
Linvail: A General-Purpose Platform for Shadow Execution of JavaScript

Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, Coen De Roover

Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
{lachrist,egonzale,wdmeuter,cderoove}@vub.ac.be

Abstract—We present Linvail, a novel instrumen-
tation platform for developing dynamic analyses of
JavaScript programs. Linvail is particularly well-
suited to implementing shadow executions which in-
volve tagging runtime values with analysis-specific
data. In contrast to existing instrumentation plat-
forms, Linvail is capable of tracking both tagged
objects and tagged primitive values during their en-
tire life-time in a behavior-preserving manner. To
demonstrate the expressiveness of our platform, we
present the implementation of several state-of-the-art
analyses. Our experiments demonstrate that Linvail’s
accuracy comes at the price of a performance over-
head, but we believe that real-world applications will
remain usable under analysis.

I. Introduction
JavaScript has become ubiquitous on server and client

tiers of contemporary web applications. Accordingly, the
research community has shown an increasing interest
in helping web developers to understand and maintain
JavaScript programs. The study of a program’s execu-
tion, known as dynamic program analysis, has become
a common technique in this respect [3]. In practice,
however, proposed dynamic analysis tools are often built
from scratch which constitutes a serious duplication of
efforts – e.g., [1], [10], [17]. In this paper, we introduce
Linvail, a novel instrumentation platform aiming at
providing a common ground for future dynamic analysis
tools targeting JavaScript programs. In essence, Linvail
enables tagging runtime values with meta-data, a process
known as shadow execution [9] which is central in many
dynamic analyses such as taint analysis [14] and concolic
testing [12], [5]. Linvail is a pure JavaScript solution
based on source code instrumentation; it does not rely
on a modified JavaScript engine. Providing a custom
JavaScript runtime would enable powerful analyses that
break the constraints imposed by the ECMAScript spec-
ification. Given the large diversity among JavaScript
engines and the fast pace at which they evolve, we focus
on source code instrumentation instead. The design of
Linvail has been driven by three important criteria:
Type-independent value tagging: runtime values should

be taggeable regardless of their types. This is im-
portant because dynamic analyses commonly deal
with all types of values.

Transparent analysis layer : the program under analysis
should not be impacted by the underlying shadow
execution. If this is not the case, the conclusion
drawn during the analysis may be invalid.

Life-long value tracking: runtime values should keep the
same tag during their entire lifetime. Many analy-
ses implicitly rely on this assumption in order to
produce precise results.

Fulfilling the second and the third criterion is straight-
forward for objects. For them, it suffices to maintain a
mapping from pointers to tags. Unfortunately, such a
tagging strategy cannot be applied to primitive values
because they cannot always be properly differentiated.
Binary instrumentation platforms such as PIN [7] and
Valgrind [9] have successfully overcome this difficulty
by mirroring the entire state of the program being
analyzed. However, it remains unclear whether their
approach can be implemented for JavaScript at the
source code level. In this paper, we explore a tagging
strategy where primitive values are wrapped into special
objects. This effectively converts them into traceable
references.

While wrapping is a simple yet powerful solution
for tracking primitive values, it suffers from the two
body problem [4] –i.e., a wrapper and the primitive it
wraps, called wrappee, remain two distinct entities. On
the one hand, the transparency of the analysis may be
compromised if wrappers escape the analysis layer to
pollute the base program layer. We address this issue
by installing an access control system between these two
layers which is inspired by Miller’s membranes [8], [16].
On the other hand, primitive values may not be tracked
for their entire life-time if the link between wrappers
and wrappees is lost. We preserve this link by means of
an oracle that knows about the semantics of JavaScript
built-in functions.

We validate Linvail by building a number of rep-
resentative dynamic analyses including (1) a tracker of
the origin of null and undefined values, (2) an analysis
of the dependencies between “not-a-number” values, (3)
a precise tracer, (4) a simple taint checker and (5) a
path constraint collector. With respect to our three
criteria, we show that these analyses outperform similar
analyses built on top of a state-of-the-art JavaScript

instrumentation platform, namely Jalangi. Finally, we
demonstrate the applicability of our approach by run-
ning our analyses on the SunSpider benchmark suite. Al-
though we observed a significant performance overhead
on the SunSpider benchmarks, we believe that real-world
JavaScript programs are less computationally expensive
and will remain usable.

II. Motivating Example
We illustrate the need for a new dynamic analysis

platform through the concrete example of implement-
ing a dynamic taint analysis. Dynamic taint analysis
is a form of information flow analysis which aims at
detecting flows of data that violate program integrity
by marking or tainting program values [14]. The goal
of our taint analysis is to detect whether password-
related information can leak to the Document Object
Model (DOM) and therefore become visible screen. As
stated in the introduction, we wanted our approach to
be independent of a specific JavaScript engine out of
applicability concerns. Hence we only consider program
instrumentation techniques in this section.

A. Tagging Runtime Values
In our taint analysis, the initial values to be tainted/-

tagged are the strings taken from password fields. String
is not the only type of value that our analysis should
support though; in JavaScript, it is easy to convert a
string to an array of numbers or use it as a property
name inside an object. After a number of these opera-
tions, the entire range of runtime values in a program
is susceptible to contain password-related information.
This brings to the surface our first criterion: A general-
purpose platform for shadow execution should be
able to tag values regardless of their type.
Our taint analysis, and shadow execution in general,

requires modifying language semantics to ensure that
analysis tags are properly updated while a program
under analysis is executed. To this end, program instru-
mentation is often combined with reflection if supported
by the language. Reflective APIs are appreciated because
they take care of low-level concerns such as separating
the base layer from the meta layer. Unfortunately, cur-
rent JavaScript reflection capabilities are restricted to
object-related operations [15]. Hence, if our taint anal-
ysis would solely rely on the reflective API of JavaScript,
it would not be able to reason about primitive values and
therefore fail our first criterion.

An alternative lower-level approach to modifying the
semantics of a language is to systematically replace syn-
tactic expressions by calls to trap functions as depicted
in Table I. For instance, after instrumentation, the trap
binary can be called in place of every binary expression
present in the original program. This would essentially

Original Instrumented
1 traps.literal(1,AST)

x ? y : z traps.test(x) ? y : z

o.a traps.get(o,"a",AST)

o.a = x traps.set(o,"a",AST)

for (k in o) traps.enumerate(o) ...

x + y traps.binary("+",x,y,AST)

!x traps.unary("!",x,AST)

f(x,y) traps.apply(f,null,[x,y],AST)

Table I: Sample of program instrumentation inserting
syntactic traps

enable rewriting the semantics of JavaScript’s binary
operations. Such a program transformation can be im-
plemented using existing instrumentation platforms such
as Jalangi21 and Aran2. While syntactic traps enable
tagging objects by comparing pointers, primitive values
remain an issue. Suppose that our taint analysis is
applied to a program requesting a birthdate and a pass-
word, and that the user carelessly uses its birthdate as
a password. In that case, the string originating from the
password field cannot be differentiated from the string
originating from the date field. Yet only the password
string should trigger an alarm if it happens to escape to
the DOM.

Popular X86 binary instrumentation platforms such
as PIN [7] and Valgrind [9] overcome this difficulty
by mirroring the entire state of the program under anal-
ysis. However, JavaScript is significantly more complex
than machine code. It therefore remains unclear whether
shadow states can be fully implemented at the source
code level of JavaScript. This point is further discussed
in Section VI. In this paper, we explore an alternative
tagging strategy where primitive values are wrapped
into special objects. This effectively converts them into
traceable references. The following listing illustrates a
manual adaptation of such a tagging strategy to the
specific needs of the taint analysis:

1 var tainted = new WeakMap(), wrapped = new WeakSet();
2 function taint (x, t) {
3 if (t && isPrimitive(x))
4 wrapped.add(x = {inner:x});
5 if (t)
6 tainted.set(x, t);
7 return x;
8 }
9 function clean (x) { return wrapped.has(x) ? x.inner : x }

Listing 1: Taint using explicit wrappers

1https://github.com/ksen007/jalangi2
2https://github.com/lachrist/aran

Listing 1 tracks runtime values through two weak
collections3: tainted which maps pointers to taints and
wrapped which differentiates wrappers from the runtime
values of the program under analysis. The function clean

unwraps its argument if applicable.

B. Naive Implementation
Based on the tagging strategy of Listing 1, we provide

in Listing 2 a naive implementation of our taint analysis
by defining the syntactic traps of Table I.

1 var instrumented = new WeakSet();
2 var traps = {};
3 traps.test = clean;
4 traps.get = function (obj, key, ast) {
5 var src = obj instanceof HTMLInputElement
6 && obj.type === "password"
7 && clean(key) === "value";
8 return src ? taint(obj.value,ast) : clean(obj)[clean(key)];
9 };

10 traps.set = function (obj, key, val, ast) {
11 var sink = obj instanceof HTMLElement
12 && clean(key) === "textContent"
13 if (sink && tainted.has(val))
14 throw new Error(tainted.get(val)+" leaks at "+ast);
15 if (!wrappers.has(obj) && !isPrimitive(obj))
16 taint(obj, tainted.get(key));
17 return clean(obj)[clean(key)] = val;
18 };
19 traps.enumerate = function (obj, ast) {
20 var keys = [];
21 for (var key in clean(obj))
22 keys.push(taint(key, tainted.get(obj)));
23 return keys;
24 };
25 traps.unary = function (op, arg, ast) {
26 var res = eval(op+" clean(arg)");
27 return taint(res, tainted.get(arg));
28 };
29 traps.binary = function (op, left, right, ast) {
30 var res = eval("clean(left) "+op+" clean(right)");
31 return taint(res, tainted.get(left) || tainted.get(right));
32 };
33 traps.literal = function (val, ast) {
34 if (typeof val === "function")
35 instrumented.add(val)
36 return x;
37 };
38 traps.apply = function (fct, ths, args, ast) {
39 if (instrumented.has(fct))
40 return fct.apply(ths, args);
41 throw new Error("Call to non-instrumented function...");
42 };

Listing 2: Naive taint analysis

The trap test makes sure no wrappers are used as
predicates inside conditional structures. The trap get

checks if a password is being fetched from the DOM and
the trap set checks that no password-related information
is being leaked to the DOM. The trap enumerate returns an
array of tainted keys if the object is tainted. Note that
objects become tainted in trap set when tainted keys
are added to them. The traps unary and binary forward
operations to wrappees; if one of the arguments has

3Weak collections have been introduced in the latest JavaScript
specification; their key feature is that they allow their elements
to be garbage collected. This is sometimes appropriate in the
prevention of memory leaks.

been tainted, the taint is propagated to the result. To
keep the code concise, unary and binary operations are
forwarded using the infamous eval function. Alterna-
tively, a case analysis could have been performed on
the string op. The trap literal marks literal functions
as being instrumented, i.e., they may receive and return
wrappers. The trap apply forwards the call if the function
is instrumented or throws an error otherwise.

Non-instrumented functions are either built-in func-
tions, or functions declared in code areas that the
user decided to leave out of the analysis. Section III-A
motivates the fine-grained and selective nature of this
instrumentation. Since our naive implementation does
not support calls to built-in functions at all, it is not
usable in practice. To address this limitation, several
challenges need to be overcome. These will be discussed
in the next section.

C. Calls to Non-Instrumented Functions
When calling a non-instrumented function, a first

problem arises when the function accesses a wrapper
instead of its wrappee. The non-instrumented function
may then behave very differently, causing the instru-
mented and original code to deviate in behavior. Con-
sider Listing 3; a password is fetched from the DOM at
line 1 and it is leaked to the DOM at line 3 under the
condition of line 2. In standard JavaScript, this condition
always succeeds and our taint analysis should flag a
leak in every possible execution. However, if JSON.stringify

accesses the wrapper of pass instead of its wrappee, it
will return the string {"a":{"inner":"secret"}} instead of
{"a":"secret"} and the password will not leak into the
DOM. Our analysis would then wrongly conclude that
the execution respected the taint policy.

This issue illustrates the importance of our second
criterion: The analyzed program should not be
impacted by the underlying shadow execution.
To solve this issue, wrappers should be interchanged
with their wrappees right before they escape to non-
instrumented functions. However, this condition is tech-
nically challenging to detect in JavaScript as it can
manifest itself in different ways (c.f., Section III-A).

1 var pass = document.getElementById("pass").value;
2 if (/{"a":".*"}/.test(JSON.stringify({a:pass})))
3 document.getElementById("leak").textContent = pass;

Listing 3: Transparent Analysis Layer

The second problem arises when calling a non-
instrumented function breaks the link between a
wrappee and its wrappers. This may happen when wrap-
pers are interchanged with their wrappees to preserve
the transparency of the analysis. Listing 4 illustrates this
with the Array.prototype.push and Array.prototye.pop built-
in functions. A password is fetched from the DOM at

line 2, pushed to an empty array, retrieved from that
array and leaked into the DOM at line 5. The analysis
should indicate a leak at line 5 of password information
originating from line 2. For this to happen the values
referred to by pass1 and pass2 should share the same
tag; not because they are equal but because they share
the same origin. This brings us to our third criterion:
Runtime values should keep the same tag during
their entire life-time. For wrappees being standard
primitive values, it is challenging to track what they
become after non-instrumented functions return.

1 var array = [];
2 var pass1 = document.getElementById("pass").value;
3 array.push(pass1);
4 var pass2 = array.pop();
5 document.getElementById("leak").textContent = pass2;

Listing 4: Life-Long Value Tracking

III. Overview of the Approach
In the previous section we showed that the diffi-

cult part of implementing shadow execution through
program instrumentation is the handling of calls to
non-instrumented functions. In Section III-A and Sec-
tion III-B, we introduce two of Linvail’s key compo-
nents for calling non-instrumented functions that respect
the three distilled criteria. We proceed with the imple-
mentation of our approach in Section III-C and revisit
the motivating example in Section III-D.

A. Linvail’s Access Control System
The problems listed in Section II-C call for a means

to control the values exchanged during calls to non-
instrumented functions. To better understand how to
implement such a system, let’s take a step back from
JavaScript and program instrumentation, and analyze
the different cases in which a value is exchanged between
two parties. We borrow from the software security liter-
ature two fictive parties: Alice and Bob.
1) Alice passes a primitive value to Bob. Primitive

values being immutable and atomic by definition,
Bob can only access the information carried by the
primitive values and no further value exchanges may
happen.

2) Alice passes a function to Bob. If Bob defined the
function, no further value exchange may happen.
But if it was Alice who defined the function, Bob
can further pass values to Alice as arguments and
Bob can further receive values from Alice as results.

3) Alice passes a collection to Bob. To reason about
this case, we introduce the concept of ownership. If
Bob owns the collection, no further value exchange
may happen. But if it is Alice who owns the col-
lection, Bob can further pass values to Alice by
writing to the collection and Bob can further receive

values from Alice by reading from the collection.
Note that the frontier of collection ownership is
arbitrary. For instance, nothing prevents Alice from
owning collections that Bob created. It could even
be possible to partition the ownership of a collection
or change its ownership over time.

Considering “Alice” as “instrumented code areas”,
“Bob” as “non-instrumented code areas” and “collec-
tions” as “objects”, the enumeration above provides a
good idea of the cases that our access control system
must cover. To make sure that Alice and Bob can-
not exchange information through their scope, we fix
the granularity of the selective instrumentation at the
module level. Our access control system is based on
proxies [15], [16], a new API for reflection introduced
in ECMAScript6. It enables intercepting object-related
operations on distinct objects called proxies. In reflection
terminology, the process of transforming a regular object
to a proxy is an instance of virtualization. Listing 5 pro-
vides an example of virtualization using the constructor
Proxy which accepts a value to virtualize and a set of trap
functions.

1 var handlers = {
2 get: function (target, key, receiver) {
3 console.log("get "+key);
4 return Reflect.get(target, key, receiver);
5 },
6 set: function (target, key, value, receiver) {
7 console.log("set "+key+" "+value);
8 return Reflect.set(target, key, receiver);
9 },

10 apply: function (target, self, arguments) {
11 console.log("apply "+arguments);
12 return Reflect.apply(target, self, arguments);
13 }
14 };
15 var proxy = new Proxy(object, handlers);

Listing 5: A log-and-forward proxy

In our approach, both functions defined inside in-
strumented code areas and objects owned by an in-
strumented code area are virtualized. The frontier of
object ownership is discussed in Section III-B. Our
access control system is parametrized by two functions:
enter and leave which correspond to the instrumented
code’s perception for value exchanges. When a non-
instrumented function is invoked, leave and enter are
called on the arguments and the result, respectively. The
rest of the exchanges in the enumeration above are being
controlled by the traps present in our proxies. These
traps have two modes: the transparent mode which is
active when instrumented code is being executed and
the control mode which is active when non-instrumented
code is being executed. In transparent mode, the traps
just forward the operations to the virtualized object. In
control mode, the operations are also forwarded but the
values involved pass properly through the function enter

and leave.

The design of our access control system is inspired
by the membrane pattern [16], [8]. This pattern ensures
that only revocable references can be exchanged between
two entities. Revoking the membrane would then instan-
taneously prevent any further communication between
the two entities. To the best of our knowledge, we are
the first to use a variant of the membrane pattern in a
dynamic program analysis setting. Also, there exist two
key differences between the membrane pattern and our
access control system. First, in the membrane pattern,
values are virtualized when they are exchanged whereas
in our approach proxies exist in both entities but have
two actionable modes. Second, in our approach, the
ownership of an object can change over time and is not
fixed by its creation location which is not the case in the
membrane pattern.

B. Linvail’s Oracle
Our access control system alone is sufficient to pre-

serve the transparency of analyses; it suffices to provide
a function leave that unwraps the value escaping from
instrumented code. For instance, function clean of List-
ing 1 could directly be set as the leave function. The
simplest implementation of the function enter would be
to ask the analysis layer directly whether it wants to
wrap the value entering instrumented code. However,
this would mean that we systematically loose track of all
values involved in non-instrumented code. Such behavior
performs poorly with respect to our third criterion. The
purpose of our oracle is to improve the tracking of
runtime values.

First, our oracle is responsible for rewrapping entering
values. Consider the built-in Array.prototype.forEach which
applies a callback to all the elements of an array as
depicted in Listing 6. When the call xs.forEach(f, t) is
evaluated, our access control system detects the follow-
ing initial sequence of exchanges: xs leaves, f leaves,
xs.length leaves, xs[0] leaves, xs[0] enters, i enters, xs

enters. The oracle’s responsibility is to detect that the
xs[0] and xs values entering are not novel from the point
of view of the instrumented code. Hence, the analysis
layer should only be notified about the entrance of i.
This requires our oracle to retrieve the wrappers of
xs[0] and xs if any. To perform this task, our oracle
uses information that has to be entered manually about
important JavaScript built-ins.

1 Array.prototype.forEach = function (f) {
2 var l = this.length;
3 for (var i = 0; i<l; i++)
4 f(this[i], i, this);
5 }

Listing 6: Simplified polyfill for Array.prototype.forEach

The second responsibility of our oracle is to define the
frontier of object ownership. For the sake of simplicity,

Code External function
new F(x,y) Reflect.construct(F, [x,y])

o.a Reflect.get(o, "a")
o.a = x Reflect.set(o, "a", x)

delete o.a Reflect.delete(o, "a")
for (k in o) ... Reflect.enumerate(o)

!x Reflect.unary("!", x)
x + y Reflect.binary("+", x, y)

Table II: Normalized language constructs as calls to
reflective function; Reflect.unary and Reflect.binary are not
standard.

our oracle is stateless; rewrapping is only based on the
values exchanged locally. Consider again Listing 4, if
array is not owned by the instrumented code it may not
contain wrappers. Hence, our oracle cannot deduce that
pass1 and pass2 refer to the exact same value because no
information is kept between line 3 and 4. This example
illustrates that our approach performs better as the
instrumented code owns more objects. However, before
changing an object’s ownership, we must be sure that
non-instrumented code has not kept an alias to this
object. Otherwise, wrappers could be written to the
object while non-instrumented code could by-pass our
access control system by accessing this alias. As for
rewrapping, our oracle also uses information that we
manually input. For instance, our oracle knows that the
built-in Object.create(proto) returns an alias-free object.
An important class of objects that can be guaranteed
to be alias-free are the objects pre-existing inside the
global object and the global object itself. Consequently,
values written to the global object will be considered as
leaving instrumented code.

C. Linvail’s Implementation

We have implemented Linvail and made it available
under the MIT license at https://github.com/lachrist/linvail.
Figure 1 depicts the interaction between the different
components of an analysis built on top of Linvail. On
the bottom of the diagram is the instrumentation layer.
It provides a simplified interface by normalizing language
constructs into calls to reflective functions as depicted
in Table II. Our access control system implements this
interface; it expects the functions enter and leave and
provides the function chown which makes an object belong
to the instrumented code by virtualizing it. Next comes
our oracle which provides the function enter and leave and
manages the ownership frontier with calls to the function
chown. Finally comes an analysis layer, which has to be
implemented by the user of our approach. It is the focus
of this section.

Before proceeding to the API of our approach, we
briefly assess how our approach performs with respect
the three criteria introduced in Section II.

Instrumentation Layer

Access Control System

Oracle

Analysis Layer

chown(object)

push(call)
pop(result)

wrap(value, context)

apply(function, this, arguments, ast)
literal(value, ast)
test(value, ast)
try(ast)
catch(error,ast)

enter(value, context)
leave(value, context)

Linvail

Figure 1: Component architecture of a Linvail analysis

Type independent value tagging: Through the wrap func-
tion, the analysis layer has the opportunity to tag
every single value entering instrumented code; this
first criterion is therefore entirely satisfied.

Transparent shadow execution: Thanks to our access
control system, no wrapper may escape to non-
instrumented code. The second criterion is therefore
also satisfied. Note that the analysis layer can still
impact the execution of the program under analysis.
For instance, stack.push could throw an error and
preclude the program under analysis from continu-
ing its normal execution. Also, the logging required
for an analysis can affect the performance of the
executed program. In short, our approach enables
but does not ensure transparent analyses.

Life-long value tracking: The oracle was introduced for
our approach to satisfy this criterion. However,
it performs based on knowledge about the imple-
mentation of the non-instrumented functions that
are being executed. Without this knowledge, the
oracle resorts to a conservative strategy that might
result in incomplete traces for the primitive values
involved.

Listing 7 demonstrates the usage of Linvail; it depicts
an empty analysis that wraps every single value entering
instrumented code. The top-level function of our ap-
proach expects two arguments and returns a function
performing the analysis. The first argument is a stack-
like object that should provide two methods: push and
pop. They will be invoked before, and after a call is
performed within instrumented code, respectively. The
argument passed to push is an object containing the

fields: function, this, arguments and ast. The function, this

and arguments fields contain the values involved during
the call. The AST field is the ESTree syntactic node4

where the call occurred. Note that many language-level
constructs are normalized into calls to built-in functions.
For instance, the expression x + y is processed by the
analysis as Reflect.binary("+", x, y). Original operations
can still be retrieved through call.ast nevertheless.
The second argument is a function that is called when

our access control system detects that a value enters the
instrumented code, and that this value is considered new
by the oracle. The two arguments passed to this function
are the entering value and some contextual information.
The value returned by this function, if any, is a wrapper
object containing a method unwrap. This method will be
called with contextual information whenever the value
leaves instrumented code. Although wrapping is only
required for primitive values, we extend it to objects
to provide a uniform API. The possible values provided
by Linvail for the contextual information are: (i) An
AST node: for literal values and conditional structures
present in instrumented code; (ii) A string: produced
to explain the origin of values exchanged in calls to
non-instrumented functions e.g., "result" or "arguments[0]".
(iii) Null: for all other values.

1 var stack = {};
2 stack.push = function (call) {};
3 stack.pop = function (result) {};
4 function unwrap (contex) { return this.inner }
5 function wrap (x, contex) { return {inner:x, unwrap:unwrap} }
6 var analysis = Linvail(stack, wrap);
7 analysis(jsCode);

Listing 7: An empty, wrap-everything analysis.

D. Revisiting the Motivating Example
In Listing 8, we provide a second implementation

of our motivating example. This time, we are using
Linvail’s API instead of the syntactic traps of Table I.
While the size of our two different implementations is
comparable, calls to non-instrumented functions are now
properly supported.

Lines 1–19 implement the call stack interface. Before
an instrumented call is performed, calls.push is invoked
and it is first checked whether the call is a source at line 3
till 6 or a sink at line 8 till 10. The call is then decorated
with an empty array that will be populated later by
wrappers exchanged with non-instrumented code. Note
that this array will remain empty if the function about
to be called is instrumented. Line 12 finally pushes the
call to the stack. After performing an instrumented call,
calls.pop is invoked and the taint of the call is propagated
to all wrappers involved in the call.

4https://github.com/estree/estree

The remainder of the code snippet shows the wrap

and unwrap functions. Whenever a new value enters in-
strumented code, wrap is invoked. If the current call is
tainted or if the entering value is an object, a wrapper
is returned. We track every object because they may
become tainted later. When a wrapped value leaves
instrumented code, unwrap is invoked. If the wrapper is
tainted and the current call is a sink, an error is thrown
at line 27 notifying the developer that password-related
information is leaking to the DOM. Otherwise, the taint
of the wrapper is propagated to the call and the wrapper
is added to the array of wrapper involved in the call.

1 var calls = [];
2 calls.push = function (call) {
3 call.taint = call.function === Reflect.get
4 && call.arguments[0] instanceof HTMLInputElement
5 && call.arguments[0].type === "password"
6 && call.arguments[1] === "value"
7 && call.ast;
8 call.sink = call.function === Reflect.set
9 && call.arguments[0] instanceof HTMLElement

10 && call.arguments[1] === "textContent";
11 call.wrappers = [];
12 Array.prototype.push.call(this, call);
13 };
14 calls.pop = function (res) {
15 var c = Array.prototype.pop.call(this);
16 for (var i=0; i<c.wrappers.length; i++)
17 c.wrappers[i].taint = c.wrappers[i].taint || c.taint;
18 }
19 calls.last = function () { return this[this.length-1] };
20 function wrap (val, ctx) {
21 var taint = calls.last().taint
22 if (taint || !isPrimitive(val))
23 return {inner:val, taint:taint, unwrap:unwrap};
24 }
25 function unwrap (ctx) {
26 if (this.taint && calls.last().sink)
27 throw tnt+" leaks at "+calls.last().ast;
28 calls.last().taint = calls.last().taint || this.taint;
29 calls.last().wrappers.push(this);
30 return this.inner;
31 }
32 var analysis = Linvail(calls, wrap);

Listing 8: Taint analysis built on top of Linvail

IV. Technical Discussion
In this section, we discuss some technical points that

were left open until now. The programs supported by
Linvail have to comply with the strict mode of EC-
MAScript55. ECMAScript6 has since been released, but
we do not foresee any challenges in supporting the strict
mode of ECMAScript6 as well. Supporting standard
mode of either ECMAScript5 or ECMAScript6, on the
other hand, will require a larger implementation effort.
This is because strict mode is an alternative to the
standard semantics that protects programs from some
common pitfalls. It also reduces the number of inter-
actions of a value with the environment that Linvail
has to support: (i) The language construct with allows

5Programs can activate this mode using a "use strict"; state-
ment.

using a plain object as an environment frame. (ii) The
ability to pass a string to the eval function that defines
new variables in the current environment frame. (iii) The
aliases between the fields of the arguments object and the
formal parameters of a function.

A more pressing limitation of our implementation con-
cerns the way in which the analyzed program is modu-
larized. The Linvail prototype only supports monolithic
scripts at the moment. Support for the server-side as
well the client-side module systems that are becoming
prevalent is immediate future work.

Linvail itself imposes some requirements on the
JavaScript engine it is executed on. Our implementation
requires the proxy API introduced by ECMAScript6.
Currently, only the Firefox and Edge browsers fully
support this API. However, it should be supported by
more JavaScript engines in the near future – e.g., V86.
Finally, our implementation of the instrumentation

process is of particular note. As depicted in Listing 7,
analyses created using Linvail result in an analysis

function that instruments and executes a JavaScript pro-
gram. This design decision enables supporting programs
that generate code dynamically, a distinct advantage of
our design decision.

V. Evaluation
Our evaluation of Linvail is three-fold. First we

establish that Linvail is sufficiently expressive to build
several representative dynamic analyses. We then show
and explain why the quality of our analyses outperforms
analyses built on top of Jalangi, a state-of-the-art plat-
form for instrumenting JavaScript. Finally, we demon-
strate that analyses built using Linvail are capable of
analyzing realistic programs from the SunSpider bench-
mark suite. All the data related to our experiments is
available at http://soft.vub.ac.be/~lachrist/linvail/validation.

A. Ease of Implementing Analyses
To demonstrate the expressiveness of our approach,

we implemented six analyses on top of Linvail. All but
the identity analysis are practically relevant and repre-
sentative for the kind of analyses targeted by shadow
execution platforms [13], [9], [7]. We indicate the lines of
code required for each implementation as a very rough
estimation of their complexity:
track-void (≈ 30 loc) tracks the origin of undefined values

and null. As in most other languages, many errors
in JavaScript programs are due to null pointer
dereferences. When a value being null or undefined

causes the language runtime to throw an exception,
this analysis logs the origin of the faulty value to
help developers fix the bug.

6https://code.google.com/p/v8/issues/detail?id=1543

track-nan (≈ 30 loc) tracks the dependencies between NaN

values. In JavaScript, NaN is a special value that
indicates a failure during mathematical and parsing-
related operations. For instance, both Math.sqrt(-1)

and parseInt("foo") return NaN. The problem with
NaN values is that they quickly propagate through
successive calls, which renders pinpointing their ori-
gin difficult. By tracking the dependencies between
NaN values, our analysis facilitates diagnosing their
occurrences.

tracer (≈ 70 loc) is a high-precision tracer for
JavaScript. In this analysis, all internal primitive
values as well as objects are tagged with a
unique identifier. Every call is logged along with
its arguments and results when available. The
resulting trace is sufficiently precise to replay a
recorded execution faithfully.

taint (≈ 50 loc) corresponds to the taint analysis pre-
sented in Section III. Values read from password
fields in the DOM are tainted. Taint is propagated
to external functions that are called. If a tainted
value is written to the DOM, an error is thrown.

constraint (≈ 50 loc) symbolically records the path con-
straints encountered during an execution, as a con-
colic tester [?] would. Every value coming from
an input field in the DOM is tagged with a fresh
symbol. When a symbolic value is used inside a
binary operation, its result will be tagged with a
fresh symbol linked to the binary operation. When
such a symbolic value is used inside a branching
instruction, a path constraint encoding the branch
that was taken is recorded.

identity (≈ 10 loc) is an identity analysis that has no
effect; our proxy membrane is activated but no
primitive wrapping is performed. This analysis has
no purpose but to provide more insight into Lin-
vail’s applicability for Section V-C.

B. Quality of Implemented Analyses
To assess the quality of analyses built on top of

Linvail, we compare them with similar analyses built
on top of Jalangi. Jalangi [13] is a state-of-the-art
JavaScript instrumentation platform which inspired the
syntactic traps depicted in Table I. It has been employed
successfully in building several dynamic analysis tools
for JavaScript (e.g., [11], [6]). As such, it is the closest
work related to Linvail. We have inspected both its
original version (i.e., Jalangi17), which is now consid-
ered legacy software, and the version that is currently
maintained (i.e., Jalangi28) thoroughly.
The inspection of Jalangi2’s implementation reveals

that syntactic traps comprise the only mechanism avail-
7https://github.com/SRA-SiliconValley/jalangi.
8https://github.com/Samsung/jalangi2

able to implement dynamic analyses. As we observed
in Section II, syntactic traps alone are not sufficient
to implement shadow execution correctly for primitive
values. This observation is consistent with the fact that
example analyses included with Jalangi2, deal with prim-
itive values by simply logging them without informing
the user about their origin. Figure 2 illustrates the
limitations of straightforward logging over actual shadow
execution. The execution of a small program is depicted
under two analyses that both aim at diagnosing NaN

appearances. The first analysis is CheckNaN which can
be found in Jalangi2’s repository as a demonstrating
example; the second analysis is our own NaN value tracker,
track-nan. The output of CheckNaN is not very useful for
understanding why y is assigned to NaN, whereas track-nan

provides a pointer to Math.sqrt(-1) which actually causes
the propagation of NaN.

1 var x = Math.sqrt(-1);
2 var y = 2 * x;

CheckNaN (Jalangi2)

Observed NaN at testNaN1.js:1:9:1:22 1 times.
Observed NaN at testNaN1.js:2:9:2:14 1 times.

track-nan (Linvail)

NaN1: sqrt@1:8 [-1]
NaN2: binary@2:8 [*, 2, NaN1]

Figure 2: NaN tracking using Jalangi2 and Linvail.

In Jalangi1’s repository, however, we found an addi-
tional means for implementing dynamic analyses akin
to concolic testing: concolic values. Concolic values,
originally coined annotated values in [13], work similarly
to the wrappers of Listing 2. They carry two fields:
concrete which contains a runtime value and symbolic which
contains the tag associated to this runtime value. As in
Listing 2, appropriate unwrapping operations are hard-
coded for language-level operations such as property
assignment. The key difference with our approach lies
in how Jalangi1 supports external calls.
During an online analysis (as opposed to a post-

mortem one), Jalangi1 relies on the use of JavaScript’s
Object.prototype.valueOf() method. It is called by the lan-
guage runtime whenever a built-in function receives an
object where a primitive value was expected, with the
goal of coercing the object into a primitive. By overriding
the valueOf implementation such that it returns the value
of the concrete field, Jalangi1 supports calls to built-in
functions that exclusively expect primitive values. How-
ever, this approach cannot ensure that transparency is
preserved during calls to built-in functions expecting ob-
jects such as JSON.stringify and Array.prototype.filter. These
claims are demonstrated in Figure 3 which compares our
track-void analysis to the UndefinedNullTrackingEngine exam-
ple analysis in Jalangi1’s repository.

1 console.log(Math.sqrt(null));
2 console.log(JSON.stringify(null));
3 [1,2,3].filter(function (x) { return x });

UndefinedNullTrackingEngine (Jalangi1-Online)

0
{"concrete":null,"symbolic":"null initialized at ..."}
TypeError: function x { ...

track-void (Linvail)

Null1: literal@1:22
Null1 accessed at 1:12
0
Null2: literal@2:27
Null2 accessed at 2:12
null

Figure 3: Jalangi1’s online concolic values

Jalangi1 supports post-mortem analyses through a
record-and-replay system. During the replay phase, calls
to external functions are simply replaced by their results
gathered during the record phase. On external functions
featuring side effects such as Array.prototype.pop, such sim-
ulation will make the replay execution deviate from the
recorded execution. To hide these deviations from the
user, Jalangi1 performs systematic synchronization op-
erations during the replay phase. Not executing external
calls cleverly avoids the problem of interfacing them with
wrappers. However, it brings about the following two
shortcomings. On the one hand, concolic values cannot
live throughout the execution of external functions. This
defeats the entire purpose of our oracle and results in
values being tracked for a much shorter time. Consider
Figure 4 which compares the same analyses as Figure 3.
In Jalangi1’s analysis, the origin of the faulty null

value is reported to be at line 5 whereas our analysis
correctly points to line 1. On the other hand, since the
execution is not entirely replayed, users have to reason
about partial traces. Consider again Figure 4. It appears
that console.log is replayed, but not process.stderr.write.
Based on our experience in using Jalangi, this some-
what arbitrary decision makes it harder to reason about
its outputs. We believe these two limitations are the
reasons for abandoning the record-and-replay system in
Jalangi2. Additionally, the logged message This should

never happen shows an unreported case in which the replay
diverges from the previously recorded execution.

To summarize, the version of Jalangi that is cur-
rently maintained only provides syntactic traps which
does not suffice to implement shadow execution. The
concolic values provided by the legacy version satisfy
our first two criteria, but not the last as they cannot
live through external calls during the replay phase —
significantly reducing the precision of resulting analyses.

1 var x = null;
2 var arr = [];
3 arr.push(x);
4 console.log("Before try");
5 try { arr.pop().a }
6 catch (e) { process.stderr.write("Caught null error\n") }
7 if (Math.sqrt({valueOf: function () { return 1 }}) !== 1)
8 throw "this should never happen";

UndefinedNullTrackingEngine (Jalangi1-Postmortem)

** RECORD **
Before try
Caught null error

** REPLAY **
Before try
null initialized at ...:5:7:5:16
This should never happen

track-void (Linvail)

Null1: literal@1:8
Before try
Null1 accessed at 3:6
Caught null error

Figure 4: Jalangi1’s postmortem concolic values.

C. Completeness of Linvail

To assess the completeness of our approach in terms
of support for JavaScript, we apply our six analyses to
the SunSpider benchmark suite9. This experiment was
conducted using FireFox 38 on a MacBookPro with a
CPU 2,5 GHz Intel Core i7 and with 16GB of RAM.
The primary goal of our experiment is to demonstrate
that Linvail can handle complex JavaScript programs.
We also want to evaluate the performance impact of our
approach, even though our implementation prioritizes
quality and expressiveness over performance. Table III
summarizes the outcome of applying our six analyses to
the 26 JavaScript programs of the SunSpider benchmark
suite. For each of these, we provide the lines of code
of the original program, the lines of code of the instru-
mented program, and the slowdown factor induced by
the analysis.

No assertion violations were observed during the ex-
periment, indicating that our analyses remained fully
transparent and were able to handle the complexity of
the programs. However, our slowdown factors are a order
magnitude higher than those reported by Jalangi [13].
This additional overhead can be seen as the cost of the
qualitative difference demonstrated in Section V-B. We
believe developers are willing to make this trade-off, at
least while developing an application. Our prototype
implementation is, however, less suitable for analyses
that are deployed alongside the application. Moreover,
the SunSpider benchmark suite performs demanding
CPU operations primarily involving primitive values.
For instance, the benchmarks prefixed by string, math

and bitop respectively manipulate strings, numbers and

9https://wiki.mozilla.org/Sunspider_Info

Benchmark LoC LoC* Identity Track-NaN Track-Void Taint Constraint
3d-cube 357 815 336 396 386 376 365
3d-morph 65 36 3719 3856 4013 4286 4236
3d-raytrace 449 704 556 741 720 730 710
access-binary-trees 56 70 1739 3086 2180 1958 1786
access-fannkuch 72 72 11681 16068 1474 13547 9436
access-nbody 176 145 9202 14502 9249 10985 7045
access-nsieve 48 51 4278 6924 6910 5190 3705
bitops-3bit-bits-in-byte 42 29 10677 29102 18902 17654 13346
bitops-bits-in-byte 32 31 11122 19895 17802 12938 12855
bitops-bitwise-and 37 11 4547 16267 10932 7031 6303
bitops-nsieve-bits 44 45 15413 14581 14201 32 13534
controlflow-recursive 34 72 5605 2826 7201 6391 5700
crypto-aes 428 735 2199 1820 2521 2990 2266
crypto-md5 294 830 2289 2128 2819 2911 1785
crypto-sha1 230 248 2617 3471 3185 4500 2532
date-format-tofte 303 379 1851 2036 2015 2243 1959
date-format-xparb 422 829 43 101 183 48 43
math-cordic 108 79 12436 15227 15401 17350 13376
math-partial-sums 47 44 474 577 601 693 462
math-spectral-norm 61 81 10087 10162 14891 14186 10865
regexp-dna 1723 105 5 7 4 5 5
string-base64 139 199 2022 1492 1720 2465 2029
string-fasta 92 189 1674 1931 2184 2623 2628
string-tagcloud 271 347 18 18 12 22 21
string-unpack-code 83 185 75 29 45 74 44
string-validate-input 94 74 87 355 286 217 251
Average – – 4444 6446 5378 5055 4511
First Quartile – – 897 396 386 10985 365
Median – – 3719 3856 4013 4286 2628
Third Quartile – – 10087 10162 7201 2623 6303

Table III: Slowdown factor on the SunSpider benchmarks for five analyses built on top of Linvail. LoC resp. LOC*
stands for the number of line of code of the original resp. instrumented benchmark.

even bits. Our approach is expected to perform poorly,
but correctly on these kind of programs. Common web
applications, however, are expected not to perform as
many CPU-intensive operations. The typical slowdown
factor is expected to be much lower than 5000X.

VI. Related Work

In this section we discuss alternative techniques for
implementing generic shadow executions. Valgrind [9]
is a popular framework for instrumenting binaries for
the purpose of a dynamic analysis. We select this among
many others because it describes the process of shadow
execution in detail. During analysis, Valgrind does not
wrap primitive values but rather maintains a structure
called a shadow state. At any time, this shadow state
mirrors the state of the program under analysis but
contains meta-information rather than runtime values.
Since the program state remains free from meta-data,
shadow states are not subject to the problems listed in
Section II-C. Instead, the primary concern is keeping
the shadow state in sync with the program state during
system calls. Our approach does not suffer from this
concern because side effects of external functions are
being controlled by the access control system. In the
next paragraph, we discuss how shadow states have been

transposed to JavaScript.
In [13], Jalangi1 was presented as a record-and-

replay dynamic analysis framework for JavaScript. We
already discussed in detail the replay phase which in-
corporates syntactic traps and concolic values. We now
focus on its record phase which embeds a structure called
shadow memory that can be seen as an adaptation of
the aforementioned shadow state. Jalangi mirrors the
JavaScript environment by duplicating global variables,
local variables and formal parameters. Similarly, the
store is mirrored by duplicating the fields of every object.

We finally present works on virtual values which en-
able programmers to redefine the semantics of various
operations normally hardwired by the language. Most of
the time, virtual values are a collection of traps, each
of which is a user-defined function that describes how
a particular operation should behave on that virtual
value. If a virtual value is encountered during an op-
eration, its corresponding trap is triggered. The API
provided in Section III-C can be seen as a virtualizing
the runtime values of the program under analysis. The
new proxy API for JavaScript [15] previously introduced
in Section II-A comprises another example of value
virtualization. But as proxies cannot virtualize primitive
values, we could not use them as such in our work. In [2],

Austin et al. proposed a reflective API for JavaScript
capable of virtualizing any value regardless of their type.
The approach is prototyped using the meta-circular
interpreter Narcissus. As a proof of concept, it is not
capable of dealing with the complexity of real-world
JavaScript applications. In particular, it is not clear
how its virtual values interact with built-in JavaScript
functions — which is the primary concern of our work.

VII. Conclusion
We presented Linvail, a novel approach for support-

ing developers in building dynamic analysis tools for
JavaScript. Linvail enables shadow execution through
two key components: (i) An access control system that
prevents analysis-related data from escaping to non-
instrumented areas in the code. (ii) An oracle that uses
its knowledge about JavaScript built-ins to improve the
precision with which runtime values are tracked. We
have shown example analyses built on top of Linvail
to be more precise than similar analyses built on top
of Jalangi, a state of the art JavaScript instrumenta-
tion framework. However, our experiments demonstrate
that Linvail’s accuracy comes at the cost of a perfor-
mance overhead. We believe that real-world JavaScript
programs are computationally less expensive and will
remain usable under analysis.

References
[1] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders

Moller, and Frank Tip. A framework for automated test-
ing of JavaScript web applications. In Proceedings of the
33rd International Conference on Software Engineering
(ICSE11), pages 571–580, 2011.

[2] Thomas H. Austin, Tim Disney, and Cormac Flanagan.
Virtual values for language extension. In Proceedings
of the 26th International Conference on Object Ori-
ented Programming Systems Languages and Applications
(OOPSLA11), pages 921–938, 2011.

[3] Bas Cornelissen, Andy Zaidman, Arie Van Deursen,
Leon Moonen, and Rainer Koschke. A systematic survey
of program comprehension through dynamic analysis.
IEEE Transactions on Software Engineering, pages 684–
702, 2009.

[4] Patrick Eugster. Uniform proxies for Java. In Proceed-
ings of the 21st International Conference on Object Ori-
ented Programming Systems Languages and Applications
(OOPSLA06), pages 139–152, 2006.

[5] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
Dart: directed automated random testing. In Proceed-
ings of the 2005 Conference on Programming Language
Design and Implementation (PLDI05), pages 213–223,
2005.

[6] Liang Gong, Michael Pradel, and Koushik Sen. Jitprof:
pinpointing jit-unfriendly JavaScript code. Technical
report, Electrical Engineering and Computer Sciences
University of California at Berkeley, 2014.

[7] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: build-
ing customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 Conference
on Programming Language Design and Implementation
(PLDI05), pages 190–200, 2005.

[8] Mark Samuel Miller and Jonathan S Shapiro. Robust
composition: towards a unified approach to access control
and concurrency control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, 2006.

[9] Nicholas Nethercote and Julian Seward. Valgrind:
a framework for heavyweight dynamic binary instru-
mentation. In Proceedings of the 2007 Conference
on Programming Language Design and Implementation
(PLDI07), pages 89–100, 2007.

[10] FS Ocariza, Karthik Pattabiraman, and Ali Mesbah.
Autoflox: an automatic fault localizer for client-side
JavaScript. In Proceedings of the 5th International Con-
ference on Software Testing, Verification and Validation,
(ICST12), pages 31–40, 2012.

[11] Michael Pradel, Parker Schuh, and Koushik Sen.
Typedevil: dynamic type inconsistency analysis for
JavaScript. In Proceedings of the 37th International
Conference on Software Engineering (ICSE15), 2015.

[12] Koushik Sen and Gul Agha. CUTE and jCUTE: concolic
unit testing and explicit path model-checking tools. In
Proceedings of the 18th International ConferenceCom-
puter Aided Verification (CAV06), pages 419–423, 2006.

[13] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: a selective record-replay and dy-
namic analysis framework for JavaScript. In Proceedings
of the 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE13), pages 488–498, 2013.

[14] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu
Sridharan, and Omri Weisman. TAJ: effective taint
analysis of web applications. In Proceedings of the
2009 Conference on Programming Language Design and
Implementation (PLDI09), pages 87–97, 2009.

[15] Tom Van Cutsem and Mark S Miller. Proxies: design
principles for robust object-oriented intercession APIs.
In Proceedings of the 6th Symposium on Dynamic Lan-
guages (DLS10), pages 59–72, 2010.

[16] Tom Van Cutsem and Mark S Miller. Trustworthy
proxies. In Proceedings of the 27th European Conference
on Object-Oriented Programming (ECOOP13), pages
154–178, 2013.

[17] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin
Kirda, Christopher Kruegel, and Giovanni Vigna. Cross
site scripting prevention with dynamic data tainting
and static analysis. In Proceedings of the Network
and Distributed System Security Symposium (NDSS07),
2007.

