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Abstract. Several tools support code templates as a means to spec-
ify searches within a program’s source code. Despite their ubiquity, code
templates can often prove difficult to specify, and may produce too many
or too few match results. In this paper, we present a search-based ap-
proach to support developers in specifying templates. This approach uses
a suite of mutation operators to recommend changes to a given template,
such that it matches with a desired set of code snippets. We evaluate our
approach on the problem of inferring a code template that matches all
instances of a design pattern, given one instance as a starting template.
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1 Introduction

In program search and transformation tools, source code templates are a means
to concisely describe source code snippets of interest. For example, templates can
describe all instances of a particular bug, snippets that need to be refactored
or transformed, instances of design patterns, ... However, code templates can
still prove difficult to specify: when a user has little experience working with
templates, or needs to write a larger or more complex template, the templates
may not always produce the desired results. A template could be too general and
produce too many matching snippets. It could also be too specific and produce
too few matches. In this paper, we introduce a search-based [10] approach and
a suite of mutation operators to assist users of Ekeko/X [5], a template-based
search and transformation tool for Java. 1

Automated generalization and refinement - When a template produces
too few or too many matches, the Ekeko/X user can mark which ones are ei-
ther undesired or missed, and invoke our search-based approach. It automatically
looks for a sequence of mutations to the template, so it does produce only the
desired matches. This approach uses a single-objective evolutionary algorithm
(EA). To evaluate this EA, we perform an experiment in the context of general-
izing design pattern instances: the EA is given one instance of a design pattern,
and is then tasked to find a template to match all instances of that pattern.
1 The Ekeko/X program transformation tool and the extensions presented in this
paper are available at https://github.com/cderoove/damp.ekeko.snippets

https://github.com/cderoove/damp.ekeko.snippets


Mutation operators - A key component of the EA is its suite of mutation
operators, which determine the different types of modifications that the EA can
perform on a template. Important to note is that these mutation operators can
also be used directly by the Ekeko/X user to edit templates. This provides
two benefits: first, mutation operators can only be applied if they lead to a
syntactically valid template, which prevents syntax errors. Second, some of the
operators automate common scenarios such as abstracting away the name of a
particular variable declaration and its uses.

In summary, after giving a brief overview of the Ekeko/X tool in Sec. 2, this
paper presents the following contributions: Sec. 3 provides a suite of all template
mutation operators. Sec. 4 presents our search-based approach to automatically
generalize and refine code templates. Finally, Sec. 5 discusses the experiment to
evaluate whether the approach is able to automatically find a suitable solution.

2 The Ekeko/X Program Transformation Tool

2.1 Overview

Ekeko/X is a program search and transformation tool for Java, where searches
and transformations are specified in terms of code templates. A code template
is a snippet of Java code, in which parts (corresponding to AST nodes) can
be replaced by wildcards and metavariables, and different annotations called
directives can be added. These constructs are used to either add or remove
constraints to/from parts of a template. The process of matching a template
involves looking for all concrete snippets of Java code that satisfy all constraints
specified in that template. A simple example of a template is the following:
public class ... {[public void toString (){...}]@[match|set]}

It describes any public class that defines a toString method. To abstract away
the class name and the toString method body, wildcards (shown as "...") are
used. A match|set directive is also attached to the toString method; it indicates
there may be other class members beside the toString method. If the directive
were absent, the template would describe classes that only define toString. In
general, attaching one or more directives to a piece of code uses the following
notation: [code ]@[directives ].

Ekeko/X also provides support for template groups, in which multiple tem-
plates can be related to each other. An example of such a template group is given
in Fig. 1. This example can be used to check the code convention that fields
should not be accessed directly if a getter method is available. Any matches pro-
duced by this template group indicate a violation against the code convention.
An example match is shown in Fig. 2. The group consists of two templates: the
first (lines 1-5) describes a class with a field and its getter method; the second
(lines 7-8) describes a method containing a reference to that field.

Aside from wildcards and directives, this example also makes use of metavari-
ables (shown as an identifier starting with a "?"). These are logic variables whose
values are concrete snippets of code. Directives can also refer to metavariables.



1 public class ... {[
2 [private ... ?field; // Field
3 public ... ... () { // Getter method
4 return [...]@[(refers -to ?field)];}
5 ]@[match|set]}
6
7 public ... ... (...) {
8 [...]@[(refers -to ?field) child*]}

Fig. 1: Any direct field reference for which a getter is available

In line 4, the refers-to directive has ?field as its operand. Because the directive
has an operand, it is contained in parentheses. The directive specifies that the
variable in the return statement must directly refer to the value of ?field. This
ensures that the method in line 3-4 is the getter method of field ?field.

public class Square extends Shape {
private int length = 5;
public Square(int length) {this.length = length ;}
public int getLength () {return length ;}}

public int area(Square s) {return s.length*s.length ;}

Fig. 2: One of the matches of the template group

The second template describes a method declaration, also using the refers-to
directive to specify that there should be a reference to ?field in the method’s
body. It also has a second directive, child*. This indicates that the reference to
?field may occur anywhere in the method body (at any nesting depth). Without
this directive, the method body’s would consist only of the field reference.

2.2 Definitions

To define our suite of different mutation operators, we should first make some
of the core concepts related to templates more precise:

Template - A template is a snippet of code, where parts can be replaced by
wildcards or metavariables, and parts can be annotated with directives. To make
this more precise, it is more convenient to define a template as a tree structure
rather than a piece of text. In particular, a template is a decorated abstract
syntax tree (AST), where every node is decorated with a set of directives.

We will refer to these decorated AST nodes as template nodes, or simply
nodes. When referring to AST nodes that are part of the program being searched,
we will call these source nodes.

Template group - A template group is a set of templates. Relations between
templates in a group can be established as well: if a metavariable occurs in
multiple templates, these occurrences all refer to the same metavariable. In the
example of Fig. 1, the ?field metavariable is used to link both templates.

Metavariable - A metavariable is a variable (in a logic programming con-
text) of which the value is a source node.

Directive - A directive attaches additional constraints to a node. These
constraints will be taken into account whenever the template is matched. A



directive is always attached to one node in a template, which is referred to
as the subject. A directive can also have operands, where most directives use
metavariables as operand values.

Matching - A template group produces a match if a mapping is found
between template nodes and source nodes, such that all of the template group’s
constraints are satisfied.

Note that, while this is not visible in the textual representation of a template,
all nodes except the root implicitly have a directive (typically the child direc-
tive), which adds the constraint that this node should be a child of its parent.
This is necessary to reflect the template’s tree structure in the list of constraints.

Matching node - During matching, when a mapping is found between a
template node and a source node, that source node is called the matching node.
For example, there is a mapping between the wildcard template node in line 1
of Fig. 1 and Square, the corresponding matching node in Fig. 2.

3 Mutation Operator Suite

An operator, or “mutation operator” in full, performs a modification in a tem-
plate group. An operator is always applied to one node, also referred to as the
operator’s subject. There are two types of operators: atomic and composite op-
erators. Atomic operators only modify a single node in a template; composite
operators may modify multiple nodes in multiple templates of a group.

3.1 Atomic Operators

An overview of all available atomic operators is given in Table 1, listing each
operator’s name and its operands, which subjects it can be applied to, and a
brief description. We will then highlight a selection of operators in more detail:

Replace by variable (var) - The subject and its children are replaced by
a metavariable node. Any directives present in the subject are preserved, except
match. Additionally, a directive is added that will bind the matching node to the
given metavariable (var). In the following example, the operator is applied to
the "Hello world" string, such that the resulting template matches any println
call, and metavariable ?arg is bound to the call’s actual argument:
System.out.println ("Hello world ");

⇒ Subject "Hello world", Operands 〈?arg〉
System.out.println (?arg);

Add directive (dir, operands) - This operator attaches the given directive,
with the given operand values, to the subject node. As there are several directives
available, shown in Table 2, we only highlight a selection:
• child / child+ / child* - This directive relates the subject to its parent

node x. In case of child, x’s matching node is the parent of the subject’s match-
ing node. For child*, x’s matching node is a direct or indirect ancestor of the



Table 1: Overview of atomic operators related to program search
Operator Subject Description
Replace by variable (?var) Any non-root,

non-protected
Replaces the subject with a metavariable.

Replace by wildcard Any non-root,
non-protected

Replaces the subject with a wildcard.

Add directive (dir , operands) Depends on
selected directive

Adds a directive to the subject, with the given
operand values.

Remove directive (dir) Any Removes a given directive from the subject.
Remove node Non-mandatory

child of parent,
non-protected

Removes the subject node.

Insert node at (type, index) List Inserts a new node of the given type into the
subject list, at the given index.

Replace node (type) Non-primitive,
non-root and
non-protected

Replaces the subject by a new node of the given
type.

Replace value (value) Primitive,
non-protected

Replaces the subject by the given value.

Replace parent statement Statement in body
of another
Statement

Statement in which the subject occurs is replaced
by the subject.

Erase list List Removes all list elements of the subject.

Table 2: Overview of the available matching directives
Directive signature Subject Description
child,child+,child* Any Relates the subject node to its parent template

node x. The matching node of x is the parent
(child) / indirect ancestor (child+) / ancestor
(child*) of the subject’s matching node.

(equals ?var) Any The subject now unifies with the given
metavariable.

match Any Checks that the subject node type and its
properties correspond to the matching node’s.

match|set List The list elements of the subject must also appear
(in any order) in the matching node’s list
elements.

(type ?type), (type|sname
<str>), (type|qname <str>)

Type, variable dec-
laration/reference
or expression

The matching node should resolve to or declare
the given type. (specified as a metavariable, its
simple name or its qualified name)

(subtype+/* ?type),
(subtype|sname+/* <str>),
(subtype|qname+/* <str>),

Type, variable dec-
laration/reference
or expression

The matching node should resolve to or declare a
(reflexive) transitive subtype of the given type.

(refers-to ?var) Identifier in
method body

Matching node lexically refers to a local variable,
parameter or field denoted by the argument.

(referred-by ?expr) Field/var. decl. or
formal method
parameter

Matching node declares a local variable,
parameter or field lexically referred to by ?expr.

(invokes ?method),
(invokes|qname <string>)

Method call Matching node is an invocation to the given
method, considering the receiver’s static type.

(invoked-by ?call) Method declaration Inverse of the above: matching node is a method
declaration that was invoked by ?inv.

(constructed-by ?ctor) Constructor Matching node is a constructor that was invoked
by ?ctor instantiation.

(constructs ?ctor) Instantiation
expression

Matching node is an instantiation that invokes
the constructor ?ctor.

(overrides ?methdecl) Method declaration Matching node is a method declaration that
overrides the ?methdecl declaration.

protect Any Prevents operators from removing or abstracting
away this node.



subject’s matching node. For child+, it is an indirect ancestor. Exactly one of
these three directives must be present in every template node (except the root).
• (invoked-by ?call) - This directive adds a constraint that relates a method

call to a method declaration. Consider that the subject is a method declaration
in class x. This method declaration should be invoked by ?call, a method call
where the receiver’s static type is x.
• protect - "Protects" the subject and all of its parents. If a node is protected,

it cannot be accidentally removed or abstracted away, because any operators that
could do so are now disallowed. This means the protect directive only affects
the subject applicability of other operators, and does not add any constraints.

3.2 Composite Operators

Table 3: Overview of all composite operators
Operator Subject applicability Description
Isolate statement in
block

Statement, cannot have
protected ancestor

Parent is replaced by any block in which the
subject statement occurs as a descendant.

Isolate stmt/expr in
method

Statement/Expression,
cannot have protected
ancestor

Method body in which the subject occurs is
replaced by any method body in which the
subject occurs as a descendant.

Generalize references Local var., field decl. or
formal parameter

Abstract away the name of a variable, both in
the declaration and all lexical references to it.

Generalize types
(qname)

Type, non-protected Abstracts away all occurrences of a particular
type (while preserving its qualified name).

Extract template Any non-root,
non-primitive

Extracts the subject into a new, additional
template in the template group.

Generalize invocations Method/ctor. decl. Abstracts away all invocations to the subject.

The list of available composite operators is given in Table 3. A selection of
these operators is highlighted in more detail:

Isolate statement in method - The method body in which the subject oc-
curs is replaced with “any method body that contains the subject”. This is useful
in cases where we are only interested in one particular statement of a method.
This composite operator repeatedly applies the “Replace parent statement”-
operator, until the statement appears directly in the method body. All other
statements are removed from the body, and a match|set is added. Finally, a
child* is added to the subject. This example isolates the insertPointAt call
such that any splitSegment method containing this call will match:
public int splitSegment(int x, int y) {

int i = findSegment(x, y);
if (i != -1){ insertPointAt(new Point(x, y), i+1);}
return i+1;}

⇒ Subject insertPointAt(new Point(x,y), i+1);
public int splitSegment(int x, int y) {

[[insertPointAt(new Point(x, y), i+1);]@[child*]]@[match|set]}

Generalize types - This operator abstracts away the name of a particular
type, while preserving the information that all occurrences of that type still
have the same type. This is done by replacing each occurrence of the type by



a wildcard, and attaching a type directive to it with the given metavariable. In
this example all instances of type Expression have been abstracted away:
public class ... extends Statement {

private ASTId <Expression > ...;
public ASTId <Expression > getExpression () {...}
public void setExpression(ASTId <Expression > e) {...}}

⇒ Subject Expression , Operands 〈?etype〉
public class ... extends Statement {

private ASTId <[...]@[(type ?etype)]> ...;
public ASTId <[...]@[(type ?etype)]> getExpression () {...}
public void setExpression(ASTId <[...]@[(type ?etype)]> e) {...}}

4 Recommending Template Mutations

After providing an overview of our suite of mutation operators, this section intro-
duces our search-based approach, which uses an EA to automatically generalize
or refine a template until it matches only with a desired set of snippets.

4.1 Evolutionary Algorithm

The idea is that the user first creates a rough draft of the desired template group,
which may produce too few or too many matches. The user then marks which
results were missed and/or which matches are undesired. Next, the EA is invoked,
which continually modifies the template group with the aim of improving its
match results. This continues until either a solution is found that matches exactly
the desired set of source nodes, or the user interrupts the search process and uses
the best template groups produced up to now.

Our motivation for choosing a search-based approach is three-fold: first, it is
a relatively simple solution to a complex problem. Second, even if the approach
does not find a solution that produces the desired matches exactly, it can still
recommend a template group that is an improvement over the initial group.
Third and finally, using this approach the suite of operators and directives of
Sec. 3 can be extended without altering the EA.

The EA we are using in particular is single-objective. The individuals in the
EA are represented directly as template groups. Pseudocode of the EA is pre-
sented as the evolve function in Fig. 3. This function takes a set of template
groups (init_templates) and a set of desired source nodes (d_matches) as input.
The cur_gen variable contains the current generation of template groups. Ini-
tially, it contains the input template group(s). Every iteration of the EA’s while
loop produces a new generation of template groups based on the previous one,
until one of the groups has a fitness of 1, which indicates we found a solution that
produces only the set of desired matches. The fitness function, which computes
fitness values, is described in more detail in the next section.

Creating a new generation is done only by a process of selections and muta-
tions. The selections set is created by performing tournament selection S times
in the current generation, where S is user-chosen. Tournament selection chooses



evolve(init_templates, d_matches) {
cur_gen := init_templates
history := init_templates
while(@t∈ cur_gen : fitness(t, d_matches)= 1 ) {
selections :=

⋃S
i=1 tourn_select(cur_gen, d_matches, R)

mutants :=
⋃M

i=1 ∃t : t = mutate(tourn_select(cur_gen, d_matches, R))
and fitness(t,d_matches) 6= 0 and t /∈ history

cur_gen := selections ∪ mutants
history := history∪mutants}}

Fig. 3: Pseudocode describing the evolutionary algorithm

one template group by randomly picking R (user-chosen) groups from the current
generation, and returning the one with the best fitness out of those R.

A mutants set is also created: M (user-chosen) template groups are chosen via
tournament selection, followed by applying a mutation operator to each group.
This is done by first randomly choosing a subject node in one of templates of a
template group. Next, a mutation operator is chosen at random from the oper-
ators presented in Sec. 3, followed by randomly choosing operand values. Most
operators use metavariables as operands. To find operand values, a metavariable
is chosen that already occurs in the template group, or a new one is generated.

Once a mutation is applied, it becomes part of the next generation on two
conditions: first, it cannot have a fitness value of zero. This typically indicates
that the mutant does not produce any matches whatsoever, and is highly un-
likely to lead the search process in the right direction. Second, the new generation
cannot contain mutants that were already seen in earlier generations, which is
checked using the history set. The new generation is then created by concate-
nating the selections and mutants sets, and the EA can either move on to the
next generation, or stop if a solution is found.

4.2 Fitness Function

We make use of a single-objective EA; there is a single fitness value that it aims
to optimize. In our case, the fitness value is a real number in the [0,1] range,
where higher is better. The fitness function, which computes the fitness of a
template group, is defined in Fig. 4. It is given a template group t and a set of
desired matches m as input. It is defined in terms of the F1 score and the partial
score, where each component is given a user-specified weight (W1 and W2).

fitness(t,m) = W1.F1(t,m) +W2.partial(t,m)
, where W1 +W2 = 1 and W1 ≥ 0

partial(t,m) = (
∑n

i=1

matchCount(t ,mi)

nodeCount(t)
)/n

F1(t,m) =
prec(t,m).rec(t,m)

prec(t,m) + rec(t,m)
prec(t,m) =

tp(t,m)

tp(t,m) + fp(t,m)
rec(t,m) =

tp(t,m)

tp(t,m) + fn(t,m)

Fig. 4: Computing the fitness of a template group t

The main component of the fitness value is the F1 score, a number in the [0,1]
range defined in terms of how many desired (true positives, tp) and undesired
(false positives, fp) matches were found by a template group, as well as how
many desired matches were not found (false negatives, fn). The closer it is to 1,



the closer the template group is to producing only the desired matches. If false
positives are found, the score lowers, which prevents the EA from producing
solution template groups that simply match with anything.

While the F1 score in itself is sufficient to recognize a solution template group,
it also is a rather coarse-grained measure. It often takes a sequence of several
mutations before a template group’s F1 score increases. For example, several
wildcards may need to be introduced to produce an additional match. To make
the fitness function more fine-grained, a second component is necessary, the par-
tial score. The idea is that a template group that almost produces an additional
desired match is better than one that does not. We want to measure how "close"
a template group is to matching with each of the desired matches: for each of the
desired matches, the template group is applied only against this desired match.
Every node that is successfully mapped is one step closer to the template group
actually producing that desired match. The ratio of mapped nodes (matchCount)
to the total number of nodes in the template group (nodeCount) indicates how
close the template group is to finding this desired match. The average of these
ratios (one per desired match) is the partial score.

4.3 Reducing the Search Space

An important factor to consider in search problems is the size of the search
space. To reduce it, we have taken several design decisions:

The first is related to the fact that many directives use metavariables in their
operands. For the directive to have any effect, that metavariable must be bound
to a value elsewhere: if a mutation adds an invoked-by, the operand needs to be
bound to a method declaration. If it is not bound yet, the mutation operator
also adds an equals directive to a method declaration in the template group.
We use this shorthand, where an equals directive is automatically added, for
the following directives: invokes, invoked-by, refers-to, referred-by, overrides,
constructs, constructed-by and all variants of the type directive.

A second decision is the lack of crossover operations, where two new template
groups are created by swapping a randomly chosen subtree in one template
group, with a random subtree in another template. We found that crossovers
mostly produce invalid templates, or templates that do not produce any matches.

The third decision is the ability to choose which operators need to be enabled
or disabled. This is useful to reduce the search space as there are several "redun-
dant" directives that are the inverse of each other, e.g. invokes and invoked-by.

The final decision concerns the use of the protect directive. While it prevents
users from accidentally removing or abstracting away an important node, the
same holds true for the EA. Adding a protect is useful to avoid getting the EA
stuck in a local optimum, because it abstracted away too much information.

5 Generalizing Design Pattern Templates

To evaluate the EA’s ability to automatically generalize or refine a template
group, we will use it in the context of design patterns [7]. Given one instance of



a particular design pattern as an input template group, and all instances of the
pattern as the set of desired matches, the EA is tasked to find a template group
that produces all desired matches. We have chosen this context, as most design
patterns involve multiple roles, played by different classes, which are related to
each other in various ways. To represent a design pattern as a template group
then involves multiple templates making use of several different directives. As
such, we consider design patterns well-suited to put the EA to the test. The
main research question to be answered in this experiment is how effective the
algorithm is at finding a solution template group.2 Can a solution be found?
How many generations are required to find a solution, and how much time?

5.1 Experiment Setup

For this experiment, we chose two Java applications of a reasonable size, and
where design pattern instances have been documented in the P-MARt dataset [8]:
the JHotDraw v5.1 drawing application (16019 LOC; 173 classes; 1134 methods),
and the Nutch v0.4 web crawler (37108 LOC; 321 classes; 1864 methods). For
JHotDraw, we generalized the observer, prototype, template method, strategy
and factory method patterns. For Nutch, we generalized the template method,
strategy and bridge patterns. Other patterns in these projects were excluded
either because the pattern documentation in P-MARt was incomplete, or because
the pattern only has one instance (so there is nothing to generalize).

For each of the selected design patterns, the experiment is set up as follows.
We first need to ensure an exact solution (with a fitness equal to 1) exists in
the EA’s search space: if it is unknown whether a solution exists, the experi-
ment would simultaneously evaluate how expressive our template language is,
which complicates evaluating the EA’s effectiveness. We ensure there is an exact
solution by designing it manually using only our suite of mutation operators.

Next, one instance of the design pattern is used as the EA’s input template
group. We do perform some preprocessing on this template by removing irrele-
vant methods and adding protect directives to those parts of the template that
may not be removed. Our assumption is that the user has a notion of which
parts are considered important. While this preprocessing is optional, the odds
of only finding a local optimum are greater because the EA could abstract away
too much (otherwise protected) information by e.g. replacing a node with a wild-
card. An example of an input template group for the factory method pattern is
shown in Fig. 5: most of the methods irrelevant to the pattern are removed.3
The factory method itself is important for the pattern, and so is the fact that it
instantiates something, so both have a protect directive (lines 2 and 6).

Finally, the EA is started using the input template group, and all instances
of the design pattern as desired matches. The configuration we have used is the
following: S = 8 ; M = 22 ; R = 5 ; W1 = 0.6 ; W2 = 0.4 ; the maximum

2 Experiment data and instructions to reproduce the experiment are available at the
Ekeko/X website: https://github.com/cderoove/damp.ekeko.snippets

3 If a method is removed, match|set is always added so the template still matches.

https://github.com/cderoove/damp.ekeko.snippets


1 public interface Figure extends Storable , Cloneable , Serializable {
2 [[public Connector connectorAt( int x, int y);]@[protect]]@[match|set]}
3
4 public class RoundRectangleFigure extends AttributeFigure {
5 [public Connector connectorAt( int x, int y) {
6 return [new ShortestDistanceConnector(this)]@[protect];}]@[match|set]}
7
8 public interface Connector extends Serializable , Storable {
9 [public abstract Figure owner ();
10 public abstract Rectangle displayBox ();
11 public abstract boolean containsPoint(int x, int y);]@[match|set]}

Fig. 5: Input template group

number of generations is 150. Each generation contains 30 individuals, of which
8 are selections, and 22 are mutants. Tournament selection is performed using
5 rounds. The F1 score is given a weight of 0.6; the partial score has a weight
of 0.4, which we will discuss in Sec. 5.2. S, M and R are chosen based on the
Essentials of Metaheuristics book [14]. The number of individuals was kept fairly
low as template matching is memory-intensive, especially because the fitness of
individuals is computed in parallel 4. Finally, the following 16 operators are en-
abled for all experiments: Replace by wildcard/variable, Add directive (equals,
invokes, constructs, overrides, refers-to, type, subtype*, child*, match|set),
isolate expression in method, generalize references/types/invocations/construc-
tor invocations. The disabled operators are either inverse relations of other direc-
tives, or would insert/remove AST nodes, which is unlikely to produce templates
with any matches.

5.2 Experiment Results

Table 4: Experiment results
Pattern TG Match Succ Time(m) BestFit StdDev GenTS Rand Hill
Observer 3 21 7 13.22 0.922 0.098 26.428 0.422 0.526
Prototype 3 27 4 6.75 0.814 0.231 46.75 0.172 0.307
Template method 2 47 5 76.43 0.817 0.170 56.8 0.271 0.369
Strategy 3 13 2 58.52 0.660 0.186 110.5 0.176 0.200
Factory method 3 22 2 99.68 0.682 0.187 118.5 0.201 0.239
Template method 2 7 9 18.27 0.977 0.052 83.888 0.368 0.459
Strategy 3 74 1 91.49 0.545 0.279 51 0.100 0.124
Bridge 3 69 0 64.24 0.803 0.120 - 0.168 0.260

The results of our experiment are presented in Table 4. The top 5 rows are
JHotDraw patterns, and the bottom 3 are Nutch patterns. For each pattern,
10 runs were executed. The following data is provided in the table: the no. of
templates in each template group (TG); the no. of desired matches (Match);
no. of runs (out of 10) that found an exact solution (Succ); total time taken on
average, in minutes (Time); average best fitness (BestFit); standard deviation
of best fitness (StdDev); for runs that found an exact solution, the average
no. of generations needed to find the solution (GenTS); average best fitness

4 The system used in the experiment has 16GB RAM and an Intel Core i7 (Haswell).



found by a random search algorithm (Rand); average best fitness found by a hill
climbing algorithm (Hill). Fig. 6 gives an idea of how the best fitness evolved
per generation for one run of each pattern. Fig. 7 shows the evolution of F1 and
partial score fitness components seperately (for one run of the factory method
pattern); it clearly shows the fine-grained nature of the partial score, compared
to the coarse F1 score. Because we gave the partial score a weight of 0.4, it can
cause the F1 score to temporarily lower, as can be seen around generation 75.
This can occur when the EA is close to finding many more true positives, and
may need to temporarily tolerate an increase in false positives.

Fig. 6: Overall fitness Fig. 7: Fitness components

An example solution that was generated for the factory method pattern in
JHotDraw is shown in Fig. 8. It was generated from the input template of Fig. 5.
The three templates respectively represent the creator (line 1-2), concrete creator
(line 4-6), and product (line 8) roles of the design pattern. As the EA chooses
random metavariable names, we renamed them here to improve readability. The
EA has abstracted away several parts with wildcards, but retained just enough
information: the connectorAt factory method in line 2 (which appears in all
instances), the instantiation expression in line 6 and which types need to be
either classes or interfaces. More importantly, the EA added directives to relate
the three templates to each other: the concrete creator must be a subtype of the
creator interface due to the type and subtype directives in lines 1 and 4. The
factory method must return an instance of the product due to the type directives
in lines 5 and 8. Additionally, due to the child* directive in line 5, the factory
method may also a return a generic type where the product is a parameter. This
is needed, as some instances of the pattern return a Vector of the product type.

1 public interface [...]@[(type ?creator)] extends ... {
2 [[public ... connectorAt (... x, ... y)...]@[protect]]@[match|set]}
3
4 public class ?creator -impl extends [...]@[(subtype* ?creator)] {
5 [public [[...]@[(type ?product)]]@[child*] ...(...)... {
6 [[.... new ...(...)]@[child* protect]]@[match|set]}]@[match|set]}
7
8 public interface [...]@[(type ?product)] extends ... {...}

Fig. 8: Generated solution for the factory method pattern



Based on the data of Table 4, we observe that the search algorithm is able to
find solutions producing only the desired matches in several runs. However, we
do not consistently find exact solutions in all runs, and in case of Nutch’s bridge
pattern no solutions were found. This indicates that the search process can get
stuck in a local optimum. This happens for several reasons; for example: 1. a
wildcard is added too eagerly and abstracts away information that is needed later
on; 2. a relation may need to be established between two nodes using a common
metavariable, but both have already been bound to two different metavariables,
or 3. the fitness score was increased by relating a subclass to a superclass, but
it would be better to relate it to its interface. The current suite of operators is
primarily designed for ease-of-use when editing templates manually, which may
not entirely correspond to operators designed for an EA. Improving the current
suite to this end is considered future work.

As a basic comparison, we also performed the same experiments using a
random search algorithm, as well as a hillclimbing algorithm (also 10 runs per
pattern). The random algorithm continually produces random template groups,
and only keeps the one with the best fitness. To generate a random group, a
random number (between 0 and 50) of mutations is applied to the initial in-
put group. Our reasoning here is that, considering the number of operations we
needed to manually construct a solution, solutions must be within 50 mutations
of the input template group, which is a much smaller search space than gener-
ating entirely random template groups from scratch. The hillclimbing algorithm
continually applies a random mutation to the best template group. If the mutant
has a better fitness, it becomes the best template group. Both the random and
hillclimbing algorithm’s maximum number of iterations is 500. We only show
the average best fitness of both the hillclimbing and random search algorithm
in Table 4, as neither of the algorithms could find an exact solution in any of
its runs. This mainly indicates that the search space is too large to accidentally
find a solution, and that it is possible to get stuck in local optima. As per the
guidelines of Arcuri and Briand [2], we also performed a Mann-Whitney U-test
to compare the BestFit with the Rand column, as well as the BestFit with the
Hill column. In both cases we obtain a p-value smaller than 0.0001, confirming
that the EA outperforms both the random search and hillclimbing algorithms.

5.3 Threats to Validity

The experiment was performed within only two software systems. While our
focus is on snippets of code, the entire code base affects the fitness value.

Our experiment is focused on generalizing design pattern instances, so our
results may not carry over to other uses of templates. While the EA itself should
not change, the suite of mutation operators may need to be extended.

Finally, some combinations of directives on the same node, or a node and
its children, are incompatible combinations, or require special-case behavior. We
have discovered and fixed several bugs in our code because the search algorithm is
exercising so many combinations of directives, but it is difficult to be exhaustive.



6 Related Work

Several program search and transformation tools exist that are, to some extent,
based on code templates. This includes languages and tools such as Stratego [17],
TXL [4] and JTransformer [12]. However, the constraints that are available for
these languages is limited to expressing syntactic and structural characteristics,
but not semantic ones (such as the directives refers-to, invokes, overrides, ...).
The Coccinelle [3] tool does allow for semantic relations based on temporal logic
within a function, but not between different functions.

A closely related tool is ChangeFactory, in which transformations can be
generalized by attaching constraints/conditions to recorded changes. The condi-
tions that can be specified are only of a syntactic nature, which limits expres-
sivity. When considering languages that focus solely on program searches, such
as BAZ [6], JQuery [11], CodeQuest [9] or PQL [15], these languages do support
various semantic constraints, but they are not template-based.

With regards to our EA, several works in the field of program repair make use
of genetic search or genetic programming techniques to either generate or evolve
patches that fix an instance of a bug [1], [13], [18]. However, these approaches
focus on repairing one instance, without looking for similar instances of the same
bug. While our approach does not perform any program repairs, we can use it to
describe multiple instances of a bug in one template. In this regard, the work of
Meng et al. [16] is more closely related. Based on two sequences of source code
modifications, each fixing an instance of the same bug, their approach can create
a transformation that should find and fix all instances of a bug. The approach
in this work however does not consider interprocedural modifications.

7 Conclusion and Future Work

In this work, we have presented a suite of mutation operators to modify template
groups and a search-based approach that automatically generalizes and refines
templates, which we have tested in the context of producing template groups that
match with design pattern instances. While we found that the approach is able
to either substantially improve a template or find solutions that match exactly
with a desired set of snippets, a substantial amount of time is often required.
However, time is less of an issue in our direction of future work. The current
work has focused only on template groups performing program searches. This
is a stepping stone towards also supporting program transformations, in which
e.g. a patch/transformation that fixes one instance of a bug can be generalized
to a transformation that fixes all instances of that bug.
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