
Managing Traceability Links With MaTraca
Angela Lozano

Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Email: alozano@soft.vub.ac.be

Carlos Noguera
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Email: cnoguera@soft.vub.ac.be

Viviane Jonckers
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Email: vejoncke@soft.vub.ac.be

Abstract—Traceability links are used to ensure co-evolution
among related software artefacts. That is, to ensure that changes
to the application are correctly and completely propagated. Much
emphasis has been put on reverse engineering and co-evolution
of vertical traceability links (i.e., across artefacts of the different
levels of abstraction like UML, requirements documents, source
code). However, today’s applications require automatic support to
deal with complex dependencies across heterogeneous source code
entities (e.g., it is not uncommon for web applications to require
multi-language and multi-paradigm programming). This paper
introduces MaTraCa, an Eclipse plugin to maintain traceability
links among entities of the same level of abstraction (i.e., code)
in complex applications. MaTraCa stands for Managing Trace-
ability Changes. MaTraCa focuses on horizontal links, that is,
relations across software artefacts of the same level of abstraction
such as source code, config files, html forms, etc.

I. INTRODUCTION

The use of traceability links has been motivated mostly
by the need of co-evolving interdependent software artifacts.
However, an often neglected traceability concern is managing
the complexity of current applications where the heterogeneity
of source code artifacts and the lack of support of IDEs hinder
source code development and evolution tasks. In consequence,
we propose MaTraCa to validate traceability links between
heterogeneous source code artifacts.

MaTraCa is designed to be independent of the type of link
analyzed. However, the current prototype can only handle links
between entities/elements of two types of source code artifacts:
source code (Java) and XML. We chose XML artifacts because
XML is a common way to describe meta-data or configuration
of applications, however current IDEs lack of support to
maintain the links of XML entities to other source code
resources. In fact, several popular APIs and libraries can
be configured using XML. For instance, Spring, Maven, and
Hibernate.

The main contributions of MaTraCa’s tracing and validation
facilities are:
• An API to identify relevant XML nodes and their char-

acteristics
• A declarative means to document heterogeneous trace-

ability links
• An implementation that allows the maintenance of het-

erogeneous traceability links: which tells the developer
which links should be updated based on the owner of the
dependency.

In the remainder of this paper, we present a summary of
approaches tackling traceability links in section II, then we
provide an overview of MaTraCa’s tracing and validation facil-
ities in section III, after that we summarize key implementation
details in section IV, next we explain why the tool is extensible
to any link in section V. Finally, the current state of the tool
and the future work are summarized in section VI.

II. RELATED WORK

Much work on traceability links has focused on the auto-
matic recovery of traceability links (i.e., vertical traceability).
Many of these approaches use information retrieval techniques
[1] which allows them to handle traceability links across
heterogeneous software artifacts. However, empirical results
have shown that obtaining fine-grained traceability links does
not necessarily outweigh the cost of extracting them [2].
Finally, it has been found that vertical traceability links do
not tend to propagate their changes bottom-up (i.e., changes
in code are unlikely to affect the design) [3].

There are also techniques to recover horizontal links, like
logical coupling [4]. Logical coupling mines for possible links
between source code entities that tend to be modified at
the same time. However, logical couplings requires previous
changes among the related entities at the same time and cannot
provide any rationale for the mined relations. In contrast, to
our tool relies only on the source code artifacts and on a meta-
level description of entities that should be linked (i.e., there
is certainty that the relation should exist and its rationale is
known).

We found three other approaches based on the definition
of the links. First, the implementation of traceability links
as queries in a database that enable the validation of design
and requirement constraints over source code [5]. Second,
using a meta-model to link source code, UML, and unit tests,
plus adding manually propagation rules to identify whenever
a change in any of these artifacts would impact any of
its related artifacts [6]. And third, converting heterogeneous
source code artefacts to a GraphML representation (via XML)
and specifying the links with XML to have a semiautomatic
change impact detection [7]. However, the last one did not
provide much details, for instance, it is not clear whether
the links are defined and enforced at the meta-level or at the
instance-level or whether the change impact detection requires
first change detection via the version control system.

III. MATRACA: MANAGING TRACEABILITY CHANGES

This section demonstrates the usefulness of MaTraCa via a
running example1. Suppose XML files containing the defini-
tion of error messages (see listing 1), and that the usage of
these definitions is done via calls to the “message” method of
the “MessageManager” class (see listing 2)2.

Listing 1. Example of error message definition

<message i d =”MSG000001”>
<s e v e r i t y >20</ s e v e r i t y>
<p a r a m e t e r s>

<p a r a m e t e r name=” message ” t y p e =” S t r i n g ” />
<p a r a m e t e r name=” que ry ” t y p e =” S t r i n g ” />
<p a r a m e t e r name=” t i m i n g ” t y p e =”Long ” />

</ p a r a m e t e r s>
</message>

Listing 2. Example of usage of error message defined in the XML file

MessageManager m = new MessageManager () ;
. . .

m. message (” MSG000001 ” ,
new O b j e c t [] {” S e a r ch ” ,

”Some query . . . ” ,
Long . va lueOf (1 0 0)} ,

n u l l) ;

In this case, the traceability link is defined between the
Java code that logs the error message, and the XML files that
declare the messages (see Fig. 1). Regardless of the origin
of traceability links (i.e., reverse engineering or manual docu-
mentation), it is necessary to express them in an unambiguous
and explicit way. A traceability link describes an equivalence
relation between ‘implementation concerns’. The equivalence
relation indicates that they require consistent updates or co-
evolution. Therefore, in theory, it is enough to describe the
source and target implementation concerns that require co-
evolution to have traceability links. An implementation con-
cern is defined as an enumeration of the attributes that uniquely
identify those entities which require similar co-evolution.

.java
.xml

.xml

error message
to log

source
error

messages

target
traceability link

Fig. 1. Traceability links from logging code to definition of error messages.

The goal behind our traceability maintenance facilities is to
provide ‘on-the-fly’ development support. In this case, a link
should look as broken when a message ID is used in code
that doesn’t exist in messages.xml (e.g. MSG000015), if the
message exists but is not used correctly, then its parameters
would show that there is not a match between the call and
the way it is defined. Our framework provides the following
validation steps for traceability links (see Fig. 2a):

1This example is a simplification of one of the use cases for MaTraCa
provided by one of the industrial partners of the CHAQ project

2The method “message” receives three parameters: the identifier of the error
(as a String), the parameters of the error message (as an array of Objects),
and the cause of the error message (as a Throwable).

1) Detection of entities that should comply with a traceability
link (see Fig. 2b)

2) Configuration of valid/invalid or relevant/irrelevant links
(done via double click and signaled as a colored/gray icon
in the left most column of each link –see Fig. 2b).

3) Identification of broken links (i.e., links for which there is
only source or target implementation concern but not known
match –see Fig. 2b)

4) Identification of links that have changed (see Fig. 2g and Fig.
2h).
We have also identified the following usability requirements:
Navigation: Being able to click on the resulting software

artifact and open the default editor in the line of cor-
responding to that element/entity (see Fig. 2d),

Parameters: Taking into account parameters3 in the traceabil-
ity link (see Fig. 2e and Fig. 2f),

Search: Being able to find a particular result by name of any
of the elements/entities that conform the traceability link
(see Fig. 2e).

IV. MATRACA’S DESIGN CHOICES

MaTraCa is implemented on top of the the CHAQ meta
model [8]. This meta model offers to MaTraCa an AST
representation of the Eclipse projects chosen to be analyzed
(see Fig. 3). The representation of AST nodes is complemented
with bindings that provide the equivalent FAMIX [9] meta
model abstractions, while each FAMIX entity has a link to
its corresponding AST node. Similarly, the model offers the
parsed representation of each XML file in the projects. A layer
of basic Clojure predicates permits basic reasoning about these
(AST and parsed XML trees). These predicates are used to
filter the entities that are relevant for MaTraCa (i.e., source or
target implementation concerns). Therefore, MaTraCa is not
limited to a single definition of links but allows to describe
any source code entity in the model as source or target of the
links. In fact, the two examples mentioned in the paper are
two different configurations of MaTraCa. MaTraCa’s plugin
builds traceability links from source and target implementation
concerns. These concerns are located via logic predicates that
state what identifies source (domain) or target (co-domain) im-
plementation concerns (see Fig. 4). The predicates that define
the implementation concerns must return a list of Java objects
whose first element is a string identifier of the implementation
concern (shown in the user interface), the value that is used to
establish a match between two implementation concerns, and
the location of each implementation concern (e.g., file, line,
and sometimes starting character). This allows MaTraCa to
create implementation concerns from the results of the domain
and co-domain predicates, which then are matched and used
to define links.

3Notice that some traceability links (like the one shown in the example)
can have parameters. This means that although the basic matching is done
via some characteristics (e.g., the error id), the link itself can have further
matching constraints (e.g., the types of attributes that the error message
requires). Therefore, the parameters of a traceability link are defined as another
traceability link.

(a) Matraca Menu (b) Links Calculated

(c) Filtering Results (d) Jump to implementation concern

(e) Show parameters (f) Checking matching of parameters

(g) Compare against baseline (h) Show changes in baseline links

Fig. 2. Managing the traceability links with MaTraCa.

Eclipse
project

.xml

.html

.java

CHAQ model CHAQ model CHAQ model

Querying MatchingParsing

Fig. 3. Process followed by MaTraCa to detect and validate links.

isEmpty():boolean

identifierForTheUI: String
matchingValue: String
location: IMarker
rest: List<Object>

ImplementationConcern

broken: int
baseline: boolean

AbstractLink
1

source
1

target

ParamLinkConcreteLink
1 parent

1..* children

newLinks MatracaPlugin

domain

codomain

params

All these interfaces are clojure
predicates without parameters that
return implementation concerns.

Fig. 4. MaTraCa’s high level design.

V. MATRACA’S EXTENSIBILITY

Current web-based application require several technologies.
Therefore, web applications are an ideal case study to check
horizontal traceability links over heterogeneous source code
artifacts.

In order to evaluate MaTraCa’s extensibility we described
the traceability links in the Java API for RESTful4 Web
Services (JAX-RS) i.e., (JSR 311). That is, the source of our
links would be the URLs defined in the web page describes
HTTP operations (e.g., get, put, post, delete, etc.) on domain
entities using XForms5, while their target are Java method
that implement the corresponding web-service. A large amount
of jumps is required to check that the resource mentioned in
the URI of a request corresponds to the right method in the
server. Furthermore, these URIs are dynamically constructed
depending on the state transitions that the client has made, so,
checking them becomes time consuming and error prone.

In this case, the traceability links start from the submission
resource of the XForm to the Java method that should be called
when a given web service is chosen (see Fig. 5). The domain
was defined the XForm-submission resource in xhtml files 6.
The codomain was defined as the concatenation of the location
of web-services, then it looks for the class that implements
the web application (defined in an XML file) which contains
the simple name of the class that implements the web service
called by the html page, once that file is located it concatenates
the value of the @Path annotation at the class and method
level. A video of this version of MaTraCa can be found at
https://sites.google.com/site/alozanoresearch/demos.

4REST stands for Representational State Transfer. REST is an alternative
to SOAP and WSDL based Web services.

5XForms is an XML way of defining web interfaces. XForms is inspired
on the MVC pattern. In XForms, the controllers are the actions triggered
by updating the model or the views form. These can be identified by
action definition nodes (e.g., <xf:varName ref=...>, <xxf:varName
submission=...>, <bind ...>, <submission action=...>). The view
correspond to the HTML elements that provide the presentation of the
document and the XPath associated to them. Finally, the model is the data to
be edited and submitted which is described inside the <model> tag.

6Notice that the submission resource can refer to variables defined in the
XForm (i.e., the XML is dynamically built), and therefore MaTraCa cannot
rely on string matching across entities.

Fig. 5. MaTraCa’s traceability links from XForms to Java. Matching elements
are shown filled light red boxes, matching criteria with empty red-bordered
boxes, and parameters with filled light green boxes.

VI. CONCLUSION

This paper presents MaTraCa, a tool that allows the doc-
umentation of horizontal traceability links, the establishment
a baseline (focus in those links of interest to the developer),
the evaluation of broken/obeyed links, and the comparison of
the current version of the code against the baseline. We have
shown the usefulness of our prototype by means of a simple
example (error messages) and its extensibility with another
example (XForms submissions and the Java implementation of
RESTful web services). Currently we are preparing in a pilot
case with an industrial partner (using the traceability of REST
links) to evaluate the impact of the tool on the maintenance
of traceability links.

REFERENCES

[1] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: A
systematic mapping of information retrieval approaches to software
traceability,” Empirical Softw. Engg., vol. 19, no. 6, pp. 1565–1616, 2014.

[2] A. Egyed, F. Graf, and P. Grunbacher, “Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments,” in Proc. of
the IEEE Int’l Requirements Engineering Conf. (RE), 2010, pp. 221–230.

[3] M. Hammad, M. L. Collard, and J. I. Maletic, “Automatically identi-
fying changes that impact code-to-design traceability during evolution,”
Software Quality Journal, vol. 19, no. 1, pp. 35–64, Mar. 2011.

[4] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. of the International Conference on
Software Maintenance (ICSM), 1998, pp. 190–198.

[5] S. P. Reiss, “Incremental maintenance of software artifacts,” in Proc. of
the IEEE Int’l Conf. on Software Maintenance (ICSM), 2005, pp. 113–
122.

[6] S. Lehnert, Q.-u.-a. Farooq, and M. Riebisch, “Rule-based impact analysis
for heterogeneous software artifacts,” in Proc. of the European Conf. on
Software Maintenance and Reengineering (CSMR), 2013, pp. 209–218.

[7] I. Pete and D. Balasubramaniam, “Handling the differential evolution
of software artefacts: A framework for consistency management,” in
Doctoral Symposium of Int’l Conf. on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 599–600.

[8] C. D. Roover, C. Scholliers, V. Jonckers, J. Pérez, A. Murgia, and
S. Demeyer, “The implementation of the CHA-Q meta-model: A com-
prehensive, change-centric software representation,” ECEASST, vol. 65,
2014.

[9] S. Ducasse, J. Laval, U. B. Nicolas Anquetil, A. Hora, and T. Girba, “MSE
and FAMIX: an interexchange format and source code model family,”
INRIA LNE- LIRMM, Tech. Rep. hal-00646884,, November 2011.

