De Meuter, W. (2015b). Just-in-
time Data Structures. In Proceedings of Onward! ’15, pages 61–75. 2, 5, 6, 223

[21] De Wael, M., Marr, S., and De Meuter, W. (2014a). Data Interface + Algorithms = Ef-
ficient Programs: Separating Logic from Representation to Improve Performance. In
Proceedings of Implementation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems Workshop (ICOOOLPS) ’14, pages 2:1–2:4. 2, 6, 223

http://gbracha.blogspot.be/2009/07/miracle-of-become.html
http://gbracha.blogspot.be/2009/07/miracle-of-become.html

BIBLIOGRAPHY 255

[22] De Wael, M., Marr, S., and Van Cutsem, T. (2014b). Fork/Join Parallelism in the
Wild: Documenting Patterns and Anti-patterns in Java Programs Using the Fork/Join
Framework. In Proceedings of International Conference on Principles and Practices of
Programming on the Java Platform (PPPJ) ’14, pages 39–50. 2, 7, 11, 73, 74

[23] De Wael, M., Ungar, D., and Van Cutsem, T. (2013). When Spatial and Temporal
Locality Collide: The Case of the Missing Cache Hits. In Proceedings of International
Conference on Performance Engineering (ICPE) ’13, pages 63–70. 6, 24, 231

[24] De Wael, M. and Van Cutsem, T. (2012). How to Achieve Scalable Fork/Join on
Many-core Architectures? In Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, pages 85–86. 2, 231

[25] Dijkstra, E. W. (1968). Letters to the Editor: Go to Statement Considered Harmful.
Communications of the ACM, 11(3):147–148. 227

[26] Dongarra, J. (website). Compressed Row Storage (CRS). http://netlib.org/
linalg/html_templates/node91.html. Accessed: 3 March, 2014. 245

[27] Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P. (2002).
More dynamic object reclassification: Fickle(II). Transactions on Programming Lan-
guages and Systems (TOPLAS), 24:153–191. 2, 49, 54, 77, 81, 202, 203

[28] Efftinge, S. (website). Xtext. http://www.eclipse.org/Xtext/. Accessed:
February 29, 2016. 152

[29] Eggers, S. and Jeremiassen, T. (1991). Eliminating False Sharing. In International
Conference on Parallel Processing, volume I, pages 377–381. 239, 241

[30] Ellis, M. A. and Stroustrup, B. (1990). The Annotated C++ Reference Manual.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 250, 251

[31] Emer, J. S. and Clark, D. W. (1984). A characterization of processor performance in
the vax-11/780. SIGARCH Computer Architecture News, 12(3):301–310. 242

[32] Filman, R. E. and Friedman, D. P. (2000). Aspect-oriented programming is quantifi-
cation and obliviousness. Technical report. 39, 47, 48, 140

[33] Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (2012). Cache-
oblivious algorithms. Transactions on Algorithms (TALGS), 8(1):4:1–4:22. 12

[34] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.
43, 147, 154, 182, 184, 225, 226, 227

[35] Georges, A., Buytaert, D., and Eeckhout, L. (2007). Statistically Rigorous Java Perfor-
mance Evaluation. In Proceedings of the Conference on Object-oriented programming,
systems, languages, and applications (OOPSLA) ’07, pages 57–76. 24, 164

http://netlib.org/linalg/html_templates/node91.html
http://netlib.org/linalg/html_templates/node91.html
http://www.eclipse.org/Xtext/

256 BIBLIOGRAPHY

[36] Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 2, 37

[37] Gosling, J., Joy, B., and Steele, G. L. (1996). The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition. 250

[38] Gwennap, L. (1995). New algorithm improves branch prediction. Microprocessor
Report, 9(4):17–21. 22

[39] Harbulot, B. and Gurd, J. R. (2006). A Join Point for Loops in AspectJ. In Proceedings
of the 5th International Conference on Aspect-oriented Software Development, pages
63–74. 140

[40] Heineman, B. (website). Common Performance Issues in Game Program-
ming. http://www.gamasutra.com/view/feature/3687/sponsored_
feature_common_.php. Accessed: June 1, 2008. 242

[41] Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture, Fourth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
240, 242

[42] Hinton, G., Sager, D., Upton, M., Boggs, D., Group, D. P., and Corp, I. (2001). The
microarchitecture of the pentium 4 processor. Intel Technology Journal, 1:2001. 233

[43] Hirschfeld, R., Costanza, P., and Nierstrasz, O. (2008). Context-oriented program-
ming. Journal of Object Technology, March-April 2008, ETH Zurich, 7(3):125–151. 220

[44] Howard, R. (1993). The Eiffel Programming Language. Dr. Dobb’s Journal, 18(11):68–
73. 250

[45] Huang, S. S. and Smaragdakis, Y. (2011). Morphing: Structurally shaping a class by
reflecting on others. Transactions on Programming Languages and Systems (TOPLAS),
33(2):6:1–6:44. 152

[46] Igarashi, A., Pierce, B. C., and Wadler, P. (2001). Featherweight java: A minimal
core calculus for java and gj. Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450. 87

[47] Jung, C., Rus, S., Railing, B. P., Clark, N., and Pande, S. (2011). Brainy: Effective se-
lection of data structures. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI) ’11, pages 86–97. 164, 208, 210, 211

[48] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.
(2001). An overview of aspectj. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP) ’01, pages 327–353, London, UK, UK. Springer-
Verlag. 146

[49] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP) ’97, pages 220–242. 36, 38, 140

http://www.gamasutra.com/view/feature/3687/sponsored_feature_common_.php
http://www.gamasutra.com/view/feature/3687/sponsored_feature_common_.php

BIBLIOGRAPHY 257

[50] Kiczales, G. and Rivieres, J. D. (1991). The Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, USA. 251

[51] Knuth, D. E. (1974). Structured Programming with Go to Statements. ACM Comput-
ing Surveys, 6(4):261–301. 59

[52] Lieberman, H., Stein, L., and Ungar, D. (1987). Treaty of Orlando. In Addendum
to the Proceedings of the Conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA) ’87, pages 43–44. 81, 84, 85, 157

[53] Liskov, B. and Zilles, S. (1974). Programming with Abstract Data Types. In Proceed-
ings of the ACM SIGPLAN Symposium on Very High Level Languages, pages 50–59. 3,
41, 59, 69

[54] Liu, L. and Rus, S. (2009). Perflint: A Context Sensitive Performance Advisor for C++
Programs. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO) ’09, pages 265–274. 211

[55] Marr, S., De Wael, M., Haupt, M., and D’Hondt, T. (2011). Which Problems Does a
Multi-language Virtual Machine Need to Solve in the Multicore/Manycore Era? In Pro-
ceedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE!
2011, AOOPES’11, NEAT’11, & VMIL’11, pages 341–348. 2, 231

[56] Milea, A. (website). Solving the diamond problem with virtual inheritance. http:
//www.cprogramming.com/tutorial/virtual_inheritance.html.
Accessed: June 11, 2015. 251

[57] Minsky, Y., Madhavapeddy, A., and Hickey, J. (2013). Real World OCaml. O’Reilly
Media. 250

[58] Miranda, E. and Béra, C. (2015). A Partial Read Barrier for Efficient Support of
Live Object-oriented Programming. In Proceedings of the International Symposium
on Memory Management (ISMM) ’15, pages 93–104. 144, 200, 228

[59] Mitchell, N. and Sevitsky, G. (2007). The Causes of Bloat, the Limits of Health. In
Proceedings of the Conference on Object-oriented programming, systems, languages,
and applications (OOPSLA) ’07, pages 245–260. 227

[60] Oracle (website). Class “Object”. http://docs.oracle.com/javase/7/
docs/api/java/lang/Object.html#toString(). Accessed: February 29,
2016. 45

[61] Österlund, E. and Löwe, W. (2013). Dynamically transforming data structures.
In Proceedings of the International Conference on Automated Software Engineering,
pages 410–420. 164, 213, 214, 215

[62] Östlund, J. and Wrigstad, T. (2010). Welterweight Java. In Proceedings of TOOLS ’10,
pages 97–116. 87

http://www.cprogramming.com/tutorial/virtual_inheritance.html
http://www.cprogramming.com/tutorial/virtual_inheritance.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#toString()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#toString()

258 BIBLIOGRAPHY

[63] Overflow, S. (website). Developer Survey 2015. http://stackoverflow.com/
research/developer-survey-2015. Accessed: July 24, 2015. 11

[64] Parnas, D. L. (1972). On the Criteria to Be Used in Decomposing Systems into Mod-
ules. Communications of the ACM, 15(12):1053–1058. 3

[65] Patterson, D. A. and Hennessy, J. L. (2008). Computer Organization and Design,
Fourth Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kauf-
mann Series in Computer Architecture and Design). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 4th edition. 239

[66] Perlis, A. J. (1982). Special feature: Epigrams on programming. SIGPLAN Notices,
17(9):7–13. 26

[67] Ralston, A., Reilly, E. D., and Hemmendinger, D., editors (2003). Encyclopedia of
Computer Science. John Wiley and Sons Ltd., Chichester, UK, 4th edition. 3, 41

[68] Ruparelia, N. B. (2010). Software development lifecycle models. SIGSOFT Softw.
Eng. Notes, 35(3):8–13. 41

[69] Shacham, O., Vechev, M., and Yahav, E. (2009). Chameleon: Adaptive Selection of
Collections. In Proceedings of the Conference on Programming Language Design and
Implementation (PLDI) ’09, pages 408–418. 134, 164, 208, 211, 212

[70] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., and Calder, B. (2003). Discovering
and exploiting program phases. IEEE Micro, 23:84–93. 227

[71] Sloane, N. J. A. (websitea). Tetrahedral (or triangular pyramidal) numbers. http:
//oeis.org/A000292. Accessed: February 29, 2016. 233

[72] Sloane, N. J. A. (websiteb). Triangular numbers. http://oeis.org/A000217.
Accessed: February 29, 2016. 233

[73] Smith, R. B. and Ungar, D. (1996). A simple and unifying approach to subjective
objects. Theory and Practice of Object Systems, 2(3):161–178. 220

[74] Steele, Jr., G. L. (1990). Common LISP: The Language (2Nd Ed.). Digital Press, New-
ton, MA, USA. 250

[75] Strniša, R. (2010). Formalising, improving, and reusing the Java Module System. PhD
thesis, University of Cambridge, St. John’s College. https://rok.strnisa.com/lj/. 87

[76] Strniša, R., Sewell, P., and Parkinson, M. (2007). The Java Module System: Core
Design and Semantic Definition. In Proceedings of the Conference on Object-oriented
programming, systems, languages, and applications (OOPSLA) ’07, pages 499–514. 87,
91, 104, 119, 120, 121

[77] Strzodka, R. (2011). Abstraction for AoS and SoA layout in C++. In mei W. Hwu, W.,
editor, GPU Computing Gems: Jade Edition. Morgan Kaufmann. 55

http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
http://oeis.org/A000292
http://oeis.org/A000292
http://oeis.org/A000217

BIBLIOGRAPHY 259

[78] Sunshine, J., Naden, K., Stork, S., Aldrich, J., and Tanter, E. (2011). First-class State
Change in Plaid. In Proceedings of the Conference on Object-oriented programming,
systems, languages, and applications (OOPSLA) ’11, pages 713–732. 2, 67, 77, 179, 180,
181, 204

[79] Sutter, H. (2005). The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal, 30(3). 2

[80] Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT
Press, 1st edition. 136

[81] Team, T. A. (websitea). Join Points and Pointcuts. https://eclipse.org/
aspectj/doc/next/progguide/language-joinPoints.html. Accessed:
December 14, 2015. 131

[82] Team, T. G. (websiteb). MArray (The Glasgow Haskell Compiler User’s
Guide). https://downloads.haskell.org/~ghc/4.08/docs/set/
sec-marray.html. Accessed: February 29, 2016. 56

[83] Tilera (2010). Tile Processor User Architecture Manual. Tilera. 232, 238

[84] Ureche, V., Biboudis, A., Smaragdakis, Y., and Odersky, M. (2015). Automating ad
hoc data representation transformations. Technical report, EPFL. 51, 75, 195, 196, 198

[85] Ureche, V., Burmako, E., and Odersky, M. (2014). Late Data Layout: Unifying Data
Representation Transformations. In Proceedings of the Conference on Object-oriented
programming, systems, languages, and applications (OOPSLA) ’14, pages 397–416. 45,
195, 196

[86] Victor, B. (website). Up and Down the Ladder of Abstraction. http://
worrydream.com/LadderOfAbstraction. Accessed: July 24, 2015. 11

[87] Weisstein, E. W. (website). Cumulative frequency (a wolfram web resource). http:
//mathworld.wolfram.com/CumulativeFrequency.html. Accessed: July
27, 2015. 19

[88] Wirth, N. (1978). Algorithms + Data Structures = Programs. Prentice Hall PTR, Upper
Saddle River, NJ, USA. 1, 2, 41, 59

[89] Wright, A. and Felleisen, M. (1994). A Syntactic Approach to Type Soundness. Infor-
mation and Computation, 115(1):38–94. 110

[90] Xu, G. H. (2013). Coco: Sound and adaptive replacement of java collections. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP)
’13, pages 1–26. 134, 208, 211, 215, 216, 218

https://eclipse.org/aspectj/doc/next/progguide/language-joinPoints.html
https://eclipse.org/aspectj/doc/next/progguide/language-joinPoints.html
https://downloads.haskell.org/~ghc/4.08/docs/set/sec-marray.html
https://downloads.haskell.org/~ghc/4.08/docs/set/sec-marray.html
http://worrydream.com/LadderOfAbstraction
http://worrydream.com/LadderOfAbstraction
http://mathworld.wolfram.com/CumulativeFrequency.html
http://mathworld.wolfram.com/CumulativeFrequency.html

	Acknowledgements
	Abstract
	Samenvatting
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Separating Interface from Implementation: History and Terminology
	1.3 Research Design
	1.4 Contributions
	1.5 Supporting Publications
	1.6 Limitations
	1.7 Roadmap

	2 Motivation
	2.1 On the Complexity of Performance
	2.1.1 Calculating or Estimating Time and Space Complexity
	2.1.2 Non-Uniform Memory Access Cost
	2.1.3 Non-Uniform Instruction Execution Cost
	2.1.4 Non-Uniform Cost Model

	2.2 On the Effect of Data Representation on Performance
	2.2.1 The Matrix and its Representations
	2.2.2 Effect of Representation on Performance
	2.2.3 Effect of Changing Representation on Performance.
	2.2.4 Changing Data Characteristics.
	2.2.5 Ad-Hoc Representation Changes
	2.2.6 Levels of Granularity

	2.3 Towards A Language with Support for Representation Changes

	3 Matching Data and Computation
	3.1 Representation Selection or Representation Change.
	3.2 Seven Dimensions of Representation Changes
	3.2.1 Q1: Who is responsible for data representation changes?
	3.2.2 Q2: How is a data representation change realised?
	3.2.3 Q3: When is a data representation change executed?
	3.2.4 Q4: Which data representation changes are possible?
	3.2.5 Q5: How long does a data representation change take?
	3.2.6 Q6: What is altered after a data representation change?
	3.2.7 Q7: Why are Data Representation Changes Introduced?
	3.2.8 Summary

	4 Designing Just-in-Time Data Structures: How to Change the Representation
	4.1 JITds: A Statically Typed Class-based Object-Oriented Language
	4.1.1 JITds versus Java

	4.2 From one to many representations.
	4.2.1 Combining Representations

	4.3 Representation Changes
	4.3.1 Transition Functions
	4.3.2 Swap Statement

	4.4 Member fields
	4.5 Intended Usage
	4.5.1 Specialised Representations
	4.5.2 Functional Swaps

	4.6 Managing the Number of Transition Functions
	4.7 Just-in-Time Data Structures put into Context
	4.7.1 Homomorphic Reclassification
	4.7.2 Multiple Inheritance
	4.7.3 Treaty of Orlando

	4.8 Conclusion

	5 JIT: A Formal Specification of JITds
	5.1 User Syntax
	5.2 Operational Semantics
	5.2.1 Configurations, Heaps, Stacks, Objects, and Values
	5.2.2 Selection Functions
	5.2.3 Transition Graph

	5.3 Reduction Semantics for Statements
	5.3.1 Reduction Object Construction
	5.3.2 Reduction Method Invocation and Method Return
	5.3.3 Reduction Swap Statement and Transition Function Return

	5.4 A Type System for JIT
	5.4.1 Static Types and Dynamic Types
	5.4.2 Types (Cn), Subtypes (Cn <:Cn), and Valid Types (PCn)
	5.4.3 Local Type Environment ()
	5.4.4 Type Checking

	5.5 Proof of Soundness
	5.5.1 Well-formed Configurations, Heaps, Local Stores, and Objects
	5.5.2 Progress
	5.5.3 Preservation

	5.6 JIT with Single Inheritance
	5.7 Conclusion
	5.7.1 Implicitly Changing the Representation of the Caller
	5.7.2 A Case in favour of Unsupported Swap Exceptions

	6 Designing Just-in-Time Data Structures: When to Change the Representation
	6.1 Swap Rules
	6.1.1 External Swap Rules
	6.1.2 Internal Swap Rules
	6.1.3 Interface Swap Rules
	6.1.4 Scoping Rules for Swap Rules

	6.2 History Based Representation Changes
	6.2.1 Invocation Counters

	6.3 Learning Representation Changes.
	6.3.1 First Class Representations
	6.3.2 An External Swap Rule with Reinforcement Learning

	6.4 Domain Specific Aspects
	6.5 Conclusion

	7 JITds: The Language Implementation
	7.1 Dynamic Object Reclassification
	7.2 The JIT class T: an Abstract Example Program
	7.3 JITds-Java
	7.3.1 Technology used in the Implementation of JITds-Java
	7.3.2 Design Patterns
	7.3.3 Forwarding and Delegation in Dynamic Languages
	7.3.4 Limitation of Implementation by Forwarding

	7.4 JITds-C
	7.4.1 Method Tables
	7.4.2 Technology used in the Implementation of JITds-C
	7.4.3 Conclusion

	7.5 Summary

	8 Evaluation
	8.1 A set of synthetic benchmarks
	8.1.1 Caveat

	8.2 Experimental Setup
	8.3 Example Programs
	8.3.1 The Matrix Program
	8.3.2 The List Program
	8.3.3 The File Program
	8.3.4 The Sorting Program
	8.3.5 The String Program

	8.4 Conclusions

	9 Related Work
	9.1 Languages and Paradigms
	9.1.1 Late Data Layout
	9.1.2 Object Replacement (in Smalltalk)
	9.1.3 Object Evolution
	9.1.4 Dynamic Reclassification (in FickleII)
	9.1.5 Typestate-Oriented Programming (in Plaid)
	9.1.6 Gilgul
	9.1.7 Summary

	9.2 Frameworks and Environments for Changing Collections
	9.2.1 Storage Strategies
	9.2.2 Brainy
	9.2.3 Chameleon
	9.2.4 Dynamically Transforming Data Structures
	9.2.5 CoCo
	9.2.6 Summary

	9.3 Changing Computations
	9.3.1 PetaBricks
	9.3.2 Dimensions of Method Dispatch

	9.4 Summary
	9.5 Conclusion

	10 Conclusions and Future Work
	10.1 JITds in a Nutshell
	10.2 Contributions
	10.3 Future Work
	10.3.1 Software Engineering
	10.3.2 Language Design and Language Implementation

	10.4 Epilogue

	A The Case of the Missing Cache Hits
	A.1 Introduction
	A.2 The platform: TILEPro64 processor
	A.3 The program: Tetrahedral Numbers
	A.4 Measured Performance
	A.5 Comparing Instruction Sequences
	A.6 Cache misses caused the processor to stall
	A.7 Padding Resolves the Cache Misses
	A.8 Injecting Pipeline Bubbles
	A.9 Similar Performance Pitfalls
	A.10 Conclusions

	B Auxiliary Functions for JIT
	C SparseMatrix implementations
	C.1 Compressed Row Storage (CRS)
	C.2 Diagonal Matrix

	D Multiple Inheritance and Mitigating Ambiguity: How Do They Do It
	Bibliography

