
Automated Generalization and Refinement of
Code Templates with EKEKO/X

Tim Molderez and Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Belgium
tmoldere@vub.ac.be, cderoove@vub.ac.be

Abstract—Code templates are an intuitive means to specify
source code snippets of interest, such as all instances of a bug,
groups of snippets that need to be refactored or transformed, or
instances of design patterns. While intuitive, it is not always
straightforward to write a template that produces only the
desired matches. A template could produce either more snippets
than desired, or too few. To assist the users of EKEKO/X, our
template-based search and transformation tool for Java, we have
extended it with two components: The first is a suite of mutation
operators that simplifies the process of modifying templates. The
second is a system that can automatically suggest a sequence of
mutations to a given template, such that it matches only with
a set of desired snippets. In this tool paper, we highlight the
key design decisions in implementing these two components of
EKEKO/X, and demonstrate their use by walking through an
example sequence of mutations suggested by the system.

I. INTRODUCTION

Code templates are ubiquitous in search and transformation
tools, and can be used to concisely describe various kinds of
source code snippets of interest. The learning curve to start
writing templates also is quite low, as they are written in
terms of concrete source code. However, code templates can
still prove difficult to specify. A template may either be too
general and produce false positives, or it could be too specific
and result in false negatives. Additionally, the templates we
consider not only specify syntactic constraints to describe a set
of snippets, but they can also use several semantic constraints.
While offering additional expressivity, it emphasizes the need
for some type of assistance when writing templates.

In this tool demonstration paper, we present an extension to
EKEKO/X [4], our template-based search and transformation
tool for Java.12 This extension consist of two components,
both aiming to assist EKEKO/X users: the first component is
a suite of mutation operators, which gradually grew in our own
experience of writing templates. Rather than editing a template
manually without any indication whether or not the template
is valid, they can also be edited using our suite of mutation
operators. This suite was designed such that an operator can
only be applied when it leads to a syntactically valid template.
There also are two types of operators: atomic and composite
operators. Where an atomic operator performs a local change

1The EKEKO/X program transformation tool, including our extension, is
available for download at https://github.com/cderoove/damp.ekeko.snippets

2A screencast demonstrating our extension to EKEKO/X is available at
https://www.youtube.com/watch?v=mWslpM8WuPs

in a template, composite operators can affect multiple parts.
Such composite operators can avoid making accidental errors
in performing common scenarios, such as abstracting away the
name of a particular variable declaration and all of its uses.

The second component to assist EKEKO/X users is a search-
based [9] system that can automatically generalize or refine a
given template such that it matches only with a desired set of
snippets. The idea is that the user can first write a rough draft
of a template, and use the system to suggest a sequence of
mutations that would bring the template closer to a solution.

II. OVERVIEW OF EKEKO/X

The EKEKO/X program transformation tool is built on top
of the EKEKO [6] meta-programming library, which provides
a logic API to perform code searches and transformations at
the level of Java ASTs. As reasoning about code in terms of
AST nodes requires a certain level of expertise, EKEKO/X was
created to specify program searches and transformations in a
more intuitive manner, in terms of code templates: A template
is a snippet of Java code, in which parts can be replaced by
wildcards and metavariables, and annotations called directives
can be added. These constructs are used to either generalize
or refine parts of a template. The process of matching a
template essentially involves converting the template into a set
of logic EKEKO constraints, and to find all concrete snippets of
Java code that satisfy all constraints. EKEKO/X also provides
support for template groups, in which multiple templates can
be related to each other, making it possible to describe groups
of related snippets. Consider the following example:

[....acceptVisitor(...)]@[(equals ?invocation)]

[public void acceptVisitor(ComponentVisitor v) ...]
@[(invoked-by ?invocation)]

This template group contains two templates: The first tem-
plate matches with all calls to methods called acceptVisitor,
and the second then looks for the corresponding method
declarations. The use of an ellipsis indicates a wildcard. The
acceptVisitor call is wrapped in square brackets, followed
by @[(equals ?invocation)]. This notation indicates that the
acceptVisitor method call is annotated with an equals direc-
tive, which binds the call to the ?invocation metavariable. To
link the method call to its declaration, the invoked-by directive
has ?invocation as its operand.



Figure 1: Overview of the EKEKO/X template editor

A screenshot of EKEKO/X’s user interface is given in Fig. 1,
in which our example is shown in a template editor (see [1]
in Fig. 1). To modify the template, the user first selects a
part to be modified, either in the textual view (top part of [1])
or the tree view (bottom of [1]). Next, a mutation operator is
chosen in the list of operators (see [2]), operands are filled in
(if any), and the operator can be applied. Note that the list
of operators is context-sensitive to the selected part, which
ensures the template remains syntactically correct.

At any time, the user can match the template and see which
snippets it finds (see [3]). In case of our example, the match
results contain all acceptVisitor declaration-call pairs found
in all EKEKO/X-enabed Java projects.

III. MUTATION OPERATOR SUITE

A mutation operator, or simply operator, performs a mod-
ification in a template group. In EKEKO/X’s implementation,
a template is represented as a Java abstract syntax tree (AST),
where nodes can be decorated with a list of directives and
their operand values. As such, operators can modify an AST’s
structure, or add/remove directives to nodes. Table I presents
a list of representative atomic operators (top half of the table)
and composite operators (bottom half). Each operator can have
its own list of operands. Each operator can only be applied to
certain subject nodes, as described in the Subject column of
Table I. The subject node is the “part of the template” that is
selected by the user, effectively corresponding to an AST node
in the template. As the subject of each operator is constrained
to certain types of nodes, this also makes it possible to create
EKEKO/X’s operator list context-sensitive.

While not shown here, the “Add directive” operator can
add several (30+) different types of directives to a node,
among which are directives to relate a method call to a
method declaration (invokes), to bind nodes to a metavari-
able (equals), relate the subject node to an ancestor node
(child/child*/child+), relate a method to an overriding
method (overrides), etc. The “Add directive” operator in
itself is quite straightforward, as it only attaches a directive to

the subject node. The actual behavior of each directive only
takes effect while matching a template, where each directive
specifies which logic constraints need to be satisfied.

IV. SUGGESTING TEMPLATE MUTATIONS

Our second component to assist EKEKO/X users is a search-
based system that can automatically generalize and refine a
template group, such that it matches only with a given set
of desired code snippets. This system is based on a single-
objective genetic search algorithm, and it makes use of of our
suite of mutation operators.

Genetic algorithm - In short, the algorithm consists of a
loop that “evolves” a set of template groups, with the aim
of approaching a solution template, with a fitness value of
1. The fitness value indicates “how good” a template group
is, i.e. how close its results approach the desired set of
snippets. Initially, the set of template groups to be evolved
only consists of the template group we would like to improve.
In each iteration of the evolution loop, we produce a new
set/generation of template groups based on the previous one,
in which S tournament selections are made, and M mutations
(S and M are user-defined constants).

A tournament selection will choose one template group by
randomly picking R (user-defined) groups from the current
generation, and returning the one with the best fitness out
of those R. Next to making S selections, M mutations are
performed: This is done by first selecting a template group
(also using tournament selection), and subsequently applying a
random operator, chosen from our suite of mutation operators.
This operator is applied to a random template from the
template group, applied to a random applicable subject node,
with random operand values (if any). The most common type
of operand is a metavariable, so we can randomly choose
among the metavariables already present in the template group,
or generate a new metavariable. Once all S selections and
M mutations are made, they are combined to form a new
generation of template groups. If any of the template groups
produces only the desired snippets, a solution is found and
the algorithm stops. Otherwise, we repeat the selection and
mutation process for the new generation.

Fitness function - To compute how good a template group
is, a fitness function is required. Ours is defined as follows, in
terms of template group t and the set of desired matches m
(where |m| = n):

fitness(t,m) = W1.F1(t,m) +W2.partial(t,m)

partial(t,m) = (
∑n

i=1

matchCount(t ,mi)
nodeCount(t)

)/n

The fitness function consists of two components, F1 and
partial , where each is associated with a weight (W1 and W2,
user-defined). The F1 component is the traditional F-score,
which considers how many true positive, false positive and
false negative matches are produced by t. This results in a
number in [0,1] where a value of 1 indicates that t only
produces the matches in m. While this accurately describes
our goal, F1 is quite coarse-grained in the sense that F1



Table I: A selection of EKEKO/X’s suite of mutation operators

Operator Subject Description
Replace by variable (?var) Any non-root, non-protected Replaces the subject with a metavariable.
Replace by wildcard Any non-root, non-protected Replaces the subject with a wildcard.
Add directive (dir , operands) Depends on selected directive Adds a directive to the subject, with the given operand values.
Remove node Non-mandatory child of parent Removes the subject node.
Insert node before, after (type) List element, non-root node Inserts a new node of the given type before or after the subject.
Replace parent expression Expression, and parent as well Parent of the subject is replaced by the subject.
Isolate statement Statement Method body in which the subject occurs is replaced by any method

body in which the subject occurs as a descendant.
Generalize references Local variable, field declaration

or formal parameter
Abstract away the name of a variable, both in the declaration and all
lexical references to it.

Generalize types (qname) Type Abstracts away all occurrences of a particular type.
Extract template Any non-root, non-primitive Extracts the subject into a new template in the template group.
Generalize invocations Method/constructor declaration Abstracts away all invocations to the subject.

only changes when a template group produces an additional
(un)desired match. This is why the more fine-grained partial
function is introduced. In short, the partial score measures
for each desired match how many template nodes could be
mapped to an AST node in the desired match (matchCount),
out of all template nodes (nodeCount). The intuition here is
that we want to measure how close a template is to producing
each desired match, i.e. a template that almost produces a
desired match is better than one that is far off.

Usage - The user interface to access the automated general-
ization and refinement system is presented in Fig. 2. Consider
the scenario where the user is currently working on a template
group to detect all instances of the Template Method design
pattern in a Java project. He/she currently has a template
group that only describes one instance of the design pattern,
and would like to invoke our system to suggest an improved
template. The first step consists of selecting the template to
be improved ([1] in Fig. 2). The next step is to specify the
complete list of matches that are desired (see [2]), which
would be all instances of the Template Method pattern. These
matches can be gathered by selecting code snippets one by
one, or they can be added more quickly by taking the matches
of other (incomplete) templates. In case too many snippets
were added to the list, they can simply be removed.

Once the list of desired matches is specified, the al-
gorithm can be started. In our example run, the fol-
lowing solution was produced after 29 generations (with
S=8,M=22,R=7,W1=0.6,W2=0.4):

public abstract class ... extends ... {
[public void ...(...) {

[[...]@[invokes ?v527655792];]@[child*]}
[...]@[(equals ?v54716550)]]@[match|set]}

public class ?PrimVal23539979 extends ... {
[...(...) {...}]@[(overrides ?v995827533)]@[match|set]}

As each new generation is produced, the results view (see
[3]) is updated, showing the best template group of the new
generation, its fitness, F1 and partial values. A fitness chart
is updated as well, shown in Fig. 3. This chart shows the
interplay between the two fitness components. The partial
score gradually pushes the templates towards producing more
true positives, but does not take into account false positives,

Figure 2: Overview of the automated generalization and re-
finement system

Figure 3: Fitness component chart

whereas F1 does. This is why partial can increase while F1

drops, as seen in generations 9 and 20.
When the solution template is almost found, there is a jump

in both components (around generation 25). If we are about
to produce an additional desired match, the template may be
sufficiently generalized that it will actually describe several
additional desired matches at once.

Aside from inspecting the best fitness values per generation,
each template group that was generated in the search process
can be inspected in detail. It can be opened in a template
editor, if the user wants to resume the manual editing process.
A template group’s mutation history can also be inspected,
showing all mutations that were used to arrive at the selected
template group, starting from the initial template group. The
history of our solution template is given in Fig. 4. What can be
deduced from this figure is that, early on, the algorithm added
several wildcards. While in this stage, most other directives
would either reduce the fitness value or keep it unchanged,



Figure 4: Inspecting the mutation history of a template group

wildcards can improve the partial score. When a wildcard
replaces a non-leaf node, the total number of nodes in the
template drops. This causes the partial score to rise, even if
the template group still produces the same matches.

At some point, adding too many wildcards would increase
the number of false positives. This is why the algorithm will
then tend to choose a refining operator to reduce the false
positives again. This is apparent in generations 20 and 27,
where an invokes and an overrides directive are added.

Performance considerations - Most time in the algorithm
is spent on computing fitness values, which needs to produce
a template group’s matches. To reduce matching time, all
template groups in a generation are matched in parallel. As
EKEKO/X is written in Clojure, designed with concurrency in
mind, this was reasonably straightforward to implement.

To further reduce matching time, it also is possible to reduce
the amount of code that needs to be searched. There is the
option to only search within the classes containing desired
matches. While this significantly improves the amount of time
needed to match template groups, the algorithm now might
produce a solution with false positives. Nonetheless, it is a
sound approach to first apply the genetic algorithm against a
subset of the code, then test whether the solution that was
found also works against the entire codebase.

V. RELATED WORK

Several program search and transformation languages exist
that are based on code templates [3], [10], [2], [14]. However,
the constraints available in these languages are limited to
expressing syntactic and structural characteristics, but not
semantic ones. When considering languages that focus solely
on program searches [12], [8], [5], these languages do support
various semantic constraints, but are not template-based.

With regards to our genetic search approach, several works
in the field of program repair make use of genetic search or
genetic programming techniques to either generate or evolve
patches that fix an instance of a bug [7], [1], [11]. These
approaches focus on repairing one instance, without looking
for similar instances of the same bug. While our system does
not perform any program repairs, templates can be used to
describe multiple instances of a bug in one template. In this
regard, the work of Meng et al. [13] is more closely related,
as its goal is to repair similar changes. Based on two instances
of the same bug fix, a transformation is generated that should

find and fix all instances of the bug. This approach however
does not support interprocedural modifications.

VI. CONCLUSION

In this tool paper we have presented an extension of
EKEKO/X, which consists of a suite of mutation operators,
and a system that can automatically generalize and refine
templates. Current experiments using this system, in which
one instance of a design pattern is generalized into a template
group that produces all instances, indicate that the system is
able to either substantially improve a given template group,
or even find a solution that matches only the desired snippets.
The main direction of future work is to extend the focus from
program searches to program transformations, such that e.g.
a transformation that repairs one instance of a bug can be
generalized to a transformation that repairs all instances.

REFERENCES

[1] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches
for software repair. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’11, NY, USA, 2011.

[2] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. Guarded Program
Transformations using JTL. In 46th International Conference on
Objects, Models, Components and Patterns (TOOLS), 2008.

[3] James R Cordy. The txl source transformation language. Science of
Computer Programming, 61(3):190–210, 2006.

[4] C. De Roover and K. Inoue. The Ekeko/X Program Transformation Tool.
In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 53–58, September 2014.

[5] Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers.
The soul tool suite for querying programs in symbiosis with eclipse.
In Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pages 71–80. ACM, 2011.

[6] Coen De Roover and Reinout Stevens. Building Development Tools
Interactively using the Ekeko Meta-Programming Library. In IEEE
CSMR-WCRE 2014 Software Evolution Week, Tool Demo Track, 2014.

[7] V. Debroy and W.E. Wong. Using mutation to automatically suggest
fixes for faulty programs. In Third International Conference on Software
Testing, Verification and Validation (ICST), April 2010.

[8] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. codequest:
Scalable source code queries with datalog. In Dave Thomas, editor,
ECOOP 2006, volume 4067 of Lecture Notes in Computer Science,
pages 2–27. Springer Berlin Heidelberg, 2006.

[9] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-
based Software Engineering: Trends, Techniques and Applications. ACM
Comput. Surv., 45(1):11:1–11:61, December 2012.

[10] Gunter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of
logic-based infrastructures for concern detection and extraction. In
Proceedings of the 3rd Workshop on Linking aspect technology and
evolution (LATE07), 2007.

[11] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. Genprog:
A generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54–72, Jan 2012.

[12] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding appli-
cation errors and security flaws using pql: A program query language.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 365–383, NY, USA, 2005. ACM.

[13] Na Meng, Miryung Kim, and Kathryn S. McKinley. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proceedings
of the 2013 International Conference on Software Engineering, ICSE
’13, pages 502–511, Piscataway, NJ, USA, 2013. IEEE Press.

[14] Romain Robbes and Michele Lanza. Example-based program transfor-
mation. In Model Driven Engineering Languages and Systems, volume
5301 of Lecture Notes in Computer Science, pages 174–188. Springer
Berlin Heidelberg, 2008.


